
SCons API Docs

version 4.3

SCons Project

November 16, 2021

Contents
SCons Project API Documentation 1

SCons package 1

Module contents 1

Subpackages 1

SCons.Node package 1

Submodules 1

SCons.Node.Alias module 1

SCons.Node.FS module 9

SCons.Node.Python module 68

Module contents 76

SCons.Platform package 85

Submodules 85

SCons.Platform.aix module 85

SCons.Platform.cygwin module 85

SCons.Platform.darwin module 86

SCons.Platform.hpux module 86

SCons.Platform.irix module 86

SCons.Platform.mingw module 86

SCons.Platform.os2 module 86

SCons.Platform.posix module 86

SCons.Platform.sunos module 86

SCons.Platform.virtualenv module 87

SCons.Platform.win32 module 87

Module contents 87

SCons.Scanner package 89

Submodules 89

SCons.Scanner.C module 89

SCons.Scanner.D module 93

SCons.Scanner.Dir module 93

SCons.Scanner.Fortran module 94

SCons.Scanner.IDL module 94

SCons.Scanner.LaTeX module 94

SCons.Scanner.Prog module 96

SCons.Scanner.RC module 96

SCons.Scanner.SWIG module 96

Module contents 96

SCons.Script package 100

Submodules 100

SCons.Script.Interactive module 100

SCons.Script.Main module 102

SCons.Script.SConsOptions module 110

SCons.Script.SConscript module 116

Module contents 123

SCons.Tool package 124

Module contents 124

SCons.Variables package 126

Submodules 126

SCons.Variables.BoolVariable module 126

SCons.Variables.EnumVariable module 126

SCons.Variables.ListVariable module 127

SCons.Variables.PackageVariable module 128

SCons.Variables.PathVariable module 128

Module contents 129

SCons.compat package 131

Module contents 131

Submodules 131

SCons.Action module 131

SCons.Builder module 138

SCons.CacheDir module 144

SCons.Conftest module 145

SCons.Debug module 148

SCons.Defaults module 149

SCons.Environment module 150

SCons.Errors module 164

SCons.Executor module 166

SCons.Job module 171

SCons.Memoize module 174

SCons.PathList module 176

SCons.SConf module 176

SCons.SConsign module 182

SCons.Subst module 184

SCons.Taskmaster module 190

SCons.Util module 197

SCons.Warnings module 207

SCons.cpp module 212

SCons.dblite module 216

SCons.exitfuncs module 219

SCons.compat package 219

Module contents 219

SCons.Node package 220

Submodules 220

SCons.Node.Alias module 220

SCons.Node.FS module 228

SCons.Node.Python module 287

Module contents 295

SCons.Platform package 304

Submodules 304

SCons.Platform.aix module 304

SCons.Platform.cygwin module 304

SCons.Platform.darwin module 305

SCons.Platform.hpux module 305

SCons.Platform.irix module 305

SCons.Platform.mingw module 305

SCons.Platform.os2 module 305

SCons.Platform.posix module 305

SCons.Platform.sunos module 305

SCons.Platform.virtualenv module 306

SCons.Platform.win32 module 306

Module contents 306

SCons.Scanner package 308

Submodules 308

SCons.Scanner.C module 308

SCons.Scanner.D module 312

SCons.Scanner.Dir module 312

SCons.Scanner.Fortran module 313

SCons.Scanner.IDL module 313

SCons.Scanner.LaTeX module 313

SCons.Scanner.Prog module 315

SCons.Scanner.RC module 315

SCons.Scanner.SWIG module 315

Module contents 315

SCons.Script package 319

Submodules 319

SCons.Script.Interactive module 319

SCons.Script.Main module 321

SCons.Script.SConsOptions module 329

SCons.Script.SConscript module 335

Module contents 342

SCons.Tool package 343

Module contents 343

SCons.Variables package 345

Submodules 345

SCons.Variables.BoolVariable module 345

SCons.Variables.EnumVariable module 345

SCons.Variables.ListVariable module 346

SCons.Variables.PackageVariable module 347

SCons.Variables.PathVariable module 347

Module contents 348

Indices and Tables 350

Index 351

Python Module Index 407

SCons Project API Documentation
This is the internal API Documentation for SCons. The Documentation is generated using the Sphinx tool. The target
audience is developers working on SCons itself, so it does not clearly delineate what is “Public API” - interfaces for
use in your SCons configuration scripts which have a consistency guarantee, and what is internal, so always keep
the SCons manual page around for helping with such determinations.

SCons package

Module contents

Subpackages

SCons.Node package

Submodules

SCons.Node.Alias module

Alias nodes.

This creates a hash of global Aliases (dummy targets).

class SCons.Node.Alias.Alias (name)
Bases: SCons.Node.Node

class Attrs
Bases: object

shared

BuildInfo
alias of SCons.Node.Alias.AliasBuildInfo

Decider (function)

GetTag (key)
Return a user-defined tag.

NodeInfo
alias of SCons.Node.Alias.AliasNodeInfo

Tag (key, value)
Add a user-defined tag.

_add_child (collection, set, child)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it’s already present.

_children_get ()

_children_reset ()

_func_exists

_func_get_contents

_func_is_derived

SCons Project API Documentation

1

_func_rexists

_func_target_from_source

_get_scanner (env, initial_scanner, root_node_scanner, kw)

_memo

_specific_sources

_tags

add_dependency (depend)
Adds dependencies.

add_ignore (depend)
Adds dependencies to ignore.

add_prerequisite (prerequisite)
Adds prerequisites

add_source (source)
Adds sources.

add_to_implicit (deps)

add_to_waiting_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, 0 if not.
(Note that the returned values are intended to be used to increment a reference count, so don’t think you can
“clean up” this function by using True and False instead…)

add_to_waiting_s_e (node)

add_wkid (wkid)
Add a node to the list of kids waiting to be evaluated

all_children (scan=1)
Return a list of all the node’s direct children.

alter_targets ()
Return a list of alternate targets for this Node.

always_build

attributes

binfo

build ()
A “builder” for aliases.

builder

builder_set (builder)

built ()
Called just after this node is successfully built.

cached

changed (node=None, allowcache=False)

SCons Project API Documentation

2

Returns if the node is up-to-date with respect to the BuildInfo stored last time it was built. The default behavior is
to compare it against our own previously stored BuildInfo, but the stored BuildInfo from another Node (typically
one in a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as
we detected any difference, but we now rely on checking every dependency to make sure that any necessary
Node information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last_build

check_attributes (name)
Simple API to check if the node.attributes for name has been set

children (scan=1)
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values ()

convert ()

del_binfo ()
Delete the build info from this node.

depends

depends_set

disambiguate (must_exist=None)

env

env_set (env, safe=0)

executor

executor_cleanup ()
Let the executor clean up any cached information.

exists ()
Does this node exists?

explain ()

for_signature ()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__() method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need

SCons Project API Documentation

3

to return something that would actually work in a command line; it can return any kind of nonsense, so long as it
does not change.

get_abspath ()
Return an absolute path to the Node. This will return simply str(Node) by default, but for Node types that have a
concept of relative path, this might return something different.

get_binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns -
the build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they’re already
built and updated by someone else, if that’s what’s wanted.

get_build_env ()
Fetch the appropriate Environment to build this node.

get_build_scanner_path (scanner)
Fetch the appropriate scanner path for this node.

get_builder (default_builder=None)
Return the set builder, or a specified default value

get_cachedir_csig ()

get_contents ()
The contents of an alias is the concatenation of the content signatures of all its sources.

get_csig ()
Generate a node’s content signature, the digested signature of its content.
node - the node cache - alternate node to use for the signature cache returns - the content signature

get_env ()

get_env_scanner (env, kw={})

get_executor (create=1)
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.

get_found_includes (env, scanner, path)
Return the scanned include lines (implicit dependencies) found in this node.
The default is no implicit dependencies. We expect this method to be overridden by any subclass that can be
scanned for implicit dependencies.

get_implicit_deps (env, initial_scanner, path_func, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.

get_ninfo ()

get_source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get_state ()

get_stored_implicit ()
Fetch the stored implicit dependencies

SCons Project API Documentation

4

get_stored_info ()

get_string (for_signature)
This is a convenience function designed primarily to be used in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command
line, which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a
string, passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle
use is that some Nodes would like to implement a __getattr__() method, but putting that in the Node type itself
has a tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this
method to return self if no new functionality is needed for Environment substitution.

get_suffix ()

get_target_scanner ()

has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: …”). When the builder attribute is examined directly, it ends up calling __getattr__ for both the
__len__ and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

ignore

ignore_set

implicit

implicit_set

includes

is_conftest ()
Returns true if this node is an conftest node

is_derived ()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and
should contribute their build signatures when they are used as source files to other derived files. For example:
source with source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript ()
Returns true if this node is an sconscript

SCons Project API Documentation

5

is_under (dir)

is_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

linked

make_ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

missing ()

multiple_side_effect_has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: …”). When the builder attribute is examined directly, it ends up calling __getattr__ for both the
__len__ and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

new_binfo ()

new_ninfo ()

ninfo

nocache

noclean

postprocess ()
Clean up anything we don’t need to hang onto after we’ve been built.

precious

prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before
actually calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and
initializes the BuildInfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the
targets built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note
that subclass methods should call this base class method to get the child check and the BuildInfo structure.

prerequisites

pseudo

push_to_cache ()
Try to push a node into a cache

really_build (**kw)
Actually build the node.
This is called by the Taskmaster after it’s decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.

SCons Project API Documentation

6

This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().

ref_count

release_target_info ()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order
to minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that
much how many KBytes a Node actually requires…as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()

remove ()
Remove this Node: no-op by default.

render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.

reset_executor ()
Remove cached executor; forces recompute when needed.

retrieve_from_cache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().
Returns true if the node was successfully retrieved.

rexists ()
Does this node exist locally or in a repository?

scan ()
Scan this node’s dependents for implicit dependencies.

scanner_key ()

sconsign ()
An Alias is not recorded in .sconsign files

select_scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don’t select one the Scanner.Selector that’s configured for the target.

set_always_build (always_build=1)
Set the Node’s always_build value.

set_executor (executor)
Set the action executor for this node.

set_explicit (is_explicit)

set_nocache (nocache=1)
Set the Node’s nocache value.

set_noclean (noclean=1)
Set the Node’s noclean value.

set_precious (precious=1)
Set the Node’s precious value.

SCons Project API Documentation

7

set_pseudo (pseudo=True)
Set the Node’s precious value.

set_specific_source (source)

set_state (state)

side_effect

side_effects

sources

sources_set

state

store_info

str_for_display ()

target_peers

visited ()
Called just after this node has been visited (with or without a build).

waiting_parents

waiting_s_e

wkids

class SCons.Node.Alias.AliasBuildInfo
Bases: SCons.Node.BuildInfoBase

bact

bactsig

bdepends

bdependsigs

bimplicit

bimplicitsigs

bsources

bsourcesigs

current_version_id = 2

merge (other)
Merge the fields of another object into this object. Already existing information is overwritten by the other
instance’s data. WARNING: If a ‘__dict__’ slot is added, it should be updated instead of replaced.

class SCons.Node.Alias.AliasNameSpace (**kwargs)
Bases: collections.UserDict

Alias (name, **kw)

SCons Project API Documentation

8

_abc_impl = <_abc_data object>

clear () → None. Remove all items from D.

copy ()

classmethod fromkeys (iterable, value=None)

get (k[, d]) → D[k] if k in D, else d. d defaults to None.

items () → a set-like object providing a view on D’s items

keys () → a set-like object providing a view on D’s keys

lookup (name, **kw)

pop (k[, d]) → v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised.

popitem () → (k, v), remove and return some (key, value) pair
as a 2-tuple; but raise KeyError if D is empty.

setdefault (k[, d]) → D.get(k,d), also set D[k]=d if k not in D

update ([, E], **F) → None. Update D from mapping/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method, does:
for (k, v) in E: D[k] = v In either case, this is followed by: for k, v in F.items(): D[k] = v

values () → an object providing a view on D’s values

class SCons.Node.Alias.AliasNodeInfo
Bases: SCons.Node.NodeInfoBase

convert (node, val)

csig

current_version_id = 2

field_list = ['csig']

format (field_list=None, names=0)

merge (other)
Merge the fields of another object into this object. Already existing information is overwritten by the other
instance’s data. WARNING: If a ‘__dict__’ slot is added, it should be updated instead of replaced.

str_to_node (s)

update (node)

SCons.Node.FS module

File system nodes.

These Nodes represent the canonical external objects that people think of when they think of building software: files
and directories.

This holds a “default_fs” variable that should be initialized with an FS that can be used by scripts or modules looking
for the canonical default.

class SCons.Node.FS.Base (name, directory, fs)

SCons Project API Documentation

9

Bases: SCons.Node.Node
A generic class for file system entries. This class is for when we don’t know yet whether the entry being looked up
is a file or a directory. Instances of this class can morph into either Dir or File objects by a later, more precise
lookup.
Note: this class does not define __cmp__ and __hash__ for efficiency reasons. SCons does a lot of comparing of
Node.FS.{Base,Entry,File,Dir} objects, so those operations must be as fast as possible, which means we want to
use Python’s built-in object identity comparisons.

class Attrs
Bases: object

shared

BuildInfo
alias of SCons.Node.BuildInfoBase

Decider (function)

GetTag (key)
Return a user-defined tag.

NodeInfo
alias of SCons.Node.NodeInfoBase

RDirs (pathlist)
Search for a list of directories in the Repository list.

Rfindalldirs (pathlist)
Return all of the directories for a given path list, including corresponding “backing” directories in any repositories.
The Node lookups are relative to this Node (typically a directory), so memoizing result saves cycles from looking
up the same path for each target in a given directory.

Tag (key, value)
Add a user-defined tag.

_Rfindalldirs_key (pathlist)

_abspath

_add_child (collection, set, child)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it’s already present.

_children_get ()

_children_reset ()

_func_exists

_func_get_contents

_func_is_derived

_func_rexists

_func_sconsign

_func_target_from_source

_get_scanner (env, initial_scanner, root_node_scanner, kw)

_get_str ()

SCons Project API Documentation

10

_glob1 (pattern, ondisk=True, source=False, strings=False)

_labspath

_local

_memo

_path

_path_elements

_proxy

_save_str ()

_specific_sources

_tags

_tpath

add_dependency (depend)
Adds dependencies.

add_ignore (depend)
Adds dependencies to ignore.

add_prerequisite (prerequisite)
Adds prerequisites

add_source (source)
Adds sources.

add_to_implicit (deps)

add_to_waiting_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, 0 if not.
(Note that the returned values are intended to be used to increment a reference count, so don’t think you can
“clean up” this function by using True and False instead…)

add_to_waiting_s_e (node)

add_wkid (wkid)
Add a node to the list of kids waiting to be evaluated

all_children (scan=1)
Return a list of all the node’s direct children.

alter_targets ()
Return a list of alternate targets for this Node.

always_build

attributes

binfo

build (**kw)
Actually build the node.

SCons Project API Documentation

11

This is called by the Taskmaster after it’s decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().

builder

builder_set (builder)

built ()
Called just after this node is successfully built.

cached

changed (node=None, allowcache=False)
Returns if the node is up-to-date with respect to the BuildInfo stored last time it was built. The default behavior is
to compare it against our own previously stored BuildInfo, but the stored BuildInfo from another Node (typically
one in a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as
we detected any difference, but we now rely on checking every dependency to make sure that any necessary
Node information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last_build

check_attributes (name)
Simple API to check if the node.attributes for name has been set

children (scan=1)
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values ()

cwd

del_binfo ()
Delete the build info from this node.

depends

depends_set

dir

disambiguate (must_exist=None)

duplicate

env

SCons Project API Documentation

12

env_set (env, safe=0)

executor

executor_cleanup ()
Let the executor clean up any cached information.

exists ()
Does this node exists?

explain ()

for_signature ()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__() method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need
to return something that would actually work in a command line; it can return any kind of nonsense, so long as it
does not change.

fs
Reference to parent Node.FS object

get_abspath ()
Get the absolute path of the file.

get_binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns -
the build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they’re already
built and updated by someone else, if that’s what’s wanted.

get_build_env ()
Fetch the appropriate Environment to build this node.

get_build_scanner_path (scanner)
Fetch the appropriate scanner path for this node.

get_builder (default_builder=None)
Return the set builder, or a specified default value

get_cachedir_csig ()

get_contents ()
Fetch the contents of the entry.

get_csig ()

get_dir ()

get_env ()

get_env_scanner (env, kw={})

get_executor (create=1)
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.

get_found_includes (env, scanner, path)
Return the scanned include lines (implicit dependencies) found in this node.

SCons Project API Documentation

13

The default is no implicit dependencies. We expect this method to be overridden by any subclass that can be
scanned for implicit dependencies.

get_implicit_deps (env, initial_scanner, path_func, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.

get_internal_path ()

get_labspath ()
Get the absolute path of the file.

get_ninfo ()

get_path (dir=None)
Return path relative to the current working directory of the Node.FS.Base object that owns us.

get_path_elements ()

get_relpath ()
Get the path of the file relative to the root SConstruct file’s directory.

get_source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get_state ()

get_stored_implicit ()
Fetch the stored implicit dependencies

get_stored_info ()

get_string (for_signature)
This is a convenience function designed primarily to be used in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command
line, which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a
string, passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle
use is that some Nodes would like to implement a __getattr__() method, but putting that in the Node type itself
has a tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this
method to return self if no new functionality is needed for Environment substitution.

get_suffix ()

get_target_scanner ()

get_tpath ()

getmtime ()

getsize ()

SCons Project API Documentation

14

has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: …”). When the builder attribute is examined directly, it ends up calling __getattr__ for both the
__len__ and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

ignore

ignore_set

implicit

implicit_set

includes

is_conftest ()
Returns true if this node is an conftest node

is_derived ()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and
should contribute their build signatures when they are used as source files to other derived files. For example:
source with source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript ()
Returns true if this node is an sconscript

is_under (dir)

is_up_to_date ()
Default check for whether the Node is current: unknown Node subtypes are always out of date, so they will
always get built.

isdir ()

isfile ()

islink ()

linked

lstat ()

make_ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

missing ()

SCons Project API Documentation

15

multiple_side_effect_has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: …”). When the builder attribute is examined directly, it ends up calling __getattr__ for both the
__len__ and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

must_be_same (klass)
This node, which already existed, is being looked up as the specified klass. Raise an exception if it isn’t.

name

new_binfo ()

new_ninfo ()

ninfo

nocache

noclean

postprocess ()
Clean up anything we don’t need to hang onto after we’ve been built.

precious

prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before
actually calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and
initializes the BuildInfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the
targets built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note
that subclass methods should call this base class method to get the child check and the BuildInfo structure.

prerequisites

pseudo

push_to_cache ()
Try to push a node into a cache

ref_count

release_target_info ()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order
to minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that
much how many KBytes a Node actually requires…as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()

remove ()
Remove this Node: no-op by default.

render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.

SCons Project API Documentation

16

rentry ()

reset_executor ()
Remove cached executor; forces recompute when needed.

retrieve_from_cache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().
Returns true if the node was successfully retrieved.

rexists ()
Does this node exist locally or in a repository?

rfile ()

rstr ()
A Node.FS.Base object’s string representation is its path name.

sbuilder

scan ()
Scan this node’s dependents for implicit dependencies.

scanner_key ()

select_scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don’t select one the Scanner.Selector that’s configured for the target.

set_always_build (always_build=1)
Set the Node’s always_build value.

set_executor (executor)
Set the action executor for this node.

set_explicit (is_explicit)

set_local ()

set_nocache (nocache=1)
Set the Node’s nocache value.

set_noclean (noclean=1)
Set the Node’s noclean value.

set_precious (precious=1)
Set the Node’s precious value.

set_pseudo (pseudo=True)
Set the Node’s precious value.

set_specific_source (source)

set_src_builder (builder)
Set the source code builder for this node.

set_state (state)

side_effect

SCons Project API Documentation

17

side_effects

sources

sources_set

src_builder ()
Fetch the source code builder for this node.
If there isn’t one, we cache the source code builder specified for the directory (which in turn will cache the value
from its parent directory, and so on up to the file system root).

srcnode ()
If this node is in a build path, return the node corresponding to its source file. Otherwise, return ourself.

stat ()

state

store_info

str_for_display ()

target_from_source (prefix, suffix, splitext=<function splitext>)
Generates a target entry that corresponds to this entry (usually a source file) with the specified prefix and suffix.
Note that this method can be overridden dynamically for generated files that need different behavior. See
Tool/swig.py for an example.

target_peers

visited ()
Called just after this node has been visited (with or without a build).

waiting_parents

waiting_s_e

wkids

class SCons.Node.FS.Dir (name, directory, fs)
Bases: SCons.Node.FS.Base
A class for directories in a file system.

class Attrs
Bases: object

shared

BuildInfo
alias of SCons.Node.FS.DirBuildInfo

Decider (function)

Dir (name, create=True)
Looks up or creates a directory node named ‘name’ relative to this directory.

Entry (name)
Looks up or creates an entry node named ‘name’ relative to this directory.

File (name)
Looks up or creates a file node named ‘name’ relative to this directory.

SCons Project API Documentation

18

GetTag (key)
Return a user-defined tag.

NodeInfo
alias of SCons.Node.FS.DirNodeInfo

RDirs (pathlist)
Search for a list of directories in the Repository list.

Rfindalldirs (pathlist)
Return all of the directories for a given path list, including corresponding “backing” directories in any repositories.
The Node lookups are relative to this Node (typically a directory), so memoizing result saves cycles from looking
up the same path for each target in a given directory.

Tag (key, value)
Add a user-defined tag.

_Rfindalldirs_key (pathlist)

__clearRepositoryCache (duplicate=None)
Called when we change the repository(ies) for a directory. This clears any cached information that is invalidated
by changing the repository.

__resetDuplicate (node)

_abspath

_add_child (collection, set, child)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it’s already present.

_children_get ()

_children_reset ()

_create ()
Create this directory, silently and without worrying about whether the builder is the default or not.

_func_exists

_func_get_contents

_func_is_derived

_func_rexists

_func_sconsign

_func_target_from_source

_get_scanner (env, initial_scanner, root_node_scanner, kw)

_get_str ()

_glob1 (pattern, ondisk=True, source=False, strings=False)
Globs for and returns a list of entry names matching a single pattern in this directory.
This searches any repositories and source directories for corresponding entries and returns a Node (or string)
relative to the current directory if an entry is found anywhere.
TODO: handle pattern with no wildcard

_labspath

SCons Project API Documentation

19

_local

_memo

_morph ()
Turn a file system Node (either a freshly initialized directory object or a separate Entry object) into a proper
directory object.
Set up this directory’s entries and hook it into the file system tree. Specify that directories (this Node) don’t use
signatures for calculating whether they’re current.

_path

_path_elements

_proxy

_rel_path_key (other)

_save_str ()

_sconsign

_specific_sources

_srcdir_find_file_key (filename)

_tags

_tpath

addRepository (dir)

add_dependency (depend)
Adds dependencies.

add_ignore (depend)
Adds dependencies to ignore.

add_prerequisite (prerequisite)
Adds prerequisites

add_source (source)
Adds sources.

add_to_implicit (deps)

add_to_waiting_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, 0 if not.
(Note that the returned values are intended to be used to increment a reference count, so don’t think you can
“clean up” this function by using True and False instead…)

add_to_waiting_s_e (node)

add_wkid (wkid)
Add a node to the list of kids waiting to be evaluated

all_children (scan=1)
Return a list of all the node’s direct children.

alter_targets ()
Return any corresponding targets in a variant directory.

SCons Project API Documentation

20

always_build

attributes

binfo

build (**kw)
A null “builder” for directories.

builder

builder_set (builder)

built ()
Called just after this node is successfully built.

cached

cachedir_csig

cachesig

changed (node=None, allowcache=False)
Returns if the node is up-to-date with respect to the BuildInfo stored last time it was built. The default behavior is
to compare it against our own previously stored BuildInfo, but the stored BuildInfo from another Node (typically
one in a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as
we detected any difference, but we now rely on checking every dependency to make sure that any necessary
Node information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last_build

check_attributes (name)
Simple API to check if the node.attributes for name has been set

children (scan=1)
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values ()

contentsig

cwd

del_binfo ()
Delete the build info from this node.

depends

SCons Project API Documentation

21

depends_set

dir

dir_on_disk (name)

dirname

disambiguate (must_exist=None)

diskcheck_match ()

do_duplicate (src)

duplicate

entries

entry_abspath (name)

entry_exists_on_disk (name)
Searches through the file/dir entries of the current directory, and returns True if a physical entry with the given
name could be found.
@see rentry_exists_on_disk

entry_labspath (name)

entry_path (name)

entry_tpath (name)

env

env_set (env, safe=0)

executor

executor_cleanup ()
Let the executor clean up any cached information.

exists ()
Does this node exists?

explain ()

file_on_disk (name)

for_signature ()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__() method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need
to return something that would actually work in a command line; it can return any kind of nonsense, so long as it
does not change.

fs

getRepositories ()
Returns a list of repositories for this directory.

get_abspath ()

SCons Project API Documentation

22

Get the absolute path of the file.

get_all_rdirs ()

get_binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns -
the build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they’re already
built and updated by someone else, if that’s what’s wanted.

get_build_env ()
Fetch the appropriate Environment to build this node.

get_build_scanner_path (scanner)
Fetch the appropriate scanner path for this node.

get_builder (default_builder=None)
Return the set builder, or a specified default value

get_cachedir_csig ()

get_contents ()
Return content signatures and names of all our children separated by new-lines. Ensure that the nodes are
sorted.

get_csig ()
Compute the content signature for Directory nodes. In general, this is not needed and the content signature is
not stored in the DirNodeInfo. However, if get_contents on a Dir node is called which has a child directory, the
child directory should return the hash of its contents.

get_dir ()

get_env ()

get_env_scanner (env, kw={})

get_executor (create=1)
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.

get_found_includes (env, scanner, path)
Return this directory’s implicit dependencies.
We don’t bother caching the results because the scan typically shouldn’t be requested more than once (as
opposed to scanning .h file contents, which can be requested as many times as the files is #included by other
files).

get_implicit_deps (env, initial_scanner, path_func, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.

get_internal_path ()

get_labspath ()
Get the absolute path of the file.

get_ninfo ()

get_path (dir=None)
Return path relative to the current working directory of the Node.FS.Base object that owns us.

SCons Project API Documentation

23

get_path_elements ()

get_relpath ()
Get the path of the file relative to the root SConstruct file’s directory.

get_source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get_state ()

get_stored_implicit ()
Fetch the stored implicit dependencies

get_stored_info ()

get_string (for_signature)
This is a convenience function designed primarily to be used in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command
line, which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a
string, passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle
use is that some Nodes would like to implement a __getattr__() method, but putting that in the Node type itself
has a tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this
method to return self if no new functionality is needed for Environment substitution.

get_suffix ()

get_target_scanner ()

get_text_contents ()
We already emit things in text, so just return the binary version.

get_timestamp ()
Return the latest timestamp from among our children

get_tpath ()

getmtime ()

getsize ()

glob (pathname, ondisk=True, source=False, strings=False, exclude=None)
Returns a list of Nodes (or strings) matching a specified pathname pattern.
Pathname patterns follow UNIX shell semantics: * matches any-length strings of any characters, ? matches any
character, and [] can enclose lists or ranges of characters. Matches do not span directory separators.
The matches take into account Repositories, returning local Nodes if a corresponding entry exists in a
Repository (either an in-memory Node or something on disk).
By defafult, the glob() function matches entries that exist on-disk, in addition to in-memory Nodes. Setting the
“ondisk” argument to False (or some other non-true value) causes the glob() function to only match in-memory
Nodes. The default behavior is to return both the on-disk and in-memory Nodes.

SCons Project API Documentation

24

The “source” argument, when true, specifies that corresponding source Nodes must be returned if you’re
globbing in a build directory (initialized with VariantDir()). The default behavior is to return Nodes local to the
VariantDir().
The “strings” argument, when true, returns the matches as strings, not Nodes. The strings are path names
relative to this directory.
The “exclude” argument, if not None, must be a pattern or a list of patterns following the same UNIX shell
semantics. Elements matching a least one pattern of this list will be excluded from the result.
The underlying algorithm is adapted from the glob.glob() function in the Python library (but heavily modified), and
uses fnmatch() under the covers.

has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: …”). When the builder attribute is examined directly, it ends up calling __getattr__ for both the
__len__ and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

ignore

ignore_set

implicit

implicit_set

includes

is_conftest ()
Returns true if this node is an conftest node

is_derived ()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and
should contribute their build signatures when they are used as source files to other derived files. For example:
source with source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript ()
Returns true if this node is an sconscript

is_under (dir)

is_up_to_date ()
If any child is not up-to-date, then this directory isn’t, either.

isdir ()

isfile ()

islink ()

link (srcdir, duplicate)

SCons Project API Documentation

25

Set this directory as the variant directory for the supplied source directory.

linked

lstat ()

make_ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

missing ()

multiple_side_effect_has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: …”). When the builder attribute is examined directly, it ends up calling __getattr__ for both the
__len__ and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

must_be_same (klass)
This node, which already existed, is being looked up as the specified klass. Raise an exception if it isn’t.

name

new_binfo ()

new_ninfo ()

ninfo

nocache

noclean

on_disk_entries

postprocess ()
Clean up anything we don’t need to hang onto after we’ve been built.

precious

prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before
actually calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and
initializes the BuildInfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the
targets built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note
that subclass methods should call this base class method to get the child check and the BuildInfo structure.

prerequisites

pseudo

push_to_cache ()
Try to push a node into a cache

rdir ()

SCons Project API Documentation

26

ref_count

rel_path (other)
Return a path to “other” relative to this directory.

release_target_info ()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order
to minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that
much how many KBytes a Node actually requires…as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()

released_target_info

remove ()
Remove this Node: no-op by default.

render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.

rentry ()

rentry_exists_on_disk (name)
Searches through the file/dir entries of the current and all its remote directories (repos), and returns True if a
physical entry with the given name could be found. The local directory (self) gets searched first, so repositories
take a lower precedence regarding the searching order.
@see entry_exists_on_disk

repositories

reset_executor ()
Remove cached executor; forces recompute when needed.

retrieve_from_cache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().
Returns true if the node was successfully retrieved.

rexists ()
Does this node exist locally or in a repository?

rfile ()

root

rstr ()
A Node.FS.Base object’s string representation is its path name.

sbuilder

scan ()
Scan this node’s dependents for implicit dependencies.

scanner_key ()
A directory does not get scanned.

scanner_paths

sconsign ()

SCons Project API Documentation

27

Return the .sconsign file info for this directory.

searched

select_scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don’t select one the Scanner.Selector that’s configured for the target.

set_always_build (always_build=1)
Set the Node’s always_build value.

set_executor (executor)
Set the action executor for this node.

set_explicit (is_explicit)

set_local ()

set_nocache (nocache=1)
Set the Node’s nocache value.

set_noclean (noclean=1)
Set the Node’s noclean value.

set_precious (precious=1)
Set the Node’s precious value.

set_pseudo (pseudo=True)
Set the Node’s precious value.

set_specific_source (source)

set_src_builder (builder)
Set the source code builder for this node.

set_state (state)

side_effect

side_effects

sources

sources_set

src_builder ()
Fetch the source code builder for this node.
If there isn’t one, we cache the source code builder specified for the directory (which in turn will cache the value
from its parent directory, and so on up to the file system root).

srcdir

srcdir_duplicate (name)

srcdir_find_file (filename)

srcdir_list ()

srcnode ()
Dir has a special need for srcnode()…if we have a srcdir attribute set, then that is our srcnode.

SCons Project API Documentation

28

stat ()

state

store_info

str_for_display ()

target_from_source (prefix, suffix, splitext=<function splitext>)
Generates a target entry that corresponds to this entry (usually a source file) with the specified prefix and suffix.
Note that this method can be overridden dynamically for generated files that need different behavior. See
Tool/swig.py for an example.

target_peers

up ()

variant_dirs

visited ()
Called just after this node has been visited (with or without a build).

waiting_parents

waiting_s_e

walk (func, arg)
Walk this directory tree by calling the specified function for each directory in the tree.
This behaves like the os.path.walk() function, but for in-memory Node.FS.Dir objects. The function takes the
same arguments as the functions passed to os.path.walk():

func(arg, dirname, fnames)
Except that “dirname” will actually be the directory Node, not the string. The ‘.’ and ‘..’ entries are excluded from
fnames. The fnames list may be modified in-place to filter the subdirectories visited or otherwise impose a
specific order. The “arg” argument is always passed to func() and may be used in any way (or ignored, passing
None is common).

wkids

class SCons.Node.FS.DirBuildInfo
Bases: SCons.Node.BuildInfoBase

bact

bactsig

bdepends

bdependsigs

bimplicit

bimplicitsigs

bsources

bsourcesigs

current_version_id = 2

merge (other)

SCons Project API Documentation

29

Merge the fields of another object into this object. Already existing information is overwritten by the other
instance’s data. WARNING: If a ‘__dict__’ slot is added, it should be updated instead of replaced.

class SCons.Node.FS.DirNodeInfo
Bases: SCons.Node.NodeInfoBase

convert (node, val)

current_version_id = 2

format (field_list=None, names=0)

fs = None

merge (other)
Merge the fields of another object into this object. Already existing information is overwritten by the other
instance’s data. WARNING: If a ‘__dict__’ slot is added, it should be updated instead of replaced.

str_to_node (s)

update (node)

class SCons.Node.FS.DiskChecker (type, do, ignore)
Bases: object

set (list)

class SCons.Node.FS.Entry (name, directory, fs)
Bases: SCons.Node.FS.Base
This is the class for generic Node.FS entries–that is, things that could be a File or a Dir, but we’re just not sure yet.
Consequently, the methods in this class really exist just to transform their associated object into the right class
when the time comes, and then call the same-named method in the transformed class.

class Attrs
Bases: object

shared

BuildInfo
alias of SCons.Node.BuildInfoBase

Decider (function)

GetTag (key)
Return a user-defined tag.

NodeInfo
alias of SCons.Node.NodeInfoBase

RDirs (pathlist)
Search for a list of directories in the Repository list.

Rfindalldirs (pathlist)
Return all of the directories for a given path list, including corresponding “backing” directories in any repositories.
The Node lookups are relative to this Node (typically a directory), so memoizing result saves cycles from looking
up the same path for each target in a given directory.

Tag (key, value)
Add a user-defined tag.

_Rfindalldirs_key (pathlist)

SCons Project API Documentation

30

_abspath

_add_child (collection, set, child)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it’s already present.

_children_get ()

_children_reset ()

_func_exists

_func_get_contents

_func_is_derived

_func_rexists

_func_sconsign

_func_target_from_source

_get_scanner (env, initial_scanner, root_node_scanner, kw)

_get_str ()

_glob1 (pattern, ondisk=True, source=False, strings=False)

_labspath

_local

_memo

_path

_path_elements

_proxy

_save_str ()

_sconsign

_specific_sources

_tags

_tpath

add_dependency (depend)
Adds dependencies.

add_ignore (depend)
Adds dependencies to ignore.

add_prerequisite (prerequisite)
Adds prerequisites

add_source (source)
Adds sources.

SCons Project API Documentation

31

add_to_implicit (deps)

add_to_waiting_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, 0 if not.
(Note that the returned values are intended to be used to increment a reference count, so don’t think you can
“clean up” this function by using True and False instead…)

add_to_waiting_s_e (node)

add_wkid (wkid)
Add a node to the list of kids waiting to be evaluated

all_children (scan=1)
Return a list of all the node’s direct children.

alter_targets ()
Return a list of alternate targets for this Node.

always_build

attributes

binfo

build (**kw)
Actually build the node.
This is called by the Taskmaster after it’s decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().

builder

builder_set (builder)

built ()
Called just after this node is successfully built.

cached

cachedir_csig

cachesig

changed (node=None, allowcache=False)
Returns if the node is up-to-date with respect to the BuildInfo stored last time it was built. The default behavior is
to compare it against our own previously stored BuildInfo, but the stored BuildInfo from another Node (typically
one in a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as
we detected any difference, but we now rely on checking every dependency to make sure that any necessary
Node information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last_build

check_attributes (name)
Simple API to check if the node.attributes for name has been set

SCons Project API Documentation

32

children (scan=1)
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values ()

contentsig

cwd

del_binfo ()
Delete the build info from this node.

depends

depends_set

dir

dirname

disambiguate (must_exist=None)

diskcheck_match ()

duplicate

entries

env

env_set (env, safe=0)

executor

executor_cleanup ()
Let the executor clean up any cached information.

exists ()
Does this node exists?

explain ()

for_signature ()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__() method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need
to return something that would actually work in a command line; it can return any kind of nonsense, so long as it
does not change.

fs

SCons Project API Documentation

33

get_abspath ()
Get the absolute path of the file.

get_binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns -
the build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they’re already
built and updated by someone else, if that’s what’s wanted.

get_build_env ()
Fetch the appropriate Environment to build this node.

get_build_scanner_path (scanner)
Fetch the appropriate scanner path for this node.

get_builder (default_builder=None)
Return the set builder, or a specified default value

get_cachedir_csig ()

get_contents ()
Fetch the contents of the entry. Returns the exact binary contents of the file.

get_csig ()

get_dir ()

get_env ()

get_env_scanner (env, kw={})

get_executor (create=1)
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.

get_found_includes (env, scanner, path)
Return the scanned include lines (implicit dependencies) found in this node.
The default is no implicit dependencies. We expect this method to be overridden by any subclass that can be
scanned for implicit dependencies.

get_implicit_deps (env, initial_scanner, path_func, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.

get_internal_path ()

get_labspath ()
Get the absolute path of the file.

get_ninfo ()

get_path (dir=None)
Return path relative to the current working directory of the Node.FS.Base object that owns us.

get_path_elements ()

get_relpath ()
Get the path of the file relative to the root SConstruct file’s directory.

get_source_scanner (node)

SCons Project API Documentation

34

Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get_state ()

get_stored_implicit ()
Fetch the stored implicit dependencies

get_stored_info ()

get_string (for_signature)
This is a convenience function designed primarily to be used in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command
line, which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a
string, passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle
use is that some Nodes would like to implement a __getattr__() method, but putting that in the Node type itself
has a tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this
method to return self if no new functionality is needed for Environment substitution.

get_suffix ()

get_target_scanner ()

get_text_contents ()
Fetch the decoded text contents of a Unicode encoded Entry.
Since this should return the text contents from the file system, we check to see into what sort of subclass we
should morph this Entry.

get_tpath ()

getmtime ()

getsize ()

has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: …”). When the builder attribute is examined directly, it ends up calling __getattr__ for both the
__len__ and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

ignore

ignore_set

implicit

SCons Project API Documentation

35

implicit_set

includes

is_conftest ()
Returns true if this node is an conftest node

is_derived ()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and
should contribute their build signatures when they are used as source files to other derived files. For example:
source with source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript ()
Returns true if this node is an sconscript

is_under (dir)

is_up_to_date ()
Default check for whether the Node is current: unknown Node subtypes are always out of date, so they will
always get built.

isdir ()

isfile ()

islink ()

linked

lstat ()

make_ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

missing ()

multiple_side_effect_has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: …”). When the builder attribute is examined directly, it ends up calling __getattr__ for both the
__len__ and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

must_be_same (klass)
Called to make sure a Node is a Dir. Since we’re an Entry, we can morph into one.

name

new_binfo ()

new_ninfo ()

ninfo

SCons Project API Documentation

36

nocache

noclean

on_disk_entries

postprocess ()
Clean up anything we don’t need to hang onto after we’ve been built.

precious

prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before
actually calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and
initializes the BuildInfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the
targets built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note
that subclass methods should call this base class method to get the child check and the BuildInfo structure.

prerequisites

pseudo

push_to_cache ()
Try to push a node into a cache

ref_count

rel_path (other)

release_target_info ()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order
to minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that
much how many KBytes a Node actually requires…as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()

released_target_info

remove ()
Remove this Node: no-op by default.

render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.

rentry ()

repositories

reset_executor ()
Remove cached executor; forces recompute when needed.

retrieve_from_cache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().
Returns true if the node was successfully retrieved.

SCons Project API Documentation

37

rexists ()
Does this node exist locally or in a repository?

rfile ()
We’re a generic Entry, but the caller is actually looking for a File at this point, so morph into one.

root

rstr ()
A Node.FS.Base object’s string representation is its path name.

sbuilder

scan ()
Scan this node’s dependents for implicit dependencies.

scanner_key ()

scanner_paths

searched

select_scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don’t select one the Scanner.Selector that’s configured for the target.

set_always_build (always_build=1)
Set the Node’s always_build value.

set_executor (executor)
Set the action executor for this node.

set_explicit (is_explicit)

set_local ()

set_nocache (nocache=1)
Set the Node’s nocache value.

set_noclean (noclean=1)
Set the Node’s noclean value.

set_precious (precious=1)
Set the Node’s precious value.

set_pseudo (pseudo=True)
Set the Node’s precious value.

set_specific_source (source)

set_src_builder (builder)
Set the source code builder for this node.

set_state (state)

side_effect

side_effects

sources

SCons Project API Documentation

38

sources_set

src_builder ()
Fetch the source code builder for this node.
If there isn’t one, we cache the source code builder specified for the directory (which in turn will cache the value
from its parent directory, and so on up to the file system root).

srcdir

srcnode ()
If this node is in a build path, return the node corresponding to its source file. Otherwise, return ourself.

stat ()

state

store_info

str_for_display ()

target_from_source (prefix, suffix, splitext=<function splitext>)
Generates a target entry that corresponds to this entry (usually a source file) with the specified prefix and suffix.
Note that this method can be overridden dynamically for generated files that need different behavior. See
Tool/swig.py for an example.

target_peers

variant_dirs

visited ()
Called just after this node has been visited (with or without a build).

waiting_parents

waiting_s_e

wkids

class SCons.Node.FS.EntryProxy (subject)
Bases: SCons.Util.Proxy

__get_abspath ()

__get_base_path ()
Return the file’s directory and file name, with the suffix stripped.

__get_dir ()

__get_file ()

__get_filebase ()

__get_posix_path ()
Return the path with / as the path separator, regardless of platform.

__get_relpath ()

__get_rsrcdir ()
Returns the directory containing the source node linked to this node via VariantDir(), or the directory of this node
if not linked.

SCons Project API Documentation

39

__get_rsrcnode ()

__get_srcdir ()
Returns the directory containing the source node linked to this node via VariantDir(), or the directory of this node
if not linked.

__get_srcnode ()

__get_suffix ()

__get_windows_path ()
Return the path with as the path separator, regardless of platform.

dictSpecialAttrs = {'abspath': <function EntryProxy.__get_abspath>, 'base': <function
EntryProxy.__get_base_path>, 'dir': <function EntryProxy.__get_dir>, 'file': <function EntryProxy.__get_file>,
'filebase': <function EntryProxy.__get_filebase>, 'posix': <function EntryProxy.__get_posix_path>, 'relpath':
<function EntryProxy.__get_relpath>, 'rsrcdir': <function EntryProxy.__get_rsrcdir>, 'rsrcpath': <function
EntryProxy.__get_rsrcnode>, 'srcdir': <function EntryProxy.__get_srcdir>, 'srcpath': <function
EntryProxy.__get_srcnode>, 'suffix': <function EntryProxy.__get_suffix>, 'win32': <function
EntryProxy.__get_windows_path>, 'windows': <function EntryProxy.__get_windows_path>}

get ()
Retrieve the entire wrapped object

exception SCons.Node.FS.EntryProxyAttributeError (entry_proxy, attribute)
Bases: AttributeError
An AttributeError subclass for recording and displaying the name of the underlying Entry involved in an
AttributeError exception.

args

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class SCons.Node.FS.FS (path=None)
Bases: SCons.Node.FS.LocalFS

Dir (name, directory=None, create=True)
Look up or create a Dir node with the specified name. If the name is a relative path (begins with ./, ../, or a file
name), then it is looked up relative to the supplied directory node, or to the top level directory of the FS (supplied
at construction time) if no directory is supplied.
This method will raise TypeError if a normal file is found at the specified path.

Entry (name, directory=None, create=1)
Look up or create a generic Entry node with the specified name. If the name is a relative path (begins with ./, ../,
or a file name), then it is looked up relative to the supplied directory node, or to the top level directory of the FS
(supplied at construction time) if no directory is supplied.

File (name, directory=None, create=1)
Look up or create a File node with the specified name. If the name is a relative path (begins with ./, ../, or a file
name), then it is looked up relative to the supplied directory node, or to the top level directory of the FS (supplied
at construction time) if no directory is supplied.
This method will raise TypeError if a directory is found at the specified path.

Glob (pathname, ondisk=True, source=True, strings=False, exclude=None, cwd=None)
Globs
This is mainly a shim layer

PyPackageDir (modulename)
Locate the directory of a given python module name
For example scons might resolve to Windows: C:Python27Libsite-packagesscons-2.5.1 Linux: /usr/lib/scons

SCons Project API Documentation

40

This can be useful when we want to determine a toolpath based on a python module name

Repository (*dirs)
Specify Repository directories to search.

VariantDir (variant_dir, src_dir, duplicate=1)
Link the supplied variant directory to the source directory for purposes of building files.

_lookup (p, directory, fsclass, create=1)
The generic entry point for Node lookup with user-supplied data.
This translates arbitrary input into a canonical Node.FS object of the specified fsclass. The general approach for
strings is to turn it into a fully normalized absolute path and then call the root directory’s lookup_abs() method for
the heavy lifting.
If the path name begins with ‘#’, it is unconditionally interpreted relative to the top-level directory of this FS. ‘#’ is
treated as a synonym for the top-level SConstruct directory, much like ‘~’ is treated as a synonym for the user’s
home directory in a UNIX shell. So both ‘#foo’ and ‘#/foo’ refer to the ‘foo’ subdirectory underneath the top-level
SConstruct directory.
If the path name is relative, then the path is looked up relative to the specified directory, or the current directory
(self._cwd, typically the SConscript directory) if the specified directory is None.

chdir (dir, change_os_dir=0)
Change the current working directory for lookups. If change_os_dir is true, we will also change the “real” cwd to
match.

chmod (path, mode)

copy (src, dst)

copy2 (src, dst)

exists (path)

get_max_drift ()

get_root (drive)
Returns the root directory for the specified drive, creating it if necessary.

getcwd ()

getmtime (path)

getsize (path)

isdir (path)

isfile (path)

islink (path)

link (src, dst)

listdir (path)

lstat (path)

makedirs (path, mode=511, exist_ok=False)

mkdir (path, mode=511)

open (path)

SCons Project API Documentation

41

readlink (file)

rename (old, new)

scandir (path)

set_SConstruct_dir (dir)

set_max_drift (max_drift)

stat (path)

symlink (src, dst)

unlink (path)

variant_dir_target_climb (orig, dir, tail)
Create targets in corresponding variant directories
Climb the directory tree, and look up path names relative to any linked variant directories we find.
Even though this loops and walks up the tree, we don’t memoize the return value because this is really only
used to process the command-line targets.

class SCons.Node.FS.File (name, directory, fs)
Bases: SCons.Node.FS.Base
A class for files in a file system.

class Attrs
Bases: object

shared

BuildInfo
alias of SCons.Node.FS.FileBuildInfo

Decider (function)

Dir (name, create=True)
Create a directory node named ‘name’ relative to the directory of this file.

Dirs (pathlist)
Create a list of directories relative to the SConscript directory of this file.

Entry (name)
Create an entry node named ‘name’ relative to the directory of this file.

File (name)
Create a file node named ‘name’ relative to the directory of this file.

GetTag (key)
Return a user-defined tag.

NodeInfo
alias of SCons.Node.FS.FileNodeInfo

RDirs (pathlist)
Search for a list of directories in the Repository list.

Rfindalldirs (pathlist)
Return all of the directories for a given path list, including corresponding “backing” directories in any repositories.
The Node lookups are relative to this Node (typically a directory), so memoizing result saves cycles from looking
up the same path for each target in a given directory.

SCons Project API Documentation

42

Tag (key, value)
Add a user-defined tag.

_Rfindalldirs_key (pathlist)

__dmap_cache = {}

__dmap_sig_cache = {}

_abspath

_add_child (collection, set, child)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it’s already present.

_add_strings_to_dependency_map (dmap)
In the case comparing node objects isn’t sufficient, we’ll add the strings for the nodes to the dependency map
:return:

_build_dependency_map (binfo)
Build mapping from file -> signature

Parameters:
• - self (self) –

• - buildinfo from node being considered (binfo) –
Returns: dictionary of file->signature mappings

_children_get ()

_children_reset ()

_createDir ()

_func_exists

_func_get_contents

_func_is_derived

_func_rexists

_func_sconsign

_func_target_from_source

_get_found_includes_key (env, scanner, path)

_get_previous_signatures (dmap)
Return a list of corresponding csigs from previous build in order of the node/files in children.

Parameters:
• - self (self) –

• - Dictionary of file -> csig (dmap) –
Returns: List of csigs for provided list of children

_get_scanner (env, initial_scanner, root_node_scanner, kw)

_get_str ()

_glob1 (pattern, ondisk=True, source=False, strings=False)

_labspath

SCons Project API Documentation

43

_local

_memo

_morph ()
Turn a file system node into a File object.

_path

_path_elements

_proxy

_rmv_existing ()

_save_str ()

_sconsign

_specific_sources

_tags

_tpath

add_dependency (depend)
Adds dependencies.

add_ignore (depend)
Adds dependencies to ignore.

add_prerequisite (prerequisite)
Adds prerequisites

add_source (source)
Adds sources.

add_to_implicit (deps)

add_to_waiting_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, 0 if not.
(Note that the returned values are intended to be used to increment a reference count, so don’t think you can
“clean up” this function by using True and False instead…)

add_to_waiting_s_e (node)

add_wkid (wkid)
Add a node to the list of kids waiting to be evaluated

all_children (scan=1)
Return a list of all the node’s direct children.

alter_targets ()
Return any corresponding targets in a variant directory.

always_build

attributes

binfo

SCons Project API Documentation

44

build (**kw)
Actually build the node.
This is called by the Taskmaster after it’s decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().

builder

builder_set (builder)

built ()
Called just after this File node is successfully built.
Just like for ‘release_target_info’ we try to release some more target node attributes in order to minimize the
overall memory consumption.
@see: release_target_info

cached

cachedir_csig

cachesig

changed (node=None, allowcache=False)
Returns if the node is up-to-date with respect to the BuildInfo stored last time it was built.
For File nodes this is basically a wrapper around Node.changed(), but we allow the return value to get cached
after the reference to the Executor got released in release_target_info().
@see: Node.changed()

changed_content (target, prev_ni, repo_node=None)

changed_since_last_build

changed_state (target, prev_ni, repo_node=None)

changed_timestamp_match (target, prev_ni, repo_node=None)
Return True if the timestamps don’t match or if there is no previous timestamp :param target: :param prev_ni:
Information about the node from the previous build :return:

changed_timestamp_newer (target, prev_ni, repo_node=None)

changed_timestamp_then_content (target, prev_ni, node=None)
Used when decider for file is Timestamp-MD5

NOTE: If the timestamp hasn’t changed this will skip md5’ing the

file and just copy the prev_ni provided. If the prev_ni is wrong. It will propagate it. See:
https://github.com/SCons/scons/issues/2980

Parameters:
• - dependency (self) –

• - target (target) –

• - The NodeInfo object loaded from previous builds .sconsign (prev_ni) –

• - Node instance. Check this node for file existence/timestamp (node) – if
specified.

Returns: Boolean - Indicates if node(File) has changed.

check_attributes (name)
Simple API to check if the node.attributes for name has been set

children (scan=1)

SCons Project API Documentation

45

https://github.com/SCons/scons/issues/2980

Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values ()

contentsig

convert_copy_attrs = ['bsources', 'bimplicit', 'bdepends', 'bact', 'bactsig', 'ninfo']

convert_old_entry (old_entry)

convert_sig_attrs = ['bsourcesigs', 'bimplicitsigs', 'bdependsigs']

cwd

del_binfo ()
Delete the build info from this node.

depends

depends_set

dir

dirname

disambiguate (must_exist=None)

diskcheck_match ()

do_duplicate (src)

duplicate

entries

env

env_set (env, safe=0)

executor

executor_cleanup ()
Let the executor clean up any cached information.

exists ()
Does this node exists?

explain ()

find_repo_file ()
For this node, find if there exists a corresponding file in one or more repositories :return: list of corresponding
files in repositories

SCons Project API Documentation

46

find_src_builder ()

for_signature ()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__() method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need
to return something that would actually work in a command line; it can return any kind of nonsense, so long as it
does not change.

fs

get_abspath ()
Get the absolute path of the file.

get_binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns -
the build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they’re already
built and updated by someone else, if that’s what’s wanted.

get_build_env ()
Fetch the appropriate Environment to build this node.

get_build_scanner_path (scanner)
Fetch the appropriate scanner path for this node.

get_builder (default_builder=None)
Return the set builder, or a specified default value

get_cachedir_bsig ()
Return the signature for a cached file, including its children.
It adds the path of the cached file to the cache signature, because multiple targets built by the same action will
all have the same build signature, and we have to differentiate them somehow.
Signature should normally be string of hex digits.

get_cachedir_csig ()
Fetch a Node’s content signature for purposes of computing another Node’s cachesig.
This is a wrapper around the normal get_csig() method that handles the somewhat obscure case of using
CacheDir with the -n option. Any files that don’t exist would normally be “built” by fetching them from the cache,
but the normal get_csig() method will try to open up the local file, which doesn’t exist because the -n option
meant we didn’t actually pull the file from cachedir. But since the file does actually exist in the cachedir, we can
use its contents for the csig.

get_content_hash () → str
Compute and return the hash for this file.

get_contents () → bytes
Return the contents of the file as bytes.

get_contents_sig ()
A helper method for get_cachedir_bsig.
It computes and returns the signature for this node’s contents.

get_csig () → str
Generate a node’s content signature.

get_dir ()

get_env ()

SCons Project API Documentation

47

get_env_scanner (env, kw={})

get_executor (create=1)
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.

get_found_includes (env, scanner, path)
Return the included implicit dependencies in this file. Cache results so we only scan the file once per path
regardless of how many times this information is requested.

get_implicit_deps (env, initial_scanner, path_func, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.

get_internal_path ()

get_labspath ()
Get the absolute path of the file.

get_max_drift_csig () → Optional[str]
Returns the content signature currently stored for this node if it’s been unmodified longer than the max_drift
value, or the max_drift value is 0. Returns None otherwise.

get_ninfo ()

get_path (dir=None)
Return path relative to the current working directory of the Node.FS.Base object that owns us.

get_path_elements ()

get_relpath ()
Get the path of the file relative to the root SConstruct file’s directory.

get_size () → int

get_source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get_state ()

get_stored_implicit ()
Fetch the stored implicit dependencies

get_stored_info ()

get_string (for_signature)
This is a convenience function designed primarily to be used in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command
line, which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a
string, passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle
use is that some Nodes would like to implement a __getattr__() method, but putting that in the Node type itself

SCons Project API Documentation

48

has a tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this
method to return self if no new functionality is needed for Environment substitution.

get_suffix ()

get_target_scanner ()

get_text_contents () → str
Return the contents of the file in text form.
This attempts to figure out what the encoding of the text is based upon the BOM bytes, and then decodes the
contents so that it’s a valid python string.

get_timestamp () → int

get_tpath ()

getmtime ()

getsize ()

has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: …”). When the builder attribute is examined directly, it ends up calling __getattr__ for both the
__len__ and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

has_src_builder ()
Return whether this Node has a source builder or not.
If this Node doesn’t have an explicit source code builder, this is where we figure out, on the fly, if there’s a
transparent source code builder for it.
Note that if we found a source builder, we also set the self.builder attribute, so that all of the methods that
actually build this file don’t have to do anything different.

hash_chunksize = 65536

ignore

ignore_set

implicit

implicit_set

includes

is_conftest ()
Returns true if this node is an conftest node

is_derived ()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and
should contribute their build signatures when they are used as source files to other derived files. For example:
source with source builders are not derived in this sense, and hence should not return true.

is_explicit

SCons Project API Documentation

49

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript ()
Returns true if this node is an sconscript

is_under (dir)

is_up_to_date ()
Check for whether the Node is current In all cases self is the target we’re checking to see if it’s up to date

isdir ()

isfile ()

islink ()

linked

lstat ()

make_ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

missing ()

multiple_side_effect_has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: …”). When the builder attribute is examined directly, it ends up calling __getattr__ for both the
__len__ and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

must_be_same (klass)
This node, which already existed, is being looked up as the specified klass. Raise an exception if it isn’t.

name

new_binfo ()

new_ninfo ()

ninfo

nocache

noclean

on_disk_entries

postprocess ()
Clean up anything we don’t need to hang onto after we’ve been built.

precious

prepare ()
Prepare for this file to be created.

prerequisites

SCons Project API Documentation

50

pseudo

push_to_cache ()
Try to push the node into a cache

ref_count

rel_path (other)

release_target_info ()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order
to minimize the overall memory consumption.
We’d like to remove a lot more attributes like self.sources and self.sources_set, but they might get used in a next
build step. For example, during configuration the source files for a built E{*}.o file are used to figure out which
linker to use for the resulting Program (gcc vs. g++)! That’s why we check for the ‘keep_targetinfo’ attribute,
config Nodes and the Interactive mode just don’t allow an early release of most variables.
In the same manner, we can’t simply remove the self.attributes here. The smart linking relies on the shared flag,
and some parts of the java Tool use it to transport information about nodes…
@see: built() and Node.release_target_info()

released_target_info

remove ()
Remove this file.

render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.

rentry ()

repositories

reset_executor ()
Remove cached executor; forces recompute when needed.

retrieve_from_cache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().
Returns true if the node was successfully retrieved.

rexists ()
Does this node exist locally or in a repository?

rfile ()

root

rstr ()
A Node.FS.Base object’s string representation is its path name.

sbuilder

scan ()
Scan this node’s dependents for implicit dependencies.

scanner_key ()

scanner_paths

SCons Project API Documentation

51

searched

select_scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don’t select one the Scanner.Selector that’s configured for the target.

set_always_build (always_build=1)
Set the Node’s always_build value.

set_executor (executor)
Set the action executor for this node.

set_explicit (is_explicit)

set_local ()

set_nocache (nocache=1)
Set the Node’s nocache value.

set_noclean (noclean=1)
Set the Node’s noclean value.

set_precious (precious=1)
Set the Node’s precious value.

set_pseudo (pseudo=True)
Set the Node’s precious value.

set_specific_source (source)

set_src_builder (builder)
Set the source code builder for this node.

set_state (state)

side_effect

side_effects

sources

sources_set

src_builder ()
Fetch the source code builder for this node.
If there isn’t one, we cache the source code builder specified for the directory (which in turn will cache the value
from its parent directory, and so on up to the file system root).

srcdir

srcnode ()
If this node is in a build path, return the node corresponding to its source file. Otherwise, return ourself.

stat ()

state

store_info

str_for_display ()

SCons Project API Documentation

52

target_from_source (prefix, suffix, splitext=<function splitext>)
Generates a target entry that corresponds to this entry (usually a source file) with the specified prefix and suffix.
Note that this method can be overridden dynamically for generated files that need different behavior. See
Tool/swig.py for an example.

target_peers

variant_dirs

visited ()
Called just after this node has been visited (with or without a build).

waiting_parents

waiting_s_e

wkids

class SCons.Node.FS.FileBuildInfo
Bases: SCons.Node.BuildInfoBase
This is info loaded from sconsign.

Attributes unique to FileBuildInfo:

dependency_map : Caches file->csig mapping

for all dependencies. Currently this is only used when using MD5-timestamp decider. It’s used to ensure
that we copy the correct csig from the previous build to be written to .sconsign when current build is done.
Previously the matching of csig to file was strictly by order they appeared in bdepends, bsources, or
bimplicit, and so a change in order or count of any of these could yield writing wrong csig, and then false
positive rebuilds

bact

bactsig

bdepends

bdependsigs

bimplicit

bimplicitsigs

bsources

bsourcesigs

convert_from_sconsign (dir, name)
Converts a newly-read FileBuildInfo object for in-SCons use
For normal up-to-date checking, we don’t have any conversion to perform–but we’re leaving this method here to
make that clear.

convert_to_sconsign ()
Converts this FileBuildInfo object for writing to a .sconsign file
This replaces each Node in our various dependency lists with its usual string representation: relative to the
top-level SConstruct directory, or an absolute path if it’s outside.

current_version_id = 2

dependency_map

format (names=0)

SCons Project API Documentation

53

merge (other)
Merge the fields of another object into this object. Already existing information is overwritten by the other
instance’s data. WARNING: If a ‘__dict__’ slot is added, it should be updated instead of replaced.

prepare_dependencies ()
Prepares a FileBuildInfo object for explaining what changed
The bsources, bdepends and bimplicit lists have all been stored on disk as paths relative to the top-level
SConstruct directory. Convert the strings to actual Nodes (for use by the –debug=explain code and
–implicit-cache).

exception SCons.Node.FS.FileBuildInfoFileToCsigMappingError
Bases: Exception

args

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class SCons.Node.FS.FileFinder
Bases: object

_find_file_key (filename, paths, verbose=None)

filedir_lookup (p, fd=None)
A helper method for find_file() that looks up a directory for a file we’re trying to find. This only creates the Dir
Node if it exists on-disk, since if the directory doesn’t exist we know we won’t find any files in it… :-)
It would be more compact to just use this as a nested function with a default keyword argument (see the
commented-out version below), but that doesn’t work unless you have nested scopes, so we define it here just
so this work under Python 1.5.2.

find_file (filename, paths, verbose=None)
Find a node corresponding to either a derived file or a file that exists already.
Only the first file found is returned, and none is returned if no file is found.
filename: A filename to find paths: A list of directory path nodes to search in. Can be represented as a list, a
tuple, or a callable that is called with no arguments and returns the list or tuple.
returns The node created from the found file.

class SCons.Node.FS.FileNodeInfo
Bases: SCons.Node.NodeInfoBase

convert (node, val)

csig

current_version_id = 2

field_list = ['csig', 'timestamp', 'size']

format (field_list=None, names=0)

fs = None

merge (other)
Merge the fields of another object into this object. Already existing information is overwritten by the other
instance’s data. WARNING: If a ‘__dict__’ slot is added, it should be updated instead of replaced.

size

str_to_node (s)

timestamp

SCons Project API Documentation

54

update (node)

SCons.Node.FS.LinkFunc (target, source, env)
Relative paths cause problems with symbolic links, so we use absolute paths, which may be a problem for people
who want to move their soft-linked src-trees around. Those people should use the ‘hard-copy’ mode, softlinks
cannot be used for that; at least I have no idea how …

class SCons.Node.FS.LocalFS
Bases: object
This class implements an abstraction layer for operations involving a local file system. Essentially, this wraps any
function in the os, os.path or shutil modules that we use to actually go do anything with or to the local file system.
Note that there’s a very good chance we’ll refactor this part of the architecture in some way as we really implement
the interface(s) for remote file system Nodes. For example, the right architecture might be to have this be a
subclass instead of a base class. Nevertheless, we’re using this as a first step in that direction.
We’re not using chdir() yet because the calling subclass method needs to use os.chdir() directly to avoid recursion.
Will we really need this one?

chmod (path, mode)

copy (src, dst)

copy2 (src, dst)

exists (path)

getmtime (path)

getsize (path)

isdir (path)

isfile (path)

islink (path)

link (src, dst)

listdir (path)

lstat (path)

makedirs (path, mode=511, exist_ok=False)

mkdir (path, mode=511)

open (path)

readlink (file)

rename (old, new)

scandir (path)

stat (path)

symlink (src, dst)

unlink (path)

SCons.Node.FS.LocalString (target, source, env)

SCons.Node.FS.MkdirFunc (target, source, env)

SCons Project API Documentation

55

class SCons.Node.FS.RootDir (drive, fs)
Bases: SCons.Node.FS.Dir
A class for the root directory of a file system.
This is the same as a Dir class, except that the path separator (‘/’ or ‘') is actually part of the name, so we don’t
need to add a separator when creating the path names of entries within this directory.

class Attrs
Bases: object

shared

BuildInfo
alias of SCons.Node.FS.DirBuildInfo

Decider (function)

Dir (name, create=True)
Looks up or creates a directory node named ‘name’ relative to this directory.

Entry (name)
Looks up or creates an entry node named ‘name’ relative to this directory.

File (name)
Looks up or creates a file node named ‘name’ relative to this directory.

GetTag (key)
Return a user-defined tag.

NodeInfo
alias of SCons.Node.FS.DirNodeInfo

RDirs (pathlist)
Search for a list of directories in the Repository list.

Rfindalldirs (pathlist)
Return all of the directories for a given path list, including corresponding “backing” directories in any repositories.
The Node lookups are relative to this Node (typically a directory), so memoizing result saves cycles from looking
up the same path for each target in a given directory.

Tag (key, value)
Add a user-defined tag.

_Rfindalldirs_key (pathlist)

_abspath

_add_child (collection, set, child)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it’s already present.

_children_get ()

_children_reset ()

_create ()
Create this directory, silently and without worrying about whether the builder is the default or not.

_func_exists

_func_get_contents

_func_is_derived

SCons Project API Documentation

56

_func_rexists

_func_sconsign

_func_target_from_source

_get_scanner (env, initial_scanner, root_node_scanner, kw)

_get_str ()

_glob1 (pattern, ondisk=True, source=False, strings=False)
Globs for and returns a list of entry names matching a single pattern in this directory.
This searches any repositories and source directories for corresponding entries and returns a Node (or string)
relative to the current directory if an entry is found anywhere.
TODO: handle pattern with no wildcard

_labspath

_local

_lookupDict

_lookup_abs (p, klass, create=1)
Fast (?) lookup of a normalized absolute path.
This method is intended for use by internal lookups with already-normalized path data. For general-purpose
lookups, use the FS.Entry(), FS.Dir() or FS.File() methods.
The caller is responsible for making sure we’re passed a normalized absolute path; we merely let Python’s
dictionary look up and return the One True Node.FS object for the path.
If a Node for the specified “p” doesn’t already exist, and “create” is specified, the Node may be created after
recursive invocation to find or create the parent directory or directories.

_memo

_morph ()
Turn a file system Node (either a freshly initialized directory object or a separate Entry object) into a proper
directory object.
Set up this directory’s entries and hook it into the file system tree. Specify that directories (this Node) don’t use
signatures for calculating whether they’re current.

_path

_path_elements

_proxy

_rel_path_key (other)

_save_str ()

_sconsign

_specific_sources

_srcdir_find_file_key (filename)

_tags

_tpath

abspath

SCons Project API Documentation

57

addRepository (dir)

add_dependency (depend)
Adds dependencies.

add_ignore (depend)
Adds dependencies to ignore.

add_prerequisite (prerequisite)
Adds prerequisites

add_source (source)
Adds sources.

add_to_implicit (deps)

add_to_waiting_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, 0 if not.
(Note that the returned values are intended to be used to increment a reference count, so don’t think you can
“clean up” this function by using True and False instead…)

add_to_waiting_s_e (node)

add_wkid (wkid)
Add a node to the list of kids waiting to be evaluated

all_children (scan=1)
Return a list of all the node’s direct children.

alter_targets ()
Return any corresponding targets in a variant directory.

always_build

attributes

binfo

build (**kw)
A null “builder” for directories.

builder

builder_set (builder)

built ()
Called just after this node is successfully built.

cached

cachedir_csig

cachesig

changed (node=None, allowcache=False)
Returns if the node is up-to-date with respect to the BuildInfo stored last time it was built. The default behavior is
to compare it against our own previously stored BuildInfo, but the stored BuildInfo from another Node (typically
one in a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as
we detected any difference, but we now rely on checking every dependency to make sure that any necessary
Node information (for example, the content signature of an #included .h file) is updated.

SCons Project API Documentation

58

The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last_build

check_attributes (name)
Simple API to check if the node.attributes for name has been set

children (scan=1)
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values ()

contentsig

cwd

del_binfo ()
Delete the build info from this node.

depends

depends_set

dir

dir_on_disk (name)

dirname

disambiguate (must_exist=None)

diskcheck_match ()

do_duplicate (src)

duplicate

entries

entry_abspath (name)

entry_exists_on_disk (name)
Searches through the file/dir entries of the current directory, and returns True if a physical entry with the given
name could be found.
@see rentry_exists_on_disk

entry_labspath (name)

entry_path (name)

SCons Project API Documentation

59

entry_tpath (name)

env

env_set (env, safe=0)

executor

executor_cleanup ()
Let the executor clean up any cached information.

exists ()
Does this node exists?

explain ()

file_on_disk (name)

for_signature ()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__() method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need
to return something that would actually work in a command line; it can return any kind of nonsense, so long as it
does not change.

fs
Reference to parent Node.FS object

getRepositories ()
Returns a list of repositories for this directory.

get_abspath ()
Get the absolute path of the file.

get_all_rdirs ()

get_binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns -
the build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they’re already
built and updated by someone else, if that’s what’s wanted.

get_build_env ()
Fetch the appropriate Environment to build this node.

get_build_scanner_path (scanner)
Fetch the appropriate scanner path for this node.

get_builder (default_builder=None)
Return the set builder, or a specified default value

get_cachedir_csig ()

get_contents ()
Return content signatures and names of all our children separated by new-lines. Ensure that the nodes are
sorted.

get_csig ()

SCons Project API Documentation

60

Compute the content signature for Directory nodes. In general, this is not needed and the content signature is
not stored in the DirNodeInfo. However, if get_contents on a Dir node is called which has a child directory, the
child directory should return the hash of its contents.

get_dir ()

get_env ()

get_env_scanner (env, kw={})

get_executor (create=1)
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.

get_found_includes (env, scanner, path)
Return this directory’s implicit dependencies.
We don’t bother caching the results because the scan typically shouldn’t be requested more than once (as
opposed to scanning .h file contents, which can be requested as many times as the files is #included by other
files).

get_implicit_deps (env, initial_scanner, path_func, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.

get_internal_path ()

get_labspath ()
Get the absolute path of the file.

get_ninfo ()

get_path (dir=None)
Return path relative to the current working directory of the Node.FS.Base object that owns us.

get_path_elements ()

get_relpath ()
Get the path of the file relative to the root SConstruct file’s directory.

get_source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get_state ()

get_stored_implicit ()
Fetch the stored implicit dependencies

get_stored_info ()

get_string (for_signature)
This is a convenience function designed primarily to be used in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command
line, which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a
string, passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

SCons Project API Documentation

61

get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle
use is that some Nodes would like to implement a __getattr__() method, but putting that in the Node type itself
has a tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this
method to return self if no new functionality is needed for Environment substitution.

get_suffix ()

get_target_scanner ()

get_text_contents ()
We already emit things in text, so just return the binary version.

get_timestamp ()
Return the latest timestamp from among our children

get_tpath ()

getmtime ()

getsize ()

glob (pathname, ondisk=True, source=False, strings=False, exclude=None)
Returns a list of Nodes (or strings) matching a specified pathname pattern.
Pathname patterns follow UNIX shell semantics: * matches any-length strings of any characters, ? matches any
character, and [] can enclose lists or ranges of characters. Matches do not span directory separators.
The matches take into account Repositories, returning local Nodes if a corresponding entry exists in a
Repository (either an in-memory Node or something on disk).
By defafult, the glob() function matches entries that exist on-disk, in addition to in-memory Nodes. Setting the
“ondisk” argument to False (or some other non-true value) causes the glob() function to only match in-memory
Nodes. The default behavior is to return both the on-disk and in-memory Nodes.
The “source” argument, when true, specifies that corresponding source Nodes must be returned if you’re
globbing in a build directory (initialized with VariantDir()). The default behavior is to return Nodes local to the
VariantDir().
The “strings” argument, when true, returns the matches as strings, not Nodes. The strings are path names
relative to this directory.
The “exclude” argument, if not None, must be a pattern or a list of patterns following the same UNIX shell
semantics. Elements matching a least one pattern of this list will be excluded from the result.
The underlying algorithm is adapted from the glob.glob() function in the Python library (but heavily modified), and
uses fnmatch() under the covers.

has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: …”). When the builder attribute is examined directly, it ends up calling __getattr__ for both the
__len__ and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

ignore

ignore_set

implicit

implicit_set

SCons Project API Documentation

62

includes

is_conftest ()
Returns true if this node is an conftest node

is_derived ()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and
should contribute their build signatures when they are used as source files to other derived files. For example:
source with source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript ()
Returns true if this node is an sconscript

is_under (dir)

is_up_to_date ()
If any child is not up-to-date, then this directory isn’t, either.

isdir ()

isfile ()

islink ()

link (srcdir, duplicate)
Set this directory as the variant directory for the supplied source directory.

linked

lstat ()

make_ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

missing ()

multiple_side_effect_has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: …”). When the builder attribute is examined directly, it ends up calling __getattr__ for both the
__len__ and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

must_be_same (klass)
This node, which already existed, is being looked up as the specified klass. Raise an exception if it isn’t.

name

new_binfo ()

new_ninfo ()

ninfo

SCons Project API Documentation

63

nocache

noclean

on_disk_entries

path

postprocess ()
Clean up anything we don’t need to hang onto after we’ve been built.

precious

prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before
actually calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and
initializes the BuildInfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the
targets built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note
that subclass methods should call this base class method to get the child check and the BuildInfo structure.

prerequisites

pseudo

push_to_cache ()
Try to push a node into a cache

rdir ()

ref_count

rel_path (other)
Return a path to “other” relative to this directory.

release_target_info ()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order
to minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that
much how many KBytes a Node actually requires…as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()

released_target_info

remove ()
Remove this Node: no-op by default.

render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.

rentry ()

rentry_exists_on_disk (name)
Searches through the file/dir entries of the current and all its remote directories (repos), and returns True if a
physical entry with the given name could be found. The local directory (self) gets searched first, so repositories
take a lower precedence regarding the searching order.
@see entry_exists_on_disk

SCons Project API Documentation

64

repositories

reset_executor ()
Remove cached executor; forces recompute when needed.

retrieve_from_cache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().
Returns true if the node was successfully retrieved.

rexists ()
Does this node exist locally or in a repository?

rfile ()

root

rstr ()
A Node.FS.Base object’s string representation is its path name.

sbuilder

scan ()
Scan this node’s dependents for implicit dependencies.

scanner_key ()
A directory does not get scanned.

scanner_paths

sconsign ()
Return the .sconsign file info for this directory.

searched

select_scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don’t select one the Scanner.Selector that’s configured for the target.

set_always_build (always_build=1)
Set the Node’s always_build value.

set_executor (executor)
Set the action executor for this node.

set_explicit (is_explicit)

set_local ()

set_nocache (nocache=1)
Set the Node’s nocache value.

set_noclean (noclean=1)
Set the Node’s noclean value.

set_precious (precious=1)
Set the Node’s precious value.

set_pseudo (pseudo=True)

SCons Project API Documentation

65

Set the Node’s precious value.

set_specific_source (source)

set_src_builder (builder)
Set the source code builder for this node.

set_state (state)

side_effect

side_effects

sources

sources_set

src_builder ()
Fetch the source code builder for this node.
If there isn’t one, we cache the source code builder specified for the directory (which in turn will cache the value
from its parent directory, and so on up to the file system root).

srcdir

srcdir_duplicate (name)

srcdir_find_file (filename)

srcdir_list ()

srcnode ()
Dir has a special need for srcnode()…if we have a srcdir attribute set, then that is our srcnode.

stat ()

state

store_info

str_for_display ()

target_from_source (prefix, suffix, splitext=<function splitext>)
Generates a target entry that corresponds to this entry (usually a source file) with the specified prefix and suffix.
Note that this method can be overridden dynamically for generated files that need different behavior. See
Tool/swig.py for an example.

target_peers

up ()

variant_dirs

visited ()
Called just after this node has been visited (with or without a build).

waiting_parents

waiting_s_e

walk (func, arg)
Walk this directory tree by calling the specified function for each directory in the tree.

SCons Project API Documentation

66

This behaves like the os.path.walk() function, but for in-memory Node.FS.Dir objects. The function takes the
same arguments as the functions passed to os.path.walk():

func(arg, dirname, fnames)
Except that “dirname” will actually be the directory Node, not the string. The ‘.’ and ‘..’ entries are excluded from
fnames. The fnames list may be modified in-place to filter the subdirectories visited or otherwise impose a
specific order. The “arg” argument is always passed to func() and may be used in any way (or ignored, passing
None is common).

wkids

SCons.Node.FS.UnlinkFunc (target, source, env)

class SCons.Node.FS._Null
Bases: object

SCons.Node.FS._classEntry
alias of SCons.Node.FS.Entry

SCons.Node.FS._copy_func (fs, src, dest)

SCons.Node.FS._hardlink_func (fs, src, dst)

SCons.Node.FS._my_normcase (x)

SCons.Node.FS._my_splitdrive (p)

SCons.Node.FS._softlink_func (fs, src, dst)

SCons.Node.FS.diskcheck_types ()

SCons.Node.FS.do_diskcheck_match (node, predicate, errorfmt)

SCons.Node.FS.find_file (filename, paths, verbose=None)
Find a node corresponding to either a derived file or a file that exists already.
Only the first file found is returned, and none is returned if no file is found.
filename: A filename to find paths: A list of directory path nodes to search in. Can be represented as a list, a tuple,
or a callable that is called with no arguments and returns the list or tuple.
returns The node created from the found file.

SCons.Node.FS.get_MkdirBuilder ()

SCons.Node.FS.get_default_fs ()

SCons.Node.FS.has_glob_magic (s)

SCons.Node.FS.ignore_diskcheck_match (node, predicate, errorfmt)

SCons.Node.FS.initialize_do_splitdrive ()

SCons.Node.FS.invalidate_node_memos (targets)
Invalidate the memoized values of all Nodes (files or directories) that are associated with the given entries. Has
been added to clear the cache of nodes affected by a direct execution of an action (e.g. Delete/Copy/Chmod).
Existing Node caches become inconsistent if the action is run through Execute(). The argument targets can be a
single Node object or filename, or a sequence of Nodes/filenames.

SCons.Node.FS.needs_normpath_match (string, pos=0, endpos=9223372036854775807)
Matches zero or more characters at the beginning of the string.

SCons.Node.FS.save_strings (val)

SCons.Node.FS.sconsign_dir (node)
Return the .sconsign file info for this directory, creating it first if necessary.

SCons.Node.FS.sconsign_none (node)

SCons.Node.FS.set_diskcheck (list)

SCons.Node.FS.set_duplicate (duplicate)

SCons Project API Documentation

67

SCons.Node.Python module

Python nodes.

class SCons.Node.Python.Value (value, built_value=None, name=None)
Bases: SCons.Node.Node
A class for Python variables, typically passed on the command line or generated by a script, but not from a file or
some other source.

class Attrs
Bases: object

shared

BuildInfo
alias of SCons.Node.Python.ValueBuildInfo

Decider (function)

GetTag (key)
Return a user-defined tag.

NodeInfo
alias of SCons.Node.Python.ValueNodeInfo

Tag (key, value)
Add a user-defined tag.

_add_child (collection, set, child)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it’s already present.

_children_get ()

_children_reset ()

_func_exists

_func_get_contents

_func_is_derived

_func_rexists

_func_target_from_source

_get_scanner (env, initial_scanner, root_node_scanner, kw)

_memo

_specific_sources

_tags

add_dependency (depend)
Adds dependencies.

add_ignore (depend)
Adds dependencies to ignore.

add_prerequisite (prerequisite)
Adds prerequisites

SCons Project API Documentation

68

add_source (source)
Adds sources.

add_to_implicit (deps)

add_to_waiting_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, 0 if not.
(Note that the returned values are intended to be used to increment a reference count, so don’t think you can
“clean up” this function by using True and False instead…)

add_to_waiting_s_e (node)

add_wkid (wkid)
Add a node to the list of kids waiting to be evaluated

all_children (scan=1)
Return a list of all the node’s direct children.

alter_targets ()
Return a list of alternate targets for this Node.

always_build

attributes

binfo

build (**kw)
Actually build the node.
This is called by the Taskmaster after it’s decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().

builder

builder_set (builder)

built ()
Called just after this node is successfully built.

cached

changed (node=None, allowcache=False)
Returns if the node is up-to-date with respect to the BuildInfo stored last time it was built. The default behavior is
to compare it against our own previously stored BuildInfo, but the stored BuildInfo from another Node (typically
one in a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as
we detected any difference, but we now rely on checking every dependency to make sure that any necessary
Node information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last_build

check_attributes (name)
Simple API to check if the node.attributes for name has been set

children (scan=1)

SCons Project API Documentation

69

Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values ()

del_binfo ()
Delete the build info from this node.

depends

depends_set

disambiguate (must_exist=None)

env

env_set (env, safe=0)

executor

executor_cleanup ()
Let the executor clean up any cached information.

exists ()
Does this node exists?

explain ()

for_signature ()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__() method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need
to return something that would actually work in a command line; it can return any kind of nonsense, so long as it
does not change.

get_abspath ()
Return an absolute path to the Node. This will return simply str(Node) by default, but for Node types that have a
concept of relative path, this might return something different.

get_binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns -
the build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they’re already
built and updated by someone else, if that’s what’s wanted.

get_build_env ()
Fetch the appropriate Environment to build this node.

get_build_scanner_path (scanner)
Fetch the appropriate scanner path for this node.

SCons Project API Documentation

70

get_builder (default_builder=None)
Return the set builder, or a specified default value

get_cachedir_csig ()

get_contents () → bytes
Get contents for signature calculations.

get_csig (calc=None)
Because we’re a Python value node and don’t have a real timestamp, we get to ignore the calculator and just
use the value contents.
Returns string. Ideally string of hex digits. (Not bytes)

get_env ()

get_env_scanner (env, kw={})

get_executor (create=1)
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.

get_found_includes (env, scanner, path)
Return the scanned include lines (implicit dependencies) found in this node.
The default is no implicit dependencies. We expect this method to be overridden by any subclass that can be
scanned for implicit dependencies.

get_implicit_deps (env, initial_scanner, path_func, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.

get_ninfo ()

get_source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get_state ()

get_stored_implicit ()
Fetch the stored implicit dependencies

get_stored_info ()

get_string (for_signature)
This is a convenience function designed primarily to be used in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command
line, which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a
string, passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle
use is that some Nodes would like to implement a __getattr__() method, but putting that in the Node type itself
has a tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this
method to return self if no new functionality is needed for Environment substitution.

SCons Project API Documentation

71

get_suffix ()

get_target_scanner ()

get_text_contents () → str
By the assumption that the node.built_value is a deterministic product of the sources, the contents of a Value
are the concatenation of all the contents of its sources. As the value need not be built when get_contents() is
called, we cannot use the actual node.built_value.

has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: …”). When the builder attribute is examined directly, it ends up calling __getattr__ for both the
__len__ and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

ignore

ignore_set

implicit

implicit_set

includes

is_conftest ()
Returns true if this node is an conftest node

is_derived ()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and
should contribute their build signatures when they are used as source files to other derived files. For example:
source with source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript ()
Returns true if this node is an sconscript

is_under (dir)

is_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

linked

make_ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

SCons Project API Documentation

72

missing ()

multiple_side_effect_has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: …”). When the builder attribute is examined directly, it ends up calling __getattr__ for both the
__len__ and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

new_binfo ()

new_ninfo ()

ninfo

nocache

noclean

postprocess ()
Clean up anything we don’t need to hang onto after we’ve been built.

precious

prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before
actually calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and
initializes the BuildInfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the
targets built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note
that subclass methods should call this base class method to get the child check and the BuildInfo structure.

prerequisites

pseudo

push_to_cache ()
Try to push a node into a cache

read ()
Return the value. If necessary, the value is built.

ref_count

release_target_info ()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order
to minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that
much how many KBytes a Node actually requires…as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()

remove ()
Remove this Node: no-op by default.

render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.

SCons Project API Documentation

73

reset_executor ()
Remove cached executor; forces recompute when needed.

retrieve_from_cache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().
Returns true if the node was successfully retrieved.

rexists ()
Does this node exist locally or in a repository?

scan ()
Scan this node’s dependents for implicit dependencies.

scanner_key ()

select_scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don’t select one the Scanner.Selector that’s configured for the target.

set_always_build (always_build=1)
Set the Node’s always_build value.

set_executor (executor)
Set the action executor for this node.

set_explicit (is_explicit)

set_nocache (nocache=1)
Set the Node’s nocache value.

set_noclean (noclean=1)
Set the Node’s noclean value.

set_precious (precious=1)
Set the Node’s precious value.

set_pseudo (pseudo=True)
Set the Node’s precious value.

set_specific_source (source)

set_state (state)

side_effect

side_effects

sources

sources_set

state

store_info

str_for_display ()

target_peers

SCons Project API Documentation

74

visited ()
Called just after this node has been visited (with or without a build).

waiting_parents

waiting_s_e

wkids

write (built_value)
Set the value of the node.

class SCons.Node.Python.ValueBuildInfo
Bases: SCons.Node.BuildInfoBase

bact

bactsig

bdepends

bdependsigs

bimplicit

bimplicitsigs

bsources

bsourcesigs

current_version_id = 2

merge (other)
Merge the fields of another object into this object. Already existing information is overwritten by the other
instance’s data. WARNING: If a ‘__dict__’ slot is added, it should be updated instead of replaced.

class SCons.Node.Python.ValueNodeInfo
Bases: SCons.Node.NodeInfoBase

convert (node, val)

csig

current_version_id = 2

field_list = ['csig']

format (field_list=None, names=0)

merge (other)
Merge the fields of another object into this object. Already existing information is overwritten by the other
instance’s data. WARNING: If a ‘__dict__’ slot is added, it should be updated instead of replaced.

str_to_node (s)

update (node)

SCons.Node.Python.ValueWithMemo (value, built_value=None, name=None)
Memoized Value() node factory.

SCons Project API Documentation

75

Module contents

The Node package for the SCons software construction utility.

This is, in many ways, the heart of SCons.

A Node is where we encapsulate all of the dependency information about any thing that SCons can build, or about
any thing which SCons can use to build some other thing. The canonical “thing,” of course, is a file, but a Node can
also represent something remote (like a web page) or something completely abstract (like an Alias).

Each specific type of “thing” is specifically represented by a subclass of the Node base class: Node.FS.File for files,
Node.Alias for aliases, etc. Dependency information is kept here in the base class, and information specific to
files/aliases/etc. is in the subclass. The goal, if we’ve done this correctly, is that any type of “thing” should be able to
depend on any other type of “thing.”

SCons.Node.Annotate (node)

class SCons.Node.BuildInfoBase
Bases: object
The generic base class for build information for a Node.
This is what gets stored in a .sconsign file for each target file. It contains a NodeInfo instance for this node
(signature information that’s specific to the type of Node) and direct attributes for the generic build stuff we have to
track: sources, explicit dependencies, implicit dependencies, and action information.

bact

bactsig

bdepends

bdependsigs

bimplicit

bimplicitsigs

bsources

bsourcesigs

current_version_id = 2

merge (other)
Merge the fields of another object into this object. Already existing information is overwritten by the other
instance’s data. WARNING: If a ‘__dict__’ slot is added, it should be updated instead of replaced.

class SCons.Node.Node
Bases: object
The base Node class, for entities that we know how to build, or use to build other Nodes.

class Attrs
Bases: object

shared

BuildInfo
alias of SCons.Node.BuildInfoBase

Decider (function)

GetTag (key)
Return a user-defined tag.

SCons Project API Documentation

76

NodeInfo
alias of SCons.Node.NodeInfoBase

Tag (key, value)
Add a user-defined tag.

_add_child (collection, set, child)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it’s already present.

_children_get ()

_children_reset ()

_func_exists

_func_get_contents

_func_is_derived

_func_rexists

_func_target_from_source

_get_scanner (env, initial_scanner, root_node_scanner, kw)

_memo

_specific_sources

_tags

add_dependency (depend)
Adds dependencies.

add_ignore (depend)
Adds dependencies to ignore.

add_prerequisite (prerequisite)
Adds prerequisites

add_source (source)
Adds sources.

add_to_implicit (deps)

add_to_waiting_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, 0 if not.
(Note that the returned values are intended to be used to increment a reference count, so don’t think you can
“clean up” this function by using True and False instead…)

add_to_waiting_s_e (node)

add_wkid (wkid)
Add a node to the list of kids waiting to be evaluated

all_children (scan=1)
Return a list of all the node’s direct children.

alter_targets ()
Return a list of alternate targets for this Node.

SCons Project API Documentation

77

always_build

attributes

binfo

build (**kw)
Actually build the node.
This is called by the Taskmaster after it’s decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().

builder

builder_set (builder)

built ()
Called just after this node is successfully built.

cached

changed (node=None, allowcache=False)
Returns if the node is up-to-date with respect to the BuildInfo stored last time it was built. The default behavior is
to compare it against our own previously stored BuildInfo, but the stored BuildInfo from another Node (typically
one in a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as
we detected any difference, but we now rely on checking every dependency to make sure that any necessary
Node information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last_build

check_attributes (name)
Simple API to check if the node.attributes for name has been set

children (scan=1)
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values ()

del_binfo ()
Delete the build info from this node.

depends

depends_set

disambiguate (must_exist=None)

SCons Project API Documentation

78

env

env_set (env, safe=0)

executor

executor_cleanup ()
Let the executor clean up any cached information.

exists ()
Does this node exists?

explain ()

for_signature ()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__() method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need
to return something that would actually work in a command line; it can return any kind of nonsense, so long as it
does not change.

get_abspath ()
Return an absolute path to the Node. This will return simply str(Node) by default, but for Node types that have a
concept of relative path, this might return something different.

get_binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns -
the build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they’re already
built and updated by someone else, if that’s what’s wanted.

get_build_env ()
Fetch the appropriate Environment to build this node.

get_build_scanner_path (scanner)
Fetch the appropriate scanner path for this node.

get_builder (default_builder=None)
Return the set builder, or a specified default value

get_cachedir_csig ()

get_contents ()
Fetch the contents of the entry.

get_csig ()

get_env ()

get_env_scanner (env, kw={})

get_executor (create=1)
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.

get_found_includes (env, scanner, path)
Return the scanned include lines (implicit dependencies) found in this node.
The default is no implicit dependencies. We expect this method to be overridden by any subclass that can be
scanned for implicit dependencies.

SCons Project API Documentation

79

get_implicit_deps (env, initial_scanner, path_func, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.

get_ninfo ()

get_source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get_state ()

get_stored_implicit ()
Fetch the stored implicit dependencies

get_stored_info ()

get_string (for_signature)
This is a convenience function designed primarily to be used in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command
line, which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a
string, passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle
use is that some Nodes would like to implement a __getattr__() method, but putting that in the Node type itself
has a tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this
method to return self if no new functionality is needed for Environment substitution.

get_suffix ()

get_target_scanner ()

has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: …”). When the builder attribute is examined directly, it ends up calling __getattr__ for both the
__len__ and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

ignore

ignore_set

implicit

implicit_set

includes

SCons Project API Documentation

80

is_conftest ()
Returns true if this node is an conftest node

is_derived ()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and
should contribute their build signatures when they are used as source files to other derived files. For example:
source with source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript ()
Returns true if this node is an sconscript

is_up_to_date ()
Default check for whether the Node is current: unknown Node subtypes are always out of date, so they will
always get built.

linked

make_ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

missing ()

multiple_side_effect_has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: …”). When the builder attribute is examined directly, it ends up calling __getattr__ for both the
__len__ and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

new_binfo ()

new_ninfo ()

ninfo

nocache

noclean

postprocess ()
Clean up anything we don’t need to hang onto after we’ve been built.

precious

prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before
actually calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and
initializes the BuildInfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the
targets built by a specific action.)

SCons Project API Documentation

81

Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note
that subclass methods should call this base class method to get the child check and the BuildInfo structure.

prerequisites

pseudo

push_to_cache ()
Try to push a node into a cache

ref_count

release_target_info ()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order
to minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that
much how many KBytes a Node actually requires…as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()

remove ()
Remove this Node: no-op by default.

render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.

reset_executor ()
Remove cached executor; forces recompute when needed.

retrieve_from_cache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().
Returns true if the node was successfully retrieved.

rexists ()
Does this node exist locally or in a repository?

scan ()
Scan this node’s dependents for implicit dependencies.

scanner_key ()

select_scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don’t select one the Scanner.Selector that’s configured for the target.

set_always_build (always_build=1)
Set the Node’s always_build value.

set_executor (executor)
Set the action executor for this node.

set_explicit (is_explicit)

set_nocache (nocache=1)
Set the Node’s nocache value.

set_noclean (noclean=1)
Set the Node’s noclean value.

SCons Project API Documentation

82

set_precious (precious=1)
Set the Node’s precious value.

set_pseudo (pseudo=True)
Set the Node’s precious value.

set_specific_source (source)

set_state (state)

side_effect

side_effects

sources

sources_set

state

store_info

target_peers

visited ()
Called just after this node has been visited (with or without a build).

waiting_parents

waiting_s_e

wkids

class SCons.Node.NodeInfoBase
Bases: object
The generic base class for signature information for a Node.
Node subclasses should subclass NodeInfoBase to provide their own logic for dealing with their own Node-specific
signature information.

convert (node, val)

current_version_id = 2

format (field_list=None, names=0)

merge (other)
Merge the fields of another object into this object. Already existing information is overwritten by the other
instance’s data. WARNING: If a ‘__dict__’ slot is added, it should be updated instead of replaced.

update (node)

class SCons.Node.NodeList (initlist=None)
Bases: collections.UserList

_abc_impl = <_abc_data object>

append (item)
S.append(value) – append value to the end of the sequence

clear () → None – remove all items from S

SCons Project API Documentation

83

copy ()

count (value) → integer – return number of occurrences of value

extend (other)
S.extend(iterable) – extend sequence by appending elements from the iterable

index (value[, start[, stop]]) → integer – return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.

insert (i, item)
S.insert(index, value) – insert value before index

pop ([, index]) → item – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

remove (item)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

reverse ()
S.reverse() – reverse IN PLACE

sort (*args, **kwds)

class SCons.Node.Walker (node, kids_func=<function get_children>, cycle_func=<function
ignore_cycle>, eval_func=<function do_nothing>)

Bases: object
An iterator for walking a Node tree.
This is depth-first, children are visited before the parent. The Walker object can be initialized with any node, and
returns the next node on the descent with each get_next() call. get the children of a node instead of calling
‘children’. ‘cycle_func’ is an optional function that will be called when a cycle is detected.
This class does not get caught in node cycles caused, for example, by C header file include loops.

get_next ()
Return the next node for this walk of the tree.
This function is intentionally iterative, not recursive, to sidestep any issues of stack size limitations.

is_done ()

SCons.Node.changed_since_last_build_alias (node, target, prev_ni, repo_node=None)

SCons.Node.changed_since_last_build_entry (node, target, prev_ni, repo_node=None)

SCons.Node.changed_since_last_build_node (node, target, prev_ni, repo_node=None)
Must be overridden in a specific subclass to return True if this Node (a dependency) has changed since the last
time it was used to build the specified target. prev_ni is this Node’s state (for example, its file timestamp, length,
maybe content signature) as of the last time the target was built.
Note that this method is called through the dependency, not the target, because a dependency Node must be able
to use its own logic to decide if it changed. For example, File Nodes need to obey if we’re configured to use
timestamps, but Python Value Nodes never use timestamps and always use the content. If this method were
called through the target, then each Node’s implementation of this method would have to have more complicated
logic to handle all the different Node types on which it might depend.

SCons.Node.changed_since_last_build_python (node, target, prev_ni, repo_node=None)

SCons.Node.changed_since_last_build_state_changed (node, target, prev_ni, repo_node=None)

SCons.Node.classname (obj)

SCons.Node.decide_source (node, target, prev_ni, repo_node=None)

SCons.Node.decide_target (node, target, prev_ni, repo_node=None)

SCons.Node.do_nothing (node, parent)

SCons Project API Documentation

84

SCons.Node.do_nothing_node (node)

SCons.Node.exists_always (node)

SCons.Node.exists_base (node)

SCons.Node.exists_entry (node)
Return if the Entry exists. Check the file system to see what we should turn into first. Assume a file if there’s no
directory.

SCons.Node.exists_file (node)

SCons.Node.exists_none (node)

SCons.Node.get_children (node, parent)

SCons.Node.get_contents_dir (node)
Return content signatures and names of all our children separated by new-lines. Ensure that the nodes are sorted.

SCons.Node.get_contents_entry (node)
Fetch the contents of the entry. Returns the exact binary contents of the file.

SCons.Node.get_contents_file (node)

SCons.Node.get_contents_none (node)

SCons.Node.ignore_cycle (node, stack)

SCons.Node.is_derived_node (node)
Returns true if this node is derived (i.e. built).

SCons.Node.is_derived_none (node)

SCons.Node.rexists_base (node)

SCons.Node.rexists_node (node)

SCons.Node.rexists_none (node)

SCons.Node.store_info_file (node)

SCons.Node.store_info_pass (node)

SCons.Node.target_from_source_base (node, prefix, suffix, splitext)

SCons.Node.target_from_source_none (node, prefix, suffix, splitext)

SCons.Platform package

Submodules

SCons.Platform.aix module

Platform-specific initialization for IBM AIX systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.

SCons.Platform.aix.generate (env)

SCons.Platform.aix.get_xlc (env, xlc=None, packages=[])

SCons.Platform.cygwin module

Platform-specific initialization for Cygwin systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.

SCons.Platform.cygwin.generate (env)

SCons Project API Documentation

85

SCons.Platform.darwin module

Platform-specific initialization for Mac OS X systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.

SCons.Platform.darwin.generate (env)

SCons.Platform.hpux module

Platform-specific initialization for HP-UX systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.

SCons.Platform.hpux.generate (env)

SCons.Platform.irix module

Platform-specific initialization for SGI IRIX systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.

SCons.Platform.irix.generate (env)

SCons.Platform.mingw module

Platform-specific initialization for the MinGW system.

SCons.Platform.os2 module

Platform-specific initialization for OS/2 systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.

SCons.Platform.os2.generate (env)

SCons.Platform.posix module

Platform-specific initialization for POSIX (Linux, UNIX, etc.) systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.

SCons.Platform.posix.escape (arg)
escape shell special characters

SCons.Platform.posix.exec_popen3 (l, env, stdout, stderr)

SCons.Platform.posix.exec_subprocess (l, env)

SCons.Platform.posix.generate (env)

SCons.Platform.posix.piped_env_spawn (sh, escape, cmd, args, env, stdout, stderr)

SCons.Platform.posix.subprocess_spawn (sh, escape, cmd, args, env)

SCons.Platform.sunos module

Platform-specific initialization for Sun systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.

SCons.Platform.sunos.generate (env)

SCons Project API Documentation

86

SCons.Platform.virtualenv module

‘Platform” support for a Python virtualenv.

SCons.Platform.virtualenv.ImportVirtualenv (env)
Copies virtualenv-related environment variables from OS environment to env['ENV'] and prepends virtualenv’s
PATH to env['ENV']['PATH'].

SCons.Platform.virtualenv.IsInVirtualenv (path)
Returns True, if path is under virtualenv’s home directory. If not, or if we don’t use virtualenv, returns False.

SCons.Platform.virtualenv.Virtualenv ()
Returns path to the virtualenv home if scons is executing within a virtualenv or None, if not.

SCons.Platform.virtualenv._enable_virtualenv_default ()

SCons.Platform.virtualenv._ignore_virtualenv_default ()

SCons.Platform.virtualenv._inject_venv_path (env, path_list=None)
Modify environment such that SCons will take into account its virtualenv when running external tools.

SCons.Platform.virtualenv._inject_venv_variables (env)

SCons.Platform.virtualenv._is_path_in (path, base)
Returns true if path is located under the base directory.

SCons.Platform.virtualenv._running_in_virtualenv ()
Returns True if scons is executed within a virtualenv

SCons.Platform.virtualenv.select_paths_in_venv (path_list)
Returns a list of paths from path_list which are under virtualenv’s home directory.

SCons.Platform.win32 module

Platform-specific initialization for Win32 systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.

class SCons.Platform.win32.ArchDefinition (arch, synonyms=[])
Bases: object
Determine which windows CPU were running on. A class for defining architecture-specific settings and logic.

SCons.Platform.win32.escape (x)

SCons.Platform.win32.exec_spawn (l, env)

SCons.Platform.win32.generate (env)

SCons.Platform.win32.get_architecture (arch=None)
Returns the definition for the specified architecture string.
If no string is specified, the system default is returned (as defined by the PROCESSOR_ARCHITEW6432 or
PROCESSOR_ARCHITECTURE environment variables).

SCons.Platform.win32.get_program_files_dir ()
Get the location of the program files directory

SCons.Platform.win32.get_system_root ()

SCons.Platform.win32.piped_spawn (sh, escape, cmd, args, env, stdout, stderr)

SCons.Platform.win32.spawn (sh, escape, cmd, args, env)

SCons.Platform.win32.spawnve (mode, file, args, env)

Module contents

SCons platform selection.

Looks for modules that define a callable object that can modify a construction environment as appropriate for a given
platform.

SCons Project API Documentation

87

Note that we take a more simplistic view of “platform” than Python does. We’re looking for a single string that
determines a set of tool-independent variables with which to initialize a construction environment. Consequently,
we’ll examine both sys.platform and os.name (and anything else that might come in to play) in order to return some
specification which is unique enough for our purposes.

Note that because this subsystem just selects a callable that can modify a construction environment, it’s possible for
people to define their own “platform specification” in an arbitrary callable function. No one needs to use or tie in to
this subsystem in order to roll their own platform definition.

SCons.Platform.DefaultToolList (platform, env)
Select a default tool list for the specified platform.

SCons.Platform.Platform (name='posix')
Select a canned Platform specification.

class SCons.Platform.PlatformSpec (name, generate)
Bases: object

class SCons.Platform.TempFileMunge (cmd, cmdstr=None)
Bases: object
Convert long command lines to use a temporary file.
You can set an Environment variable (usually TEMPFILE) to this, then call it with a string argument, and it will
perform temporary file substitution on it. This is used to circumvent limitations on the length of command lines.
Example:

env["TEMPFILE"] = TempFileMunge
env["LINKCOM"] = "${TEMPFILE('$LINK $TARGET $SOURCES','$LINKCOMSTR')}"

By default, the name of the temporary file used begins with a prefix of ‘@’. This may be configured for other tool
chains by setting the TEMPFILEPREFIX variable. Example:

env["TEMPFILEPREFIX"] = '-@' # diab compiler
env["TEMPFILEPREFIX"] = '-via' # arm tool chain
env["TEMPFILEPREFIX"] = '' # (the empty string) PC Lint

You can configure the extension of the temporary file through the TEMPFILESUFFIX variable, which defaults to
‘.lnk’ (see comments in the code below). Example:

env["TEMPFILESUFFIX"] = '.lnt' # PC Lint

Entries in the temporary file are separated by the value of the TEMPFILEARGJOIN variable, which defaults to an
OS-appropriate value.
A default argument escape function is SCons.Subst.quote_spaces. If you need to apply extra operations on a
command argument before writing to a temporary file(fix Windows slashes, normalize paths, etc.), please set
TEMPFILEARGESCFUNC variable to a custom function. Example:

import sys
import re
from SCons.Subst import quote_spaces

WINPATHSEP_RE = re.compile(r"\([^"'\]|$)")

def tempfile_arg_esc_func(arg):
 arg = quote_spaces(arg)
 if sys.platform != "win32":
 return arg
 # GCC requires double Windows slashes, let's use UNIX separator
 return WINPATHSEP_RE.sub(r"/■", arg)

env["TEMPFILEARGESCFUNC"] = tempfile_arg_esc_func

_print_cmd_str (target, source, env, cmdstr)

SCons Project API Documentation

88

SCons.Platform.platform_default ()
Return the platform string for our execution environment.
The returned value should map to one of the SCons/Platform/*.py files. Since scons is architecture independent,
though, we don’t care about the machine architecture.

SCons.Platform.platform_module (name='posix')
Return the imported module for the platform.
This looks for a module name that matches the specified argument. If the name is unspecified, we fetch the
appropriate default for our execution environment.

SCons.Scanner package

Submodules

SCons.Scanner.C module

Dependency scanner for C/C++ code.

SCons.Scanner.C.CConditionalScanner ()
Return an advanced conditional Scanner instance for scanning source files
Interprets C/C++ Preprocessor conditional syntax (#ifdef, #if, defined, #else, #elif, etc.).

SCons.Scanner.C.CScanner ()
Return a prototype Scanner instance for scanning source files that use the C pre-processor

class SCons.Scanner.C.SConsCPPConditionalScanner (*args, **kwargs)
Bases: SCons.cpp.PreProcessor
SCons-specific subclass of the cpp.py module’s processing.
We subclass this so that: 1) we can deal with files represented by Nodes, not strings; 2) we can keep track of the
files that are missing.

_do_if_else_condition (condition)
Common logic for evaluating the conditions on #if, #ifdef and #ifndef lines.

_match_tuples (tuples)

_parse_tuples (contents)

_process_tuples (tuples, file=None)

all_include (t)

do_define (t)
Default handling of a #define line.

do_elif (t)
Default handling of a #elif line.

do_else (t)
Default handling of a #else line.

do_endif (t)
Default handling of a #endif line.

do_if (t)
Default handling of a #if line.

do_ifdef (t)
Default handling of a #ifdef line.

do_ifndef (t)

SCons Project API Documentation

89

Default handling of a #ifndef line.

do_import (t)
Default handling of a #import line.

do_include (t)
Default handling of a #include line.

do_include_next (t)
Default handling of a #include line.

do_nothing (t)
Null method for when we explicitly want the action for a specific preprocessor directive to do nothing.

do_undef (t)
Default handling of a #undef line.

eval_expression (t)
Evaluates a C preprocessor expression.
This is done by converting it to a Python equivalent and eval()ing it in the C preprocessor namespace we use to
track #define values.

finalize_result (fname)

find_include_file (t)
Finds the #include file for a given preprocessor tuple.

initialize_result (fname)

process_contents (contents)
Pre-processes a file contents.
Is used by tests

process_file (file)
Pre-processes a file.
This is the main internal entry point.

read_file (file)

resolve_include (t)
Resolve a tuple-ized #include line.
This handles recursive expansion of values without “” or <> surrounding the name until an initial ” or < is found,
to handle #include FILE where FILE is a #define somewhere else.

restore ()
Pops the previous dispatch table off the stack and makes it the current one.

save ()
Pushes the current dispatch table on the stack and re-initializes the current dispatch table to the default.

scons_current_file (t)

start_handling_includes (t=None)
Causes the PreProcessor object to start processing #import, #include and #include_next lines.
This method will be called when a #if, #ifdef, #ifndef or #elif evaluates True, or when we reach the #else in a #if,
#ifdef, #ifndef or #elif block where a condition already evaluated False.

stop_handling_includes (t=None)
Causes the PreProcessor object to stop processing #import, #include and #include_next lines.
This method will be called when a #if, #ifdef, #ifndef or #elif evaluates False, or when we reach the #else in a #if,
#ifdef, #ifndef or #elif block where a condition already evaluated True.

SCons Project API Documentation

90

tupleize (contents)
Turns the contents of a file into a list of easily-processed tuples describing the CPP lines in the file.
The first element of each tuple is the line’s preprocessor directive (#if, #include, #define, etc., minus the initial
‘#’). The remaining elements are specific to the type of directive, as pulled apart by the regular expression.

class SCons.Scanner.C.SConsCPPConditionalScannerWrapper (name, variable)
Bases: object
The SCons wrapper around a cpp.py scanner.
This is the actual glue between the calling conventions of generic SCons scanners, and the (subclass of) cpp.py
class that knows how to look for #include lines with reasonably real C-preprocessor-like evaluation of
#if/#ifdef/#else/#elif lines.

recurse_nodes (nodes)

select (node)

class SCons.Scanner.C.SConsCPPScanner (*args, **kwargs)
Bases: SCons.cpp.PreProcessor
SCons-specific subclass of the cpp.py module’s processing.
We subclass this so that: 1) we can deal with files represented by Nodes, not strings; 2) we can keep track of the
files that are missing.

_do_if_else_condition (condition)
Common logic for evaluating the conditions on #if, #ifdef and #ifndef lines.

_match_tuples (tuples)

_parse_tuples (contents)

_process_tuples (tuples, file=None)

all_include (t)

do_define (t)
Default handling of a #define line.

do_elif (t)
Default handling of a #elif line.

do_else (t)
Default handling of a #else line.

do_endif (t)
Default handling of a #endif line.

do_if (t)
Default handling of a #if line.

do_ifdef (t)
Default handling of a #ifdef line.

do_ifndef (t)
Default handling of a #ifndef line.

do_import (t)
Default handling of a #import line.

do_include (t)
Default handling of a #include line.

do_include_next (t)

SCons Project API Documentation

91

Default handling of a #include line.

do_nothing (t)
Null method for when we explicitly want the action for a specific preprocessor directive to do nothing.

do_undef (t)
Default handling of a #undef line.

eval_expression (t)
Evaluates a C preprocessor expression.
This is done by converting it to a Python equivalent and eval()ing it in the C preprocessor namespace we use to
track #define values.

finalize_result (fname)

find_include_file (t)
Finds the #include file for a given preprocessor tuple.

initialize_result (fname)

process_contents (contents)
Pre-processes a file contents.
Is used by tests

process_file (file)
Pre-processes a file.
This is the main internal entry point.

read_file (file)

resolve_include (t)
Resolve a tuple-ized #include line.
This handles recursive expansion of values without “” or <> surrounding the name until an initial ” or < is found,
to handle #include FILE where FILE is a #define somewhere else.

restore ()
Pops the previous dispatch table off the stack and makes it the current one.

save ()
Pushes the current dispatch table on the stack and re-initializes the current dispatch table to the default.

scons_current_file (t)

start_handling_includes (t=None)
Causes the PreProcessor object to start processing #import, #include and #include_next lines.
This method will be called when a #if, #ifdef, #ifndef or #elif evaluates True, or when we reach the #else in a #if,
#ifdef, #ifndef or #elif block where a condition already evaluated False.

stop_handling_includes (t=None)
Causes the PreProcessor object to stop processing #import, #include and #include_next lines.
This method will be called when a #if, #ifdef, #ifndef or #elif evaluates False, or when we reach the #else in a #if,
#ifdef, #ifndef or #elif block where a condition already evaluated True.

tupleize (contents)
Turns the contents of a file into a list of easily-processed tuples describing the CPP lines in the file.
The first element of each tuple is the line’s preprocessor directive (#if, #include, #define, etc., minus the initial
‘#’). The remaining elements are specific to the type of directive, as pulled apart by the regular expression.

class SCons.Scanner.C.SConsCPPScannerWrapper (name, variable)
Bases: object
The SCons wrapper around a cpp.py scanner.

SCons Project API Documentation

92

This is the actual glue between the calling conventions of generic SCons scanners, and the (subclass of) cpp.py
class that knows how to look for #include lines with reasonably real C-preprocessor-like evaluation of
#if/#ifdef/#else/#elif lines.

recurse_nodes (nodes)

select (node)

SCons.Scanner.C.dictify_CPPDEFINES (env)

SCons.Scanner.D module

Scanner for the Digital Mars “D” programming language.

Coded by Andy Friesen, 17 Nov 2003

class SCons.Scanner.D.D
Bases: SCons.Scanner.Classic

static _recurse_all_nodes (nodes)

static _recurse_no_nodes (nodes)

add_scanner (skey, scanner)

add_skey (skey)
Add a skey to the list of skeys

find_include (include, source_dir, path)

find_include_names (node)

get_skeys (env=None)

path (env, dir=None, target=None, source=None)

scan (node, path=())

select (node)

static sort_key (include)

SCons.Scanner.D.DScanner ()
Return a prototype Scanner instance for scanning D source files

SCons.Scanner.Dir module

SCons.Scanner.Dir.DirEntryScanner (**kwargs)
Return a prototype Scanner instance for “scanning” directory Nodes for their in-memory entries

SCons.Scanner.Dir.DirScanner (**kwargs)
Return a prototype Scanner instance for scanning directories for on-disk files

SCons.Scanner.Dir.do_not_scan (k)

SCons.Scanner.Dir.only_dirs (nodes)

SCons.Scanner.Dir.scan_in_memory (node, env, path=())
“Scans” a Node.FS.Dir for its in-memory entries.

SCons.Scanner.Dir.scan_on_disk (node, env, path=())
Scans a directory for on-disk files and directories therein.
Looking up the entries will add these to the in-memory Node tree representation of the file system, so all we have
to do is just that and then call the in-memory scanning function.

SCons Project API Documentation

93

SCons.Scanner.Fortran module

Dependency scanner for Fortran code.

class SCons.Scanner.Fortran.F90Scanner (name, suffixes, path_variable, use_regex, incl_regex, def_regex,
*args, **kwargs)

Bases: SCons.Scanner.Classic
A Classic Scanner subclass for Fortran source files which takes into account both USE and INCLUDE statements.
This scanner will work for both F77 and F90 (and beyond) compilers.
Currently, this scanner assumes that the include files do not contain USE statements. To enable the ability to deal
with USE statements in include files, add logic right after the module names are found to loop over each include
file, search for and locate each USE statement, and append each module name to the list of dependencies.
Caching the search results in a common dictionary somewhere so that the same include file is not searched
multiple times would be a smart thing to do.

static _recurse_all_nodes (nodes)

static _recurse_no_nodes (nodes)

add_scanner (skey, scanner)

add_skey (skey)
Add a skey to the list of skeys

static find_include (include, source_dir, path)

find_include_names (node)

get_skeys (env=None)

path (env, dir=None, target=None, source=None)

scan (node, env, path=())

select (node)

static sort_key (include)

SCons.Scanner.Fortran.FortranScan (path_variable='FORTRANPATH')
Return a prototype Scanner instance for scanning source files for Fortran USE & INCLUDE statements

SCons.Scanner.IDL module

Dependency scanner for IDL (Interface Definition Language) files.

SCons.Scanner.IDL.IDLScan ()
Return a prototype Scanner instance for scanning IDL source files

SCons.Scanner.LaTeX module

Dependency scanner for LaTeX code.

class SCons.Scanner.LaTeX.FindENVPathDirs (variable)
Bases: object
A class to bind a specific E{*}PATH variable name to a function that will return all of the E{*}path directories.

class SCons.Scanner.LaTeX.LaTeX (name, suffixes, graphics_extensions, *args, **kwargs)
Bases: SCons.Scanner.ScannerBase
Class for scanning LaTeX files for included files.
Unlike most scanners, which use regular expressions that just return the included file name, this returns a tuple
consisting of the keyword for the inclusion (“include”, “includegraphics”, “input”, or “bibliography”), and then the file
name itself. Based on a quick look at LaTeX documentation, it seems that we should append .tex suffix for the

SCons Project API Documentation

94

“include” keywords, append .tex if there is no extension for the “input” keyword, and need to add .bib for the
“bibliography” keyword that does not accept extensions by itself.
Finally, if there is no extension for an “includegraphics” keyword latex will append .ps or .eps to find the file, while
pdftex may use .pdf, .jpg, .tif, .mps, or .png.
The actual subset and search order may be altered by DeclareGraphicsExtensions command. This complication is
ignored. The default order corresponds to experimentation with teTeX:

$ latex --version
pdfeTeX 3.141592-1.21a-2.2 (Web2C 7.5.4)
kpathsea version 3.5.4

The order is:

[‘.eps’, ‘.ps’] for latex [‘.png’, ‘.pdf’, ‘.jpg’, ‘.tif’].
Another difference is that the search path is determined by the type of the file being searched: env[‘TEXINPUTS’]
for “input” and “include” keywords env[‘TEXINPUTS’] for “includegraphics” keyword env[‘TEXINPUTS’] for
“lstinputlisting” keyword env[‘BIBINPUTS’] for “bibliography” keyword env[‘BSTINPUTS’] for “bibliographystyle”
keyword env[‘INDEXSTYLE’] for “makeindex” keyword, no scanning support needed just allows user to set it if
needed.
FIXME: also look for the class or style in document[class|style]{} FIXME: also look for the argument of
bibliographystyle{}

_latex_names (include_type, filename)

static _recurse_all_nodes (nodes)

static _recurse_no_nodes (nodes)

add_scanner (skey, scanner)

add_skey (skey)
Add a skey to the list of skeys

canonical_text (text)
Standardize an input TeX-file contents.

Currently:

• removes comments, unwrapping comment-wrapped lines.

env_variables = ['TEXINPUTS', 'BIBINPUTS', 'BSTINPUTS', 'INDEXSTYLE']

find_include (include, source_dir, path)

get_skeys (env=None)

keyword_paths = {'addbibresource': 'BIBINPUTS', 'addglobalbib': 'BIBINPUTS', 'addsectionbib': 'BIBINPUTS',
'bibliography': 'BIBINPUTS', 'bibliographystyle': 'BSTINPUTS', 'include': 'TEXINPUTS', 'includegraphics':
'TEXINPUTS', 'input': 'TEXINPUTS', 'lstinputlisting': 'TEXINPUTS', 'makeindex': 'INDEXSTYLE', 'usepackage':
'TEXINPUTS'}

path (env, dir=None, target=None, source=None)

scan (node, subdir='.')

scan_recurse (node, path=())
do a recursive scan of the top level target file This lets us search for included files based on the directory of the
main file just as latex does

select (node)

sort_key (include)

SCons Project API Documentation

95

two_arg_commands = ['import', 'subimport', 'includefrom', 'subincludefrom', 'inputfrom', 'subinputfrom']

SCons.Scanner.LaTeX.LaTeXScanner ()
Return a prototype Scanner instance for scanning LaTeX source files when built with latex.

SCons.Scanner.LaTeX.PDFLaTeXScanner ()
Return a prototype Scanner instance for scanning LaTeX source files when built with pdflatex.

class SCons.Scanner.LaTeX._Null
Bases: object

SCons.Scanner.LaTeX._null
alias of SCons.Scanner.LaTeX._Null

SCons.Scanner.LaTeX.modify_env_var (env, var, abspath)

SCons.Scanner.Prog module

Dependency scanner for program files.

SCons.Scanner.Prog.ProgramScanner (**kwargs)
Return a prototype Scanner instance for scanning executable files for static-lib dependencies

SCons.Scanner.Prog._subst_libs (env, libs)
Substitute environment variables and split into list.

SCons.Scanner.Prog.scan (node, env, libpath=())
Scans program files for static-library dependencies.
It will search the LIBPATH environment variable for libraries specified in the LIBS variable, returning any files it
finds as dependencies.

SCons.Scanner.RC module

Dependency scanner for RC (Interface Definition Language) files.

SCons.Scanner.RC.RCScan ()
Return a prototype Scanner instance for scanning RC source files

SCons.Scanner.RC.no_tlb (nodes)
Filter out .tlb files as they are binary and shouldn’t be scanned.

SCons.Scanner.SWIG module

Dependency scanner for SWIG code.

SCons.Scanner.SWIG.SWIGScanner ()

Module contents

The Scanner package for the SCons software construction utility.

SCons.Scanner.Base
alias of SCons.Scanner.ScannerBase

class SCons.Scanner.Classic (name, suffixes, path_variable, regex, *args, **kwargs)
Bases: SCons.Scanner.Current
A Scanner subclass to contain the common logic for classic CPP-style include scanning, but which can be
customized to use different regular expressions to find the includes.
Note that in order for this to work “out of the box” (without overriding the find_include() and sort_key1()
methods), the regular expression passed to the constructor must return the name of the include file in group 0.

static _recurse_all_nodes (nodes)

static _recurse_no_nodes (nodes)

SCons Project API Documentation

96

add_scanner (skey, scanner)

add_skey (skey)
Add a skey to the list of skeys

static find_include (include, source_dir, path)

find_include_names (node)

get_skeys (env=None)

path (env, dir=None, target=None, source=None)

scan (node, path=())

select (node)

static sort_key (include)

class SCons.Scanner.ClassicCPP (name, suffixes, path_variable, regex, *args, **kwargs)
Bases: SCons.Scanner.Classic
A Classic Scanner subclass which takes into account the type of bracketing used to include the file, and uses
classic CPP rules for searching for the files based on the bracketing.
Note that in order for this to work, the regular expression passed to the constructor must return the leading bracket
in group 0, and the contained filename in group 1.

static _recurse_all_nodes (nodes)

static _recurse_no_nodes (nodes)

add_scanner (skey, scanner)

add_skey (skey)
Add a skey to the list of skeys

find_include (include, source_dir, path)

find_include_names (node)

get_skeys (env=None)

path (env, dir=None, target=None, source=None)

scan (node, path=())

select (node)

sort_key (include)

class SCons.Scanner.Current (*args, **kwargs)
Bases: SCons.Scanner.ScannerBase
A class for scanning files that are source files (have no builder) or are derived files and are current (which implies
that they exist, either locally or in a repository).

static _recurse_all_nodes (nodes)

static _recurse_no_nodes (nodes)

add_scanner (skey, scanner)

add_skey (skey)

SCons Project API Documentation

97

Add a skey to the list of skeys

get_skeys (env=None)

path (env, dir=None, target=None, source=None)

select (node)

class SCons.Scanner.FindPathDirs (variable)
Bases: object
Class to bind a specific E{*}PATH variable name to a function that will return all of the E{*}path directories.

SCons.Scanner.Scanner (function, *args, **kwargs)
Factory function to create a Scanner Object.
Creates the appropriate Scanner based on the type of “function”.
TODO: Deprecate this some day. We’ve moved the functionality inside the ScannerBase class and really don’t
need this factory function any more. It was, however, used by some of our Tool modules, so the call probably
ended up in various people’s custom modules patterned on SCons code.

class SCons.Scanner.ScannerBase (function, name='NONE', argument=<class
'SCons.Scanner._Null'>, skeys=<class 'SCons.Scanner._Null'>, path_function=None,
node_class=<class 'SCons.Node.FS.Base'>, node_factory=None, scan_check=None,
recursive=None)

Bases: object
Base class for dependency scanners.
Implements straightforward, single-pass scanning of a single file.
A Scanner is usually set up with a scanner function (and optionally a path function), but can also be a kind of
dispatcher which passes control to other Scanners.
A scanner function takes three arguments: a Node to scan for dependecies, the construction environment to use,
and an optional tuple of paths (as generated by the optional path function). It must return a list containing the
Nodes for all the direct dependencies of the file.
The optional path function is called to return paths that can be searched for implicit dependency files. It takes five
arguments: a construction environment, a Node for the directory containing the SConscript file that defined the
primary target, a list of target nodes, a list of source nodes, and the optional argument for this instance.
Examples:

s = Scanner(my_scanner_function)
s = Scanner(function=my_scanner_function)
s = Scanner(function=my_scanner_function, argument='foo')

SCons Project API Documentation

98

Parameters:
• function – either a scanner function taking two or three arguments and returning a list

of File Nodes; or a mapping of keys to other Scanner objects.

• name – an optional name for identifying this scanner object (defaults to “NONE”).

• argument – an optional argument that will be passed to both function and
path_function.

• skeys – an optional list argument that can be used to determine if this scanner can be
used for a given Node. In the case of File nodes, for example, the skeys would be file
suffixes.

• path_function – an optional function which returns a tuple of the directories that can
be searched for implicit dependency files. May also return a callable which is called
with no args and returns the tuple (supporting Bindable class).

• node_class – optional class of Nodes which this scan will return. If not specified,
defaults to SCons.Node.FS.Base. If node_class is None, then this scanner will not
enforce any Node conversion and will return the raw results from function.

• node_factory – optional factory function to be called to translate the raw results
returned by function into the expected node_class objects.

• scan_check – optional function to be called to first check whether this node really
needs to be scanned.

• recursive – optional specifier of whether this scanner should be invoked recursively on
all of the implicit dependencies it returns (for example #include lines in C source files,
which may refer to header files which should themselves be scanned). May be a
callable, which will be called to filter the list of nodes found to select a subset for
recursive scanning (the canonical example being only recursively scanning
subdirectories within a directory). The default is to not do recursive scanning.

static _recurse_all_nodes (nodes)

static _recurse_no_nodes (nodes)

add_scanner (skey, scanner)

add_skey (skey)
Add a skey to the list of skeys

get_skeys (env=None)

path (env, dir=None, target=None, source=None)

select (node)

class SCons.Scanner.Selector (mapping, *args, **kwargs)
Bases: SCons.Scanner.ScannerBase
A class for selecting a more specific scanner based on the scanner_key() (suffix) for a specific Node.
TODO: This functionality has been moved into the inner workings of the ScannerBase class, and this class will be
deprecated at some point. (It was never exposed directly as part of the public interface, although it is used by the
Scanner() factory function that was used by various Tool modules and therefore was likely a template for custom
modules that may be out there.)

static _recurse_all_nodes (nodes)

static _recurse_no_nodes (nodes)

add_scanner (skey, scanner)

add_skey (skey)
Add a skey to the list of skeys

SCons Project API Documentation

99

get_skeys (env=None)

path (env, dir=None, target=None, source=None)

select (node)

class SCons.Scanner._Null
Bases: object

SCons.Scanner._null
alias of SCons.Scanner._Null

SCons.Script package

Submodules

SCons.Script.Interactive module

SCons interactive mode.

class SCons.Script.Interactive.SConsInteractiveCmd (**kw)
Bases: cmd.Cmd
build [TARGETS] Build the specified TARGETS and their dependencies. ‘b’ is a synonym. clean [TARGETS]
Clean (remove) the specified TARGETS and their dependencies. ‘c’ is a synonym. exit Exit SCons interactive
mode. help [COMMAND] Prints help for the specified COMMAND. ‘h’ and ‘?’ are synonyms. shell
[COMMANDLINE] Execute COMMANDLINE in a subshell. ‘sh’ and ‘!’ are synonyms. version Prints SCons version
information.

_do_one_help (arg)

_doc_to_help (obj)

_strip_initial_spaces (s)

cmdloop (intro=None)
Repeatedly issue a prompt, accept input, parse an initial prefix off the received input, and dispatch to action
methods, passing them the remainder of the line as argument.

columnize (list, displaywidth=80)
Display a list of strings as a compact set of columns.
Each column is only as wide as necessary. Columns are separated by two spaces (one was not legible enough).

complete (text, state)
Return the next possible completion for ‘text’.
If a command has not been entered, then complete against command list. Otherwise try to call
complete_<command> to get list of completions.

complete_help (*args)

completedefault (*ignored)
Method called to complete an input line when no command-specific complete_*() method is available.
By default, it returns an empty list.

completenames (text, *ignored)

default (argv)
Called on an input line when the command prefix is not recognized.
If this method is not overridden, it prints an error message and returns.

do_EOF (argv)

SCons Project API Documentation

100

do_build (argv)
build [TARGETS] Build the specified TARGETS and their dependencies. ‘b’ is a synonym.

do_clean (argv)
clean [TARGETS] Clean (remove) the specified TARGETS and their dependencies. ‘c’ is a synonym.

do_exit (argv)
exit Exit SCons interactive mode.

do_help (argv)
help [COMMAND] Prints help for the specified COMMAND. ‘h’ and ‘?’ are synonyms.

do_shell (argv)
shell [COMMANDLINE] Execute COMMANDLINE in a subshell. ‘sh’ and ‘!’ are synonyms.

do_version (argv)
version Prints SCons version information.

doc_header = 'Documented commands (type help <topic>):'

doc_leader = ''

emptyline ()
Called when an empty line is entered in response to the prompt.
If this method is not overridden, it repeats the last nonempty command entered.

get_names ()

identchars = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_'

intro = None

lastcmd = ''

misc_header = 'Miscellaneous help topics:'

nohelp = '*** No help on %s'

onecmd (line)
Interpret the argument as though it had been typed in response to the prompt.
This may be overridden, but should not normally need to be; see the precmd() and postcmd() methods for useful
execution hooks. The return value is a flag indicating whether interpretation of commands by the interpreter
should stop.

parseline (line)
Parse the line into a command name and a string containing the arguments. Returns a tuple containing
(command, args, line). ‘command’ and ‘args’ may be None if the line couldn’t be parsed.

postcmd (stop, line)
Hook method executed just after a command dispatch is finished.

postloop ()
Hook method executed once when the cmdloop() method is about to return.

precmd (line)
Hook method executed just before the command line is interpreted, but after the input prompt is generated and
issued.

preloop ()
Hook method executed once when the cmdloop() method is called.

SCons Project API Documentation

101

print_topics (header, cmds, cmdlen, maxcol)

prompt = '(Cmd) '

ruler = '='

synonyms = {'b': 'build', 'c': 'clean', 'h': 'help', 'scons': 'build', 'sh': 'shell'}

undoc_header = 'Undocumented commands:'

use_rawinput = 1

SCons.Script.Interactive.interact (fs, parser, options, targets, target_top)

SCons.Script.Main module

The main() function used by the scons script.

Architecturally, this is the scons script, and will likely only be called from the external “scons” wrapper. Consequently,
anything here should not be, or be considered, part of the build engine. If it’s something that we expect other
software to want to use, it should go in some other module. If it’s specific to the “scons” script invocation, it goes
here.

SCons.Script.Main.AddOption (*args, **kw)

class SCons.Script.Main.BuildTask (tm, targets, top, node)
Bases: SCons.Taskmaster.OutOfDateTask
An SCons build task.

_abc_impl = <_abc_data object>

_exception_raise ()
Raises a pending exception that was recorded while getting a Task ready for execution.

_no_exception_to_raise ()

display (message)
Hook to allow the calling interface to display a message.
This hook gets called as part of preparing a task for execution (that is, a Node to be built). As part of figuring out
what Node should be built next, the actual target list may be altered, along with a message describing the
alteration. The calling interface can subclass Task and provide a concrete implementation of this method to see
those messages.

do_failed (status=2)

exc_clear ()
Clears any recorded exception.
This also changes the “exception_raise” attribute to point to the appropriate do-nothing method.

exc_info ()
Returns info about a recorded exception.

exception_set (exception=None)
Records an exception to be raised at the appropriate time.
This also changes the “exception_raise” attribute to point to the method that will, in fact

execute ()
Called to execute the task.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in prepare(), executed() or failed().

executed ()

SCons Project API Documentation

102

Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target
was an actual built target or a source Node.

executed_with_callbacks ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target
was an actual built target or a source Node.

executed_without_callbacks ()
Called when the task has been successfully executed and the Taskmaster instance doesn’t want to call the
Node’s callback methods.

fail_continue ()
Explicit continue-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

fail_stop ()
Explicit stop-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

failed ()
Default action when a task fails: stop the build.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

get_target ()
Fetch the target being built or updated by this task.

make_ready ()
Make a task ready for execution

make_ready_all ()
Marks all targets in a task ready for execution.
This is used when the interface needs every target Node to be visited–the canonical example being the “scons
-c” option.

make_ready_current ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.

needs_execute ()
Returns True (indicating this Task should be executed) if this Task’s target state indicates it needs executing,
which has already been determined by an earlier up-to-date check.

postprocess ()
Post-processes a task after it’s been executed.
This examines all the targets just built (or not, we don’t care if the build was successful, or even if there was no
build because everything was up-to-date) to see if they have any waiting parent Nodes, or Nodes waiting on a
common side effect, that can be put back on the candidates list.

SCons Project API Documentation

103

prepare ()
Called just before the task is executed.
This is mainly intended to give the target Nodes a chance to unlink underlying files and make all necessary
directories before the Action is actually called to build the targets.

trace_message (method, node, description='node')

class SCons.Script.Main.CleanTask (tm, targets, top, node)
Bases: SCons.Taskmaster.AlwaysTask
An SCons clean task.

_abc_impl = <_abc_data object>

_clean_targets (remove=True)

_exception_raise ()
Raises a pending exception that was recorded while getting a Task ready for execution.

_get_files_to_clean ()

_no_exception_to_raise ()

display (message)
Hook to allow the calling interface to display a message.
This hook gets called as part of preparing a task for execution (that is, a Node to be built). As part of figuring out
what Node should be built next, the actual target list may be altered, along with a message describing the
alteration. The calling interface can subclass Task and provide a concrete implementation of this method to see
those messages.

exc_clear ()
Clears any recorded exception.
This also changes the “exception_raise” attribute to point to the appropriate do-nothing method.

exc_info ()
Returns info about a recorded exception.

exception_set (exception=None)
Records an exception to be raised at the appropriate time.
This also changes the “exception_raise” attribute to point to the method that will, in fact

execute ()
Called to execute the task.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in prepare(), executed() or failed().

executed ()
Called when the task has been successfully executed and the Taskmaster instance doesn’t want to call the
Node’s callback methods.

executed_with_callbacks ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target
was an actual built target or a source Node.

executed_without_callbacks ()
Called when the task has been successfully executed and the Taskmaster instance doesn’t want to call the
Node’s callback methods.

SCons Project API Documentation

104

fail_continue ()
Explicit continue-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

fail_stop ()
Explicit stop-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

failed ()
Default action when a task fails: stop the build.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

fs_delete (path, pathstr, remove=True)

get_target ()
Fetch the target being built or updated by this task.

make_ready ()
Marks all targets in a task ready for execution.
This is used when the interface needs every target Node to be visited–the canonical example being the “scons
-c” option.

make_ready_all ()
Marks all targets in a task ready for execution.
This is used when the interface needs every target Node to be visited–the canonical example being the “scons
-c” option.

make_ready_current ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.

needs_execute ()
Always returns True (indicating this Task should always be executed).
Subclasses that need this behavior (as opposed to the default of only executing Nodes that are out of date w.r.t.
their dependencies) can use this as follows:

class MyTaskSubclass(SCons.Taskmaster.Task):

needs_execute = SCons.Taskmaster.AlwaysTask.needs_execute

postprocess ()
Post-processes a task after it’s been executed.
This examines all the targets just built (or not, we don’t care if the build was successful, or even if there was no
build because everything was up-to-date) to see if they have any waiting parent Nodes, or Nodes waiting on a
common side effect, that can be put back on the candidates list.

prepare ()
Called just before the task is executed.
This is mainly intended to give the target Nodes a chance to unlink underlying files and make all necessary
directories before the Action is actually called to build the targets.

remove ()

show ()

trace_message (method, node, description='node')

SCons Project API Documentation

105

class SCons.Script.Main.CountStats
Bases: SCons.Script.Main.Stats

do_append (label)

do_nothing (*args, **kw)

do_print ()

enable (outfp)

class SCons.Script.Main.FakeOptionParser
Bases: object
A do-nothing option parser, used for the initial OptionsParser variable.
During normal SCons operation, the OptionsParser is created right away by the main() function. Certain tests
scripts however, can introspect on different Tool modules, the initialization of which can try to add a new, local
option to an otherwise uninitialized OptionsParser object. This allows that introspection to happen without blowing
up.

class FakeOptionValues
Bases: object

add_local_option (*args, **kw)

values = <SCons.Script.Main.FakeOptionParser.FakeOptionValues object>

SCons.Script.Main.GetBuildFailures ()

SCons.Script.Main.GetOption (name)

class SCons.Script.Main.MemStats
Bases: SCons.Script.Main.Stats

do_append (label)

do_nothing (*args, **kw)

do_print ()

enable (outfp)

SCons.Script.Main.PrintHelp (file=None)

SCons.Script.Main.Progress (*args, **kw)

class SCons.Script.Main.Progressor (obj, interval=1, file=None, overwrite=False)
Bases: object

count = 0

erase_previous ()

prev = ''

replace_string (node)

spinner (node)

string (node)

target_string = '$TARGET'

write (s)

SCons Project API Documentation

106

class SCons.Script.Main.QuestionTask (tm, targets, top, node)
Bases: SCons.Taskmaster.AlwaysTask
An SCons task for the -q (question) option.

_abc_impl = <_abc_data object>

_exception_raise ()
Raises a pending exception that was recorded while getting a Task ready for execution.

_no_exception_to_raise ()

display (message)
Hook to allow the calling interface to display a message.
This hook gets called as part of preparing a task for execution (that is, a Node to be built). As part of figuring out
what Node should be built next, the actual target list may be altered, along with a message describing the
alteration. The calling interface can subclass Task and provide a concrete implementation of this method to see
those messages.

exc_clear ()
Clears any recorded exception.
This also changes the “exception_raise” attribute to point to the appropriate do-nothing method.

exc_info ()
Returns info about a recorded exception.

exception_set (exception=None)
Records an exception to be raised at the appropriate time.
This also changes the “exception_raise” attribute to point to the method that will, in fact

execute ()
Called to execute the task.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in prepare(), executed() or failed().

executed ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target
was an actual built target or a source Node.

executed_with_callbacks ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target
was an actual built target or a source Node.

executed_without_callbacks ()
Called when the task has been successfully executed and the Taskmaster instance doesn’t want to call the
Node’s callback methods.

fail_continue ()
Explicit continue-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

fail_stop ()

SCons Project API Documentation

107

Explicit stop-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

failed ()
Default action when a task fails: stop the build.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

get_target ()
Fetch the target being built or updated by this task.

make_ready ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.

make_ready_all ()
Marks all targets in a task ready for execution.
This is used when the interface needs every target Node to be visited–the canonical example being the “scons
-c” option.

make_ready_current ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.

needs_execute ()
Always returns True (indicating this Task should always be executed).
Subclasses that need this behavior (as opposed to the default of only executing Nodes that are out of date w.r.t.
their dependencies) can use this as follows:

class MyTaskSubclass(SCons.Taskmaster.Task):

needs_execute = SCons.Taskmaster.AlwaysTask.needs_execute

postprocess ()
Post-processes a task after it’s been executed.
This examines all the targets just built (or not, we don’t care if the build was successful, or even if there was no
build because everything was up-to-date) to see if they have any waiting parent Nodes, or Nodes waiting on a
common side effect, that can be put back on the candidates list.

prepare ()
Called just before the task is executed.
This is mainly intended to give the target Nodes a chance to unlink underlying files and make all necessary
directories before the Action is actually called to build the targets.

trace_message (method, node, description='node')

exception SCons.Script.Main.SConsPrintHelpException
Bases: Exception

args

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

SCons.Script.Main.SetOption (name, value)

class SCons.Script.Main.Stats
Bases: object

do_nothing (*args, **kw)

SCons Project API Documentation

108

enable (outfp)

class SCons.Script.Main.TreePrinter (derived=False, prune=False, status=False, sLineDraw=False)
Bases: object

display (t)

get_all_children (node)

get_derived_children (node)

SCons.Script.Main._SConstruct_exists (dirname='', repositories=[], filelist=None)
This function checks that an SConstruct file exists in a directory. If so, it returns the path of the file. By default, it
checks the current directory.

SCons.Script.Main._build_targets (fs, options, targets, target_top)

SCons.Script.Main._create_path (plist)

SCons.Script.Main._exec_main (parser, values)

SCons.Script.Main._load_all_site_scons_dirs (topdir, verbose=False)
Load all of the predefined site_scons dir. Order is significant; we load them in order from most generic
(machine-wide) to most specific (topdir). The verbose argument is only for testing.

SCons.Script.Main._load_site_scons_dir (topdir, site_dir_name=None)
Load the site directory under topdir.
If a site dir name is supplied use it, else use default “site_scons” Prepend site dir to sys.path. If a “site_tools” subdir
exists, prepend to toolpath. Import “site_init.py” from site dir if it exists.

SCons.Script.Main._main (parser)

SCons.Script.Main._scons_internal_error ()
Handle all errors but user errors. Print out a message telling the user what to do in this case and print a normal
trace.

SCons.Script.Main._scons_internal_warning (e)
Slightly different from _scons_user_warning in that we use the current call stack rather than sys.exc_info() to get
our stack trace. This is used by the warnings framework to print warnings.

SCons.Script.Main._scons_syntax_error (e)
Handle syntax errors. Print out a message and show where the error occurred.

SCons.Script.Main._scons_user_error (e)
Handle user errors. Print out a message and a description of the error, along with the line number and routine
where it occured. The file and line number will be the deepest stack frame that is not part of SCons itself.

SCons.Script.Main._scons_user_warning (e)
Handle user warnings. Print out a message and a description of the warning, along with the line number and
routine where it occured. The file and line number will be the deepest stack frame that is not part of SCons itself.

SCons.Script.Main._set_debug_values (options)

SCons.Script.Main.find_deepest_user_frame (tb)
Find the deepest stack frame that is not part of SCons.
Input is a “pre-processed” stack trace in the form returned by traceback.extract_tb() or traceback.extract_stack()

SCons.Script.Main.main ()

SCons.Script.Main.path_string (label, module)

SCons.Script.Main.python_version_deprecated (version=sys.version_info(major=3, minor=7, micro=11,
releaselevel='final', serial=0))

SCons.Script.Main.python_version_string ()

SCons.Script.Main.python_version_unsupported (version=sys.version_info(major=3, minor=7, micro=11,
releaselevel='final', serial=0))

SCons.Script.Main.revert_io ()

SCons Project API Documentation

109

SCons.Script.Main.test_load_all_site_scons_dirs (d)

SCons.Script.Main.version_string (label, module)

SCons.Script.SConsOptions module

SCons.Script.SConsOptions.Parser (version)
Returns an options parser object initialized with the standard SCons options.

class SCons.Script.SConsOptions.SConsIndentedHelpFormatter (indent_increment=2,
max_help_position=24, width=None, short_first=1)

Bases: optparse.IndentedHelpFormatter

NO_DEFAULT_VALUE = 'none'

_format_text (text)
Format a paragraph of free-form text for inclusion in the help output at the current indentation level.

dedent ()

expand_default (option)

format_description (description)

format_epilog (epilog)

format_heading (heading)
This translates any heading of “options” or “Options” into “SCons Options.” Unfortunately, we have to do this
here, because those titles are hard-coded in the optparse calls.

format_option (option)
A copy of the normal optparse.IndentedHelpFormatter.format_option() method. This has been snarfed so we
can modify text wrapping to out liking:

– add our own regular expression that doesn’t break on hyphens

(so things like –no-print-directory don’t get broken);

– wrap the list of options themselves when it’s too long

(the wrapper.fill(opts) call below);
– set the subsequent_indent when wrapping the help_text.

format_option_strings (option)
Return a comma-separated list of option strings & metavariables.

format_usage (usage)

indent ()

set_long_opt_delimiter (delim)

set_parser (parser)

set_short_opt_delimiter (delim)

store_option_strings (parser)

class SCons.Script.SConsOptions.SConsOption (*opts, **attrs)
Bases: optparse.Option

ACTIONS = ('store', 'store_const', 'store_true', 'store_false', 'append', 'append_const', 'count', 'callback', 'help',
'version')

SCons Project API Documentation

110

ALWAYS_TYPED_ACTIONS = ('store', 'append')

ATTRS = ['action', 'type', 'dest', 'default', 'nargs', 'const', 'choices', 'callback', 'callback_args', 'callback_kwargs',
'help', 'metavar']

CHECK_METHODS = [<function Option._check_action>, <function Option._check_type>, <function
Option._check_choice>, <function Option._check_dest>, <function Option._check_const>, <function
Option._check_nargs>, <function Option._check_callback>, <function SConsOption._check_nargs_optional>]

CONST_ACTIONS = ('store_const', 'append_const', 'store', 'append', 'callback')

STORE_ACTIONS = ('store', 'store_const', 'store_true', 'store_false', 'append', 'append_const', 'count')

TYPED_ACTIONS = ('store', 'append', 'callback')

TYPES = ('string', 'int', 'long', 'float', 'complex', 'choice')

TYPE_CHECKER = {'choice': <function check_choice>, 'complex': <function check_builtin>, 'float': <function
check_builtin>, 'int': <function check_builtin>, 'long': <function check_builtin>}

_check_action ()

_check_callback ()

_check_choice ()

_check_const ()

_check_dest ()

_check_nargs ()

_check_nargs_optional ()

_check_opt_strings (opts)

_check_type ()

_set_attrs (attrs)

_set_opt_strings (opts)

check_value (opt, value)

convert_value (opt, value)

get_opt_string ()

process (opt, value, values, parser)

take_action (action, dest, opt, value, values, parser)

takes_value ()

class SCons.Script.SConsOptions.SConsOptionGroup (parser, title, description=None)
Bases: optparse.OptionGroup
A subclass for SCons-specific option groups.
The only difference between this and the base class is that we print the group’s help text flush left, underneath
their own title but lined up with the normal “SCons Options”.

_check_conflict (option)

SCons Project API Documentation

111

_create_option_list ()

_create_option_mappings ()

_share_option_mappings (parser)

add_option (Option)
add_option(opt_str, …, kwarg=val, …)

add_options (option_list)

destroy ()
see OptionParser.destroy().

format_description (formatter)

format_help (formatter)
Format an option group’s help text, outdenting the title so it’s flush with the “SCons Options” title we print at the
top.

format_option_help (formatter)

get_description ()

get_option (opt_str)

has_option (opt_str)

remove_option (opt_str)

set_conflict_handler (handler)

set_description (description)

set_title (title)

class SCons.Script.SConsOptions.SConsOptionParser (usage=None, option_list=None,
option_class=<class 'optparse.Option'>, version=None, conflict_handler='error',
description=None, formatter=None, add_help_option=True, prog=None, epilog=None)

Bases: optparse.OptionParser

_add_help_option ()

_add_version_option ()

_check_conflict (option)

_create_option_list ()

_create_option_mappings ()

_get_all_options ()

_get_args (args)

_init_parsing_state ()

_match_long_opt (opt: string) → string
Determine which long option string ‘opt’ matches, ie. which one it is an unambiguous abbreviation for. Raises
BadOptionError if ‘opt’ doesn’t unambiguously match any long option string.

SCons Project API Documentation

112

_populate_option_list (option_list, add_help=True)

_process_args (largs, rargs, values)

_process_args(largs : [string],

rargs : [string], values : Values)
Process command-line arguments and populate ‘values’, consuming options and arguments from ‘rargs’. If
‘allow_interspersed_args’ is false, stop at the first non-option argument. If true, accumulate any interspersed
non-option arguments in ‘largs’.

_process_long_opt (rargs, values)
SCons-specific processing of long options.
This is copied directly from the normal optparse._process_long_opt() method, except that, if configured to do so,
we catch the exception thrown when an unknown option is encountered and just stick it back on the “leftover”
arguments for later (re-)processing.

_process_short_opts (rargs, values)

_share_option_mappings (parser)

add_local_option (*args, **kw)
Adds a local option to the parser.
This is initiated by an AddOption() call to add a user-defined command-line option. We add the option to a
separate option group for the local options, creating the group if necessary.

add_option (Option)
add_option(opt_str, …, kwarg=val, …)

add_option_group (*args, **kwargs)

add_options (option_list)

check_values (values: Values, args: [string])
-> (values : Values, args : [string])
Check that the supplied option values and leftover arguments are valid. Returns the option values and leftover
arguments (possibly adjusted, possibly completely new – whatever you like). Default implementation just returns
the passed-in values; subclasses may override as desired.

destroy ()
Declare that you are done with this OptionParser. This cleans up reference cycles so the OptionParser (and all
objects referenced by it) can be garbage-collected promptly. After calling destroy(), the OptionParser is
unusable.

disable_interspersed_args ()
Set parsing to stop on the first non-option. Use this if you have a command processor which runs another
command that has options of its own and you want to make sure these options don’t get confused.

enable_interspersed_args ()
Set parsing to not stop on the first non-option, allowing interspersing switches with command arguments. This is
the default behavior. See also disable_interspersed_args() and the class documentation description of the
attribute allow_interspersed_args.

error (msg: string)
Print a usage message incorporating ‘msg’ to stderr and exit. If you override this in a subclass, it should not
return – it should either exit or raise an exception.

exit (status=0, msg=None)

expand_prog_name (s)

format_description (formatter)

SCons Project API Documentation

113

format_epilog (formatter)

format_help (formatter=None)

format_option_help (formatter=None)

get_default_values ()

get_description ()

get_option (opt_str)

get_option_group (opt_str)

get_prog_name ()

get_usage ()

get_version ()

has_option (opt_str)

parse_args (args=None, values=None)

parse_args(args : [string] = sys.argv[1:],

values : Values = None)
-> (values : Values, args : [string])
Parse the command-line options found in ‘args’ (default: sys.argv[1:]). Any errors result in a call to ‘error()’, which
by default prints the usage message to stderr and calls sys.exit() with an error message. On success returns a
pair (values, args) where ‘values’ is a Values instance (with all your option values) and ‘args’ is the list of
arguments left over after parsing options.

preserve_unknown_options = False

print_help (file: file = stdout)
Print an extended help message, listing all options and any help text provided with them, to ‘file’ (default stdout).

print_usage (file: file = stdout)
Print the usage message for the current program (self.usage) to ‘file’ (default stdout). Any occurrence of the
string “%prog” in self.usage is replaced with the name of the current program (basename of sys.argv[0]). Does
nothing if self.usage is empty or not defined.

print_version (file: file = stdout)
Print the version message for this program (self.version) to ‘file’ (default stdout). As with print_usage(), any
occurrence of “%prog” in self.version is replaced by the current program’s name. Does nothing if self.version is
empty or undefined.

remove_option (opt_str)

reparse_local_options ()
Re-parse the leftover command-line options.
Parse options stored in self.largs, so that any value overridden on the command line is immediately available if
the user turns around and does a GetOption() right away.
We mimic the processing of the single args in the original OptionParser _process_args(), but here we allow
exact matches for long-opts only (no partial argument names!). Otherwise there could be problems in
add_local_option() below. When called from there, we try to reparse the command-line arguments that

1. haven’t been processed so far (self.largs), but

2. are possibly not added to the list of options yet.
So, when we only have a value for “–myargument” so far, a command-line argument of “–myarg=test” would set
it, per the behaviour of _match_long_opt(), which allows for partial matches of the option name, as long as

SCons Project API Documentation

114

the common prefix appears to be unique. This would lead to further confusion, because we might want to add
another option “–myarg” later on (see issue #2929).

set_conflict_handler (handler)

set_default (dest, value)

set_defaults (**kwargs)

set_description (description)

set_process_default_values (process)

set_usage (usage)

standard_option_list = []

class SCons.Script.SConsOptions.SConsValues (defaults)
Bases: optparse.Values
Holder class for uniform access to SCons options, regardless of whether or not they can be set on the command
line or in the SConscript files (using the SetOption() function).
A SCons option value can originate three different ways:

1. set on the command line;

2. set in an SConscript file;

3. the default setting (from the the op.add_option() calls in the Parser() function, below).
The command line always overrides a value set in a SConscript file, which in turn always overrides default
settings. Because we want to support user-specified options in the SConscript file itself, though, we may not know
about all of the options when the command line is first parsed, so we can’t make all the necessary precedence
decisions at the time the option is configured.
The solution implemented in this class is to keep these different sets of settings separate (command line,
SConscript file, and default) and to override the __getattr__() method to check them in turn. This should allow the
rest of the code to just fetch values as attributes of an instance of this class, without having to worry about where
they came from.
Note that not all command line options are settable from SConscript files, and the ones that are must be explicitly
added to the “settable” list in this class, and optionally validated and coerced in the set_option() method.

_update (dict, mode)

_update_careful (dict)
Update the option values from an arbitrary dictionary, but only use keys from dict that already have a
corresponding attribute in self. Any keys in dict without a corresponding attribute are silently ignored.

_update_loose (dict)
Update the option values from an arbitrary dictionary, using all keys from the dictionary regardless of whether
they have a corresponding attribute in self or not.

ensure_value (attr, value)

read_file (filename, mode='careful')

read_module (modname, mode='careful')

set_option (name, value)
Sets an option from an SConscript file.

Raises: UserError – invalid or malformed option (“error in your script”)

SCons Project API Documentation

115

settable = ['clean', 'diskcheck', 'duplicate', 'experimental', 'hash_chunksize', 'hash_format', 'help',
'implicit_cache', 'implicit_deps_changed', 'implicit_deps_unchanged', 'max_drift', 'md5_chunksize', 'no_exec',
'no_progress', 'num_jobs', 'random', 'silent', 'stack_size', 'warn', 'disable_execute_ninja', 'disable_ninja']

SCons.Script.SConsOptions.diskcheck_convert (value)

SCons.Script.SConscript module

This module defines the Python API provided to SConscript files.

SCons.Script.SConscript.BuildDefaultGlobals ()
Create a dictionary containing all the default globals for SConstruct and SConscript files.

SCons.Script.SConscript.Configure (*args, **kw)

class SCons.Script.SConscript.DefaultEnvironmentCall (method_name, subst=0)
Bases: object
A class that implements “global function” calls of Environment methods by fetching the specified method from the
DefaultEnvironment’s class. Note that this uses an intermediate proxy class instead of calling the
DefaultEnvironment method directly so that the proxy can override the subst() method and thereby prevent
expansion of construction variables (since from the user’s point of view this was called as a global function, with no
associated construction environment).

class SCons.Script.SConscript.Frame (fs, exports, sconscript)
Bases: object
A frame on the SConstruct/SConscript call stack

SCons.Script.SConscript.Return (*vars, **kw)

class SCons.Script.SConscript.SConsEnvironment (platform=None, tools=None, toolpath=None,
variables=None, parse_flags=None, **kw)

Bases: SCons.Environment.Base
An Environment subclass that contains all of the methods that are particular to the wrapper SCons interface and
which aren’t (or shouldn’t be) part of the build engine itself.
Note that not all of the methods of this class have corresponding global functions, there are some private methods.

Action (*args, **kw)

AddMethod (function, name=None)
Adds the specified function as a method of this construction environment with the specified name. If the name is
omitted, the default name is the name of the function itself.

AddPostAction (files, action)

AddPreAction (files, action)

Alias (target, source=[], action=None, **kw)

AlwaysBuild (*targets)

Append (**kw)
Append values to construction variables in an Environment.
The variable is created if it is not already present.

AppendENVPath (name, newpath, envname='ENV', sep=':', delete_existing=0)
Append path elements to the path ‘name’ in the ‘ENV’ dictionary for this environment. Will only add any
particular path once, and will normpath and normcase all paths to help assure this. This can also handle the
case where the env variable is a list instead of a string.
If delete_existing is 0, a newpath which is already in the path will not be moved to the end (it will be left where it
is).

AppendUnique (delete_existing=0, **kw)

SCons Project API Documentation

116

Append values to existing construction variables in an Environment, if they’re not already there. If
delete_existing is 1, removes existing values first, so values move to end.

Builder (**kw)

CacheDir (path, custom_class=None)

Clean (targets, files)

Clone (tools=[], toolpath=None, parse_flags=None, **kw)
Return a copy of a construction Environment.
The copy is like a Python “deep copy”–that is, independent copies are made recursively of each objects–except
that a reference is copied when an object is not deep-copyable (like a function). There are no references to any
mutable objects in the original Environment.

Command (target, source, action, **kw)
Builds the supplied target files from the supplied source files using the supplied action. Action may be any type
that the Builder constructor will accept for an action.

Configure (*args, **kw)

Decider (function)

Default (*targets)

Depends (target, dependency)
Explicity specify that ‘target’s depend on ‘dependency’.

Detect (progs)
Return the first available program from one or more possibilities.

Parameters: progs (str or list) – one or more command names to check for

Dictionary (*args)
Return construction variables from an environment.

Parameters: *args (optional) – variable names to look up

Returns: If args omitted, the dictionary of all construction variables. If one arg, the corresponding
value is returned. If more than one arg, a list of values is returned.

Raises: KeyError – if any of args is not in the construction environment.

Dir (name, *args, **kw)

Dump (key=None, format='pretty')
Return construction variables serialized to a string.

Parameters:
• key (optional) – if None, format the whole dict of variables. Else format the value of

key (Default value = None)

• format (str, optional) – specify the format to serialize to. “pretty” generates a
pretty-printed string, “json” a JSON-formatted string. (Default value = “pretty”)

EnsurePythonVersion (major, minor)
Exit abnormally if the Python version is not late enough.

EnsureSConsVersion (major, minor, revision=0)
Exit abnormally if the SCons version is not late enough.

Entry (name, *args, **kw)

Environment (**kw)

SCons Project API Documentation

117

Execute (action, *args, **kw)
Directly execute an action through an Environment

Exit (value=0)

Export (*vars, **kw)

File (name, *args, **kw)

FindFile (file, dirs)

FindInstalledFiles ()
returns the list of all targets of the Install and InstallAs Builder.

FindIxes (paths, prefix, suffix)
Search a list of paths for something that matches the prefix and suffix.

Parameters:
• paths – the list of paths or nodes.

• prefix – construction variable for the prefix.

• suffix – construction variable for the suffix.
Returns: the matched path or None

FindSourceFiles (node='.')
returns a list of all source files.

Flatten (sequence)

GetBuildPath (files)

GetLaunchDir ()

GetOption (name)

Glob (pattern, ondisk=True, source=False, strings=False, exclude=None)

Help (text, append=False)

Ignore (target, dependency)
Ignore a dependency.

Import (*vars)

Literal (string)

Local (*targets)

MergeFlags (args, unique=True)
Merge flags into construction variables.
Merges the flags from args into this construction environent. If args is not a dict, it is first converted to a
dictionary with flags distributed into appropriate construction variables. See ParseFlags().

Parameters:
• args – flags to merge

• unique – merge flags rather than appending (default: True)

NoCache (*targets)
Tags a target so that it will not be cached

NoClean (*targets)
Tags a target so that it will not be cleaned by -c

SCons Project API Documentation

118

Override (overrides)
Produce a modified environment whose variables are overridden by the overrides dictionaries. “overrides” is a
dictionary that will override the variables of this environment.
This function is much more efficient than Clone() or creating a new Environment because it doesn’t copy the
construction environment dictionary, it just wraps the underlying construction environment, and doesn’t even
create a wrapper object if there are no overrides.

ParseConfig (command, function=None, unique=True)
Use the specified function to parse the output of the command in order to modify the current environment. The
‘command’ can be a string or a list of strings representing a command and its arguments. ‘Function’ is an
optional argument that takes the environment, the output of the command, and the unique flag. If no function is
specified, MergeFlags, which treats the output as the result of a typical ‘X-config’ command (i.e. gtk-config), will
merge the output into the appropriate variables.

ParseDepends (filename, must_exist=None, only_one=False)
Parse a mkdep-style file for explicit dependencies. This is completely abusable, and should be unnecessary in
the “normal” case of proper SCons configuration, but it may help make the transition from a Make hierarchy
easier for some people to swallow. It can also be genuinely useful when using a tool that can write a .d file, but
for which writing a scanner would be too complicated.

ParseFlags (*flags)
Return a dict of parsed flags.
Parse flags and return a dict with the flags distributed into the appropriate construction variable names. The
flags are treated as a typical set of command-line flags for a GNU-like toolchain, such as might have been
generated by one of the {foo}-config scripts, and used to populate the entries based on knowledge embedded in
this method - the choices are not expected to be portable to other toolchains.
If one of the flags strings begins with a bang (exclamation mark), it is assumed to be a command and the rest
of the string is executed; the result of that evaluation is then added to the dict.

Platform (platform)

Precious (*targets)

Prepend (**kw)
Prepend values to construction variables in an Environment.
The variable is created if it is not already present.

PrependENVPath (name, newpath, envname='ENV', sep=':', delete_existing=1)
Prepend path elements to the path ‘name’ in the ‘ENV’ dictionary for this environment. Will only add any
particular path once, and will normpath and normcase all paths to help assure this. This can also handle the
case where the env variable is a list instead of a string.
If delete_existing is 0, a newpath which is already in the path will not be moved to the front (it will be left where it
is).

PrependUnique (delete_existing=0, **kw)
Prepend values to existing construction variables in an Environment, if they’re not already there. If
delete_existing is 1, removes existing values first, so values move to front.

Pseudo (*targets)

PyPackageDir (modulename)

RemoveMethod (function)
Removes the specified function’s MethodWrapper from the added_methods list, so we don’t re-bind it when
making a clone.

Replace (**kw)
Replace existing construction variables in an Environment with new construction variables and/or values.

ReplaceIxes (path, old_prefix, old_suffix, new_prefix, new_suffix)
Replace old_prefix with new_prefix and old_suffix with new_suffix.

SCons Project API Documentation

119

env - Environment used to interpolate variables. path - the path that will be modified. old_prefix - construction
variable for the old prefix. old_suffix - construction variable for the old suffix. new_prefix - construction variable
for the new prefix. new_suffix - construction variable for the new suffix.

Repository (*dirs, **kw)

Requires (target, prerequisite)
Specify that ‘prerequisite’ must be built before ‘target’, (but ‘target’ does not actually depend on ‘prerequisite’
and need not be rebuilt if it changes).

SConscript (*ls, **kw)
Execute SCons configuration files.

Parameters: *ls (str or list) – configuration file(s) to execute.

Keyword
Arguments: • dirs (list) – execute SConscript in each listed directory.

• name (str) – execute script ‘name’ (used only with ‘dirs’).

• exports (list or dict) – locally export variables the called script(s) can import.

• variant_dir (str) – mirror sources needed for the build in a variant directory to allow
building in it.

• duplicate (bool) – physically duplicate sources instead of just adjusting paths of
derived files (used only with ‘variant_dir’) (default is True).

• must_exist (bool) – fail if a requested script is missing (default is False, default is
deprecated).

Returns: list of variables returned by the called script

Raises: UserError – a script is not found and such exceptions are enabled.

SConscriptChdir (flag)

SConsignFile (name='.sconsign', dbm_module=None)

Scanner (*args, **kw)

SetDefault (**kw)

SetOption (name, value)

SideEffect (side_effect, target)
Tell scons that side_effects are built as side effects of building targets.

Split (arg)
This function converts a string or list into a list of strings or Nodes. This makes things easier for users by
allowing files to be specified as a white-space separated list to be split.

The input rules are:

• A single string containing names separated by spaces. These will be split apart at the spaces.

• A single Node instance

• A list containing either strings or Node instances. Any strings in the list are not split at spaces.
In all cases, the function returns a list of Nodes and strings.

Tool (tool, toolpath=None, **kwargs) → SCons.Tool.Tool

Value (value, built_value=None, name=None)

VariantDir (variant_dir, src_dir, duplicate=1)

WhereIs (prog, path=None, pathext=None, reject=None)

SCons Project API Documentation

120

Find prog in the path.

_canonicalize (path)
Allow Dirs and strings beginning with # for top-relative.
Note this uses the current env’s fs (in self).

_changed_build (dependency, target, prev_ni, repo_node=None)

_changed_content (dependency, target, prev_ni, repo_node=None)

_changed_source (dependency, target, prev_ni, repo_node=None)

_changed_timestamp_match (dependency, target, prev_ni, repo_node=None)

_changed_timestamp_newer (dependency, target, prev_ni, repo_node=None)

_changed_timestamp_then_content (dependency, target, prev_ni, repo_node=None)

_exceeds_version (major, minor, v_major, v_minor)
Return 1 if ‘major’ and ‘minor’ are greater than the version in ‘v_major’ and ‘v_minor’, and 0 otherwise.

_find_toolpath_dir (tp)

_get_SConscript_filenames (ls, kw)
Convert the parameters passed to SConscript() calls into a list of files and export variables. If the parameters are
invalid, throws SCons.Errors.UserError. Returns a tuple (l, e) where l is a list of SConscript filenames and e is a
list of exports.

_get_major_minor_revision (version_string)
Split a version string into major, minor and (optionally) revision parts.
This is complicated by the fact that a version string can be something like 3.2b1.

_gsm ()

_init_special ()
Initial the dispatch tables for special handling of special construction variables.

_update (other)
Private method to update an environment’s consvar dict directly.
Bypasses the normal checks that occur when users try to set items.

_update_onlynew (other)
Private method to add new items to an environment’s consvar dict.
Only adds items from other whose keys do not already appear in the existing dict; values from other are not
used for replacement. Bypasses the normal checks that occur when users try to set items.

arg2nodes (args, node_factory=<class 'SCons.Environment._Null'>, lookup_list=<class
'SCons.Environment._Null'>, **kw)

backtick (command)

get (key, default=None)
Emulates the get() method of dictionaries.

get_CacheDir ()

get_builder (name)
Fetch the builder with the specified name from the environment.

get_factory (factory, default='File')
Return a factory function for creating Nodes for this construction environment.

SCons Project API Documentation

121

get_scanner (skey)
Find the appropriate scanner given a key (usually a file suffix).

get_src_sig_type ()

get_tgt_sig_type ()

gvars ()

items ()
Emulates the items() method of dictionaries.

keys ()
Emulates the keys() method of dictionaries.

lvars ()

scanner_map_delete (kw=None)
Delete the cached scanner map (if we need to).

setdefault (key, default=None)
Emulates the setdefault() method of dictionaries.

subst (string, raw=0, target=None, source=None, conv=None, executor=None)
Recursively interpolates construction variables from the Environment into the specified string, returning the
expanded result. Construction variables are specified by a $ prefix in the string and begin with an initial
underscore or alphabetic character followed by any number of underscores or alphanumeric characters. The
construction variable names may be surrounded by curly braces to separate the name from trailing characters.

subst_kw (kw, raw=0, target=None, source=None)

subst_list (string, raw=0, target=None, source=None, conv=None, executor=None)
Calls through to SCons.Subst.scons_subst_list(). See the documentation for that function.

subst_path (path, target=None, source=None)
Substitute a path list, turning EntryProxies into Nodes and leaving Nodes (and other objects) as-is.

subst_target_source (string, raw=0, target=None, source=None, conv=None, executor=None)
Recursively interpolates construction variables from the Environment into the specified string, returning the
expanded result. Construction variables are specified by a $ prefix in the string and begin with an initial
underscore or alphabetic character followed by any number of underscores or alphanumeric characters. The
construction variable names may be surrounded by curly braces to separate the name from trailing characters.

validate_CacheDir_class (custom_class=None)
Validate the passed custom CacheDir class, or if no args are passed, validate the custom CacheDir class from
the environment.

values ()
Emulates the values() method of dictionaries.

exception SCons.Script.SConscript.SConscriptReturn
Bases: Exception

args

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

SCons.Script.SConscript.SConscript_exception (file=<_io.TextIOWrapper name='<stderr>'
mode='w' encoding='utf-8'>)

SCons Project API Documentation

122

Print an exception stack trace just for the SConscript file(s). This will show users who have Python errors where
the problem is, without cluttering the output with all of the internal calls leading up to where we exec the
SConscript.

SCons.Script.SConscript._SConscript (fs, *files, **kw)

SCons.Script.SConscript.annotate (node)
Annotate a node with the stack frame describing the SConscript file and line number that created it.

SCons.Script.SConscript.compute_exports (exports)
Compute a dictionary of exports given one of the parameters to the Export() function or the exports argument to
SConscript().

SCons.Script.SConscript.get_DefaultEnvironmentProxy ()

SCons.Script.SConscript.get_calling_namespaces ()
Return the locals and globals for the function that called into this module in the current call stack.

SCons.Script.SConscript.handle_missing_SConscript (f, must_exist=None)
Take appropriate action on missing file in SConscript() call.
Print a warning or raise an exception on missing file, unless missing is explicitly allowed by the must_exist value.
On first warning, print a deprecation message.

Parameters:
• f (str) – path of missing configuration file

• must_exist (bool) – if true, fail. If false, but not None, allow the file to be missing. The
default is None, which means issue the warning. The default is deprecated.

Raises: UserError – if must_exist is true or if global SCons.Script._no_missing_sconscript
is true.

Module contents

The main() function used by the scons script.

Architecturally, this is the scons script, and will likely only be called from the external “scons” wrapper. Consequently,
anything here should not be, or be considered, part of the build engine. If it’s something that we expect other
software to want to use, it should go in some other module. If it’s specific to the “scons” script invocation, it goes
here.

SCons.Script.HelpFunction (text, append=False)

class SCons.Script.TargetList (initlist=None)
Bases: collections.UserList

_abc_impl = <_abc_data object>

_add_Default (list)

_clear ()

_do_nothing (*args, **kw)

append (item)
S.append(value) – append value to the end of the sequence

clear () → None – remove all items from S

copy ()

count (value) → integer – return number of occurrences of value

extend (other)
S.extend(iterable) – extend sequence by appending elements from the iterable

index (value[, start[, stop]]) → integer – return first index of value.

SCons Project API Documentation

123

Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.

insert (i, item)
S.insert(index, value) – insert value before index

pop ([, index]) → item – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

remove (item)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

reverse ()
S.reverse() – reverse IN PLACE

sort (*args, **kwds)

SCons.Script.Variables (files=None, args={})

SCons.Script._Add_Arguments (alist)

SCons.Script._Add_Targets (tlist)

SCons.Script._Get_Default_Targets (d, fs)

SCons.Script._Set_Default_Targets (env, tlist)

SCons.Script._Set_Default_Targets_Has_Been_Called (d, fs)

SCons.Script._Set_Default_Targets_Has_Not_Been_Called (d, fs)

SCons.Script.set_missing_sconscript_error (flag=1)
Set behavior on missing file in SConscript() call.

Returns: previous value

SCons.Tool package

Module contents

SCons.Tool

SCons tool selection.

This looks for modules that define a callable object that can modify a construction environment as appropriate for a
given tool (or tool chain).

Note that because this subsystem just selects a callable that can modify a construction environment, it’s possible for
people to define their own “tool specification” in an arbitrary callable function. No one needs to use or tie in to this
subsystem in order to roll their own tool specifications.

SCons.Tool.CreateJarBuilder (env)
The Jar builder expects a list of class files which it can package into a jar file.
The jar tool provides an interface for passing other types of java files such as .java, directories or swig interfaces
and will build them to class files in which it can package into the jar.

SCons.Tool.CreateJavaClassDirBuilder (env)

SCons.Tool.CreateJavaClassFileBuilder (env)

SCons.Tool.CreateJavaFileBuilder (env)

SCons.Tool.CreateJavaHBuilder (env)

SCons.Tool.FindAllTools (tools, env)

SCons.Tool.FindTool (tools, env)

SCons.Tool.Initializers (env)

SCons Project API Documentation

124

class SCons.Tool.Tool (name, toolpath=None, **kwargs)
Bases: object

_load_dotted_module_py2 (short_name, full_name, searchpaths=None)

_tool_module ()

class SCons.Tool.ToolInitializer (env, tools, names)
Bases: object
A class for delayed initialization of Tools modules.
Instances of this class associate a list of Tool modules with a list of Builder method names that will be added by
those Tool modules. As part of instantiating this object for a particular construction environment, we also add the
appropriate ToolInitializerMethod objects for the various Builder methods that we want to use to delay Tool
searches until necessary.

apply_tools (env)
Searches the list of associated Tool modules for one that exists, and applies that to the construction
environment.

remove_methods (env)
Removes the methods that were added by the tool initialization so we no longer copy and re-bind them when the
construction environment gets cloned.

class SCons.Tool.ToolInitializerMethod (name, initializer)
Bases: object
This is added to a construction environment in place of a method(s) normally called for a Builder (env.Object,
env.StaticObject, etc.). When called, it has its associated ToolInitializer object search the specified list of tools and
apply the first one that exists to the construction environment. It then calls whatever builder was (presumably)
added to the construction environment in place of this particular instance.

get_builder (env)
Returns the appropriate real Builder for this method name after having the associated ToolInitializer object apply
the appropriate Tool module.

SCons.Tool.createCFileBuilders (env)
This is a utility function that creates the CFile/CXXFile Builders in an Environment if they are not there already.
If they are there already, we return the existing ones.
This is a separate function because soooo many Tools use this functionality.
The return is a 2-tuple of (CFile, CXXFile)

SCons.Tool.createLoadableModuleBuilder (env, loadable_module_suffix='$_LDMODULESUFFIX')
This is a utility function that creates the LoadableModule Builder in an Environment if it is not there already.
If it is already there, we return the existing one.

Parameters: loadable_module_suffix – The suffix specified for the loadable module builder

SCons.Tool.createObjBuilders (env)
This is a utility function that creates the StaticObject and SharedObject Builders in an Environment if they are not
there already.
If they are there already, we return the existing ones.
This is a separate function because soooo many Tools use this functionality.
The return is a 2-tuple of (StaticObject, SharedObject)

SCons.Tool.createProgBuilder (env)
This is a utility function that creates the Program Builder in an Environment if it is not there already.
If it is already there, we return the existing one.

SCons.Tool.createSharedLibBuilder (env, shlib_suffix='$_SHLIBSUFFIX')
This is a utility function that creates the SharedLibrary Builder in an Environment if it is not there already.
If it is already there, we return the existing one.

Parameters: shlib_suffix – The suffix specified for the shared library builder

SCons.Tool.createStaticLibBuilder (env)

SCons Project API Documentation

125

This is a utility function that creates the StaticLibrary Builder in an Environment if it is not there already.
If it is already there, we return the existing one.

SCons.Tool.find_program_path (env, key_program, default_paths=None)
Find the location of a tool using various means.
Mainly for windows where tools aren’t all installed in /usr/bin, etc.

Parameters:
• env – Current Construction Environment.

• key_program – Tool to locate.

• default_paths – List of additional paths this tool might be found in.

SCons.Tool.tool_list (platform, env)

SCons.Variables package

Submodules

SCons.Variables.BoolVariable module

Variable type for true/false Variables.

Usage example:

opts = Variables()
opts.Add(BoolVariable('embedded', 'build for an embedded system', 0))
...
if env['embedded'] == 1:
...

SCons.Variables.BoolVariable.BoolVariable (key, help, default) → Tuple[str, str, str, Callable, Callable]
Return a tuple describing a boolean SCons Variable.
The input parameters describe a boolean option. Returns a tuple including the correct converter and validator. The
help text will have (yes|no) automatically appended to show the valid values. The result is usable as input to
Add().

SCons.Variables.BoolVariable._text2bool (val) → bool
Converts strings to True/False.
If val looks like it expresses a bool-like value, based on the TRUE_STRINGS and FALSE_STRINGS tuples, return
the appropriate value.
This is usable as a converter function for SCons Variables.

Raises: ValueError – if the string cannot be converted.

SCons.Variables.BoolVariable._validator (key, val, env) → None
Validates the given value to be either true or false.
This is usable as a validator function for SCons Variables.

Raises:
• KeyError – if key is not set in env

• UserError – if key does not validate.

SCons.Variables.EnumVariable module

Variable type for enumeration Variables.

Enumeration variables allow selection of one from a specified set of values.

Usage example:

opts = Variables()
opts.Add(
 EnumVariable(
 'debug',

SCons Project API Documentation

126

 help='debug output and symbols',
 default='no',
 allowed_values=('yes', 'no', 'full'),
 map={},
 ignorecase=2,
)
)
...
if env['debug'] == 'full':
...

SCons.Variables.EnumVariable.EnumVariable (key, help, default, allowed_values, map={}, ignorecase=0)
→ Tuple[str, str, str, Callable, Callable]

Return a tuple describing an enumaration SCons Variable.
The input parameters describe an option with only certain values allowed. Returns A tuple including an appropriate
converter and validator. The result is usable as input to Add().
key and default are passed directly on to Add().
help is the descriptive part of the help text, and will have the allowed values automatically appended.
allowed_values is a list of strings, which are the allowed values for this option.
The map-dictionary may be used for converting the input value into canonical values (e.g. for aliases).
The value of ignorecase defines the behaviour of the validator:

• 0: the validator/converter are case-sensitive.

• 1: the validator/converter are case-insensitive.

• 2: the validator/converter is case-insensitive and the converted value will always be lower-case.
The validator tests whether the value is in the list of allowed values. The converter converts input values according
to the given map-dictionary (unmapped input values are returned unchanged).

SCons.Variables.ListVariable module

Variable type for list Variables.

A ‘list’ option may either be ‘all’, ‘none’ or a list of names separated by comma. After the option has been processed,
the option value holds either the named list elements, all list elements or no list elements at all.

Usage example:

list_of_libs = Split('x11 gl qt ical')

opts = Variables()
opts.Add(
 ListVariable(
 'shared',
 help='libraries to build as shared libraries',
 default='all',
 elems=list_of_libs,
)
)
...
for lib in list_of_libs:
 if lib in env['shared']:
 env.SharedObject(...)
 else:
 env.Object(...)

SCons.Variables.ListVariable.ListVariable (key, help, default, names, map={}) → Tuple[str, str, str,
None, Callable]

Return a tuple describing a list SCons Variable.
The input parameters describe a ‘list’ option. Returns a tuple including the correct converter and validator. The
result is usable for input to Add().

SCons Project API Documentation

127

help will have text appended indicating the legal values (not including any extra names from map).
map can be used to map alternative names to the ones in names - that is, a form of alias.
A ‘list’ option may either be ‘all’, ‘none’ or a list of names (separated by commas).

SCons.Variables.ListVariable._converter (val, allowedElems, mapdict) →
SCons.Variables.ListVariable._ListVariable

SCons.Variables.PackageVariable module

Variable type for package Variables.

To be used whenever a ‘package’ may be enabled/disabled and the package path may be specified.

Given these options

x11=no (disables X11 support)
x11=yes (will search for the package installation dir)
x11=/usr/local/X11 (will check this path for existence)

Can be used as a replacement for autoconf’s --with-xxx=yyy

opts = Variables()
opts.Add(
 PackageVariable(
 key='x11',
 help='use X11 installed here (yes = search some places)',
 default='yes'
)
)
...
if env['x11'] == True:
 dir = ... # search X11 in some standard places ...
 env['x11'] = dir
if env['x11']:
 ... # build with x11 ...

SCons.Variables.PackageVariable.PackageVariable (key, help, default, searchfunc=None) → Tuple[str,
str, str, Callable, Callable]

Return a tuple describing a package list SCons Variable.
The input parameters describe a ‘package list’ option. Returns a tuple including the correct converter and validator
appended. The result is usable as input to Add() .
A ‘package list’ option may either be ‘all’, ‘none’ or a pathname string. This information is appended to help.

SCons.Variables.PackageVariable._converter (val)

SCons.Variables.PackageVariable._validator (key, val, env, searchfunc) → None

SCons.Variables.PathVariable module

Variable type for path Variables.

To be used whenever a user-specified path override setting should be allowed.

Arguments to PathVariable are:

• key - name of this option on the command line (e.g. “prefix”)

• help - help string for option

• default - default value for this option

• validator - [optional] validator for option value. Predefined are:

• PathAccept - accepts any path setting; no validation

• PathIsDir - path must be an existing directory

• PathIsDirCreate - path must be a dir; will create

SCons Project API Documentation

128

• PathIsFile - path must be a file

• PathExists - path must exist (any type) [default]
The validator is a function that is called and which should return True or False to indicate if the path is valid. The
arguments to the validator function are: (key, val, env). key is the name of the option, val is the path specified for
the option, and env is the environment to which the Options have been added.

Usage example:

opts = Variables()
opts.Add(
 PathVariable(
 'qtdir',
 help='where the root of Qt is installed',
 default=qtdir,
 validator=PathIsDir,
)
)
opts.Add(
 PathVariable(
 'qt_includes',
 help='where the Qt includes are installed',
 default='$qtdir/includes',
 validator=PathIsDirCreate,
)
)
opts.Add(
 PathVariable(
 'qt_libraries',
 help='where the Qt library is installed',
 default='$qtdir/lib',
)
)

Module contents

Add user-friendly customizable variables to an SCons build.

class SCons.Variables.Variables (files=None, args=None, is_global=True)
Bases: object
Holds all the options, updates the environment with the variables, and renders the help text.
If is_global is true, this is a singleton, create only once.

Parameters:
• files (optional) – List of option configuration files to load (backward compatibility). If a

single string is passed it is automatically placed in a file list (Default value = None)

• args (optional) – dictionary to override values set from files. (Default value = None)

• is_global (optional) – global instance? (Default value = True)

Add (key, *args, **kwargs) → None
Add an option.

SCons Project API Documentation

129

Parameters:
• key – the name of the variable, or a 5-tuple (or list). If a tuple, and there are no

additional arguments, the tuple is unpacked into help, default, validator, converter. If
there are additional arguments, the first word of the tuple is taken as the key, and the
remainder as aliases.

• *args – optional positional arguments help: optional help text for the options (Default
value = “”) default: optional default value for option (Default value = None) validator:
optional function called to validate the option’s value (Default value = None)
converter: optional function to be called to convert the option’svalue before putting it
in the environment. (Default value = None)

• **kwargs – keyword args, can be the arguments from *args or arbitrary kwargs used
by a variable itself

AddVariables (*optlist) → None
Add a list of options.
Each list element is a tuple/list of arguments to be passed on to the underlying method for adding options.
Example:

opt.AddVariables(
 ('debug', '', 0),
 ('CC', 'The C compiler'),
 ('VALIDATE', 'An option for testing validation', 'notset', validator, None),
)

FormatVariableHelpText (env, key, help, default, actual, aliases=None) → str

GenerateHelpText (env, sort=None) → str
Generate the help text for the options.

Parameters:
• env – an environment that is used to get the current values of the options.

• cmp – Either a comparison function used for sorting (must take two arguments and
return -1, 0 or 1) or a boolean to indicate if it should be sorted.

Save (filename, env) → None
Save the options to a file.
Saves all the options which have non-default settings to the given file as Python expressions. This file can then
be used to load the options for a subsequent run. This can be used to create an option cache file.

Parameters:
• filename – Name of the file to save into

• env – the environment get the option values from

UnknownVariables () → dict
Returns unknown variables.
Identifies options that were not known, declared options in this object.

Update (env, args=None) → None
Update an environment with the option variables.

Parameters:
• env – the environment to update.

• args – [optional] a dictionary of keys and values to update in env. If omitted, uses the
variables from the commandline.

_do_add (key, help='', default=None, validator=None, converter=None, **kwargs) → None

aliasfmt = '\n%s: %s\n default: %s\n actual: %s\n aliases: %s\n'

fmt = '\n%s: %s\n default: %s\n actual: %s\n'

SCons Project API Documentation

130

instance = None

keys () → list
Returns the keywords for the options.

SCons.compat package

Module contents

SCons compatibility package for old Python versions

This subpackage holds modules that provide backwards-compatible implementations of various things from newer
Python versions that we cannot count on because SCons still supported older Pythons.

Other code will not generally reference things in this package through the SCons.compat namespace. The modules
included here add things to the builtins namespace or the global module list so that the rest of our code can use the
objects and names imported here regardless of Python version. As a result, if this module is used, it should violate
the normal convention for imports (standard library imports first, then program-specific imports, each ordered
aplhabetically) and needs to be listed first.

The rest of the things here will be in individual compatibility modules that are either: 1) suitably modified copies of the
future modules that we want to use; or 2) backwards compatible re-implementations of the specific portions of a
future module’s API that we want to use.

GENERAL WARNINGS: Implementations of functions in the SCons.compat modules are NOT guaranteed to be fully
compliant with these functions in later versions of Python. We are only concerned with adding functionality that we
actually use in SCons, so be wary if you lift this code for other uses. (That said, making these more nearly the same
as later, official versions is still a desirable goal, we just don’t need to be obsessive about it.)

We name the compatibility modules with an initial ‘_scons_’ (for example, _scons_subprocess.py is our compatibility
module for subprocess) so that we can still try to import the real module name and fall back to our compatibility
module if we get an ImportError. The import_as() function defined below loads the module as the “real” name
(without the ‘_scons’), after which all of the “import {module}” statements in the rest of our code will find our
pre-loaded compatibility module.

class SCons.compat.NoSlotsPyPy (name, bases, dct)
Bases: type
Metaclass for PyPy compatitbility.
PyPy does not work well with __slots__ and __class__ assignment.

mro ()
Return a type’s method resolution order.

SCons.compat.rename_module (new, old)
Attempt to import the old module and load it under the new name. Used for purely cosmetic name changes in
Python 3.x.

Submodules

SCons.Action module
SCons Actions.

Information about executing any sort of action that can build one or more target Nodes (typically files) from one or
more source Nodes (also typically files) given a specific Environment.

The base class here is ActionBase. The base class supplies just a few utility methods and some generic methods for
displaying information about an Action in response to the various commands that control printing.

A second-level base class is _ActionAction. This extends ActionBase by providing the methods that can be used to
show and perform an action. True Action objects will subclass _ActionAction; Action factory class objects will
subclass ActionBase.

The heavy lifting is handled by subclasses for the different types of actions we might execute:

SCons Project API Documentation

131

CommandAction CommandGeneratorAction FunctionAction ListAction

The subclasses supply the following public interface methods used by other modules:

__call__()

THE public interface, “calling” an Action object executes the command or Python function. This also takes
care of printing a pre-substitution command for debugging purposes.

get_contents()

Fetches the “contents” of an Action for signature calculation plus the varlist. This is what gets checksummed
to decide if a target needs to be rebuilt because its action changed.

genstring()

Returns a string representation of the Action without command substitution, but allows a
CommandGeneratorAction to generate the right action based on the specified target, source and env. This
is used by the Signature subsystem (through the Executor) to obtain an (imprecise) representation of the
Action operation for informative purposes.

Subclasses also supply the following methods for internal use within this module:

__str__()

Returns a string approximation of the Action; no variable substitution is performed.

execute()

The internal method that really, truly, actually handles the execution of a command or Python function. This
is used so that the __call__() methods can take care of displaying any pre-substitution representations, and
then execute an action without worrying about the specific Actions involved.

get_presig()

Fetches the “contents” of a subclass for signature calculation. The varlist is added to this to produce the
Action’s contents. TODO(?): Change this to always return bytes and not str?

strfunction()

Returns a substituted string representation of the Action. This is used by the _ActionAction.show()
command to display the command/function that will be executed to generate the target(s).

There is a related independent ActionCaller class that looks like a regular Action, and which serves as a wrapper for
arbitrary functions that we want to let the user specify the arguments to now, but actually execute later (when an
out-of-date check determines that it’s needed to be executed, for example). Objects of this class are returned by an
ActionFactory class that provides a __call__() method as a convenient way for wrapping up the functions.

SCons.Action.Action (act, *args, **kw)
A factory for action objects.

class SCons.Action.ActionBase
Bases: object
Base class for all types of action objects that can be held by other objects (Builders, Executors, etc.) This provides
the common methods for manipulating and combining those actions.

batch_key (env, target, source)

genstring (target, source, env)

get_contents (target, source, env)

get_targets (env, executor)
Returns the type of targets ($TARGETS, $CHANGED_TARGETS) used by this action.

get_varlist (target, source, env, executor=None)

no_batch_key (env, target, source)

presub_lines (env)

class SCons.Action.ActionCaller (parent, args, kw)

SCons Project API Documentation

132

Bases: object
A class for delaying calling an Action function with specific (positional and keyword) arguments until the Action is
actually executed.
This class looks to the rest of the world like a normal Action object, but what it’s really doing is hanging on to the
arguments until we have a target, source and env to use for the expansion.

get_contents (target, source, env)

strfunction (target, source, env)

subst (s, target, source, env)

subst_args (target, source, env)

subst_kw (target, source, env)

class SCons.Action.ActionFactory (actfunc, strfunc, convert=<function
ActionFactory.<lambda>>)

Bases: object
A factory class that will wrap up an arbitrary function as an SCons-executable Action object.
The real heavy lifting here is done by the ActionCaller class. We just collect the (positional and keyword)
arguments that we’re called with and give them to the ActionCaller object we create, so it can hang onto them until
it needs them.

class SCons.Action.CommandAction (cmd, **kw)
Bases: SCons.Action._ActionAction
Class for command-execution actions.

_get_implicit_deps_heavyweight (target, source, env, executor, icd_int)
Heavyweight dependency scanning involves scanning more than just the first entry in an action string. The exact
behavior depends on the value of icd_int. Only files are taken as implicit dependencies; directories are ignored.
If icd_int is an integer value, it specifies the number of entries to scan for implicit dependencies. Action strings
are also scanned after a &&. So for example, if icd_int=2 and the action string is “cd <some_dir> && $PYTHON
$SCRIPT_PATH <another_path>”, the implicit dependencies would be the path to the python binary and the
path to the script.
If icd_int is None, all entries are scanned for implicit dependencies.

_get_implicit_deps_lightweight (target, source, env, executor)
Lightweight dependency scanning involves only scanning the first entry in an action string, even if it contains &&.

batch_key (env, target, source)

execute (target, source, env, executor=None)
Execute a command action.
This will handle lists of commands as well as individual commands, because construction variable substitution
may turn a single “command” into a list. This means that this class can actually handle lists of commands, even
though that’s not how we use it externally.

genstring (target, source, env)

get_contents (target, source, env)

get_implicit_deps (target, source, env, executor=None)
Return the implicit dependencies of this action’s command line.

get_presig (target, source, env, executor=None)
Return the signature contents of this action’s command line.
This strips $(-$) and everything in between the string, since those parts don’t affect signatures.

get_targets (env, executor)
Returns the type of targets ($TARGETS, $CHANGED_TARGETS) used by this action.

SCons Project API Documentation

133

get_varlist (target, source, env, executor=None)

no_batch_key (env, target, source)

presub_lines (env)

print_cmd_line (s, target, source, env)
In python 3, and in some of our tests, sys.stdout is a String io object, and it takes unicode strings only This code
assumes s is a regular string.

process (target, source, env, executor=None)

strfunction (target, source, env, executor=None)

class SCons.Action.CommandGeneratorAction (generator, kw)
Bases: SCons.Action.ActionBase
Class for command-generator actions.

_generate (target, source, env, for_signature, executor=None)

batch_key (env, target, source)

genstring (target, source, env, executor=None)

get_contents (target, source, env)

get_implicit_deps (target, source, env, executor=None)

get_presig (target, source, env, executor=None)
Return the signature contents of this action’s command line.
This strips $(-$) and everything in between the string, since those parts don’t affect signatures.

get_targets (env, executor)
Returns the type of targets ($TARGETS, $CHANGED_TARGETS) used by this action.

get_varlist (target, source, env, executor=None)

no_batch_key (env, target, source)

presub_lines (env)

class SCons.Action.FunctionAction (execfunction, kw)
Bases: SCons.Action._ActionAction
Class for Python function actions.

batch_key (env, target, source)

execute (target, source, env, executor=None)

function_name ()

genstring (target, source, env)

get_contents (target, source, env)

get_implicit_deps (target, source, env)

get_presig (target, source, env)
Return the signature contents of this callable action.

get_targets (env, executor)

SCons Project API Documentation

134

Returns the type of targets ($TARGETS, $CHANGED_TARGETS) used by this action.

get_varlist (target, source, env, executor=None)

no_batch_key (env, target, source)

presub_lines (env)

print_cmd_line (s, target, source, env)
In python 3, and in some of our tests, sys.stdout is a String io object, and it takes unicode strings only This code
assumes s is a regular string.

strfunction (target, source, env, executor=None)

class SCons.Action.LazyAction (var, kw)
Bases: SCons.Action.CommandGeneratorAction, SCons.Action.CommandAction
A LazyAction is a kind of hybrid generator and command action for strings of the form “$VAR”. These strings
normally expand to other strings (think “$CCCOM” to “$CC -c -o $TARGET $SOURCE”), but we also want to be
able to replace them with functions in the construction environment. Consequently, we want lazy evaluation and
creation of an Action in the case of the function, but that’s overkill in the more normal case of expansion to other
strings.
So we do this with a subclass that’s both a generator and a command action. The overridden methods all do a
quick check of the construction variable, and if it’s a string we just call the corresponding CommandAction method
to do the heavy lifting. If not, then we call the same-named CommandGeneratorAction method. The
CommandGeneratorAction methods work by using the overridden _generate() method, that is, our own way of
handling “generation” of an action based on what’s in the construction variable.

_generate (target, source, env, for_signature, executor=None)

_generate_cache (env)

_get_implicit_deps_heavyweight (target, source, env, executor, icd_int)
Heavyweight dependency scanning involves scanning more than just the first entry in an action string. The exact
behavior depends on the value of icd_int. Only files are taken as implicit dependencies; directories are ignored.
If icd_int is an integer value, it specifies the number of entries to scan for implicit dependencies. Action strings
are also scanned after a &&. So for example, if icd_int=2 and the action string is “cd <some_dir> && $PYTHON
$SCRIPT_PATH <another_path>”, the implicit dependencies would be the path to the python binary and the
path to the script.
If icd_int is None, all entries are scanned for implicit dependencies.

_get_implicit_deps_lightweight (target, source, env, executor)
Lightweight dependency scanning involves only scanning the first entry in an action string, even if it contains &&.

batch_key (env, target, source)

execute (target, source, env, executor=None)
Execute a command action.
This will handle lists of commands as well as individual commands, because construction variable substitution
may turn a single “command” into a list. This means that this class can actually handle lists of commands, even
though that’s not how we use it externally.

genstring (target, source, env, executor=None)

get_contents (target, source, env)

get_implicit_deps (target, source, env, executor=None)
Return the implicit dependencies of this action’s command line.

get_parent_class (env)

get_presig (target, source, env)

SCons Project API Documentation

135

Return the signature contents of this action’s command line.
This strips $(-$) and everything in between the string, since those parts don’t affect signatures.

get_targets (env, executor)
Returns the type of targets ($TARGETS, $CHANGED_TARGETS) used by this action.

get_varlist (target, source, env, executor=None)

no_batch_key (env, target, source)

presub_lines (env)

print_cmd_line (s, target, source, env)
In python 3, and in some of our tests, sys.stdout is a String io object, and it takes unicode strings only This code
assumes s is a regular string.

process (target, source, env, executor=None)

strfunction (target, source, env, executor=None)

class SCons.Action.ListAction (actionlist)
Bases: SCons.Action.ActionBase
Class for lists of other actions.

batch_key (env, target, source)

genstring (target, source, env)

get_contents (target, source, env)

get_implicit_deps (target, source, env)

get_presig (target, source, env)
Return the signature contents of this action list.
Simple concatenation of the signatures of the elements.

get_targets (env, executor)
Returns the type of targets ($TARGETS, $CHANGED_TARGETS) used by this action.

get_varlist (target, source, env, executor=None)

no_batch_key (env, target, source)

presub_lines (env)

class SCons.Action._ActionAction (cmdstr=<class 'SCons.Action._null'>, strfunction=<class
'SCons.Action._null'>, varlist=(), presub=<class 'SCons.Action._null'>, chdir=None,
exitstatfunc=None, batch_key=None, targets='$TARGETS', **kw)

Bases: SCons.Action.ActionBase
Base class for actions that create output objects.

batch_key (env, target, source)

genstring (target, source, env)

get_contents (target, source, env)

get_targets (env, executor)
Returns the type of targets ($TARGETS, $CHANGED_TARGETS) used by this action.

get_varlist (target, source, env, executor=None)

SCons Project API Documentation

136

no_batch_key (env, target, source)

presub_lines (env)

print_cmd_line (s, target, source, env)
In python 3, and in some of our tests, sys.stdout is a String io object, and it takes unicode strings only This code
assumes s is a regular string.

SCons.Action._actionAppend (act1, act2)

SCons.Action._callable_contents (obj)
Return the signature contents of a callable Python object.

SCons.Action._code_contents (code, docstring=None)
Return the signature contents of a code object.
By providing direct access to the code object of the function, Python makes this extremely easy. Hooray!
Unfortunately, older versions of Python include line number indications in the compiled byte code. Boo! So we
remove the line number byte codes to prevent recompilations from moving a Python function.

See:

• https://docs.python.org/2/library/inspect.html

• http://python-reference.readthedocs.io/en/latest/docs/code/index.html
For info on what each co_ variable provides
The signature is as follows (should be byte/chars): co_argcount, len(co_varnames), len(co_cellvars),
len(co_freevars), (comma separated signature for each object in co_consts), (comma separated signature for
each object in co_names), (The bytecode with line number bytecodes removed from co_code)
co_argcount - Returns the number of positional arguments (including arguments with default values).
co_varnames - Returns a tuple containing the names of the local variables (starting with the argument names).
co_cellvars - Returns a tuple containing the names of local variables that are referenced by nested functions.
co_freevars - Returns a tuple containing the names of free variables. (?) co_consts - Returns a tuple containing
the literals used by the bytecode. co_names - Returns a tuple containing the names used by the bytecode.
co_code - Returns a string representing the sequence of bytecode instructions.

SCons.Action._do_create_action (act, kw)
This is the actual “implementation” for the Action factory method, below. This handles the fact that passing lists to
Action() itself has different semantics than passing lists as elements of lists.
The former will create a ListAction, the latter will create a CommandAction by converting the inner list elements to
strings.

SCons.Action._do_create_keywords (args, kw)
This converts any arguments after the action argument into their equivalent keywords and adds them to the kw
argument.

SCons.Action._do_create_list_action (act, kw)
A factory for list actions. Convert the input list into Actions and then wrap them in a ListAction.

SCons.Action._function_contents (func)
The signature is as follows (should be byte/chars): < _code_contents (see above) from func.__code__ > ,(comma
separated _object_contents for function argument defaults) ,(comma separated _object_contents for any closure
contents)

See also: https://docs.python.org/3/reference/datamodel.html

• func.__code__ - The code object representing the compiled function body.

• func.__defaults__ - A tuple containing default argument values for those arguments that have defaults,
or None if no arguments have a default value

• func.__closure__ - None or a tuple of cells that contain bindings for the function’s free variables.

Returns: Signature contents of a function. (in bytes)

class SCons.Action._null
Bases: object

SCons.Action._object_contents (obj)

SCons Project API Documentation

137

https://docs.python.org/2/library/inspect.html
http://python-reference.readthedocs.io/en/latest/docs/code/index.html
https://docs.python.org/3/reference/datamodel.html

Return the signature contents of any Python object.
We have to handle the case where object contains a code object since it can be pickled directly.

SCons.Action._object_instance_content (obj)
Returns consistant content for a action class or an instance thereof

Parameters:
• obj Should be either and action class or an instance thereof

Returns: bytearray or bytes representing the obj suitable for generating a signature from.

SCons.Action._string_from_cmd_list (cmd_list)
Takes a list of command line arguments and returns a pretty representation for printing.

SCons.Action._subproc (scons_env, cmd, error='ignore', **kw)
Wrapper for subprocess which pulls from construction env.
Use for calls to subprocess which need to interpolate values from an SCons construction environment into the
environment passed to subprocess. Adds an an error-handling argument. Adds ability to specify std{in,out,err} with
“‘devnull’” tag.

SCons.Action.default_exitstatfunc (s)

SCons.Action.get_default_ENV (env)
A fiddlin’ little function that has an ‘import SCons.Environment’ which can’t be moved to the top level without
creating an import loop. Since this import creates a local variable named ‘SCons’, it blocks access to the global
variable, so we move it here to prevent complaints about local variables being used uninitialized.

SCons.Action.rfile (n)

SCons.Builder module
SCons.Builder

Builder object subsystem.

A Builder object is a callable that encapsulates information about how to execute actions to create a target Node
(file) from source Nodes (files), and how to create those dependencies for tracking.

The main entry point here is the Builder() factory method. This provides a procedural interface that creates the right
underlying Builder object based on the keyword arguments supplied and the types of the arguments.

The goal is for this external interface to be simple enough that the vast majority of users can create new Builders as
necessary to support building new types of files in their configurations, without having to dive any deeper into this
subsystem.

The base class here is BuilderBase. This is a concrete base class which does, in fact, represent the Builder objects
that we (or users) create.

There is also a proxy that looks like a Builder:

CompositeBuilder

This proxies for a Builder with an action that is actually a dictionary that knows how to map file suffixes to a
specific action. This is so that we can invoke different actions (compilers, compile options) for different
flavors of source files.

Builders and their proxies have the following public interface methods used by other modules:

SCons Project API Documentation

138

• __call__()

THE public interface. Calling a Builder object (with the use of internal helper methods) sets up the
target and source dependencies, appropriate mapping to a specific action, and the environment
manipulation necessary for overridden construction variable. This also takes care of warning about
possible mistakes in keyword arguments.

• add_emitter()

Adds an emitter for a specific file suffix, used by some Tool modules to specify that (for example) a
yacc invocation on a .y can create a .h and a .c file.

• add_action()

Adds an action for a specific file suffix, heavily used by Tool modules to add their specific action(s) for
turning a source file into an object file to the global static and shared object file Builders.

There are the following methods for internal use within this module:

• _execute()

The internal method that handles the heavily lifting when a Builder is called. This is used so that the
__call__() methods can set up warning about possible mistakes in keyword-argument overrides, and
then execute all of the steps necessary so that the warnings only occur once.

• get_name()

Returns the Builder’s name within a specific Environment, primarily used to try to return helpful
information in error messages.

• adjust_suffix()

• get_prefix()

• get_suffix()

• get_src_suffix()

• set_src_suffix()

Miscellaneous stuff for handling the prefix and suffix manipulation we use in turning source file names
into target file names.

SCons.Builder.Builder (**kw)
A factory for builder objects.

class SCons.Builder.BuilderBase (action=None, prefix='', suffix='', src_suffix='',
target_factory=None, source_factory=None, target_scanner=None, source_scanner=None,
emitter=None, multi=0, env=None, single_source=0, name=None, chdir=<class
'SCons.Builder._Null'>, is_explicit=1, src_builder=None, ensure_suffix=False, **overrides)

Bases: object
Base class for Builders, objects that create output nodes (files) from input nodes (files).

_adjustixes (files, pre, suf, ensure_suffix=False)

_create_nodes (env, target=None, source=None)
Create and return lists of target and source nodes.

_execute (env, target, source, overwarn={}, executor_kw={})

_get_sdict (env)
Returns a dictionary mapping all of the source suffixes of all src_builders of this Builder to the underlying Builder
that should be called first.
This dictionary is used for each target specified, so we save a lot of extra computation by memoizing it for each
construction environment.
Note that this is re-computed each time, not cached, because there might be changes to one of our source
Builders (or one of their source Builders, and so on, and so on…) that we can’t “see.”
The underlying methods we call cache their computed values, though, so we hope repeatedly aggregating them
into a dictionary like this won’t be too big a hit. We may need to look for a better way to do this if performance
data show this has turned into a significant bottleneck.

SCons Project API Documentation

139

_get_src_builders_key (env)

_subst_src_suffixes_key (env)

add_emitter (suffix, emitter)
Add a suffix-emitter mapping to this Builder.
This assumes that emitter has been initialized with an appropriate dictionary type, and will throw a TypeError if
not, so the caller is responsible for knowing that this is an appropriate method to call for the Builder in question.

add_src_builder (builder)
Add a new Builder to the list of src_builders.
This requires wiping out cached values so that the computed lists of source suffixes get re-calculated.

adjust_suffix (suff)

get_name (env)
Attempts to get the name of the Builder.
Look at the BUILDERS variable of env, expecting it to be a dictionary containing this Builder, and return the key
of the dictionary. If there’s no key, then return a directly-configured name (if there is one) or the name of the
class (by default).

get_prefix (env, sources=[])

get_src_builders (env)
Returns the list of source Builders for this Builder.
This exists mainly to look up Builders referenced as strings in the ‘BUILDER’ variable of the construction
environment and cache the result.

get_src_suffix (env)
Get the first src_suffix in the list of src_suffixes.

get_suffix (env, sources=[])

set_src_suffix (src_suffix)

set_suffix (suffix)

splitext (path, env=None)

src_builder_sources (env, source, overwarn={})

src_suffixes (env)
Returns the list of source suffixes for all src_builders of this Builder.
This is essentially a recursive descent of the src_builder “tree.” (This value isn’t cached because there may be
changes in a src_builder many levels deep that we can’t see.)

subst_src_suffixes (env)
The suffix list may contain construction variable expansions, so we have to evaluate the individual strings. To
avoid doing this over and over, we memoize the results for each construction environment.

class SCons.Builder.CallableSelector
Bases: SCons.Util.Selector
A callable dictionary that will, in turn, call the value it finds if it can.

clear () → None. Remove all items from od.

copy () → a shallow copy of od

fromkeys (value=None)
Create a new ordered dictionary with keys from iterable and values set to value.

SCons Project API Documentation

140

get (key, default=None, /)
Return the value for key if key is in the dictionary, else default.

items () → a set-like object providing a view on D’s items

keys () → a set-like object providing a view on D’s keys

move_to_end (key, last=True)
Move an existing element to the end (or beginning if last is false).
Raise KeyError if the element does not exist.

pop (k[, d]) → v, remove specified key and return the corresponding
value. If key is not found, d is returned if given, otherwise KeyError is raised.

popitem (last=True)
Remove and return a (key, value) pair from the dictionary.
Pairs are returned in LIFO order if last is true or FIFO order if false.

setdefault (key, default=None)
Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.

update ([, E], **F) → None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys()
method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values () → an object providing a view on D’s values

class SCons.Builder.CompositeBuilder (builder, cmdgen)
Bases: SCons.Util.Proxy
A Builder Proxy whose main purpose is to always have a DictCmdGenerator as its action, and to provide access to
the DictCmdGenerator’s add_action() method.

add_action (suffix, action)

get ()
Retrieve the entire wrapped object

class SCons.Builder.DictCmdGenerator (dict=None, source_ext_match=1)
Bases: SCons.Util.Selector
This is a callable class that can be used as a command generator function. It holds on to a dictionary mapping file
suffixes to Actions. It uses that dictionary to return the proper action based on the file suffix of the source file.

add_action (suffix, action)
Add a suffix-action pair to the mapping.

clear () → None. Remove all items from od.

copy () → a shallow copy of od

fromkeys (value=None)
Create a new ordered dictionary with keys from iterable and values set to value.

get (key, default=None, /)
Return the value for key if key is in the dictionary, else default.

items () → a set-like object providing a view on D’s items

keys () → a set-like object providing a view on D’s keys

move_to_end (key, last=True)

SCons Project API Documentation

141

Move an existing element to the end (or beginning if last is false).
Raise KeyError if the element does not exist.

pop (k[, d]) → v, remove specified key and return the corresponding
value. If key is not found, d is returned if given, otherwise KeyError is raised.

popitem (last=True)
Remove and return a (key, value) pair from the dictionary.
Pairs are returned in LIFO order if last is true or FIFO order if false.

setdefault (key, default=None)
Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.

src_suffixes ()

update ([, E], **F) → None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys()
method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values () → an object providing a view on D’s values

class SCons.Builder.DictEmitter
Bases: SCons.Util.Selector
A callable dictionary that maps file suffixes to emitters. When called, it finds the right emitter in its dictionary for the
suffix of the first source file, and calls that emitter to get the right lists of targets and sources to return. If there’s no
emitter for the suffix in its dictionary, the original target and source are returned.

clear () → None. Remove all items from od.

copy () → a shallow copy of od

fromkeys (value=None)
Create a new ordered dictionary with keys from iterable and values set to value.

get (key, default=None, /)
Return the value for key if key is in the dictionary, else default.

items () → a set-like object providing a view on D’s items

keys () → a set-like object providing a view on D’s keys

move_to_end (key, last=True)
Move an existing element to the end (or beginning if last is false).
Raise KeyError if the element does not exist.

pop (k[, d]) → v, remove specified key and return the corresponding
value. If key is not found, d is returned if given, otherwise KeyError is raised.

popitem (last=True)
Remove and return a (key, value) pair from the dictionary.
Pairs are returned in LIFO order if last is true or FIFO order if false.

setdefault (key, default=None)
Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.

update ([, E], **F) → None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys()
method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

SCons Project API Documentation

142

values () → an object providing a view on D’s values

class SCons.Builder.EmitterProxy (var)
Bases: object
This is a callable class that can act as a Builder emitter. It holds on to a string that is a key into an Environment
dictionary, and will look there at actual build time to see if it holds a callable. If so, we will call that as the actual
emitter.

class SCons.Builder.ListEmitter (initlist=None)
Bases: collections.UserList
A callable list of emitters that calls each in sequence, returning the result.

_abc_impl = <_abc_data object>

append (item)
S.append(value) – append value to the end of the sequence

clear () → None – remove all items from S

copy ()

count (value) → integer – return number of occurrences of value

extend (other)
S.extend(iterable) – extend sequence by appending elements from the iterable

index (value[, start[, stop]]) → integer – return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.

insert (i, item)
S.insert(index, value) – insert value before index

pop ([, index]) → item – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

remove (item)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

reverse ()
S.reverse() – reverse IN PLACE

sort (*args, **kwds)

class SCons.Builder.OverrideWarner (dict)
Bases: collections.UserDict
A class for warning about keyword arguments that we use as overrides in a Builder call.
This class exists to handle the fact that a single Builder call can actually invoke multiple builders. This class only
emits the warnings once, no matter how many Builders are invoked.

_abc_impl = <_abc_data object>

clear () → None. Remove all items from D.

copy ()

classmethod fromkeys (iterable, value=None)

get (k[, d]) → D[k] if k in D, else d. d defaults to None.

items () → a set-like object providing a view on D’s items

SCons Project API Documentation

143

keys () → a set-like object providing a view on D’s keys

pop (k[, d]) → v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised.

popitem () → (k, v), remove and return some (key, value) pair
as a 2-tuple; but raise KeyError if D is empty.

setdefault (k[, d]) → D.get(k,d), also set D[k]=d if k not in D

update ([, E], **F) → None. Update D from mapping/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method, does:
for (k, v) in E: D[k] = v In either case, this is followed by: for k, v in F.items(): D[k] = v

values () → an object providing a view on D’s values

warn ()

class SCons.Builder._Null
Bases: object

SCons.Builder._node_errors (builder, env, tlist, slist)
Validate that the lists of target and source nodes are legal for this builder and environment. Raise errors or issue
warnings as appropriate.

SCons.Builder._null
alias of SCons.Builder._Null

SCons.Builder.is_a_Builder (obj)
“Returns True if the specified obj is one of our Builder classes.
The test is complicated a bit by the fact that CompositeBuilder is a proxy, not a subclass of BuilderBase.

SCons.Builder.match_splitext (path, suffixes=[])

SCons.CacheDir module
CacheDir support

class SCons.CacheDir.CacheDir (path)
Bases: object

CacheDebug (fmt, target, cachefile)

_readconfig (path)
Read the cache config.
If directory or config file do not exist, create. Take advantage of Py3 capability in os.makedirs() and in file open():
just try the operation and handle failure appropriately.
Omit the check for old cache format, assume that’s old enough there will be none of those left to worry about.

Parameters: path – path to the cache directory

cachepath (node)

classmethod copy_from_cache (env, src, dst)

classmethod copy_to_cache (env, src, dst)

get_cachedir_csig (node)

property hit_ratio

is_enabled ()

SCons Project API Documentation

144

is_readonly ()

property misses

push (node)

push_if_forced (node)

retrieve (node)
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().
Note that there’s a special trick here with the execute flag (one that’s not normally done for other actions).
Basically if the user requested a no_exec (-n) build, then SCons.Action.execute_actions is set to 0 and when
any action is called, it does its showing but then just returns zero instead of actually calling the action execution
operation. The problem for caching is that if the file does NOT exist in cache then the CacheRetrieveString won’t
return anything to show for the task, but the Action.__call__ won’t call CacheRetrieveFunc; instead it just returns
zero, which makes the code below think that the file was successfully retrieved from the cache, therefore it
doesn’t do any subsequent building. However, the CacheRetrieveString didn’t print anything because it didn’t
actually exist in the cache, and no more build actions will be performed, so the user just sees nothing. The fix is
to tell Action.__call__ to always execute the CacheRetrieveFunc and then have the latter explicitly check
SCons.Action.execute_actions itself.

SCons.CacheDir.CachePushFunc (target, source, env)

SCons.CacheDir.CacheRetrieveFunc (target, source, env)

SCons.CacheDir.CacheRetrieveString (target, source, env)

SCons.Conftest module
Autoconf-like configuration support

The purpose of this module is to define how a check is to be performed.

A context class is used that defines functions for carrying out the tests, logging and messages. The following
methods and members must be present:

context.Display(msg)

Function called to print messages that are normally displayed for the user. Newlines are explicitly used. The text
should also be written to the logfile!

context.Log(msg)

Function called to write to a log file.

context.BuildProg(text, ext)

Function called to build a program, using “ext” for the file extension. Must return an empty string for success, an
error message for failure. For reliable test results building should be done just like an actual program would be
build, using the same command and arguments (including configure results so far).

context.CompileProg(text, ext)

Function called to compile a program, using “ext” for the file extension. Must return an empty string for success,
an error message for failure. For reliable test results compiling should be done just like an actual source file
would be compiled, using the same command and arguments (including configure results so far).

context.AppendLIBS(lib_name_list)

Append “lib_name_list” to the value of LIBS. “lib_namelist” is a list of strings. Return the value of LIBS before
changing it (any type can be used, it is passed to SetLIBS() later.)

context.PrependLIBS(lib_name_list)

Prepend “lib_name_list” to the value of LIBS. “lib_namelist” is a list of strings. Return the value of LIBS before
changing it (any type can be used, it is passed to SetLIBS() later.)

context.SetLIBS(value)

Set LIBS to “value”. The type of “value” is what AppendLIBS() returned. Return the value of LIBS before
changing it (any type can be used, it is passed to SetLIBS() later.)

SCons Project API Documentation

145

context.headerfilename

Name of file to append configure results to, usually “confdefs.h”. The file must not exist or be empty when
starting. Empty or None to skip this (some tests will not work!).

context.config_h (may be missing).

If present, must be a string, which will be filled with the contents of a config_h file.

context.vardict

Dictionary holding variables used for the tests and stores results from the tests, used for the build commands.
Normally contains “CC”, “LIBS”, “CPPFLAGS”, etc.

context.havedict

Dictionary holding results from the tests that are to be used inside a program. Names often start with “HAVE_”.
These are zero (feature not present) or one (feature present). Other variables may have any value, e.g.,
“PERLVERSION” can be a number and “SYSTEMNAME” a string.

SCons.Conftest.CheckBuilder (context, text=None, language=None)
Configure check to see if the compiler works. Note that this uses the current value of compiler and linker flags,
make sure $CFLAGS, $CPPFLAGS and $LIBS are set correctly. “language” should be “C” or “C++” and is used to
select the compiler. Default is “C”. “text” may be used to specify the code to be build. Returns an empty string for
success, an error message for failure.

SCons.Conftest.CheckCC (context)
Configure check for a working C compiler.
This checks whether the C compiler, as defined in the $CC construction variable, can compile a C source file. It
uses the current $CCCOM value too, so that it can test against non working flags.

SCons.Conftest.CheckCXX (context)
Configure check for a working CXX compiler.
This checks whether the CXX compiler, as defined in the $CXX construction variable, can compile a CXX source
file. It uses the current $CXXCOM value too, so that it can test against non working flags.

SCons.Conftest.CheckDeclaration (context, symbol, includes=None, language=None)
Checks whether symbol is declared.
Use the same test as autoconf, that is test whether the symbol is defined as a macro or can be used as an r-value.

Parameters:
• symbol – str the symbol to check

• includes – str Optional “header” can be defined to include a header file.

• language – str only C and C++ supported.
Returns: boolTrue if the check failed, False if succeeded.

Return type: status

SCons.Conftest.CheckFunc (context, function_name, header=None, language=None)
Configure check for a function “function_name”. “language” should be “C” or “C++” and is used to select the
compiler. Default is “C”. Optional “header” can be defined to define a function prototype, include a header file or
anything else that comes before main(). Sets HAVE_function_name in context.havedict according to the result.
Note that this uses the current value of compiler and linker flags, make sure $CFLAGS, $CPPFLAGS and $LIBS
are set correctly. Returns an empty string for success, an error message for failure.

SCons.Conftest.CheckHeader (context, header_name, header=None, language=None, include_quotes=None)
Configure check for a C or C++ header file “header_name”. Optional “header” can be defined to do something
before including the header file (unusual, supported for consistency). “language” should be “C” or “C++” and is
used to select the compiler. Default is “C”. Sets HAVE_header_name in context.havedict according to the result.
Note that this uses the current value of compiler and linker flags, make sure $CFLAGS and $CPPFLAGS are set
correctly. Returns an empty string for success, an error message for failure.

SCons.Conftest.CheckLib (context, libs, func_name=None, header=None, extra_libs=None, call=None,
language=None, autoadd=1, append=True)

Configure check for a C or C++ libraries “libs”. Searches through the list of libraries, until one is found where the
test succeeds. Tests if “func_name” or “call” exists in the library. Note: if it exists in another library the test
succeeds anyway! Optional “header” can be defined to include a header file. If not given a default prototype for
“func_name” is added. Optional “extra_libs” is a list of library names to be added after “lib_name” in the build
command. To be used for libraries that “lib_name” depends on. Optional “call” replaces the call to “func_name” in

SCons Project API Documentation

146

the test code. It must consist of complete C statements, including a trailing “;”. Both “func_name” and “call”
arguments are optional, and in that case, just linking against the libs is tested. “language” should be “C” or “C++”
and is used to select the compiler. Default is “C”. Note that this uses the current value of compiler and linker flags,
make sure $CFLAGS, $CPPFLAGS and $LIBS are set correctly. Returns an empty string for success, an error
message for failure.

SCons.Conftest.CheckProg (context, prog_name)
Configure check for a specific program.
Check whether program prog_name exists in path. If it is found, returns the path for it, otherwise returns None.

SCons.Conftest.CheckSHCC (context)
Configure check for a working shared C compiler.
This checks whether the C compiler, as defined in the $SHCC construction variable, can compile a C source file. It
uses the current $SHCCCOM value too, so that it can test against non working flags.

SCons.Conftest.CheckSHCXX (context)
Configure check for a working shared CXX compiler.
This checks whether the CXX compiler, as defined in the $SHCXX construction variable, can compile a CXX
source file. It uses the current $SHCXXCOM value too, so that it can test against non working flags.

SCons.Conftest.CheckType (context, type_name, fallback=None, header=None, language=None)
Configure check for a C or C++ type “type_name”. Optional “header” can be defined to include a header file.
“language” should be “C” or “C++” and is used to select the compiler. Default is “C”. Sets HAVE_type_name in
context.havedict according to the result. Note that this uses the current value of compiler and linker flags, make
sure $CFLAGS, $CPPFLAGS and $LIBS are set correctly. Returns an empty string for success, an error message
for failure.

SCons.Conftest.CheckTypeSize (context, type_name, header=None, language=None, expect=None)
This check can be used to get the size of a given type, or to check whether the type is of expected size.

Parameters:
• type (-) – str the type to check

• includes (-) – sequence list of headers to include in the test code before testing the
type

• language (-) – str ‘C’ or ‘C++’

• expect (-) – int if given, will test wether the type has the given number of bytes. If not
given, will automatically find the size.

• Returns – statusint0 if the check failed, or the found size of the type if the check
succeeded.

SCons.Conftest._Have (context, key, have, comment=None)
Store result of a test in context.havedict and context.headerfilename.

Parameters:
• key - is a “HAVE_abc” name. It is turned into all CAPITALS and non-alphanumerics are

replaced by an underscore.

• have - value as it should appear in the header file, include quotes when desired and
escape special characters!

• comment is the C comment to add above the line defining the symbol (the comment is
automatically put inside a /* */). If None, no comment is added.

The value of “have” can be:

• 1 - Feature is defined, add “#define key”.

• 0 - Feature is not defined, add “/* #undef key */”. Adding “undef” is what autoconf does. Not useful for the
compiler, but it shows that the test was done.

• number - Feature is defined to this number “#define key have”. Doesn’t work for 0 or 1, use a string then.

• string - Feature is defined to this string “#define key have”.

SCons.Conftest._LogFailed (context, text, msg)
Write to the log about a failed program. Add line numbers, so that error messages can be understood.

SCons Project API Documentation

147

SCons.Conftest._YesNoResult (context, ret, key, text, comment=None)
Handle the result of a test with a “yes” or “no” result.

Parameters:
• ret is the return value: empty if OK, error message when not.

• key is the name of the symbol to be defined (HAVE_foo).

• text is the source code of the program used for testing.

• comment is the C comment to add above the line defining the symbol (the comment is
automatically put inside a /* */). If None, no comment is added.

SCons.Conftest._check_empty_program (context, comp, text, language, use_shared=False)
Return 0 on success, 1 otherwise.

SCons.Conftest._lang2suffix (lang)
Convert a language name to a suffix. When “lang” is empty or None C is assumed. Returns a tuple (lang, suffix,
None) when it works. For an unrecognized language returns (None, None, msg).

Where:

• lang = the unified language name

• suffix = the suffix, including the leading dot

• msg = an error message

SCons.Debug module
Code for debugging SCons internal things.

Shouldn’t be needed by most users. Quick shortcuts:

from SCons.Debug import caller_trace caller_trace()

SCons.Debug.Trace (msg, tracefile=None, mode='w', tstamp=False)
Write a trace message.
Write messages when debugging which do not interfere with stdout. Useful in tests, which monitor stdout and
would break with unexpected output. Trace messages can go to the console (which is opened as a file), or to a
disk file; the tracefile argument persists across calls unless overridden.

Parameters:
• tracefile – file to write trace message to. If omitted, write to the previous trace file

(default: console).

• mode – file open mode (default: ‘w’)

• tstamp – write relative timestamps with trace. Outputs time since scons was started,
and time since last trace (default: False)

SCons.Debug._dump_one_caller (key, file, level=0)

SCons.Debug.caller_stack ()
return caller’s stack

SCons.Debug.caller_trace (back=0)
Trace caller stack and save info into global dicts, which are printed automatically at the end of SCons execution.

SCons.Debug.countLoggedInstances (classes, file=<_io.TextIOWrapper name='<stdout>'
mode='w' encoding='utf-8'>)

SCons.Debug.dumpLoggedInstances (classes, file=<_io.TextIOWrapper name='<stdout>'
mode='w' encoding='utf-8'>)

SCons.Debug.dump_caller_counts (file=<_io.TextIOWrapper name='<stdout>' mode='w'
encoding='utf-8'>)

SCons.Debug.fetchLoggedInstances (classes='*')

SCons.Debug.func_shorten (func_tuple)

SCons Project API Documentation

148

SCons.Debug.listLoggedInstances (classes, file=<_io.TextIOWrapper name='<stdout>'
mode='w' encoding='utf-8'>)

SCons.Debug.logInstanceCreation (instance, name=None)

SCons.Debug.memory ()

SCons.Debug.string_to_classes (s)

SCons.Defaults module
Builders and other things for the local site.

Here’s where we’ll duplicate the functionality of autoconf until we move it into the installation procedure or use
something like qmconf.

The code that reads the registry to find MSVC components was borrowed from distutils.msvccompiler.

SCons.Defaults.DefaultEnvironment (*args, **kw)
Initial public entry point for creating the default construction Environment.
After creating the environment, we overwrite our name (DefaultEnvironment) with the _fetch_DefaultEnvironment()
function, which more efficiently returns the initialized default construction environment without checking for its
existence.
(This function still exists with its _default_check because someone else (cough Script/__init__.py cough) may keep
a reference to this function. So we can’t use the fully functional idiom of having the name originally be a something
that only creates the construction environment and then overwrites the name.)

class SCons.Defaults.NullCmdGenerator (cmd)
Bases: object
This is a callable class that can be used in place of other command generators if you don’t want them to do
anything.
The __call__ method for this class simply returns the thing you instantiated it with.
Example usage: env[“DO_NOTHING”] = NullCmdGenerator env[“LINKCOM”] = “${DO_NOTHING(‘$LINK
$SOURCES $TARGET’)}”

SCons.Defaults.SharedFlagChecker (source, target, env)

SCons.Defaults.SharedObjectEmitter (target, source, env)

SCons.Defaults.StaticObjectEmitter (target, source, env)

class SCons.Defaults.Variable_Method_Caller (variable, method)
Bases: object
A class for finding a construction variable on the stack and calling one of its methods.
We use this to support “construction variables” in our string eval()s that actually stand in for methods–specifically,
use of “RDirs” in call to _concat that should actually execute the “TARGET.RDirs” method. (We used to support
this by creating a little “build dictionary” that mapped RDirs to the method, but this got in the way of Memoizing
construction environments, because we had to create new environment objects to hold the variables.)

SCons.Defaults.__lib_either_version_flag (env, version_var1, version_var2, flags_var)
if $version_var1 or $version_var2 is not empty, returns env[flags_var], otherwise returns None :param env: :param
version_var1: :param version_var2: :param flags_var: :return:

SCons.Defaults.__libversionflags (env, version_var, flags_var)
if version_var is not empty, returns env[flags_var], otherwise returns None :param env: :param version_var:
:param flags_var: :return:

SCons.Defaults._concat (prefix, items_iter, suffix, env, f=<function <lambda>>, target=None,
source=None, affect_signature=True)

Creates a new list from ‘items_iter’ by first interpolating each element in the list using the ‘env’ dictionary and then
calling f on the list, and finally calling _concat_ixes to concatenate ‘prefix’ and ‘suffix’ onto each element of the list.

SCons.Defaults._concat_ixes (prefix, items_iter, suffix, env)
Creates a new list from ‘items_iter’ by concatenating the ‘prefix’ and ‘suffix’ arguments onto each element of the
list. A trailing space on ‘prefix’ or leading space on ‘suffix’ will cause them to be put into separate list elements
rather than being concatenated.

SCons Project API Documentation

149

SCons.Defaults._defines (prefix, defs, suffix, env, target, source, c=<function
_concat_ixes>)

A wrapper around _concat_ixes that turns a list or string into a list of C preprocessor command-line definitions.

SCons.Defaults._fetch_DefaultEnvironment (*args, **kw)
Returns the already-created default construction environment.

SCons.Defaults._stripixes (prefix, itms, suffix, stripprefixes, stripsuffixes, env, c=None)
This is a wrapper around _concat()/_concat_ixes() that checks for the existence of prefixes or suffixes on list items
and strips them where it finds them. This is used by tools (like the GNU linker) that need to turn something like
‘libfoo.a’ into ‘-lfoo’.

SCons.Defaults.chmod_func (dest, mode)

SCons.Defaults.chmod_strfunc (dest, mode)

SCons.Defaults.copy_func (dest, src, symlinks=True)
If symlinks (is true), then a symbolic link will be shallow copied and recreated as a symbolic link; otherwise,
copying a symbolic link will be equivalent to copying the symbolic link’s final target regardless of symbolic link
depth.

SCons.Defaults.delete_func (dest, must_exist=0)

SCons.Defaults.delete_strfunc (dest, must_exist=0)

SCons.Defaults.get_paths_str (dest)

SCons.Defaults.mkdir_func (dest)

SCons.Defaults.move_func (dest, src)

SCons.Defaults.processDefines (defs)
process defines, resolving strings, lists, dictionaries, into a list of strings

SCons.Defaults.touch_func (dest)

SCons.Environment module
Base class for construction Environments.

These are the primary objects used to communicate dependency and construction information to the build engine.

Keyword arguments supplied when the construction Environment is created are construction variables used to
initialize the Environment.

class SCons.Environment.Base (platform=None, tools=None, toolpath=None, variables=None,
parse_flags=None, **kw)

Bases: SCons.Environment.SubstitutionEnvironment
Base class for “real” construction Environments.
These are the primary objects used to communicate dependency and construction information to the build engine.
Keyword arguments supplied when the construction Environment is created are construction variables used to
initialize the Environment.

Action (*args, **kw)

AddMethod (function, name=None)
Adds the specified function as a method of this construction environment with the specified name. If the name is
omitted, the default name is the name of the function itself.

AddPostAction (files, action)

AddPreAction (files, action)

Alias (target, source=[], action=None, **kw)

AlwaysBuild (*targets)

SCons Project API Documentation

150

Append (**kw)
Append values to construction variables in an Environment.
The variable is created if it is not already present.

AppendENVPath (name, newpath, envname='ENV', sep=':', delete_existing=0)
Append path elements to the path ‘name’ in the ‘ENV’ dictionary for this environment. Will only add any
particular path once, and will normpath and normcase all paths to help assure this. This can also handle the
case where the env variable is a list instead of a string.
If delete_existing is 0, a newpath which is already in the path will not be moved to the end (it will be left where it
is).

AppendUnique (delete_existing=0, **kw)
Append values to existing construction variables in an Environment, if they’re not already there. If
delete_existing is 1, removes existing values first, so values move to end.

Builder (**kw)

CacheDir (path, custom_class=None)

Clean (targets, files)

Clone (tools=[], toolpath=None, parse_flags=None, **kw)
Return a copy of a construction Environment.
The copy is like a Python “deep copy”–that is, independent copies are made recursively of each objects–except
that a reference is copied when an object is not deep-copyable (like a function). There are no references to any
mutable objects in the original Environment.

Command (target, source, action, **kw)
Builds the supplied target files from the supplied source files using the supplied action. Action may be any type
that the Builder constructor will accept for an action.

Configure (*args, **kw)

Decider (function)

Depends (target, dependency)
Explicity specify that ‘target’s depend on ‘dependency’.

Detect (progs)
Return the first available program from one or more possibilities.

Parameters: progs (str or list) – one or more command names to check for

Dictionary (*args)
Return construction variables from an environment.

Parameters: *args (optional) – variable names to look up

Returns: If args omitted, the dictionary of all construction variables. If one arg, the corresponding
value is returned. If more than one arg, a list of values is returned.

Raises: KeyError – if any of args is not in the construction environment.

Dir (name, *args, **kw)

Dump (key=None, format='pretty')
Return construction variables serialized to a string.

Parameters:
• key (optional) – if None, format the whole dict of variables. Else format the value of

key (Default value = None)

• format (str, optional) – specify the format to serialize to. “pretty” generates a
pretty-printed string, “json” a JSON-formatted string. (Default value = “pretty”)

SCons Project API Documentation

151

Entry (name, *args, **kw)

Environment (**kw)

Execute (action, *args, **kw)
Directly execute an action through an Environment

File (name, *args, **kw)

FindFile (file, dirs)

FindInstalledFiles ()
returns the list of all targets of the Install and InstallAs Builder.

FindIxes (paths, prefix, suffix)
Search a list of paths for something that matches the prefix and suffix.

Parameters:
• paths – the list of paths or nodes.

• prefix – construction variable for the prefix.

• suffix – construction variable for the suffix.
Returns: the matched path or None

FindSourceFiles (node='.')
returns a list of all source files.

Flatten (sequence)

GetBuildPath (files)

Glob (pattern, ondisk=True, source=False, strings=False, exclude=None)

Ignore (target, dependency)
Ignore a dependency.

Literal (string)

Local (*targets)

MergeFlags (args, unique=True)
Merge flags into construction variables.
Merges the flags from args into this construction environent. If args is not a dict, it is first converted to a
dictionary with flags distributed into appropriate construction variables. See ParseFlags().

Parameters:
• args – flags to merge

• unique – merge flags rather than appending (default: True)

NoCache (*targets)
Tags a target so that it will not be cached

NoClean (*targets)
Tags a target so that it will not be cleaned by -c

Override (overrides)
Produce a modified environment whose variables are overridden by the overrides dictionaries. “overrides” is a
dictionary that will override the variables of this environment.
This function is much more efficient than Clone() or creating a new Environment because it doesn’t copy the
construction environment dictionary, it just wraps the underlying construction environment, and doesn’t even
create a wrapper object if there are no overrides.

SCons Project API Documentation

152

ParseConfig (command, function=None, unique=True)
Use the specified function to parse the output of the command in order to modify the current environment. The
‘command’ can be a string or a list of strings representing a command and its arguments. ‘Function’ is an
optional argument that takes the environment, the output of the command, and the unique flag. If no function is
specified, MergeFlags, which treats the output as the result of a typical ‘X-config’ command (i.e. gtk-config), will
merge the output into the appropriate variables.

ParseDepends (filename, must_exist=None, only_one=False)
Parse a mkdep-style file for explicit dependencies. This is completely abusable, and should be unnecessary in
the “normal” case of proper SCons configuration, but it may help make the transition from a Make hierarchy
easier for some people to swallow. It can also be genuinely useful when using a tool that can write a .d file, but
for which writing a scanner would be too complicated.

ParseFlags (*flags)
Return a dict of parsed flags.
Parse flags and return a dict with the flags distributed into the appropriate construction variable names. The
flags are treated as a typical set of command-line flags for a GNU-like toolchain, such as might have been
generated by one of the {foo}-config scripts, and used to populate the entries based on knowledge embedded in
this method - the choices are not expected to be portable to other toolchains.
If one of the flags strings begins with a bang (exclamation mark), it is assumed to be a command and the rest
of the string is executed; the result of that evaluation is then added to the dict.

Platform (platform)

Precious (*targets)

Prepend (**kw)
Prepend values to construction variables in an Environment.
The variable is created if it is not already present.

PrependENVPath (name, newpath, envname='ENV', sep=':', delete_existing=1)
Prepend path elements to the path ‘name’ in the ‘ENV’ dictionary for this environment. Will only add any
particular path once, and will normpath and normcase all paths to help assure this. This can also handle the
case where the env variable is a list instead of a string.
If delete_existing is 0, a newpath which is already in the path will not be moved to the front (it will be left where it
is).

PrependUnique (delete_existing=0, **kw)
Prepend values to existing construction variables in an Environment, if they’re not already there. If
delete_existing is 1, removes existing values first, so values move to front.

Pseudo (*targets)

PyPackageDir (modulename)

RemoveMethod (function)
Removes the specified function’s MethodWrapper from the added_methods list, so we don’t re-bind it when
making a clone.

Replace (**kw)
Replace existing construction variables in an Environment with new construction variables and/or values.

ReplaceIxes (path, old_prefix, old_suffix, new_prefix, new_suffix)
Replace old_prefix with new_prefix and old_suffix with new_suffix.
env - Environment used to interpolate variables. path - the path that will be modified. old_prefix - construction
variable for the old prefix. old_suffix - construction variable for the old suffix. new_prefix - construction variable
for the new prefix. new_suffix - construction variable for the new suffix.

Repository (*dirs, **kw)

Requires (target, prerequisite)

SCons Project API Documentation

153

Specify that ‘prerequisite’ must be built before ‘target’, (but ‘target’ does not actually depend on ‘prerequisite’
and need not be rebuilt if it changes).

SConsignFile (name='.sconsign', dbm_module=None)

Scanner (*args, **kw)

SetDefault (**kw)

SideEffect (side_effect, target)
Tell scons that side_effects are built as side effects of building targets.

Split (arg)
This function converts a string or list into a list of strings or Nodes. This makes things easier for users by
allowing files to be specified as a white-space separated list to be split.

The input rules are:

• A single string containing names separated by spaces. These will be split apart at the spaces.

• A single Node instance

• A list containing either strings or Node instances. Any strings in the list are not split at spaces.
In all cases, the function returns a list of Nodes and strings.

Tool (tool, toolpath=None, **kwargs) → SCons.Tool.Tool

Value (value, built_value=None, name=None)

VariantDir (variant_dir, src_dir, duplicate=1)

WhereIs (prog, path=None, pathext=None, reject=None)
Find prog in the path.

_canonicalize (path)
Allow Dirs and strings beginning with # for top-relative.
Note this uses the current env’s fs (in self).

_changed_build (dependency, target, prev_ni, repo_node=None)

_changed_content (dependency, target, prev_ni, repo_node=None)

_changed_source (dependency, target, prev_ni, repo_node=None)

_changed_timestamp_match (dependency, target, prev_ni, repo_node=None)

_changed_timestamp_newer (dependency, target, prev_ni, repo_node=None)

_changed_timestamp_then_content (dependency, target, prev_ni, repo_node=None)

_find_toolpath_dir (tp)

_gsm ()

_init_special ()
Initial the dispatch tables for special handling of special construction variables.

_update (other)
Private method to update an environment’s consvar dict directly.
Bypasses the normal checks that occur when users try to set items.

_update_onlynew (other)

SCons Project API Documentation

154

Private method to add new items to an environment’s consvar dict.
Only adds items from other whose keys do not already appear in the existing dict; values from other are not
used for replacement. Bypasses the normal checks that occur when users try to set items.

arg2nodes (args, node_factory=<class 'SCons.Environment._Null'>, lookup_list=<class
'SCons.Environment._Null'>, **kw)

backtick (command)

get (key, default=None)
Emulates the get() method of dictionaries.

get_CacheDir ()

get_builder (name)
Fetch the builder with the specified name from the environment.

get_factory (factory, default='File')
Return a factory function for creating Nodes for this construction environment.

get_scanner (skey)
Find the appropriate scanner given a key (usually a file suffix).

get_src_sig_type ()

get_tgt_sig_type ()

gvars ()

items ()
Emulates the items() method of dictionaries.

keys ()
Emulates the keys() method of dictionaries.

lvars ()

scanner_map_delete (kw=None)
Delete the cached scanner map (if we need to).

setdefault (key, default=None)
Emulates the setdefault() method of dictionaries.

subst (string, raw=0, target=None, source=None, conv=None, executor=None)
Recursively interpolates construction variables from the Environment into the specified string, returning the
expanded result. Construction variables are specified by a $ prefix in the string and begin with an initial
underscore or alphabetic character followed by any number of underscores or alphanumeric characters. The
construction variable names may be surrounded by curly braces to separate the name from trailing characters.

subst_kw (kw, raw=0, target=None, source=None)

subst_list (string, raw=0, target=None, source=None, conv=None, executor=None)
Calls through to SCons.Subst.scons_subst_list(). See the documentation for that function.

subst_path (path, target=None, source=None)
Substitute a path list, turning EntryProxies into Nodes and leaving Nodes (and other objects) as-is.

subst_target_source (string, raw=0, target=None, source=None, conv=None, executor=None)
Recursively interpolates construction variables from the Environment into the specified string, returning the
expanded result. Construction variables are specified by a $ prefix in the string and begin with an initial

SCons Project API Documentation

155

underscore or alphabetic character followed by any number of underscores or alphanumeric characters. The
construction variable names may be surrounded by curly braces to separate the name from trailing characters.

validate_CacheDir_class (custom_class=None)
Validate the passed custom CacheDir class, or if no args are passed, validate the custom CacheDir class from
the environment.

values ()
Emulates the values() method of dictionaries.

class SCons.Environment.BuilderDict (dict, env)
Bases: collections.UserDict
This is a dictionary-like class used by an Environment to hold the Builders. We need to do this because every time
someone changes the Builders in the Environment’s BUILDERS dictionary, we must update the Environment’s
attributes.

_abc_impl = <_abc_data object>

clear () → None. Remove all items from D.

copy ()

classmethod fromkeys (iterable, value=None)

get (k[, d]) → D[k] if k in D, else d. d defaults to None.

items () → a set-like object providing a view on D’s items

keys () → a set-like object providing a view on D’s keys

pop (k[, d]) → v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised.

popitem () → (k, v), remove and return some (key, value) pair
as a 2-tuple; but raise KeyError if D is empty.

setdefault (k[, d]) → D.get(k,d), also set D[k]=d if k not in D

update ([, E], **F) → None. Update D from mapping/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method, does:
for (k, v) in E: D[k] = v In either case, this is followed by: for k, v in F.items(): D[k] = v

values () → an object providing a view on D’s values

class SCons.Environment.BuilderWrapper (obj, method, name=None)
Bases: SCons.Util.MethodWrapper
A MethodWrapper subclass that that associates an environment with a Builder.
This mainly exists to wrap the __call__() function so that all calls to Builders can have their argument lists
massaged in the same way (treat a lone argument as the source, treat two arguments as target then source, make
sure both target and source are lists) without having to have cut-and-paste code to do it.
As a bit of obsessive backwards compatibility, we also intercept attempts to get or set the “env” or “builder”
attributes, which were the names we used before we put the common functionality into the MethodWrapper base
class. We’ll keep this around for a while in case people shipped Tool modules that reached into the wrapper (like
the Tool/qt.py module does, or did). There shouldn’t be a lot attribute fetching or setting on these, so a little extra
work shouldn’t hurt.

clone (new_object)
Returns an object that re-binds the underlying “method” to the specified new object.

SCons.Environment.NoSubstitutionProxy (subject)

SCons Project API Documentation

156

An entry point for returning a proxy subclass instance that overrides the subst*() methods so they don’t actually
perform construction variable substitution. This is specifically intended to be the shim layer in between global
function calls (which don’t want construction variable substitution) and the DefaultEnvironment() (which would
substitute variables if left to its own devices).
We have to wrap this in a function that allows us to delay definition of the class until it’s necessary, so that when it
subclasses Environment it will pick up whatever Environment subclass the wrapper interface might have assigned
to SCons.Environment.Environment.

class SCons.Environment.OverrideEnvironment (subject, overrides=None)
Bases: SCons.Environment.Base
A proxy that overrides variables in a wrapped construction environment by returning values from an overrides
dictionary in preference to values from the underlying subject environment.
This is a lightweight (I hope) proxy that passes through most use of attributes to the underlying Environment.Base
class, but has just enough additional methods defined to act like a real construction environment with overridden
values. It can wrap either a Base construction environment, or another OverrideEnvironment, which can in turn
nest arbitrary OverrideEnvironments…
Note that we do not call the underlying base class (SubsitutionEnvironment) initialization, because we get most of
those from proxying the attributes of the subject construction environment. But because we subclass
SubstitutionEnvironment, this class also has inherited arg2nodes() and subst*() methods; those methods can’t be
proxied because they need this object’s methods to fetch the values from the overrides dictionary.

Action (*args, **kw)

AddMethod (function, name=None)
Adds the specified function as a method of this construction environment with the specified name. If the name is
omitted, the default name is the name of the function itself.

AddPostAction (files, action)

AddPreAction (files, action)

Alias (target, source=[], action=None, **kw)

AlwaysBuild (*targets)

Append (**kw)
Append values to construction variables in an Environment.
The variable is created if it is not already present.

AppendENVPath (name, newpath, envname='ENV', sep=':', delete_existing=0)
Append path elements to the path ‘name’ in the ‘ENV’ dictionary for this environment. Will only add any
particular path once, and will normpath and normcase all paths to help assure this. This can also handle the
case where the env variable is a list instead of a string.
If delete_existing is 0, a newpath which is already in the path will not be moved to the end (it will be left where it
is).

AppendUnique (delete_existing=0, **kw)
Append values to existing construction variables in an Environment, if they’re not already there. If
delete_existing is 1, removes existing values first, so values move to end.

Builder (**kw)

CacheDir (path, custom_class=None)

Clean (targets, files)

Clone (tools=[], toolpath=None, parse_flags=None, **kw)
Return a copy of a construction Environment.
The copy is like a Python “deep copy”–that is, independent copies are made recursively of each objects–except
that a reference is copied when an object is not deep-copyable (like a function). There are no references to any
mutable objects in the original Environment.

SCons Project API Documentation

157

Command (target, source, action, **kw)
Builds the supplied target files from the supplied source files using the supplied action. Action may be any type
that the Builder constructor will accept for an action.

Configure (*args, **kw)

Decider (function)

Depends (target, dependency)
Explicity specify that ‘target’s depend on ‘dependency’.

Detect (progs)
Return the first available program from one or more possibilities.

Parameters: progs (str or list) – one or more command names to check for

Dictionary (*args)
Return construction variables from an environment.

Parameters: *args (optional) – variable names to look up

Returns: If args omitted, the dictionary of all construction variables. If one arg, the corresponding
value is returned. If more than one arg, a list of values is returned.

Raises: KeyError – if any of args is not in the construction environment.

Dir (name, *args, **kw)

Dump (key=None, format='pretty')
Return construction variables serialized to a string.

Parameters:
• key (optional) – if None, format the whole dict of variables. Else format the value of

key (Default value = None)

• format (str, optional) – specify the format to serialize to. “pretty” generates a
pretty-printed string, “json” a JSON-formatted string. (Default value = “pretty”)

Entry (name, *args, **kw)

Environment (**kw)

Execute (action, *args, **kw)
Directly execute an action through an Environment

File (name, *args, **kw)

FindFile (file, dirs)

FindInstalledFiles ()
returns the list of all targets of the Install and InstallAs Builder.

FindIxes (paths, prefix, suffix)
Search a list of paths for something that matches the prefix and suffix.

Parameters:
• paths – the list of paths or nodes.

• prefix – construction variable for the prefix.

• suffix – construction variable for the suffix.
Returns: the matched path or None

FindSourceFiles (node='.')
returns a list of all source files.

SCons Project API Documentation

158

Flatten (sequence)

GetBuildPath (files)

Glob (pattern, ondisk=True, source=False, strings=False, exclude=None)

Ignore (target, dependency)
Ignore a dependency.

Literal (string)

Local (*targets)

MergeFlags (args, unique=True)
Merge flags into construction variables.
Merges the flags from args into this construction environent. If args is not a dict, it is first converted to a
dictionary with flags distributed into appropriate construction variables. See ParseFlags().

Parameters:
• args – flags to merge

• unique – merge flags rather than appending (default: True)

NoCache (*targets)
Tags a target so that it will not be cached

NoClean (*targets)
Tags a target so that it will not be cleaned by -c

Override (overrides)
Produce a modified environment whose variables are overridden by the overrides dictionaries. “overrides” is a
dictionary that will override the variables of this environment.
This function is much more efficient than Clone() or creating a new Environment because it doesn’t copy the
construction environment dictionary, it just wraps the underlying construction environment, and doesn’t even
create a wrapper object if there are no overrides.

ParseConfig (command, function=None, unique=True)
Use the specified function to parse the output of the command in order to modify the current environment. The
‘command’ can be a string or a list of strings representing a command and its arguments. ‘Function’ is an
optional argument that takes the environment, the output of the command, and the unique flag. If no function is
specified, MergeFlags, which treats the output as the result of a typical ‘X-config’ command (i.e. gtk-config), will
merge the output into the appropriate variables.

ParseDepends (filename, must_exist=None, only_one=False)
Parse a mkdep-style file for explicit dependencies. This is completely abusable, and should be unnecessary in
the “normal” case of proper SCons configuration, but it may help make the transition from a Make hierarchy
easier for some people to swallow. It can also be genuinely useful when using a tool that can write a .d file, but
for which writing a scanner would be too complicated.

ParseFlags (*flags)
Return a dict of parsed flags.
Parse flags and return a dict with the flags distributed into the appropriate construction variable names. The
flags are treated as a typical set of command-line flags for a GNU-like toolchain, such as might have been
generated by one of the {foo}-config scripts, and used to populate the entries based on knowledge embedded in
this method - the choices are not expected to be portable to other toolchains.
If one of the flags strings begins with a bang (exclamation mark), it is assumed to be a command and the rest
of the string is executed; the result of that evaluation is then added to the dict.

Platform (platform)

Precious (*targets)

SCons Project API Documentation

159

Prepend (**kw)
Prepend values to construction variables in an Environment.
The variable is created if it is not already present.

PrependENVPath (name, newpath, envname='ENV', sep=':', delete_existing=1)
Prepend path elements to the path ‘name’ in the ‘ENV’ dictionary for this environment. Will only add any
particular path once, and will normpath and normcase all paths to help assure this. This can also handle the
case where the env variable is a list instead of a string.
If delete_existing is 0, a newpath which is already in the path will not be moved to the front (it will be left where it
is).

PrependUnique (delete_existing=0, **kw)
Prepend values to existing construction variables in an Environment, if they’re not already there. If
delete_existing is 1, removes existing values first, so values move to front.

Pseudo (*targets)

PyPackageDir (modulename)

RemoveMethod (function)
Removes the specified function’s MethodWrapper from the added_methods list, so we don’t re-bind it when
making a clone.

Replace (**kw)
Replace existing construction variables in an Environment with new construction variables and/or values.

ReplaceIxes (path, old_prefix, old_suffix, new_prefix, new_suffix)
Replace old_prefix with new_prefix and old_suffix with new_suffix.
env - Environment used to interpolate variables. path - the path that will be modified. old_prefix - construction
variable for the old prefix. old_suffix - construction variable for the old suffix. new_prefix - construction variable
for the new prefix. new_suffix - construction variable for the new suffix.

Repository (*dirs, **kw)

Requires (target, prerequisite)
Specify that ‘prerequisite’ must be built before ‘target’, (but ‘target’ does not actually depend on ‘prerequisite’
and need not be rebuilt if it changes).

SConsignFile (name='.sconsign', dbm_module=None)

Scanner (*args, **kw)

SetDefault (**kw)

SideEffect (side_effect, target)
Tell scons that side_effects are built as side effects of building targets.

Split (arg)
This function converts a string or list into a list of strings or Nodes. This makes things easier for users by
allowing files to be specified as a white-space separated list to be split.

The input rules are:

• A single string containing names separated by spaces. These will be split apart at the spaces.

• A single Node instance

• A list containing either strings or Node instances. Any strings in the list are not split at spaces.
In all cases, the function returns a list of Nodes and strings.

Tool (tool, toolpath=None, **kwargs) → SCons.Tool.Tool

SCons Project API Documentation

160

Value (value, built_value=None, name=None)

VariantDir (variant_dir, src_dir, duplicate=1)

WhereIs (prog, path=None, pathext=None, reject=None)
Find prog in the path.

_canonicalize (path)
Allow Dirs and strings beginning with # for top-relative.
Note this uses the current env’s fs (in self).

_changed_build (dependency, target, prev_ni, repo_node=None)

_changed_content (dependency, target, prev_ni, repo_node=None)

_changed_source (dependency, target, prev_ni, repo_node=None)

_changed_timestamp_match (dependency, target, prev_ni, repo_node=None)

_changed_timestamp_newer (dependency, target, prev_ni, repo_node=None)

_changed_timestamp_then_content (dependency, target, prev_ni, repo_node=None)

_find_toolpath_dir (tp)

_gsm ()

_init_special ()
Initial the dispatch tables for special handling of special construction variables.

_update (other)
Private method to update an environment’s consvar dict directly.
Bypasses the normal checks that occur when users try to set items.

_update_onlynew (other)
Private method to add new items to an environment’s consvar dict.
Only adds items from other whose keys do not already appear in the existing dict; values from other are not
used for replacement. Bypasses the normal checks that occur when users try to set items.

arg2nodes (args, node_factory=<class 'SCons.Environment._Null'>, lookup_list=<class
'SCons.Environment._Null'>, **kw)

backtick (command)

get (key, default=None)
Emulates the get() method of dictionaries.

get_CacheDir ()

get_builder (name)
Fetch the builder with the specified name from the environment.

get_factory (factory, default='File')
Return a factory function for creating Nodes for this construction environment.

get_scanner (skey)
Find the appropriate scanner given a key (usually a file suffix).

get_src_sig_type ()

get_tgt_sig_type ()

SCons Project API Documentation

161

gvars ()

items ()
Emulates the items() method of dictionaries.

keys ()
Emulates the keys() method of dictionaries.

lvars ()

scanner_map_delete (kw=None)
Delete the cached scanner map (if we need to).

setdefault (key, default=None)
Emulates the setdefault() method of dictionaries.

subst (string, raw=0, target=None, source=None, conv=None, executor=None)
Recursively interpolates construction variables from the Environment into the specified string, returning the
expanded result. Construction variables are specified by a $ prefix in the string and begin with an initial
underscore or alphabetic character followed by any number of underscores or alphanumeric characters. The
construction variable names may be surrounded by curly braces to separate the name from trailing characters.

subst_kw (kw, raw=0, target=None, source=None)

subst_list (string, raw=0, target=None, source=None, conv=None, executor=None)
Calls through to SCons.Subst.scons_subst_list(). See the documentation for that function.

subst_path (path, target=None, source=None)
Substitute a path list, turning EntryProxies into Nodes and leaving Nodes (and other objects) as-is.

subst_target_source (string, raw=0, target=None, source=None, conv=None, executor=None)
Recursively interpolates construction variables from the Environment into the specified string, returning the
expanded result. Construction variables are specified by a $ prefix in the string and begin with an initial
underscore or alphabetic character followed by any number of underscores or alphanumeric characters. The
construction variable names may be surrounded by curly braces to separate the name from trailing characters.

validate_CacheDir_class (custom_class=None)
Validate the passed custom CacheDir class, or if no args are passed, validate the custom CacheDir class from
the environment.

values ()
Emulates the values() method of dictionaries.

class SCons.Environment.SubstitutionEnvironment (**kw)
Bases: object
Base class for different flavors of construction environments.
This class contains a minimal set of methods that handle construction variable expansion and conversion of strings
to Nodes, which may or may not be actually useful as a stand-alone class. Which methods ended up in this class
is pretty arbitrary right now. They’re basically the ones which we’ve empirically determined are common to the
different construction environment subclasses, and most of the others that use or touch the underlying dictionary
of construction variables.
Eventually, this class should contain all the methods that we determine are necessary for a “minimal” interface to
the build engine. A full “native Python” SCons environment has gotten pretty heavyweight with all of the methods
and Tools and construction variables we’ve jammed in there, so it would be nice to have a lighter weight
alternative for interfaces that don’t need all of the bells and whistles. (At some point, we’ll also probably rename
this class “Base,” since that more reflects what we want this class to become, but because we’ve released
comments that tell people to subclass Environment.Base to create their own flavors of construction environment,
we’ll save that for a future refactoring when this class actually becomes useful.)

AddMethod (function, name=None)

SCons Project API Documentation

162

Adds the specified function as a method of this construction environment with the specified name. If the name is
omitted, the default name is the name of the function itself.

MergeFlags (args, unique=True)
Merge flags into construction variables.
Merges the flags from args into this construction environent. If args is not a dict, it is first converted to a
dictionary with flags distributed into appropriate construction variables. See ParseFlags().

Parameters:
• args – flags to merge

• unique – merge flags rather than appending (default: True)

Override (overrides)
Produce a modified environment whose variables are overridden by the overrides dictionaries. “overrides” is a
dictionary that will override the variables of this environment.
This function is much more efficient than Clone() or creating a new Environment because it doesn’t copy the
construction environment dictionary, it just wraps the underlying construction environment, and doesn’t even
create a wrapper object if there are no overrides.

ParseFlags (*flags)
Return a dict of parsed flags.
Parse flags and return a dict with the flags distributed into the appropriate construction variable names. The
flags are treated as a typical set of command-line flags for a GNU-like toolchain, such as might have been
generated by one of the {foo}-config scripts, and used to populate the entries based on knowledge embedded in
this method - the choices are not expected to be portable to other toolchains.
If one of the flags strings begins with a bang (exclamation mark), it is assumed to be a command and the rest
of the string is executed; the result of that evaluation is then added to the dict.

RemoveMethod (function)
Removes the specified function’s MethodWrapper from the added_methods list, so we don’t re-bind it when
making a clone.

_init_special ()
Initial the dispatch tables for special handling of special construction variables.

arg2nodes (args, node_factory=<class 'SCons.Environment._Null'>, lookup_list=<class
'SCons.Environment._Null'>, **kw)

backtick (command)

get (key, default=None)
Emulates the get() method of dictionaries.

gvars ()

items ()
Emulates the items() method of dictionaries.

keys ()
Emulates the keys() method of dictionaries.

lvars ()

setdefault (key, default=None)
Emulates the setdefault() method of dictionaries.

subst (string, raw=0, target=None, source=None, conv=None, executor=None)
Recursively interpolates construction variables from the Environment into the specified string, returning the
expanded result. Construction variables are specified by a $ prefix in the string and begin with an initial
underscore or alphabetic character followed by any number of underscores or alphanumeric characters. The
construction variable names may be surrounded by curly braces to separate the name from trailing characters.

SCons Project API Documentation

163

subst_kw (kw, raw=0, target=None, source=None)

subst_list (string, raw=0, target=None, source=None, conv=None, executor=None)
Calls through to SCons.Subst.scons_subst_list(). See the documentation for that function.

subst_path (path, target=None, source=None)
Substitute a path list, turning EntryProxies into Nodes and leaving Nodes (and other objects) as-is.

subst_target_source (string, raw=0, target=None, source=None, conv=None, executor=None)
Recursively interpolates construction variables from the Environment into the specified string, returning the
expanded result. Construction variables are specified by a $ prefix in the string and begin with an initial
underscore or alphabetic character followed by any number of underscores or alphanumeric characters. The
construction variable names may be surrounded by curly braces to separate the name from trailing characters.

values ()
Emulates the values() method of dictionaries.

class SCons.Environment._Null
Bases: object

SCons.Environment._del_SCANNERS (env, key)

SCons.Environment._delete_duplicates (l, keep_last)
Delete duplicates from a sequence, keeping the first or last.

SCons.Environment._null
alias of SCons.Environment._Null

SCons.Environment._set_BUILDERS (env, key, value)

SCons.Environment._set_SCANNERS (env, key, value)

SCons.Environment._set_future_reserved (env, key, value)

SCons.Environment._set_reserved (env, key, value)

SCons.Environment.alias_builder (env, target, source)

SCons.Environment.apply_tools (env, tools, toolpath)

SCons.Environment.copy_non_reserved_keywords (dict)

SCons.Environment.default_copy_from_cache (env, src, dst)

SCons.Environment.default_copy_to_cache (env, src, dst)

SCons.Environment.default_decide_source (dependency, target, prev_ni, repo_node=None)

SCons.Environment.default_decide_target (dependency, target, prev_ni, repo_node=None)

SCons.Environment.is_valid_construction_var (varstr)
Return if the specified string is a legitimate construction variable.

SCons.Errors module
SCons exception classes.

Used to handle internal and user errors in SCons.

exception SCons.Errors.BuildError (node=None, errstr='Unknown error', status=2, exitstatus=2,
filename=None, executor=None, action=None, command=None, exc_info=(None, None, None))

Bases: Exception
SCons Errors that can occur while building.

Information about the cause of the build error

errstr
a description of the error message

SCons Project API Documentation

164

status
the return code of the action that caused the build error. Must be set to a non-zero value even if the build error is
not due to an action returning a non-zero returned code.

exitstatus
SCons exit status due to this build error. Must be nonzero unless due to an explicit Exit() call. Not always the
same as status, since actions return a status code that should be respected, but SCons typically exits with 2
irrespective of the return value of the failed action.

filename
The name of the file or directory that caused the build error. Set to None if no files are associated with this error.
This might be different from the target being built. For example, failure to create the directory in which the target
file will appear. It can be None if the error is not due to a particular filename.

exc_info
Info about exception that caused the build error. Set to (None, None, None) if this build error is not due to an
exception.

Information about the what caused the build error

node
the error occurred while building this target node(s)

executor
the executor that caused the build to fail (might be None if the build failures is not due to the executor failing)

action
the action that caused the build to fail (might be None if the build failures is not due to the an action failure)

command
the command line for the action that caused the build to fail (might be None if the build failures is not due to the
an action failure)

args

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception SCons.Errors.ExplicitExit (node=None, status=None, *args)
Bases: Exception

args

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception SCons.Errors.InternalError
Bases: Exception

args

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception SCons.Errors.MSVCError
Bases: OSError

args

characters_written

SCons Project API Documentation

165

errno
POSIX exception code

filename
exception filename

filename2
second exception filename

strerror
exception strerror

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception SCons.Errors.SConsEnvironmentError
Bases: Exception

args

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception SCons.Errors.StopError
Bases: Exception

args

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception SCons.Errors.UserError
Bases: Exception

args

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

SCons.Errors.convert_to_BuildError (status, exc_info=None)
Convert a return code to a BuildError Exception.
The buildError.status we set here will normally be used as the exit status of the “scons” process.

Parameters:
• status – can either be a return code or an Exception.

• exc_info (tuple, optional) – explicit exception information.

SCons.Executor module
Execute actions with specific lists of target and source Nodes.

SCons.Executor.AddBatchExecutor (key, executor)

class SCons.Executor.Batch (targets=[], sources=[])
Bases: object
Remembers exact association between targets and sources of executor.

sources

targets

class SCons.Executor.Executor (action, env=None, overridelist=[{}], targets=[], sources=[], builder_kw={})

SCons Project API Documentation

166

Bases: object
A class for controlling instances of executing an action.
This largely exists to hold a single association of an action, environment, list of environment override dictionaries,
targets and sources for later processing as needed.

_changed_sources_list

_changed_targets_list

_do_execute

_execute_str

_get_changed_sources (*args, **kw)

_get_changed_targets (*args, **kw)

_get_changes ()

_get_source (*args, **kw)

_get_sources (*args, **kw)

_get_target (*args, **kw)

_get_targets (*args, **kw)

_get_unchanged_sources (*args, **kw)

_get_unchanged_targets (*args, **kw)

_get_unignored_sources_key (node, ignore=())

_memo

_unchanged_sources_list

_unchanged_targets_list

action_list

add_batch (targets, sources)
Add pair of associated target and source to this Executor’s list. This is necessary for “batch” Builders that can be
called repeatedly to build up a list of matching target and source files that will be used in order to update multiple
target files at once from multiple corresponding source files, for tools like MSVC that support it.

add_post_action (action)

add_pre_action (action)

add_sources (sources)
Add source files to this Executor’s list. This is necessary for “multi” Builders that can be called repeatedly to build
up a source file list for a given target.

batches

builder_kw

cleanup ()

env

SCons Project API Documentation

167

get_action_list ()

get_action_side_effects ()
Returns all side effects for all batches of this Executor used by the underlying Action.

get_action_targets ()

get_all_children ()
Returns all unique children (dependencies) for all batches of this Executor.
The Taskmaster can recognize when it’s already evaluated a Node, so we don’t have to make this list unique for
its intended canonical use case, but we expect there to be a lot of redundancy (long lists of batched .cc files
#including the same .h files over and over), so removing the duplicates once up front should save the
Taskmaster a lot of work.

get_all_prerequisites ()
Returns all unique (order-only) prerequisites for all batches of this Executor.

get_all_sources ()
Returns all sources for all batches of this Executor.

get_all_targets ()
Returns all targets for all batches of this Executor.

get_build_env ()
Fetch or create the appropriate build Environment for this Executor.

get_build_scanner_path (scanner)
Fetch the scanner path for this executor’s targets and sources.

get_contents ()
Fetch the signature contents. This is the main reason this class exists, so we can compute this once and cache
it regardless of how many target or source Nodes there are.
Returns bytes

get_implicit_deps ()
Return the executor’s implicit dependencies, i.e. the nodes of the commands to be executed.

get_kw (kw={})

get_lvars ()

get_sources ()

get_timestamp ()
Fetch a time stamp for this Executor. We don’t have one, of course (only files do), but this is the interface used
by the timestamp module.

get_unignored_sources (node, ignore=())

lvars

nullify ()

overridelist

post_actions

pre_actions

prepare ()
Preparatory checks for whether this Executor can go ahead and (try to) build its targets.

SCons Project API Documentation

168

scan (scanner, node_list)
Scan a list of this Executor’s files (targets or sources) for implicit dependencies and update all of the targets with
them. This essentially short-circuits an N*M scan of the sources for each individual target, which is a hell of a lot
more efficient.

scan_sources (scanner)

scan_targets (scanner)

set_action_list (action)

SCons.Executor.GetBatchExecutor (key)

class SCons.Executor.Null (*args, **kw)
Bases: object
A null Executor, with a null build Environment, that does nothing when the rest of the methods call it.
This might be able to disappear when we refactor things to disassociate Builders from Nodes entirely, so we’re not
going to worry about unit tests for this–at least for now.

_changed_sources_list

_changed_targets_list

_do_execute

_execute_str

_memo

_morph ()
Morph this Null executor to a real Executor object.

_unchanged_sources_list

_unchanged_targets_list

action_list

add_post_action (action)

add_pre_action (action)

batches

builder_kw

cleanup ()

env

get_action_list ()

get_action_side_effects ()

get_action_targets ()

get_all_children ()

get_all_prerequisites ()

get_all_sources ()

SCons Project API Documentation

169

get_all_targets ()

get_build_env ()

get_build_scanner_path ()

get_contents ()

get_unignored_sources (*args, **kw)

lvars

overridelist

post_actions

pre_actions

prepare ()

set_action_list (action)

class SCons.Executor.NullEnvironment (*args, **kwargs)
Bases: SCons.Util.Null

SCons = <module 'SCons' from '/home/bdeegan/devel/scons/git/as_scons/SCons/__init__.py'>

_CacheDir = <SCons.CacheDir.CacheDir object>

_CacheDir_path = None

get_CacheDir ()

class SCons.Executor.TSList (func)
Bases: collections.UserList
A class that implements $TARGETS or $SOURCES expansions by wrapping an executor Method. This class is
used in the Executor.lvars() to delay creation of NodeList objects until they’re needed.
Note that we subclass collections.UserList purely so that the is_Sequence() function will identify an object of this
class as a list during variable expansion. We’re not really using any collections.UserList methods in practice.

_abc_impl = <_abc_data object>

append (item)
S.append(value) – append value to the end of the sequence

clear () → None – remove all items from S

copy ()

count (value) → integer – return number of occurrences of value

extend (other)
S.extend(iterable) – extend sequence by appending elements from the iterable

index (value[, start[, stop]]) → integer – return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.

insert (i, item)
S.insert(index, value) – insert value before index

SCons Project API Documentation

170

pop ([, index]) → item – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

remove (item)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

reverse ()
S.reverse() – reverse IN PLACE

sort (*args, **kwds)

class SCons.Executor.TSObject (func)
Bases: object
A class that implements $TARGET or $SOURCE expansions by wrapping an Executor method.

SCons.Executor.execute_action_list (obj, target, kw)
Actually execute the action list.

SCons.Executor.execute_actions_str (obj)

SCons.Executor.execute_nothing (obj, target, kw)

SCons.Executor.execute_null_str (obj)

SCons.Executor.get_NullEnvironment ()
Use singleton pattern for Null Environments.

SCons.Executor.rfile (node)
A function to return the results of a Node’s rfile() method, if it exists, and the Node itself otherwise (if it’s a Value
Node, e.g.).

SCons.Job module
Serial and Parallel classes to execute build tasks.

The Jobs class provides a higher level interface to start, stop, and wait on jobs.

class SCons.Job.InterruptState
Bases: object

set ()

class SCons.Job.Jobs (num, taskmaster)
Bases: object
An instance of this class initializes N jobs, and provides methods for starting, stopping, and waiting on all N jobs.

_reset_sig_handler ()
Restore the signal handlers to their previous state (before the call to _setup_sig_handler().

_setup_sig_handler ()
Setup an interrupt handler so that SCons can shutdown cleanly in various conditions:

a. SIGINT: Keyboard interrupt

b. SIGTERM: kill or system shutdown

c. SIGHUP: Controlling shell exiting
We handle all of these cases by stopping the taskmaster. It turns out that it’s very difficult to stop the build
process by throwing asynchronously an exception such as KeyboardInterrupt. For example, the python
Condition variables (threading.Condition) and queues do not seem to be asynchronous-exception-safe. It would
require adding a whole bunch of try/finally block and except KeyboardInterrupt all over the place.
Note also that we have to be careful to handle the case when SCons forks before executing another process. In
that case, we want the child to exit immediately.

run (postfunc=<function Jobs.<lambda>>)

SCons Project API Documentation

171

Run the jobs.
postfunc() will be invoked after the jobs has run. It will be invoked even if the jobs are interrupted by a keyboard
interrupt (well, in fact by a signal such as either SIGINT, SIGTERM or SIGHUP). The execution of postfunc() is
protected against keyboard interrupts and is guaranteed to run to completion.

were_interrupted ()
Returns whether the jobs were interrupted by a signal.

class SCons.Job.Parallel (taskmaster, num, stack_size)
Bases: object
This class is used to execute tasks in parallel, and is somewhat less efficient than Serial, but is appropriate for
parallel builds.
This class is thread safe.

start ()
Start the job. This will begin pulling tasks from the taskmaster and executing them, and return when there are no
more tasks. If a task fails to execute (i.e. execute() raises an exception), then the job will stop.

class SCons.Job.Serial (taskmaster)
Bases: object
This class is used to execute tasks in series, and is more efficient than Parallel, but is only appropriate for
non-parallel builds. Only one instance of this class should be in existence at a time.
This class is not thread safe.

start ()
Start the job. This will begin pulling tasks from the taskmaster and executing them, and return when there are no
more tasks. If a task fails to execute (i.e. execute() raises an exception), then the job will stop.

class SCons.Job.ThreadPool (num, stack_size, interrupted)
Bases: object
This class is responsible for spawning and managing worker threads.

cleanup ()
Shuts down the thread pool, giving each worker thread a chance to shut down gracefully.

get ()
Remove and return a result tuple from the results queue.

preparation_failed (task)

put (task)
Put task into request queue.

class SCons.Job.Worker (requestQueue, resultsQueue, interrupted)
Bases: threading.Thread
A worker thread waits on a task to be posted to its request queue, dequeues the task, executes it, and posts a
tuple including the task and a boolean indicating whether the task executed successfully.

_bootstrap ()

_bootstrap_inner ()

_delete ()
Remove current thread from the dict of currently running threads.

_exc_info ()
exc_info() -> (type, value, traceback)
Return information about the most recent exception caught by an except clause in the current stack frame or in
an older stack frame.

_initialized = False

SCons Project API Documentation

172

_reset_internal_locks (is_alive)

_set_ident ()

_set_tstate_lock ()
Set a lock object which will be released by the interpreter when the underlying thread state (see pystate.h) gets
deleted.

_stop ()

_wait_for_tstate_lock (block=True, timeout=- 1)

property daemon
A boolean value indicating whether this thread is a daemon thread.
This must be set before start() is called, otherwise RuntimeError is raised. Its initial value is inherited from the
creating thread; the main thread is not a daemon thread and therefore all threads created in the main thread
default to daemon = False.
The entire Python program exits when only daemon threads are left.

getName ()

property ident
Thread identifier of this thread or None if it has not been started.
This is a nonzero integer. See the get_ident() function. Thread identifiers may be recycled when a thread exits
and another thread is created. The identifier is available even after the thread has exited.

isAlive ()
Return whether the thread is alive.
This method is deprecated, use is_alive() instead.

isDaemon ()

is_alive ()
Return whether the thread is alive.
This method returns True just before the run() method starts until just after the run() method terminates. The
module function enumerate() returns a list of all alive threads.

join (timeout=None)
Wait until the thread terminates.
This blocks the calling thread until the thread whose join() method is called terminates – either normally or
through an unhandled exception or until the optional timeout occurs.
When the timeout argument is present and not None, it should be a floating point number specifying a timeout
for the operation in seconds (or fractions thereof). As join() always returns None, you must call is_alive() after
join() to decide whether a timeout happened – if the thread is still alive, the join() call timed out.
When the timeout argument is not present or None, the operation will block until the thread terminates.
A thread can be join()ed many times.
join() raises a RuntimeError if an attempt is made to join the current thread as that would cause a deadlock. It is
also an error to join() a thread before it has been started and attempts to do so raises the same exception.

property name
A string used for identification purposes only.
It has no semantics. Multiple threads may be given the same name. The initial name is set by the constructor.

run ()
Method representing the thread’s activity.
You may override this method in a subclass. The standard run() method invokes the callable object passed to
the object’s constructor as the target argument, if any, with sequential and keyword arguments taken from the
args and kwargs arguments, respectively.

setDaemon (daemonic)

SCons Project API Documentation

173

setName (name)

start ()
Start the thread’s activity.
It must be called at most once per thread object. It arranges for the object’s run() method to be invoked in a
separate thread of control.
This method will raise a RuntimeError if called more than once on the same thread object.

SCons.Memoize module
Decorator-based memoizer to count caching stats.

A decorator-based implementation to count hits and misses of the computed values that various methods cache in
memory.

Use of this modules assumes that wrapped methods be coded to cache their values in a consistent way. In
particular, it requires that the class uses a dictionary named “_memo” to store the cached values.

Here is an example of wrapping a method that returns a computed value, with no input parameters:

@SCons.Memoize.CountMethodCall
def foo(self):

 try: # Memoization
 return self._memo['foo'] # Memoization
 except KeyError: # Memoization
 pass # Memoization

 result = self.compute_foo_value()

 self._memo['foo'] = result # Memoization

 return result

Here is an example of wrapping a method that will return different values based on one or more input arguments:

def _bar_key(self, argument): # Memoization
 return argument # Memoization

@SCons.Memoize.CountDictCall(_bar_key)
def bar(self, argument):

 memo_key = argument # Memoization
 try: # Memoization
 memo_dict = self._memo['bar'] # Memoization
 except KeyError: # Memoization
 memo_dict = {} # Memoization
 self._memo['dict'] = memo_dict # Memoization
 else: # Memoization
 try: # Memoization
 return memo_dict[memo_key] # Memoization
 except KeyError: # Memoization
 pass # Memoization

 result = self.compute_bar_value(argument)

 memo_dict[memo_key] = result # Memoization

 return result

Deciding what to cache is tricky, because different configurations can have radically different performance tradeoffs,
and because the tradeoffs involved are often so non-obvious. Consequently, deciding whether or not to cache a
given method will likely be more of an art than a science, but should still be based on available data from this

SCons Project API Documentation

174

module. Here are some VERY GENERAL guidelines about deciding whether or not to cache return values from a
method that’s being called a lot:

– The first question to ask is, “Can we change the calling code

so this method isn’t called so often?” Sometimes this can be done by changing the algorithm. Sometimes
the caller should be memoized, not the method you’re looking at.

The memoized function should be timed with multiple configurations to make sure it doesn’t inadvertently slow
down some other configuration.

– When memoizing values based on a dictionary key composed of

input arguments, you don’t need to use all of the arguments if some of them don’t affect the return values.

class SCons.Memoize.CountDict (cls_name, method_name, keymaker)
Bases: SCons.Memoize.Counter
A counter class for memoized values stored in a dictionary, with keys based on the method’s input arguments.
A CountDict object is instantiated in a decorator for each of the class’s methods that memoizes its return value in a
dictionary, indexed by some key that can be computed from one or more of its input arguments.

count (*args, **kw)
Counts whether the computed key value is already present in the memoization dictionary (a hit) or not (a miss).

display ()

key ()

SCons.Memoize.CountDictCall (keyfunc)
Decorator for counting memoizer hits/misses while accessing dictionary values with a key-generating function.
Like CountMethodCall above, it wraps the given method fn and uses a CountDict object to keep track of the
caching statistics. The dict-key function keyfunc has to get passed in the decorator call and gets stored in the
CountDict instance. Wrapping gets enabled by calling EnableMemoization().

SCons.Memoize.CountMethodCall (fn)
Decorator for counting memoizer hits/misses while retrieving a simple value in a class method. It wraps the given
method fn and uses a CountValue object to keep track of the caching statistics. Wrapping gets enabled by calling
EnableMemoization().

class SCons.Memoize.CountValue (cls_name, method_name)
Bases: SCons.Memoize.Counter
A counter class for simple, atomic memoized values.
A CountValue object should be instantiated in a decorator for each of the class’s methods that memoizes its return
value by simply storing the return value in its _memo dictionary.

count (*args, **kw)
Counts whether the memoized value has already been set (a hit) or not (a miss).

display ()

key ()

class SCons.Memoize.Counter (cls_name, method_name)
Bases: object
Base class for counting memoization hits and misses.
We expect that the initialization in a matching decorator will fill in the correct class name and method name that
represents the name of the function being counted.

display ()

key ()

SCons.Memoize.Dump (title=None)
Dump the hit/miss count for all the counters collected so far.

SCons.Memoize.EnableMemoization ()

SCons Project API Documentation

175

SCons.PathList module
Handle lists of directory paths.

These are the path lists that get set as CPPPATH, LIBPATH, etc.) with as much caching of data and efficiency as we
can, while still keeping the evaluation delayed so that we Do the Right Thing (almost) regardless of how the variable
is specified.

SCons.PathList.PathList (pathlist)
Returns the cached _PathList object for the specified pathlist, creating and caching a new object as necessary.

class SCons.PathList._PathList (pathlist)
Bases: object
An actual PathList object.

subst_path (env, target, source)
Performs construction variable substitution on a pre-digested PathList for a specific target and source.

SCons.PathList.node_conv (obj)
This is the “string conversion” routine that we have our substitutions use to return Nodes, not strings. This relies on
the fact that an EntryProxy object has a get() method that returns the underlying Node that it wraps, which is a bit
of architectural dependence that we might need to break or modify in the future in response to additional
requirements.

SCons.SConf module
Autoconf-like configuration support.

In other words, SConf allows to run tests on the build machine to detect capabilities of system and do some things
based on result: generate config files, header files for C/C++, update variables in environment.

Tests on the build system can detect if compiler sees header files, if libraries are installed, if some command line
options are supported etc.

SCons.SConf.CheckCC (context)

SCons.SConf.CheckCHeader (context, header, include_quotes='""')
A test for a C header file.

SCons.SConf.CheckCXX (context)

SCons.SConf.CheckCXXHeader (context, header, include_quotes='""')
A test for a C++ header file.

class SCons.SConf.CheckContext (sconf)
Bases: object
Provides a context for configure tests. Defines how a test writes to the screen and log file.
A typical test is just a callable with an instance of CheckContext as first argument:

def CheckCustom(context, …):

context.Message(‘Checking my weird test … ‘) ret = myWeirdTestFunction(…) context.Result(ret)
Often, myWeirdTestFunction will be one of context.TryCompile/context.TryLink/context.TryRun. The results of
those are cached, for they are only rebuild, if the dependencies have changed.

AppendLIBS (lib_name_list)

BuildProg (text, ext)

CompileProg (text, ext)

CompileSharedObject (text, ext)

Display (msg)

Log (msg)

SCons Project API Documentation

176

Message (text)
Inform about what we are doing right now, e.g. ‘Checking for SOMETHING … ‘

PrependLIBS (lib_name_list)

Result (res)
Inform about the result of the test. If res is not a string, displays ‘yes’ or ‘no’ depending on whether res is
evaluated as true or false. The result is only displayed when self.did_show_result is not set.

RunProg (text, ext)

SetLIBS (val)

TryAction (*args, **kw)

TryBuild (*args, **kw)

TryCompile (*args, **kw)

TryLink (*args, **kw)

TryRun (*args, **kw)

SCons.SConf.CheckDeclaration (context, declaration, includes='', language=None)

SCons.SConf.CheckFunc (context, function_name, header=None, language=None)

SCons.SConf.CheckHeader (context, header, include_quotes='<>', language=None)
A test for a C or C++ header file.

SCons.SConf.CheckLib (context, library=None, symbol='main', header=None, language=None, autoadd=1)
A test for a library. See also CheckLibWithHeader. Note that library may also be None to test whether the given
symbol compiles without flags.

SCons.SConf.CheckLibWithHeader (context, libs, header, language, call=None, autoadd=1)
Another (more sophisticated) test for a library. Checks, if library and header is available for language (may be ‘C’
or ‘CXX’). Call maybe be a valid expression _with_ a trailing ‘;’. As in CheckLib, we support library=None, to test if
the call compiles without extra link flags.

SCons.SConf.CheckProg (context, prog_name)
Simple check if a program exists in the path. Returns the path for the application, or None if not found.

SCons.SConf.CheckSHCC (context)

SCons.SConf.CheckSHCXX (context)

SCons.SConf.CheckType (context, type_name, includes='', language=None)

SCons.SConf.CheckTypeSize (context, type_name, includes='', language=None, expect=None)

exception SCons.SConf.ConfigureCacheError (target)
Bases: SCons.SConf.SConfError
Raised when a use explicitely requested the cache feature, but the test is run the first time.

args

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception SCons.SConf.ConfigureDryRunError (target)
Bases: SCons.SConf.SConfError
Raised when a file or directory needs to be updated during a Configure process, but the user requested a dry-run

args

with_traceback ()

SCons Project API Documentation

177

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

SCons.SConf.CreateConfigHBuilder (env)
Called if necessary just before the building targets phase begins.

SCons.SConf.NeedConfigHBuilder ()

SCons.SConf.SConf (*args, **kw)

class SCons.SConf.SConfBase (env, custom_tests={}, conf_dir='$CONFIGUREDIR',
log_file='$CONFIGURELOG', config_h=None, _depth=0)

Bases: object
This is simply a class to represent a configure context. After creating a SConf object, you can call any tests. After
finished with your tests, be sure to call the Finish() method, which returns the modified environment. Some words
about caching: In most cases, it is not necessary to cache Test results explicitly. Instead, we use the scons
dependency checking mechanism. For example, if one wants to compile a test program (SConf.TryLink), the
compiler is only called, if the program dependencies have changed. However, if the program could not be
compiled in a former SConf run, we need to explicitly cache this error.

AddTest (test_name, test_instance)
Adds test_class to this SConf instance. It can be called with self.test_name(…)

AddTests (tests)
Adds all the tests given in the tests dictionary to this SConf instance

BuildNodes (nodes)
Tries to build the given nodes immediately. Returns 1 on success, 0 on error.

Define (name, value=None, comment=None)
Define a pre processor symbol name, with the optional given value in the current config header.
If value is None (default), then #define name is written. If value is not none, then #define name value is written.
comment is a string which will be put as a C comment in the header, to explain the meaning of the value
(appropriate C comments will be added automatically).

Finish ()
Call this method after finished with your tests: env = sconf.Finish()

class TestWrapper (test, sconf)
Bases: object
A wrapper around Tests (to ensure sanity)

TryAction (action, text=None, extension='')
Tries to execute the given action with optional source file contents <text> and optional source file extension
<extension>, Returns the status (0 : failed, 1 : ok) and the contents of the output file.

TryBuild (builder, text=None, extension='')
Low level TryBuild implementation. Normally you don’t need to call that - you can use TryCompile / TryLink /
TryRun instead

TryCompile (text, extension)
Compiles the program given in text to an env.Object, using extension as file extension (e.g. ‘.c’). Returns 1, if
compilation was successful, 0 otherwise. The target is saved in self.lastTarget (for further processing).

TryLink (text, extension)
Compiles the program given in text to an executable env.Program, using extension as file extension (e.g. ‘.c’).
Returns 1, if compilation was successful, 0 otherwise. The target is saved in self.lastTarget (for further
processing).

TryRun (text, extension)
Compiles and runs the program given in text, using extension as file extension (e.g. ‘.c’). Returns (1, outputStr)
on success, (0, ‘’) otherwise. The target (a file containing the program’s stdout) is saved in self.lastTarget (for
further processing).

SCons Project API Documentation

178

_createDir (node)

_shutdown ()
Private method. Reset to non-piped spawn

_startup ()
Private method. Set up logstream, and set the environment variables necessary for a piped build

pspawn_wrapper (sh, escape, cmd, args, env)
Wrapper function for handling piped spawns.
This looks to the calling interface (in Action.py) like a “normal” spawn, but associates the call with the PSPAWN
variable from the construction environment and with the streams to which we want the output logged. This gets
slid into the construction environment as the SPAWN variable so Action.py doesn’t have to know or care
whether it’s spawning a piped command or not.

class SCons.SConf.SConfBuildInfo
Bases: SCons.Node.FS.FileBuildInfo
Special build info for targets of configure tests. Additional members are result (did the builder succeed last time?)
and string, which contains messages of the original build phase.

bact

bactsig

bdepends

bdependsigs

bimplicit

bimplicitsigs

bsources

bsourcesigs

convert_from_sconsign (dir, name)
Converts a newly-read FileBuildInfo object for in-SCons use
For normal up-to-date checking, we don’t have any conversion to perform–but we’re leaving this method here to
make that clear.

convert_to_sconsign ()
Converts this FileBuildInfo object for writing to a .sconsign file
This replaces each Node in our various dependency lists with its usual string representation: relative to the
top-level SConstruct directory, or an absolute path if it’s outside.

current_version_id = 2

dependency_map

format (names=0)

merge (other)
Merge the fields of another object into this object. Already existing information is overwritten by the other
instance’s data. WARNING: If a ‘__dict__’ slot is added, it should be updated instead of replaced.

prepare_dependencies ()
Prepares a FileBuildInfo object for explaining what changed
The bsources, bdepends and bimplicit lists have all been stored on disk as paths relative to the top-level
SConstruct directory. Convert the strings to actual Nodes (for use by the –debug=explain code and
–implicit-cache).

SCons Project API Documentation

179

result

set_build_result (result, string)

string

class SCons.SConf.SConfBuildTask (tm, targets, top, node)
Bases: SCons.Taskmaster.AlwaysTask
This is almost the same as SCons.Script.BuildTask. Handles SConfErrors correctly and knows about the current
cache_mode.

_abc_impl = <_abc_data object>

_exception_raise ()
Raises a pending exception that was recorded while getting a Task ready for execution.

_no_exception_to_raise ()

collect_node_states ()

display (message)
Hook to allow the calling interface to display a message.
This hook gets called as part of preparing a task for execution (that is, a Node to be built). As part of figuring out
what Node should be built next, the actual target list may be altered, along with a message describing the
alteration. The calling interface can subclass Task and provide a concrete implementation of this method to see
those messages.

display_cached_string (bi)
Logs the original builder messages, given the SConfBuildInfo instance bi.

exc_clear ()
Clears any recorded exception.
This also changes the “exception_raise” attribute to point to the appropriate do-nothing method.

exc_info ()
Returns info about a recorded exception.

exception_set (exception=None)
Records an exception to be raised at the appropriate time.
This also changes the “exception_raise” attribute to point to the method that will, in fact

execute ()
Called to execute the task.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in prepare(), executed() or failed().

executed ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target
was an actual built target or a source Node.

executed_with_callbacks ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target
was an actual built target or a source Node.

SCons Project API Documentation

180

executed_without_callbacks ()
Called when the task has been successfully executed and the Taskmaster instance doesn’t want to call the
Node’s callback methods.

fail_continue ()
Explicit continue-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

fail_stop ()
Explicit stop-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

failed ()
Default action when a task fails: stop the build.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

get_target ()
Fetch the target being built or updated by this task.

make_ready ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.

make_ready_all ()
Marks all targets in a task ready for execution.
This is used when the interface needs every target Node to be visited–the canonical example being the “scons
-c” option.

make_ready_current ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.

needs_execute ()
Always returns True (indicating this Task should always be executed).
Subclasses that need this behavior (as opposed to the default of only executing Nodes that are out of date w.r.t.
their dependencies) can use this as follows:

class MyTaskSubclass(SCons.Taskmaster.Task):

needs_execute = SCons.Taskmaster.AlwaysTask.needs_execute

postprocess ()
Post-processes a task after it’s been executed.
This examines all the targets just built (or not, we don’t care if the build was successful, or even if there was no
build because everything was up-to-date) to see if they have any waiting parent Nodes, or Nodes waiting on a
common side effect, that can be put back on the candidates list.

prepare ()
Called just before the task is executed.
This is mainly intended to give the target Nodes a chance to unlink underlying files and make all necessary
directories before the Action is actually called to build the targets.

trace_message (method, node, description='node')

exception SCons.SConf.SConfError (msg)
Bases: SCons.Errors.UserError

SCons Project API Documentation

181

args

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception SCons.SConf.SConfWarning
Bases: SCons.Warnings.SConsWarning

args

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

SCons.SConf.SetBuildType (buildtype)

SCons.SConf.SetCacheMode (mode)
Set the Configure cache mode. mode must be one of “auto”, “force”, or “cache”.

SCons.SConf.SetProgressDisplay (display)
Set the progress display to use (called from SCons.Script)

class SCons.SConf.Streamer (orig)
Bases: object
‘Sniffer’ for a file-like writable object. Similar to the unix tool tee.

flush ()

getvalue ()
Return everything written to orig since the Streamer was created.

write (str)

writelines (lines)

SCons.SConf._createConfigH (target, source, env)

SCons.SConf._createSource (target, source, env)

SCons.SConf._set_conftest_node (node)

SCons.SConf._stringConfigH (target, source, env)

SCons.SConf._stringSource (target, source, env)

SCons.SConf.createIncludesFromHeaders (headers, leaveLast, include_quotes='""')

SCons.SConsign module
Operations on signature database files (.sconsign).

class SCons.SConsign.Base
Bases: object
This is the controlling class for the signatures for the collection of entries associated with a specific directory. The
actual directory association will be maintained by a subclass that is specific to the underlying storage method. This
class provides a common set of methods for fetching and storing the individual bits of information that make up
signature entry.

do_not_set_entry (filename, obj)

do_not_store_info (filename, node)

get_entry (filename)
Fetch the specified entry attribute.

merge ()

SCons Project API Documentation

182

set_entry (filename, obj)
Set the entry.

store_info (filename, node)

class SCons.SConsign.DB (dir)
Bases: SCons.SConsign.Base
A Base subclass that reads and writes signature information from a global .sconsign.db* file–the actual file suffix is
determined by the database module.

do_not_set_entry (filename, obj)

do_not_store_info (filename, node)

get_entry (filename)
Fetch the specified entry attribute.

merge ()

set_entry (filename, obj)
Set the entry.

store_info (filename, node)

write (sync=1)

class SCons.SConsign.Dir (fp=None, dir=None)
Bases: SCons.SConsign.Base

do_not_set_entry (filename, obj)

do_not_store_info (filename, node)

get_entry (filename)
Fetch the specified entry attribute.

merge ()

set_entry (filename, obj)
Set the entry.

store_info (filename, node)

class SCons.SConsign.DirFile (dir)
Bases: SCons.SConsign.Dir
Encapsulates reading and writing a per-directory .sconsign file.

do_not_set_entry (filename, obj)

do_not_store_info (filename, node)

get_entry (filename)
Fetch the specified entry attribute.

merge ()

set_entry (filename, obj)
Set the entry.

store_info (filename, node)

SCons Project API Documentation

183

write (sync=1)
Write the .sconsign file to disk.
Try to write to a temporary file first, and rename it if we succeed. If we can’t write to the temporary file, it’s
probably because the directory isn’t writable (and if so, how did we build anything in this directory, anyway?), so
try to write directly to the .sconsign file as a backup. If we can’t rename, try to copy the temporary contents back
to the .sconsign file. Either way, always try to remove the temporary file at the end.

SCons.SConsign.File (name, dbm_module=None)
Arrange for all signatures to be stored in a global .sconsign.db* file.

SCons.SConsign.ForDirectory
alias of SCons.SConsign.DB

SCons.SConsign.Get_DataBase (dir)

SCons.SConsign.Reset ()
Reset global state. Used by unit tests that end up using SConsign multiple times to get a clean slate for each test.

class SCons.SConsign.SConsignEntry
Bases: object
Wrapper class for the generic entry in a .sconsign file. The Node subclass populates it with attributes as it pleases.
XXX As coded below, we do expect a ‘.binfo’ attribute to be added, but we’ll probably generalize this in the next
refactorings.

binfo

convert_from_sconsign (dir, name)

convert_to_sconsign ()

current_version_id = 2

ninfo

SCons.SConsign.corrupt_dblite_warning (filename)

SCons.SConsign.current_sconsign_filename ()

SCons.SConsign.write ()

SCons.Subst module
SCons string substitution.

class SCons.Subst.CmdStringHolder (cmd, literal=None)
Bases: collections.UserString
This is a special class used to hold strings generated by scons_subst() and scons_subst_list(). It defines a special
method escape(). When passed a function with an escape algorithm for a particular platform, it will return the
contained string with the proper escape sequences inserted.

_abc_impl = <_abc_data object>

capitalize ()

casefold ()

center (width, *args)

count (value) → integer – return number of occurrences of value

encode (encoding=None, errors=None)

endswith (suffix, start=0, end=9223372036854775807)

SCons Project API Documentation

184

escape (escape_func, quote_func=<function quote_spaces>)
Escape the string with the supplied function. The function is expected to take an arbitrary string, then return it
with all special characters escaped and ready for passing to the command interpreter.
After calling this function, the next call to str() will return the escaped string.

expandtabs (tabsize=8)

find (sub, start=0, end=9223372036854775807)

format (*args, **kwds)

format_map (mapping)

index (value[, start[, stop]]) → integer – return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.

is_literal ()

isalnum ()

isalpha ()

isascii ()

isdecimal ()

isdigit ()

isidentifier ()

islower ()

isnumeric ()

isprintable ()

isspace ()

istitle ()

isupper ()

join (seq)

ljust (width, *args)

lower ()

lstrip (chars=None)

maketrans (y=None, z=None, /)
Return a translation table usable for str.translate().
If there is only one argument, it must be a dictionary mapping Unicode ordinals (integers) or characters to
Unicode ordinals, strings or None. Character keys will be then converted to ordinals. If there are two arguments,
they must be strings of equal length, and in the resulting dictionary, each character in x will be mapped to the
character at the same position in y. If there is a third argument, it must be a string, whose characters will be
mapped to None in the result.

partition (sep)

SCons Project API Documentation

185

replace (old, new, maxsplit=- 1)

rfind (sub, start=0, end=9223372036854775807)

rindex (sub, start=0, end=9223372036854775807)

rjust (width, *args)

rpartition (sep)

rsplit (sep=None, maxsplit=- 1)

rstrip (chars=None)

split (sep=None, maxsplit=- 1)

splitlines (keepends=False)

startswith (prefix, start=0, end=9223372036854775807)

strip (chars=None)

swapcase ()

title ()

translate (*args)

upper ()

zfill (width)

class SCons.Subst.ListSubber (env, mode, conv, gvars)
Bases: collections.UserList
A class to construct the results of a scons_subst_list() call.
Like StringSubber, this class binds a specific construction environment, mode, target and source with two methods
(substitute() and expand()) that handle the expansion.
In addition, however, this class is used to track the state of the result(s) we’re gathering so we can do the
appropriate thing whenever we have to append another word to the result–start a new line, start a new word,
append to the current word, etc. We do this by setting the “append” attribute to the right method so that our
wrapper methods only need ever call ListSubber.append(), and the rest of the object takes care of doing the right
thing internally.

_abc_impl = <_abc_data object>

add_new_word (x)

add_to_current_word (x)
Append the string x to the end of the current last word in the result. If that is not possible, then just add it as a
new word. Make sure the entire concatenated string inherits the object attributes of x (in particular, the escape
function) by wrapping it as CmdStringHolder.

append (item)
S.append(value) – append value to the end of the sequence

clear () → None – remove all items from S

close_strip (x)
Handle the “close strip” $) token.

copy ()

SCons Project API Documentation

186

count (value) → integer – return number of occurrences of value

expand (s, lvars, within_list)
Expand a single “token” as necessary, appending the expansion to the current result.
This handles expanding different types of things (strings, lists, callables) appropriately. It calls the wrapper
substitute() method to re-expand things as necessary, so that the results of expansions of side-by-side strings
still get re-evaluated separately, not smushed together.

expanded (s)
Determines if the string s requires further expansion.
Due to the implementation of ListSubber expand will call itself 2 additional times for an already expanded string.
This method is used to determine if a string is already fully expanded and if so exit the loop early to prevent
these recursive calls.

extend (other)
S.extend(iterable) – extend sequence by appending elements from the iterable

index (value[, start[, stop]]) → integer – return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.

insert (i, item)
S.insert(index, value) – insert value before index

literal (x)

next_line ()
Arrange for the next word to start a new line. This is like starting a new word, except that we have to append
another line to the result.

next_word ()
Arrange for the next word to start a new word.

open_strip (x)
Handle the “open strip” $(token.

pop ([, index]) → item – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

remove (item)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

reverse ()
S.reverse() – reverse IN PLACE

sort (*args, **kwds)

substitute (args, lvars, within_list)
Substitute expansions in an argument or list of arguments.
This serves as a wrapper for splitting up a string into separate tokens.

this_word ()
Arrange for the next word to append to the end of the current last word in the result.

class SCons.Subst.Literal (lstr)
Bases: object
A wrapper for a string. If you use this object wrapped around a string, then it will be interpreted as literal. When
passed to the command interpreter, all special characters will be escaped.

escape (escape_func)

SCons Project API Documentation

187

for_signature ()

is_literal ()

class SCons.Subst.NLWrapper (list, func)
Bases: object
A wrapper class that delays turning a list of sources or targets into a NodeList until it’s needed. The specified
function supplied when the object is initialized is responsible for turning raw nodes into proxies that implement the
special attributes like .abspath, .source, etc. This way, we avoid creating those proxies just “in case” someone is
going to use $TARGET or the like, and only go through the trouble if we really have to.
In practice, this might be a wash performance-wise, but it’s a little cleaner conceptually…

_create_nodelist ()

_gen_nodelist ()

_return_nodelist ()

class SCons.Subst.NullNodeList (*args, **kwargs)
Bases: SCons.Util.NullSeq

_instance

SCons.Subst.NullNodesList

SCons.Subst.SetAllowableExceptions (*excepts)

class SCons.Subst.SpecialAttrWrapper (lstr, for_signature=None)
Bases: object
This is a wrapper for what we call a ‘Node special attribute.’ This is any of the attributes of a Node that we can
reference from Environment variable substitution, such as $TARGET.abspath or $SOURCES[1].filebase. We
implement the same methods as Literal so we can handle special characters, plus a for_signature method, such
that we can return some canonical string during signature calculation to avoid unnecessary rebuilds.

escape (escape_func)

for_signature ()

is_literal ()

class SCons.Subst.StringSubber (env, mode, conv, gvars)
Bases: object
A class to construct the results of a scons_subst() call.
This binds a specific construction environment, mode, target and source with two methods (substitute() and
expand()) that handle the expansion.

expand (s, lvars)
Expand a single “token” as necessary, returning an appropriate string containing the expansion.
This handles expanding different types of things (strings, lists, callables) appropriately. It calls the wrapper
substitute() method to re-expand things as necessary, so that the results of expansions of side-by-side strings
still get re-evaluated separately, not smushed together.

substitute (args, lvars)
Substitute expansions in an argument or list of arguments.
This serves as a wrapper for splitting up a string into separate tokens.

class SCons.Subst.Target_or_Source (nl)
Bases: object
A class that implements $TARGET or $SOURCE expansions by in turn wrapping a NLWrapper. This class
handles the different methods used to access an individual proxy Node, calling the NLWrapper to create a proxy
on demand.

SCons Project API Documentation

188

class SCons.Subst.Targets_or_Sources (nl)
Bases: collections.UserList
A class that implements $TARGETS or $SOURCES expansions by in turn wrapping a NLWrapper. This class
handles the different methods used to access the list, calling the NLWrapper to create proxies on demand.
Note that we subclass collections.UserList purely so that the is_Sequence() function will identify an object of this
class as a list during variable expansion. We’re not really using any collections.UserList methods in practice.

_abc_impl = <_abc_data object>

append (item)
S.append(value) – append value to the end of the sequence

clear () → None – remove all items from S

copy ()

count (value) → integer – return number of occurrences of value

extend (other)
S.extend(iterable) – extend sequence by appending elements from the iterable

index (value[, start[, stop]]) → integer – return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.

insert (i, item)
S.insert(index, value) – insert value before index

pop ([, index]) → item – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

remove (item)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

reverse ()
S.reverse() – reverse IN PLACE

sort (*args, **kwds)

SCons.Subst._remove_list (list)

SCons.Subst._rm_list (list)

SCons.Subst.escape_list (mylist, escape_func)
Escape a list of arguments by running the specified escape_func on every object in the list that has an escape()
method.

SCons.Subst.quote_spaces (arg)
Generic function for putting double quotes around any string that has white space in it.

SCons.Subst.raise_exception (exception, target, s)

SCons.Subst.scons_subst (strSubst, env, mode=1, target=None, source=None, gvars={}, lvars={}, conv=None)
Expand a string or list containing construction variable substitutions.
This is the work-horse function for substitutions in file names and the like. The companion scons_subst_list()
function (below) handles separating command lines into lists of arguments, so see that function if that’s what
you’re looking for.

SCons.Subst.scons_subst_list (strSubst, env, mode=1, target=None, source=None, gvars={}, lvars={},
conv=None)

Substitute construction variables in a string (or list or other object) and separate the arguments into a command
list.
The companion scons_subst() function (above) handles basic substitutions within strings, so see that function
instead if that’s what you’re looking for.

SCons Project API Documentation

189

SCons.Subst.scons_subst_once (strSubst, env, key)
Perform single (non-recursive) substitution of a single construction variable keyword.
This is used when setting a variable when copying or overriding values in an Environment. We want to capture
(expand) the old value before we override it, so people can do things like:

env2 = env.Clone(CCFLAGS = ‘$CCFLAGS -g’)
We do this with some straightforward, brute-force code here…

SCons.Subst.subst_dict (target, source)
Create a dictionary for substitution of special construction variables.
This translates the following special arguments:

target - the target (object or array of objects),

used to generate the TARGET and TARGETS construction variables

source - the source (object or array of objects),

used to generate the SOURCES and SOURCE construction variables

SCons.Taskmaster module
Generic Taskmaster module for the SCons build engine.

This module contains the primary interface(s) between a wrapping user interface and the SCons build engine. There
are two key classes here:

Taskmaster

This is the main engine for walking the dependency graph and calling things to decide what does or doesn’t
need to be built.

Task

This is the base class for allowing a wrapping interface to decide what does or doesn’t actually need to be done.
The intention is for a wrapping interface to subclass this as appropriate for different types of behavior it may
need.

The canonical example is the SCons native Python interface, which has Task subclasses that handle its specific
behavior, like printing “‘foo’ is up to date” when a top-level target doesn’t need to be built, and handling the -c
option by removing targets as its “build” action. There is also a separate subclass for suppressing this output
when the -q option is used.

The Taskmaster instantiates a Task object for each (set of) target(s) that it decides need to be evaluated and/or
built.

class SCons.Taskmaster.AlwaysTask (tm, targets, top, node)
Bases: SCons.Taskmaster.Task

_abc_impl = <_abc_data object>

_exception_raise ()
Raises a pending exception that was recorded while getting a Task ready for execution.

_no_exception_to_raise ()

display (message)
Hook to allow the calling interface to display a message.
This hook gets called as part of preparing a task for execution (that is, a Node to be built). As part of figuring out
what Node should be built next, the actual target list may be altered, along with a message describing the
alteration. The calling interface can subclass Task and provide a concrete implementation of this method to see
those messages.

exc_clear ()
Clears any recorded exception.
This also changes the “exception_raise” attribute to point to the appropriate do-nothing method.

exc_info ()

SCons Project API Documentation

190

Returns info about a recorded exception.

exception_set (exception=None)
Records an exception to be raised at the appropriate time.
This also changes the “exception_raise” attribute to point to the method that will, in fact

execute ()
Called to execute the task.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in prepare(), executed() or failed().

executed ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target
was an actual built target or a source Node.

executed_with_callbacks ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target
was an actual built target or a source Node.

executed_without_callbacks ()
Called when the task has been successfully executed and the Taskmaster instance doesn’t want to call the
Node’s callback methods.

fail_continue ()
Explicit continue-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

fail_stop ()
Explicit stop-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

failed ()
Default action when a task fails: stop the build.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

get_target ()
Fetch the target being built or updated by this task.

make_ready ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.

make_ready_all ()
Marks all targets in a task ready for execution.
This is used when the interface needs every target Node to be visited–the canonical example being the “scons
-c” option.

make_ready_current ()

SCons Project API Documentation

191

Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.

needs_execute ()
Always returns True (indicating this Task should always be executed).
Subclasses that need this behavior (as opposed to the default of only executing Nodes that are out of date w.r.t.
their dependencies) can use this as follows:

class MyTaskSubclass(SCons.Taskmaster.Task):

needs_execute = SCons.Taskmaster.AlwaysTask.needs_execute

postprocess ()
Post-processes a task after it’s been executed.
This examines all the targets just built (or not, we don’t care if the build was successful, or even if there was no
build because everything was up-to-date) to see if they have any waiting parent Nodes, or Nodes waiting on a
common side effect, that can be put back on the candidates list.

prepare ()
Called just before the task is executed.
This is mainly intended to give the target Nodes a chance to unlink underlying files and make all necessary
directories before the Action is actually called to build the targets.

trace_message (method, node, description='node')

class SCons.Taskmaster.OutOfDateTask (tm, targets, top, node)
Bases: SCons.Taskmaster.Task

_abc_impl = <_abc_data object>

_exception_raise ()
Raises a pending exception that was recorded while getting a Task ready for execution.

_no_exception_to_raise ()

display (message)
Hook to allow the calling interface to display a message.
This hook gets called as part of preparing a task for execution (that is, a Node to be built). As part of figuring out
what Node should be built next, the actual target list may be altered, along with a message describing the
alteration. The calling interface can subclass Task and provide a concrete implementation of this method to see
those messages.

exc_clear ()
Clears any recorded exception.
This also changes the “exception_raise” attribute to point to the appropriate do-nothing method.

exc_info ()
Returns info about a recorded exception.

exception_set (exception=None)
Records an exception to be raised at the appropriate time.
This also changes the “exception_raise” attribute to point to the method that will, in fact

execute ()
Called to execute the task.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in prepare(), executed() or failed().

executed ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.

SCons Project API Documentation

192

This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target
was an actual built target or a source Node.

executed_with_callbacks ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target
was an actual built target or a source Node.

executed_without_callbacks ()
Called when the task has been successfully executed and the Taskmaster instance doesn’t want to call the
Node’s callback methods.

fail_continue ()
Explicit continue-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

fail_stop ()
Explicit stop-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

failed ()
Default action when a task fails: stop the build.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

get_target ()
Fetch the target being built or updated by this task.

make_ready ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.

make_ready_all ()
Marks all targets in a task ready for execution.
This is used when the interface needs every target Node to be visited–the canonical example being the “scons
-c” option.

make_ready_current ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.

needs_execute ()
Returns True (indicating this Task should be executed) if this Task’s target state indicates it needs executing,
which has already been determined by an earlier up-to-date check.

postprocess ()
Post-processes a task after it’s been executed.
This examines all the targets just built (or not, we don’t care if the build was successful, or even if there was no
build because everything was up-to-date) to see if they have any waiting parent Nodes, or Nodes waiting on a
common side effect, that can be put back on the candidates list.

prepare ()

SCons Project API Documentation

193

Called just before the task is executed.
This is mainly intended to give the target Nodes a chance to unlink underlying files and make all necessary
directories before the Action is actually called to build the targets.

trace_message (method, node, description='node')

class SCons.Taskmaster.Stats
Bases: object
A simple class for holding statistics about the disposition of a Node by the Taskmaster. If we’re collecting statistics,
each Node processed by the Taskmaster gets one of these attached, in which case the Taskmaster records its
decision each time it processes the Node. (Ideally, that’s just once per Node.)

class SCons.Taskmaster.Task (tm, targets, top, node)
Bases: abc.ABC
SCons build engine abstract task class.
This controls the interaction of the actual building of node and the rest of the engine.
This is expected to handle all of the normally-customizable aspects of controlling a build, so any given application
should be able to do what it wants by sub-classing this class and overriding methods as appropriate. If an
application needs to customize something by sub-classing Taskmaster (or some other build engine class), we
should first try to migrate that functionality into this class.
Note that it’s generally a good idea for sub-classes to call these methods explicitly to update state, etc., rather than
roll their own interaction with Taskmaster from scratch.

_abc_impl = <_abc_data object>

_exception_raise ()
Raises a pending exception that was recorded while getting a Task ready for execution.

_no_exception_to_raise ()

display (message)
Hook to allow the calling interface to display a message.
This hook gets called as part of preparing a task for execution (that is, a Node to be built). As part of figuring out
what Node should be built next, the actual target list may be altered, along with a message describing the
alteration. The calling interface can subclass Task and provide a concrete implementation of this method to see
those messages.

exc_clear ()
Clears any recorded exception.
This also changes the “exception_raise” attribute to point to the appropriate do-nothing method.

exc_info ()
Returns info about a recorded exception.

exception_set (exception=None)
Records an exception to be raised at the appropriate time.
This also changes the “exception_raise” attribute to point to the method that will, in fact

execute ()
Called to execute the task.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in prepare(), executed() or failed().

executed ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target
was an actual built target or a source Node.

SCons Project API Documentation

194

executed_with_callbacks ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target
was an actual built target or a source Node.

executed_without_callbacks ()
Called when the task has been successfully executed and the Taskmaster instance doesn’t want to call the
Node’s callback methods.

fail_continue ()
Explicit continue-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

fail_stop ()
Explicit stop-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

failed ()
Default action when a task fails: stop the build.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

get_target ()
Fetch the target being built or updated by this task.

make_ready ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.

make_ready_all ()
Marks all targets in a task ready for execution.
This is used when the interface needs every target Node to be visited–the canonical example being the “scons
-c” option.

make_ready_current ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.

abstract needs_execute ()

postprocess ()
Post-processes a task after it’s been executed.
This examines all the targets just built (or not, we don’t care if the build was successful, or even if there was no
build because everything was up-to-date) to see if they have any waiting parent Nodes, or Nodes waiting on a
common side effect, that can be put back on the candidates list.

prepare ()
Called just before the task is executed.
This is mainly intended to give the target Nodes a chance to unlink underlying files and make all necessary
directories before the Action is actually called to build the targets.

trace_message (method, node, description='node')

class SCons.Taskmaster.Taskmaster (targets=[], tasker=None, order=None, trace=None)

SCons Project API Documentation

195

Bases: object
The Taskmaster for walking the dependency DAG.

_find_next_ready_node ()
Finds the next node that is ready to be built.
This is the main guts of the DAG walk. We loop through the list of candidates, looking for something that has no
un-built children (i.e., that is a leaf Node or has dependencies that are all leaf Nodes or up-to-date). Candidate
Nodes are re-scanned (both the target Node itself and its sources, which are always scanned in the context of a
given target) to discover implicit dependencies. A Node that must wait for some children to be built will be put
back on the candidates list after the children have finished building. A Node that has been put back on the
candidates list in this way may have itself (or its sources) re-scanned, in order to handle generated header files
(e.g.) and the implicit dependencies therein.
Note that this method does not do any signature calculation or up-to-date check itself. All of that is handled by
the Task class. This is purely concerned with the dependency graph walk.

_validate_pending_children ()
Validate the content of the pending_children set. Assert if an internal error is found.
This function is used strictly for debugging the taskmaster by checking that no invariants are violated. It is not
used in normal operation.
The pending_children set is used to detect cycles in the dependency graph. We call a “pending child” a child that
is found in the “pending” state when checking the dependencies of its parent node.
A pending child can occur when the Taskmaster completes a loop through a cycle. For example, let’s imagine a
graph made of three nodes (A, B and C) making a cycle. The evaluation starts at node A. The Taskmaster first
considers whether node A’s child B is up-to-date. Then, recursively, node B needs to check whether node C is
up-to-date. This leaves us with a dependency graph looking like:

 Next candidate Node A (Pending) --> Node B(Pending) --> Node C (NoState)
^ |
| |
+-------------------------------------+

Now, when the Taskmaster examines the Node C’s child Node A, it finds that Node A is in the “pending” state.
Therefore, Node A is a pending child of node C.
Pending children indicate that the Taskmaster has potentially loop back through a cycle. We say potentially
because it could also occur when a DAG is evaluated in parallel. For example, consider the following graph:

Node A (Pending) --> Node B(Pending) --> Node C (Pending) --> ...
 | ^
 | |
 +----------> Node D (NoState) --------+
 /
 Next candidate /

The Taskmaster first evaluates the nodes A, B, and C and starts building some children of node C. Assuming,
that the maximum parallel level has not been reached, the Taskmaster will examine Node D. It will find that
Node C is a pending child of Node D.
In summary, evaluating a graph with a cycle will always involve a pending child at one point. A pending child
might indicate either a cycle or a diamond-shaped DAG. Only a fraction of the nodes ends-up being a “pending
child” of another node. This keeps the pending_children set small in practice.
We can differentiate between the two cases if we wait until the end of the build. At this point, all the pending
children nodes due to a diamond-shaped DAG will have been properly built (or will have failed to build). But, the
pending children involved in a cycle will still be in the pending state.
The taskmaster removes nodes from the pending_children set as soon as a pending_children node moves out
of the pending state. This also helps to keep the pending_children set small.

cleanup ()
Check for dependency cycles.

find_next_candidate ()
Returns the next candidate Node for (potential) evaluation.
The candidate list (really a stack) initially consists of all of the top-level (command line) targets provided when
the Taskmaster was initialized. While we walk the DAG, visiting Nodes, all the children that haven’t finished

SCons Project API Documentation

196

processing get pushed on to the candidate list. Each child can then be popped and examined in turn for whether
their children are all up-to-date, in which case a Task will be created for their actual evaluation and potential
building.
Here is where we also allow candidate Nodes to alter the list of Nodes that should be examined. This is used, for
example, when invoking SCons in a source directory. A source directory Node can return its corresponding build
directory Node, essentially saying, “Hey, you really need to build this thing over here instead.”

next_task ()
Returns the next task to be executed.
This simply asks for the next Node to be evaluated, and then wraps it in the specific Task subclass with which
we were initialized.

no_next_candidate ()
Stops Taskmaster processing by not returning a next candidate.
Note that we have to clean-up the Taskmaster candidate list because the cycle detection depends on the fact all
nodes have been processed somehow.

stop ()
Stops the current build completely.

trace_message (message)

trace_node (node)

will_not_build (nodes, node_func=<function Taskmaster.<lambda>>)
Perform clean-up about nodes that will never be built. Invokes a user defined function on all of these nodes
(including all of their parents).

SCons.Taskmaster.dump_stats ()

SCons.Taskmaster.find_cycle (stack, visited)

SCons.Util module
Various SCons utility functions.

SCons.Util.AddMethod (obj, function, name=None)
Adds a method to an object.
Adds function to obj if obj is a class object. Adds function as a bound method if obj is an instance object. If obj
looks like an environment instance, use MethodWrapper to add it. If name is supplied it is used as the name of
function.
Although this works for any class object, the intent as a public API is to be used on Environment, to be able to add
a method to all construction environments; it is preferred to use env.AddMethod to add to an individual
environment.

>>> class A:
... ...

>>> a = A()

>>> def f(self, x, y):
... self.z = x + y

>>> AddMethod(A, f, "add")
>>> a.add(2, 4)
>>> print(a.z)
6
>>> a.data = ['a', 'b', 'c', 'd', 'e', 'f']
>>> AddMethod(a, lambda self, i: self.data[i], "listIndex")
>>> print(a.listIndex(3))
d

SCons Project API Documentation

197

SCons.Util.AddPathIfNotExists (env_dict, key, path, sep=':')
Add a path element to a construction variable.
key is looked up in env_dict, and path is added to it if it is not already present. env_dict[key] is assumed to be in
the format of a PATH variable: a list of paths separated by sep tokens. Example:

>>> env = {'PATH': '/bin:/usr/bin:/usr/local/bin'}
>>> AddPathIfNotExists(env, 'PATH', '/opt/bin')
>>> print(env['PATH'])
/opt/bin:/bin:/usr/bin:/usr/local/bin

SCons.Util.AppendPath (oldpath, newpath, sep=':', delete_existing=True, canonicalize=None) → Union[list, str]
Appends newpath path elements to oldpath.
Will only add any particular path once (leaving the last one it encounters and ignoring the rest, to preserve path
order), and will os.path.normpath and os.path.normcase all paths to help assure this. This can also handle
the case where oldpath is a list instead of a string, in which case a list will be returned instead of a string. For
example:

>>> p = AppendPath("/foo/bar:/foo", "/biz/boom:/foo")
>>> print(p)
/foo/bar:/biz/boom:/foo

If delete_existing is False, then adding a path that exists will not move it to the end; it will stay where it is in the
list.

>>> p = AppendPath("/foo/bar:/foo", "/biz/boom:/foo", delete_existing=False)
>>> print(p)
/foo/bar:/foo:/biz/boom

If canonicalize is not None, it is applied to each element of newpath before use.

class SCons.Util.CLVar (initlist=None)
Bases: collections.UserList
A container for command-line construction variables.
Forces the use of a list of strings intended as command-line arguments. Like collections.UserList, but the
argument passed to the initializter will be processed by the Split() function, which includes special handling for
string types: they will be split into a list of words, not coereced directly to a list. The same happens if a string is
added to a CLVar, which allows doing the right thing with both Append()/Prepend() methods, as well as with
pure Python addition, regardless of whether adding a list or a string to a construction variable.
Side effect: spaces will be stripped from individual string arguments. If you need spaces preserved, pass strings
containing spaces inside a list argument.

>>> u = UserList("--some --opts and args")
>>> print(len(u), repr(u))
22 ['-', '-', 's', 'o', 'm', 'e', ' ', '-', '-', 'o', 'p', 't', 's', ' ', 'a', 'n', 'd', ' ', 'a', 'r', 'g', 's']
>>> c = CLVar("--some --opts and args")
>>> print(len(c), repr(c))
4 ['--some', '--opts', 'and', 'args']
>>> c += " strips spaces "
>>> print(len(c), repr(c))
6 ['--some', '--opts', 'and', 'args', 'strips', 'spaces']

_abc_impl = <_abc_data object>

append (item)
S.append(value) – append value to the end of the sequence

clear () → None – remove all items from S

copy ()

count (value) → integer – return number of occurrences of value

SCons Project API Documentation

198

extend (other)
S.extend(iterable) – extend sequence by appending elements from the iterable

index (value[, start[, stop]]) → integer – return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.

insert (i, item)
S.insert(index, value) – insert value before index

pop ([, index]) → item – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

remove (item)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

reverse ()
S.reverse() – reverse IN PLACE

sort (*args, **kwds)

class SCons.Util.Delegate (attribute)
Bases: object
A Python Descriptor class that delegates attribute fetches to an underlying wrapped subject of a Proxy. Typical
use:

class Foo(Proxy):
 __str__ = Delegate('__str__')

class SCons.Util.DisplayEngine
Bases: object
A callable class used to display SCons messages.

print_it = True

set_mode (mode)

SCons.Util.IDX (n) → bool
Generate in index into strings from the tree legends.
These are always a choice between two, so bool works fine.

class SCons.Util.LogicalLines (fileobj)
Bases: object
Wrapper class for the logical_lines method.
Allows us to read all “logical” lines at once from a given file object.

readlines ()

SCons.Util.MD5collect (signatures)
Deprecated. Use hash_collect() instead.

SCons.Util.MD5filesignature (fname, chunksize=65536)
Deprecated. Use hash_file_signature() instead.

SCons.Util.MD5signature (s)
Deprecated. Use hash_signature() instead.

class SCons.Util.MethodWrapper (obj, method, name=None)
Bases: object
A generic Wrapper class that associates a method with an object.

SCons Project API Documentation

199

As part of creating this MethodWrapper object an attribute with the specified name (by default, the name of the
supplied method) is added to the underlying object. When that new “method” is called, our __call__() method
adds the object as the first argument, simulating the Python behavior of supplying “self” on method calls.
We hang on to the name by which the method was added to the underlying base class so that we can provide a
method to “clone” ourselves onto a new underlying object being copied (without which we wouldn’t need to save
that info).

clone (new_object)
Returns an object that re-binds the underlying “method” to the specified new object.

class SCons.Util.NodeList (initlist=None)
Bases: collections.UserList
A list of Nodes with special attribute retrieval.
Unlike an ordinary list, access to a member’s attribute returns a NodeList containing the same attribute for each
member. Although this can hold any object, it is intended for use when processing Nodes, where fetching an
attribute of each member is very commone, for example getting the content signature of each node. The term
“attribute” here includes the string representation.
Example:

>>> someList = NodeList([' foo ', ' bar '])
>>> someList.strip()
['foo', 'bar']

_abc_impl = <_abc_data object>

append (item)
S.append(value) – append value to the end of the sequence

clear () → None – remove all items from S

copy ()

count (value) → integer – return number of occurrences of value

extend (other)
S.extend(iterable) – extend sequence by appending elements from the iterable

index (value[, start[, stop]]) → integer – return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.

insert (i, item)
S.insert(index, value) – insert value before index

pop ([, index]) → item – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

remove (item)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

reverse ()
S.reverse() – reverse IN PLACE

sort (*args, **kwds)

class SCons.Util.Null (*args, **kwargs)
Bases: object
Null objects always and reliably “do nothing.”

class SCons.Util.NullSeq (*args, **kwargs)

SCons Project API Documentation

200

Bases: SCons.Util.Null
A Null object that can also be iterated over.

SCons.Util.PrependPath (oldpath, newpath, sep=':', delete_existing=True, canonicalize=None) → Union[list,
str]

Prepends newpath path elements to oldpath.
Will only add any particular path once (leaving the first one it encounters and ignoring the rest, to preserve path
order), and will os.path.normpath and os.path.normcase all paths to help assure this. This can also handle
the case where oldpath is a list instead of a string, in which case a list will be returned instead of a string. For
example:

>>> p = PrependPath("/foo/bar:/foo", "/biz/boom:/foo")
>>> print(p)
/biz/boom:/foo:/foo/bar

If delete_existing is False, then adding a path that exists will not move it to the beginning; it will stay where it is in
the list.

>>> p = PrependPath("/foo/bar:/foo", "/biz/boom:/foo", delete_existing=False)
>>> print(p)
/biz/boom:/foo/bar:/foo

If canonicalize is not None, it is applied to each element of newpath before use.

class SCons.Util.Proxy (subject)
Bases: object
A simple generic Proxy class, forwarding all calls to subject.
This means you can take an object, let’s call it ‘obj_a, and wrap it in this Proxy class, with a statement like this:

proxy_obj = Proxy(obj_a)

Then, if in the future, you do something like this:

x = proxy_obj.var1

since the Proxy class does not have a var1 attribute (but presumably objA does), the request actually is
equivalent to saying:

x = obj_a.var1

Inherit from this class to create a Proxy.
With Python 3.5+ this does not work transparently for Proxy subclasses that use special .__*__() method names,
because those names are now bound to the class, not the individual instances. You now need to know in advance
which special method names you want to pass on to the underlying Proxy object, and specifically delegate their
calls like this:

class Foo(Proxy):
 __str__ = Delegate('__str__')

get ()
Retrieve the entire wrapped object

SCons.Util.RegError
alias of SCons.Util._NoError

SCons.Util.RegGetValue (root, key)

SCons.Util.RegOpenKeyEx (root, key)

class SCons.Util.Selector
Bases: collections.OrderedDict
A callable ordered dictionary that maps file suffixes to dictionary values. We preserve the order in which items are
added so that get_suffix() calls always return the first suffix added.

clear () → None. Remove all items from od.

SCons Project API Documentation

201

copy () → a shallow copy of od

fromkeys (value=None)
Create a new ordered dictionary with keys from iterable and values set to value.

get (key, default=None, /)
Return the value for key if key is in the dictionary, else default.

items () → a set-like object providing a view on D’s items

keys () → a set-like object providing a view on D’s keys

move_to_end (key, last=True)
Move an existing element to the end (or beginning if last is false).
Raise KeyError if the element does not exist.

pop (k[, d]) → v, remove specified key and return the corresponding
value. If key is not found, d is returned if given, otherwise KeyError is raised.

popitem (last=True)
Remove and return a (key, value) pair from the dictionary.
Pairs are returned in LIFO order if last is true or FIFO order if false.

setdefault (key, default=None)
Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.

update ([, E], **F) → None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys()
method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values () → an object providing a view on D’s values

SCons.Util.Split (arg) → list
Returns a list of file names or other objects.
If arg is a string, it will be split on strings of white-space characters within the string. If arg is already a list, the list
will be returned untouched. If arg is any other type of object, it will be returned as a list containing just the object.

>>> print(Split(" this is a string "))
['this', 'is', 'a', 'string']
>>> print(Split(["stringlist", " preserving ", " spaces "]))
['stringlist', ' preserving ', ' spaces ']

class SCons.Util.Unbuffered (file)
Bases: object
A proxy that wraps a file object, flushing after every write.
Delegates everything else to the wrapped object.

write (arg)

writelines (arg)

class SCons.Util.UniqueList (initlist=None)
Bases: collections.UserList
A list which maintains uniqueness.
Uniquing is lazy: rather than being assured on list changes, it is fixed up on access by those methods which need
to act on a uniqe list to be correct. That means things like “in” don’t have to eat the uniquing time.

__make_unique ()

_abc_impl = <_abc_data object>

SCons Project API Documentation

202

append (item)
S.append(value) – append value to the end of the sequence

clear () → None – remove all items from S

copy ()

count (value) → integer – return number of occurrences of value

extend (other)
S.extend(iterable) – extend sequence by appending elements from the iterable

index (value[, start[, stop]]) → integer – return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.

insert (i, item)
S.insert(index, value) – insert value before index

pop ([, index]) → item – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

remove (item)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

reverse ()
S.reverse() – reverse IN PLACE

sort (*args, **kwds)

SCons.Util.WhereIs (file, path=None, pathext=None, reject=None) → Optional[str]
Return the path to an executable that matches file.
Searches the given path for file, respecting any filename extensions pathext (on the Windows platform only), and
returns the full path to the matching command. If no command is found, return None.
If path is not specified, os.environ[PATH] is used. If pathext is not specified, os.environ[PATHEXT] is used.
Will not select any path name or names in the optional reject list.

exception SCons.Util._NoError
Bases: Exception

args

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

SCons.Util._attempt_get_hash_function (hash_name, hashlib_used=<module 'hashlib' from
'/home/bdeegan/tools/python-3.7.11/lib/python3.7/hashlib.py'>, sys_used=<module 'sys'
(built-in)>)

Wrapper used to try to initialize a hash function given.
If successful, returns the name of the hash function back to the user.
Otherwise returns None.

SCons.Util._attempt_init_of_python_3_9_hash_object (hash_function_object,
sys_used=<module 'sys' (built-in)>)

Python 3.9 and onwards lets us initialize the hash function object with the key “usedforsecurity”=false. This lets us
continue to use algorithms that have been deprecated either by FIPS or by Python itself, as the MD5 algorithm
SCons prefers is not being used for security purposes as much as a short, 32 char hash that is resistant to
accidental collisions.
In prior versions of python, hashlib returns a native function wrapper, which errors out when it’s queried for the
optional parameter, so this function wraps that call.
It can still throw a ValueError if the initialization fails due to FIPS compliance issues, but that is assumed to be the
responsibility of the caller.

SCons Project API Documentation

203

SCons.Util._get_hash_object (hash_format, hashlib_used=<module 'hashlib' from
'/home/bdeegan/tools/python-3.7.11/lib/python3.7/hashlib.py'>, sys_used=<module 'sys'
(built-in)>)

Allocates a hash object using the requested hash format.

Parameters: hash_format – Hash format to use.

Returns: hashlib object.

SCons.Util._semi_deepcopy_list (obj) → list

SCons.Util._semi_deepcopy_tuple (obj) → tuple

SCons.Util._set_allowed_viable_default_hashes (hashlib_used, sys_used=<module 'sys'
(built-in)>)

Checks if SCons has ability to call the default algorithms normally supported.
This util class is sometimes called prior to setting the user-selected hash algorithm, meaning that on
FIPS-compliant systems the library would default-initialize MD5 and throw an exception in set_hash_format. A
common case is using the SConf options, which can run prior to main, and thus ignore the options.hash_format
variable.
This function checks the DEFAULT_HASH_FORMATS and sets the ALLOWED_HASH_FORMATS to only the
ones that can be called. In Python >= 3.9 this will always default to MD5 as in Python 3.9 there is an optional
attribute “usedforsecurity” set for the method.
Throws if no allowed hash formats are detected.

SCons.Util._show_md5_warning (function_name)
Shows a deprecation warning for various MD5 functions.

SCons.Util.adjustixes (fname, pre, suf, ensure_suffix=False) → str
Adjust filename prefixes and suffixes as needed.
Add prefix to fname if specified. Add suffix to fname if specified and if ensure_suffix is True

SCons.Util.case_sensitive_suffixes (s1, s2) → bool

SCons.Util.cmp (a, b) → bool
A cmp function because one is no longer available in python3.

SCons.Util.containsAll (s, pat) → bool
Check whether string s contains ALL of the items in pat.

SCons.Util.containsAny (s, pat) → bool
Check whether string s contains ANY of the items in pat.

SCons.Util.containsOnly (s, pat) → bool
Check whether string s contains ONLY items in pat.

SCons.Util.dictify (keys, values, result=None) → dict

SCons.Util.do_flatten (sequence, result, isinstance=<built-in function isinstance>,
StringTypes=(<class 'str'>, <class 'collections.UserString'>), SequenceTypes=(<class
'list'>, <class 'tuple'>, <class 'collections.UserList'>, <class
'collections.abc.MappingView'>))

SCons.Util.flatten (obj, isinstance=<built-in function isinstance>, StringTypes=(<class
'str'>, <class 'collections.UserString'>), SequenceTypes=(<class 'list'>, <class
'tuple'>, <class 'collections.UserList'>, <class 'collections.abc.MappingView'>),
do_flatten=<function do_flatten>) → list

Flatten a sequence to a non-nested list.
Converts either a single scalar or a nested sequence to a non-nested list. Note that flatten() considers strings
to be scalars instead of sequences like pure Python would.

SCons.Util.flatten_sequence (sequence, isinstance=<built-in function isinstance>,
StringTypes=(<class 'str'>, <class 'collections.UserString'>), SequenceTypes=(<class
'list'>, <class 'tuple'>, <class 'collections.UserList'>, <class
'collections.abc.MappingView'>), do_flatten=<function do_flatten>) → list

Flatten a sequence to a non-nested list.
Same as flatten(), but it does not handle the single scalar case. This is slightly more efficient when one knows
that the sequence to flatten can not be a scalar.

SCons Project API Documentation

204

SCons.Util.get_current_hash_algorithm_used ()
Returns the current hash algorithm name used.
Where the python version >= 3.9, this is expected to return md5. If python’s version is <= 3.8, this returns md5 on
non-FIPS-mode platforms, and sha1 or sha256 on FIPS-mode Linux platforms.
This function is primarily useful for testing, where one expects a value to be one of N distinct hashes, and therefore
the test needs to know which hash to select.

SCons.Util.get_env_bool (env, name, default=False) → bool
Convert a construction variable to bool.
If the value of name in env is ‘true’, ‘yes’, ‘y’, ‘on’ (case insensitive) or anything convertible to int that yields
non-zero then return True; if ‘false’, ‘no’, ‘n’, ‘off’ (case insensitive) or a number that converts to integer zero return
False. Otherwise, return default.

Parameters:
• env – construction environment, or any dict-like object

• name – name of the variable

• default – value to return if name not in env or cannot be converted (default: False)
Returns: the “truthiness” of name

SCons.Util.get_environment_var (varstr) → Optional[str]
Return undecorated construction variable string.
Determine if varstr looks like a reference to a single environment variable, like “$FOO” or “${FOO}”. If so, return
that variable with no decorations, like “FOO”. If not, return None.

SCons.Util.get_hash_format ()
Retrieves the hash format or None if not overridden.
A return value of None does not guarantee that MD5 is being used; instead, it means that the default precedence
order documented in SCons.Util.set_hash_format() is respected.

SCons.Util.get_native_path (path) → str
Transform an absolute path into a native path for the system.
In Cygwin, this converts from a Cygwin path to a Windows path, without regard to whether path refers to an
existing file system object. For other platforms, path is unchanged.

SCons.Util.get_os_env_bool (name, default=False) → bool
Convert an environment variable to bool.
Conversion is the same as for get_env_bool().

SCons.Util.hash_collect (signatures, hash_format=None)
Collects a list of signatures into an aggregate signature.

Parameters:
• signatures – a list of signatures

• hash_format – Specify to override default hash format
Returns: the aggregate signature

SCons.Util.hash_file_signature (fname, chunksize=65536, hash_format=None)
Generate the md5 signature of a file

Parameters:
• fname – file to hash

• chunksize – chunk size to read

• hash_format – Specify to override default hash format
Returns: String of Hex digits representing the signature

SCons.Util.hash_signature (s, hash_format=None)
Generate hash signature of a string

Parameters:
• s – either string or bytes. Normally should be bytes

• hash_format – Specify to override default hash format
Returns: String of hex digits representing the signature

SCons Project API Documentation

205

SCons.Util.is_Dict (obj, isinstance=<built-in function isinstance>, DictTypes=(<class
'dict'>, <class 'collections.UserDict'>)) → bool

SCons.Util.is_List (obj, isinstance=<built-in function isinstance>, ListTypes=(<class
'list'>, <class 'collections.UserList'>)) → bool

SCons.Util.is_Scalar (obj, isinstance=<built-in function isinstance>, StringTypes=(<class
'str'>, <class 'collections.UserString'>), SequenceTypes=(<class 'list'>, <class
'tuple'>, <class 'collections.UserList'>, <class 'collections.abc.MappingView'>)) → bool

SCons.Util.is_Sequence (obj, isinstance=<built-in function isinstance>,
SequenceTypes=(<class 'list'>, <class 'tuple'>, <class 'collections.UserList'>, <class
'collections.abc.MappingView'>)) → bool

SCons.Util.is_String (obj, isinstance=<built-in function isinstance>, StringTypes=(<class
'str'>, <class 'collections.UserString'>)) → bool

SCons.Util.is_Tuple (obj, isinstance=<built-in function isinstance>, tuple=<class
'tuple'>) → bool

SCons.Util.logical_lines (physical_lines, joiner=<built-in method join of str object>)

SCons.Util.make_path_relative (path) → str
Converts an absolute path name to a relative pathname.

SCons.Util.print_time ()
Hack to return a value from Main if can’t import Main.

SCons.Util.print_tree (root, child_func, prune=0, showtags=False, margin=[0], visited=None, lastChild=False,
singleLineDraw=False)

Print a tree of nodes.
This is like func:render_tree, except it prints lines directly instead of creating a string representation in memory, so
that huge trees can be handled.

Parameters:
• root – the root node of the tree

• child_func – the function called to get the children of a node

• prune – don’t visit the same node twice

• showtags – print status information to the left of each node line

• margin – the format of the left margin to use for children of root. 1 results in a pipe, and
0 results in no pipe.

• visited – a dictionary of visited nodes in the current branch if prune` is 0, or in the
whole tree if prune is 1.

• singleLineDraw – use line-drawing characters rather than ASCII.

SCons.Util.render_tree (root, child_func, prune=0, margin=[0], visited=None)
Render a tree of nodes into an ASCII tree view.

Parameters:
• root – the root node of the tree

• child_func – the function called to get the children of a node

• prune – don’t visit the same node twice

• margin – the format of the left margin to use for children of root. 1 results in a pipe, and
0 results in no pipe.

• visited – a dictionary of visited nodes in the current branch if prune is 0, or in the whole
tree if prune is 1.

SCons.Util.rightmost_separator (path, sep)

SCons.Util.semi_deepcopy (obj)

SCons.Util.semi_deepcopy_dict (obj, exclude=None) → dict

SCons Project API Documentation

206

SCons.Util.set_hash_format (hash_format, hashlib_used=<module 'hashlib' from
'/home/bdeegan/tools/python-3.7.11/lib/python3.7/hashlib.py'>, sys_used=<module 'sys'
(built-in)>)

Sets the default hash format used by SCons.
If hash_format is None or an empty string, the default is determined by this function.
Currently the default behavior is to use the first available format of the following options: MD5, SHA1, SHA256.

SCons.Util.silent_intern (x)
Perform sys.intern on the passed argument and return the result. If the input is ineligible for interning the
original argument is returned and no exception is thrown.

SCons.Util.splitext (path) → tuple
Split path into a (root, ext) pair.
Same as os.path.splitext but faster.

SCons.Util.to_String (obj, isinstance=<built-in function isinstance>, str=<class 'str'>,
UserString=<class 'collections.UserString'>, BaseStringTypes=<class 'str'>) → str

Return a string version of obj.

SCons.Util.to_String_for_signature (obj, to_String_for_subst=<function
to_String_for_subst>, AttributeError=<class 'AttributeError'>) → str

Return a string version of obj for signature usage.
Like to_String_for_subst() but has special handling for scons objects that have a for_signature()
method, and for dicts.

SCons.Util.to_String_for_subst (obj, isinstance=<built-in function isinstance>,
str=<class 'str'>, BaseStringTypes=<class 'str'>, SequenceTypes=(<class 'list'>, <class
'tuple'>, <class 'collections.UserList'>, <class 'collections.abc.MappingView'>),
UserString=<class 'collections.UserString'>) → str

Return a string version of obj for subst usage.

SCons.Util.to_bytes (s) → bytes

SCons.Util.to_str (s) → str

SCons.Util.unique (seq)
Return a list of the elements in seq without duplicates, ignoring order.

>>> mylist = unique([1, 2, 3, 1, 2, 3])
>>> print(sorted(mylist))
[1, 2, 3]
>>> mylist = unique("abcabc")
>>> print(sorted(mylist))
['a', 'b', 'c']
>>> mylist = unique(([1, 2], [2, 3], [1, 2]))
>>> print(sorted(mylist))
[[1, 2], [2, 3]]

For best speed, all sequence elements should be hashable. Then unique() will usually work in linear time.
If not possible, the sequence elements should enjoy a total ordering, and if list(s).sort() doesn’t raise TypeError it’s
assumed that they do enjoy a total ordering. Then unique() will usually work in O(N*log2(N)) time.
If that’s not possible either, the sequence elements must support equality-testing. Then unique() will usually work
in quadratic time.

SCons.Util.uniquer (seq, idfun=None)

SCons.Util.uniquer_hashables (seq)

SCons.Util.updrive (path) → str
Make the drive letter (if any) upper case.
This is useful because Windows is inconsistent on the case of the drive letter, which can cause inconsistencies
when calculating command signatures.

SCons.Warnings module
The SCons warnings framework.

SCons Project API Documentation

207

exception SCons.Warnings.CacheVersionWarning
Bases: SCons.Warnings.WarningOnByDefault

args

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception SCons.Warnings.CacheWriteErrorWarning
Bases: SCons.Warnings.SConsWarning

args

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception SCons.Warnings.CorruptSConsignWarning
Bases: SCons.Warnings.WarningOnByDefault

args

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception SCons.Warnings.DependencyWarning
Bases: SCons.Warnings.SConsWarning

args

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception SCons.Warnings.DeprecatedDebugOptionsWarning
Bases: SCons.Warnings.MandatoryDeprecatedWarning

args

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception SCons.Warnings.DeprecatedMissingSConscriptWarning
Bases: SCons.Warnings.DeprecatedWarning

args

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception SCons.Warnings.DeprecatedOptionsWarning
Bases: SCons.Warnings.MandatoryDeprecatedWarning

args

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception SCons.Warnings.DeprecatedSourceCodeWarning
Bases: SCons.Warnings.FutureDeprecatedWarning

args

SCons Project API Documentation

208

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception SCons.Warnings.DeprecatedWarning
Bases: SCons.Warnings.SConsWarning

args

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception SCons.Warnings.DevelopmentVersionWarning
Bases: SCons.Warnings.WarningOnByDefault

args

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception SCons.Warnings.DuplicateEnvironmentWarning
Bases: SCons.Warnings.WarningOnByDefault

args

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception SCons.Warnings.FortranCxxMixWarning
Bases: SCons.Warnings.LinkWarning

args

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception SCons.Warnings.FutureDeprecatedWarning
Bases: SCons.Warnings.SConsWarning

args

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception SCons.Warnings.FutureReservedVariableWarning
Bases: SCons.Warnings.WarningOnByDefault

args

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception SCons.Warnings.LinkWarning
Bases: SCons.Warnings.WarningOnByDefault

args

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception SCons.Warnings.MandatoryDeprecatedWarning
Bases: SCons.Warnings.DeprecatedWarning

SCons Project API Documentation

209

args

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception SCons.Warnings.MisleadingKeywordsWarning
Bases: SCons.Warnings.WarningOnByDefault

args

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception SCons.Warnings.MissingSConscriptWarning
Bases: SCons.Warnings.WarningOnByDefault

args

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception SCons.Warnings.NoObjectCountWarning
Bases: SCons.Warnings.WarningOnByDefault

args

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception SCons.Warnings.NoParallelSupportWarning
Bases: SCons.Warnings.WarningOnByDefault

args

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception SCons.Warnings.PythonVersionWarning
Bases: SCons.Warnings.DeprecatedWarning

args

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception SCons.Warnings.ReservedVariableWarning
Bases: SCons.Warnings.WarningOnByDefault

args

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception SCons.Warnings.SConsWarning
Bases: SCons.Errors.UserError

args

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

SCons Project API Documentation

210

exception SCons.Warnings.StackSizeWarning
Bases: SCons.Warnings.WarningOnByDefault

args

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception SCons.Warnings.TargetNotBuiltWarning
Bases: SCons.Warnings.SConsWarning

args

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception SCons.Warnings.TaskmasterNeedsExecuteWarning
Bases: SCons.Warnings.DeprecatedWarning

args

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception SCons.Warnings.ToolQtDeprecatedWarning
Bases: SCons.Warnings.FutureDeprecatedWarning

args

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception SCons.Warnings.VisualCMissingWarning
Bases: SCons.Warnings.WarningOnByDefault

args

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception SCons.Warnings.VisualStudioMissingWarning
Bases: SCons.Warnings.SConsWarning

args

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception SCons.Warnings.VisualVersionMismatch
Bases: SCons.Warnings.WarningOnByDefault

args

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception SCons.Warnings.WarningOnByDefault
Bases: SCons.Warnings.SConsWarning

args

SCons Project API Documentation

211

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

SCons.Warnings.enableWarningClass (clazz)
Enables all warnings of type clazz or derived from clazz.

SCons.Warnings.process_warn_strings (arguments)
Process requests to enable/disable warnings.
The requests are strings passed to the –warn option or the SetOption(‘warn’) function.
An argument to this option should be of the form “warning-class” or “no-warning-class”. The warning class is
munged and has the suffix “Warning” added in order to get an actual class name from the classes above, which
we need to pass to the {enable,disable}WarningClass() functions.
For example, “deprecated” will enable the DeprecatedWarning class. “no-dependency” will disable the
DependencyWarning class.
As a special case, –warn=all and –warn=no-all will enable or disable (respectively) the base class of all SCons
warnings.

SCons.Warnings.suppressWarningClass (clazz)
Suppresses all warnings of type clazz or derived from clazz.

SCons.Warnings.warn (clazz, *args)
Issue a warning, accounting for SCons rules.
Check if warnings for this class are enabled. If warnings are treated as exceptions, raise exception. Use the global
warning-emitter _warningOut, which allows selecting different ways of presenting a traceback (see Script/Main.py)

SCons.Warnings.warningAsException (flag=True)
Set global _warningAsExeption flag.

Parameters: flag – value to set warnings-as-exceptions to [default: True]

Returns: The previous value.

SCons.cpp module
SCons C Pre-Processor module

SCons.cpp.CPP_to_Python (s)
Converts a C pre-processor expression into an equivalent Python expression that can be evaluated.

SCons.cpp.CPP_to_Python_Ops_Sub (m)

SCons.cpp.Cleanup_CPP_Expressions (ts)

class SCons.cpp.DumbPreProcessor (*args, **kw)
Bases: SCons.cpp.PreProcessor
A preprocessor that ignores all #if/#elif/#else/#endif directives and just reports back all of the #include files (like the
classic SCons scanner did).
This is functionally equivalent to using a regular expression to find all of the #include lines, only slower. It exists
mainly as an example of how the main PreProcessor class can be sub-classed to tailor its behavior.

_do_if_else_condition (condition)
Common logic for evaluating the conditions on #if, #ifdef and #ifndef lines.

_match_tuples (tuples)

_parse_tuples (contents)

_process_tuples (tuples, file=None)

all_include (t)

do_define (t)
Default handling of a #define line.

do_elif (t)

SCons Project API Documentation

212

Default handling of a #elif line.

do_else (t)
Default handling of a #else line.

do_endif (t)
Default handling of a #endif line.

do_if (t)
Default handling of a #if line.

do_ifdef (t)
Default handling of a #ifdef line.

do_ifndef (t)
Default handling of a #ifndef line.

do_import (t)
Default handling of a #import line.

do_include (t)
Default handling of a #include line.

do_include_next (t)
Default handling of a #include line.

do_nothing (t)
Null method for when we explicitly want the action for a specific preprocessor directive to do nothing.

do_undef (t)
Default handling of a #undef line.

eval_expression (t)
Evaluates a C preprocessor expression.
This is done by converting it to a Python equivalent and eval()ing it in the C preprocessor namespace we use to
track #define values.

finalize_result (fname)

find_include_file (t)
Finds the #include file for a given preprocessor tuple.

initialize_result (fname)

process_contents (contents)
Pre-processes a file contents.
Is used by tests

process_file (file)
Pre-processes a file.
This is the main internal entry point.

read_file (file)

resolve_include (t)
Resolve a tuple-ized #include line.
This handles recursive expansion of values without “” or <> surrounding the name until an initial ” or < is found,
to handle #include FILE where FILE is a #define somewhere else.

restore ()
Pops the previous dispatch table off the stack and makes it the current one.

SCons Project API Documentation

213

save ()
Pushes the current dispatch table on the stack and re-initializes the current dispatch table to the default.

scons_current_file (t)

start_handling_includes (t=None)
Causes the PreProcessor object to start processing #import, #include and #include_next lines.
This method will be called when a #if, #ifdef, #ifndef or #elif evaluates True, or when we reach the #else in a #if,
#ifdef, #ifndef or #elif block where a condition already evaluated False.

stop_handling_includes (t=None)
Causes the PreProcessor object to stop processing #import, #include and #include_next lines.
This method will be called when a #if, #ifdef, #ifndef or #elif evaluates False, or when we reach the #else in a #if,
#ifdef, #ifndef or #elif block where a condition already evaluated True.

tupleize (contents)
Turns the contents of a file into a list of easily-processed tuples describing the CPP lines in the file.
The first element of each tuple is the line’s preprocessor directive (#if, #include, #define, etc., minus the initial
‘#’). The remaining elements are specific to the type of directive, as pulled apart by the regular expression.

class SCons.cpp.FunctionEvaluator (name, args, expansion)
Bases: object
Handles delayed evaluation of a #define function call.

class SCons.cpp.PreProcessor (current='.', cpppath=(), dict={}, all=0, depth=- 1)
Bases: object
The main workhorse class for handling C pre-processing.

_do_if_else_condition (condition)
Common logic for evaluating the conditions on #if, #ifdef and #ifndef lines.

_match_tuples (tuples)

_parse_tuples (contents)

_process_tuples (tuples, file=None)

all_include (t)

do_define (t)
Default handling of a #define line.

do_elif (t)
Default handling of a #elif line.

do_else (t)
Default handling of a #else line.

do_endif (t)
Default handling of a #endif line.

do_if (t)
Default handling of a #if line.

do_ifdef (t)
Default handling of a #ifdef line.

do_ifndef (t)
Default handling of a #ifndef line.

do_import (t)

SCons Project API Documentation

214

Default handling of a #import line.

do_include (t)
Default handling of a #include line.

do_include_next (t)
Default handling of a #include line.

do_nothing (t)
Null method for when we explicitly want the action for a specific preprocessor directive to do nothing.

do_undef (t)
Default handling of a #undef line.

eval_expression (t)
Evaluates a C preprocessor expression.
This is done by converting it to a Python equivalent and eval()ing it in the C preprocessor namespace we use to
track #define values.

finalize_result (fname)

find_include_file (t)
Finds the #include file for a given preprocessor tuple.

initialize_result (fname)

process_contents (contents)
Pre-processes a file contents.
Is used by tests

process_file (file)
Pre-processes a file.
This is the main internal entry point.

read_file (file)

resolve_include (t)
Resolve a tuple-ized #include line.
This handles recursive expansion of values without “” or <> surrounding the name until an initial ” or < is found,
to handle #include FILE where FILE is a #define somewhere else.

restore ()
Pops the previous dispatch table off the stack and makes it the current one.

save ()
Pushes the current dispatch table on the stack and re-initializes the current dispatch table to the default.

scons_current_file (t)

start_handling_includes (t=None)
Causes the PreProcessor object to start processing #import, #include and #include_next lines.
This method will be called when a #if, #ifdef, #ifndef or #elif evaluates True, or when we reach the #else in a #if,
#ifdef, #ifndef or #elif block where a condition already evaluated False.

stop_handling_includes (t=None)
Causes the PreProcessor object to stop processing #import, #include and #include_next lines.
This method will be called when a #if, #ifdef, #ifndef or #elif evaluates False, or when we reach the #else in a #if,
#ifdef, #ifndef or #elif block where a condition already evaluated True.

tupleize (contents)
Turns the contents of a file into a list of easily-processed tuples describing the CPP lines in the file.

SCons Project API Documentation

215

The first element of each tuple is the line’s preprocessor directive (#if, #include, #define, etc., minus the initial
‘#’). The remaining elements are specific to the type of directive, as pulled apart by the regular expression.

SCons.dblite module
dblite.py module contributed by Ralf W. Grosse-Kunstleve. Extended for Unicode by Steven Knight.

SCons.dblite._exercise ()

class SCons.dblite.dblite (file_base_name, flag, mode)
Bases: object
Squirrel away references to the functions in various modules that we’ll use when our __del__() method calls our
sync() method during shutdown. We might get destroyed when Python is in the midst of tearing down the different
modules we import in an essentially arbitrary order, and some of the various modules’s global attributes may
already be wiped out from under us.

See the discussion at:

http://mail.python.org/pipermail/python-bugs-list/2003-March/016877.html

_check_writable ()

_open (mode='r', buffering=- 1, encoding=None, errors=None, newline=None, closefd=True, opener=None)
Open file and return a stream. Raise OSError upon failure.
file is either a text or byte string giving the name (and the path if the file isn’t in the current working directory) of
the file to be opened or an integer file descriptor of the file to be wrapped. (If a file descriptor is given, it is closed
when the returned I/O object is closed, unless closefd is set to False.)
mode is an optional string that specifies the mode in which the file is opened. It defaults to ‘r’ which means open
for reading in text mode. Other common values are ‘w’ for writing (truncating the file if it already exists), ‘x’ for
creating and writing to a new file, and ‘a’ for appending (which on some Unix systems, means that all writes
append to the end of the file regardless of the current seek position). In text mode, if encoding is not specified
the encoding used is platform dependent: locale.getpreferredencoding(False) is called to get the current locale
encoding. (For reading and writing raw bytes use binary mode and leave encoding unspecified.) The available
modes are:

Character Meaning

‘r’ open for reading (default)

‘w’ open for writing, truncating the file first

‘x’ create a new file and open it for writing

‘a’ open for writing, appending to the end of the file if it exists

‘b’ binary mode

‘t’ text mode (default)

‘+’ open a disk file for updating (reading and writing)

‘U’ universal newline mode (deprecated)

The default mode is ‘rt’ (open for reading text). For binary random access, the mode ‘w+b’ opens and truncates
the file to 0 bytes, while ‘r+b’ opens the file without truncation. The ‘x’ mode implies ‘w’ and raises an
FileExistsError if the file already exists.
Python distinguishes between files opened in binary and text modes, even when the underlying operating
system doesn’t. Files opened in binary mode (appending ‘b’ to the mode argument) return contents as bytes
objects without any decoding. In text mode (the default, or when ‘t’ is appended to the mode argument), the
contents of the file are returned as strings, the bytes having been first decoded using a platform-dependent
encoding or using the specified encoding if given.
‘U’ mode is deprecated and will raise an exception in future versions of Python. It has no effect in Python 3. Use
newline to control universal newlines mode.
buffering is an optional integer used to set the buffering policy. Pass 0 to switch buffering off (only allowed in
binary mode), 1 to select line buffering (only usable in text mode), and an integer > 1 to indicate the size of a
fixed-size chunk buffer. When no buffering argument is given, the default buffering policy works as follows:

SCons Project API Documentation

216

http://mail.python.org/pipermail/python-bugs-list/2003-March/016877.html

• Binary files are buffered in fixed-size chunks; the size of the buffer is chosen using a heuristic trying to
determine the underlying device’s “block size” and falling back on io.DEFAULT_BUFFER_SIZE. On many
systems, the buffer will typically be 4096 or 8192 bytes long.

• “Interactive” text files (files for which isatty() returns True) use line buffering. Other text files use the policy
described above for binary files.

encoding is the name of the encoding used to decode or encode the file. This should only be used in text mode.
The default encoding is platform dependent, but any encoding supported by Python can be passed. See the
codecs module for the list of supported encodings.
errors is an optional string that specifies how encoding errors are to be handled—this argument should not be
used in binary mode. Pass ‘strict’ to raise a ValueError exception if there is an encoding error (the default of
None has the same effect), or pass ‘ignore’ to ignore errors. (Note that ignoring encoding errors can lead to data
loss.) See the documentation for codecs.register or run ‘help(codecs.Codec)’ for a list of the permitted encoding
error strings.
newline controls how universal newlines works (it only applies to text mode). It can be None, ‘’, ‘n’, ‘r’, and ‘rn’. It
works as follows:

• On input, if newline is None, universal newlines mode is enabled. Lines in the input can end in ‘n’, ‘r’, or ‘rn’,
and these are translated into ‘n’ before being returned to the caller. If it is ‘’, universal newline mode is
enabled, but line endings are returned to the caller untranslated. If it has any of the other legal values, input
lines are only terminated by the given string, and the line ending is returned to the caller untranslated.

• On output, if newline is None, any ‘n’ characters written are translated to the system default line separator,
os.linesep. If newline is ‘’ or ‘n’, no translation takes place. If newline is any of the other legal values, any ‘n’
characters written are translated to the given string.

If closefd is False, the underlying file descriptor will be kept open when the file is closed. This does not work
when a file name is given and must be True in that case.
A custom opener can be used by passing a callable as opener. The underlying file descriptor for the file object is
then obtained by calling opener with (file, flags). opener must return an open file descriptor (passing os.open as
opener results in functionality similar to passing None).
open() returns a file object whose type depends on the mode, and through which the standard file operations
such as reading and writing are performed. When open() is used to open a file in a text mode (‘w’, ‘r’, ‘wt’, ‘rt’,
etc.), it returns a TextIOWrapper. When used to open a file in a binary mode, the returned class varies: in read
binary mode, it returns a BufferedReader; in write binary and append binary modes, it returns a BufferedWriter,
and in read/write mode, it returns a BufferedRandom.
It is also possible to use a string or bytearray as a file for both reading and writing. For strings StringIO can be
used like a file opened in a text mode, and for bytes a BytesIO can be used like a file opened in a binary mode.

_os_chmod (mode, *, dir_fd=None, follow_symlinks=True)
Change the access permissions of a file.

path

Path to be modified. May always be specified as a str, bytes, or a path-like object. On some platforms,
path may also be specified as an open file descriptor. If this functionality is unavailable, using it raises
an exception.

mode

Operating-system mode bitfield.

dir_fd

If not None, it should be a file descriptor open to a directory, and path should be relative; path will then
be relative to that directory.

follow_symlinks

If False, and the last element of the path is a symbolic link, chmod will modify the symbolic link itself
instead of the file the link points to.

It is an error to use dir_fd or follow_symlinks when specifying path as

an open file descriptor.

dir_fd and follow_symlinks may not be implemented on your platform.

If they are unavailable, using them will raise a NotImplementedError.

_os_chown (uid, gid, *, dir_fd=None, follow_symlinks=True)

SCons Project API Documentation

217

Change the owner and group id of path to the numeric uid and gid.

path

Path to be examined; can be string, bytes, a path-like object, or open-file-descriptor int.

dir_fd

If not None, it should be a file descriptor open to a directory, and path should be relative; path will then
be relative to that directory.

follow_symlinks

If False, and the last element of the path is a symbolic link, stat will examine the symbolic link itself
instead of the file the link points to.

path may always be specified as a string. On some platforms, path may also be specified as an open file
descriptor.

If this functionality is unavailable, using it raises an exception.

If dir_fd is not None, it should be a file descriptor open to a directory,

and path should be relative; path will then be relative to that directory.

If follow_symlinks is False, and the last element of the path is a symbolic

link, chown will modify the symbolic link itself instead of the file the link points to.

It is an error to use dir_fd or follow_symlinks when specifying path as

an open file descriptor.

dir_fd and follow_symlinks may not be implemented on your platform.

If they are unavailable, using them will raise a NotImplementedError.

_os_replace (dst, *, src_dir_fd=None, dst_dir_fd=None)
Rename a file or directory, overwriting the destination.

If either src_dir_fd or dst_dir_fd is not None, it should be a file

descriptor open to a directory, and the respective path string (src or dst) should be relative; the path will
then be relative to that directory.

src_dir_fd and dst_dir_fd, may not be implemented on your platform.

If they are unavailable, using them will raise a NotImplementedError.

static _pickle_dump (obj, file, protocol=None, *, fix_imports=True)
Write a pickled representation of obj to the open file object file.
This is equivalent to Pickler(file, protocol).dump(obj), but may be more efficient.
The optional protocol argument tells the pickler to use the given protocol supported protocols are 0, 1, 2, 3 and
4. The default protocol is 3; a backward-incompatible protocol designed for Python 3.
Specifying a negative protocol version selects the highest protocol version supported. The higher the protocol
used, the more recent the version of Python needed to read the pickle produced.
The file argument must have a write() method that accepts a single bytes argument. It can thus be a file object
opened for binary writing, an io.BytesIO instance, or any other custom object that meets this interface.
If fix_imports is True and protocol is less than 3, pickle will try to map the new Python 3 names to the old module
names used in Python 2, so that the pickle data stream is readable with Python 2.

_pickle_protocol = 4

_shutil_copyfile (dst, *, follow_symlinks=True)
Copy data from src to dst.
If follow_symlinks is not set and src is a symbolic link, a new symlink will be created instead of copying the file it
points to.

_time_time ()
time() -> floating point number
Return the current time in seconds since the Epoch. Fractions of a second may be present if the system clock
provides them.

close ()

SCons Project API Documentation

218

keys ()

sync ()

SCons.dblite.open (file, flag=None, mode=438)

SCons.exitfuncs module
Register functions which are executed when SCons exits for any reason.

SCons.exitfuncs._run_exitfuncs ()
run any registered exit functions
_exithandlers is traversed in reverse order so functions are executed last in, first out.

SCons.exitfuncs.register (func, *targs, **kargs)
register a function to be executed upon normal program termination
func - function to be called at exit targs - optional arguments to pass to func kargs - optional keyword arguments to
pass to func

SCons.compat package

Module contents
SCons compatibility package for old Python versions

This subpackage holds modules that provide backwards-compatible implementations of various things from newer
Python versions that we cannot count on because SCons still supported older Pythons.

Other code will not generally reference things in this package through the SCons.compat namespace. The modules
included here add things to the builtins namespace or the global module list so that the rest of our code can use the
objects and names imported here regardless of Python version. As a result, if this module is used, it should violate
the normal convention for imports (standard library imports first, then program-specific imports, each ordered
aplhabetically) and needs to be listed first.

The rest of the things here will be in individual compatibility modules that are either: 1) suitably modified copies of the
future modules that we want to use; or 2) backwards compatible re-implementations of the specific portions of a
future module’s API that we want to use.

GENERAL WARNINGS: Implementations of functions in the SCons.compat modules are NOT guaranteed to be fully
compliant with these functions in later versions of Python. We are only concerned with adding functionality that we
actually use in SCons, so be wary if you lift this code for other uses. (That said, making these more nearly the same
as later, official versions is still a desirable goal, we just don’t need to be obsessive about it.)

We name the compatibility modules with an initial ‘_scons_’ (for example, _scons_subprocess.py is our compatibility
module for subprocess) so that we can still try to import the real module name and fall back to our compatibility
module if we get an ImportError. The import_as() function defined below loads the module as the “real” name
(without the ‘_scons’), after which all of the “import {module}” statements in the rest of our code will find our
pre-loaded compatibility module.

class SCons.compat.NoSlotsPyPy (name, bases, dct)
Bases: type
Metaclass for PyPy compatitbility.
PyPy does not work well with __slots__ and __class__ assignment.

mro ()
Return a type’s method resolution order.

SCons.compat.rename_module (new, old)
Attempt to import the old module and load it under the new name. Used for purely cosmetic name changes in
Python 3.x.

SCons.compat package

219

SCons.Node package

Submodules

SCons.Node.Alias module
Alias nodes.

This creates a hash of global Aliases (dummy targets).

class SCons.Node.Alias.Alias (name)
Bases: SCons.Node.Node

class Attrs
Bases: object

shared

BuildInfo
alias of SCons.Node.Alias.AliasBuildInfo

Decider (function)

GetTag (key)
Return a user-defined tag.

NodeInfo
alias of SCons.Node.Alias.AliasNodeInfo

Tag (key, value)
Add a user-defined tag.

_add_child (collection, set, child)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it’s already present.

_children_get ()

_children_reset ()

_func_exists

_func_get_contents

_func_is_derived

_func_rexists

_func_target_from_source

_get_scanner (env, initial_scanner, root_node_scanner, kw)

_memo

_specific_sources

_tags

add_dependency (depend)
Adds dependencies.

SCons.Node package

220

add_ignore (depend)
Adds dependencies to ignore.

add_prerequisite (prerequisite)
Adds prerequisites

add_source (source)
Adds sources.

add_to_implicit (deps)

add_to_waiting_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, 0 if not.
(Note that the returned values are intended to be used to increment a reference count, so don’t think you can
“clean up” this function by using True and False instead…)

add_to_waiting_s_e (node)

add_wkid (wkid)
Add a node to the list of kids waiting to be evaluated

all_children (scan=1)
Return a list of all the node’s direct children.

alter_targets ()
Return a list of alternate targets for this Node.

always_build

attributes

binfo

build ()
A “builder” for aliases.

builder

builder_set (builder)

built ()
Called just after this node is successfully built.

cached

changed (node=None, allowcache=False)
Returns if the node is up-to-date with respect to the BuildInfo stored last time it was built. The default behavior is
to compare it against our own previously stored BuildInfo, but the stored BuildInfo from another Node (typically
one in a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as
we detected any difference, but we now rely on checking every dependency to make sure that any necessary
Node information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last_build

check_attributes (name)
Simple API to check if the node.attributes for name has been set

SCons.Node package

221

children (scan=1)
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values ()

convert ()

del_binfo ()
Delete the build info from this node.

depends

depends_set

disambiguate (must_exist=None)

env

env_set (env, safe=0)

executor

executor_cleanup ()
Let the executor clean up any cached information.

exists ()
Does this node exists?

explain ()

for_signature ()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__() method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need
to return something that would actually work in a command line; it can return any kind of nonsense, so long as it
does not change.

get_abspath ()
Return an absolute path to the Node. This will return simply str(Node) by default, but for Node types that have a
concept of relative path, this might return something different.

get_binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns -
the build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they’re already
built and updated by someone else, if that’s what’s wanted.

get_build_env ()
Fetch the appropriate Environment to build this node.

SCons.Node package

222

get_build_scanner_path (scanner)
Fetch the appropriate scanner path for this node.

get_builder (default_builder=None)
Return the set builder, or a specified default value

get_cachedir_csig ()

get_contents ()
The contents of an alias is the concatenation of the content signatures of all its sources.

get_csig ()
Generate a node’s content signature, the digested signature of its content.
node - the node cache - alternate node to use for the signature cache returns - the content signature

get_env ()

get_env_scanner (env, kw={})

get_executor (create=1)
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.

get_found_includes (env, scanner, path)
Return the scanned include lines (implicit dependencies) found in this node.
The default is no implicit dependencies. We expect this method to be overridden by any subclass that can be
scanned for implicit dependencies.

get_implicit_deps (env, initial_scanner, path_func, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.

get_ninfo ()

get_source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get_state ()

get_stored_implicit ()
Fetch the stored implicit dependencies

get_stored_info ()

get_string (for_signature)
This is a convenience function designed primarily to be used in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command
line, which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a
string, passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle
use is that some Nodes would like to implement a __getattr__() method, but putting that in the Node type itself

SCons.Node package

223

has a tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this
method to return self if no new functionality is needed for Environment substitution.

get_suffix ()

get_target_scanner ()

has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: …”). When the builder attribute is examined directly, it ends up calling __getattr__ for both the
__len__ and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

ignore

ignore_set

implicit

implicit_set

includes

is_conftest ()
Returns true if this node is an conftest node

is_derived ()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and
should contribute their build signatures when they are used as source files to other derived files. For example:
source with source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript ()
Returns true if this node is an sconscript

is_under (dir)

is_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

linked

make_ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

missing ()

SCons.Node package

224

multiple_side_effect_has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: …”). When the builder attribute is examined directly, it ends up calling __getattr__ for both the
__len__ and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

new_binfo ()

new_ninfo ()

ninfo

nocache

noclean

postprocess ()
Clean up anything we don’t need to hang onto after we’ve been built.

precious

prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before
actually calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and
initializes the BuildInfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the
targets built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note
that subclass methods should call this base class method to get the child check and the BuildInfo structure.

prerequisites

pseudo

push_to_cache ()
Try to push a node into a cache

really_build (**kw)
Actually build the node.
This is called by the Taskmaster after it’s decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().

ref_count

release_target_info ()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order
to minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that
much how many KBytes a Node actually requires…as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()

remove ()
Remove this Node: no-op by default.

render_include_tree ()

SCons.Node package

225

Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.

reset_executor ()
Remove cached executor; forces recompute when needed.

retrieve_from_cache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().
Returns true if the node was successfully retrieved.

rexists ()
Does this node exist locally or in a repository?

scan ()
Scan this node’s dependents for implicit dependencies.

scanner_key ()

sconsign ()
An Alias is not recorded in .sconsign files

select_scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don’t select one the Scanner.Selector that’s configured for the target.

set_always_build (always_build=1)
Set the Node’s always_build value.

set_executor (executor)
Set the action executor for this node.

set_explicit (is_explicit)

set_nocache (nocache=1)
Set the Node’s nocache value.

set_noclean (noclean=1)
Set the Node’s noclean value.

set_precious (precious=1)
Set the Node’s precious value.

set_pseudo (pseudo=True)
Set the Node’s precious value.

set_specific_source (source)

set_state (state)

side_effect

side_effects

sources

sources_set

state

SCons.Node package

226

store_info

str_for_display ()

target_peers

visited ()
Called just after this node has been visited (with or without a build).

waiting_parents

waiting_s_e

wkids

class SCons.Node.Alias.AliasBuildInfo
Bases: SCons.Node.BuildInfoBase

bact

bactsig

bdepends

bdependsigs

bimplicit

bimplicitsigs

bsources

bsourcesigs

current_version_id = 2

merge (other)
Merge the fields of another object into this object. Already existing information is overwritten by the other
instance’s data. WARNING: If a ‘__dict__’ slot is added, it should be updated instead of replaced.

class SCons.Node.Alias.AliasNameSpace (**kwargs)
Bases: collections.UserDict

Alias (name, **kw)

_abc_impl = <_abc_data object>

clear () → None. Remove all items from D.

copy ()

classmethod fromkeys (iterable, value=None)

get (k[, d]) → D[k] if k in D, else d. d defaults to None.

items () → a set-like object providing a view on D’s items

keys () → a set-like object providing a view on D’s keys

lookup (name, **kw)

SCons.Node package

227

pop (k[, d]) → v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised.

popitem () → (k, v), remove and return some (key, value) pair
as a 2-tuple; but raise KeyError if D is empty.

setdefault (k[, d]) → D.get(k,d), also set D[k]=d if k not in D

update ([, E], **F) → None. Update D from mapping/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method, does:
for (k, v) in E: D[k] = v In either case, this is followed by: for k, v in F.items(): D[k] = v

values () → an object providing a view on D’s values

class SCons.Node.Alias.AliasNodeInfo
Bases: SCons.Node.NodeInfoBase

convert (node, val)

csig

current_version_id = 2

field_list = ['csig']

format (field_list=None, names=0)

merge (other)
Merge the fields of another object into this object. Already existing information is overwritten by the other
instance’s data. WARNING: If a ‘__dict__’ slot is added, it should be updated instead of replaced.

str_to_node (s)

update (node)

SCons.Node.FS module
File system nodes.

These Nodes represent the canonical external objects that people think of when they think of building software: files
and directories.

This holds a “default_fs” variable that should be initialized with an FS that can be used by scripts or modules looking
for the canonical default.

class SCons.Node.FS.Base (name, directory, fs)
Bases: SCons.Node.Node
A generic class for file system entries. This class is for when we don’t know yet whether the entry being looked up
is a file or a directory. Instances of this class can morph into either Dir or File objects by a later, more precise
lookup.
Note: this class does not define __cmp__ and __hash__ for efficiency reasons. SCons does a lot of comparing of
Node.FS.{Base,Entry,File,Dir} objects, so those operations must be as fast as possible, which means we want to
use Python’s built-in object identity comparisons.

class Attrs
Bases: object

shared

BuildInfo
alias of SCons.Node.BuildInfoBase

SCons.Node package

228

Decider (function)

GetTag (key)
Return a user-defined tag.

NodeInfo
alias of SCons.Node.NodeInfoBase

RDirs (pathlist)
Search for a list of directories in the Repository list.

Rfindalldirs (pathlist)
Return all of the directories for a given path list, including corresponding “backing” directories in any repositories.
The Node lookups are relative to this Node (typically a directory), so memoizing result saves cycles from looking
up the same path for each target in a given directory.

Tag (key, value)
Add a user-defined tag.

_Rfindalldirs_key (pathlist)

_abspath

_add_child (collection, set, child)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it’s already present.

_children_get ()

_children_reset ()

_func_exists

_func_get_contents

_func_is_derived

_func_rexists

_func_sconsign

_func_target_from_source

_get_scanner (env, initial_scanner, root_node_scanner, kw)

_get_str ()

_glob1 (pattern, ondisk=True, source=False, strings=False)

_labspath

_local

_memo

_path

_path_elements

_proxy

_save_str ()

SCons.Node package

229

_specific_sources

_tags

_tpath

add_dependency (depend)
Adds dependencies.

add_ignore (depend)
Adds dependencies to ignore.

add_prerequisite (prerequisite)
Adds prerequisites

add_source (source)
Adds sources.

add_to_implicit (deps)

add_to_waiting_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, 0 if not.
(Note that the returned values are intended to be used to increment a reference count, so don’t think you can
“clean up” this function by using True and False instead…)

add_to_waiting_s_e (node)

add_wkid (wkid)
Add a node to the list of kids waiting to be evaluated

all_children (scan=1)
Return a list of all the node’s direct children.

alter_targets ()
Return a list of alternate targets for this Node.

always_build

attributes

binfo

build (**kw)
Actually build the node.
This is called by the Taskmaster after it’s decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().

builder

builder_set (builder)

built ()
Called just after this node is successfully built.

cached

changed (node=None, allowcache=False)

SCons.Node package

230

Returns if the node is up-to-date with respect to the BuildInfo stored last time it was built. The default behavior is
to compare it against our own previously stored BuildInfo, but the stored BuildInfo from another Node (typically
one in a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as
we detected any difference, but we now rely on checking every dependency to make sure that any necessary
Node information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last_build

check_attributes (name)
Simple API to check if the node.attributes for name has been set

children (scan=1)
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values ()

cwd

del_binfo ()
Delete the build info from this node.

depends

depends_set

dir

disambiguate (must_exist=None)

duplicate

env

env_set (env, safe=0)

executor

executor_cleanup ()
Let the executor clean up any cached information.

exists ()
Does this node exists?

explain ()

for_signature ()

SCons.Node package

231

Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__() method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need
to return something that would actually work in a command line; it can return any kind of nonsense, so long as it
does not change.

fs
Reference to parent Node.FS object

get_abspath ()
Get the absolute path of the file.

get_binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns -
the build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they’re already
built and updated by someone else, if that’s what’s wanted.

get_build_env ()
Fetch the appropriate Environment to build this node.

get_build_scanner_path (scanner)
Fetch the appropriate scanner path for this node.

get_builder (default_builder=None)
Return the set builder, or a specified default value

get_cachedir_csig ()

get_contents ()
Fetch the contents of the entry.

get_csig ()

get_dir ()

get_env ()

get_env_scanner (env, kw={})

get_executor (create=1)
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.

get_found_includes (env, scanner, path)
Return the scanned include lines (implicit dependencies) found in this node.
The default is no implicit dependencies. We expect this method to be overridden by any subclass that can be
scanned for implicit dependencies.

get_implicit_deps (env, initial_scanner, path_func, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.

get_internal_path ()

get_labspath ()
Get the absolute path of the file.

get_ninfo ()

SCons.Node package

232

get_path (dir=None)
Return path relative to the current working directory of the Node.FS.Base object that owns us.

get_path_elements ()

get_relpath ()
Get the path of the file relative to the root SConstruct file’s directory.

get_source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get_state ()

get_stored_implicit ()
Fetch the stored implicit dependencies

get_stored_info ()

get_string (for_signature)
This is a convenience function designed primarily to be used in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command
line, which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a
string, passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle
use is that some Nodes would like to implement a __getattr__() method, but putting that in the Node type itself
has a tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this
method to return self if no new functionality is needed for Environment substitution.

get_suffix ()

get_target_scanner ()

get_tpath ()

getmtime ()

getsize ()

has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: …”). When the builder attribute is examined directly, it ends up calling __getattr__ for both the
__len__ and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

ignore

SCons.Node package

233

ignore_set

implicit

implicit_set

includes

is_conftest ()
Returns true if this node is an conftest node

is_derived ()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and
should contribute their build signatures when they are used as source files to other derived files. For example:
source with source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript ()
Returns true if this node is an sconscript

is_under (dir)

is_up_to_date ()
Default check for whether the Node is current: unknown Node subtypes are always out of date, so they will
always get built.

isdir ()

isfile ()

islink ()

linked

lstat ()

make_ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

missing ()

multiple_side_effect_has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: …”). When the builder attribute is examined directly, it ends up calling __getattr__ for both the
__len__ and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

must_be_same (klass)
This node, which already existed, is being looked up as the specified klass. Raise an exception if it isn’t.

name

new_binfo ()

SCons.Node package

234

new_ninfo ()

ninfo

nocache

noclean

postprocess ()
Clean up anything we don’t need to hang onto after we’ve been built.

precious

prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before
actually calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and
initializes the BuildInfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the
targets built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note
that subclass methods should call this base class method to get the child check and the BuildInfo structure.

prerequisites

pseudo

push_to_cache ()
Try to push a node into a cache

ref_count

release_target_info ()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order
to minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that
much how many KBytes a Node actually requires…as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()

remove ()
Remove this Node: no-op by default.

render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.

rentry ()

reset_executor ()
Remove cached executor; forces recompute when needed.

retrieve_from_cache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().
Returns true if the node was successfully retrieved.

rexists ()
Does this node exist locally or in a repository?

SCons.Node package

235

rfile ()

rstr ()
A Node.FS.Base object’s string representation is its path name.

sbuilder

scan ()
Scan this node’s dependents for implicit dependencies.

scanner_key ()

select_scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don’t select one the Scanner.Selector that’s configured for the target.

set_always_build (always_build=1)
Set the Node’s always_build value.

set_executor (executor)
Set the action executor for this node.

set_explicit (is_explicit)

set_local ()

set_nocache (nocache=1)
Set the Node’s nocache value.

set_noclean (noclean=1)
Set the Node’s noclean value.

set_precious (precious=1)
Set the Node’s precious value.

set_pseudo (pseudo=True)
Set the Node’s precious value.

set_specific_source (source)

set_src_builder (builder)
Set the source code builder for this node.

set_state (state)

side_effect

side_effects

sources

sources_set

src_builder ()
Fetch the source code builder for this node.
If there isn’t one, we cache the source code builder specified for the directory (which in turn will cache the value
from its parent directory, and so on up to the file system root).

srcnode ()
If this node is in a build path, return the node corresponding to its source file. Otherwise, return ourself.

SCons.Node package

236

stat ()

state

store_info

str_for_display ()

target_from_source (prefix, suffix, splitext=<function splitext>)
Generates a target entry that corresponds to this entry (usually a source file) with the specified prefix and suffix.
Note that this method can be overridden dynamically for generated files that need different behavior. See
Tool/swig.py for an example.

target_peers

visited ()
Called just after this node has been visited (with or without a build).

waiting_parents

waiting_s_e

wkids

class SCons.Node.FS.Dir (name, directory, fs)
Bases: SCons.Node.FS.Base
A class for directories in a file system.

class Attrs
Bases: object

shared

BuildInfo
alias of SCons.Node.FS.DirBuildInfo

Decider (function)

Dir (name, create=True)
Looks up or creates a directory node named ‘name’ relative to this directory.

Entry (name)
Looks up or creates an entry node named ‘name’ relative to this directory.

File (name)
Looks up or creates a file node named ‘name’ relative to this directory.

GetTag (key)
Return a user-defined tag.

NodeInfo
alias of SCons.Node.FS.DirNodeInfo

RDirs (pathlist)
Search for a list of directories in the Repository list.

Rfindalldirs (pathlist)
Return all of the directories for a given path list, including corresponding “backing” directories in any repositories.
The Node lookups are relative to this Node (typically a directory), so memoizing result saves cycles from looking
up the same path for each target in a given directory.

SCons.Node package

237

Tag (key, value)
Add a user-defined tag.

_Rfindalldirs_key (pathlist)

__clearRepositoryCache (duplicate=None)
Called when we change the repository(ies) for a directory. This clears any cached information that is invalidated
by changing the repository.

__resetDuplicate (node)

_abspath

_add_child (collection, set, child)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it’s already present.

_children_get ()

_children_reset ()

_create ()
Create this directory, silently and without worrying about whether the builder is the default or not.

_func_exists

_func_get_contents

_func_is_derived

_func_rexists

_func_sconsign

_func_target_from_source

_get_scanner (env, initial_scanner, root_node_scanner, kw)

_get_str ()

_glob1 (pattern, ondisk=True, source=False, strings=False)
Globs for and returns a list of entry names matching a single pattern in this directory.
This searches any repositories and source directories for corresponding entries and returns a Node (or string)
relative to the current directory if an entry is found anywhere.
TODO: handle pattern with no wildcard

_labspath

_local

_memo

_morph ()
Turn a file system Node (either a freshly initialized directory object or a separate Entry object) into a proper
directory object.
Set up this directory’s entries and hook it into the file system tree. Specify that directories (this Node) don’t use
signatures for calculating whether they’re current.

_path

_path_elements

SCons.Node package

238

_proxy

_rel_path_key (other)

_save_str ()

_sconsign

_specific_sources

_srcdir_find_file_key (filename)

_tags

_tpath

addRepository (dir)

add_dependency (depend)
Adds dependencies.

add_ignore (depend)
Adds dependencies to ignore.

add_prerequisite (prerequisite)
Adds prerequisites

add_source (source)
Adds sources.

add_to_implicit (deps)

add_to_waiting_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, 0 if not.
(Note that the returned values are intended to be used to increment a reference count, so don’t think you can
“clean up” this function by using True and False instead…)

add_to_waiting_s_e (node)

add_wkid (wkid)
Add a node to the list of kids waiting to be evaluated

all_children (scan=1)
Return a list of all the node’s direct children.

alter_targets ()
Return any corresponding targets in a variant directory.

always_build

attributes

binfo

build (**kw)
A null “builder” for directories.

builder

builder_set (builder)

SCons.Node package

239

built ()
Called just after this node is successfully built.

cached

cachedir_csig

cachesig

changed (node=None, allowcache=False)
Returns if the node is up-to-date with respect to the BuildInfo stored last time it was built. The default behavior is
to compare it against our own previously stored BuildInfo, but the stored BuildInfo from another Node (typically
one in a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as
we detected any difference, but we now rely on checking every dependency to make sure that any necessary
Node information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last_build

check_attributes (name)
Simple API to check if the node.attributes for name has been set

children (scan=1)
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values ()

contentsig

cwd

del_binfo ()
Delete the build info from this node.

depends

depends_set

dir

dir_on_disk (name)

dirname

disambiguate (must_exist=None)

diskcheck_match ()

SCons.Node package

240

do_duplicate (src)

duplicate

entries

entry_abspath (name)

entry_exists_on_disk (name)
Searches through the file/dir entries of the current directory, and returns True if a physical entry with the given
name could be found.
@see rentry_exists_on_disk

entry_labspath (name)

entry_path (name)

entry_tpath (name)

env

env_set (env, safe=0)

executor

executor_cleanup ()
Let the executor clean up any cached information.

exists ()
Does this node exists?

explain ()

file_on_disk (name)

for_signature ()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__() method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need
to return something that would actually work in a command line; it can return any kind of nonsense, so long as it
does not change.

fs

getRepositories ()
Returns a list of repositories for this directory.

get_abspath ()
Get the absolute path of the file.

get_all_rdirs ()

get_binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns -
the build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they’re already
built and updated by someone else, if that’s what’s wanted.

get_build_env ()

SCons.Node package

241

Fetch the appropriate Environment to build this node.

get_build_scanner_path (scanner)
Fetch the appropriate scanner path for this node.

get_builder (default_builder=None)
Return the set builder, or a specified default value

get_cachedir_csig ()

get_contents ()
Return content signatures and names of all our children separated by new-lines. Ensure that the nodes are
sorted.

get_csig ()
Compute the content signature for Directory nodes. In general, this is not needed and the content signature is
not stored in the DirNodeInfo. However, if get_contents on a Dir node is called which has a child directory, the
child directory should return the hash of its contents.

get_dir ()

get_env ()

get_env_scanner (env, kw={})

get_executor (create=1)
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.

get_found_includes (env, scanner, path)
Return this directory’s implicit dependencies.
We don’t bother caching the results because the scan typically shouldn’t be requested more than once (as
opposed to scanning .h file contents, which can be requested as many times as the files is #included by other
files).

get_implicit_deps (env, initial_scanner, path_func, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.

get_internal_path ()

get_labspath ()
Get the absolute path of the file.

get_ninfo ()

get_path (dir=None)
Return path relative to the current working directory of the Node.FS.Base object that owns us.

get_path_elements ()

get_relpath ()
Get the path of the file relative to the root SConstruct file’s directory.

get_source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get_state ()

SCons.Node package

242

get_stored_implicit ()
Fetch the stored implicit dependencies

get_stored_info ()

get_string (for_signature)
This is a convenience function designed primarily to be used in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command
line, which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a
string, passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle
use is that some Nodes would like to implement a __getattr__() method, but putting that in the Node type itself
has a tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this
method to return self if no new functionality is needed for Environment substitution.

get_suffix ()

get_target_scanner ()

get_text_contents ()
We already emit things in text, so just return the binary version.

get_timestamp ()
Return the latest timestamp from among our children

get_tpath ()

getmtime ()

getsize ()

glob (pathname, ondisk=True, source=False, strings=False, exclude=None)
Returns a list of Nodes (or strings) matching a specified pathname pattern.
Pathname patterns follow UNIX shell semantics: * matches any-length strings of any characters, ? matches any
character, and [] can enclose lists or ranges of characters. Matches do not span directory separators.
The matches take into account Repositories, returning local Nodes if a corresponding entry exists in a
Repository (either an in-memory Node or something on disk).
By defafult, the glob() function matches entries that exist on-disk, in addition to in-memory Nodes. Setting the
“ondisk” argument to False (or some other non-true value) causes the glob() function to only match in-memory
Nodes. The default behavior is to return both the on-disk and in-memory Nodes.
The “source” argument, when true, specifies that corresponding source Nodes must be returned if you’re
globbing in a build directory (initialized with VariantDir()). The default behavior is to return Nodes local to the
VariantDir().
The “strings” argument, when true, returns the matches as strings, not Nodes. The strings are path names
relative to this directory.
The “exclude” argument, if not None, must be a pattern or a list of patterns following the same UNIX shell
semantics. Elements matching a least one pattern of this list will be excluded from the result.
The underlying algorithm is adapted from the glob.glob() function in the Python library (but heavily modified), and
uses fnmatch() under the covers.

has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: …”). When the builder attribute is examined directly, it ends up calling __getattr__ for both the

SCons.Node package

243

__len__ and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

ignore

ignore_set

implicit

implicit_set

includes

is_conftest ()
Returns true if this node is an conftest node

is_derived ()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and
should contribute their build signatures when they are used as source files to other derived files. For example:
source with source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript ()
Returns true if this node is an sconscript

is_under (dir)

is_up_to_date ()
If any child is not up-to-date, then this directory isn’t, either.

isdir ()

isfile ()

islink ()

link (srcdir, duplicate)
Set this directory as the variant directory for the supplied source directory.

linked

lstat ()

make_ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

missing ()

multiple_side_effect_has_builder ()

SCons.Node package

244

Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: …”). When the builder attribute is examined directly, it ends up calling __getattr__ for both the
__len__ and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

must_be_same (klass)
This node, which already existed, is being looked up as the specified klass. Raise an exception if it isn’t.

name

new_binfo ()

new_ninfo ()

ninfo

nocache

noclean

on_disk_entries

postprocess ()
Clean up anything we don’t need to hang onto after we’ve been built.

precious

prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before
actually calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and
initializes the BuildInfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the
targets built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note
that subclass methods should call this base class method to get the child check and the BuildInfo structure.

prerequisites

pseudo

push_to_cache ()
Try to push a node into a cache

rdir ()

ref_count

rel_path (other)
Return a path to “other” relative to this directory.

release_target_info ()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order
to minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that
much how many KBytes a Node actually requires…as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()

SCons.Node package

245

released_target_info

remove ()
Remove this Node: no-op by default.

render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.

rentry ()

rentry_exists_on_disk (name)
Searches through the file/dir entries of the current and all its remote directories (repos), and returns True if a
physical entry with the given name could be found. The local directory (self) gets searched first, so repositories
take a lower precedence regarding the searching order.
@see entry_exists_on_disk

repositories

reset_executor ()
Remove cached executor; forces recompute when needed.

retrieve_from_cache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().
Returns true if the node was successfully retrieved.

rexists ()
Does this node exist locally or in a repository?

rfile ()

root

rstr ()
A Node.FS.Base object’s string representation is its path name.

sbuilder

scan ()
Scan this node’s dependents for implicit dependencies.

scanner_key ()
A directory does not get scanned.

scanner_paths

sconsign ()
Return the .sconsign file info for this directory.

searched

select_scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don’t select one the Scanner.Selector that’s configured for the target.

set_always_build (always_build=1)
Set the Node’s always_build value.

set_executor (executor)

SCons.Node package

246

Set the action executor for this node.

set_explicit (is_explicit)

set_local ()

set_nocache (nocache=1)
Set the Node’s nocache value.

set_noclean (noclean=1)
Set the Node’s noclean value.

set_precious (precious=1)
Set the Node’s precious value.

set_pseudo (pseudo=True)
Set the Node’s precious value.

set_specific_source (source)

set_src_builder (builder)
Set the source code builder for this node.

set_state (state)

side_effect

side_effects

sources

sources_set

src_builder ()
Fetch the source code builder for this node.
If there isn’t one, we cache the source code builder specified for the directory (which in turn will cache the value
from its parent directory, and so on up to the file system root).

srcdir

srcdir_duplicate (name)

srcdir_find_file (filename)

srcdir_list ()

srcnode ()
Dir has a special need for srcnode()…if we have a srcdir attribute set, then that is our srcnode.

stat ()

state

store_info

str_for_display ()

target_from_source (prefix, suffix, splitext=<function splitext>)
Generates a target entry that corresponds to this entry (usually a source file) with the specified prefix and suffix.
Note that this method can be overridden dynamically for generated files that need different behavior. See
Tool/swig.py for an example.

SCons.Node package

247

target_peers

up ()

variant_dirs

visited ()
Called just after this node has been visited (with or without a build).

waiting_parents

waiting_s_e

walk (func, arg)
Walk this directory tree by calling the specified function for each directory in the tree.
This behaves like the os.path.walk() function, but for in-memory Node.FS.Dir objects. The function takes the
same arguments as the functions passed to os.path.walk():

func(arg, dirname, fnames)
Except that “dirname” will actually be the directory Node, not the string. The ‘.’ and ‘..’ entries are excluded from
fnames. The fnames list may be modified in-place to filter the subdirectories visited or otherwise impose a
specific order. The “arg” argument is always passed to func() and may be used in any way (or ignored, passing
None is common).

wkids

class SCons.Node.FS.DirBuildInfo
Bases: SCons.Node.BuildInfoBase

bact

bactsig

bdepends

bdependsigs

bimplicit

bimplicitsigs

bsources

bsourcesigs

current_version_id = 2

merge (other)
Merge the fields of another object into this object. Already existing information is overwritten by the other
instance’s data. WARNING: If a ‘__dict__’ slot is added, it should be updated instead of replaced.

class SCons.Node.FS.DirNodeInfo
Bases: SCons.Node.NodeInfoBase

convert (node, val)

current_version_id = 2

format (field_list=None, names=0)

fs = None

SCons.Node package

248

merge (other)
Merge the fields of another object into this object. Already existing information is overwritten by the other
instance’s data. WARNING: If a ‘__dict__’ slot is added, it should be updated instead of replaced.

str_to_node (s)

update (node)

class SCons.Node.FS.DiskChecker (type, do, ignore)
Bases: object

set (list)

class SCons.Node.FS.Entry (name, directory, fs)
Bases: SCons.Node.FS.Base
This is the class for generic Node.FS entries–that is, things that could be a File or a Dir, but we’re just not sure yet.
Consequently, the methods in this class really exist just to transform their associated object into the right class
when the time comes, and then call the same-named method in the transformed class.

class Attrs
Bases: object

shared

BuildInfo
alias of SCons.Node.BuildInfoBase

Decider (function)

GetTag (key)
Return a user-defined tag.

NodeInfo
alias of SCons.Node.NodeInfoBase

RDirs (pathlist)
Search for a list of directories in the Repository list.

Rfindalldirs (pathlist)
Return all of the directories for a given path list, including corresponding “backing” directories in any repositories.
The Node lookups are relative to this Node (typically a directory), so memoizing result saves cycles from looking
up the same path for each target in a given directory.

Tag (key, value)
Add a user-defined tag.

_Rfindalldirs_key (pathlist)

_abspath

_add_child (collection, set, child)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it’s already present.

_children_get ()

_children_reset ()

_func_exists

_func_get_contents

SCons.Node package

249

_func_is_derived

_func_rexists

_func_sconsign

_func_target_from_source

_get_scanner (env, initial_scanner, root_node_scanner, kw)

_get_str ()

_glob1 (pattern, ondisk=True, source=False, strings=False)

_labspath

_local

_memo

_path

_path_elements

_proxy

_save_str ()

_sconsign

_specific_sources

_tags

_tpath

add_dependency (depend)
Adds dependencies.

add_ignore (depend)
Adds dependencies to ignore.

add_prerequisite (prerequisite)
Adds prerequisites

add_source (source)
Adds sources.

add_to_implicit (deps)

add_to_waiting_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, 0 if not.
(Note that the returned values are intended to be used to increment a reference count, so don’t think you can
“clean up” this function by using True and False instead…)

add_to_waiting_s_e (node)

add_wkid (wkid)
Add a node to the list of kids waiting to be evaluated

all_children (scan=1)

SCons.Node package

250

Return a list of all the node’s direct children.

alter_targets ()
Return a list of alternate targets for this Node.

always_build

attributes

binfo

build (**kw)
Actually build the node.
This is called by the Taskmaster after it’s decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().

builder

builder_set (builder)

built ()
Called just after this node is successfully built.

cached

cachedir_csig

cachesig

changed (node=None, allowcache=False)
Returns if the node is up-to-date with respect to the BuildInfo stored last time it was built. The default behavior is
to compare it against our own previously stored BuildInfo, but the stored BuildInfo from another Node (typically
one in a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as
we detected any difference, but we now rely on checking every dependency to make sure that any necessary
Node information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last_build

check_attributes (name)
Simple API to check if the node.attributes for name has been set

children (scan=1)
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values ()

SCons.Node package

251

contentsig

cwd

del_binfo ()
Delete the build info from this node.

depends

depends_set

dir

dirname

disambiguate (must_exist=None)

diskcheck_match ()

duplicate

entries

env

env_set (env, safe=0)

executor

executor_cleanup ()
Let the executor clean up any cached information.

exists ()
Does this node exists?

explain ()

for_signature ()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__() method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need
to return something that would actually work in a command line; it can return any kind of nonsense, so long as it
does not change.

fs

get_abspath ()
Get the absolute path of the file.

get_binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns -
the build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they’re already
built and updated by someone else, if that’s what’s wanted.

get_build_env ()
Fetch the appropriate Environment to build this node.

get_build_scanner_path (scanner)

SCons.Node package

252

Fetch the appropriate scanner path for this node.

get_builder (default_builder=None)
Return the set builder, or a specified default value

get_cachedir_csig ()

get_contents ()
Fetch the contents of the entry. Returns the exact binary contents of the file.

get_csig ()

get_dir ()

get_env ()

get_env_scanner (env, kw={})

get_executor (create=1)
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.

get_found_includes (env, scanner, path)
Return the scanned include lines (implicit dependencies) found in this node.
The default is no implicit dependencies. We expect this method to be overridden by any subclass that can be
scanned for implicit dependencies.

get_implicit_deps (env, initial_scanner, path_func, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.

get_internal_path ()

get_labspath ()
Get the absolute path of the file.

get_ninfo ()

get_path (dir=None)
Return path relative to the current working directory of the Node.FS.Base object that owns us.

get_path_elements ()

get_relpath ()
Get the path of the file relative to the root SConstruct file’s directory.

get_source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get_state ()

get_stored_implicit ()
Fetch the stored implicit dependencies

get_stored_info ()

get_string (for_signature)

SCons.Node package

253

This is a convenience function designed primarily to be used in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command
line, which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a
string, passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle
use is that some Nodes would like to implement a __getattr__() method, but putting that in the Node type itself
has a tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this
method to return self if no new functionality is needed for Environment substitution.

get_suffix ()

get_target_scanner ()

get_text_contents ()
Fetch the decoded text contents of a Unicode encoded Entry.
Since this should return the text contents from the file system, we check to see into what sort of subclass we
should morph this Entry.

get_tpath ()

getmtime ()

getsize ()

has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: …”). When the builder attribute is examined directly, it ends up calling __getattr__ for both the
__len__ and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

ignore

ignore_set

implicit

implicit_set

includes

is_conftest ()
Returns true if this node is an conftest node

is_derived ()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and
should contribute their build signatures when they are used as source files to other derived files. For example:
source with source builders are not derived in this sense, and hence should not return true.

SCons.Node package

254

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript ()
Returns true if this node is an sconscript

is_under (dir)

is_up_to_date ()
Default check for whether the Node is current: unknown Node subtypes are always out of date, so they will
always get built.

isdir ()

isfile ()

islink ()

linked

lstat ()

make_ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

missing ()

multiple_side_effect_has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: …”). When the builder attribute is examined directly, it ends up calling __getattr__ for both the
__len__ and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

must_be_same (klass)
Called to make sure a Node is a Dir. Since we’re an Entry, we can morph into one.

name

new_binfo ()

new_ninfo ()

ninfo

nocache

noclean

on_disk_entries

postprocess ()
Clean up anything we don’t need to hang onto after we’ve been built.

precious

prepare ()

SCons.Node package

255

Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before
actually calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and
initializes the BuildInfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the
targets built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note
that subclass methods should call this base class method to get the child check and the BuildInfo structure.

prerequisites

pseudo

push_to_cache ()
Try to push a node into a cache

ref_count

rel_path (other)

release_target_info ()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order
to minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that
much how many KBytes a Node actually requires…as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()

released_target_info

remove ()
Remove this Node: no-op by default.

render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.

rentry ()

repositories

reset_executor ()
Remove cached executor; forces recompute when needed.

retrieve_from_cache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().
Returns true if the node was successfully retrieved.

rexists ()
Does this node exist locally or in a repository?

rfile ()
We’re a generic Entry, but the caller is actually looking for a File at this point, so morph into one.

root

rstr ()
A Node.FS.Base object’s string representation is its path name.

SCons.Node package

256

sbuilder

scan ()
Scan this node’s dependents for implicit dependencies.

scanner_key ()

scanner_paths

searched

select_scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don’t select one the Scanner.Selector that’s configured for the target.

set_always_build (always_build=1)
Set the Node’s always_build value.

set_executor (executor)
Set the action executor for this node.

set_explicit (is_explicit)

set_local ()

set_nocache (nocache=1)
Set the Node’s nocache value.

set_noclean (noclean=1)
Set the Node’s noclean value.

set_precious (precious=1)
Set the Node’s precious value.

set_pseudo (pseudo=True)
Set the Node’s precious value.

set_specific_source (source)

set_src_builder (builder)
Set the source code builder for this node.

set_state (state)

side_effect

side_effects

sources

sources_set

src_builder ()
Fetch the source code builder for this node.
If there isn’t one, we cache the source code builder specified for the directory (which in turn will cache the value
from its parent directory, and so on up to the file system root).

srcdir

srcnode ()

SCons.Node package

257

If this node is in a build path, return the node corresponding to its source file. Otherwise, return ourself.

stat ()

state

store_info

str_for_display ()

target_from_source (prefix, suffix, splitext=<function splitext>)
Generates a target entry that corresponds to this entry (usually a source file) with the specified prefix and suffix.
Note that this method can be overridden dynamically for generated files that need different behavior. See
Tool/swig.py for an example.

target_peers

variant_dirs

visited ()
Called just after this node has been visited (with or without a build).

waiting_parents

waiting_s_e

wkids

class SCons.Node.FS.EntryProxy (subject)
Bases: SCons.Util.Proxy

__get_abspath ()

__get_base_path ()
Return the file’s directory and file name, with the suffix stripped.

__get_dir ()

__get_file ()

__get_filebase ()

__get_posix_path ()
Return the path with / as the path separator, regardless of platform.

__get_relpath ()

__get_rsrcdir ()
Returns the directory containing the source node linked to this node via VariantDir(), or the directory of this node
if not linked.

__get_rsrcnode ()

__get_srcdir ()
Returns the directory containing the source node linked to this node via VariantDir(), or the directory of this node
if not linked.

__get_srcnode ()

__get_suffix ()

SCons.Node package

258

__get_windows_path ()
Return the path with as the path separator, regardless of platform.

dictSpecialAttrs = {'abspath': <function EntryProxy.__get_abspath>, 'base': <function
EntryProxy.__get_base_path>, 'dir': <function EntryProxy.__get_dir>, 'file': <function EntryProxy.__get_file>,
'filebase': <function EntryProxy.__get_filebase>, 'posix': <function EntryProxy.__get_posix_path>, 'relpath':
<function EntryProxy.__get_relpath>, 'rsrcdir': <function EntryProxy.__get_rsrcdir>, 'rsrcpath': <function
EntryProxy.__get_rsrcnode>, 'srcdir': <function EntryProxy.__get_srcdir>, 'srcpath': <function
EntryProxy.__get_srcnode>, 'suffix': <function EntryProxy.__get_suffix>, 'win32': <function
EntryProxy.__get_windows_path>, 'windows': <function EntryProxy.__get_windows_path>}

get ()
Retrieve the entire wrapped object

exception SCons.Node.FS.EntryProxyAttributeError (entry_proxy, attribute)
Bases: AttributeError
An AttributeError subclass for recording and displaying the name of the underlying Entry involved in an
AttributeError exception.

args

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class SCons.Node.FS.FS (path=None)
Bases: SCons.Node.FS.LocalFS

Dir (name, directory=None, create=True)
Look up or create a Dir node with the specified name. If the name is a relative path (begins with ./, ../, or a file
name), then it is looked up relative to the supplied directory node, or to the top level directory of the FS (supplied
at construction time) if no directory is supplied.
This method will raise TypeError if a normal file is found at the specified path.

Entry (name, directory=None, create=1)
Look up or create a generic Entry node with the specified name. If the name is a relative path (begins with ./, ../,
or a file name), then it is looked up relative to the supplied directory node, or to the top level directory of the FS
(supplied at construction time) if no directory is supplied.

File (name, directory=None, create=1)
Look up or create a File node with the specified name. If the name is a relative path (begins with ./, ../, or a file
name), then it is looked up relative to the supplied directory node, or to the top level directory of the FS (supplied
at construction time) if no directory is supplied.
This method will raise TypeError if a directory is found at the specified path.

Glob (pathname, ondisk=True, source=True, strings=False, exclude=None, cwd=None)
Globs
This is mainly a shim layer

PyPackageDir (modulename)
Locate the directory of a given python module name
For example scons might resolve to Windows: C:Python27Libsite-packagesscons-2.5.1 Linux: /usr/lib/scons
This can be useful when we want to determine a toolpath based on a python module name

Repository (*dirs)
Specify Repository directories to search.

VariantDir (variant_dir, src_dir, duplicate=1)
Link the supplied variant directory to the source directory for purposes of building files.

_lookup (p, directory, fsclass, create=1)
The generic entry point for Node lookup with user-supplied data.

SCons.Node package

259

This translates arbitrary input into a canonical Node.FS object of the specified fsclass. The general approach for
strings is to turn it into a fully normalized absolute path and then call the root directory’s lookup_abs() method for
the heavy lifting.
If the path name begins with ‘#’, it is unconditionally interpreted relative to the top-level directory of this FS. ‘#’ is
treated as a synonym for the top-level SConstruct directory, much like ‘~’ is treated as a synonym for the user’s
home directory in a UNIX shell. So both ‘#foo’ and ‘#/foo’ refer to the ‘foo’ subdirectory underneath the top-level
SConstruct directory.
If the path name is relative, then the path is looked up relative to the specified directory, or the current directory
(self._cwd, typically the SConscript directory) if the specified directory is None.

chdir (dir, change_os_dir=0)
Change the current working directory for lookups. If change_os_dir is true, we will also change the “real” cwd to
match.

chmod (path, mode)

copy (src, dst)

copy2 (src, dst)

exists (path)

get_max_drift ()

get_root (drive)
Returns the root directory for the specified drive, creating it if necessary.

getcwd ()

getmtime (path)

getsize (path)

isdir (path)

isfile (path)

islink (path)

link (src, dst)

listdir (path)

lstat (path)

makedirs (path, mode=511, exist_ok=False)

mkdir (path, mode=511)

open (path)

readlink (file)

rename (old, new)

scandir (path)

set_SConstruct_dir (dir)

set_max_drift (max_drift)

SCons.Node package

260

stat (path)

symlink (src, dst)

unlink (path)

variant_dir_target_climb (orig, dir, tail)
Create targets in corresponding variant directories
Climb the directory tree, and look up path names relative to any linked variant directories we find.
Even though this loops and walks up the tree, we don’t memoize the return value because this is really only
used to process the command-line targets.

class SCons.Node.FS.File (name, directory, fs)
Bases: SCons.Node.FS.Base
A class for files in a file system.

class Attrs
Bases: object

shared

BuildInfo
alias of SCons.Node.FS.FileBuildInfo

Decider (function)

Dir (name, create=True)
Create a directory node named ‘name’ relative to the directory of this file.

Dirs (pathlist)
Create a list of directories relative to the SConscript directory of this file.

Entry (name)
Create an entry node named ‘name’ relative to the directory of this file.

File (name)
Create a file node named ‘name’ relative to the directory of this file.

GetTag (key)
Return a user-defined tag.

NodeInfo
alias of SCons.Node.FS.FileNodeInfo

RDirs (pathlist)
Search for a list of directories in the Repository list.

Rfindalldirs (pathlist)
Return all of the directories for a given path list, including corresponding “backing” directories in any repositories.
The Node lookups are relative to this Node (typically a directory), so memoizing result saves cycles from looking
up the same path for each target in a given directory.

Tag (key, value)
Add a user-defined tag.

_Rfindalldirs_key (pathlist)

__dmap_cache = {}

__dmap_sig_cache = {}

SCons.Node package

261

_abspath

_add_child (collection, set, child)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it’s already present.

_add_strings_to_dependency_map (dmap)
In the case comparing node objects isn’t sufficient, we’ll add the strings for the nodes to the dependency map
:return:

_build_dependency_map (binfo)
Build mapping from file -> signature

Parameters:
• - self (self) –

• - buildinfo from node being considered (binfo) –
Returns: dictionary of file->signature mappings

_children_get ()

_children_reset ()

_createDir ()

_func_exists

_func_get_contents

_func_is_derived

_func_rexists

_func_sconsign

_func_target_from_source

_get_found_includes_key (env, scanner, path)

_get_previous_signatures (dmap)
Return a list of corresponding csigs from previous build in order of the node/files in children.

Parameters:
• - self (self) –

• - Dictionary of file -> csig (dmap) –
Returns: List of csigs for provided list of children

_get_scanner (env, initial_scanner, root_node_scanner, kw)

_get_str ()

_glob1 (pattern, ondisk=True, source=False, strings=False)

_labspath

_local

_memo

_morph ()
Turn a file system node into a File object.

_path

SCons.Node package

262

_path_elements

_proxy

_rmv_existing ()

_save_str ()

_sconsign

_specific_sources

_tags

_tpath

add_dependency (depend)
Adds dependencies.

add_ignore (depend)
Adds dependencies to ignore.

add_prerequisite (prerequisite)
Adds prerequisites

add_source (source)
Adds sources.

add_to_implicit (deps)

add_to_waiting_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, 0 if not.
(Note that the returned values are intended to be used to increment a reference count, so don’t think you can
“clean up” this function by using True and False instead…)

add_to_waiting_s_e (node)

add_wkid (wkid)
Add a node to the list of kids waiting to be evaluated

all_children (scan=1)
Return a list of all the node’s direct children.

alter_targets ()
Return any corresponding targets in a variant directory.

always_build

attributes

binfo

build (**kw)
Actually build the node.
This is called by the Taskmaster after it’s decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().

builder

SCons.Node package

263

builder_set (builder)

built ()
Called just after this File node is successfully built.
Just like for ‘release_target_info’ we try to release some more target node attributes in order to minimize the
overall memory consumption.
@see: release_target_info

cached

cachedir_csig

cachesig

changed (node=None, allowcache=False)
Returns if the node is up-to-date with respect to the BuildInfo stored last time it was built.
For File nodes this is basically a wrapper around Node.changed(), but we allow the return value to get cached
after the reference to the Executor got released in release_target_info().
@see: Node.changed()

changed_content (target, prev_ni, repo_node=None)

changed_since_last_build

changed_state (target, prev_ni, repo_node=None)

changed_timestamp_match (target, prev_ni, repo_node=None)
Return True if the timestamps don’t match or if there is no previous timestamp :param target: :param prev_ni:
Information about the node from the previous build :return:

changed_timestamp_newer (target, prev_ni, repo_node=None)

changed_timestamp_then_content (target, prev_ni, node=None)
Used when decider for file is Timestamp-MD5

NOTE: If the timestamp hasn’t changed this will skip md5’ing the

file and just copy the prev_ni provided. If the prev_ni is wrong. It will propagate it. See:
https://github.com/SCons/scons/issues/2980

Parameters:
• - dependency (self) –

• - target (target) –

• - The NodeInfo object loaded from previous builds .sconsign (prev_ni) –

• - Node instance. Check this node for file existence/timestamp (node) – if
specified.

Returns: Boolean - Indicates if node(File) has changed.

check_attributes (name)
Simple API to check if the node.attributes for name has been set

children (scan=1)
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear ()

SCons.Node package

264

https://github.com/SCons/scons/issues/2980

Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values ()

contentsig

convert_copy_attrs = ['bsources', 'bimplicit', 'bdepends', 'bact', 'bactsig', 'ninfo']

convert_old_entry (old_entry)

convert_sig_attrs = ['bsourcesigs', 'bimplicitsigs', 'bdependsigs']

cwd

del_binfo ()
Delete the build info from this node.

depends

depends_set

dir

dirname

disambiguate (must_exist=None)

diskcheck_match ()

do_duplicate (src)

duplicate

entries

env

env_set (env, safe=0)

executor

executor_cleanup ()
Let the executor clean up any cached information.

exists ()
Does this node exists?

explain ()

find_repo_file ()
For this node, find if there exists a corresponding file in one or more repositories :return: list of corresponding
files in repositories

find_src_builder ()

for_signature ()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__() method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need

SCons.Node package

265

to return something that would actually work in a command line; it can return any kind of nonsense, so long as it
does not change.

fs

get_abspath ()
Get the absolute path of the file.

get_binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns -
the build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they’re already
built and updated by someone else, if that’s what’s wanted.

get_build_env ()
Fetch the appropriate Environment to build this node.

get_build_scanner_path (scanner)
Fetch the appropriate scanner path for this node.

get_builder (default_builder=None)
Return the set builder, or a specified default value

get_cachedir_bsig ()
Return the signature for a cached file, including its children.
It adds the path of the cached file to the cache signature, because multiple targets built by the same action will
all have the same build signature, and we have to differentiate them somehow.
Signature should normally be string of hex digits.

get_cachedir_csig ()
Fetch a Node’s content signature for purposes of computing another Node’s cachesig.
This is a wrapper around the normal get_csig() method that handles the somewhat obscure case of using
CacheDir with the -n option. Any files that don’t exist would normally be “built” by fetching them from the cache,
but the normal get_csig() method will try to open up the local file, which doesn’t exist because the -n option
meant we didn’t actually pull the file from cachedir. But since the file does actually exist in the cachedir, we can
use its contents for the csig.

get_content_hash () → str
Compute and return the hash for this file.

get_contents () → bytes
Return the contents of the file as bytes.

get_contents_sig ()
A helper method for get_cachedir_bsig.
It computes and returns the signature for this node’s contents.

get_csig () → str
Generate a node’s content signature.

get_dir ()

get_env ()

get_env_scanner (env, kw={})

get_executor (create=1)
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.

get_found_includes (env, scanner, path)

SCons.Node package

266

Return the included implicit dependencies in this file. Cache results so we only scan the file once per path
regardless of how many times this information is requested.

get_implicit_deps (env, initial_scanner, path_func, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.

get_internal_path ()

get_labspath ()
Get the absolute path of the file.

get_max_drift_csig () → Optional[str]
Returns the content signature currently stored for this node if it’s been unmodified longer than the max_drift
value, or the max_drift value is 0. Returns None otherwise.

get_ninfo ()

get_path (dir=None)
Return path relative to the current working directory of the Node.FS.Base object that owns us.

get_path_elements ()

get_relpath ()
Get the path of the file relative to the root SConstruct file’s directory.

get_size () → int

get_source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get_state ()

get_stored_implicit ()
Fetch the stored implicit dependencies

get_stored_info ()

get_string (for_signature)
This is a convenience function designed primarily to be used in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command
line, which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a
string, passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle
use is that some Nodes would like to implement a __getattr__() method, but putting that in the Node type itself
has a tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this
method to return self if no new functionality is needed for Environment substitution.

get_suffix ()

get_target_scanner ()

SCons.Node package

267

get_text_contents () → str
Return the contents of the file in text form.
This attempts to figure out what the encoding of the text is based upon the BOM bytes, and then decodes the
contents so that it’s a valid python string.

get_timestamp () → int

get_tpath ()

getmtime ()

getsize ()

has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: …”). When the builder attribute is examined directly, it ends up calling __getattr__ for both the
__len__ and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

has_src_builder ()
Return whether this Node has a source builder or not.
If this Node doesn’t have an explicit source code builder, this is where we figure out, on the fly, if there’s a
transparent source code builder for it.
Note that if we found a source builder, we also set the self.builder attribute, so that all of the methods that
actually build this file don’t have to do anything different.

hash_chunksize = 65536

ignore

ignore_set

implicit

implicit_set

includes

is_conftest ()
Returns true if this node is an conftest node

is_derived ()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and
should contribute their build signatures when they are used as source files to other derived files. For example:
source with source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript ()
Returns true if this node is an sconscript

SCons.Node package

268

is_under (dir)

is_up_to_date ()
Check for whether the Node is current In all cases self is the target we’re checking to see if it’s up to date

isdir ()

isfile ()

islink ()

linked

lstat ()

make_ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

missing ()

multiple_side_effect_has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: …”). When the builder attribute is examined directly, it ends up calling __getattr__ for both the
__len__ and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

must_be_same (klass)
This node, which already existed, is being looked up as the specified klass. Raise an exception if it isn’t.

name

new_binfo ()

new_ninfo ()

ninfo

nocache

noclean

on_disk_entries

postprocess ()
Clean up anything we don’t need to hang onto after we’ve been built.

precious

prepare ()
Prepare for this file to be created.

prerequisites

pseudo

push_to_cache ()
Try to push the node into a cache

SCons.Node package

269

ref_count

rel_path (other)

release_target_info ()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order
to minimize the overall memory consumption.
We’d like to remove a lot more attributes like self.sources and self.sources_set, but they might get used in a next
build step. For example, during configuration the source files for a built E{*}.o file are used to figure out which
linker to use for the resulting Program (gcc vs. g++)! That’s why we check for the ‘keep_targetinfo’ attribute,
config Nodes and the Interactive mode just don’t allow an early release of most variables.
In the same manner, we can’t simply remove the self.attributes here. The smart linking relies on the shared flag,
and some parts of the java Tool use it to transport information about nodes…
@see: built() and Node.release_target_info()

released_target_info

remove ()
Remove this file.

render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.

rentry ()

repositories

reset_executor ()
Remove cached executor; forces recompute when needed.

retrieve_from_cache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().
Returns true if the node was successfully retrieved.

rexists ()
Does this node exist locally or in a repository?

rfile ()

root

rstr ()
A Node.FS.Base object’s string representation is its path name.

sbuilder

scan ()
Scan this node’s dependents for implicit dependencies.

scanner_key ()

scanner_paths

searched

select_scanner (scanner)
Selects a scanner for this Node.

SCons.Node package

270

This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don’t select one the Scanner.Selector that’s configured for the target.

set_always_build (always_build=1)
Set the Node’s always_build value.

set_executor (executor)
Set the action executor for this node.

set_explicit (is_explicit)

set_local ()

set_nocache (nocache=1)
Set the Node’s nocache value.

set_noclean (noclean=1)
Set the Node’s noclean value.

set_precious (precious=1)
Set the Node’s precious value.

set_pseudo (pseudo=True)
Set the Node’s precious value.

set_specific_source (source)

set_src_builder (builder)
Set the source code builder for this node.

set_state (state)

side_effect

side_effects

sources

sources_set

src_builder ()
Fetch the source code builder for this node.
If there isn’t one, we cache the source code builder specified for the directory (which in turn will cache the value
from its parent directory, and so on up to the file system root).

srcdir

srcnode ()
If this node is in a build path, return the node corresponding to its source file. Otherwise, return ourself.

stat ()

state

store_info

str_for_display ()

target_from_source (prefix, suffix, splitext=<function splitext>)
Generates a target entry that corresponds to this entry (usually a source file) with the specified prefix and suffix.

SCons.Node package

271

Note that this method can be overridden dynamically for generated files that need different behavior. See
Tool/swig.py for an example.

target_peers

variant_dirs

visited ()
Called just after this node has been visited (with or without a build).

waiting_parents

waiting_s_e

wkids

class SCons.Node.FS.FileBuildInfo
Bases: SCons.Node.BuildInfoBase
This is info loaded from sconsign.

Attributes unique to FileBuildInfo:

dependency_map : Caches file->csig mapping

for all dependencies. Currently this is only used when using MD5-timestamp decider. It’s used to ensure
that we copy the correct csig from the previous build to be written to .sconsign when current build is done.
Previously the matching of csig to file was strictly by order they appeared in bdepends, bsources, or
bimplicit, and so a change in order or count of any of these could yield writing wrong csig, and then false
positive rebuilds

bact

bactsig

bdepends

bdependsigs

bimplicit

bimplicitsigs

bsources

bsourcesigs

convert_from_sconsign (dir, name)
Converts a newly-read FileBuildInfo object for in-SCons use
For normal up-to-date checking, we don’t have any conversion to perform–but we’re leaving this method here to
make that clear.

convert_to_sconsign ()
Converts this FileBuildInfo object for writing to a .sconsign file
This replaces each Node in our various dependency lists with its usual string representation: relative to the
top-level SConstruct directory, or an absolute path if it’s outside.

current_version_id = 2

dependency_map

format (names=0)

merge (other)

SCons.Node package

272

Merge the fields of another object into this object. Already existing information is overwritten by the other
instance’s data. WARNING: If a ‘__dict__’ slot is added, it should be updated instead of replaced.

prepare_dependencies ()
Prepares a FileBuildInfo object for explaining what changed
The bsources, bdepends and bimplicit lists have all been stored on disk as paths relative to the top-level
SConstruct directory. Convert the strings to actual Nodes (for use by the –debug=explain code and
–implicit-cache).

exception SCons.Node.FS.FileBuildInfoFileToCsigMappingError
Bases: Exception

args

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class SCons.Node.FS.FileFinder
Bases: object

_find_file_key (filename, paths, verbose=None)

filedir_lookup (p, fd=None)
A helper method for find_file() that looks up a directory for a file we’re trying to find. This only creates the Dir
Node if it exists on-disk, since if the directory doesn’t exist we know we won’t find any files in it… :-)
It would be more compact to just use this as a nested function with a default keyword argument (see the
commented-out version below), but that doesn’t work unless you have nested scopes, so we define it here just
so this work under Python 1.5.2.

find_file (filename, paths, verbose=None)
Find a node corresponding to either a derived file or a file that exists already.
Only the first file found is returned, and none is returned if no file is found.
filename: A filename to find paths: A list of directory path nodes to search in. Can be represented as a list, a
tuple, or a callable that is called with no arguments and returns the list or tuple.
returns The node created from the found file.

class SCons.Node.FS.FileNodeInfo
Bases: SCons.Node.NodeInfoBase

convert (node, val)

csig

current_version_id = 2

field_list = ['csig', 'timestamp', 'size']

format (field_list=None, names=0)

fs = None

merge (other)
Merge the fields of another object into this object. Already existing information is overwritten by the other
instance’s data. WARNING: If a ‘__dict__’ slot is added, it should be updated instead of replaced.

size

str_to_node (s)

timestamp

SCons.Node package

273

update (node)

SCons.Node.FS.LinkFunc (target, source, env)
Relative paths cause problems with symbolic links, so we use absolute paths, which may be a problem for people
who want to move their soft-linked src-trees around. Those people should use the ‘hard-copy’ mode, softlinks
cannot be used for that; at least I have no idea how …

class SCons.Node.FS.LocalFS
Bases: object
This class implements an abstraction layer for operations involving a local file system. Essentially, this wraps any
function in the os, os.path or shutil modules that we use to actually go do anything with or to the local file system.
Note that there’s a very good chance we’ll refactor this part of the architecture in some way as we really implement
the interface(s) for remote file system Nodes. For example, the right architecture might be to have this be a
subclass instead of a base class. Nevertheless, we’re using this as a first step in that direction.
We’re not using chdir() yet because the calling subclass method needs to use os.chdir() directly to avoid recursion.
Will we really need this one?

chmod (path, mode)

copy (src, dst)

copy2 (src, dst)

exists (path)

getmtime (path)

getsize (path)

isdir (path)

isfile (path)

islink (path)

link (src, dst)

listdir (path)

lstat (path)

makedirs (path, mode=511, exist_ok=False)

mkdir (path, mode=511)

open (path)

readlink (file)

rename (old, new)

scandir (path)

stat (path)

symlink (src, dst)

unlink (path)

SCons.Node.FS.LocalString (target, source, env)

SCons.Node.FS.MkdirFunc (target, source, env)

SCons.Node package

274

class SCons.Node.FS.RootDir (drive, fs)
Bases: SCons.Node.FS.Dir
A class for the root directory of a file system.
This is the same as a Dir class, except that the path separator (‘/’ or ‘') is actually part of the name, so we don’t
need to add a separator when creating the path names of entries within this directory.

class Attrs
Bases: object

shared

BuildInfo
alias of SCons.Node.FS.DirBuildInfo

Decider (function)

Dir (name, create=True)
Looks up or creates a directory node named ‘name’ relative to this directory.

Entry (name)
Looks up or creates an entry node named ‘name’ relative to this directory.

File (name)
Looks up or creates a file node named ‘name’ relative to this directory.

GetTag (key)
Return a user-defined tag.

NodeInfo
alias of SCons.Node.FS.DirNodeInfo

RDirs (pathlist)
Search for a list of directories in the Repository list.

Rfindalldirs (pathlist)
Return all of the directories for a given path list, including corresponding “backing” directories in any repositories.
The Node lookups are relative to this Node (typically a directory), so memoizing result saves cycles from looking
up the same path for each target in a given directory.

Tag (key, value)
Add a user-defined tag.

_Rfindalldirs_key (pathlist)

_abspath

_add_child (collection, set, child)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it’s already present.

_children_get ()

_children_reset ()

_create ()
Create this directory, silently and without worrying about whether the builder is the default or not.

_func_exists

_func_get_contents

_func_is_derived

SCons.Node package

275

_func_rexists

_func_sconsign

_func_target_from_source

_get_scanner (env, initial_scanner, root_node_scanner, kw)

_get_str ()

_glob1 (pattern, ondisk=True, source=False, strings=False)
Globs for and returns a list of entry names matching a single pattern in this directory.
This searches any repositories and source directories for corresponding entries and returns a Node (or string)
relative to the current directory if an entry is found anywhere.
TODO: handle pattern with no wildcard

_labspath

_local

_lookupDict

_lookup_abs (p, klass, create=1)
Fast (?) lookup of a normalized absolute path.
This method is intended for use by internal lookups with already-normalized path data. For general-purpose
lookups, use the FS.Entry(), FS.Dir() or FS.File() methods.
The caller is responsible for making sure we’re passed a normalized absolute path; we merely let Python’s
dictionary look up and return the One True Node.FS object for the path.
If a Node for the specified “p” doesn’t already exist, and “create” is specified, the Node may be created after
recursive invocation to find or create the parent directory or directories.

_memo

_morph ()
Turn a file system Node (either a freshly initialized directory object or a separate Entry object) into a proper
directory object.
Set up this directory’s entries and hook it into the file system tree. Specify that directories (this Node) don’t use
signatures for calculating whether they’re current.

_path

_path_elements

_proxy

_rel_path_key (other)

_save_str ()

_sconsign

_specific_sources

_srcdir_find_file_key (filename)

_tags

_tpath

abspath

SCons.Node package

276

addRepository (dir)

add_dependency (depend)
Adds dependencies.

add_ignore (depend)
Adds dependencies to ignore.

add_prerequisite (prerequisite)
Adds prerequisites

add_source (source)
Adds sources.

add_to_implicit (deps)

add_to_waiting_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, 0 if not.
(Note that the returned values are intended to be used to increment a reference count, so don’t think you can
“clean up” this function by using True and False instead…)

add_to_waiting_s_e (node)

add_wkid (wkid)
Add a node to the list of kids waiting to be evaluated

all_children (scan=1)
Return a list of all the node’s direct children.

alter_targets ()
Return any corresponding targets in a variant directory.

always_build

attributes

binfo

build (**kw)
A null “builder” for directories.

builder

builder_set (builder)

built ()
Called just after this node is successfully built.

cached

cachedir_csig

cachesig

changed (node=None, allowcache=False)
Returns if the node is up-to-date with respect to the BuildInfo stored last time it was built. The default behavior is
to compare it against our own previously stored BuildInfo, but the stored BuildInfo from another Node (typically
one in a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as
we detected any difference, but we now rely on checking every dependency to make sure that any necessary
Node information (for example, the content signature of an #included .h file) is updated.

SCons.Node package

277

The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last_build

check_attributes (name)
Simple API to check if the node.attributes for name has been set

children (scan=1)
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values ()

contentsig

cwd

del_binfo ()
Delete the build info from this node.

depends

depends_set

dir

dir_on_disk (name)

dirname

disambiguate (must_exist=None)

diskcheck_match ()

do_duplicate (src)

duplicate

entries

entry_abspath (name)

entry_exists_on_disk (name)
Searches through the file/dir entries of the current directory, and returns True if a physical entry with the given
name could be found.
@see rentry_exists_on_disk

entry_labspath (name)

entry_path (name)

SCons.Node package

278

entry_tpath (name)

env

env_set (env, safe=0)

executor

executor_cleanup ()
Let the executor clean up any cached information.

exists ()
Does this node exists?

explain ()

file_on_disk (name)

for_signature ()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__() method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need
to return something that would actually work in a command line; it can return any kind of nonsense, so long as it
does not change.

fs
Reference to parent Node.FS object

getRepositories ()
Returns a list of repositories for this directory.

get_abspath ()
Get the absolute path of the file.

get_all_rdirs ()

get_binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns -
the build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they’re already
built and updated by someone else, if that’s what’s wanted.

get_build_env ()
Fetch the appropriate Environment to build this node.

get_build_scanner_path (scanner)
Fetch the appropriate scanner path for this node.

get_builder (default_builder=None)
Return the set builder, or a specified default value

get_cachedir_csig ()

get_contents ()
Return content signatures and names of all our children separated by new-lines. Ensure that the nodes are
sorted.

get_csig ()

SCons.Node package

279

Compute the content signature for Directory nodes. In general, this is not needed and the content signature is
not stored in the DirNodeInfo. However, if get_contents on a Dir node is called which has a child directory, the
child directory should return the hash of its contents.

get_dir ()

get_env ()

get_env_scanner (env, kw={})

get_executor (create=1)
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.

get_found_includes (env, scanner, path)
Return this directory’s implicit dependencies.
We don’t bother caching the results because the scan typically shouldn’t be requested more than once (as
opposed to scanning .h file contents, which can be requested as many times as the files is #included by other
files).

get_implicit_deps (env, initial_scanner, path_func, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.

get_internal_path ()

get_labspath ()
Get the absolute path of the file.

get_ninfo ()

get_path (dir=None)
Return path relative to the current working directory of the Node.FS.Base object that owns us.

get_path_elements ()

get_relpath ()
Get the path of the file relative to the root SConstruct file’s directory.

get_source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get_state ()

get_stored_implicit ()
Fetch the stored implicit dependencies

get_stored_info ()

get_string (for_signature)
This is a convenience function designed primarily to be used in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command
line, which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a
string, passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

SCons.Node package

280

get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle
use is that some Nodes would like to implement a __getattr__() method, but putting that in the Node type itself
has a tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this
method to return self if no new functionality is needed for Environment substitution.

get_suffix ()

get_target_scanner ()

get_text_contents ()
We already emit things in text, so just return the binary version.

get_timestamp ()
Return the latest timestamp from among our children

get_tpath ()

getmtime ()

getsize ()

glob (pathname, ondisk=True, source=False, strings=False, exclude=None)
Returns a list of Nodes (or strings) matching a specified pathname pattern.
Pathname patterns follow UNIX shell semantics: * matches any-length strings of any characters, ? matches any
character, and [] can enclose lists or ranges of characters. Matches do not span directory separators.
The matches take into account Repositories, returning local Nodes if a corresponding entry exists in a
Repository (either an in-memory Node or something on disk).
By defafult, the glob() function matches entries that exist on-disk, in addition to in-memory Nodes. Setting the
“ondisk” argument to False (or some other non-true value) causes the glob() function to only match in-memory
Nodes. The default behavior is to return both the on-disk and in-memory Nodes.
The “source” argument, when true, specifies that corresponding source Nodes must be returned if you’re
globbing in a build directory (initialized with VariantDir()). The default behavior is to return Nodes local to the
VariantDir().
The “strings” argument, when true, returns the matches as strings, not Nodes. The strings are path names
relative to this directory.
The “exclude” argument, if not None, must be a pattern or a list of patterns following the same UNIX shell
semantics. Elements matching a least one pattern of this list will be excluded from the result.
The underlying algorithm is adapted from the glob.glob() function in the Python library (but heavily modified), and
uses fnmatch() under the covers.

has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: …”). When the builder attribute is examined directly, it ends up calling __getattr__ for both the
__len__ and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

ignore

ignore_set

implicit

implicit_set

SCons.Node package

281

includes

is_conftest ()
Returns true if this node is an conftest node

is_derived ()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and
should contribute their build signatures when they are used as source files to other derived files. For example:
source with source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript ()
Returns true if this node is an sconscript

is_under (dir)

is_up_to_date ()
If any child is not up-to-date, then this directory isn’t, either.

isdir ()

isfile ()

islink ()

link (srcdir, duplicate)
Set this directory as the variant directory for the supplied source directory.

linked

lstat ()

make_ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

missing ()

multiple_side_effect_has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: …”). When the builder attribute is examined directly, it ends up calling __getattr__ for both the
__len__ and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

must_be_same (klass)
This node, which already existed, is being looked up as the specified klass. Raise an exception if it isn’t.

name

new_binfo ()

new_ninfo ()

ninfo

SCons.Node package

282

nocache

noclean

on_disk_entries

path

postprocess ()
Clean up anything we don’t need to hang onto after we’ve been built.

precious

prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before
actually calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and
initializes the BuildInfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the
targets built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note
that subclass methods should call this base class method to get the child check and the BuildInfo structure.

prerequisites

pseudo

push_to_cache ()
Try to push a node into a cache

rdir ()

ref_count

rel_path (other)
Return a path to “other” relative to this directory.

release_target_info ()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order
to minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that
much how many KBytes a Node actually requires…as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()

released_target_info

remove ()
Remove this Node: no-op by default.

render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.

rentry ()

rentry_exists_on_disk (name)
Searches through the file/dir entries of the current and all its remote directories (repos), and returns True if a
physical entry with the given name could be found. The local directory (self) gets searched first, so repositories
take a lower precedence regarding the searching order.
@see entry_exists_on_disk

SCons.Node package

283

repositories

reset_executor ()
Remove cached executor; forces recompute when needed.

retrieve_from_cache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().
Returns true if the node was successfully retrieved.

rexists ()
Does this node exist locally or in a repository?

rfile ()

root

rstr ()
A Node.FS.Base object’s string representation is its path name.

sbuilder

scan ()
Scan this node’s dependents for implicit dependencies.

scanner_key ()
A directory does not get scanned.

scanner_paths

sconsign ()
Return the .sconsign file info for this directory.

searched

select_scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don’t select one the Scanner.Selector that’s configured for the target.

set_always_build (always_build=1)
Set the Node’s always_build value.

set_executor (executor)
Set the action executor for this node.

set_explicit (is_explicit)

set_local ()

set_nocache (nocache=1)
Set the Node’s nocache value.

set_noclean (noclean=1)
Set the Node’s noclean value.

set_precious (precious=1)
Set the Node’s precious value.

set_pseudo (pseudo=True)

SCons.Node package

284

Set the Node’s precious value.

set_specific_source (source)

set_src_builder (builder)
Set the source code builder for this node.

set_state (state)

side_effect

side_effects

sources

sources_set

src_builder ()
Fetch the source code builder for this node.
If there isn’t one, we cache the source code builder specified for the directory (which in turn will cache the value
from its parent directory, and so on up to the file system root).

srcdir

srcdir_duplicate (name)

srcdir_find_file (filename)

srcdir_list ()

srcnode ()
Dir has a special need for srcnode()…if we have a srcdir attribute set, then that is our srcnode.

stat ()

state

store_info

str_for_display ()

target_from_source (prefix, suffix, splitext=<function splitext>)
Generates a target entry that corresponds to this entry (usually a source file) with the specified prefix and suffix.
Note that this method can be overridden dynamically for generated files that need different behavior. See
Tool/swig.py for an example.

target_peers

up ()

variant_dirs

visited ()
Called just after this node has been visited (with or without a build).

waiting_parents

waiting_s_e

walk (func, arg)
Walk this directory tree by calling the specified function for each directory in the tree.

SCons.Node package

285

This behaves like the os.path.walk() function, but for in-memory Node.FS.Dir objects. The function takes the
same arguments as the functions passed to os.path.walk():

func(arg, dirname, fnames)
Except that “dirname” will actually be the directory Node, not the string. The ‘.’ and ‘..’ entries are excluded from
fnames. The fnames list may be modified in-place to filter the subdirectories visited or otherwise impose a
specific order. The “arg” argument is always passed to func() and may be used in any way (or ignored, passing
None is common).

wkids

SCons.Node.FS.UnlinkFunc (target, source, env)

class SCons.Node.FS._Null
Bases: object

SCons.Node.FS._classEntry
alias of SCons.Node.FS.Entry

SCons.Node.FS._copy_func (fs, src, dest)

SCons.Node.FS._hardlink_func (fs, src, dst)

SCons.Node.FS._my_normcase (x)

SCons.Node.FS._my_splitdrive (p)

SCons.Node.FS._softlink_func (fs, src, dst)

SCons.Node.FS.diskcheck_types ()

SCons.Node.FS.do_diskcheck_match (node, predicate, errorfmt)

SCons.Node.FS.find_file (filename, paths, verbose=None)
Find a node corresponding to either a derived file or a file that exists already.
Only the first file found is returned, and none is returned if no file is found.
filename: A filename to find paths: A list of directory path nodes to search in. Can be represented as a list, a tuple,
or a callable that is called with no arguments and returns the list or tuple.
returns The node created from the found file.

SCons.Node.FS.get_MkdirBuilder ()

SCons.Node.FS.get_default_fs ()

SCons.Node.FS.has_glob_magic (s)

SCons.Node.FS.ignore_diskcheck_match (node, predicate, errorfmt)

SCons.Node.FS.initialize_do_splitdrive ()

SCons.Node.FS.invalidate_node_memos (targets)
Invalidate the memoized values of all Nodes (files or directories) that are associated with the given entries. Has
been added to clear the cache of nodes affected by a direct execution of an action (e.g. Delete/Copy/Chmod).
Existing Node caches become inconsistent if the action is run through Execute(). The argument targets can be a
single Node object or filename, or a sequence of Nodes/filenames.

SCons.Node.FS.needs_normpath_match (string, pos=0, endpos=9223372036854775807)
Matches zero or more characters at the beginning of the string.

SCons.Node.FS.save_strings (val)

SCons.Node.FS.sconsign_dir (node)
Return the .sconsign file info for this directory, creating it first if necessary.

SCons.Node.FS.sconsign_none (node)

SCons.Node.FS.set_diskcheck (list)

SCons.Node.FS.set_duplicate (duplicate)

SCons.Node package

286

SCons.Node.Python module
Python nodes.

class SCons.Node.Python.Value (value, built_value=None, name=None)
Bases: SCons.Node.Node
A class for Python variables, typically passed on the command line or generated by a script, but not from a file or
some other source.

class Attrs
Bases: object

shared

BuildInfo
alias of SCons.Node.Python.ValueBuildInfo

Decider (function)

GetTag (key)
Return a user-defined tag.

NodeInfo
alias of SCons.Node.Python.ValueNodeInfo

Tag (key, value)
Add a user-defined tag.

_add_child (collection, set, child)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it’s already present.

_children_get ()

_children_reset ()

_func_exists

_func_get_contents

_func_is_derived

_func_rexists

_func_target_from_source

_get_scanner (env, initial_scanner, root_node_scanner, kw)

_memo

_specific_sources

_tags

add_dependency (depend)
Adds dependencies.

add_ignore (depend)
Adds dependencies to ignore.

add_prerequisite (prerequisite)
Adds prerequisites

SCons.Node package

287

add_source (source)
Adds sources.

add_to_implicit (deps)

add_to_waiting_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, 0 if not.
(Note that the returned values are intended to be used to increment a reference count, so don’t think you can
“clean up” this function by using True and False instead…)

add_to_waiting_s_e (node)

add_wkid (wkid)
Add a node to the list of kids waiting to be evaluated

all_children (scan=1)
Return a list of all the node’s direct children.

alter_targets ()
Return a list of alternate targets for this Node.

always_build

attributes

binfo

build (**kw)
Actually build the node.
This is called by the Taskmaster after it’s decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().

builder

builder_set (builder)

built ()
Called just after this node is successfully built.

cached

changed (node=None, allowcache=False)
Returns if the node is up-to-date with respect to the BuildInfo stored last time it was built. The default behavior is
to compare it against our own previously stored BuildInfo, but the stored BuildInfo from another Node (typically
one in a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as
we detected any difference, but we now rely on checking every dependency to make sure that any necessary
Node information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last_build

check_attributes (name)
Simple API to check if the node.attributes for name has been set

children (scan=1)

SCons.Node package

288

Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values ()

del_binfo ()
Delete the build info from this node.

depends

depends_set

disambiguate (must_exist=None)

env

env_set (env, safe=0)

executor

executor_cleanup ()
Let the executor clean up any cached information.

exists ()
Does this node exists?

explain ()

for_signature ()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__() method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need
to return something that would actually work in a command line; it can return any kind of nonsense, so long as it
does not change.

get_abspath ()
Return an absolute path to the Node. This will return simply str(Node) by default, but for Node types that have a
concept of relative path, this might return something different.

get_binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns -
the build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they’re already
built and updated by someone else, if that’s what’s wanted.

get_build_env ()
Fetch the appropriate Environment to build this node.

get_build_scanner_path (scanner)
Fetch the appropriate scanner path for this node.

SCons.Node package

289

get_builder (default_builder=None)
Return the set builder, or a specified default value

get_cachedir_csig ()

get_contents () → bytes
Get contents for signature calculations.

get_csig (calc=None)
Because we’re a Python value node and don’t have a real timestamp, we get to ignore the calculator and just
use the value contents.
Returns string. Ideally string of hex digits. (Not bytes)

get_env ()

get_env_scanner (env, kw={})

get_executor (create=1)
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.

get_found_includes (env, scanner, path)
Return the scanned include lines (implicit dependencies) found in this node.
The default is no implicit dependencies. We expect this method to be overridden by any subclass that can be
scanned for implicit dependencies.

get_implicit_deps (env, initial_scanner, path_func, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.

get_ninfo ()

get_source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get_state ()

get_stored_implicit ()
Fetch the stored implicit dependencies

get_stored_info ()

get_string (for_signature)
This is a convenience function designed primarily to be used in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command
line, which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a
string, passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle
use is that some Nodes would like to implement a __getattr__() method, but putting that in the Node type itself
has a tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this
method to return self if no new functionality is needed for Environment substitution.

SCons.Node package

290

get_suffix ()

get_target_scanner ()

get_text_contents () → str
By the assumption that the node.built_value is a deterministic product of the sources, the contents of a Value
are the concatenation of all the contents of its sources. As the value need not be built when get_contents() is
called, we cannot use the actual node.built_value.

has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: …”). When the builder attribute is examined directly, it ends up calling __getattr__ for both the
__len__ and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

ignore

ignore_set

implicit

implicit_set

includes

is_conftest ()
Returns true if this node is an conftest node

is_derived ()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and
should contribute their build signatures when they are used as source files to other derived files. For example:
source with source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript ()
Returns true if this node is an sconscript

is_under (dir)

is_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

linked

make_ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

SCons.Node package

291

missing ()

multiple_side_effect_has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: …”). When the builder attribute is examined directly, it ends up calling __getattr__ for both the
__len__ and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

new_binfo ()

new_ninfo ()

ninfo

nocache

noclean

postprocess ()
Clean up anything we don’t need to hang onto after we’ve been built.

precious

prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before
actually calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and
initializes the BuildInfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the
targets built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note
that subclass methods should call this base class method to get the child check and the BuildInfo structure.

prerequisites

pseudo

push_to_cache ()
Try to push a node into a cache

read ()
Return the value. If necessary, the value is built.

ref_count

release_target_info ()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order
to minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that
much how many KBytes a Node actually requires…as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()

remove ()
Remove this Node: no-op by default.

render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.

SCons.Node package

292

reset_executor ()
Remove cached executor; forces recompute when needed.

retrieve_from_cache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().
Returns true if the node was successfully retrieved.

rexists ()
Does this node exist locally or in a repository?

scan ()
Scan this node’s dependents for implicit dependencies.

scanner_key ()

select_scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don’t select one the Scanner.Selector that’s configured for the target.

set_always_build (always_build=1)
Set the Node’s always_build value.

set_executor (executor)
Set the action executor for this node.

set_explicit (is_explicit)

set_nocache (nocache=1)
Set the Node’s nocache value.

set_noclean (noclean=1)
Set the Node’s noclean value.

set_precious (precious=1)
Set the Node’s precious value.

set_pseudo (pseudo=True)
Set the Node’s precious value.

set_specific_source (source)

set_state (state)

side_effect

side_effects

sources

sources_set

state

store_info

str_for_display ()

target_peers

SCons.Node package

293

visited ()
Called just after this node has been visited (with or without a build).

waiting_parents

waiting_s_e

wkids

write (built_value)
Set the value of the node.

class SCons.Node.Python.ValueBuildInfo
Bases: SCons.Node.BuildInfoBase

bact

bactsig

bdepends

bdependsigs

bimplicit

bimplicitsigs

bsources

bsourcesigs

current_version_id = 2

merge (other)
Merge the fields of another object into this object. Already existing information is overwritten by the other
instance’s data. WARNING: If a ‘__dict__’ slot is added, it should be updated instead of replaced.

class SCons.Node.Python.ValueNodeInfo
Bases: SCons.Node.NodeInfoBase

convert (node, val)

csig

current_version_id = 2

field_list = ['csig']

format (field_list=None, names=0)

merge (other)
Merge the fields of another object into this object. Already existing information is overwritten by the other
instance’s data. WARNING: If a ‘__dict__’ slot is added, it should be updated instead of replaced.

str_to_node (s)

update (node)

SCons.Node.Python.ValueWithMemo (value, built_value=None, name=None)
Memoized Value() node factory.

SCons.Node package

294

Module contents
The Node package for the SCons software construction utility.

This is, in many ways, the heart of SCons.

A Node is where we encapsulate all of the dependency information about any thing that SCons can build, or about
any thing which SCons can use to build some other thing. The canonical “thing,” of course, is a file, but a Node can
also represent something remote (like a web page) or something completely abstract (like an Alias).

Each specific type of “thing” is specifically represented by a subclass of the Node base class: Node.FS.File for files,
Node.Alias for aliases, etc. Dependency information is kept here in the base class, and information specific to
files/aliases/etc. is in the subclass. The goal, if we’ve done this correctly, is that any type of “thing” should be able to
depend on any other type of “thing.”

SCons.Node.Annotate (node)

class SCons.Node.BuildInfoBase
Bases: object
The generic base class for build information for a Node.
This is what gets stored in a .sconsign file for each target file. It contains a NodeInfo instance for this node
(signature information that’s specific to the type of Node) and direct attributes for the generic build stuff we have to
track: sources, explicit dependencies, implicit dependencies, and action information.

bact

bactsig

bdepends

bdependsigs

bimplicit

bimplicitsigs

bsources

bsourcesigs

current_version_id = 2

merge (other)
Merge the fields of another object into this object. Already existing information is overwritten by the other
instance’s data. WARNING: If a ‘__dict__’ slot is added, it should be updated instead of replaced.

class SCons.Node.Node
Bases: object
The base Node class, for entities that we know how to build, or use to build other Nodes.

class Attrs
Bases: object

shared

BuildInfo
alias of SCons.Node.BuildInfoBase

Decider (function)

GetTag (key)
Return a user-defined tag.

SCons.Node package

295

NodeInfo
alias of SCons.Node.NodeInfoBase

Tag (key, value)
Add a user-defined tag.

_add_child (collection, set, child)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it’s already present.

_children_get ()

_children_reset ()

_func_exists

_func_get_contents

_func_is_derived

_func_rexists

_func_target_from_source

_get_scanner (env, initial_scanner, root_node_scanner, kw)

_memo

_specific_sources

_tags

add_dependency (depend)
Adds dependencies.

add_ignore (depend)
Adds dependencies to ignore.

add_prerequisite (prerequisite)
Adds prerequisites

add_source (source)
Adds sources.

add_to_implicit (deps)

add_to_waiting_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, 0 if not.
(Note that the returned values are intended to be used to increment a reference count, so don’t think you can
“clean up” this function by using True and False instead…)

add_to_waiting_s_e (node)

add_wkid (wkid)
Add a node to the list of kids waiting to be evaluated

all_children (scan=1)
Return a list of all the node’s direct children.

alter_targets ()
Return a list of alternate targets for this Node.

SCons.Node package

296

always_build

attributes

binfo

build (**kw)
Actually build the node.
This is called by the Taskmaster after it’s decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().

builder

builder_set (builder)

built ()
Called just after this node is successfully built.

cached

changed (node=None, allowcache=False)
Returns if the node is up-to-date with respect to the BuildInfo stored last time it was built. The default behavior is
to compare it against our own previously stored BuildInfo, but the stored BuildInfo from another Node (typically
one in a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as
we detected any difference, but we now rely on checking every dependency to make sure that any necessary
Node information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last_build

check_attributes (name)
Simple API to check if the node.attributes for name has been set

children (scan=1)
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values ()

del_binfo ()
Delete the build info from this node.

depends

depends_set

disambiguate (must_exist=None)

SCons.Node package

297

env

env_set (env, safe=0)

executor

executor_cleanup ()
Let the executor clean up any cached information.

exists ()
Does this node exists?

explain ()

for_signature ()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__() method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need
to return something that would actually work in a command line; it can return any kind of nonsense, so long as it
does not change.

get_abspath ()
Return an absolute path to the Node. This will return simply str(Node) by default, but for Node types that have a
concept of relative path, this might return something different.

get_binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns -
the build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they’re already
built and updated by someone else, if that’s what’s wanted.

get_build_env ()
Fetch the appropriate Environment to build this node.

get_build_scanner_path (scanner)
Fetch the appropriate scanner path for this node.

get_builder (default_builder=None)
Return the set builder, or a specified default value

get_cachedir_csig ()

get_contents ()
Fetch the contents of the entry.

get_csig ()

get_env ()

get_env_scanner (env, kw={})

get_executor (create=1)
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.

get_found_includes (env, scanner, path)
Return the scanned include lines (implicit dependencies) found in this node.
The default is no implicit dependencies. We expect this method to be overridden by any subclass that can be
scanned for implicit dependencies.

SCons.Node package

298

get_implicit_deps (env, initial_scanner, path_func, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.

get_ninfo ()

get_source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get_state ()

get_stored_implicit ()
Fetch the stored implicit dependencies

get_stored_info ()

get_string (for_signature)
This is a convenience function designed primarily to be used in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command
line, which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a
string, passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle
use is that some Nodes would like to implement a __getattr__() method, but putting that in the Node type itself
has a tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this
method to return self if no new functionality is needed for Environment substitution.

get_suffix ()

get_target_scanner ()

has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: …”). When the builder attribute is examined directly, it ends up calling __getattr__ for both the
__len__ and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

ignore

ignore_set

implicit

implicit_set

includes

SCons.Node package

299

is_conftest ()
Returns true if this node is an conftest node

is_derived ()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and
should contribute their build signatures when they are used as source files to other derived files. For example:
source with source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript ()
Returns true if this node is an sconscript

is_up_to_date ()
Default check for whether the Node is current: unknown Node subtypes are always out of date, so they will
always get built.

linked

make_ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

missing ()

multiple_side_effect_has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: …”). When the builder attribute is examined directly, it ends up calling __getattr__ for both the
__len__ and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

new_binfo ()

new_ninfo ()

ninfo

nocache

noclean

postprocess ()
Clean up anything we don’t need to hang onto after we’ve been built.

precious

prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before
actually calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and
initializes the BuildInfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the
targets built by a specific action.)

SCons.Node package

300

Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note
that subclass methods should call this base class method to get the child check and the BuildInfo structure.

prerequisites

pseudo

push_to_cache ()
Try to push a node into a cache

ref_count

release_target_info ()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order
to minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that
much how many KBytes a Node actually requires…as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()

remove ()
Remove this Node: no-op by default.

render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.

reset_executor ()
Remove cached executor; forces recompute when needed.

retrieve_from_cache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().
Returns true if the node was successfully retrieved.

rexists ()
Does this node exist locally or in a repository?

scan ()
Scan this node’s dependents for implicit dependencies.

scanner_key ()

select_scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don’t select one the Scanner.Selector that’s configured for the target.

set_always_build (always_build=1)
Set the Node’s always_build value.

set_executor (executor)
Set the action executor for this node.

set_explicit (is_explicit)

set_nocache (nocache=1)
Set the Node’s nocache value.

set_noclean (noclean=1)
Set the Node’s noclean value.

SCons.Node package

301

set_precious (precious=1)
Set the Node’s precious value.

set_pseudo (pseudo=True)
Set the Node’s precious value.

set_specific_source (source)

set_state (state)

side_effect

side_effects

sources

sources_set

state

store_info

target_peers

visited ()
Called just after this node has been visited (with or without a build).

waiting_parents

waiting_s_e

wkids

class SCons.Node.NodeInfoBase
Bases: object
The generic base class for signature information for a Node.
Node subclasses should subclass NodeInfoBase to provide their own logic for dealing with their own Node-specific
signature information.

convert (node, val)

current_version_id = 2

format (field_list=None, names=0)

merge (other)
Merge the fields of another object into this object. Already existing information is overwritten by the other
instance’s data. WARNING: If a ‘__dict__’ slot is added, it should be updated instead of replaced.

update (node)

class SCons.Node.NodeList (initlist=None)
Bases: collections.UserList

_abc_impl = <_abc_data object>

append (item)
S.append(value) – append value to the end of the sequence

clear () → None – remove all items from S

SCons.Node package

302

copy ()

count (value) → integer – return number of occurrences of value

extend (other)
S.extend(iterable) – extend sequence by appending elements from the iterable

index (value[, start[, stop]]) → integer – return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.

insert (i, item)
S.insert(index, value) – insert value before index

pop ([, index]) → item – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

remove (item)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

reverse ()
S.reverse() – reverse IN PLACE

sort (*args, **kwds)

class SCons.Node.Walker (node, kids_func=<function get_children>, cycle_func=<function
ignore_cycle>, eval_func=<function do_nothing>)

Bases: object
An iterator for walking a Node tree.
This is depth-first, children are visited before the parent. The Walker object can be initialized with any node, and
returns the next node on the descent with each get_next() call. get the children of a node instead of calling
‘children’. ‘cycle_func’ is an optional function that will be called when a cycle is detected.
This class does not get caught in node cycles caused, for example, by C header file include loops.

get_next ()
Return the next node for this walk of the tree.
This function is intentionally iterative, not recursive, to sidestep any issues of stack size limitations.

is_done ()

SCons.Node.changed_since_last_build_alias (node, target, prev_ni, repo_node=None)

SCons.Node.changed_since_last_build_entry (node, target, prev_ni, repo_node=None)

SCons.Node.changed_since_last_build_node (node, target, prev_ni, repo_node=None)
Must be overridden in a specific subclass to return True if this Node (a dependency) has changed since the last
time it was used to build the specified target. prev_ni is this Node’s state (for example, its file timestamp, length,
maybe content signature) as of the last time the target was built.
Note that this method is called through the dependency, not the target, because a dependency Node must be able
to use its own logic to decide if it changed. For example, File Nodes need to obey if we’re configured to use
timestamps, but Python Value Nodes never use timestamps and always use the content. If this method were
called through the target, then each Node’s implementation of this method would have to have more complicated
logic to handle all the different Node types on which it might depend.

SCons.Node.changed_since_last_build_python (node, target, prev_ni, repo_node=None)

SCons.Node.changed_since_last_build_state_changed (node, target, prev_ni, repo_node=None)

SCons.Node.classname (obj)

SCons.Node.decide_source (node, target, prev_ni, repo_node=None)

SCons.Node.decide_target (node, target, prev_ni, repo_node=None)

SCons.Node.do_nothing (node, parent)

SCons.Node package

303

SCons.Node.do_nothing_node (node)

SCons.Node.exists_always (node)

SCons.Node.exists_base (node)

SCons.Node.exists_entry (node)
Return if the Entry exists. Check the file system to see what we should turn into first. Assume a file if there’s no
directory.

SCons.Node.exists_file (node)

SCons.Node.exists_none (node)

SCons.Node.get_children (node, parent)

SCons.Node.get_contents_dir (node)
Return content signatures and names of all our children separated by new-lines. Ensure that the nodes are sorted.

SCons.Node.get_contents_entry (node)
Fetch the contents of the entry. Returns the exact binary contents of the file.

SCons.Node.get_contents_file (node)

SCons.Node.get_contents_none (node)

SCons.Node.ignore_cycle (node, stack)

SCons.Node.is_derived_node (node)
Returns true if this node is derived (i.e. built).

SCons.Node.is_derived_none (node)

SCons.Node.rexists_base (node)

SCons.Node.rexists_node (node)

SCons.Node.rexists_none (node)

SCons.Node.store_info_file (node)

SCons.Node.store_info_pass (node)

SCons.Node.target_from_source_base (node, prefix, suffix, splitext)

SCons.Node.target_from_source_none (node, prefix, suffix, splitext)

SCons.Platform package

Submodules

SCons.Platform.aix module
Platform-specific initialization for IBM AIX systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.

SCons.Platform.aix.generate (env)

SCons.Platform.aix.get_xlc (env, xlc=None, packages=[])

SCons.Platform.cygwin module
Platform-specific initialization for Cygwin systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.

SCons.Platform.cygwin.generate (env)

SCons.Platform package

304

SCons.Platform.darwin module
Platform-specific initialization for Mac OS X systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.

SCons.Platform.darwin.generate (env)

SCons.Platform.hpux module
Platform-specific initialization for HP-UX systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.

SCons.Platform.hpux.generate (env)

SCons.Platform.irix module
Platform-specific initialization for SGI IRIX systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.

SCons.Platform.irix.generate (env)

SCons.Platform.mingw module
Platform-specific initialization for the MinGW system.

SCons.Platform.os2 module
Platform-specific initialization for OS/2 systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.

SCons.Platform.os2.generate (env)

SCons.Platform.posix module
Platform-specific initialization for POSIX (Linux, UNIX, etc.) systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.

SCons.Platform.posix.escape (arg)
escape shell special characters

SCons.Platform.posix.exec_popen3 (l, env, stdout, stderr)

SCons.Platform.posix.exec_subprocess (l, env)

SCons.Platform.posix.generate (env)

SCons.Platform.posix.piped_env_spawn (sh, escape, cmd, args, env, stdout, stderr)

SCons.Platform.posix.subprocess_spawn (sh, escape, cmd, args, env)

SCons.Platform.sunos module
Platform-specific initialization for Sun systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.

SCons.Platform.sunos.generate (env)

SCons.Platform package

305

SCons.Platform.virtualenv module
‘Platform” support for a Python virtualenv.

SCons.Platform.virtualenv.ImportVirtualenv (env)
Copies virtualenv-related environment variables from OS environment to env['ENV'] and prepends virtualenv’s
PATH to env['ENV']['PATH'].

SCons.Platform.virtualenv.IsInVirtualenv (path)
Returns True, if path is under virtualenv’s home directory. If not, or if we don’t use virtualenv, returns False.

SCons.Platform.virtualenv.Virtualenv ()
Returns path to the virtualenv home if scons is executing within a virtualenv or None, if not.

SCons.Platform.virtualenv._enable_virtualenv_default ()

SCons.Platform.virtualenv._ignore_virtualenv_default ()

SCons.Platform.virtualenv._inject_venv_path (env, path_list=None)
Modify environment such that SCons will take into account its virtualenv when running external tools.

SCons.Platform.virtualenv._inject_venv_variables (env)

SCons.Platform.virtualenv._is_path_in (path, base)
Returns true if path is located under the base directory.

SCons.Platform.virtualenv._running_in_virtualenv ()
Returns True if scons is executed within a virtualenv

SCons.Platform.virtualenv.select_paths_in_venv (path_list)
Returns a list of paths from path_list which are under virtualenv’s home directory.

SCons.Platform.win32 module
Platform-specific initialization for Win32 systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.

class SCons.Platform.win32.ArchDefinition (arch, synonyms=[])
Bases: object
Determine which windows CPU were running on. A class for defining architecture-specific settings and logic.

SCons.Platform.win32.escape (x)

SCons.Platform.win32.exec_spawn (l, env)

SCons.Platform.win32.generate (env)

SCons.Platform.win32.get_architecture (arch=None)
Returns the definition for the specified architecture string.
If no string is specified, the system default is returned (as defined by the PROCESSOR_ARCHITEW6432 or
PROCESSOR_ARCHITECTURE environment variables).

SCons.Platform.win32.get_program_files_dir ()
Get the location of the program files directory

SCons.Platform.win32.get_system_root ()

SCons.Platform.win32.piped_spawn (sh, escape, cmd, args, env, stdout, stderr)

SCons.Platform.win32.spawn (sh, escape, cmd, args, env)

SCons.Platform.win32.spawnve (mode, file, args, env)

Module contents
SCons platform selection.

Looks for modules that define a callable object that can modify a construction environment as appropriate for a given
platform.

SCons.Platform package

306

Note that we take a more simplistic view of “platform” than Python does. We’re looking for a single string that
determines a set of tool-independent variables with which to initialize a construction environment. Consequently,
we’ll examine both sys.platform and os.name (and anything else that might come in to play) in order to return some
specification which is unique enough for our purposes.

Note that because this subsystem just selects a callable that can modify a construction environment, it’s possible for
people to define their own “platform specification” in an arbitrary callable function. No one needs to use or tie in to
this subsystem in order to roll their own platform definition.

SCons.Platform.DefaultToolList (platform, env)
Select a default tool list for the specified platform.

SCons.Platform.Platform (name='posix')
Select a canned Platform specification.

class SCons.Platform.PlatformSpec (name, generate)
Bases: object

class SCons.Platform.TempFileMunge (cmd, cmdstr=None)
Bases: object
Convert long command lines to use a temporary file.
You can set an Environment variable (usually TEMPFILE) to this, then call it with a string argument, and it will
perform temporary file substitution on it. This is used to circumvent limitations on the length of command lines.
Example:

env["TEMPFILE"] = TempFileMunge
env["LINKCOM"] = "${TEMPFILE('$LINK $TARGET $SOURCES','$LINKCOMSTR')}"

By default, the name of the temporary file used begins with a prefix of ‘@’. This may be configured for other tool
chains by setting the TEMPFILEPREFIX variable. Example:

env["TEMPFILEPREFIX"] = '-@' # diab compiler
env["TEMPFILEPREFIX"] = '-via' # arm tool chain
env["TEMPFILEPREFIX"] = '' # (the empty string) PC Lint

You can configure the extension of the temporary file through the TEMPFILESUFFIX variable, which defaults to
‘.lnk’ (see comments in the code below). Example:

env["TEMPFILESUFFIX"] = '.lnt' # PC Lint

Entries in the temporary file are separated by the value of the TEMPFILEARGJOIN variable, which defaults to an
OS-appropriate value.
A default argument escape function is SCons.Subst.quote_spaces. If you need to apply extra operations on a
command argument before writing to a temporary file(fix Windows slashes, normalize paths, etc.), please set
TEMPFILEARGESCFUNC variable to a custom function. Example:

import sys
import re
from SCons.Subst import quote_spaces

WINPATHSEP_RE = re.compile(r"\([^"'\]|$)")

def tempfile_arg_esc_func(arg):
 arg = quote_spaces(arg)
 if sys.platform != "win32":
 return arg
 # GCC requires double Windows slashes, let's use UNIX separator
 return WINPATHSEP_RE.sub(r"/■", arg)

env["TEMPFILEARGESCFUNC"] = tempfile_arg_esc_func

_print_cmd_str (target, source, env, cmdstr)

SCons.Platform package

307

SCons.Platform.platform_default ()
Return the platform string for our execution environment.
The returned value should map to one of the SCons/Platform/*.py files. Since scons is architecture independent,
though, we don’t care about the machine architecture.

SCons.Platform.platform_module (name='posix')
Return the imported module for the platform.
This looks for a module name that matches the specified argument. If the name is unspecified, we fetch the
appropriate default for our execution environment.

SCons.Scanner package

Submodules

SCons.Scanner.C module
Dependency scanner for C/C++ code.

SCons.Scanner.C.CConditionalScanner ()
Return an advanced conditional Scanner instance for scanning source files
Interprets C/C++ Preprocessor conditional syntax (#ifdef, #if, defined, #else, #elif, etc.).

SCons.Scanner.C.CScanner ()
Return a prototype Scanner instance for scanning source files that use the C pre-processor

class SCons.Scanner.C.SConsCPPConditionalScanner (*args, **kwargs)
Bases: SCons.cpp.PreProcessor
SCons-specific subclass of the cpp.py module’s processing.
We subclass this so that: 1) we can deal with files represented by Nodes, not strings; 2) we can keep track of the
files that are missing.

_do_if_else_condition (condition)
Common logic for evaluating the conditions on #if, #ifdef and #ifndef lines.

_match_tuples (tuples)

_parse_tuples (contents)

_process_tuples (tuples, file=None)

all_include (t)

do_define (t)
Default handling of a #define line.

do_elif (t)
Default handling of a #elif line.

do_else (t)
Default handling of a #else line.

do_endif (t)
Default handling of a #endif line.

do_if (t)
Default handling of a #if line.

do_ifdef (t)
Default handling of a #ifdef line.

SCons.Scanner package

308

do_ifndef (t)
Default handling of a #ifndef line.

do_import (t)
Default handling of a #import line.

do_include (t)
Default handling of a #include line.

do_include_next (t)
Default handling of a #include line.

do_nothing (t)
Null method for when we explicitly want the action for a specific preprocessor directive to do nothing.

do_undef (t)
Default handling of a #undef line.

eval_expression (t)
Evaluates a C preprocessor expression.
This is done by converting it to a Python equivalent and eval()ing it in the C preprocessor namespace we use to
track #define values.

finalize_result (fname)

find_include_file (t)
Finds the #include file for a given preprocessor tuple.

initialize_result (fname)

process_contents (contents)
Pre-processes a file contents.
Is used by tests

process_file (file)
Pre-processes a file.
This is the main internal entry point.

read_file (file)

resolve_include (t)
Resolve a tuple-ized #include line.
This handles recursive expansion of values without “” or <> surrounding the name until an initial ” or < is found,
to handle #include FILE where FILE is a #define somewhere else.

restore ()
Pops the previous dispatch table off the stack and makes it the current one.

save ()
Pushes the current dispatch table on the stack and re-initializes the current dispatch table to the default.

scons_current_file (t)

start_handling_includes (t=None)
Causes the PreProcessor object to start processing #import, #include and #include_next lines.
This method will be called when a #if, #ifdef, #ifndef or #elif evaluates True, or when we reach the #else in a #if,
#ifdef, #ifndef or #elif block where a condition already evaluated False.

stop_handling_includes (t=None)
Causes the PreProcessor object to stop processing #import, #include and #include_next lines.

SCons.Scanner package

309

This method will be called when a #if, #ifdef, #ifndef or #elif evaluates False, or when we reach the #else in a #if,
#ifdef, #ifndef or #elif block where a condition already evaluated True.

tupleize (contents)
Turns the contents of a file into a list of easily-processed tuples describing the CPP lines in the file.
The first element of each tuple is the line’s preprocessor directive (#if, #include, #define, etc., minus the initial
‘#’). The remaining elements are specific to the type of directive, as pulled apart by the regular expression.

class SCons.Scanner.C.SConsCPPConditionalScannerWrapper (name, variable)
Bases: object
The SCons wrapper around a cpp.py scanner.
This is the actual glue between the calling conventions of generic SCons scanners, and the (subclass of) cpp.py
class that knows how to look for #include lines with reasonably real C-preprocessor-like evaluation of
#if/#ifdef/#else/#elif lines.

recurse_nodes (nodes)

select (node)

class SCons.Scanner.C.SConsCPPScanner (*args, **kwargs)
Bases: SCons.cpp.PreProcessor
SCons-specific subclass of the cpp.py module’s processing.
We subclass this so that: 1) we can deal with files represented by Nodes, not strings; 2) we can keep track of the
files that are missing.

_do_if_else_condition (condition)
Common logic for evaluating the conditions on #if, #ifdef and #ifndef lines.

_match_tuples (tuples)

_parse_tuples (contents)

_process_tuples (tuples, file=None)

all_include (t)

do_define (t)
Default handling of a #define line.

do_elif (t)
Default handling of a #elif line.

do_else (t)
Default handling of a #else line.

do_endif (t)
Default handling of a #endif line.

do_if (t)
Default handling of a #if line.

do_ifdef (t)
Default handling of a #ifdef line.

do_ifndef (t)
Default handling of a #ifndef line.

do_import (t)
Default handling of a #import line.

do_include (t)

SCons.Scanner package

310

Default handling of a #include line.

do_include_next (t)
Default handling of a #include line.

do_nothing (t)
Null method for when we explicitly want the action for a specific preprocessor directive to do nothing.

do_undef (t)
Default handling of a #undef line.

eval_expression (t)
Evaluates a C preprocessor expression.
This is done by converting it to a Python equivalent and eval()ing it in the C preprocessor namespace we use to
track #define values.

finalize_result (fname)

find_include_file (t)
Finds the #include file for a given preprocessor tuple.

initialize_result (fname)

process_contents (contents)
Pre-processes a file contents.
Is used by tests

process_file (file)
Pre-processes a file.
This is the main internal entry point.

read_file (file)

resolve_include (t)
Resolve a tuple-ized #include line.
This handles recursive expansion of values without “” or <> surrounding the name until an initial ” or < is found,
to handle #include FILE where FILE is a #define somewhere else.

restore ()
Pops the previous dispatch table off the stack and makes it the current one.

save ()
Pushes the current dispatch table on the stack and re-initializes the current dispatch table to the default.

scons_current_file (t)

start_handling_includes (t=None)
Causes the PreProcessor object to start processing #import, #include and #include_next lines.
This method will be called when a #if, #ifdef, #ifndef or #elif evaluates True, or when we reach the #else in a #if,
#ifdef, #ifndef or #elif block where a condition already evaluated False.

stop_handling_includes (t=None)
Causes the PreProcessor object to stop processing #import, #include and #include_next lines.
This method will be called when a #if, #ifdef, #ifndef or #elif evaluates False, or when we reach the #else in a #if,
#ifdef, #ifndef or #elif block where a condition already evaluated True.

tupleize (contents)
Turns the contents of a file into a list of easily-processed tuples describing the CPP lines in the file.
The first element of each tuple is the line’s preprocessor directive (#if, #include, #define, etc., minus the initial
‘#’). The remaining elements are specific to the type of directive, as pulled apart by the regular expression.

SCons.Scanner package

311

class SCons.Scanner.C.SConsCPPScannerWrapper (name, variable)
Bases: object
The SCons wrapper around a cpp.py scanner.
This is the actual glue between the calling conventions of generic SCons scanners, and the (subclass of) cpp.py
class that knows how to look for #include lines with reasonably real C-preprocessor-like evaluation of
#if/#ifdef/#else/#elif lines.

recurse_nodes (nodes)

select (node)

SCons.Scanner.C.dictify_CPPDEFINES (env)

SCons.Scanner.D module
Scanner for the Digital Mars “D” programming language.

Coded by Andy Friesen, 17 Nov 2003

class SCons.Scanner.D.D
Bases: SCons.Scanner.Classic

static _recurse_all_nodes (nodes)

static _recurse_no_nodes (nodes)

add_scanner (skey, scanner)

add_skey (skey)
Add a skey to the list of skeys

find_include (include, source_dir, path)

find_include_names (node)

get_skeys (env=None)

path (env, dir=None, target=None, source=None)

scan (node, path=())

select (node)

static sort_key (include)

SCons.Scanner.D.DScanner ()
Return a prototype Scanner instance for scanning D source files

SCons.Scanner.Dir module

SCons.Scanner.Dir.DirEntryScanner (**kwargs)
Return a prototype Scanner instance for “scanning” directory Nodes for their in-memory entries

SCons.Scanner.Dir.DirScanner (**kwargs)
Return a prototype Scanner instance for scanning directories for on-disk files

SCons.Scanner.Dir.do_not_scan (k)

SCons.Scanner.Dir.only_dirs (nodes)

SCons.Scanner.Dir.scan_in_memory (node, env, path=())
“Scans” a Node.FS.Dir for its in-memory entries.

SCons.Scanner.Dir.scan_on_disk (node, env, path=())

SCons.Scanner package

312

Scans a directory for on-disk files and directories therein.
Looking up the entries will add these to the in-memory Node tree representation of the file system, so all we have
to do is just that and then call the in-memory scanning function.

SCons.Scanner.Fortran module
Dependency scanner for Fortran code.

class SCons.Scanner.Fortran.F90Scanner (name, suffixes, path_variable, use_regex, incl_regex, def_regex,
*args, **kwargs)

Bases: SCons.Scanner.Classic
A Classic Scanner subclass for Fortran source files which takes into account both USE and INCLUDE statements.
This scanner will work for both F77 and F90 (and beyond) compilers.
Currently, this scanner assumes that the include files do not contain USE statements. To enable the ability to deal
with USE statements in include files, add logic right after the module names are found to loop over each include
file, search for and locate each USE statement, and append each module name to the list of dependencies.
Caching the search results in a common dictionary somewhere so that the same include file is not searched
multiple times would be a smart thing to do.

static _recurse_all_nodes (nodes)

static _recurse_no_nodes (nodes)

add_scanner (skey, scanner)

add_skey (skey)
Add a skey to the list of skeys

static find_include (include, source_dir, path)

find_include_names (node)

get_skeys (env=None)

path (env, dir=None, target=None, source=None)

scan (node, env, path=())

select (node)

static sort_key (include)

SCons.Scanner.Fortran.FortranScan (path_variable='FORTRANPATH')
Return a prototype Scanner instance for scanning source files for Fortran USE & INCLUDE statements

SCons.Scanner.IDL module
Dependency scanner for IDL (Interface Definition Language) files.

SCons.Scanner.IDL.IDLScan ()
Return a prototype Scanner instance for scanning IDL source files

SCons.Scanner.LaTeX module
Dependency scanner for LaTeX code.

class SCons.Scanner.LaTeX.FindENVPathDirs (variable)
Bases: object
A class to bind a specific E{*}PATH variable name to a function that will return all of the E{*}path directories.

class SCons.Scanner.LaTeX.LaTeX (name, suffixes, graphics_extensions, *args, **kwargs)

SCons.Scanner package

313

Bases: SCons.Scanner.ScannerBase
Class for scanning LaTeX files for included files.
Unlike most scanners, which use regular expressions that just return the included file name, this returns a tuple
consisting of the keyword for the inclusion (“include”, “includegraphics”, “input”, or “bibliography”), and then the file
name itself. Based on a quick look at LaTeX documentation, it seems that we should append .tex suffix for the
“include” keywords, append .tex if there is no extension for the “input” keyword, and need to add .bib for the
“bibliography” keyword that does not accept extensions by itself.
Finally, if there is no extension for an “includegraphics” keyword latex will append .ps or .eps to find the file, while
pdftex may use .pdf, .jpg, .tif, .mps, or .png.
The actual subset and search order may be altered by DeclareGraphicsExtensions command. This complication is
ignored. The default order corresponds to experimentation with teTeX:

$ latex --version
pdfeTeX 3.141592-1.21a-2.2 (Web2C 7.5.4)
kpathsea version 3.5.4

The order is:

[‘.eps’, ‘.ps’] for latex [‘.png’, ‘.pdf’, ‘.jpg’, ‘.tif’].
Another difference is that the search path is determined by the type of the file being searched: env[‘TEXINPUTS’]
for “input” and “include” keywords env[‘TEXINPUTS’] for “includegraphics” keyword env[‘TEXINPUTS’] for
“lstinputlisting” keyword env[‘BIBINPUTS’] for “bibliography” keyword env[‘BSTINPUTS’] for “bibliographystyle”
keyword env[‘INDEXSTYLE’] for “makeindex” keyword, no scanning support needed just allows user to set it if
needed.
FIXME: also look for the class or style in document[class|style]{} FIXME: also look for the argument of
bibliographystyle{}

_latex_names (include_type, filename)

static _recurse_all_nodes (nodes)

static _recurse_no_nodes (nodes)

add_scanner (skey, scanner)

add_skey (skey)
Add a skey to the list of skeys

canonical_text (text)
Standardize an input TeX-file contents.

Currently:

• removes comments, unwrapping comment-wrapped lines.

env_variables = ['TEXINPUTS', 'BIBINPUTS', 'BSTINPUTS', 'INDEXSTYLE']

find_include (include, source_dir, path)

get_skeys (env=None)

keyword_paths = {'addbibresource': 'BIBINPUTS', 'addglobalbib': 'BIBINPUTS', 'addsectionbib': 'BIBINPUTS',
'bibliography': 'BIBINPUTS', 'bibliographystyle': 'BSTINPUTS', 'include': 'TEXINPUTS', 'includegraphics':
'TEXINPUTS', 'input': 'TEXINPUTS', 'lstinputlisting': 'TEXINPUTS', 'makeindex': 'INDEXSTYLE', 'usepackage':
'TEXINPUTS'}

path (env, dir=None, target=None, source=None)

scan (node, subdir='.')

scan_recurse (node, path=())
do a recursive scan of the top level target file This lets us search for included files based on the directory of the
main file just as latex does

SCons.Scanner package

314

select (node)

sort_key (include)

two_arg_commands = ['import', 'subimport', 'includefrom', 'subincludefrom', 'inputfrom', 'subinputfrom']

SCons.Scanner.LaTeX.LaTeXScanner ()
Return a prototype Scanner instance for scanning LaTeX source files when built with latex.

SCons.Scanner.LaTeX.PDFLaTeXScanner ()
Return a prototype Scanner instance for scanning LaTeX source files when built with pdflatex.

class SCons.Scanner.LaTeX._Null
Bases: object

SCons.Scanner.LaTeX._null
alias of SCons.Scanner.LaTeX._Null

SCons.Scanner.LaTeX.modify_env_var (env, var, abspath)

SCons.Scanner.Prog module
Dependency scanner for program files.

SCons.Scanner.Prog.ProgramScanner (**kwargs)
Return a prototype Scanner instance for scanning executable files for static-lib dependencies

SCons.Scanner.Prog._subst_libs (env, libs)
Substitute environment variables and split into list.

SCons.Scanner.Prog.scan (node, env, libpath=())
Scans program files for static-library dependencies.
It will search the LIBPATH environment variable for libraries specified in the LIBS variable, returning any files it
finds as dependencies.

SCons.Scanner.RC module
Dependency scanner for RC (Interface Definition Language) files.

SCons.Scanner.RC.RCScan ()
Return a prototype Scanner instance for scanning RC source files

SCons.Scanner.RC.no_tlb (nodes)
Filter out .tlb files as they are binary and shouldn’t be scanned.

SCons.Scanner.SWIG module
Dependency scanner for SWIG code.

SCons.Scanner.SWIG.SWIGScanner ()

Module contents
The Scanner package for the SCons software construction utility.

SCons.Scanner.Base
alias of SCons.Scanner.ScannerBase

class SCons.Scanner.Classic (name, suffixes, path_variable, regex, *args, **kwargs)
Bases: SCons.Scanner.Current
A Scanner subclass to contain the common logic for classic CPP-style include scanning, but which can be
customized to use different regular expressions to find the includes.
Note that in order for this to work “out of the box” (without overriding the find_include() and sort_key1()
methods), the regular expression passed to the constructor must return the name of the include file in group 0.

SCons.Scanner package

315

static _recurse_all_nodes (nodes)

static _recurse_no_nodes (nodes)

add_scanner (skey, scanner)

add_skey (skey)
Add a skey to the list of skeys

static find_include (include, source_dir, path)

find_include_names (node)

get_skeys (env=None)

path (env, dir=None, target=None, source=None)

scan (node, path=())

select (node)

static sort_key (include)

class SCons.Scanner.ClassicCPP (name, suffixes, path_variable, regex, *args, **kwargs)
Bases: SCons.Scanner.Classic
A Classic Scanner subclass which takes into account the type of bracketing used to include the file, and uses
classic CPP rules for searching for the files based on the bracketing.
Note that in order for this to work, the regular expression passed to the constructor must return the leading bracket
in group 0, and the contained filename in group 1.

static _recurse_all_nodes (nodes)

static _recurse_no_nodes (nodes)

add_scanner (skey, scanner)

add_skey (skey)
Add a skey to the list of skeys

find_include (include, source_dir, path)

find_include_names (node)

get_skeys (env=None)

path (env, dir=None, target=None, source=None)

scan (node, path=())

select (node)

sort_key (include)

class SCons.Scanner.Current (*args, **kwargs)
Bases: SCons.Scanner.ScannerBase
A class for scanning files that are source files (have no builder) or are derived files and are current (which implies
that they exist, either locally or in a repository).

static _recurse_all_nodes (nodes)

static _recurse_no_nodes (nodes)

SCons.Scanner package

316

add_scanner (skey, scanner)

add_skey (skey)
Add a skey to the list of skeys

get_skeys (env=None)

path (env, dir=None, target=None, source=None)

select (node)

class SCons.Scanner.FindPathDirs (variable)
Bases: object
Class to bind a specific E{*}PATH variable name to a function that will return all of the E{*}path directories.

SCons.Scanner.Scanner (function, *args, **kwargs)
Factory function to create a Scanner Object.
Creates the appropriate Scanner based on the type of “function”.
TODO: Deprecate this some day. We’ve moved the functionality inside the ScannerBase class and really don’t
need this factory function any more. It was, however, used by some of our Tool modules, so the call probably
ended up in various people’s custom modules patterned on SCons code.

class SCons.Scanner.ScannerBase (function, name='NONE', argument=<class
'SCons.Scanner._Null'>, skeys=<class 'SCons.Scanner._Null'>, path_function=None,
node_class=<class 'SCons.Node.FS.Base'>, node_factory=None, scan_check=None,
recursive=None)

Bases: object
Base class for dependency scanners.
Implements straightforward, single-pass scanning of a single file.
A Scanner is usually set up with a scanner function (and optionally a path function), but can also be a kind of
dispatcher which passes control to other Scanners.
A scanner function takes three arguments: a Node to scan for dependecies, the construction environment to use,
and an optional tuple of paths (as generated by the optional path function). It must return a list containing the
Nodes for all the direct dependencies of the file.
The optional path function is called to return paths that can be searched for implicit dependency files. It takes five
arguments: a construction environment, a Node for the directory containing the SConscript file that defined the
primary target, a list of target nodes, a list of source nodes, and the optional argument for this instance.
Examples:

s = Scanner(my_scanner_function)
s = Scanner(function=my_scanner_function)
s = Scanner(function=my_scanner_function, argument='foo')

SCons.Scanner package

317

Parameters:
• function – either a scanner function taking two or three arguments and returning a list

of File Nodes; or a mapping of keys to other Scanner objects.

• name – an optional name for identifying this scanner object (defaults to “NONE”).

• argument – an optional argument that will be passed to both function and
path_function.

• skeys – an optional list argument that can be used to determine if this scanner can be
used for a given Node. In the case of File nodes, for example, the skeys would be file
suffixes.

• path_function – an optional function which returns a tuple of the directories that can
be searched for implicit dependency files. May also return a callable which is called
with no args and returns the tuple (supporting Bindable class).

• node_class – optional class of Nodes which this scan will return. If not specified,
defaults to SCons.Node.FS.Base. If node_class is None, then this scanner will not
enforce any Node conversion and will return the raw results from function.

• node_factory – optional factory function to be called to translate the raw results
returned by function into the expected node_class objects.

• scan_check – optional function to be called to first check whether this node really
needs to be scanned.

• recursive – optional specifier of whether this scanner should be invoked recursively on
all of the implicit dependencies it returns (for example #include lines in C source files,
which may refer to header files which should themselves be scanned). May be a
callable, which will be called to filter the list of nodes found to select a subset for
recursive scanning (the canonical example being only recursively scanning
subdirectories within a directory). The default is to not do recursive scanning.

static _recurse_all_nodes (nodes)

static _recurse_no_nodes (nodes)

add_scanner (skey, scanner)

add_skey (skey)
Add a skey to the list of skeys

get_skeys (env=None)

path (env, dir=None, target=None, source=None)

select (node)

class SCons.Scanner.Selector (mapping, *args, **kwargs)
Bases: SCons.Scanner.ScannerBase
A class for selecting a more specific scanner based on the scanner_key() (suffix) for a specific Node.
TODO: This functionality has been moved into the inner workings of the ScannerBase class, and this class will be
deprecated at some point. (It was never exposed directly as part of the public interface, although it is used by the
Scanner() factory function that was used by various Tool modules and therefore was likely a template for custom
modules that may be out there.)

static _recurse_all_nodes (nodes)

static _recurse_no_nodes (nodes)

add_scanner (skey, scanner)

add_skey (skey)
Add a skey to the list of skeys

SCons.Scanner package

318

get_skeys (env=None)

path (env, dir=None, target=None, source=None)

select (node)

class SCons.Scanner._Null
Bases: object

SCons.Scanner._null
alias of SCons.Scanner._Null

SCons.Script package

Submodules

SCons.Script.Interactive module
SCons interactive mode.

class SCons.Script.Interactive.SConsInteractiveCmd (**kw)
Bases: cmd.Cmd
build [TARGETS] Build the specified TARGETS and their dependencies. ‘b’ is a synonym. clean [TARGETS]
Clean (remove) the specified TARGETS and their dependencies. ‘c’ is a synonym. exit Exit SCons interactive
mode. help [COMMAND] Prints help for the specified COMMAND. ‘h’ and ‘?’ are synonyms. shell
[COMMANDLINE] Execute COMMANDLINE in a subshell. ‘sh’ and ‘!’ are synonyms. version Prints SCons version
information.

_do_one_help (arg)

_doc_to_help (obj)

_strip_initial_spaces (s)

cmdloop (intro=None)
Repeatedly issue a prompt, accept input, parse an initial prefix off the received input, and dispatch to action
methods, passing them the remainder of the line as argument.

columnize (list, displaywidth=80)
Display a list of strings as a compact set of columns.
Each column is only as wide as necessary. Columns are separated by two spaces (one was not legible enough).

complete (text, state)
Return the next possible completion for ‘text’.
If a command has not been entered, then complete against command list. Otherwise try to call
complete_<command> to get list of completions.

complete_help (*args)

completedefault (*ignored)
Method called to complete an input line when no command-specific complete_*() method is available.
By default, it returns an empty list.

completenames (text, *ignored)

default (argv)
Called on an input line when the command prefix is not recognized.
If this method is not overridden, it prints an error message and returns.

SCons.Script package

319

do_EOF (argv)

do_build (argv)
build [TARGETS] Build the specified TARGETS and their dependencies. ‘b’ is a synonym.

do_clean (argv)
clean [TARGETS] Clean (remove) the specified TARGETS and their dependencies. ‘c’ is a synonym.

do_exit (argv)
exit Exit SCons interactive mode.

do_help (argv)
help [COMMAND] Prints help for the specified COMMAND. ‘h’ and ‘?’ are synonyms.

do_shell (argv)
shell [COMMANDLINE] Execute COMMANDLINE in a subshell. ‘sh’ and ‘!’ are synonyms.

do_version (argv)
version Prints SCons version information.

doc_header = 'Documented commands (type help <topic>):'

doc_leader = ''

emptyline ()
Called when an empty line is entered in response to the prompt.
If this method is not overridden, it repeats the last nonempty command entered.

get_names ()

identchars = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_'

intro = None

lastcmd = ''

misc_header = 'Miscellaneous help topics:'

nohelp = '*** No help on %s'

onecmd (line)
Interpret the argument as though it had been typed in response to the prompt.
This may be overridden, but should not normally need to be; see the precmd() and postcmd() methods for useful
execution hooks. The return value is a flag indicating whether interpretation of commands by the interpreter
should stop.

parseline (line)
Parse the line into a command name and a string containing the arguments. Returns a tuple containing
(command, args, line). ‘command’ and ‘args’ may be None if the line couldn’t be parsed.

postcmd (stop, line)
Hook method executed just after a command dispatch is finished.

postloop ()
Hook method executed once when the cmdloop() method is about to return.

precmd (line)
Hook method executed just before the command line is interpreted, but after the input prompt is generated and
issued.

preloop ()

SCons.Script package

320

Hook method executed once when the cmdloop() method is called.

print_topics (header, cmds, cmdlen, maxcol)

prompt = '(Cmd) '

ruler = '='

synonyms = {'b': 'build', 'c': 'clean', 'h': 'help', 'scons': 'build', 'sh': 'shell'}

undoc_header = 'Undocumented commands:'

use_rawinput = 1

SCons.Script.Interactive.interact (fs, parser, options, targets, target_top)

SCons.Script.Main module
The main() function used by the scons script.

Architecturally, this is the scons script, and will likely only be called from the external “scons” wrapper. Consequently,
anything here should not be, or be considered, part of the build engine. If it’s something that we expect other
software to want to use, it should go in some other module. If it’s specific to the “scons” script invocation, it goes
here.

SCons.Script.Main.AddOption (*args, **kw)

class SCons.Script.Main.BuildTask (tm, targets, top, node)
Bases: SCons.Taskmaster.OutOfDateTask
An SCons build task.

_abc_impl = <_abc_data object>

_exception_raise ()
Raises a pending exception that was recorded while getting a Task ready for execution.

_no_exception_to_raise ()

display (message)
Hook to allow the calling interface to display a message.
This hook gets called as part of preparing a task for execution (that is, a Node to be built). As part of figuring out
what Node should be built next, the actual target list may be altered, along with a message describing the
alteration. The calling interface can subclass Task and provide a concrete implementation of this method to see
those messages.

do_failed (status=2)

exc_clear ()
Clears any recorded exception.
This also changes the “exception_raise” attribute to point to the appropriate do-nothing method.

exc_info ()
Returns info about a recorded exception.

exception_set (exception=None)
Records an exception to be raised at the appropriate time.
This also changes the “exception_raise” attribute to point to the method that will, in fact

execute ()
Called to execute the task.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in prepare(), executed() or failed().

SCons.Script package

321

executed ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target
was an actual built target or a source Node.

executed_with_callbacks ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target
was an actual built target or a source Node.

executed_without_callbacks ()
Called when the task has been successfully executed and the Taskmaster instance doesn’t want to call the
Node’s callback methods.

fail_continue ()
Explicit continue-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

fail_stop ()
Explicit stop-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

failed ()
Default action when a task fails: stop the build.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

get_target ()
Fetch the target being built or updated by this task.

make_ready ()
Make a task ready for execution

make_ready_all ()
Marks all targets in a task ready for execution.
This is used when the interface needs every target Node to be visited–the canonical example being the “scons
-c” option.

make_ready_current ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.

needs_execute ()
Returns True (indicating this Task should be executed) if this Task’s target state indicates it needs executing,
which has already been determined by an earlier up-to-date check.

postprocess ()
Post-processes a task after it’s been executed.
This examines all the targets just built (or not, we don’t care if the build was successful, or even if there was no
build because everything was up-to-date) to see if they have any waiting parent Nodes, or Nodes waiting on a
common side effect, that can be put back on the candidates list.

SCons.Script package

322

prepare ()
Called just before the task is executed.
This is mainly intended to give the target Nodes a chance to unlink underlying files and make all necessary
directories before the Action is actually called to build the targets.

trace_message (method, node, description='node')

class SCons.Script.Main.CleanTask (tm, targets, top, node)
Bases: SCons.Taskmaster.AlwaysTask
An SCons clean task.

_abc_impl = <_abc_data object>

_clean_targets (remove=True)

_exception_raise ()
Raises a pending exception that was recorded while getting a Task ready for execution.

_get_files_to_clean ()

_no_exception_to_raise ()

display (message)
Hook to allow the calling interface to display a message.
This hook gets called as part of preparing a task for execution (that is, a Node to be built). As part of figuring out
what Node should be built next, the actual target list may be altered, along with a message describing the
alteration. The calling interface can subclass Task and provide a concrete implementation of this method to see
those messages.

exc_clear ()
Clears any recorded exception.
This also changes the “exception_raise” attribute to point to the appropriate do-nothing method.

exc_info ()
Returns info about a recorded exception.

exception_set (exception=None)
Records an exception to be raised at the appropriate time.
This also changes the “exception_raise” attribute to point to the method that will, in fact

execute ()
Called to execute the task.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in prepare(), executed() or failed().

executed ()
Called when the task has been successfully executed and the Taskmaster instance doesn’t want to call the
Node’s callback methods.

executed_with_callbacks ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target
was an actual built target or a source Node.

executed_without_callbacks ()
Called when the task has been successfully executed and the Taskmaster instance doesn’t want to call the
Node’s callback methods.

SCons.Script package

323

fail_continue ()
Explicit continue-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

fail_stop ()
Explicit stop-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

failed ()
Default action when a task fails: stop the build.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

fs_delete (path, pathstr, remove=True)

get_target ()
Fetch the target being built or updated by this task.

make_ready ()
Marks all targets in a task ready for execution.
This is used when the interface needs every target Node to be visited–the canonical example being the “scons
-c” option.

make_ready_all ()
Marks all targets in a task ready for execution.
This is used when the interface needs every target Node to be visited–the canonical example being the “scons
-c” option.

make_ready_current ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.

needs_execute ()
Always returns True (indicating this Task should always be executed).
Subclasses that need this behavior (as opposed to the default of only executing Nodes that are out of date w.r.t.
their dependencies) can use this as follows:

class MyTaskSubclass(SCons.Taskmaster.Task):

needs_execute = SCons.Taskmaster.AlwaysTask.needs_execute

postprocess ()
Post-processes a task after it’s been executed.
This examines all the targets just built (or not, we don’t care if the build was successful, or even if there was no
build because everything was up-to-date) to see if they have any waiting parent Nodes, or Nodes waiting on a
common side effect, that can be put back on the candidates list.

prepare ()
Called just before the task is executed.
This is mainly intended to give the target Nodes a chance to unlink underlying files and make all necessary
directories before the Action is actually called to build the targets.

remove ()

show ()

trace_message (method, node, description='node')

SCons.Script package

324

class SCons.Script.Main.CountStats
Bases: SCons.Script.Main.Stats

do_append (label)

do_nothing (*args, **kw)

do_print ()

enable (outfp)

class SCons.Script.Main.FakeOptionParser
Bases: object
A do-nothing option parser, used for the initial OptionsParser variable.
During normal SCons operation, the OptionsParser is created right away by the main() function. Certain tests
scripts however, can introspect on different Tool modules, the initialization of which can try to add a new, local
option to an otherwise uninitialized OptionsParser object. This allows that introspection to happen without blowing
up.

class FakeOptionValues
Bases: object

add_local_option (*args, **kw)

values = <SCons.Script.Main.FakeOptionParser.FakeOptionValues object>

SCons.Script.Main.GetBuildFailures ()

SCons.Script.Main.GetOption (name)

class SCons.Script.Main.MemStats
Bases: SCons.Script.Main.Stats

do_append (label)

do_nothing (*args, **kw)

do_print ()

enable (outfp)

SCons.Script.Main.PrintHelp (file=None)

SCons.Script.Main.Progress (*args, **kw)

class SCons.Script.Main.Progressor (obj, interval=1, file=None, overwrite=False)
Bases: object

count = 0

erase_previous ()

prev = ''

replace_string (node)

spinner (node)

string (node)

target_string = '$TARGET'

write (s)

SCons.Script package

325

class SCons.Script.Main.QuestionTask (tm, targets, top, node)
Bases: SCons.Taskmaster.AlwaysTask
An SCons task for the -q (question) option.

_abc_impl = <_abc_data object>

_exception_raise ()
Raises a pending exception that was recorded while getting a Task ready for execution.

_no_exception_to_raise ()

display (message)
Hook to allow the calling interface to display a message.
This hook gets called as part of preparing a task for execution (that is, a Node to be built). As part of figuring out
what Node should be built next, the actual target list may be altered, along with a message describing the
alteration. The calling interface can subclass Task and provide a concrete implementation of this method to see
those messages.

exc_clear ()
Clears any recorded exception.
This also changes the “exception_raise” attribute to point to the appropriate do-nothing method.

exc_info ()
Returns info about a recorded exception.

exception_set (exception=None)
Records an exception to be raised at the appropriate time.
This also changes the “exception_raise” attribute to point to the method that will, in fact

execute ()
Called to execute the task.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in prepare(), executed() or failed().

executed ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target
was an actual built target or a source Node.

executed_with_callbacks ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target
was an actual built target or a source Node.

executed_without_callbacks ()
Called when the task has been successfully executed and the Taskmaster instance doesn’t want to call the
Node’s callback methods.

fail_continue ()
Explicit continue-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

fail_stop ()

SCons.Script package

326

Explicit stop-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

failed ()
Default action when a task fails: stop the build.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

get_target ()
Fetch the target being built or updated by this task.

make_ready ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.

make_ready_all ()
Marks all targets in a task ready for execution.
This is used when the interface needs every target Node to be visited–the canonical example being the “scons
-c” option.

make_ready_current ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.

needs_execute ()
Always returns True (indicating this Task should always be executed).
Subclasses that need this behavior (as opposed to the default of only executing Nodes that are out of date w.r.t.
their dependencies) can use this as follows:

class MyTaskSubclass(SCons.Taskmaster.Task):

needs_execute = SCons.Taskmaster.AlwaysTask.needs_execute

postprocess ()
Post-processes a task after it’s been executed.
This examines all the targets just built (or not, we don’t care if the build was successful, or even if there was no
build because everything was up-to-date) to see if they have any waiting parent Nodes, or Nodes waiting on a
common side effect, that can be put back on the candidates list.

prepare ()
Called just before the task is executed.
This is mainly intended to give the target Nodes a chance to unlink underlying files and make all necessary
directories before the Action is actually called to build the targets.

trace_message (method, node, description='node')

exception SCons.Script.Main.SConsPrintHelpException
Bases: Exception

args

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

SCons.Script.Main.SetOption (name, value)

class SCons.Script.Main.Stats
Bases: object

do_nothing (*args, **kw)

SCons.Script package

327

enable (outfp)

class SCons.Script.Main.TreePrinter (derived=False, prune=False, status=False, sLineDraw=False)
Bases: object

display (t)

get_all_children (node)

get_derived_children (node)

SCons.Script.Main._SConstruct_exists (dirname='', repositories=[], filelist=None)
This function checks that an SConstruct file exists in a directory. If so, it returns the path of the file. By default, it
checks the current directory.

SCons.Script.Main._build_targets (fs, options, targets, target_top)

SCons.Script.Main._create_path (plist)

SCons.Script.Main._exec_main (parser, values)

SCons.Script.Main._load_all_site_scons_dirs (topdir, verbose=False)
Load all of the predefined site_scons dir. Order is significant; we load them in order from most generic
(machine-wide) to most specific (topdir). The verbose argument is only for testing.

SCons.Script.Main._load_site_scons_dir (topdir, site_dir_name=None)
Load the site directory under topdir.
If a site dir name is supplied use it, else use default “site_scons” Prepend site dir to sys.path. If a “site_tools” subdir
exists, prepend to toolpath. Import “site_init.py” from site dir if it exists.

SCons.Script.Main._main (parser)

SCons.Script.Main._scons_internal_error ()
Handle all errors but user errors. Print out a message telling the user what to do in this case and print a normal
trace.

SCons.Script.Main._scons_internal_warning (e)
Slightly different from _scons_user_warning in that we use the current call stack rather than sys.exc_info() to get
our stack trace. This is used by the warnings framework to print warnings.

SCons.Script.Main._scons_syntax_error (e)
Handle syntax errors. Print out a message and show where the error occurred.

SCons.Script.Main._scons_user_error (e)
Handle user errors. Print out a message and a description of the error, along with the line number and routine
where it occured. The file and line number will be the deepest stack frame that is not part of SCons itself.

SCons.Script.Main._scons_user_warning (e)
Handle user warnings. Print out a message and a description of the warning, along with the line number and
routine where it occured. The file and line number will be the deepest stack frame that is not part of SCons itself.

SCons.Script.Main._set_debug_values (options)

SCons.Script.Main.find_deepest_user_frame (tb)
Find the deepest stack frame that is not part of SCons.
Input is a “pre-processed” stack trace in the form returned by traceback.extract_tb() or traceback.extract_stack()

SCons.Script.Main.main ()

SCons.Script.Main.path_string (label, module)

SCons.Script.Main.python_version_deprecated (version=sys.version_info(major=3, minor=7, micro=11,
releaselevel='final', serial=0))

SCons.Script.Main.python_version_string ()

SCons.Script.Main.python_version_unsupported (version=sys.version_info(major=3, minor=7, micro=11,
releaselevel='final', serial=0))

SCons.Script.Main.revert_io ()

SCons.Script package

328

SCons.Script.Main.test_load_all_site_scons_dirs (d)

SCons.Script.Main.version_string (label, module)

SCons.Script.SConsOptions module

SCons.Script.SConsOptions.Parser (version)
Returns an options parser object initialized with the standard SCons options.

class SCons.Script.SConsOptions.SConsIndentedHelpFormatter (indent_increment=2,
max_help_position=24, width=None, short_first=1)

Bases: optparse.IndentedHelpFormatter

NO_DEFAULT_VALUE = 'none'

_format_text (text)
Format a paragraph of free-form text for inclusion in the help output at the current indentation level.

dedent ()

expand_default (option)

format_description (description)

format_epilog (epilog)

format_heading (heading)
This translates any heading of “options” or “Options” into “SCons Options.” Unfortunately, we have to do this
here, because those titles are hard-coded in the optparse calls.

format_option (option)
A copy of the normal optparse.IndentedHelpFormatter.format_option() method. This has been snarfed so we
can modify text wrapping to out liking:

– add our own regular expression that doesn’t break on hyphens

(so things like –no-print-directory don’t get broken);

– wrap the list of options themselves when it’s too long

(the wrapper.fill(opts) call below);
– set the subsequent_indent when wrapping the help_text.

format_option_strings (option)
Return a comma-separated list of option strings & metavariables.

format_usage (usage)

indent ()

set_long_opt_delimiter (delim)

set_parser (parser)

set_short_opt_delimiter (delim)

store_option_strings (parser)

class SCons.Script.SConsOptions.SConsOption (*opts, **attrs)
Bases: optparse.Option

ACTIONS = ('store', 'store_const', 'store_true', 'store_false', 'append', 'append_const', 'count', 'callback', 'help',
'version')

SCons.Script package

329

ALWAYS_TYPED_ACTIONS = ('store', 'append')

ATTRS = ['action', 'type', 'dest', 'default', 'nargs', 'const', 'choices', 'callback', 'callback_args', 'callback_kwargs',
'help', 'metavar']

CHECK_METHODS = [<function Option._check_action>, <function Option._check_type>, <function
Option._check_choice>, <function Option._check_dest>, <function Option._check_const>, <function
Option._check_nargs>, <function Option._check_callback>, <function SConsOption._check_nargs_optional>]

CONST_ACTIONS = ('store_const', 'append_const', 'store', 'append', 'callback')

STORE_ACTIONS = ('store', 'store_const', 'store_true', 'store_false', 'append', 'append_const', 'count')

TYPED_ACTIONS = ('store', 'append', 'callback')

TYPES = ('string', 'int', 'long', 'float', 'complex', 'choice')

TYPE_CHECKER = {'choice': <function check_choice>, 'complex': <function check_builtin>, 'float': <function
check_builtin>, 'int': <function check_builtin>, 'long': <function check_builtin>}

_check_action ()

_check_callback ()

_check_choice ()

_check_const ()

_check_dest ()

_check_nargs ()

_check_nargs_optional ()

_check_opt_strings (opts)

_check_type ()

_set_attrs (attrs)

_set_opt_strings (opts)

check_value (opt, value)

convert_value (opt, value)

get_opt_string ()

process (opt, value, values, parser)

take_action (action, dest, opt, value, values, parser)

takes_value ()

class SCons.Script.SConsOptions.SConsOptionGroup (parser, title, description=None)
Bases: optparse.OptionGroup
A subclass for SCons-specific option groups.
The only difference between this and the base class is that we print the group’s help text flush left, underneath
their own title but lined up with the normal “SCons Options”.

_check_conflict (option)

SCons.Script package

330

_create_option_list ()

_create_option_mappings ()

_share_option_mappings (parser)

add_option (Option)
add_option(opt_str, …, kwarg=val, …)

add_options (option_list)

destroy ()
see OptionParser.destroy().

format_description (formatter)

format_help (formatter)
Format an option group’s help text, outdenting the title so it’s flush with the “SCons Options” title we print at the
top.

format_option_help (formatter)

get_description ()

get_option (opt_str)

has_option (opt_str)

remove_option (opt_str)

set_conflict_handler (handler)

set_description (description)

set_title (title)

class SCons.Script.SConsOptions.SConsOptionParser (usage=None, option_list=None,
option_class=<class 'optparse.Option'>, version=None, conflict_handler='error',
description=None, formatter=None, add_help_option=True, prog=None, epilog=None)

Bases: optparse.OptionParser

_add_help_option ()

_add_version_option ()

_check_conflict (option)

_create_option_list ()

_create_option_mappings ()

_get_all_options ()

_get_args (args)

_init_parsing_state ()

_match_long_opt (opt: string) → string
Determine which long option string ‘opt’ matches, ie. which one it is an unambiguous abbreviation for. Raises
BadOptionError if ‘opt’ doesn’t unambiguously match any long option string.

SCons.Script package

331

_populate_option_list (option_list, add_help=True)

_process_args (largs, rargs, values)

_process_args(largs : [string],

rargs : [string], values : Values)
Process command-line arguments and populate ‘values’, consuming options and arguments from ‘rargs’. If
‘allow_interspersed_args’ is false, stop at the first non-option argument. If true, accumulate any interspersed
non-option arguments in ‘largs’.

_process_long_opt (rargs, values)
SCons-specific processing of long options.
This is copied directly from the normal optparse._process_long_opt() method, except that, if configured to do so,
we catch the exception thrown when an unknown option is encountered and just stick it back on the “leftover”
arguments for later (re-)processing.

_process_short_opts (rargs, values)

_share_option_mappings (parser)

add_local_option (*args, **kw)
Adds a local option to the parser.
This is initiated by an AddOption() call to add a user-defined command-line option. We add the option to a
separate option group for the local options, creating the group if necessary.

add_option (Option)
add_option(opt_str, …, kwarg=val, …)

add_option_group (*args, **kwargs)

add_options (option_list)

check_values (values: Values, args: [string])
-> (values : Values, args : [string])
Check that the supplied option values and leftover arguments are valid. Returns the option values and leftover
arguments (possibly adjusted, possibly completely new – whatever you like). Default implementation just returns
the passed-in values; subclasses may override as desired.

destroy ()
Declare that you are done with this OptionParser. This cleans up reference cycles so the OptionParser (and all
objects referenced by it) can be garbage-collected promptly. After calling destroy(), the OptionParser is
unusable.

disable_interspersed_args ()
Set parsing to stop on the first non-option. Use this if you have a command processor which runs another
command that has options of its own and you want to make sure these options don’t get confused.

enable_interspersed_args ()
Set parsing to not stop on the first non-option, allowing interspersing switches with command arguments. This is
the default behavior. See also disable_interspersed_args() and the class documentation description of the
attribute allow_interspersed_args.

error (msg: string)
Print a usage message incorporating ‘msg’ to stderr and exit. If you override this in a subclass, it should not
return – it should either exit or raise an exception.

exit (status=0, msg=None)

expand_prog_name (s)

format_description (formatter)

SCons.Script package

332

format_epilog (formatter)

format_help (formatter=None)

format_option_help (formatter=None)

get_default_values ()

get_description ()

get_option (opt_str)

get_option_group (opt_str)

get_prog_name ()

get_usage ()

get_version ()

has_option (opt_str)

parse_args (args=None, values=None)

parse_args(args : [string] = sys.argv[1:],

values : Values = None)
-> (values : Values, args : [string])
Parse the command-line options found in ‘args’ (default: sys.argv[1:]). Any errors result in a call to ‘error()’, which
by default prints the usage message to stderr and calls sys.exit() with an error message. On success returns a
pair (values, args) where ‘values’ is a Values instance (with all your option values) and ‘args’ is the list of
arguments left over after parsing options.

preserve_unknown_options = False

print_help (file: file = stdout)
Print an extended help message, listing all options and any help text provided with them, to ‘file’ (default stdout).

print_usage (file: file = stdout)
Print the usage message for the current program (self.usage) to ‘file’ (default stdout). Any occurrence of the
string “%prog” in self.usage is replaced with the name of the current program (basename of sys.argv[0]). Does
nothing if self.usage is empty or not defined.

print_version (file: file = stdout)
Print the version message for this program (self.version) to ‘file’ (default stdout). As with print_usage(), any
occurrence of “%prog” in self.version is replaced by the current program’s name. Does nothing if self.version is
empty or undefined.

remove_option (opt_str)

reparse_local_options ()
Re-parse the leftover command-line options.
Parse options stored in self.largs, so that any value overridden on the command line is immediately available if
the user turns around and does a GetOption() right away.
We mimic the processing of the single args in the original OptionParser _process_args(), but here we allow
exact matches for long-opts only (no partial argument names!). Otherwise there could be problems in
add_local_option() below. When called from there, we try to reparse the command-line arguments that

1. haven’t been processed so far (self.largs), but

2. are possibly not added to the list of options yet.
So, when we only have a value for “–myargument” so far, a command-line argument of “–myarg=test” would set
it, per the behaviour of _match_long_opt(), which allows for partial matches of the option name, as long as

SCons.Script package

333

the common prefix appears to be unique. This would lead to further confusion, because we might want to add
another option “–myarg” later on (see issue #2929).

set_conflict_handler (handler)

set_default (dest, value)

set_defaults (**kwargs)

set_description (description)

set_process_default_values (process)

set_usage (usage)

standard_option_list = []

class SCons.Script.SConsOptions.SConsValues (defaults)
Bases: optparse.Values
Holder class for uniform access to SCons options, regardless of whether or not they can be set on the command
line or in the SConscript files (using the SetOption() function).
A SCons option value can originate three different ways:

1. set on the command line;

2. set in an SConscript file;

3. the default setting (from the the op.add_option() calls in the Parser() function, below).
The command line always overrides a value set in a SConscript file, which in turn always overrides default
settings. Because we want to support user-specified options in the SConscript file itself, though, we may not know
about all of the options when the command line is first parsed, so we can’t make all the necessary precedence
decisions at the time the option is configured.
The solution implemented in this class is to keep these different sets of settings separate (command line,
SConscript file, and default) and to override the __getattr__() method to check them in turn. This should allow the
rest of the code to just fetch values as attributes of an instance of this class, without having to worry about where
they came from.
Note that not all command line options are settable from SConscript files, and the ones that are must be explicitly
added to the “settable” list in this class, and optionally validated and coerced in the set_option() method.

_update (dict, mode)

_update_careful (dict)
Update the option values from an arbitrary dictionary, but only use keys from dict that already have a
corresponding attribute in self. Any keys in dict without a corresponding attribute are silently ignored.

_update_loose (dict)
Update the option values from an arbitrary dictionary, using all keys from the dictionary regardless of whether
they have a corresponding attribute in self or not.

ensure_value (attr, value)

read_file (filename, mode='careful')

read_module (modname, mode='careful')

set_option (name, value)
Sets an option from an SConscript file.

Raises: UserError – invalid or malformed option (“error in your script”)

SCons.Script package

334

settable = ['clean', 'diskcheck', 'duplicate', 'experimental', 'hash_chunksize', 'hash_format', 'help',
'implicit_cache', 'implicit_deps_changed', 'implicit_deps_unchanged', 'max_drift', 'md5_chunksize', 'no_exec',
'no_progress', 'num_jobs', 'random', 'silent', 'stack_size', 'warn', 'disable_execute_ninja', 'disable_ninja']

SCons.Script.SConsOptions.diskcheck_convert (value)

SCons.Script.SConscript module
This module defines the Python API provided to SConscript files.

SCons.Script.SConscript.BuildDefaultGlobals ()
Create a dictionary containing all the default globals for SConstruct and SConscript files.

SCons.Script.SConscript.Configure (*args, **kw)

class SCons.Script.SConscript.DefaultEnvironmentCall (method_name, subst=0)
Bases: object
A class that implements “global function” calls of Environment methods by fetching the specified method from the
DefaultEnvironment’s class. Note that this uses an intermediate proxy class instead of calling the
DefaultEnvironment method directly so that the proxy can override the subst() method and thereby prevent
expansion of construction variables (since from the user’s point of view this was called as a global function, with no
associated construction environment).

class SCons.Script.SConscript.Frame (fs, exports, sconscript)
Bases: object
A frame on the SConstruct/SConscript call stack

SCons.Script.SConscript.Return (*vars, **kw)

class SCons.Script.SConscript.SConsEnvironment (platform=None, tools=None, toolpath=None,
variables=None, parse_flags=None, **kw)

Bases: SCons.Environment.Base
An Environment subclass that contains all of the methods that are particular to the wrapper SCons interface and
which aren’t (or shouldn’t be) part of the build engine itself.
Note that not all of the methods of this class have corresponding global functions, there are some private methods.

Action (*args, **kw)

AddMethod (function, name=None)
Adds the specified function as a method of this construction environment with the specified name. If the name is
omitted, the default name is the name of the function itself.

AddPostAction (files, action)

AddPreAction (files, action)

Alias (target, source=[], action=None, **kw)

AlwaysBuild (*targets)

Append (**kw)
Append values to construction variables in an Environment.
The variable is created if it is not already present.

AppendENVPath (name, newpath, envname='ENV', sep=':', delete_existing=0)
Append path elements to the path ‘name’ in the ‘ENV’ dictionary for this environment. Will only add any
particular path once, and will normpath and normcase all paths to help assure this. This can also handle the
case where the env variable is a list instead of a string.
If delete_existing is 0, a newpath which is already in the path will not be moved to the end (it will be left where it
is).

AppendUnique (delete_existing=0, **kw)

SCons.Script package

335

Append values to existing construction variables in an Environment, if they’re not already there. If
delete_existing is 1, removes existing values first, so values move to end.

Builder (**kw)

CacheDir (path, custom_class=None)

Clean (targets, files)

Clone (tools=[], toolpath=None, parse_flags=None, **kw)
Return a copy of a construction Environment.
The copy is like a Python “deep copy”–that is, independent copies are made recursively of each objects–except
that a reference is copied when an object is not deep-copyable (like a function). There are no references to any
mutable objects in the original Environment.

Command (target, source, action, **kw)
Builds the supplied target files from the supplied source files using the supplied action. Action may be any type
that the Builder constructor will accept for an action.

Configure (*args, **kw)

Decider (function)

Default (*targets)

Depends (target, dependency)
Explicity specify that ‘target’s depend on ‘dependency’.

Detect (progs)
Return the first available program from one or more possibilities.

Parameters: progs (str or list) – one or more command names to check for

Dictionary (*args)
Return construction variables from an environment.

Parameters: *args (optional) – variable names to look up

Returns: If args omitted, the dictionary of all construction variables. If one arg, the corresponding
value is returned. If more than one arg, a list of values is returned.

Raises: KeyError – if any of args is not in the construction environment.

Dir (name, *args, **kw)

Dump (key=None, format='pretty')
Return construction variables serialized to a string.

Parameters:
• key (optional) – if None, format the whole dict of variables. Else format the value of

key (Default value = None)

• format (str, optional) – specify the format to serialize to. “pretty” generates a
pretty-printed string, “json” a JSON-formatted string. (Default value = “pretty”)

EnsurePythonVersion (major, minor)
Exit abnormally if the Python version is not late enough.

EnsureSConsVersion (major, minor, revision=0)
Exit abnormally if the SCons version is not late enough.

Entry (name, *args, **kw)

Environment (**kw)

SCons.Script package

336

Execute (action, *args, **kw)
Directly execute an action through an Environment

Exit (value=0)

Export (*vars, **kw)

File (name, *args, **kw)

FindFile (file, dirs)

FindInstalledFiles ()
returns the list of all targets of the Install and InstallAs Builder.

FindIxes (paths, prefix, suffix)
Search a list of paths for something that matches the prefix and suffix.

Parameters:
• paths – the list of paths or nodes.

• prefix – construction variable for the prefix.

• suffix – construction variable for the suffix.
Returns: the matched path or None

FindSourceFiles (node='.')
returns a list of all source files.

Flatten (sequence)

GetBuildPath (files)

GetLaunchDir ()

GetOption (name)

Glob (pattern, ondisk=True, source=False, strings=False, exclude=None)

Help (text, append=False)

Ignore (target, dependency)
Ignore a dependency.

Import (*vars)

Literal (string)

Local (*targets)

MergeFlags (args, unique=True)
Merge flags into construction variables.
Merges the flags from args into this construction environent. If args is not a dict, it is first converted to a
dictionary with flags distributed into appropriate construction variables. See ParseFlags().

Parameters:
• args – flags to merge

• unique – merge flags rather than appending (default: True)

NoCache (*targets)
Tags a target so that it will not be cached

NoClean (*targets)
Tags a target so that it will not be cleaned by -c

SCons.Script package

337

Override (overrides)
Produce a modified environment whose variables are overridden by the overrides dictionaries. “overrides” is a
dictionary that will override the variables of this environment.
This function is much more efficient than Clone() or creating a new Environment because it doesn’t copy the
construction environment dictionary, it just wraps the underlying construction environment, and doesn’t even
create a wrapper object if there are no overrides.

ParseConfig (command, function=None, unique=True)
Use the specified function to parse the output of the command in order to modify the current environment. The
‘command’ can be a string or a list of strings representing a command and its arguments. ‘Function’ is an
optional argument that takes the environment, the output of the command, and the unique flag. If no function is
specified, MergeFlags, which treats the output as the result of a typical ‘X-config’ command (i.e. gtk-config), will
merge the output into the appropriate variables.

ParseDepends (filename, must_exist=None, only_one=False)
Parse a mkdep-style file for explicit dependencies. This is completely abusable, and should be unnecessary in
the “normal” case of proper SCons configuration, but it may help make the transition from a Make hierarchy
easier for some people to swallow. It can also be genuinely useful when using a tool that can write a .d file, but
for which writing a scanner would be too complicated.

ParseFlags (*flags)
Return a dict of parsed flags.
Parse flags and return a dict with the flags distributed into the appropriate construction variable names. The
flags are treated as a typical set of command-line flags for a GNU-like toolchain, such as might have been
generated by one of the {foo}-config scripts, and used to populate the entries based on knowledge embedded in
this method - the choices are not expected to be portable to other toolchains.
If one of the flags strings begins with a bang (exclamation mark), it is assumed to be a command and the rest
of the string is executed; the result of that evaluation is then added to the dict.

Platform (platform)

Precious (*targets)

Prepend (**kw)
Prepend values to construction variables in an Environment.
The variable is created if it is not already present.

PrependENVPath (name, newpath, envname='ENV', sep=':', delete_existing=1)
Prepend path elements to the path ‘name’ in the ‘ENV’ dictionary for this environment. Will only add any
particular path once, and will normpath and normcase all paths to help assure this. This can also handle the
case where the env variable is a list instead of a string.
If delete_existing is 0, a newpath which is already in the path will not be moved to the front (it will be left where it
is).

PrependUnique (delete_existing=0, **kw)
Prepend values to existing construction variables in an Environment, if they’re not already there. If
delete_existing is 1, removes existing values first, so values move to front.

Pseudo (*targets)

PyPackageDir (modulename)

RemoveMethod (function)
Removes the specified function’s MethodWrapper from the added_methods list, so we don’t re-bind it when
making a clone.

Replace (**kw)
Replace existing construction variables in an Environment with new construction variables and/or values.

ReplaceIxes (path, old_prefix, old_suffix, new_prefix, new_suffix)
Replace old_prefix with new_prefix and old_suffix with new_suffix.

SCons.Script package

338

env - Environment used to interpolate variables. path - the path that will be modified. old_prefix - construction
variable for the old prefix. old_suffix - construction variable for the old suffix. new_prefix - construction variable
for the new prefix. new_suffix - construction variable for the new suffix.

Repository (*dirs, **kw)

Requires (target, prerequisite)
Specify that ‘prerequisite’ must be built before ‘target’, (but ‘target’ does not actually depend on ‘prerequisite’ and
need not be rebuilt if it changes).

SConscript (*ls, **kw)
Execute SCons configuration files.

Parameters: *ls (str or list) – configuration file(s) to execute.

Keyword
Arguments: • dirs (list) – execute SConscript in each listed directory.

• name (str) – execute script ‘name’ (used only with ‘dirs’).

• exports (list or dict) – locally export variables the called script(s) can import.

• variant_dir (str) – mirror sources needed for the build in a variant directory to allow
building in it.

• duplicate (bool) – physically duplicate sources instead of just adjusting paths of
derived files (used only with ‘variant_dir’) (default is True).

• must_exist (bool) – fail if a requested script is missing (default is False, default is
deprecated).

Returns: list of variables returned by the called script

Raises: UserError – a script is not found and such exceptions are enabled.

SConscriptChdir (flag)

SConsignFile (name='.sconsign', dbm_module=None)

Scanner (*args, **kw)

SetDefault (**kw)

SetOption (name, value)

SideEffect (side_effect, target)
Tell scons that side_effects are built as side effects of building targets.

Split (arg)
This function converts a string or list into a list of strings or Nodes. This makes things easier for users by
allowing files to be specified as a white-space separated list to be split.

The input rules are:

• A single string containing names separated by spaces. These will be split apart at the spaces.

• A single Node instance

• A list containing either strings or Node instances. Any strings in the list are not split at spaces.
In all cases, the function returns a list of Nodes and strings.

Tool (tool, toolpath=None, **kwargs) → SCons.Tool.Tool

Value (value, built_value=None, name=None)

VariantDir (variant_dir, src_dir, duplicate=1)

WhereIs (prog, path=None, pathext=None, reject=None)

SCons.Script package

339

Find prog in the path.

_canonicalize (path)
Allow Dirs and strings beginning with # for top-relative.
Note this uses the current env’s fs (in self).

_changed_build (dependency, target, prev_ni, repo_node=None)

_changed_content (dependency, target, prev_ni, repo_node=None)

_changed_source (dependency, target, prev_ni, repo_node=None)

_changed_timestamp_match (dependency, target, prev_ni, repo_node=None)

_changed_timestamp_newer (dependency, target, prev_ni, repo_node=None)

_changed_timestamp_then_content (dependency, target, prev_ni, repo_node=None)

_exceeds_version (major, minor, v_major, v_minor)
Return 1 if ‘major’ and ‘minor’ are greater than the version in ‘v_major’ and ‘v_minor’, and 0 otherwise.

_find_toolpath_dir (tp)

_get_SConscript_filenames (ls, kw)
Convert the parameters passed to SConscript() calls into a list of files and export variables. If the parameters are
invalid, throws SCons.Errors.UserError. Returns a tuple (l, e) where l is a list of SConscript filenames and e is a
list of exports.

_get_major_minor_revision (version_string)
Split a version string into major, minor and (optionally) revision parts.
This is complicated by the fact that a version string can be something like 3.2b1.

_gsm ()

_init_special ()
Initial the dispatch tables for special handling of special construction variables.

_update (other)
Private method to update an environment’s consvar dict directly.
Bypasses the normal checks that occur when users try to set items.

_update_onlynew (other)
Private method to add new items to an environment’s consvar dict.
Only adds items from other whose keys do not already appear in the existing dict; values from other are not
used for replacement. Bypasses the normal checks that occur when users try to set items.

arg2nodes (args, node_factory=<class 'SCons.Environment._Null'>, lookup_list=<class
'SCons.Environment._Null'>, **kw)

backtick (command)

get (key, default=None)
Emulates the get() method of dictionaries.

get_CacheDir ()

get_builder (name)
Fetch the builder with the specified name from the environment.

get_factory (factory, default='File')
Return a factory function for creating Nodes for this construction environment.

SCons.Script package

340

get_scanner (skey)
Find the appropriate scanner given a key (usually a file suffix).

get_src_sig_type ()

get_tgt_sig_type ()

gvars ()

items ()
Emulates the items() method of dictionaries.

keys ()
Emulates the keys() method of dictionaries.

lvars ()

scanner_map_delete (kw=None)
Delete the cached scanner map (if we need to).

setdefault (key, default=None)
Emulates the setdefault() method of dictionaries.

subst (string, raw=0, target=None, source=None, conv=None, executor=None)
Recursively interpolates construction variables from the Environment into the specified string, returning the
expanded result. Construction variables are specified by a $ prefix in the string and begin with an initial
underscore or alphabetic character followed by any number of underscores or alphanumeric characters. The
construction variable names may be surrounded by curly braces to separate the name from trailing characters.

subst_kw (kw, raw=0, target=None, source=None)

subst_list (string, raw=0, target=None, source=None, conv=None, executor=None)
Calls through to SCons.Subst.scons_subst_list(). See the documentation for that function.

subst_path (path, target=None, source=None)
Substitute a path list, turning EntryProxies into Nodes and leaving Nodes (and other objects) as-is.

subst_target_source (string, raw=0, target=None, source=None, conv=None, executor=None)
Recursively interpolates construction variables from the Environment into the specified string, returning the
expanded result. Construction variables are specified by a $ prefix in the string and begin with an initial
underscore or alphabetic character followed by any number of underscores or alphanumeric characters. The
construction variable names may be surrounded by curly braces to separate the name from trailing characters.

validate_CacheDir_class (custom_class=None)
Validate the passed custom CacheDir class, or if no args are passed, validate the custom CacheDir class from
the environment.

values ()
Emulates the values() method of dictionaries.

exception SCons.Script.SConscript.SConscriptReturn
Bases: Exception

args

with_traceback ()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

SCons.Script.SConscript.SConscript_exception (file=<_io.TextIOWrapper name='<stderr>'
mode='w' encoding='utf-8'>)

SCons.Script package

341

Print an exception stack trace just for the SConscript file(s). This will show users who have Python errors where
the problem is, without cluttering the output with all of the internal calls leading up to where we exec the
SConscript.

SCons.Script.SConscript._SConscript (fs, *files, **kw)

SCons.Script.SConscript.annotate (node)
Annotate a node with the stack frame describing the SConscript file and line number that created it.

SCons.Script.SConscript.compute_exports (exports)
Compute a dictionary of exports given one of the parameters to the Export() function or the exports argument to
SConscript().

SCons.Script.SConscript.get_DefaultEnvironmentProxy ()

SCons.Script.SConscript.get_calling_namespaces ()
Return the locals and globals for the function that called into this module in the current call stack.

SCons.Script.SConscript.handle_missing_SConscript (f, must_exist=None)
Take appropriate action on missing file in SConscript() call.
Print a warning or raise an exception on missing file, unless missing is explicitly allowed by the must_exist value.
On first warning, print a deprecation message.

Parameters:
• f (str) – path of missing configuration file

• must_exist (bool) – if true, fail. If false, but not None, allow the file to be missing. The
default is None, which means issue the warning. The default is deprecated.

Raises: UserError – if must_exist is true or if global SCons.Script._no_missing_sconscript
is true.

Module contents
The main() function used by the scons script.

Architecturally, this is the scons script, and will likely only be called from the external “scons” wrapper. Consequently,
anything here should not be, or be considered, part of the build engine. If it’s something that we expect other
software to want to use, it should go in some other module. If it’s specific to the “scons” script invocation, it goes
here.

SCons.Script.HelpFunction (text, append=False)

class SCons.Script.TargetList (initlist=None)
Bases: collections.UserList

_abc_impl = <_abc_data object>

_add_Default (list)

_clear ()

_do_nothing (*args, **kw)

append (item)
S.append(value) – append value to the end of the sequence

clear () → None – remove all items from S

copy ()

count (value) → integer – return number of occurrences of value

extend (other)
S.extend(iterable) – extend sequence by appending elements from the iterable

SCons.Script package

342

index (value[, start[, stop]]) → integer – return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.

insert (i, item)
S.insert(index, value) – insert value before index

pop ([, index]) → item – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

remove (item)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

reverse ()
S.reverse() – reverse IN PLACE

sort (*args, **kwds)

SCons.Script.Variables (files=None, args={})

SCons.Script._Add_Arguments (alist)

SCons.Script._Add_Targets (tlist)

SCons.Script._Get_Default_Targets (d, fs)

SCons.Script._Set_Default_Targets (env, tlist)

SCons.Script._Set_Default_Targets_Has_Been_Called (d, fs)

SCons.Script._Set_Default_Targets_Has_Not_Been_Called (d, fs)

SCons.Script.set_missing_sconscript_error (flag=1)
Set behavior on missing file in SConscript() call.

Returns: previous value

SCons.Tool package

Module contents
SCons.Tool

SCons tool selection.

This looks for modules that define a callable object that can modify a construction environment as appropriate for a
given tool (or tool chain).

Note that because this subsystem just selects a callable that can modify a construction environment, it’s possible for
people to define their own “tool specification” in an arbitrary callable function. No one needs to use or tie in to this
subsystem in order to roll their own tool specifications.

SCons.Tool.CreateJarBuilder (env)
The Jar builder expects a list of class files which it can package into a jar file.
The jar tool provides an interface for passing other types of java files such as .java, directories or swig interfaces
and will build them to class files in which it can package into the jar.

SCons.Tool.CreateJavaClassDirBuilder (env)

SCons.Tool.CreateJavaClassFileBuilder (env)

SCons.Tool.CreateJavaFileBuilder (env)

SCons.Tool.CreateJavaHBuilder (env)

SCons.Tool.FindAllTools (tools, env)

SCons.Tool.FindTool (tools, env)

SCons.Tool package

343

SCons.Tool.Initializers (env)

class SCons.Tool.Tool (name, toolpath=None, **kwargs)
Bases: object

_load_dotted_module_py2 (short_name, full_name, searchpaths=None)

_tool_module ()

class SCons.Tool.ToolInitializer (env, tools, names)
Bases: object
A class for delayed initialization of Tools modules.
Instances of this class associate a list of Tool modules with a list of Builder method names that will be added by
those Tool modules. As part of instantiating this object for a particular construction environment, we also add the
appropriate ToolInitializerMethod objects for the various Builder methods that we want to use to delay Tool
searches until necessary.

apply_tools (env)
Searches the list of associated Tool modules for one that exists, and applies that to the construction
environment.

remove_methods (env)
Removes the methods that were added by the tool initialization so we no longer copy and re-bind them when the
construction environment gets cloned.

class SCons.Tool.ToolInitializerMethod (name, initializer)
Bases: object
This is added to a construction environment in place of a method(s) normally called for a Builder (env.Object,
env.StaticObject, etc.). When called, it has its associated ToolInitializer object search the specified list of tools and
apply the first one that exists to the construction environment. It then calls whatever builder was (presumably)
added to the construction environment in place of this particular instance.

get_builder (env)
Returns the appropriate real Builder for this method name after having the associated ToolInitializer object apply
the appropriate Tool module.

SCons.Tool.createCFileBuilders (env)
This is a utility function that creates the CFile/CXXFile Builders in an Environment if they are not there already.
If they are there already, we return the existing ones.
This is a separate function because soooo many Tools use this functionality.
The return is a 2-tuple of (CFile, CXXFile)

SCons.Tool.createLoadableModuleBuilder (env, loadable_module_suffix='$_LDMODULESUFFIX')
This is a utility function that creates the LoadableModule Builder in an Environment if it is not there already.
If it is already there, we return the existing one.

Parameters: loadable_module_suffix – The suffix specified for the loadable module builder

SCons.Tool.createObjBuilders (env)
This is a utility function that creates the StaticObject and SharedObject Builders in an Environment if they are not
there already.
If they are there already, we return the existing ones.
This is a separate function because soooo many Tools use this functionality.
The return is a 2-tuple of (StaticObject, SharedObject)

SCons.Tool.createProgBuilder (env)
This is a utility function that creates the Program Builder in an Environment if it is not there already.
If it is already there, we return the existing one.

SCons.Tool.createSharedLibBuilder (env, shlib_suffix='$_SHLIBSUFFIX')
This is a utility function that creates the SharedLibrary Builder in an Environment if it is not there already.
If it is already there, we return the existing one.

Parameters: shlib_suffix – The suffix specified for the shared library builder

SCons.Tool package

344

SCons.Tool.createStaticLibBuilder (env)
This is a utility function that creates the StaticLibrary Builder in an Environment if it is not there already.
If it is already there, we return the existing one.

SCons.Tool.find_program_path (env, key_program, default_paths=None)
Find the location of a tool using various means.
Mainly for windows where tools aren’t all installed in /usr/bin, etc.

Parameters:
• env – Current Construction Environment.

• key_program – Tool to locate.

• default_paths – List of additional paths this tool might be found in.

SCons.Tool.tool_list (platform, env)

SCons.Variables package

Submodules

SCons.Variables.BoolVariable module
Variable type for true/false Variables.

Usage example:

opts = Variables()
opts.Add(BoolVariable('embedded', 'build for an embedded system', 0))
...
if env['embedded'] == 1:
...

SCons.Variables.BoolVariable.BoolVariable (key, help, default) → Tuple[str, str, str, Callable, Callable]
Return a tuple describing a boolean SCons Variable.
The input parameters describe a boolean option. Returns a tuple including the correct converter and validator. The
help text will have (yes|no) automatically appended to show the valid values. The result is usable as input to
Add().

SCons.Variables.BoolVariable._text2bool (val) → bool
Converts strings to True/False.
If val looks like it expresses a bool-like value, based on the TRUE_STRINGS and FALSE_STRINGS tuples, return
the appropriate value.
This is usable as a converter function for SCons Variables.

Raises: ValueError – if the string cannot be converted.

SCons.Variables.BoolVariable._validator (key, val, env) → None
Validates the given value to be either true or false.
This is usable as a validator function for SCons Variables.

Raises:
• KeyError – if key is not set in env

• UserError – if key does not validate.

SCons.Variables.EnumVariable module
Variable type for enumeration Variables.

Enumeration variables allow selection of one from a specified set of values.

Usage example:

opts = Variables()
opts.Add(

SCons.Variables package

345

 EnumVariable(
 'debug',
 help='debug output and symbols',
 default='no',
 allowed_values=('yes', 'no', 'full'),
 map={},
 ignorecase=2,
)
)
...
if env['debug'] == 'full':
...

SCons.Variables.EnumVariable.EnumVariable (key, help, default, allowed_values, map={}, ignorecase=0)
→ Tuple[str, str, str, Callable, Callable]

Return a tuple describing an enumaration SCons Variable.
The input parameters describe an option with only certain values allowed. Returns A tuple including an appropriate
converter and validator. The result is usable as input to Add().
key and default are passed directly on to Add().
help is the descriptive part of the help text, and will have the allowed values automatically appended.
allowed_values is a list of strings, which are the allowed values for this option.
The map-dictionary may be used for converting the input value into canonical values (e.g. for aliases).
The value of ignorecase defines the behaviour of the validator:

• 0: the validator/converter are case-sensitive.

• 1: the validator/converter are case-insensitive.

• 2: the validator/converter is case-insensitive and the converted value will always be lower-case.
The validator tests whether the value is in the list of allowed values. The converter converts input values according
to the given map-dictionary (unmapped input values are returned unchanged).

SCons.Variables.ListVariable module
Variable type for list Variables.

A ‘list’ option may either be ‘all’, ‘none’ or a list of names separated by comma. After the option has been processed,
the option value holds either the named list elements, all list elements or no list elements at all.

Usage example:

list_of_libs = Split('x11 gl qt ical')

opts = Variables()
opts.Add(
 ListVariable(
 'shared',
 help='libraries to build as shared libraries',
 default='all',
 elems=list_of_libs,
)
)
...
for lib in list_of_libs:
 if lib in env['shared']:
 env.SharedObject(...)
 else:
 env.Object(...)

SCons.Variables.ListVariable.ListVariable (key, help, default, names, map={}) → Tuple[str, str, str,
None, Callable]

Return a tuple describing a list SCons Variable.

SCons.Variables package

346

The input parameters describe a ‘list’ option. Returns a tuple including the correct converter and validator. The
result is usable for input to Add().
help will have text appended indicating the legal values (not including any extra names from map).
map can be used to map alternative names to the ones in names - that is, a form of alias.
A ‘list’ option may either be ‘all’, ‘none’ or a list of names (separated by commas).

SCons.Variables.ListVariable._converter (val, allowedElems, mapdict) →
SCons.Variables.ListVariable._ListVariable

SCons.Variables.PackageVariable module
Variable type for package Variables.

To be used whenever a ‘package’ may be enabled/disabled and the package path may be specified.

Given these options

x11=no (disables X11 support)
x11=yes (will search for the package installation dir)
x11=/usr/local/X11 (will check this path for existence)

Can be used as a replacement for autoconf’s --with-xxx=yyy

opts = Variables()
opts.Add(
 PackageVariable(
 key='x11',
 help='use X11 installed here (yes = search some places)',
 default='yes'
)
)
...
if env['x11'] == True:
 dir = ... # search X11 in some standard places ...
 env['x11'] = dir
if env['x11']:
 ... # build with x11 ...

SCons.Variables.PackageVariable.PackageVariable (key, help, default, searchfunc=None) → Tuple[str,
str, str, Callable, Callable]

Return a tuple describing a package list SCons Variable.
The input parameters describe a ‘package list’ option. Returns a tuple including the correct converter and validator
appended. The result is usable as input to Add() .
A ‘package list’ option may either be ‘all’, ‘none’ or a pathname string. This information is appended to help.

SCons.Variables.PackageVariable._converter (val)

SCons.Variables.PackageVariable._validator (key, val, env, searchfunc) → None

SCons.Variables.PathVariable module
Variable type for path Variables.

To be used whenever a user-specified path override setting should be allowed.

Arguments to PathVariable are:

• key - name of this option on the command line (e.g. “prefix”)

• help - help string for option

• default - default value for this option

• validator - [optional] validator for option value. Predefined are:

• PathAccept - accepts any path setting; no validation

• PathIsDir - path must be an existing directory

• PathIsDirCreate - path must be a dir; will create

SCons.Variables package

347

• PathIsFile - path must be a file

• PathExists - path must exist (any type) [default]
The validator is a function that is called and which should return True or False to indicate if the path is valid. The
arguments to the validator function are: (key, val, env). key is the name of the option, val is the path specified for
the option, and env is the environment to which the Options have been added.

Usage example:

opts = Variables()
opts.Add(
 PathVariable(
 'qtdir',
 help='where the root of Qt is installed',
 default=qtdir,
 validator=PathIsDir,
)
)
opts.Add(
 PathVariable(
 'qt_includes',
 help='where the Qt includes are installed',
 default='$qtdir/includes',
 validator=PathIsDirCreate,
)
)
opts.Add(
 PathVariable(
 'qt_libraries',
 help='where the Qt library is installed',
 default='$qtdir/lib',
)
)

Module contents
Add user-friendly customizable variables to an SCons build.

class SCons.Variables.Variables (files=None, args=None, is_global=True)
Bases: object
Holds all the options, updates the environment with the variables, and renders the help text.
If is_global is true, this is a singleton, create only once.

Parameters:
• files (optional) – List of option configuration files to load (backward compatibility). If a

single string is passed it is automatically placed in a file list (Default value = None)

• args (optional) – dictionary to override values set from files. (Default value = None)

• is_global (optional) – global instance? (Default value = True)

Add (key, *args, **kwargs) → None
Add an option.

SCons.Variables package

348

Parameters:
• key – the name of the variable, or a 5-tuple (or list). If a tuple, and there are no

additional arguments, the tuple is unpacked into help, default, validator, converter. If
there are additional arguments, the first word of the tuple is taken as the key, and the
remainder as aliases.

• *args – optional positional arguments help: optional help text for the options (Default
value = “”) default: optional default value for option (Default value = None) validator:
optional function called to validate the option’s value (Default value = None)
converter: optional function to be called to convert the option’svalue before putting it
in the environment. (Default value = None)

• **kwargs – keyword args, can be the arguments from *args or arbitrary kwargs used
by a variable itself

AddVariables (*optlist) → None
Add a list of options.
Each list element is a tuple/list of arguments to be passed on to the underlying method for adding options.
Example:

opt.AddVariables(
 ('debug', '', 0),
 ('CC', 'The C compiler'),
 ('VALIDATE', 'An option for testing validation', 'notset', validator, None),
)

FormatVariableHelpText (env, key, help, default, actual, aliases=None) → str

GenerateHelpText (env, sort=None) → str
Generate the help text for the options.

Parameters:
• env – an environment that is used to get the current values of the options.

• cmp – Either a comparison function used for sorting (must take two arguments and
return -1, 0 or 1) or a boolean to indicate if it should be sorted.

Save (filename, env) → None
Save the options to a file.
Saves all the options which have non-default settings to the given file as Python expressions. This file can then
be used to load the options for a subsequent run. This can be used to create an option cache file.

Parameters:
• filename – Name of the file to save into

• env – the environment get the option values from

UnknownVariables () → dict
Returns unknown variables.
Identifies options that were not known, declared options in this object.

Update (env, args=None) → None
Update an environment with the option variables.

Parameters:
• env – the environment to update.

• args – [optional] a dictionary of keys and values to update in env. If omitted, uses the
variables from the commandline.

_do_add (key, help='', default=None, validator=None, converter=None, **kwargs) → None

aliasfmt = '\n%s: %s\n default: %s\n actual: %s\n aliases: %s\n'

fmt = '\n%s: %s\n default: %s\n actual: %s\n'

SCons.Variables package

349

instance = None

keys () → list
Returns the keywords for the options.

Indices and Tables
• genindex

• modindex

• search

Indices and Tables

350

Index

_

__clearRepositoryCache() (SCons.Node.FS.Dir
method)

__dmap_cache (SCons.Node.FS.File attribute)

__dmap_sig_cache (SCons.Node.FS.File attribute)

__get_abspath() (SCons.Node.FS.EntryProxy method)

__get_base_path() (SCons.Node.FS.EntryProxy
method)

__get_dir() (SCons.Node.FS.EntryProxy method)

__get_file() (SCons.Node.FS.EntryProxy method)

__get_filebase() (SCons.Node.FS.EntryProxy method)

__get_posix_path() (SCons.Node.FS.EntryProxy
method)

__get_relpath() (SCons.Node.FS.EntryProxy method)

__get_rsrcdir() (SCons.Node.FS.EntryProxy method)

__get_rsrcnode() (SCons.Node.FS.EntryProxy method)

__get_srcdir() (SCons.Node.FS.EntryProxy method)

__get_srcnode() (SCons.Node.FS.EntryProxy method)

__get_suffix() (SCons.Node.FS.EntryProxy method)

__get_windows_path() (SCons.Node.FS.EntryProxy
method)

__lib_either_version_flag() (in module SCons.Defaults)

__libversionflags() (in module SCons.Defaults)

__make_unique() (SCons.Util.UniqueList method)

__resetDuplicate() (SCons.Node.FS.Dir method)

_abc_impl (SCons.Builder.ListEmitter attribute)

(SCons.Builder.OverrideWarner attribute)

(SCons.Environment.BuilderDict attribute)

(SCons.Executor.TSList attribute)

(SCons.Node.Alias.AliasNameSpace attribute)

(SCons.Node.NodeList attribute)

(SCons.SConf.SConfBuildTask attribute)

(SCons.Script.Main.BuildTask attribute)

(SCons.Script.Main.CleanTask attribute)

(SCons.Script.Main.QuestionTask attribute)

(SCons.Script.TargetList attribute)

(SCons.Subst.CmdStringHolder attribute)

(SCons.Subst.ListSubber attribute)

(SCons.Subst.Targets_or_Sources attribute)

(SCons.Taskmaster.AlwaysTask attribute)
(SCons.Taskmaster.OutOfDateTask attribute)

(SCons.Taskmaster.Task attribute)

(SCons.Util.CLVar attribute)

(SCons.Util.NodeList attribute)

(SCons.Util.UniqueList attribute)

_abspath (SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

_ActionAction (class in SCons.Action)

_actionAppend() (in module SCons.Action)

_Add_Arguments() (in module SCons.Script)

_add_child() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

_add_Default() (SCons.Script.TargetList method)

_add_help_option()
(SCons.Script.SConsOptions.SConsOptionParser
method)

_add_strings_to_dependency_map()
(SCons.Node.FS.File method)

_Add_Targets() (in module SCons.Script)

_add_version_option()
(SCons.Script.SConsOptions.SConsOptionParser
method)

_adjustixes() (SCons.Builder.BuilderBase method)

_attempt_get_hash_function() (in module SCons.Util)

_attempt_init_of_python_3_9_hash_object() (in module
SCons.Util)

_bootstrap() (SCons.Job.Worker method)

_bootstrap_inner() (SCons.Job.Worker method)

_build_dependency_map() (SCons.Node.FS.File
method)

_build_targets() (in module SCons.Script.Main)

_CacheDir (SCons.Executor.NullEnvironment attribute)

_CacheDir_path (SCons.Executor.NullEnvironment
attribute)

_callable_contents() (in module SCons.Action)

_canonicalize() (SCons.Environment.Base method)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Builder.OverrideWarner._abc_impl')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.BuilderDict._abc_impl')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Executor.TSList._abc_impl')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNameSpace._abc_impl')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeList._abc_impl')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildTask._abc_impl')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask._abc_impl')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask._abc_impl')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask._abc_impl')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.TargetList._abc_impl')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Subst.CmdStringHolder._abc_impl')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Subst.ListSubber._abc_impl')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Subst.Targets_or_Sources._abc_impl')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask._abc_impl')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask._abc_impl')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task._abc_impl')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.CLVar._abc_impl')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.NodeList._abc_impl')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.UniqueList._abc_impl')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._abspath')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._abspath')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._abspath')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._abspath')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base._add_child')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._add_child')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._add_child')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._add_child')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._add_child')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node._add_child')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value._add_child')

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

_changed_build() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

_changed_content() (SCons.Environment.Base
method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

_changed_source() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

_changed_sources_list (SCons.Executor.Executor
attribute)

(SCons.Executor.Null attribute)

_changed_targets_list (SCons.Executor.Executor
attribute)

(SCons.Executor.Null attribute)

_changed_timestamp_match()
(SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

_changed_timestamp_newer()
(SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

_changed_timestamp_then_content()
(SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

_check_action()
(SCons.Script.SConsOptions.SConsOption method)

_check_callback()
(SCons.Script.SConsOptions.SConsOption method)

_check_choice()
(SCons.Script.SConsOptions.SConsOption method)

_check_conflict()
(SCons.Script.SConsOptions.SConsOptionGroup
method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

_check_const()
(SCons.Script.SConsOptions.SConsOption method)

_check_dest()
(SCons.Script.SConsOptions.SConsOption method)

_check_empty_program() (in module SCons.Conftest)

_check_nargs()
(SCons.Script.SConsOptions.SConsOption method)

_check_nargs_optional()
(SCons.Script.SConsOptions.SConsOption method)

_check_opt_strings()
(SCons.Script.SConsOptions.SConsOption method)

_check_type()
(SCons.Script.SConsOptions.SConsOption method)

_check_writable() (SCons.dblite.dblite method)

_children_get() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

_children_reset() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

_classEntry (in module SCons.Node.FS)

_clean_targets() (SCons.Script.Main.CleanTask
method)

_clear() (SCons.Script.TargetList method)

_code_contents() (in module SCons.Action)

_concat() (in module SCons.Defaults)

_concat_ixes() (in module SCons.Defaults)

_converter() (in module SCons.Variables.ListVariable)

(in module SCons.Variables.PackageVariable)

_copy_func() (in module SCons.Node.FS)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._canonicalize')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._canonicalize')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._canonicalize')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._canonicalize')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._changed_build')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._changed_build')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._changed_build')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._changed_build')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._changed_content')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._changed_content')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._changed_content')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._changed_content')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._changed_source')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._changed_source')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._changed_source')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._changed_source')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null._changed_sources_list')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null._changed_targets_list')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._changed_timestamp_match')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._changed_timestamp_match')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._changed_timestamp_match')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._changed_timestamp_match')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._changed_timestamp_newer')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._changed_timestamp_newer')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._changed_timestamp_newer')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._changed_timestamp_newer')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._changed_timestamp_then_content')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._changed_timestamp_then_content')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._changed_timestamp_then_content')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._changed_timestamp_then_content')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser._check_conflict')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser._check_conflict')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base._children_get')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._children_get')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._children_get')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._children_get')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._children_get')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node._children_get')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value._children_get')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base._children_reset')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._children_reset')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._children_reset')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._children_reset')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._children_reset')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node._children_reset')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value._children_reset')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Variables.PackageVariable._converter')

_create() (SCons.Node.FS.Dir method)

(SCons.Node.FS.RootDir method)

_create_nodelist() (SCons.Subst.NLWrapper method)

_create_nodes() (SCons.Builder.BuilderBase method)

_create_option_list()
(SCons.Script.SConsOptions.SConsOptionGroup
method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

_create_option_mappings()
(SCons.Script.SConsOptions.SConsOptionGroup
method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

_create_path() (in module SCons.Script.Main)

_createConfigH() (in module SCons.SConf)

_createDir() (SCons.Node.FS.File method)

(SCons.SConf.SConfBase method)

_createSource() (in module SCons.SConf)

_defines() (in module SCons.Defaults)

_del_SCANNERS() (in module SCons.Environment)

_delete() (SCons.Job.Worker method)

_delete_duplicates() (in module SCons.Environment)

_do_add() (SCons.Variables.Variables method)

_do_create_action() (in module SCons.Action)

_do_create_keywords() (in module SCons.Action)

_do_create_list_action() (in module SCons.Action)

_do_execute (SCons.Executor.Executor attribute)

(SCons.Executor.Null attribute)

_do_if_else_condition()
(SCons.cpp.DumbPreProcessor method)

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)

_do_nothing() (SCons.Script.TargetList method)

_do_one_help()
(SCons.Script.Interactive.SConsInteractiveCmd
method)

_doc_to_help()
(SCons.Script.Interactive.SConsInteractiveCmd
method)

_dump_one_caller() (in module SCons.Debug)

_enable_virtualenv_default() (in module
SCons.Platform.virtualenv)

_exc_info() (SCons.Job.Worker method)

_exceeds_version()
(SCons.Script.SConscript.SConsEnvironment method)

_exception_raise() (SCons.SConf.SConfBuildTask
method)

(SCons.Script.Main.BuildTask method)

(SCons.Script.Main.CleanTask method)

(SCons.Script.Main.QuestionTask method)

(SCons.Taskmaster.AlwaysTask method)

(SCons.Taskmaster.OutOfDateTask method)

(SCons.Taskmaster.Task method)

_exec_main() (in module SCons.Script.Main)

_execute() (SCons.Builder.BuilderBase method)

_execute_str (SCons.Executor.Executor attribute)

(SCons.Executor.Null attribute)

_exercise() (in module SCons.dblite)

_fetch_DefaultEnvironment() (in module
SCons.Defaults)

_find_file_key() (SCons.Node.FS.FileFinder method)

_find_next_ready_node()
(SCons.Taskmaster.Taskmaster method)

_find_toolpath_dir() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

_format_text() (SCons.Script.SConsOptions.SConsInde
ntedHelpFormatter method)

_func_exists (SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)

_func_get_contents (SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)

_func_is_derived (SCons.Node.Alias.Alias attribute)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._create')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser._create_option_list')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser._create_option_list')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser._create_option_mappings')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser._create_option_mappings')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBase._createDir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null._do_execute')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor._do_if_else_condition')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner._do_if_else_condition')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner._do_if_else_condition')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner._do_if_else_condition')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask._exception_raise')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask._exception_raise')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask._exception_raise')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask._exception_raise')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask._exception_raise')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task._exception_raise')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null._execute_str')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._find_toolpath_dir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._find_toolpath_dir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._find_toolpath_dir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._find_toolpath_dir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base._func_exists')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._func_exists')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._func_exists')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._func_exists')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._func_exists')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node._func_exists')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value._func_exists')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base._func_get_contents')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._func_get_contents')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._func_get_contents')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._func_get_contents')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._func_get_contents')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node._func_get_contents')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value._func_get_contents')

(SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)

_func_rexists (SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)

_func_sconsign (SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

_func_target_from_source (SCons.Node.Alias.Alias
attribute)

(SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)

_function_contents() (in module SCons.Action)

_gen_nodelist() (SCons.Subst.NLWrapper method)

_generate() (SCons.Action.CommandGeneratorAction
method)

(SCons.Action.LazyAction method)

_generate_cache() (SCons.Action.LazyAction method)

_get_all_options()
(SCons.Script.SConsOptions.SConsOptionParser
method)

_get_args()
(SCons.Script.SConsOptions.SConsOptionParser
method)

_get_changed_sources() (SCons.Executor.Executor
method)

_get_changed_targets() (SCons.Executor.Executor
method)

_get_changes() (SCons.Executor.Executor method)

_Get_Default_Targets() (in module SCons.Script)

_get_files_to_clean() (SCons.Script.Main.CleanTask
method)

_get_found_includes_key() (SCons.Node.FS.File
method)

_get_hash_object() (in module SCons.Util)

_get_implicit_deps_heavyweight()
(SCons.Action.CommandAction method)

(SCons.Action.LazyAction method)

_get_implicit_deps_lightweight()
(SCons.Action.CommandAction method)

(SCons.Action.LazyAction method)

_get_major_minor_revision()
(SCons.Script.SConscript.SConsEnvironment method)

_get_previous_signatures() (SCons.Node.FS.File
method)

_get_scanner() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

_get_SConscript_filenames()
(SCons.Script.SConscript.SConsEnvironment method)

_get_sdict() (SCons.Builder.BuilderBase method)

_get_source() (SCons.Executor.Executor method)

_get_sources() (SCons.Executor.Executor method)

_get_src_builders_key() (SCons.Builder.BuilderBase
method)

_get_str() (SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

_get_target() (SCons.Executor.Executor method)

_get_targets() (SCons.Executor.Executor method)

_get_unchanged_sources() (SCons.Executor.Executor
method)

_get_unchanged_targets() (SCons.Executor.Executor
method)

_get_unignored_sources_key()
(SCons.Executor.Executor method)

_glob1() (SCons.Node.FS.Base method)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base._func_is_derived')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._func_is_derived')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._func_is_derived')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._func_is_derived')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._func_is_derived')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node._func_is_derived')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value._func_is_derived')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base._func_rexists')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._func_rexists')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._func_rexists')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._func_rexists')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._func_rexists')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node._func_rexists')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value._func_rexists')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._func_sconsign')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._func_sconsign')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._func_sconsign')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._func_sconsign')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base._func_target_from_source')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._func_target_from_source')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._func_target_from_source')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._func_target_from_source')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._func_target_from_source')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node._func_target_from_source')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value._func_target_from_source')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction._generate')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction._get_implicit_deps_heavyweight')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction._get_implicit_deps_lightweight')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base._get_scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._get_scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._get_scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._get_scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._get_scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node._get_scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value._get_scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._get_str')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._get_str')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._get_str')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._get_str')

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

_gsm() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

_hardlink_func() (in module SCons.Node.FS)

_Have() (in module SCons.Conftest)

_ignore_virtualenv_default() (in module
SCons.Platform.virtualenv)

_init_parsing_state()
(SCons.Script.SConsOptions.SConsOptionParser
method)

_init_special() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

_initialized (SCons.Job.Worker attribute)

_inject_venv_path() (in module
SCons.Platform.virtualenv)

_inject_venv_variables() (in module
SCons.Platform.virtualenv)

_instance (SCons.Subst.NullNodeList attribute)

_is_path_in() (in module SCons.Platform.virtualenv)

_labspath (SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

_lang2suffix() (in module SCons.Conftest)

_latex_names() (SCons.Scanner.LaTeX.LaTeX
method)

_load_all_site_scons_dirs() (in module
SCons.Script.Main)

_load_dotted_module_py2() (SCons.Tool.Tool method)

_load_site_scons_dir() (in module SCons.Script.Main)

_local (SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

_LogFailed() (in module SCons.Conftest)

_lookup() (SCons.Node.FS.FS method)

_lookup_abs() (SCons.Node.FS.RootDir method)

_lookupDict (SCons.Node.FS.RootDir attribute)

_main() (in module SCons.Script.Main)

_match_long_opt()
(SCons.Script.SConsOptions.SConsOptionParser
method)

_match_tuples() (SCons.cpp.DumbPreProcessor
method)

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)

_memo (SCons.Executor.Executor attribute)

(SCons.Executor.Null attribute)

(SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)

_morph() (SCons.Executor.Null method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

_my_normcase() (in module SCons.Node.FS)

_my_splitdrive() (in module SCons.Node.FS)

_no_exception_to_raise()
(SCons.SConf.SConfBuildTask method)

(SCons.Script.Main.BuildTask method)

(SCons.Script.Main.CleanTask method)

(SCons.Script.Main.QuestionTask method)

(SCons.Taskmaster.AlwaysTask method)

(SCons.Taskmaster.OutOfDateTask method)

(SCons.Taskmaster.Task method)

_node_errors() (in module SCons.Builder)

_NoError

_null (class in SCons.Action)

_Null (class in SCons.Builder)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._glob1')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._glob1')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._glob1')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._glob1')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._gsm')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._gsm')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._gsm')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._gsm')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._init_special')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._init_special')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment._init_special')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment._init_special')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._init_special')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._init_special')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._labspath')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._labspath')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._labspath')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._labspath')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._local')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._local')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._local')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._local')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor._match_tuples')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner._match_tuples')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner._match_tuples')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner._match_tuples')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null._memo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.Alias._memo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base._memo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._memo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._memo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._memo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._memo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node._memo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value._memo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._morph')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._morph')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._morph')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask._no_exception_to_raise')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask._no_exception_to_raise')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask._no_exception_to_raise')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask._no_exception_to_raise')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask._no_exception_to_raise')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task._no_exception_to_raise')

(class in SCons.Environment)

(class in SCons.Node.FS)

(class in SCons.Scanner)

(class in SCons.Scanner.LaTeX)

_null (in module SCons.Builder)

(in module SCons.Environment)

(in module SCons.Scanner)

(in module SCons.Scanner.LaTeX)

_object_contents() (in module SCons.Action)

_object_instance_content() (in module SCons.Action)

_open() (SCons.dblite.dblite method)

_os_chmod() (SCons.dblite.dblite method)

_os_chown() (SCons.dblite.dblite method)

_os_replace() (SCons.dblite.dblite method)

_parse_tuples() (SCons.cpp.DumbPreProcessor
method)

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)

_path (SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

_path_elements (SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

_PathList (class in SCons.PathList)

_pickle_dump() (SCons.dblite.dblite static method)

_pickle_protocol (SCons.dblite.dblite attribute)

_populate_option_list()
(SCons.Script.SConsOptions.SConsOptionParser
method)

_print_cmd_str() (SCons.Platform.TempFileMunge
method)

_process_args()
(SCons.Script.SConsOptions.SConsOptionParser
method)

_process_long_opt()
(SCons.Script.SConsOptions.SConsOptionParser
method)

_process_short_opts()
(SCons.Script.SConsOptions.SConsOptionParser
method)

_process_tuples() (SCons.cpp.DumbPreProcessor
method)

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)

_proxy (SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

_readconfig() (SCons.CacheDir.CacheDir method)

_recurse_all_nodes() (SCons.Scanner.Classic static
method)

(SCons.Scanner.ClassicCPP static method)

(SCons.Scanner.Current static method)

(SCons.Scanner.D.D static method)

(SCons.Scanner.Fortran.F90Scanner static
method)

(SCons.Scanner.LaTeX.LaTeX static method)

(SCons.Scanner.ScannerBase static method)

(SCons.Scanner.Selector static method)

_recurse_no_nodes() (SCons.Scanner.Classic static
method)

(SCons.Scanner.ClassicCPP static method)

(SCons.Scanner.Current static method)

(SCons.Scanner.D.D static method)

(SCons.Scanner.Fortran.F90Scanner static
method)

(SCons.Scanner.LaTeX.LaTeX static method)

(SCons.Scanner.ScannerBase static method)

(SCons.Scanner.Selector static method)

_rel_path_key() (SCons.Node.FS.Dir method)

(SCons.Node.FS.RootDir method)

_remove_list() (in module SCons.Subst)

_reset_internal_locks() (SCons.Job.Worker method)

_reset_sig_handler() (SCons.Job.Jobs method)

_return_nodelist() (SCons.Subst.NLWrapper method)

_Rfindalldirs_key() (SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment._Null')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS._Null')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner._Null')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.LaTeX._Null')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment._null')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner._null')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.LaTeX._null')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor._parse_tuples')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner._parse_tuples')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner._parse_tuples')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner._parse_tuples')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._path')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._path')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._path')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._path')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._path_elements')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._path_elements')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._path_elements')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._path_elements')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor._process_tuples')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner._process_tuples')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner._process_tuples')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner._process_tuples')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._proxy')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._proxy')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._proxy')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._proxy')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ClassicCPP._recurse_all_nodes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Current._recurse_all_nodes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.D.D._recurse_all_nodes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Fortran.F90Scanner._recurse_all_nodes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Fortran.F90Scanner._recurse_all_nodes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.LaTeX.LaTeX._recurse_all_nodes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ScannerBase._recurse_all_nodes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Selector._recurse_all_nodes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ClassicCPP._recurse_no_nodes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Current._recurse_no_nodes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.D.D._recurse_no_nodes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Fortran.F90Scanner._recurse_no_nodes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Fortran.F90Scanner._recurse_no_nodes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.LaTeX.LaTeX._recurse_no_nodes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ScannerBase._recurse_no_nodes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Selector._recurse_no_nodes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._rel_path_key')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._Rfindalldirs_key')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._Rfindalldirs_key')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._Rfindalldirs_key')

(SCons.Node.FS.RootDir method)

_rm_list() (in module SCons.Subst)

_rmv_existing() (SCons.Node.FS.File method)

_run_exitfuncs() (in module SCons.exitfuncs)

_running_in_virtualenv() (in module
SCons.Platform.virtualenv)

_save_str() (SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

_scons_internal_error() (in module SCons.Script.Main)

_scons_internal_warning() (in module
SCons.Script.Main)

_scons_syntax_error() (in module SCons.Script.Main)

_scons_user_error() (in module SCons.Script.Main)

_scons_user_warning() (in module SCons.Script.Main)

_SConscript() (in module SCons.Script.SConscript)

_sconsign (SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

_SConstruct_exists() (in module SCons.Script.Main)

_semi_deepcopy_list() (in module SCons.Util)

_semi_deepcopy_tuple() (in module SCons.Util)

_set_allowed_viable_default_hashes() (in module
SCons.Util)

_set_attrs() (SCons.Script.SConsOptions.SConsOption
method)

_set_BUILDERS() (in module SCons.Environment)

_set_conftest_node() (in module SCons.SConf)

_set_debug_values() (in module SCons.Script.Main)

_Set_Default_Targets() (in module SCons.Script)

_Set_Default_Targets_Has_Been_Called() (in module
SCons.Script)

_Set_Default_Targets_Has_Not_Been_Called() (in
module SCons.Script)

_set_future_reserved() (in module SCons.Environment)

_set_ident() (SCons.Job.Worker method)

_set_opt_strings()
(SCons.Script.SConsOptions.SConsOption method)

_set_reserved() (in module SCons.Environment)

_set_SCANNERS() (in module SCons.Environment)

_set_tstate_lock() (SCons.Job.Worker method)

_setup_sig_handler() (SCons.Job.Jobs method)

_share_option_mappings()
(SCons.Script.SConsOptions.SConsOptionGroup
method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

_show_md5_warning() (in module SCons.Util)

_shutdown() (SCons.SConf.SConfBase method)

_shutil_copyfile() (SCons.dblite.dblite method)

_softlink_func() (in module SCons.Node.FS)

_specific_sources (SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)

_srcdir_find_file_key() (SCons.Node.FS.Dir method)

(SCons.Node.FS.RootDir method)

_startup() (SCons.SConf.SConfBase method)

_stop() (SCons.Job.Worker method)

_string_from_cmd_list() (in module SCons.Action)

_stringConfigH() (in module SCons.SConf)

_stringSource() (in module SCons.SConf)

_strip_initial_spaces()
(SCons.Script.Interactive.SConsInteractiveCmd
method)

_stripixes() (in module SCons.Defaults)

_subproc() (in module SCons.Action)

_subst_libs() (in module SCons.Scanner.Prog)

_subst_src_suffixes_key() (SCons.Builder.BuilderBase
method)

_tags (SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)

_text2bool() (in module SCons.Variables.BoolVariable)

_time_time() (SCons.dblite.dblite method)

_tool_module() (SCons.Tool.Tool method)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._Rfindalldirs_key')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._save_str')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._save_str')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._save_str')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._save_str')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._sconsign')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._sconsign')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._sconsign')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser._share_option_mappings')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser._share_option_mappings')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base._specific_sources')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._specific_sources')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._specific_sources')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._specific_sources')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._specific_sources')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node._specific_sources')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value._specific_sources')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._srcdir_find_file_key')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base._tags')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._tags')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._tags')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._tags')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._tags')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node._tags')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value._tags')

_tpath (SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

_unchanged_sources_list (SCons.Executor.Executor
attribute)

(SCons.Executor.Null attribute)

_unchanged_targets_list (SCons.Executor.Executor
attribute)

(SCons.Executor.Null attribute)

_update() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

(SCons.Script.SConsOptions.SConsValues
method)

_update_careful()
(SCons.Script.SConsOptions.SConsValues method)

_update_loose()
(SCons.Script.SConsOptions.SConsValues method)

_update_onlynew() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

_validate_pending_children()
(SCons.Taskmaster.Taskmaster method)

_validator() (in module SCons.Variables.BoolVariable)

(in module SCons.Variables.PackageVariable)

_wait_for_tstate_lock() (SCons.Job.Worker method)

_YesNoResult() (in module SCons.Conftest)

A

abspath (SCons.Node.FS.RootDir attribute)

action (SCons.Errors.BuildError attribute)

Action() (in module SCons.Action)

(SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

action_list (SCons.Executor.Executor attribute)

(SCons.Executor.Null attribute)

ActionBase (class in SCons.Action)

ActionCaller (class in SCons.Action)

ActionFactory (class in SCons.Action)

ACTIONS (SCons.Script.SConsOptions.SConsOption
attribute)

Add() (SCons.Variables.Variables method)

add_action() (SCons.Builder.CompositeBuilder
method)

(SCons.Builder.DictCmdGenerator method)

add_batch() (SCons.Executor.Executor method)

add_dependency() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

add_emitter() (SCons.Builder.BuilderBase method)

add_ignore() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

add_local_option()
(SCons.Script.Main.FakeOptionParser method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

add_new_word() (SCons.Subst.ListSubber method)

add_option()
(SCons.Script.SConsOptions.SConsOptionGroup
method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

add_option_group()
(SCons.Script.SConsOptions.SConsOptionParser
method)

add_options()
(SCons.Script.SConsOptions.SConsOptionGroup
method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

add_post_action() (SCons.Executor.Executor method)

(SCons.Executor.Null method)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._tpath')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._tpath')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._tpath')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._tpath')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null._unchanged_sources_list')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null._unchanged_targets_list')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._update')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._update')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._update')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._update')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsValues._update')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsValues._update')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._update_onlynew')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._update_onlynew')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._update_onlynew')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._update_onlynew')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Variables.PackageVariable._validator')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.Action')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Action')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Action')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Action')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Action')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.action_list')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictCmdGenerator.add_action')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.add_dependency')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.add_dependency')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.add_dependency')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.add_dependency')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.add_dependency')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.add_dependency')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.add_dependency')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.add_ignore')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.add_ignore')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.add_ignore')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.add_ignore')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.add_ignore')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.add_ignore')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.add_ignore')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.add_local_option')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.add_local_option')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.add_option')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.add_option')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.add_options')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.add_options')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.add_post_action')

add_pre_action() (SCons.Executor.Executor method)

(SCons.Executor.Null method)

add_prerequisite() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

add_scanner() (SCons.Scanner.Classic method)

(SCons.Scanner.ClassicCPP method)

(SCons.Scanner.Current method)

(SCons.Scanner.D.D method)

(SCons.Scanner.Fortran.F90Scanner method)

(SCons.Scanner.LaTeX.LaTeX method)

(SCons.Scanner.ScannerBase method)

(SCons.Scanner.Selector method)

add_skey() (SCons.Scanner.Classic method)

(SCons.Scanner.ClassicCPP method)

(SCons.Scanner.Current method)

(SCons.Scanner.D.D method)

(SCons.Scanner.Fortran.F90Scanner method)

(SCons.Scanner.LaTeX.LaTeX method)

(SCons.Scanner.ScannerBase method)

(SCons.Scanner.Selector method)

add_source() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

add_sources() (SCons.Executor.Executor method)

add_src_builder() (SCons.Builder.BuilderBase method)

add_to_current_word() (SCons.Subst.ListSubber
method)

add_to_implicit() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

add_to_waiting_parents() (SCons.Node.Alias.Alias
method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

add_to_waiting_s_e() (SCons.Node.Alias.Alias
method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

add_wkid() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

AddBatchExecutor() (in module SCons.Executor)

AddMethod() (in module SCons.Util)

(SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

AddOption() (in module SCons.Script.Main)

AddPathIfNotExists() (in module SCons.Util)

AddPostAction() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.add_pre_action')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.add_prerequisite')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.add_prerequisite')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.add_prerequisite')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.add_prerequisite')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.add_prerequisite')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.add_prerequisite')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.add_prerequisite')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ClassicCPP.add_scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Current.add_scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.D.D.add_scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Fortran.F90Scanner.add_scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.LaTeX.LaTeX.add_scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ScannerBase.add_scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Selector.add_scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ClassicCPP.add_skey')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Current.add_skey')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.D.D.add_skey')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Fortran.F90Scanner.add_skey')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.LaTeX.LaTeX.add_skey')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ScannerBase.add_skey')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Selector.add_skey')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.add_source')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.add_source')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.add_source')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.add_source')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.add_source')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.add_source')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.add_source')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.add_to_implicit')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.add_to_implicit')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.add_to_implicit')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.add_to_implicit')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.add_to_implicit')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.add_to_implicit')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.add_to_implicit')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.add_to_waiting_parents')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.add_to_waiting_parents')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.add_to_waiting_parents')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.add_to_waiting_parents')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.add_to_waiting_parents')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.add_to_waiting_parents')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.add_to_waiting_parents')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.add_to_waiting_s_e')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.add_to_waiting_s_e')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.add_to_waiting_s_e')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.add_to_waiting_s_e')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.add_to_waiting_s_e')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.add_to_waiting_s_e')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.add_to_waiting_s_e')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.add_wkid')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.add_wkid')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.add_wkid')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.add_wkid')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.add_wkid')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.add_wkid')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.add_wkid')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.AddMethod')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.AddMethod')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.AddMethod')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.AddMethod')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.AddMethod')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.AddMethod')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.AddMethod')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.AddPostAction')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.AddPostAction')

(SCons.Script.SConscript.SConsEnvironment
method)

AddPreAction() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

addRepository() (SCons.Node.FS.Dir method)

(SCons.Node.FS.RootDir method)

AddTest() (SCons.SConf.SConfBase method)

AddTests() (SCons.SConf.SConfBase method)

AddVariables() (SCons.Variables.Variables method)

adjust_suffix() (SCons.Builder.BuilderBase method)

adjustixes() (in module SCons.Util)

Alias (class in SCons.Node.Alias)

Alias() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Node.Alias.AliasNameSpace method)

(SCons.Script.SConscript.SConsEnvironment
method)

Alias.Attrs (class in SCons.Node.Alias)

alias_builder() (in module SCons.Environment)

AliasBuildInfo (class in SCons.Node.Alias)

aliasfmt (SCons.Variables.Variables attribute)

AliasNameSpace (class in SCons.Node.Alias)

AliasNodeInfo (class in SCons.Node.Alias)

all_children() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

all_include() (SCons.cpp.DumbPreProcessor method)

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)

alter_targets() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

always_build (SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)

ALWAYS_TYPED_ACTIONS
(SCons.Script.SConsOptions.SConsOption attribute)

AlwaysBuild() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

AlwaysTask (class in SCons.Taskmaster)

Annotate() (in module SCons.Node)

annotate() (in module SCons.Script.SConscript)

append() (SCons.Builder.ListEmitter method)

Append() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

append() (SCons.Executor.TSList method)

(SCons.Node.NodeList method)

Append() (SCons.Script.SConscript.SConsEnvironment
method)

append() (SCons.Script.TargetList method)

(SCons.Subst.ListSubber method)

(SCons.Subst.Targets_or_Sources method)

(SCons.Util.CLVar method)

(SCons.Util.NodeList method)

(SCons.Util.UniqueList method)

AppendENVPath() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

AppendLIBS() (SCons.SConf.CheckContext method)

AppendPath() (in module SCons.Util)

AppendUnique() (SCons.Environment.Base method)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.AddPostAction')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.AddPostAction')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.AddPreAction')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.AddPreAction')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.AddPreAction')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.AddPreAction')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.addRepository')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Alias')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Alias')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNameSpace.Alias')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Alias')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Alias')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.all_children')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.all_children')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.all_children')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.all_children')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.all_children')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.all_children')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.all_children')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.all_include')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.all_include')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.all_include')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.all_include')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.alter_targets')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.alter_targets')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.alter_targets')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.alter_targets')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.alter_targets')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.alter_targets')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.alter_targets')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.always_build')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.always_build')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.always_build')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.always_build')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.always_build')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.always_build')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.always_build')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.AlwaysBuild')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.AlwaysBuild')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.AlwaysBuild')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.AlwaysBuild')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Append')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Append')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeList.append')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Subst.ListSubber.append')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Subst.Targets_or_Sources.append')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.CLVar.append')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.NodeList.append')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.UniqueList.append')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.AppendENVPath')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.AppendENVPath')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.AppendENVPath')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.AppendENVPath')

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

apply_tools() (in module SCons.Environment)

(SCons.Tool.ToolInitializer method)

ArchDefinition (class in SCons.Platform.win32)

arg2nodes() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

args (SCons.Errors.BuildError attribute)

(SCons.Errors.ExplicitExit attribute)

(SCons.Errors.InternalError attribute)

(SCons.Errors.MSVCError attribute)

(SCons.Errors.SConsEnvironmentError attribute)

(SCons.Errors.StopError attribute)

(SCons.Errors.UserError attribute)

(SCons.Node.FS.EntryProxyAttributeError attribute)

(SCons.Node.FS.FileBuildInfoFileToCsigMappingError
attribute)

(SCons.SConf.ConfigureCacheError attribute)

(SCons.SConf.ConfigureDryRunError attribute)

(SCons.SConf.SConfError attribute)

(SCons.SConf.SConfWarning attribute)

(SCons.Script.Main.SConsPrintHelpException attribute)

(SCons.Script.SConscript.SConscriptReturn attribute)

(SCons.Util._NoError attribute)

(SCons.Warnings.CacheVersionWarning attribute)

(SCons.Warnings.CacheWriteErrorWarning attribute)

(SCons.Warnings.CorruptSConsignWarning attribute)

(SCons.Warnings.DependencyWarning attribute)

(SCons.Warnings.DeprecatedDebugOptionsWarning
attribute)

(SCons.Warnings.DeprecatedMissingSConscriptWarning
attribute)

(SCons.Warnings.DeprecatedOptionsWarning attribute)
(SCons.Warnings.DeprecatedSourceCodeWarning
attribute)

(SCons.Warnings.DeprecatedWarning attribute)

(SCons.Warnings.DevelopmentVersionWarning
attribute)

(SCons.Warnings.DuplicateEnvironmentWarning
attribute)

(SCons.Warnings.FortranCxxMixWarning attribute)

(SCons.Warnings.FutureDeprecatedWarning
attribute)

(SCons.Warnings.FutureReservedVariableWarning
attribute)

(SCons.Warnings.LinkWarning attribute)

(SCons.Warnings.MandatoryDeprecatedWarning
attribute)

(SCons.Warnings.MisleadingKeywordsWarning
attribute)

(SCons.Warnings.MissingSConscriptWarning
attribute)

(SCons.Warnings.NoObjectCountWarning attribute)

(SCons.Warnings.NoParallelSupportWarning
attribute)

(SCons.Warnings.PythonVersionWarning attribute)

(SCons.Warnings.ReservedVariableWarning
attribute)

(SCons.Warnings.SConsWarning attribute)

(SCons.Warnings.StackSizeWarning attribute)

(SCons.Warnings.TargetNotBuiltWarning attribute)

(SCons.Warnings.TaskmasterNeedsExecuteWarning
attribute)

(SCons.Warnings.ToolQtDeprecatedWarning
attribute)

(SCons.Warnings.VisualCMissingWarning attribute)

(SCons.Warnings.VisualStudioMissingWarning
attribute)

(SCons.Warnings.VisualVersionMismatch attribute)

(SCons.Warnings.WarningOnByDefault attribute)

attributes (SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)

ATTRS (SCons.Script.SConsOptions.SConsOption
attribute)

B

backtick() (SCons.Environment.Base method)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.AppendUnique')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.AppendUnique')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.AppendUnique')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.AppendUnique')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Tool.ToolInitializer.apply_tools')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.arg2nodes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.arg2nodes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.arg2nodes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.arg2nodes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.arg2nodes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.arg2nodes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Errors.ExplicitExit.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Errors.InternalError.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Errors.MSVCError.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Errors.SConsEnvironmentError.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Errors.StopError.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Errors.UserError.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.EntryProxyAttributeError.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfoFileToCsigMappingError.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfoFileToCsigMappingError.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConf.ConfigureCacheError.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConf.ConfigureDryRunError.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfError.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfWarning.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.SConsPrintHelpException.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConscriptReturn.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util._NoError.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.CacheVersionWarning.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.CacheWriteErrorWarning.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.CorruptSConsignWarning.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DependencyWarning.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DeprecatedDebugOptionsWarning.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DeprecatedDebugOptionsWarning.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DeprecatedMissingSConscriptWarning.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DeprecatedMissingSConscriptWarning.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DeprecatedOptionsWarning.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DeprecatedSourceCodeWarning.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DeprecatedSourceCodeWarning.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DeprecatedWarning.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DevelopmentVersionWarning.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DevelopmentVersionWarning.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DuplicateEnvironmentWarning.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DuplicateEnvironmentWarning.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.FortranCxxMixWarning.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.FutureDeprecatedWarning.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.FutureDeprecatedWarning.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.FutureReservedVariableWarning.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.FutureReservedVariableWarning.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.LinkWarning.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.MandatoryDeprecatedWarning.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.MandatoryDeprecatedWarning.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.MisleadingKeywordsWarning.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.MisleadingKeywordsWarning.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.MissingSConscriptWarning.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.MissingSConscriptWarning.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.NoObjectCountWarning.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.NoParallelSupportWarning.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.NoParallelSupportWarning.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.PythonVersionWarning.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.ReservedVariableWarning.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.ReservedVariableWarning.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.SConsWarning.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.StackSizeWarning.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.TargetNotBuiltWarning.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.TaskmasterNeedsExecuteWarning.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.TaskmasterNeedsExecuteWarning.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.ToolQtDeprecatedWarning.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.ToolQtDeprecatedWarning.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.VisualCMissingWarning.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.VisualStudioMissingWarning.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.VisualStudioMissingWarning.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.VisualVersionMismatch.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.WarningOnByDefault.args')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.attributes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.attributes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.attributes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.attributes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.attributes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.attributes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.attributes')

(SCons.Environment.OverrideEnvironment
method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

bact (SCons.Node.Alias.AliasBuildInfo attribute)

(SCons.Node.BuildInfoBase attribute)

(SCons.Node.FS.DirBuildInfo attribute)

(SCons.Node.FS.FileBuildInfo attribute)

(SCons.Node.Python.ValueBuildInfo attribute)

(SCons.SConf.SConfBuildInfo attribute)

bactsig (SCons.Node.Alias.AliasBuildInfo attribute)

(SCons.Node.BuildInfoBase attribute)

(SCons.Node.FS.DirBuildInfo attribute)

(SCons.Node.FS.FileBuildInfo attribute)

(SCons.Node.Python.ValueBuildInfo attribute)

(SCons.SConf.SConfBuildInfo attribute)

Base (class in SCons.Environment)

(class in SCons.Node.FS)

(class in SCons.SConsign)

(in module SCons.Scanner)

Base.Attrs (class in SCons.Node.FS)

Batch (class in SCons.Executor)

batch_key() (SCons.Action._ActionAction method)

(SCons.Action.ActionBase method)

(SCons.Action.CommandAction method)

(SCons.Action.CommandGeneratorAction method)

(SCons.Action.FunctionAction method)

(SCons.Action.LazyAction method)

(SCons.Action.ListAction method)

batches (SCons.Executor.Executor attribute)

(SCons.Executor.Null attribute)

bdepends (SCons.Node.Alias.AliasBuildInfo attribute)

(SCons.Node.BuildInfoBase attribute)

(SCons.Node.FS.DirBuildInfo attribute)

(SCons.Node.FS.FileBuildInfo attribute)

(SCons.Node.Python.ValueBuildInfo attribute)

(SCons.SConf.SConfBuildInfo attribute)

bdependsigs (SCons.Node.Alias.AliasBuildInfo
attribute)

(SCons.Node.BuildInfoBase attribute)

(SCons.Node.FS.DirBuildInfo attribute)

(SCons.Node.FS.FileBuildInfo attribute)

(SCons.Node.Python.ValueBuildInfo attribute)

(SCons.SConf.SConfBuildInfo attribute)

bimplicit (SCons.Node.Alias.AliasBuildInfo attribute)

(SCons.Node.BuildInfoBase attribute)

(SCons.Node.FS.DirBuildInfo attribute)

(SCons.Node.FS.FileBuildInfo attribute)

(SCons.Node.Python.ValueBuildInfo attribute)

(SCons.SConf.SConfBuildInfo attribute)

bimplicitsigs (SCons.Node.Alias.AliasBuildInfo
attribute)

(SCons.Node.BuildInfoBase attribute)

(SCons.Node.FS.DirBuildInfo attribute)

(SCons.Node.FS.FileBuildInfo attribute)

(SCons.Node.Python.ValueBuildInfo attribute)

(SCons.SConf.SConfBuildInfo attribute)

binfo (SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)

(SCons.SConsign.SConsignEntry attribute)

BoolVariable() (in module
SCons.Variables.BoolVariable)

bsources (SCons.Node.Alias.AliasBuildInfo attribute)

(SCons.Node.BuildInfoBase attribute)

(SCons.Node.FS.DirBuildInfo attribute)

(SCons.Node.FS.FileBuildInfo attribute)

(SCons.Node.Python.ValueBuildInfo attribute)

(SCons.SConf.SConfBuildInfo attribute)

bsourcesigs (SCons.Node.Alias.AliasBuildInfo attribute)

(SCons.Node.BuildInfoBase attribute)

(SCons.Node.FS.DirBuildInfo attribute)

(SCons.Node.FS.FileBuildInfo attribute)

(SCons.Node.Python.ValueBuildInfo attribute)

(SCons.SConf.SConfBuildInfo attribute)

build() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.backtick')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.backtick')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.backtick')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.backtick')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.backtick')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.backtick')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.BuildInfoBase.bact')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirBuildInfo.bact')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfo.bact')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueBuildInfo.bact')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildInfo.bact')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.BuildInfoBase.bactsig')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirBuildInfo.bactsig')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfo.bactsig')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueBuildInfo.bactsig')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildInfo.bactsig')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConsign.Base')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Base')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.ActionBase.batch_key')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandAction.batch_key')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandGeneratorAction.batch_key')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.FunctionAction.batch_key')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction.batch_key')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.ListAction.batch_key')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.batches')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.BuildInfoBase.bdepends')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirBuildInfo.bdepends')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfo.bdepends')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueBuildInfo.bdepends')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildInfo.bdepends')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.BuildInfoBase.bdependsigs')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirBuildInfo.bdependsigs')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfo.bdependsigs')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueBuildInfo.bdependsigs')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildInfo.bdependsigs')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.BuildInfoBase.bimplicit')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirBuildInfo.bimplicit')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfo.bimplicit')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueBuildInfo.bimplicit')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildInfo.bimplicit')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.BuildInfoBase.bimplicitsigs')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirBuildInfo.bimplicitsigs')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfo.bimplicitsigs')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueBuildInfo.bimplicitsigs')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildInfo.bimplicitsigs')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.binfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.binfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.binfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.binfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.binfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.binfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.binfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConsign.SConsignEntry.binfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.BuildInfoBase.bsources')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirBuildInfo.bsources')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfo.bsources')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueBuildInfo.bsources')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildInfo.bsources')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.BuildInfoBase.bsourcesigs')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirBuildInfo.bsourcesigs')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfo.bsourcesigs')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueBuildInfo.bsourcesigs')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildInfo.bsourcesigs')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.build')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.build')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.build')

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

BuildDefaultGlobals() (in module
SCons.Script.SConscript)

builder (SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)

Builder() (in module SCons.Builder)

(SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

builder_kw (SCons.Executor.Executor attribute)

(SCons.Executor.Null attribute)

builder_set() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

BuilderBase (class in SCons.Builder)

BuilderDict (class in SCons.Environment)

BuildError

BuilderWrapper (class in SCons.Environment)

BuildInfo (SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)

BuildInfoBase (class in SCons.Node)

BuildNodes() (SCons.SConf.SConfBase method)

BuildProg() (SCons.SConf.CheckContext method)

BuildTask (class in SCons.Script.Main)

built() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

C

cached (SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)

CacheDebug() (SCons.CacheDir.CacheDir method)

CacheDir (class in SCons.CacheDir)

CacheDir() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

cachedir_csig (SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

cachepath() (SCons.CacheDir.CacheDir method)

CachePushFunc() (in module SCons.CacheDir)

CacheRetrieveFunc() (in module SCons.CacheDir)

CacheRetrieveString() (in module SCons.CacheDir)

cachesig (SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

CacheVersionWarning

CacheWriteErrorWarning

CallableSelector (class in SCons.Builder)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.build')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.build')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.build')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.build')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.Builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.builder_kw')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.builder_set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.builder_set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.builder_set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.builder_set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.builder_set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.builder_set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.builder_set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.BuildInfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.BuildInfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.BuildInfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.BuildInfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.BuildInfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.BuildInfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.BuildInfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.built')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.built')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.built')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.built')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.built')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.built')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.built')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.cached')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.cached')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.cached')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.cached')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.cached')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.cached')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.cached')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.CacheDir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.CacheDir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.CacheDir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.CacheDir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.cachedir_csig')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.cachedir_csig')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.cachedir_csig')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.cachesig')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.cachesig')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.cachesig')

caller_stack() (in module SCons.Debug)

caller_trace() (in module SCons.Debug)

canonical_text() (SCons.Scanner.LaTeX.LaTeX
method)

capitalize() (SCons.Subst.CmdStringHolder method)

case_sensitive_suffixes() (in module SCons.Util)

casefold() (SCons.Subst.CmdStringHolder method)

CConditionalScanner() (in module SCons.Scanner.C)

center() (SCons.Subst.CmdStringHolder method)

changed() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

changed_content() (SCons.Node.FS.File method)

changed_since_last_build (SCons.Node.Alias.Alias
attribute)

(SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)

changed_since_last_build_alias() (in module
SCons.Node)

changed_since_last_build_entry() (in module
SCons.Node)

changed_since_last_build_node() (in module
SCons.Node)

changed_since_last_build_python() (in module
SCons.Node)

changed_since_last_build_state_changed() (in module
SCons.Node)

changed_state() (SCons.Node.FS.File method)

changed_timestamp_match() (SCons.Node.FS.File
method)

changed_timestamp_newer() (SCons.Node.FS.File
method)

changed_timestamp_then_content()
(SCons.Node.FS.File method)

characters_written (SCons.Errors.MSVCError attribute)

chdir() (SCons.Node.FS.FS method)

check_attributes() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

CHECK_METHODS
(SCons.Script.SConsOptions.SConsOption attribute)

check_value()
(SCons.Script.SConsOptions.SConsOption method)

check_values()
(SCons.Script.SConsOptions.SConsOptionParser
method)

CheckBuilder() (in module SCons.Conftest)

CheckCC() (in module SCons.Conftest)

(in module SCons.SConf)

CheckCHeader() (in module SCons.SConf)

CheckContext (class in SCons.SConf)

CheckCXX() (in module SCons.Conftest)

(in module SCons.SConf)

CheckCXXHeader() (in module SCons.SConf)

CheckDeclaration() (in module SCons.Conftest)

(in module SCons.SConf)

CheckFunc() (in module SCons.Conftest)

(in module SCons.SConf)

CheckHeader() (in module SCons.Conftest)

(in module SCons.SConf)

CheckLib() (in module SCons.Conftest)

(in module SCons.SConf)

CheckLibWithHeader() (in module SCons.SConf)

CheckProg() (in module SCons.Conftest)

(in module SCons.SConf)

CheckSHCC() (in module SCons.Conftest)

(in module SCons.SConf)

CheckSHCXX() (in module SCons.Conftest)

(in module SCons.SConf)

CheckType() (in module SCons.Conftest)

(in module SCons.SConf)

CheckTypeSize() (in module SCons.Conftest)

(in module SCons.SConf)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.changed')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.changed')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.changed')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.changed')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.changed')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.changed')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.changed')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.changed_since_last_build')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.changed_since_last_build')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.changed_since_last_build')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.changed_since_last_build')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.changed_since_last_build')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.changed_since_last_build')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.changed_since_last_build')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.check_attributes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.check_attributes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.check_attributes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.check_attributes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.check_attributes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.check_attributes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.check_attributes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConf.CheckCC')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConf.CheckCXX')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConf.CheckDeclaration')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConf.CheckFunc')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConf.CheckHeader')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConf.CheckLib')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConf.CheckProg')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConf.CheckSHCC')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConf.CheckSHCXX')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConf.CheckType')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConf.CheckTypeSize')

children() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

children_are_up_to_date() (SCons.Node.Alias.Alias
method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

chmod() (SCons.Node.FS.FS method)

(SCons.Node.FS.LocalFS method)

chmod_func() (in module SCons.Defaults)

chmod_strfunc() (in module SCons.Defaults)

Classic (class in SCons.Scanner)

ClassicCPP (class in SCons.Scanner)

classname() (in module SCons.Node)

Clean() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

CleanTask (class in SCons.Script.Main)

cleanup() (SCons.Executor.Executor method)

(SCons.Executor.Null method)

(SCons.Job.ThreadPool method)

(SCons.Taskmaster.Taskmaster method)

Cleanup_CPP_Expressions() (in module SCons.cpp)

clear() (SCons.Builder.CallableSelector method)

(SCons.Builder.DictCmdGenerator method)

(SCons.Builder.DictEmitter method)

(SCons.Builder.ListEmitter method)

(SCons.Builder.OverrideWarner method)

(SCons.Environment.BuilderDict method)

(SCons.Executor.TSList method)

(SCons.Node.Alias.Alias method)

(SCons.Node.Alias.AliasNameSpace method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.NodeList method)

(SCons.Node.Python.Value method)

(SCons.Script.TargetList method)

(SCons.Subst.ListSubber method)

(SCons.Subst.Targets_or_Sources method)

(SCons.Util.CLVar method)

(SCons.Util.NodeList method)

(SCons.Util.Selector method)

(SCons.Util.UniqueList method)

clear_memoized_values() (SCons.Node.Alias.Alias
method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

Clone() (SCons.Environment.Base method)

clone() (SCons.Environment.BuilderWrapper method)

Clone() (SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

clone() (SCons.Util.MethodWrapper method)

close() (SCons.dblite.dblite method)

close_strip() (SCons.Subst.ListSubber method)

CLVar (class in SCons.Util)

cmdloop()
(SCons.Script.Interactive.SConsInteractiveCmd
method)

CmdStringHolder (class in SCons.Subst)

cmp() (in module SCons.Util)

collect_node_states() (SCons.SConf.SConfBuildTask
method)

columnize()
(SCons.Script.Interactive.SConsInteractiveCmd
method)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.children')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.children')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.children')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.children')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.children')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.children')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.children')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.children_are_up_to_date')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.children_are_up_to_date')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.children_are_up_to_date')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.children_are_up_to_date')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.children_are_up_to_date')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.children_are_up_to_date')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.children_are_up_to_date')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.chmod')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Clean')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Clean')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Clean')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Clean')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.cleanup')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Job.ThreadPool.cleanup')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Taskmaster.cleanup')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictCmdGenerator.clear')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictEmitter.clear')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Builder.ListEmitter.clear')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Builder.OverrideWarner.clear')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.BuilderDict.clear')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Executor.TSList.clear')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.Alias.clear')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNameSpace.clear')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.clear')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.clear')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.clear')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.clear')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.clear')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.clear')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeList.clear')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.clear')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.TargetList.clear')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Subst.ListSubber.clear')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Subst.Targets_or_Sources.clear')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.CLVar.clear')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.NodeList.clear')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.Selector.clear')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.UniqueList.clear')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.clear_memoized_values')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.clear_memoized_values')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.clear_memoized_values')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.clear_memoized_values')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.clear_memoized_values')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.clear_memoized_values')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.clear_memoized_values')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Clone')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Clone')

command (SCons.Errors.BuildError attribute)

Command() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

CommandAction (class in SCons.Action)

CommandGeneratorAction (class in SCons.Action)

CompileProg() (SCons.SConf.CheckContext method)

CompileSharedObject() (SCons.SConf.CheckContext
method)

complete()
(SCons.Script.Interactive.SConsInteractiveCmd
method)

complete_help()
(SCons.Script.Interactive.SConsInteractiveCmd
method)

completedefault()
(SCons.Script.Interactive.SConsInteractiveCmd
method)

completenames()
(SCons.Script.Interactive.SConsInteractiveCmd
method)

CompositeBuilder (class in SCons.Builder)

compute_exports() (in module
SCons.Script.SConscript)

Configure() (in module SCons.Script.SConscript)

(SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

ConfigureCacheError

ConfigureDryRunError

CONST_ACTIONS
(SCons.Script.SConsOptions.SConsOption attribute)

containsAll() (in module SCons.Util)

containsAny() (in module SCons.Util)

containsOnly() (in module SCons.Util)

contentsig (SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

convert() (SCons.Node.Alias.Alias method)

(SCons.Node.Alias.AliasNodeInfo method)

(SCons.Node.FS.DirNodeInfo method)

(SCons.Node.FS.FileNodeInfo method)

(SCons.Node.NodeInfoBase method)

(SCons.Node.Python.ValueNodeInfo method)

convert_copy_attrs (SCons.Node.FS.File attribute)

convert_from_sconsign() (SCons.Node.FS.FileBuildInfo
method)

(SCons.SConf.SConfBuildInfo method)

(SCons.SConsign.SConsignEntry method)

convert_old_entry() (SCons.Node.FS.File method)

convert_sig_attrs (SCons.Node.FS.File attribute)

convert_to_BuildError() (in module SCons.Errors)

convert_to_sconsign() (SCons.Node.FS.FileBuildInfo
method)

(SCons.SConf.SConfBuildInfo method)

(SCons.SConsign.SConsignEntry method)

convert_value()
(SCons.Script.SConsOptions.SConsOption method)

copy() (SCons.Builder.CallableSelector method)

(SCons.Builder.DictCmdGenerator method)

(SCons.Builder.DictEmitter method)

(SCons.Builder.ListEmitter method)

(SCons.Builder.OverrideWarner method)

(SCons.Environment.BuilderDict method)

(SCons.Executor.TSList method)

(SCons.Node.Alias.AliasNameSpace method)

(SCons.Node.FS.FS method)

(SCons.Node.FS.LocalFS method)

(SCons.Node.NodeList method)

(SCons.Script.TargetList method)

(SCons.Subst.ListSubber method)

(SCons.Subst.Targets_or_Sources method)

(SCons.Util.CLVar method)

(SCons.Util.NodeList method)

(SCons.Util.Selector method)

(SCons.Util.UniqueList method)

copy2() (SCons.Node.FS.FS method)

(SCons.Node.FS.LocalFS method)

copy_from_cache() (SCons.CacheDir.CacheDir class
method)

copy_func() (in module SCons.Defaults)

copy_non_reserved_keywords() (in module
SCons.Environment)

copy_to_cache() (SCons.CacheDir.CacheDir class
method)

corrupt_dblite_warning() (in module SCons.SConsign)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Command')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Command')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Command')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Command')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.Configure')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Configure')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Configure')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Configure')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Configure')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.contentsig')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.contentsig')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.contentsig')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNodeInfo.convert')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirNodeInfo.convert')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileNodeInfo.convert')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeInfoBase.convert')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueNodeInfo.convert')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildInfo.convert_from_sconsign')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConsign.SConsignEntry.convert_from_sconsign')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildInfo.convert_to_sconsign')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConsign.SConsignEntry.convert_to_sconsign')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictCmdGenerator.copy')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictEmitter.copy')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Builder.ListEmitter.copy')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Builder.OverrideWarner.copy')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.BuilderDict.copy')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Executor.TSList.copy')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNameSpace.copy')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.copy')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.copy')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeList.copy')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.TargetList.copy')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Subst.ListSubber.copy')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Subst.Targets_or_Sources.copy')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.CLVar.copy')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.NodeList.copy')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.Selector.copy')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.UniqueList.copy')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.copy2')

CorruptSConsignWarning

count (SCons.Script.Main.Progressor attribute)

count() (SCons.Builder.ListEmitter method)

(SCons.Executor.TSList method)

(SCons.Memoize.CountDict method)

(SCons.Memoize.CountValue method)

(SCons.Node.NodeList method)

(SCons.Script.TargetList method)

(SCons.Subst.CmdStringHolder method)

(SCons.Subst.ListSubber method)

(SCons.Subst.Targets_or_Sources method)

(SCons.Util.CLVar method)

(SCons.Util.NodeList method)

(SCons.Util.UniqueList method)

CountDict (class in SCons.Memoize)

CountDictCall() (in module SCons.Memoize)

Counter (class in SCons.Memoize)

countLoggedInstances() (in module SCons.Debug)

CountMethodCall() (in module SCons.Memoize)

CountStats (class in SCons.Script.Main)

CountValue (class in SCons.Memoize)

CPP_to_Python() (in module SCons.cpp)

CPP_to_Python_Ops_Sub() (in module SCons.cpp)

createCFileBuilders() (in module SCons.Tool)

CreateConfigHBuilder() (in module SCons.SConf)

createIncludesFromHeaders() (in module
SCons.SConf)

CreateJarBuilder() (in module SCons.Tool)

CreateJavaClassDirBuilder() (in module SCons.Tool)

CreateJavaClassFileBuilder() (in module SCons.Tool)

CreateJavaFileBuilder() (in module SCons.Tool)

CreateJavaHBuilder() (in module SCons.Tool)

createLoadableModuleBuilder() (in module
SCons.Tool)

createObjBuilders() (in module SCons.Tool)

createProgBuilder() (in module SCons.Tool)

createSharedLibBuilder() (in module SCons.Tool)

createStaticLibBuilder() (in module SCons.Tool)

CScanner() (in module SCons.Scanner.C)

csig (SCons.Node.Alias.AliasNodeInfo attribute)

(SCons.Node.FS.FileNodeInfo attribute)

(SCons.Node.Python.ValueNodeInfo attribute)

Current (class in SCons.Scanner)

current_sconsign_filename() (in module
SCons.SConsign)

current_version_id (SCons.Node.Alias.AliasBuildInfo
attribute)

(SCons.Node.Alias.AliasNodeInfo attribute)

(SCons.Node.BuildInfoBase attribute)

(SCons.Node.FS.DirBuildInfo attribute)

(SCons.Node.FS.DirNodeInfo attribute)

(SCons.Node.FS.FileBuildInfo attribute)

(SCons.Node.FS.FileNodeInfo attribute)

(SCons.Node.NodeInfoBase attribute)

(SCons.Node.Python.ValueBuildInfo attribute)

(SCons.Node.Python.ValueNodeInfo attribute)

(SCons.SConf.SConfBuildInfo attribute)

(SCons.SConsign.SConsignEntry attribute)

cwd (SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

D

D (class in SCons.Scanner.D)

daemon() (SCons.Job.Worker property)

DB (class in SCons.SConsign)

dblite (class in SCons.dblite)

decide_source() (in module SCons.Node)

decide_target() (in module SCons.Node)

Decider() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

(SCons.Script.SConscript.SConsEnvironment
method)

dedent() (SCons.Script.SConsOptions.SConsIndented
HelpFormatter method)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Executor.TSList.count')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Memoize.CountDict.count')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Memoize.CountValue.count')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeList.count')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.TargetList.count')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Subst.CmdStringHolder.count')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Subst.ListSubber.count')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Subst.Targets_or_Sources.count')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.CLVar.count')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.NodeList.count')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.UniqueList.count')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileNodeInfo.csig')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueNodeInfo.csig')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNodeInfo.current_version_id')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.BuildInfoBase.current_version_id')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirBuildInfo.current_version_id')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirNodeInfo.current_version_id')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfo.current_version_id')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileNodeInfo.current_version_id')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeInfoBase.current_version_id')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueBuildInfo.current_version_id')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueNodeInfo.current_version_id')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildInfo.current_version_id')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConsign.SConsignEntry.current_version_id')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.cwd')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.cwd')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.cwd')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.cwd')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Decider')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Decider')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.Alias.Decider')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.Decider')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.Decider')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.Decider')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.Decider')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.Decider')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.Decider')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.Decider')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Decider')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Decider')

default()
(SCons.Script.Interactive.SConsInteractiveCmd
method)

Default() (SCons.Script.SConscript.SConsEnvironment
method)

default_copy_from_cache() (in module
SCons.Environment)

default_copy_to_cache() (in module
SCons.Environment)

default_decide_source() (in module
SCons.Environment)

default_decide_target() (in module
SCons.Environment)

default_exitstatfunc() (in module SCons.Action)

DefaultEnvironment() (in module SCons.Defaults)

DefaultEnvironmentCall (class in
SCons.Script.SConscript)

DefaultToolList() (in module SCons.Platform)

Define() (SCons.SConf.SConfBase method)

del_binfo() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

Delegate (class in SCons.Util)

delete_func() (in module SCons.Defaults)

delete_strfunc() (in module SCons.Defaults)

dependency_map (SCons.Node.FS.FileBuildInfo
attribute)

(SCons.SConf.SConfBuildInfo attribute)

DependencyWarning

depends (SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)

Depends() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

depends_set (SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)

DeprecatedDebugOptionsWarning

DeprecatedMissingSConscriptWarning

DeprecatedOptionsWarning

DeprecatedSourceCodeWarning

DeprecatedWarning

destroy()
(SCons.Script.SConsOptions.SConsOptionGroup
method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

Detect() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

DevelopmentVersionWarning

DictCmdGenerator (class in SCons.Builder)

DictEmitter (class in SCons.Builder)

dictify() (in module SCons.Util)

dictify_CPPDEFINES() (in module SCons.Scanner.C)

Dictionary() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

dictSpecialAttrs (SCons.Node.FS.EntryProxy attribute)

Dir (class in SCons.Node.FS)

(class in SCons.SConsign)

dir (SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

Dir() (SCons.Environment.Base method)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.del_binfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.del_binfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.del_binfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.del_binfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.del_binfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.del_binfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.del_binfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildInfo.dependency_map')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.depends')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.depends')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.depends')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.depends')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.depends')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.depends')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.depends')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Depends')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Depends')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Depends')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Depends')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.depends_set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.depends_set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.depends_set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.depends_set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.depends_set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.depends_set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.depends_set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.destroy')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.destroy')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Detect')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Detect')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Detect')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Detect')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Dictionary')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Dictionary')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Dictionary')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Dictionary')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConsign.Dir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.dir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.dir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.dir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.dir')

(SCons.Environment.OverrideEnvironment
method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.File method)

(SCons.Node.FS.FS method)

(SCons.Node.FS.RootDir method)

(SCons.Script.SConscript.SConsEnvironment
method)

Dir.Attrs (class in SCons.Node.FS)

dir_on_disk() (SCons.Node.FS.Dir method)

(SCons.Node.FS.RootDir method)

DirBuildInfo (class in SCons.Node.FS)

DirEntryScanner() (in module SCons.Scanner.Dir)

DirFile (class in SCons.SConsign)

dirname (SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

DirNodeInfo (class in SCons.Node.FS)

Dirs() (SCons.Node.FS.File method)

DirScanner() (in module SCons.Scanner.Dir)

disable_interspersed_args()
(SCons.Script.SConsOptions.SConsOptionParser
method)

disambiguate() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

diskcheck_convert() (in module
SCons.Script.SConsOptions)

diskcheck_match() (SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

diskcheck_types() (in module SCons.Node.FS)

DiskChecker (class in SCons.Node.FS)

display() (SCons.Memoize.CountDict method)

(SCons.Memoize.Counter method)

(SCons.Memoize.CountValue method)

Display() (SCons.SConf.CheckContext method)

display() (SCons.SConf.SConfBuildTask method)

(SCons.Script.Main.BuildTask method)

(SCons.Script.Main.CleanTask method)

(SCons.Script.Main.QuestionTask method)

(SCons.Script.Main.TreePrinter method)

(SCons.Taskmaster.AlwaysTask method)

(SCons.Taskmaster.OutOfDateTask method)

(SCons.Taskmaster.Task method)

display_cached_string()
(SCons.SConf.SConfBuildTask method)

DisplayEngine (class in SCons.Util)

do_append() (SCons.Script.Main.CountStats method)

(SCons.Script.Main.MemStats method)

do_build()
(SCons.Script.Interactive.SConsInteractiveCmd
method)

do_clean()
(SCons.Script.Interactive.SConsInteractiveCmd
method)

do_define() (SCons.cpp.DumbPreProcessor method)

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)

do_diskcheck_match() (in module SCons.Node.FS)

do_duplicate() (SCons.Node.FS.Dir method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

do_elif() (SCons.cpp.DumbPreProcessor method)

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)

do_else() (SCons.cpp.DumbPreProcessor method)

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)

do_endif() (SCons.cpp.DumbPreProcessor method)

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)

do_EOF()
(SCons.Script.Interactive.SConsInteractiveCmd
method)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Dir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Dir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.Dir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.Dir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.Dir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.Dir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Dir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Dir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.dir_on_disk')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.dirname')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.dirname')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.dirname')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.disambiguate')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.disambiguate')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.disambiguate')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.disambiguate')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.disambiguate')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.disambiguate')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.disambiguate')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.diskcheck_match')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.diskcheck_match')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.diskcheck_match')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Memoize.Counter.display')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Memoize.CountValue.display')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.display')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.display')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.display')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.TreePrinter.display')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.display')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.display')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.display')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.MemStats.do_append')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.do_define')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_define')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_define')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.do_define')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.do_duplicate')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.do_duplicate')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.do_elif')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_elif')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_elif')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.do_elif')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.do_else')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_else')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_else')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.do_else')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.do_endif')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_endif')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_endif')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.do_endif')

do_exit()
(SCons.Script.Interactive.SConsInteractiveCmd
method)

do_failed() (SCons.Script.Main.BuildTask method)

do_flatten() (in module SCons.Util)

do_help()
(SCons.Script.Interactive.SConsInteractiveCmd
method)

do_if() (SCons.cpp.DumbPreProcessor method)

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)

do_ifdef() (SCons.cpp.DumbPreProcessor method)

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)

do_ifndef() (SCons.cpp.DumbPreProcessor method)

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)

do_import() (SCons.cpp.DumbPreProcessor method)

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)

do_include() (SCons.cpp.DumbPreProcessor method)

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)

do_include_next() (SCons.cpp.DumbPreProcessor
method)

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)

do_not_scan() (in module SCons.Scanner.Dir)

do_not_set_entry() (SCons.SConsign.Base method)

(SCons.SConsign.DB method)

(SCons.SConsign.Dir method)

(SCons.SConsign.DirFile method)

do_not_store_info() (SCons.SConsign.Base method)

(SCons.SConsign.DB method)

(SCons.SConsign.Dir method)

(SCons.SConsign.DirFile method)

do_nothing() (in module SCons.Node)

(SCons.cpp.DumbPreProcessor method)

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)

(SCons.Script.Main.CountStats method)

(SCons.Script.Main.MemStats method)

(SCons.Script.Main.Stats method)

do_nothing_node() (in module SCons.Node)

do_print() (SCons.Script.Main.CountStats method)

(SCons.Script.Main.MemStats method)

do_shell()
(SCons.Script.Interactive.SConsInteractiveCmd
method)

do_undef() (SCons.cpp.DumbPreProcessor method)

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)

do_version()
(SCons.Script.Interactive.SConsInteractiveCmd
method)

doc_header
(SCons.Script.Interactive.SConsInteractiveCmd
attribute)

doc_leader
(SCons.Script.Interactive.SConsInteractiveCmd
attribute)

DScanner() (in module SCons.Scanner.D)

DumbPreProcessor (class in SCons.cpp)

Dump() (in module SCons.Memoize)

(SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

dump_caller_counts() (in module SCons.Debug)

dump_stats() (in module SCons.Taskmaster)

dumpLoggedInstances() (in module SCons.Debug)

duplicate (SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.do_if')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_if')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_if')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.do_if')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.do_ifdef')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_ifdef')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_ifdef')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.do_ifdef')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.do_ifndef')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_ifndef')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_ifndef')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.do_ifndef')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.do_import')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_import')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_import')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.do_import')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.do_include')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_include')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_include')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.do_include')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.do_include_next')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_include_next')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_include_next')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.do_include_next')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConsign.DB.do_not_set_entry')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConsign.Dir.do_not_set_entry')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConsign.DirFile.do_not_set_entry')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConsign.DB.do_not_store_info')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConsign.Dir.do_not_store_info')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConsign.DirFile.do_not_store_info')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.cpp.DumbPreProcessor.do_nothing')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.do_nothing')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_nothing')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_nothing')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.do_nothing')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CountStats.do_nothing')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.MemStats.do_nothing')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.Stats.do_nothing')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.MemStats.do_print')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.do_undef')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_undef')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_undef')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.do_undef')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.Dump')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Dump')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Dump')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Dump')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Dump')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.duplicate')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.duplicate')

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

DuplicateEnvironmentWarning

E

EmitterProxy (class in SCons.Builder)

emptyline()
(SCons.Script.Interactive.SConsInteractiveCmd
method)

enable() (SCons.Script.Main.CountStats method)

(SCons.Script.Main.MemStats method)

(SCons.Script.Main.Stats method)

enable_interspersed_args()
(SCons.Script.SConsOptions.SConsOptionParser
method)

EnableMemoization() (in module SCons.Memoize)

enableWarningClass() (in module SCons.Warnings)

encode() (SCons.Subst.CmdStringHolder method)

endswith() (SCons.Subst.CmdStringHolder method)

ensure_value()
(SCons.Script.SConsOptions.SConsValues method)

EnsurePythonVersion()
(SCons.Script.SConscript.SConsEnvironment method)

EnsureSConsVersion()
(SCons.Script.SConscript.SConsEnvironment method)

entries (SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

Entry (class in SCons.Node.FS)

Entry() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.File method)

(SCons.Node.FS.FS method)

(SCons.Node.FS.RootDir method)

(SCons.Script.SConscript.SConsEnvironment
method)

Entry.Attrs (class in SCons.Node.FS)

entry_abspath() (SCons.Node.FS.Dir method)

(SCons.Node.FS.RootDir method)

entry_exists_on_disk() (SCons.Node.FS.Dir method)

(SCons.Node.FS.RootDir method)

entry_labspath() (SCons.Node.FS.Dir method)

(SCons.Node.FS.RootDir method)

entry_path() (SCons.Node.FS.Dir method)

(SCons.Node.FS.RootDir method)

entry_tpath() (SCons.Node.FS.Dir method)

(SCons.Node.FS.RootDir method)

EntryProxy (class in SCons.Node.FS)

EntryProxyAttributeError

EnumVariable() (in module
SCons.Variables.EnumVariable)

env (SCons.Executor.Executor attribute)

(SCons.Executor.Null attribute)

(SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)

env_set() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

env_variables (SCons.Scanner.LaTeX.LaTeX attribute)

Environment() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

erase_previous() (SCons.Script.Main.Progressor
method)

errno (SCons.Errors.MSVCError attribute)

error()
(SCons.Script.SConsOptions.SConsOptionParser
method)

errstr (SCons.Errors.BuildError attribute)

escape() (in module SCons.Platform.posix)

(in module SCons.Platform.win32)

(SCons.Subst.CmdStringHolder method)

(SCons.Subst.Literal method)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.duplicate')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.duplicate')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.MemStats.enable')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.Stats.enable')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.entries')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.entries')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.entries')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Entry')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Entry')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.Entry')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.Entry')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.Entry')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.Entry')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Entry')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Entry')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.entry_abspath')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.entry_exists_on_disk')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.entry_labspath')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.entry_path')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.entry_tpath')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.env')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.Alias.env')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.env')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.env')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.env')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.env')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.env')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.env')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.env')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.env_set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.env_set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.env_set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.env_set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.env_set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.env_set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.env_set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Environment')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Environment')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Environment')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Environment')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Platform.win32.escape')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Subst.CmdStringHolder.escape')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Subst.Literal.escape')

(SCons.Subst.SpecialAttrWrapper method)

escape_list() (in module SCons.Subst)

eval_expression() (SCons.cpp.DumbPreProcessor
method)

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)

exc_clear() (SCons.SConf.SConfBuildTask method)

(SCons.Script.Main.BuildTask method)

(SCons.Script.Main.CleanTask method)

(SCons.Script.Main.QuestionTask method)

(SCons.Taskmaster.AlwaysTask method)

(SCons.Taskmaster.OutOfDateTask method)

(SCons.Taskmaster.Task method)

exc_info (SCons.Errors.BuildError attribute)

exc_info() (SCons.SConf.SConfBuildTask method)

(SCons.Script.Main.BuildTask method)

(SCons.Script.Main.CleanTask method)

(SCons.Script.Main.QuestionTask method)

(SCons.Taskmaster.AlwaysTask method)

(SCons.Taskmaster.OutOfDateTask method)

(SCons.Taskmaster.Task method)

exception_set() (SCons.SConf.SConfBuildTask
method)

(SCons.Script.Main.BuildTask method)

(SCons.Script.Main.CleanTask method)

(SCons.Script.Main.QuestionTask method)

(SCons.Taskmaster.AlwaysTask method)

(SCons.Taskmaster.OutOfDateTask method)

(SCons.Taskmaster.Task method)

exec_popen3() (in module SCons.Platform.posix)

exec_spawn() (in module SCons.Platform.win32)

exec_subprocess() (in module SCons.Platform.posix)

execute() (SCons.Action.CommandAction method)

(SCons.Action.FunctionAction method)

(SCons.Action.LazyAction method)

Execute() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

execute() (SCons.SConf.SConfBuildTask method)

(SCons.Script.Main.BuildTask method)

(SCons.Script.Main.CleanTask method)
(SCons.Script.Main.QuestionTask method)

Execute()
(SCons.Script.SConscript.SConsEnvironment method)

execute() (SCons.Taskmaster.AlwaysTask method)

(SCons.Taskmaster.OutOfDateTask method)

(SCons.Taskmaster.Task method)

execute_action_list() (in module SCons.Executor)

execute_actions_str() (in module SCons.Executor)

execute_nothing() (in module SCons.Executor)

execute_null_str() (in module SCons.Executor)

executed() (SCons.SConf.SConfBuildTask method)

(SCons.Script.Main.BuildTask method)

(SCons.Script.Main.CleanTask method)

(SCons.Script.Main.QuestionTask method)

(SCons.Taskmaster.AlwaysTask method)

(SCons.Taskmaster.OutOfDateTask method)

(SCons.Taskmaster.Task method)

executed_with_callbacks()
(SCons.SConf.SConfBuildTask method)

(SCons.Script.Main.BuildTask method)

(SCons.Script.Main.CleanTask method)

(SCons.Script.Main.QuestionTask method)

(SCons.Taskmaster.AlwaysTask method)

(SCons.Taskmaster.OutOfDateTask method)

(SCons.Taskmaster.Task method)

executed_without_callbacks()
(SCons.SConf.SConfBuildTask method)

(SCons.Script.Main.BuildTask method)

(SCons.Script.Main.CleanTask method)

(SCons.Script.Main.QuestionTask method)

(SCons.Taskmaster.AlwaysTask method)

(SCons.Taskmaster.OutOfDateTask method)

(SCons.Taskmaster.Task method)

Executor (class in SCons.Executor)

executor (SCons.Errors.BuildError attribute)

(SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)

executor_cleanup() (SCons.Node.Alias.Alias method)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Subst.SpecialAttrWrapper.escape')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.eval_expression')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.eval_expression')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.eval_expression')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.eval_expression')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.exc_clear')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.exc_clear')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.exc_clear')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.exc_clear')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.exc_clear')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.exc_clear')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.exc_info')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.exc_info')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.exc_info')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.exc_info')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.exc_info')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.exc_info')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.exception_set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.exception_set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.exception_set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.exception_set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.exception_set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.exception_set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.FunctionAction.execute')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction.execute')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Execute')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Execute')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.execute')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.execute')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.execute')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.execute')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.execute')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.executed')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.executed')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.executed')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.executed')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.executed')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.executed')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.executed_with_callbacks')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.executed_with_callbacks')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.executed_with_callbacks')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.executed_with_callbacks')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.executed_with_callbacks')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.executed_with_callbacks')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.executed_without_callbacks')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.executed_without_callbacks')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.executed_without_callbacks')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.executed_without_callbacks')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.executed_without_callbacks')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.executed_without_callbacks')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.Alias.executor')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.executor')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.executor')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.executor')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.executor')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.executor')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.executor')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.executor')

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

exists() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.FS method)

(SCons.Node.FS.LocalFS method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

exists_always() (in module SCons.Node)

exists_base() (in module SCons.Node)

exists_entry() (in module SCons.Node)

exists_file() (in module SCons.Node)

exists_none() (in module SCons.Node)

Exit() (SCons.Script.SConscript.SConsEnvironment
method)

exit() (SCons.Script.SConsOptions.SConsOptionParser
method)

exitstatus (SCons.Errors.BuildError attribute)

expand() (SCons.Subst.ListSubber method)

(SCons.Subst.StringSubber method)

expand_default() (SCons.Script.SConsOptions.SConsI
ndentedHelpFormatter method)

expand_prog_name()
(SCons.Script.SConsOptions.SConsOptionParser
method)

expanded() (SCons.Subst.ListSubber method)

expandtabs() (SCons.Subst.CmdStringHolder method)

explain() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

ExplicitExit

Export() (SCons.Script.SConscript.SConsEnvironment
method)

extend() (SCons.Builder.ListEmitter method)

(SCons.Executor.TSList method)

(SCons.Node.NodeList method)

(SCons.Script.TargetList method)

(SCons.Subst.ListSubber method)

(SCons.Subst.Targets_or_Sources method)

(SCons.Util.CLVar method)

(SCons.Util.NodeList method)

(SCons.Util.UniqueList method)

F

F90Scanner (class in SCons.Scanner.Fortran)

fail_continue() (SCons.SConf.SConfBuildTask method)

(SCons.Script.Main.BuildTask method)

(SCons.Script.Main.CleanTask method)

(SCons.Script.Main.QuestionTask method)

(SCons.Taskmaster.AlwaysTask method)

(SCons.Taskmaster.OutOfDateTask method)

(SCons.Taskmaster.Task method)

fail_stop() (SCons.SConf.SConfBuildTask method)

(SCons.Script.Main.BuildTask method)

(SCons.Script.Main.CleanTask method)

(SCons.Script.Main.QuestionTask method)

(SCons.Taskmaster.AlwaysTask method)

(SCons.Taskmaster.OutOfDateTask method)

(SCons.Taskmaster.Task method)

failed() (SCons.SConf.SConfBuildTask method)

(SCons.Script.Main.BuildTask method)

(SCons.Script.Main.CleanTask method)

(SCons.Script.Main.QuestionTask method)

(SCons.Taskmaster.AlwaysTask method)

(SCons.Taskmaster.OutOfDateTask method)

(SCons.Taskmaster.Task method)

FakeOptionParser (class in SCons.Script.Main)

FakeOptionParser.FakeOptionValues (class in
SCons.Script.Main)

fetchLoggedInstances() (in module SCons.Debug)

field_list (SCons.Node.Alias.AliasNodeInfo attribute)

(SCons.Node.FS.FileNodeInfo attribute)

(SCons.Node.Python.ValueNodeInfo attribute)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.executor_cleanup')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.executor_cleanup')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.executor_cleanup')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.executor_cleanup')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.executor_cleanup')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.executor_cleanup')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.executor_cleanup')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.exists')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.exists')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.exists')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.exists')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.exists')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.exists')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.exists')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.exists')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.exists')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Subst.StringSubber.expand')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.explain')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.explain')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.explain')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.explain')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.explain')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.explain')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.explain')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Executor.TSList.extend')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeList.extend')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.TargetList.extend')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Subst.ListSubber.extend')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Subst.Targets_or_Sources.extend')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.CLVar.extend')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.NodeList.extend')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.UniqueList.extend')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.fail_continue')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.fail_continue')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.fail_continue')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.fail_continue')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.fail_continue')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.fail_continue')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.fail_stop')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.fail_stop')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.fail_stop')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.fail_stop')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.fail_stop')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.fail_stop')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.failed')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.failed')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.failed')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.failed')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.failed')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.failed')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileNodeInfo.field_list')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueNodeInfo.field_list')

File (class in SCons.Node.FS)

File() (in module SCons.SConsign)

(SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.File method)

(SCons.Node.FS.FS method)

(SCons.Node.FS.RootDir method)

(SCons.Script.SConscript.SConsEnvironment
method)

File.Attrs (class in SCons.Node.FS)

file_on_disk() (SCons.Node.FS.Dir method)

(SCons.Node.FS.RootDir method)

FileBuildInfo (class in SCons.Node.FS)

FileBuildInfoFileToCsigMappingError

filedir_lookup() (SCons.Node.FS.FileFinder method)

FileFinder (class in SCons.Node.FS)

filename (SCons.Errors.BuildError attribute)

(SCons.Errors.MSVCError attribute)

filename2 (SCons.Errors.MSVCError attribute)

FileNodeInfo (class in SCons.Node.FS)

finalize_result() (SCons.cpp.DumbPreProcessor
method)

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)

find() (SCons.Subst.CmdStringHolder method)

find_cycle() (in module SCons.Taskmaster)

find_deepest_user_frame() (in module
SCons.Script.Main)

find_file() (in module SCons.Node.FS)

(SCons.Node.FS.FileFinder method)

find_include() (SCons.Scanner.Classic static method)

(SCons.Scanner.ClassicCPP method)

(SCons.Scanner.D.D method)

(SCons.Scanner.Fortran.F90Scanner static
method)

(SCons.Scanner.LaTeX.LaTeX method)

find_include_file() (SCons.cpp.DumbPreProcessor
method)

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)

find_include_names() (SCons.Scanner.Classic method)

(SCons.Scanner.ClassicCPP method)

(SCons.Scanner.D.D method)

(SCons.Scanner.Fortran.F90Scanner method)

find_next_candidate() (SCons.Taskmaster.Taskmaster
method)

find_program_path() (in module SCons.Tool)

find_repo_file() (SCons.Node.FS.File method)

find_src_builder() (SCons.Node.FS.File method)

FindAllTools() (in module SCons.Tool)

FindENVPathDirs (class in SCons.Scanner.LaTeX)

FindFile() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

FindInstalledFiles() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

FindIxes() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

FindPathDirs (class in SCons.Scanner)

FindSourceFiles() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

FindTool() (in module SCons.Tool)

Finish() (SCons.SConf.SConfBase method)

flatten() (in module SCons.Util)

Flatten() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

flatten_sequence() (in module SCons.Util)

flush() (SCons.SConf.Streamer method)

fmt (SCons.Variables.Variables attribute)

for_signature() (SCons.Node.Alias.Alias method)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.File')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.File')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.File')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.File')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.File')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.File')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.File')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.File')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.File')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.file_on_disk')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Errors.MSVCError.filename')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.finalize_result')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.finalize_result')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.finalize_result')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.finalize_result')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileFinder.find_file')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ClassicCPP.find_include')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.D.D.find_include')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Fortran.F90Scanner.find_include')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Fortran.F90Scanner.find_include')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.LaTeX.LaTeX.find_include')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.find_include_file')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.find_include_file')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.find_include_file')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.find_include_file')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ClassicCPP.find_include_names')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.D.D.find_include_names')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Fortran.F90Scanner.find_include_names')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.FindFile')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.FindFile')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.FindFile')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.FindFile')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.FindInstalledFiles')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.FindInstalledFiles')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.FindInstalledFiles')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.FindInstalledFiles')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.FindIxes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.FindIxes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.FindIxes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.FindIxes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.FindSourceFiles')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.FindSourceFiles')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.FindSourceFiles')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.FindSourceFiles')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Flatten')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Flatten')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Flatten')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Flatten')

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

(SCons.Subst.Literal method)

(SCons.Subst.SpecialAttrWrapper method)

ForDirectory (in module SCons.SConsign)

format() (SCons.Node.Alias.AliasNodeInfo method)

(SCons.Node.FS.DirNodeInfo method)

(SCons.Node.FS.FileBuildInfo method)

(SCons.Node.FS.FileNodeInfo method)

(SCons.Node.NodeInfoBase method)

(SCons.Node.Python.ValueNodeInfo method)

(SCons.SConf.SConfBuildInfo method)

(SCons.Subst.CmdStringHolder method)

format_description() (SCons.Script.SConsOptions.SCo
nsIndentedHelpFormatter method)

(SCons.Script.SConsOptions.SConsOptionGroup
method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

format_epilog() (SCons.Script.SConsOptions.SConsInd
entedHelpFormatter method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

format_heading() (SCons.Script.SConsOptions.SConsI
ndentedHelpFormatter method)

format_help()
(SCons.Script.SConsOptions.SConsOptionGroup
method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

format_map() (SCons.Subst.CmdStringHolder method)

format_option() (SCons.Script.SConsOptions.SConsInd
entedHelpFormatter method)

format_option_help()
(SCons.Script.SConsOptions.SConsOptionGroup
method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

format_option_strings() (SCons.Script.SConsOptions.S
ConsIndentedHelpFormatter method)

format_usage() (SCons.Script.SConsOptions.SConsInd
entedHelpFormatter method)

FormatVariableHelpText() (SCons.Variables.Variables
method)

FortranCxxMixWarning

FortranScan() (in module SCons.Scanner.Fortran)

Frame (class in SCons.Script.SConscript)

fromkeys() (SCons.Builder.CallableSelector method)

(SCons.Builder.DictCmdGenerator method)

(SCons.Builder.DictEmitter method)

(SCons.Builder.OverrideWarner class method)

(SCons.Environment.BuilderDict class method)

(SCons.Node.Alias.AliasNameSpace class
method)

(SCons.Util.Selector method)

FS (class in SCons.Node.FS)

fs (SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.DirNodeInfo attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.FileNodeInfo attribute)

(SCons.Node.FS.RootDir attribute)

fs_delete() (SCons.Script.Main.CleanTask method)

func_shorten() (in module SCons.Debug)

function_name() (SCons.Action.FunctionAction
method)

FunctionAction (class in SCons.Action)

FunctionEvaluator (class in SCons.cpp)

FutureDeprecatedWarning

FutureReservedVariableWarning

G

generate() (in module SCons.Platform.aix)

(in module SCons.Platform.cygwin)

(in module SCons.Platform.darwin)

(in module SCons.Platform.hpux)

(in module SCons.Platform.irix)

(in module SCons.Platform.os2)

(in module SCons.Platform.posix)

(in module SCons.Platform.sunos)

(in module SCons.Platform.win32)

GenerateHelpText() (SCons.Variables.Variables
method)

genstring() (SCons.Action._ActionAction method)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.for_signature')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.for_signature')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.for_signature')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.for_signature')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.for_signature')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.for_signature')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.for_signature')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Subst.Literal.for_signature')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Subst.SpecialAttrWrapper.for_signature')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirNodeInfo.format')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfo.format')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileNodeInfo.format')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeInfoBase.format')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueNodeInfo.format')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildInfo.format')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Subst.CmdStringHolder.format')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionGroup.format_description')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionGroup.format_description')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.format_description')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.format_description')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.format_epilog')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.format_epilog')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.format_help')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.format_help')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.format_option_help')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.format_option_help')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictCmdGenerator.fromkeys')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictEmitter.fromkeys')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Builder.OverrideWarner.fromkeys')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.BuilderDict.fromkeys')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNameSpace.fromkeys')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNameSpace.fromkeys')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.Selector.fromkeys')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.fs')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirNodeInfo.fs')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.fs')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.fs')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileNodeInfo.fs')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.fs')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Platform.cygwin.generate')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Platform.darwin.generate')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Platform.hpux.generate')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Platform.irix.generate')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Platform.os2.generate')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Platform.posix.generate')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Platform.sunos.generate')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Platform.win32.generate')

(SCons.Action.ActionBase method)

(SCons.Action.CommandAction method)

(SCons.Action.CommandGeneratorAction method)

(SCons.Action.FunctionAction method)

(SCons.Action.LazyAction method)

(SCons.Action.ListAction method)

get() (SCons.Builder.CallableSelector method)

(SCons.Builder.CompositeBuilder method)

(SCons.Builder.DictCmdGenerator method)

(SCons.Builder.DictEmitter method)

(SCons.Builder.OverrideWarner method)

(SCons.Environment.Base method)

(SCons.Environment.BuilderDict method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Job.ThreadPool method)

(SCons.Node.Alias.AliasNameSpace method)

(SCons.Node.FS.EntryProxy method)

(SCons.Script.SConscript.SConsEnvironment
method)

(SCons.Util.Proxy method)

(SCons.Util.Selector method)

get_abspath() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

get_action_list() (SCons.Executor.Executor method)

(SCons.Executor.Null method)

get_action_side_effects() (SCons.Executor.Executor
method)

(SCons.Executor.Null method)

get_action_targets() (SCons.Executor.Executor
method)

(SCons.Executor.Null method)

get_all_children() (SCons.Executor.Executor method)

(SCons.Executor.Null method)

(SCons.Script.Main.TreePrinter method)

get_all_prerequisites() (SCons.Executor.Executor
method)

(SCons.Executor.Null method)

get_all_rdirs() (SCons.Node.FS.Dir method)

(SCons.Node.FS.RootDir method)

get_all_sources() (SCons.Executor.Executor method)

(SCons.Executor.Null method)

get_all_targets() (SCons.Executor.Executor method)

(SCons.Executor.Null method)

get_architecture() (in module SCons.Platform.win32)

get_binfo() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

get_build_env() (SCons.Executor.Executor method)

(SCons.Executor.Null method)

(SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

get_build_scanner_path() (SCons.Executor.Executor
method)

(SCons.Executor.Null method)

(SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

get_builder() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Node.Alias.Alias method)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.ActionBase.genstring')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandAction.genstring')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandGeneratorAction.genstring')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.FunctionAction.genstring')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction.genstring')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.ListAction.genstring')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Builder.CompositeBuilder.get')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictCmdGenerator.get')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictEmitter.get')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Builder.OverrideWarner.get')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.get')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.BuilderDict.get')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.get')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.get')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.get')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.get')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Job.ThreadPool.get')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNameSpace.get')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.EntryProxy.get')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.get')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.get')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.Proxy.get')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.Selector.get')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_abspath')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_abspath')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_abspath')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_abspath')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_abspath')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_abspath')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_abspath')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.get_action_list')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.get_action_side_effects')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.get_action_targets')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.get_all_children')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.TreePrinter.get_all_children')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.get_all_prerequisites')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_all_rdirs')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.get_all_sources')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.get_all_targets')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_binfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_binfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_binfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_binfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_binfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_binfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_binfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.get_build_env')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.Alias.get_build_env')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_build_env')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_build_env')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_build_env')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_build_env')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_build_env')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_build_env')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_build_env')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.get_build_scanner_path')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.Alias.get_build_scanner_path')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_build_scanner_path')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_build_scanner_path')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_build_scanner_path')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_build_scanner_path')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_build_scanner_path')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_build_scanner_path')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_build_scanner_path')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.get_builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.get_builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.Alias.get_builder')

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

(SCons.Script.SConscript.SConsEnvironment
method)

(SCons.Tool.ToolInitializerMethod method)

get_CacheDir() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Executor.NullEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

get_cachedir_bsig() (SCons.Node.FS.File method)

get_cachedir_csig() (SCons.CacheDir.CacheDir
method)

(SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

get_calling_namespaces() (in module
SCons.Script.SConscript)

get_children() (in module SCons.Node)

get_content_hash() (SCons.Node.FS.File method)

get_contents() (SCons.Action._ActionAction method)

(SCons.Action.ActionBase method)

(SCons.Action.ActionCaller method)

(SCons.Action.CommandAction method)

(SCons.Action.CommandGeneratorAction method)

(SCons.Action.FunctionAction method)

(SCons.Action.LazyAction method)

(SCons.Action.ListAction method)

(SCons.Executor.Executor method)

(SCons.Executor.Null method)

(SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

get_contents_dir() (in module SCons.Node)

get_contents_entry() (in module SCons.Node)

get_contents_file() (in module SCons.Node)

get_contents_none() (in module SCons.Node)

get_contents_sig() (SCons.Node.FS.File method)

get_csig() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

get_current_hash_algorithm_used() (in module
SCons.Util)

Get_DataBase() (in module SCons.SConsign)

get_default_ENV() (in module SCons.Action)

get_default_fs() (in module SCons.Node.FS)

get_default_values()
(SCons.Script.SConsOptions.SConsOptionParser
method)

get_DefaultEnvironmentProxy() (in module
SCons.Script.SConscript)

get_derived_children() (SCons.Script.Main.TreePrinter
method)

get_description()
(SCons.Script.SConsOptions.SConsOptionGroup
method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

get_dir() (SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

get_entry() (SCons.SConsign.Base method)

(SCons.SConsign.DB method)

(SCons.SConsign.Dir method)

(SCons.SConsign.DirFile method)

get_env() (SCons.Node.Alias.Alias method)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.get_builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.get_builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Tool.ToolInitializerMethod.get_builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.get_CacheDir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.get_CacheDir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Executor.NullEnvironment.get_CacheDir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.get_CacheDir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.get_CacheDir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.Alias.get_cachedir_csig')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_cachedir_csig')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_cachedir_csig')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_cachedir_csig')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_cachedir_csig')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_cachedir_csig')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_cachedir_csig')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_cachedir_csig')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.ActionBase.get_contents')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.ActionCaller.get_contents')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandAction.get_contents')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandGeneratorAction.get_contents')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.FunctionAction.get_contents')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction.get_contents')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.ListAction.get_contents')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Executor.Executor.get_contents')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.get_contents')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.Alias.get_contents')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_contents')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_contents')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_contents')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_contents')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_contents')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_contents')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_contents')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_csig')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_csig')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_csig')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_csig')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_csig')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_csig')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_csig')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.get_description')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.get_description')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_dir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_dir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_dir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_dir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConsign.DB.get_entry')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConsign.Dir.get_entry')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConsign.DirFile.get_entry')

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

get_env_bool() (in module SCons.Util)

get_env_scanner() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

get_environment_var() (in module SCons.Util)

get_executor() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

get_factory() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

get_found_includes() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

get_hash_format() (in module SCons.Util)

get_implicit_deps() (SCons.Action.CommandAction
method)

(SCons.Action.CommandGeneratorAction method)
(SCons.Action.FunctionAction method)

(SCons.Action.LazyAction method)

(SCons.Action.ListAction method)

(SCons.Executor.Executor method)

(SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

get_internal_path() (SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

get_kw() (SCons.Executor.Executor method)

get_labspath() (SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

get_lvars() (SCons.Executor.Executor method)

get_max_drift() (SCons.Node.FS.FS method)

get_max_drift_csig() (SCons.Node.FS.File method)

get_MkdirBuilder() (in module SCons.Node.FS)

get_name() (SCons.Builder.BuilderBase method)

get_names()
(SCons.Script.Interactive.SConsInteractiveCmd
method)

get_native_path() (in module SCons.Util)

get_next() (SCons.Node.Walker method)

get_ninfo() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

get_NullEnvironment() (in module SCons.Executor)

get_opt_string()
(SCons.Script.SConsOptions.SConsOption method)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_env')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_env')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_env')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_env')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_env')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_env')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_env')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_env_scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_env_scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_env_scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_env_scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_env_scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_env_scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_env_scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_executor')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_executor')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_executor')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_executor')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_executor')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_executor')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_executor')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.get_factory')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.get_factory')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.get_factory')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.get_factory')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_found_includes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_found_includes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_found_includes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_found_includes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_found_includes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_found_includes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_found_includes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandGeneratorAction.get_implicit_deps')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.FunctionAction.get_implicit_deps')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction.get_implicit_deps')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.ListAction.get_implicit_deps')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Executor.Executor.get_implicit_deps')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.Alias.get_implicit_deps')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_implicit_deps')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_implicit_deps')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_implicit_deps')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_implicit_deps')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_implicit_deps')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_implicit_deps')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_implicit_deps')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_internal_path')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_internal_path')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_internal_path')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_internal_path')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_labspath')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_labspath')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_labspath')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_labspath')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_ninfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_ninfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_ninfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_ninfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_ninfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_ninfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_ninfo')

get_option()
(SCons.Script.SConsOptions.SConsOptionGroup
method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

get_option_group()
(SCons.Script.SConsOptions.SConsOptionParser
method)

get_os_env_bool() (in module SCons.Util)

get_parent_class() (SCons.Action.LazyAction method)

get_path() (SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

get_path_elements() (SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

get_paths_str() (in module SCons.Defaults)

get_prefix() (SCons.Builder.BuilderBase method)

get_presig() (SCons.Action.CommandAction method)

(SCons.Action.CommandGeneratorAction method)

(SCons.Action.FunctionAction method)

(SCons.Action.LazyAction method)

(SCons.Action.ListAction method)

get_prog_name()
(SCons.Script.SConsOptions.SConsOptionParser
method)

get_program_files_dir() (in module
SCons.Platform.win32)

get_relpath() (SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

get_root() (SCons.Node.FS.FS method)

get_scanner() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

get_size() (SCons.Node.FS.File method)

get_skeys() (SCons.Scanner.Classic method)

(SCons.Scanner.ClassicCPP method)

(SCons.Scanner.Current method)

(SCons.Scanner.D.D method)

(SCons.Scanner.Fortran.F90Scanner method)

(SCons.Scanner.LaTeX.LaTeX method)

(SCons.Scanner.ScannerBase method)

(SCons.Scanner.Selector method)

get_source_scanner() (SCons.Node.Alias.Alias
method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

get_sources() (SCons.Executor.Executor method)

get_src_builders() (SCons.Builder.BuilderBase method)

get_src_sig_type() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

get_src_suffix() (SCons.Builder.BuilderBase method)

get_state() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

get_stored_implicit() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

get_stored_info() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.get_option')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.get_option')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_path')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_path')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_path')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_path')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_path_elements')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_path_elements')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_path_elements')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_path_elements')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandGeneratorAction.get_presig')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.FunctionAction.get_presig')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction.get_presig')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.ListAction.get_presig')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_relpath')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_relpath')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_relpath')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_relpath')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.get_scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.get_scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.get_scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.get_scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ClassicCPP.get_skeys')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Current.get_skeys')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.D.D.get_skeys')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Fortran.F90Scanner.get_skeys')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.LaTeX.LaTeX.get_skeys')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ScannerBase.get_skeys')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Selector.get_skeys')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_source_scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_source_scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_source_scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_source_scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_source_scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_source_scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_source_scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.get_src_sig_type')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.get_src_sig_type')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.get_src_sig_type')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.get_src_sig_type')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_state')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_state')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_state')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_state')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_state')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_state')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_state')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_stored_implicit')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_stored_implicit')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_stored_implicit')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_stored_implicit')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_stored_implicit')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_stored_implicit')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_stored_implicit')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_stored_info')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_stored_info')

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

get_string() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

get_subst_proxy() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

get_suffix() (SCons.Builder.BuilderBase method)

(SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

get_system_root() (in module SCons.Platform.win32)

get_target() (SCons.SConf.SConfBuildTask method)

(SCons.Script.Main.BuildTask method)

(SCons.Script.Main.CleanTask method)

(SCons.Script.Main.QuestionTask method)

(SCons.Taskmaster.AlwaysTask method)

(SCons.Taskmaster.OutOfDateTask method)

(SCons.Taskmaster.Task method)

get_target_scanner() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

get_targets() (SCons.Action._ActionAction method)

(SCons.Action.ActionBase method)

(SCons.Action.CommandAction method)

(SCons.Action.CommandGeneratorAction method)

(SCons.Action.FunctionAction method)

(SCons.Action.LazyAction method)

(SCons.Action.ListAction method)

get_text_contents() (SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Python.Value method)

get_tgt_sig_type() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

get_timestamp() (SCons.Executor.Executor method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

get_tpath() (SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

get_unignored_sources() (SCons.Executor.Executor
method)

(SCons.Executor.Null method)

get_usage()
(SCons.Script.SConsOptions.SConsOptionParser
method)

get_varlist() (SCons.Action._ActionAction method)

(SCons.Action.ActionBase method)

(SCons.Action.CommandAction method)

(SCons.Action.CommandGeneratorAction method)

(SCons.Action.FunctionAction method)

(SCons.Action.LazyAction method)

(SCons.Action.ListAction method)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_stored_info')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_stored_info')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_stored_info')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_stored_info')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_stored_info')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_string')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_string')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_string')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_string')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_string')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_string')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_string')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_subst_proxy')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_subst_proxy')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_subst_proxy')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_subst_proxy')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_subst_proxy')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_subst_proxy')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_subst_proxy')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.Alias.get_suffix')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_suffix')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_suffix')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_suffix')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_suffix')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_suffix')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_suffix')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_suffix')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.get_target')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.get_target')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.get_target')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.get_target')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.get_target')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.get_target')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_target_scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_target_scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_target_scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_target_scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_target_scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_target_scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_target_scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.ActionBase.get_targets')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandAction.get_targets')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandGeneratorAction.get_targets')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.FunctionAction.get_targets')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction.get_targets')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.ListAction.get_targets')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_text_contents')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_text_contents')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_text_contents')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_text_contents')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.get_tgt_sig_type')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.get_tgt_sig_type')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.get_tgt_sig_type')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.get_tgt_sig_type')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_timestamp')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_timestamp')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_timestamp')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_tpath')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_tpath')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_tpath')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_tpath')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.get_unignored_sources')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.ActionBase.get_varlist')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandAction.get_varlist')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandGeneratorAction.get_varlist')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.FunctionAction.get_varlist')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction.get_varlist')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.ListAction.get_varlist')

get_version()
(SCons.Script.SConsOptions.SConsOptionParser
method)

get_xlc() (in module SCons.Platform.aix)

GetBatchExecutor() (in module SCons.Executor)

GetBuildFailures() (in module SCons.Script.Main)

GetBuildPath() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

getcwd() (SCons.Node.FS.FS method)

GetLaunchDir()
(SCons.Script.SConscript.SConsEnvironment method)

getmtime() (SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.FS method)

(SCons.Node.FS.LocalFS method)

(SCons.Node.FS.RootDir method)

getName() (SCons.Job.Worker method)

GetOption() (in module SCons.Script.Main)

(SCons.Script.SConscript.SConsEnvironment
method)

getRepositories() (SCons.Node.FS.Dir method)

(SCons.Node.FS.RootDir method)

getsize() (SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.FS method)

(SCons.Node.FS.LocalFS method)

(SCons.Node.FS.RootDir method)

GetTag() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

getvalue() (SCons.SConf.Streamer method)

Glob() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

glob() (SCons.Node.FS.Dir method)

Glob() (SCons.Node.FS.FS method)

glob() (SCons.Node.FS.RootDir method)

Glob() (SCons.Script.SConscript.SConsEnvironment
method)

gvars() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

H

handle_missing_SConscript() (in module
SCons.Script.SConscript)

has_builder() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

has_explicit_builder() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

has_glob_magic() (in module SCons.Node.FS)

has_option()
(SCons.Script.SConsOptions.SConsOptionGroup
method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

has_src_builder() (SCons.Node.FS.File method)

hash_chunksize (SCons.Node.FS.File attribute)

hash_collect() (in module SCons.Util)

hash_file_signature() (in module SCons.Util)

hash_signature() (in module SCons.Util)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.GetBuildPath')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.GetBuildPath')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.GetBuildPath')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.GetBuildPath')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.getmtime')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.getmtime')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.getmtime')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.getmtime')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.getmtime')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.getmtime')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.GetOption')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.GetOption')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.getRepositories')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.getsize')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.getsize')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.getsize')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.getsize')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.getsize')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.getsize')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.GetTag')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.GetTag')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.GetTag')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.GetTag')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.GetTag')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.GetTag')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.GetTag')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Glob')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Glob')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.gvars')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.gvars')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.gvars')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.gvars')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.gvars')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.gvars')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.has_builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.has_builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.has_builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.has_builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.has_builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.has_builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.has_builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.has_explicit_builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.has_explicit_builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.has_explicit_builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.has_explicit_builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.has_explicit_builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.has_explicit_builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.has_explicit_builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.has_option')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.has_option')

Help() (SCons.Script.SConscript.SConsEnvironment
method)

HelpFunction() (in module SCons.Script)

hit_ratio() (SCons.CacheDir.CacheDir property)

I

ident() (SCons.Job.Worker property)

identchars
(SCons.Script.Interactive.SConsInteractiveCmd
attribute)

IDLScan() (in module SCons.Scanner.IDL)

IDX() (in module SCons.Util)

ignore (SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)

Ignore() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

ignore_cycle() (in module SCons.Node)

ignore_diskcheck_match() (in module SCons.Node.FS)

ignore_set (SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)

implicit (SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)

implicit_set (SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)

Import() (SCons.Script.SConscript.SConsEnvironment
method)

ImportVirtualenv() (in module
SCons.Platform.virtualenv)

includes (SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)

indent() (SCons.Script.SConsOptions.SConsIndentedH
elpFormatter method)

index() (SCons.Builder.ListEmitter method)

(SCons.Executor.TSList method)

(SCons.Node.NodeList method)

(SCons.Script.TargetList method)

(SCons.Subst.CmdStringHolder method)

(SCons.Subst.ListSubber method)

(SCons.Subst.Targets_or_Sources method)

(SCons.Util.CLVar method)

(SCons.Util.NodeList method)

(SCons.Util.UniqueList method)

initialize_do_splitdrive() (in module SCons.Node.FS)

initialize_result() (SCons.cpp.DumbPreProcessor
method)

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)

Initializers() (in module SCons.Tool)

insert() (SCons.Builder.ListEmitter method)

(SCons.Executor.TSList method)

(SCons.Node.NodeList method)

(SCons.Script.TargetList method)
(SCons.Subst.ListSubber method)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.ignore')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.ignore')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.ignore')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.ignore')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.ignore')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.ignore')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.ignore')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Ignore')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Ignore')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Ignore')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Ignore')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.ignore_set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.ignore_set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.ignore_set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.ignore_set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.ignore_set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.ignore_set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.ignore_set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.implicit')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.implicit')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.implicit')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.implicit')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.implicit')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.implicit')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.implicit')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.implicit_set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.implicit_set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.implicit_set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.implicit_set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.implicit_set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.implicit_set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.implicit_set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.includes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.includes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.includes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.includes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.includes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.includes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.includes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Executor.TSList.index')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeList.index')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.TargetList.index')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Subst.CmdStringHolder.index')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Subst.ListSubber.index')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Subst.Targets_or_Sources.index')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.CLVar.index')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.NodeList.index')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.UniqueList.index')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.initialize_result')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.initialize_result')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.initialize_result')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.initialize_result')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Executor.TSList.insert')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeList.insert')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.TargetList.insert')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Subst.ListSubber.insert')

(SCons.Subst.Targets_or_Sources method)

(SCons.Util.CLVar method)

(SCons.Util.NodeList method)

(SCons.Util.UniqueList method)

instance (SCons.Variables.Variables attribute)

interact() (in module SCons.Script.Interactive)

InternalError

InterruptState (class in SCons.Job)

intro (SCons.Script.Interactive.SConsInteractiveCmd
attribute)

invalidate_node_memos() (in module SCons.Node.FS)

is_a_Builder() (in module SCons.Builder)

is_alive() (SCons.Job.Worker method)

is_conftest() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

is_derived() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

is_derived_node() (in module SCons.Node)

is_derived_none() (in module SCons.Node)

is_Dict() (in module SCons.Util)

is_done() (SCons.Node.Walker method)

is_enabled() (SCons.CacheDir.CacheDir method)

is_explicit (SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)

is_List() (in module SCons.Util)

is_literal() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

(SCons.Subst.CmdStringHolder method)

(SCons.Subst.Literal method)

(SCons.Subst.SpecialAttrWrapper method)

is_readonly() (SCons.CacheDir.CacheDir method)

is_Scalar() (in module SCons.Util)

is_sconscript() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

is_Sequence() (in module SCons.Util)

is_String() (in module SCons.Util)

is_Tuple() (in module SCons.Util)

is_under() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Python.Value method)

is_up_to_date() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

is_valid_construction_var() (in module
SCons.Environment)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Subst.Targets_or_Sources.insert')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.CLVar.insert')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.NodeList.insert')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.UniqueList.insert')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.is_conftest')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.is_conftest')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.is_conftest')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.is_conftest')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.is_conftest')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.is_conftest')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.is_conftest')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.is_derived')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.is_derived')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.is_derived')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.is_derived')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.is_derived')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.is_derived')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.is_derived')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.is_explicit')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.is_explicit')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.is_explicit')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.is_explicit')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.is_explicit')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.is_explicit')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.is_explicit')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.is_literal')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.is_literal')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.is_literal')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.is_literal')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.is_literal')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.is_literal')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.is_literal')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Subst.CmdStringHolder.is_literal')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Subst.Literal.is_literal')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Subst.SpecialAttrWrapper.is_literal')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.is_sconscript')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.is_sconscript')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.is_sconscript')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.is_sconscript')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.is_sconscript')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.is_sconscript')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.is_sconscript')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.is_under')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.is_under')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.is_under')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.is_under')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.is_under')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.is_under')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.is_up_to_date')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.is_up_to_date')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.is_up_to_date')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.is_up_to_date')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.is_up_to_date')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.is_up_to_date')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.is_up_to_date')

isAlive() (SCons.Job.Worker method)

isalnum() (SCons.Subst.CmdStringHolder method)

isalpha() (SCons.Subst.CmdStringHolder method)

isascii() (SCons.Subst.CmdStringHolder method)

isDaemon() (SCons.Job.Worker method)

isdecimal() (SCons.Subst.CmdStringHolder method)

isdigit() (SCons.Subst.CmdStringHolder method)

isdir() (SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.FS method)

(SCons.Node.FS.LocalFS method)

(SCons.Node.FS.RootDir method)

isfile() (SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.FS method)

(SCons.Node.FS.LocalFS method)

(SCons.Node.FS.RootDir method)

isidentifier() (SCons.Subst.CmdStringHolder method)

IsInVirtualenv() (in module SCons.Platform.virtualenv)

islink() (SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.FS method)

(SCons.Node.FS.LocalFS method)

(SCons.Node.FS.RootDir method)

islower() (SCons.Subst.CmdStringHolder method)

isnumeric() (SCons.Subst.CmdStringHolder method)

isprintable() (SCons.Subst.CmdStringHolder method)

isspace() (SCons.Subst.CmdStringHolder method)

istitle() (SCons.Subst.CmdStringHolder method)

isupper() (SCons.Subst.CmdStringHolder method)

items() (SCons.Builder.CallableSelector method)

(SCons.Builder.DictCmdGenerator method)

(SCons.Builder.DictEmitter method)

(SCons.Builder.OverrideWarner method)

(SCons.Environment.Base method)

(SCons.Environment.BuilderDict method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Node.Alias.AliasNameSpace method)

(SCons.Script.SConscript.SConsEnvironment
method)

(SCons.Util.Selector method)

J

Jobs (class in SCons.Job)

join() (SCons.Job.Worker method)

(SCons.Subst.CmdStringHolder method)

K

key() (SCons.Memoize.CountDict method)

(SCons.Memoize.Counter method)

(SCons.Memoize.CountValue method)

keys() (SCons.Builder.CallableSelector method)

(SCons.Builder.DictCmdGenerator method)

(SCons.Builder.DictEmitter method)

(SCons.Builder.OverrideWarner method)

(SCons.dblite.dblite method)

(SCons.Environment.Base method)

(SCons.Environment.BuilderDict method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Node.Alias.AliasNameSpace method)

(SCons.Script.SConscript.SConsEnvironment
method)

(SCons.Util.Selector method)

(SCons.Variables.Variables method)

keyword_paths (SCons.Scanner.LaTeX.LaTeX
attribute)

L

lastcmd
(SCons.Script.Interactive.SConsInteractiveCmd
attribute)

LaTeX (class in SCons.Scanner.LaTeX)

LaTeXScanner() (in module SCons.Scanner.LaTeX)

LazyAction (class in SCons.Action)

link() (SCons.Node.FS.Dir method)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.isdir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.isdir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.isdir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.isdir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.isdir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.isdir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.isfile')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.isfile')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.isfile')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.isfile')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.isfile')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.isfile')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.islink')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.islink')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.islink')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.islink')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.islink')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.islink')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictCmdGenerator.items')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictEmitter.items')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Builder.OverrideWarner.items')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.items')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.BuilderDict.items')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.items')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.items')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.items')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.items')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNameSpace.items')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.items')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.items')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.Selector.items')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Subst.CmdStringHolder.join')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Memoize.Counter.key')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Memoize.CountValue.key')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictCmdGenerator.keys')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictEmitter.keys')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Builder.OverrideWarner.keys')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.dblite.dblite.keys')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.keys')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.BuilderDict.keys')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.keys')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.keys')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.keys')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.keys')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNameSpace.keys')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.keys')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.keys')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.Selector.keys')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Variables.Variables.keys')

(SCons.Node.FS.FS method)

(SCons.Node.FS.LocalFS method)

(SCons.Node.FS.RootDir method)

linked (SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)

LinkFunc() (in module SCons.Node.FS)

LinkWarning

ListAction (class in SCons.Action)

listdir() (SCons.Node.FS.FS method)

(SCons.Node.FS.LocalFS method)

ListEmitter (class in SCons.Builder)

listLoggedInstances() (in module SCons.Debug)

ListSubber (class in SCons.Subst)

ListVariable() (in module SCons.Variables.ListVariable)

Literal (class in SCons.Subst)

Literal() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

literal() (SCons.Subst.ListSubber method)

ljust() (SCons.Subst.CmdStringHolder method)

Local() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

LocalFS (class in SCons.Node.FS)

LocalString() (in module SCons.Node.FS)

Log() (SCons.SConf.CheckContext method)

logical_lines() (in module SCons.Util)

LogicalLines (class in SCons.Util)

logInstanceCreation() (in module SCons.Debug)

lookup() (SCons.Node.Alias.AliasNameSpace method)

lower() (SCons.Subst.CmdStringHolder method)

lstat() (SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.FS method)

(SCons.Node.FS.LocalFS method)

(SCons.Node.FS.RootDir method)

lstrip() (SCons.Subst.CmdStringHolder method)

lvars (SCons.Executor.Executor attribute)

(SCons.Executor.Null attribute)

lvars() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

M

main() (in module SCons.Script.Main)

make_path_relative() (in module SCons.Util)

make_ready() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

(SCons.SConf.SConfBuildTask method)

(SCons.Script.Main.BuildTask method)

(SCons.Script.Main.CleanTask method)

(SCons.Script.Main.QuestionTask method)

(SCons.Taskmaster.AlwaysTask method)

(SCons.Taskmaster.OutOfDateTask method)

(SCons.Taskmaster.Task method)

make_ready_all() (SCons.SConf.SConfBuildTask
method)

(SCons.Script.Main.BuildTask method)

(SCons.Script.Main.CleanTask method)

(SCons.Script.Main.QuestionTask method)

(SCons.Taskmaster.AlwaysTask method)

(SCons.Taskmaster.OutOfDateTask method)

(SCons.Taskmaster.Task method)

make_ready_current() (SCons.SConf.SConfBuildTask
method)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.link')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.link')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.link')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.linked')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.linked')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.linked')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.linked')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.linked')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.linked')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.linked')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.listdir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Literal')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Literal')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Literal')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Literal')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Local')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Local')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Local')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Local')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.lstat')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.lstat')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.lstat')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.lstat')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.lstat')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.lstat')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.lvars')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.lvars')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.lvars')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.lvars')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.lvars')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.lvars')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.lvars')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.make_ready')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.make_ready')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.make_ready')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.make_ready')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.make_ready')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.make_ready')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.make_ready')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildTask.make_ready')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.make_ready')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.make_ready')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.make_ready')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.make_ready')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.make_ready')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.make_ready')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.make_ready_all')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.make_ready_all')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.make_ready_all')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.make_ready_all')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.make_ready_all')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.make_ready_all')

(SCons.Script.Main.BuildTask method)

(SCons.Script.Main.CleanTask method)

(SCons.Script.Main.QuestionTask method)

(SCons.Taskmaster.AlwaysTask method)

(SCons.Taskmaster.OutOfDateTask method)

(SCons.Taskmaster.Task method)

makedirs() (SCons.Node.FS.FS method)

(SCons.Node.FS.LocalFS method)

maketrans() (SCons.Subst.CmdStringHolder method)

MandatoryDeprecatedWarning

match_splitext() (in module SCons.Builder)

MD5collect() (in module SCons.Util)

MD5filesignature() (in module SCons.Util)

MD5signature() (in module SCons.Util)

memory() (in module SCons.Debug)

MemStats (class in SCons.Script.Main)

merge() (SCons.Node.Alias.AliasBuildInfo method)

(SCons.Node.Alias.AliasNodeInfo method)

(SCons.Node.BuildInfoBase method)

(SCons.Node.FS.DirBuildInfo method)

(SCons.Node.FS.DirNodeInfo method)

(SCons.Node.FS.FileBuildInfo method)

(SCons.Node.FS.FileNodeInfo method)

(SCons.Node.NodeInfoBase method)

(SCons.Node.Python.ValueBuildInfo method)

(SCons.Node.Python.ValueNodeInfo method)

(SCons.SConf.SConfBuildInfo method)

(SCons.SConsign.Base method)

(SCons.SConsign.DB method)

(SCons.SConsign.Dir method)

(SCons.SConsign.DirFile method)

MergeFlags() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

Message() (SCons.SConf.CheckContext method)

MethodWrapper (class in SCons.Util)

misc_header
(SCons.Script.Interactive.SConsInteractiveCmd
attribute)

MisleadingKeywordsWarning

misses() (SCons.CacheDir.CacheDir property)

missing() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

MissingSConscriptWarning

mkdir() (SCons.Node.FS.FS method)

(SCons.Node.FS.LocalFS method)

mkdir_func() (in module SCons.Defaults)

MkdirFunc() (in module SCons.Node.FS)

modify_env_var() (in module SCons.Scanner.LaTeX)

module

SCons

SCons.Action

SCons.Builder

SCons.CacheDir

SCons.compat

SCons.Conftest

SCons.cpp

SCons.dblite

SCons.Debug

SCons.Defaults

SCons.Environment

SCons.Errors

SCons.Executor

SCons.exitfuncs

SCons.Job

SCons.Memoize

SCons.Node

SCons.Node.Alias

SCons.Node.FS

SCons.Node.Python

SCons.PathList

SCons.Platform

SCons.Platform.aix

SCons.Platform.cygwin

SCons.Platform.darwin

SCons.Platform.hpux

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.make_ready_current')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.make_ready_current')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.make_ready_current')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.make_ready_current')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.make_ready_current')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.make_ready_current')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.makedirs')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNodeInfo.merge')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.BuildInfoBase.merge')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirBuildInfo.merge')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirNodeInfo.merge')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfo.merge')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileNodeInfo.merge')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeInfoBase.merge')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueBuildInfo.merge')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueNodeInfo.merge')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildInfo.merge')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConsign.Base.merge')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConsign.DB.merge')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConsign.Dir.merge')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConsign.DirFile.merge')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.MergeFlags')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.MergeFlags')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.MergeFlags')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.MergeFlags')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.MergeFlags')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.MergeFlags')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.missing')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.missing')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.missing')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.missing')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.missing')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.missing')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.missing')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.mkdir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Action')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.CacheDir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.compat')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Conftest')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.cpp')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.dblite')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Debug')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Defaults')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Environment')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Errors')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Executor')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.exitfuncs')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Job')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Memoize')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Node')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Node.Alias')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Node.FS')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Node.Python')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.PathList')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Platform')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.aix')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.cygwin')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.darwin')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.hpux')

SCons.Platform.irix

SCons.Platform.mingw

SCons.Platform.os2

SCons.Platform.posix

SCons.Platform.sunos

SCons.Platform.virtualenv

SCons.Platform.win32

SCons.Scanner

SCons.Scanner.C

SCons.Scanner.D

SCons.Scanner.Dir

SCons.Scanner.Fortran

SCons.Scanner.IDL

SCons.Scanner.LaTeX

SCons.Scanner.Prog

SCons.Scanner.RC

SCons.Scanner.SWIG

SCons.SConf

SCons.SConsign

SCons.Script

SCons.Script.Interactive

SCons.Script.Main

SCons.Script.SConscript

SCons.Script.SConsOptions

SCons.Subst

SCons.Taskmaster

SCons.Tool

SCons.Util

SCons.Variables

SCons.Variables.BoolVariable

SCons.Variables.EnumVariable

SCons.Variables.ListVariable

SCons.Variables.PackageVariable

SCons.Variables.PathVariable

SCons.Warnings

move_func() (in module SCons.Defaults)

move_to_end() (SCons.Builder.CallableSelector
method)

(SCons.Builder.DictCmdGenerator method)

(SCons.Builder.DictEmitter method)

(SCons.Util.Selector method)

mro() (SCons.compat.NoSlotsPyPy method)

MSVCError

multiple_side_effect_has_builder()
(SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

must_be_same() (SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

N

name (SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

name() (SCons.Job.Worker property)

NeedConfigHBuilder() (in module SCons.SConf)

needs_execute() (SCons.SConf.SConfBuildTask
method)

(SCons.Script.Main.BuildTask method)

(SCons.Script.Main.CleanTask method)

(SCons.Script.Main.QuestionTask method)

(SCons.Taskmaster.AlwaysTask method)

(SCons.Taskmaster.OutOfDateTask method)

(SCons.Taskmaster.Task method)

needs_normpath_match() (in module SCons.Node.FS)

new_binfo() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

new_ninfo() (SCons.Node.Alias.Alias method)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.irix')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.mingw')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.os2')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.posix')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.sunos')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.virtualenv')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.win32')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.C')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.D')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.Dir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.Fortran')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.IDL')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.LaTeX')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.Prog')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.RC')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.SWIG')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.SConf')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.SConsign')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Script')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Script.Interactive')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Script.Main')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Script.SConscript')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Script.SConsOptions')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Subst')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Taskmaster')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Tool')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Util')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Variables')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Variables.BoolVariable')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Variables.EnumVariable')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Variables.ListVariable')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Variables.PackageVariable')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Variables.PathVariable')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Warnings')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictCmdGenerator.move_to_end')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictEmitter.move_to_end')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.Selector.move_to_end')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.multiple_side_effect_has_builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.multiple_side_effect_has_builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.multiple_side_effect_has_builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.multiple_side_effect_has_builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.multiple_side_effect_has_builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.multiple_side_effect_has_builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.multiple_side_effect_has_builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.must_be_same')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.must_be_same')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.must_be_same')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.must_be_same')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.name')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.name')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.name')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.name')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.needs_execute')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.needs_execute')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.needs_execute')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.needs_execute')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.needs_execute')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.needs_execute')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.new_binfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.new_binfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.new_binfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.new_binfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.new_binfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.new_binfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.new_binfo')

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

next_line() (SCons.Subst.ListSubber method)

next_task() (SCons.Taskmaster.Taskmaster method)

next_word() (SCons.Subst.ListSubber method)

ninfo (SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)

(SCons.SConsign.SConsignEntry attribute)

NLWrapper (class in SCons.Subst)

no_batch_key() (SCons.Action._ActionAction method)

(SCons.Action.ActionBase method)

(SCons.Action.CommandAction method)

(SCons.Action.CommandGeneratorAction method)

(SCons.Action.FunctionAction method)

(SCons.Action.LazyAction method)

(SCons.Action.ListAction method)

NO_DEFAULT_VALUE (SCons.Script.SConsOptions.S
ConsIndentedHelpFormatter attribute)

no_next_candidate() (SCons.Taskmaster.Taskmaster
method)

no_tlb() (in module SCons.Scanner.RC)

nocache (SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)

NoCache() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

noclean (SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)

NoClean() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

Node (class in SCons.Node)

node (SCons.Errors.BuildError attribute)

Node.Attrs (class in SCons.Node)

node_conv() (in module SCons.PathList)

NodeInfo (SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)

NodeInfoBase (class in SCons.Node)

NodeList (class in SCons.Node)

(class in SCons.Util)

nohelp (SCons.Script.Interactive.SConsInteractiveCmd
attribute)

NoObjectCountWarning

NoParallelSupportWarning

NoSlotsPyPy (class in SCons.compat)

NoSubstitutionProxy() (in module SCons.Environment)

Null (class in SCons.Executor)

(class in SCons.Util)

NullCmdGenerator (class in SCons.Defaults)

NullEnvironment (class in SCons.Executor)

nullify() (SCons.Executor.Executor method)

NullNodeList (class in SCons.Subst)

NullNodesList (in module SCons.Subst)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.new_ninfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.new_ninfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.new_ninfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.new_ninfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.new_ninfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.new_ninfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.new_ninfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.ninfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.ninfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.ninfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.ninfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.ninfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.ninfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.ninfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConsign.SConsignEntry.ninfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.ActionBase.no_batch_key')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandAction.no_batch_key')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandGeneratorAction.no_batch_key')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.FunctionAction.no_batch_key')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction.no_batch_key')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.ListAction.no_batch_key')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.nocache')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.nocache')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.nocache')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.nocache')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.nocache')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.nocache')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.nocache')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.NoCache')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.NoCache')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.NoCache')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.NoCache')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.noclean')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.noclean')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.noclean')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.noclean')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.noclean')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.noclean')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.noclean')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.NoClean')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.NoClean')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.NoClean')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.NoClean')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.NodeInfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.NodeInfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.NodeInfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.NodeInfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.NodeInfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.NodeInfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.NodeInfo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.NodeList')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.Null')

NullSeq (class in SCons.Util)

O

on_disk_entries (SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

onecmd()
(SCons.Script.Interactive.SConsInteractiveCmd
method)

only_dirs() (in module SCons.Scanner.Dir)

open() (in module SCons.dblite)

(SCons.Node.FS.FS method)

(SCons.Node.FS.LocalFS method)

open_strip() (SCons.Subst.ListSubber method)

OutOfDateTask (class in SCons.Taskmaster)

Override() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

OverrideEnvironment (class in SCons.Environment)

overridelist (SCons.Executor.Executor attribute)

(SCons.Executor.Null attribute)

OverrideWarner (class in SCons.Builder)

P

PackageVariable() (in module
SCons.Variables.PackageVariable)

Parallel (class in SCons.Job)

parse_args()
(SCons.Script.SConsOptions.SConsOptionParser
method)

ParseConfig() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

ParseDepends() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

ParseFlags() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

parseline()
(SCons.Script.Interactive.SConsInteractiveCmd
method)

Parser() (in module SCons.Script.SConsOptions)

partition() (SCons.Subst.CmdStringHolder method)

path (SCons.Node.FS.RootDir attribute)

path() (SCons.Scanner.Classic method)

(SCons.Scanner.ClassicCPP method)

(SCons.Scanner.Current method)

(SCons.Scanner.D.D method)

(SCons.Scanner.Fortran.F90Scanner method)

(SCons.Scanner.LaTeX.LaTeX method)

(SCons.Scanner.ScannerBase method)

(SCons.Scanner.Selector method)

path_string() (in module SCons.Script.Main)

PathList() (in module SCons.PathList)

PDFLaTeXScanner() (in module
SCons.Scanner.LaTeX)

piped_env_spawn() (in module SCons.Platform.posix)

piped_spawn() (in module SCons.Platform.win32)

Platform() (in module SCons.Platform)

(SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

platform_default() (in module SCons.Platform)

platform_module() (in module SCons.Platform)

PlatformSpec (class in SCons.Platform)

pop() (SCons.Builder.CallableSelector method)

(SCons.Builder.DictCmdGenerator method)

(SCons.Builder.DictEmitter method)

(SCons.Builder.ListEmitter method)

(SCons.Builder.OverrideWarner method)

(SCons.Environment.BuilderDict method)

(SCons.Executor.TSList method)

(SCons.Node.Alias.AliasNameSpace method)

(SCons.Node.NodeList method)
(SCons.Script.TargetList method)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.on_disk_entries')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.on_disk_entries')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.on_disk_entries')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.open')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.open')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Override')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Override')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.Override')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.Override')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Override')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Override')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.overridelist')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.ParseConfig')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.ParseConfig')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.ParseConfig')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.ParseConfig')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.ParseDepends')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.ParseDepends')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.ParseDepends')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.ParseDepends')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.ParseFlags')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.ParseFlags')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.ParseFlags')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.ParseFlags')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.ParseFlags')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.ParseFlags')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ClassicCPP.path')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Current.path')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.D.D.path')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Fortran.F90Scanner.path')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.LaTeX.LaTeX.path')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ScannerBase.path')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Selector.path')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.Platform')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Platform')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Platform')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Platform')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Platform')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictCmdGenerator.pop')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictEmitter.pop')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Builder.ListEmitter.pop')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Builder.OverrideWarner.pop')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.BuilderDict.pop')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Executor.TSList.pop')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNameSpace.pop')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeList.pop')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.TargetList.pop')

(SCons.Subst.ListSubber method)

(SCons.Subst.Targets_or_Sources method)

(SCons.Util.CLVar method)

(SCons.Util.NodeList method)

(SCons.Util.Selector method)

(SCons.Util.UniqueList method)

popitem() (SCons.Builder.CallableSelector method)

(SCons.Builder.DictCmdGenerator method)

(SCons.Builder.DictEmitter method)

(SCons.Builder.OverrideWarner method)

(SCons.Environment.BuilderDict method)

(SCons.Node.Alias.AliasNameSpace method)

(SCons.Util.Selector method)

post_actions (SCons.Executor.Executor attribute)

(SCons.Executor.Null attribute)

postcmd()
(SCons.Script.Interactive.SConsInteractiveCmd
method)

postloop()
(SCons.Script.Interactive.SConsInteractiveCmd
method)

postprocess() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

(SCons.SConf.SConfBuildTask method)

(SCons.Script.Main.BuildTask method)

(SCons.Script.Main.CleanTask method)

(SCons.Script.Main.QuestionTask method)

(SCons.Taskmaster.AlwaysTask method)

(SCons.Taskmaster.OutOfDateTask method)

(SCons.Taskmaster.Task method)

pre_actions (SCons.Executor.Executor attribute)

(SCons.Executor.Null attribute)

precious (SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)

Precious() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

precmd()
(SCons.Script.Interactive.SConsInteractiveCmd
method)

preloop()
(SCons.Script.Interactive.SConsInteractiveCmd
method)

preparation_failed() (SCons.Job.ThreadPool method)

prepare() (SCons.Executor.Executor method)

(SCons.Executor.Null method)

(SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

(SCons.SConf.SConfBuildTask method)

(SCons.Script.Main.BuildTask method)

(SCons.Script.Main.CleanTask method)

(SCons.Script.Main.QuestionTask method)

(SCons.Taskmaster.AlwaysTask method)

(SCons.Taskmaster.OutOfDateTask method)

(SCons.Taskmaster.Task method)

prepare_dependencies() (SCons.Node.FS.FileBuildInfo
method)

(SCons.SConf.SConfBuildInfo method)

Prepend() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

PrependENVPath() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

PrependLIBS() (SCons.SConf.CheckContext method)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Subst.ListSubber.pop')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Subst.Targets_or_Sources.pop')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.CLVar.pop')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.NodeList.pop')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.Selector.pop')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.UniqueList.pop')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictCmdGenerator.popitem')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictEmitter.popitem')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Builder.OverrideWarner.popitem')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.BuilderDict.popitem')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNameSpace.popitem')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.Selector.popitem')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.post_actions')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.postprocess')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.postprocess')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.postprocess')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.postprocess')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.postprocess')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.postprocess')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.postprocess')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildTask.postprocess')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.postprocess')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.postprocess')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.postprocess')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.postprocess')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.postprocess')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.postprocess')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.pre_actions')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.precious')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.precious')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.precious')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.precious')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.precious')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.precious')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.precious')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Precious')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Precious')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Precious')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Precious')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.prepare')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.Alias.prepare')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.prepare')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.prepare')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.prepare')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.prepare')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.prepare')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.prepare')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.prepare')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildTask.prepare')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.prepare')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.prepare')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.prepare')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.prepare')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.prepare')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.prepare')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildInfo.prepare_dependencies')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Prepend')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Prepend')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Prepend')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Prepend')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.PrependENVPath')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.PrependENVPath')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.PrependENVPath')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.PrependENVPath')

PrependPath() (in module SCons.Util)

PrependUnique() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

PreProcessor (class in SCons.cpp)

prerequisites (SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)

preserve_unknown_options
(SCons.Script.SConsOptions.SConsOptionParser
attribute)

presub_lines() (SCons.Action._ActionAction method)

(SCons.Action.ActionBase method)

(SCons.Action.CommandAction method)

(SCons.Action.CommandGeneratorAction method)

(SCons.Action.FunctionAction method)

(SCons.Action.LazyAction method)

(SCons.Action.ListAction method)

prev (SCons.Script.Main.Progressor attribute)

print_cmd_line() (SCons.Action._ActionAction method)

(SCons.Action.CommandAction method)

(SCons.Action.FunctionAction method)

(SCons.Action.LazyAction method)

print_help()
(SCons.Script.SConsOptions.SConsOptionParser
method)

print_it (SCons.Util.DisplayEngine attribute)

print_time() (in module SCons.Util)

print_topics()
(SCons.Script.Interactive.SConsInteractiveCmd
method)

print_tree() (in module SCons.Util)

print_usage()
(SCons.Script.SConsOptions.SConsOptionParser
method)

print_version()
(SCons.Script.SConsOptions.SConsOptionParser
method)

PrintHelp() (in module SCons.Script.Main)

process() (SCons.Action.CommandAction method)

(SCons.Action.LazyAction method)

(SCons.Script.SConsOptions.SConsOption
method)

process_contents() (SCons.cpp.DumbPreProcessor
method)

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)

process_file() (SCons.cpp.DumbPreProcessor method)

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)

process_warn_strings() (in module SCons.Warnings)

processDefines() (in module SCons.Defaults)

ProgramScanner() (in module SCons.Scanner.Prog)

Progress() (in module SCons.Script.Main)

Progressor (class in SCons.Script.Main)

prompt (SCons.Script.Interactive.SConsInteractiveCmd
attribute)

Proxy (class in SCons.Util)

pseudo (SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)

Pseudo() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

pspawn_wrapper() (SCons.SConf.SConfBase method)

push() (SCons.CacheDir.CacheDir method)

push_if_forced() (SCons.CacheDir.CacheDir method)

push_to_cache() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.PrependUnique')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.PrependUnique')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.PrependUnique')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.PrependUnique')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.prerequisites')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.prerequisites')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.prerequisites')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.prerequisites')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.prerequisites')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.prerequisites')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.prerequisites')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.ActionBase.presub_lines')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandAction.presub_lines')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandGeneratorAction.presub_lines')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.FunctionAction.presub_lines')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction.presub_lines')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.ListAction.presub_lines')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandAction.print_cmd_line')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.FunctionAction.print_cmd_line')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction.print_cmd_line')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction.process')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOption.process')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOption.process')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.process_contents')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.process_contents')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.process_contents')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.process_contents')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.process_file')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.process_file')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.process_file')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.process_file')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.pseudo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.pseudo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.pseudo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.pseudo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.pseudo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.pseudo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.pseudo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Pseudo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Pseudo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Pseudo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Pseudo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.push_to_cache')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.push_to_cache')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.push_to_cache')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.push_to_cache')

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

put() (SCons.Job.ThreadPool method)

PyPackageDir() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Node.FS.FS method)

(SCons.Script.SConscript.SConsEnvironment
method)

python_version_deprecated() (in module
SCons.Script.Main)

python_version_string() (in module SCons.Script.Main)

python_version_unsupported() (in module
SCons.Script.Main)

PythonVersionWarning

Q

QuestionTask (class in SCons.Script.Main)

quote_spaces() (in module SCons.Subst)

R

raise_exception() (in module SCons.Subst)

RCScan() (in module SCons.Scanner.RC)

rdir() (SCons.Node.FS.Dir method)

(SCons.Node.FS.RootDir method)

RDirs() (SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

read() (SCons.Node.Python.Value method)

read_file() (SCons.cpp.DumbPreProcessor method)

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)

(SCons.Script.SConsOptions.SConsValues
method)

read_module()
(SCons.Script.SConsOptions.SConsValues method)

readlines() (SCons.Util.LogicalLines method)

readlink() (SCons.Node.FS.FS method)

(SCons.Node.FS.LocalFS method)

really_build() (SCons.Node.Alias.Alias method)

recurse_nodes() (SCons.Scanner.C.SConsCPPConditi
onalScannerWrapper method)

(SCons.Scanner.C.SConsCPPScannerWrapper
method)

ref_count (SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)

RegError (in module SCons.Util)

RegGetValue() (in module SCons.Util)

register() (in module SCons.exitfuncs)

RegOpenKeyEx() (in module SCons.Util)

rel_path() (SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

release_target_info() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

released_target_info (SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

remove() (SCons.Builder.ListEmitter method)

(SCons.Executor.TSList method)

(SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.NodeList method)
(SCons.Node.Python.Value method)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.push_to_cache')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.push_to_cache')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.push_to_cache')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.PyPackageDir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.PyPackageDir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.PyPackageDir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.PyPackageDir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.PyPackageDir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.rdir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.RDirs')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.RDirs')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.RDirs')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.RDirs')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.read_file')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.read_file')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.read_file')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.read_file')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsValues.read_file')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsValues.read_file')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.readlink')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScannerWrapper.recurse_nodes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScannerWrapper.recurse_nodes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.ref_count')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.ref_count')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.ref_count')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.ref_count')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.ref_count')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.ref_count')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.ref_count')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.rel_path')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.rel_path')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.rel_path')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.release_target_info')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.release_target_info')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.release_target_info')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.release_target_info')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.release_target_info')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.release_target_info')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.release_target_info')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.released_target_info')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.released_target_info')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.released_target_info')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Executor.TSList.remove')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.Alias.remove')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.remove')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.remove')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.remove')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.remove')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.remove')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.remove')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeList.remove')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.remove')

(SCons.Script.Main.CleanTask method)

(SCons.Script.TargetList method)

(SCons.Subst.ListSubber method)

(SCons.Subst.Targets_or_Sources method)

(SCons.Util.CLVar method)

(SCons.Util.NodeList method)

(SCons.Util.UniqueList method)

remove_methods() (SCons.Tool.ToolInitializer method)

remove_option()
(SCons.Script.SConsOptions.SConsOptionGroup
method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

RemoveMethod() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

rename() (SCons.Node.FS.FS method)

(SCons.Node.FS.LocalFS method)

rename_module() (in module SCons.compat)

render_include_tree() (SCons.Node.Alias.Alias
method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

render_tree() (in module SCons.Util)

rentry() (SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

rentry_exists_on_disk() (SCons.Node.FS.Dir method)

(SCons.Node.FS.RootDir method)

reparse_local_options()
(SCons.Script.SConsOptions.SConsOptionParser
method)

Replace() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

replace() (SCons.Subst.CmdStringHolder method)

replace_string() (SCons.Script.Main.Progressor
method)

ReplaceIxes() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

repositories (SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

Repository() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Node.FS.FS method)

(SCons.Script.SConscript.SConsEnvironment
method)

Requires() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

ReservedVariableWarning

Reset() (in module SCons.SConsign)

reset_executor() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

resolve_include() (SCons.cpp.DumbPreProcessor
method)

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)

restore() (SCons.cpp.DumbPreProcessor method)

(SCons.cpp.PreProcessor method)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.remove')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.TargetList.remove')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Subst.ListSubber.remove')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Subst.Targets_or_Sources.remove')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.CLVar.remove')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.NodeList.remove')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.UniqueList.remove')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.remove_option')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.remove_option')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.RemoveMethod')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.RemoveMethod')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.RemoveMethod')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.RemoveMethod')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.RemoveMethod')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.RemoveMethod')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.rename')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.render_include_tree')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.render_include_tree')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.render_include_tree')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.render_include_tree')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.render_include_tree')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.render_include_tree')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.render_include_tree')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.rentry')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.rentry')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.rentry')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.rentry')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.rentry_exists_on_disk')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Replace')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Replace')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Replace')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Replace')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.ReplaceIxes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.ReplaceIxes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.ReplaceIxes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.ReplaceIxes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.repositories')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.repositories')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.repositories')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Repository')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Repository')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.Repository')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Repository')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Repository')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Requires')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Requires')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Requires')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Requires')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.reset_executor')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.reset_executor')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.reset_executor')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.reset_executor')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.reset_executor')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.reset_executor')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.reset_executor')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.resolve_include')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.resolve_include')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.resolve_include')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.resolve_include')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.restore')

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)

result (SCons.SConf.SConfBuildInfo attribute)

Result() (SCons.SConf.CheckContext method)

retrieve() (SCons.CacheDir.CacheDir method)

retrieve_from_cache() (SCons.Node.Alias.Alias
method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

Return() (in module SCons.Script.SConscript)

reverse() (SCons.Builder.ListEmitter method)

(SCons.Executor.TSList method)

(SCons.Node.NodeList method)

(SCons.Script.TargetList method)

(SCons.Subst.ListSubber method)

(SCons.Subst.Targets_or_Sources method)

(SCons.Util.CLVar method)

(SCons.Util.NodeList method)

(SCons.Util.UniqueList method)

revert_io() (in module SCons.Script.Main)

rexists() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

rexists_base() (in module SCons.Node)

rexists_node() (in module SCons.Node)

rexists_none() (in module SCons.Node)

rfile() (in module SCons.Action)

(in module SCons.Executor)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

rfind() (SCons.Subst.CmdStringHolder method)

Rfindalldirs() (SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

rightmost_separator() (in module SCons.Util)

rindex() (SCons.Subst.CmdStringHolder method)

rjust() (SCons.Subst.CmdStringHolder method)

root (SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

RootDir (class in SCons.Node.FS)

RootDir.Attrs (class in SCons.Node.FS)

rpartition() (SCons.Subst.CmdStringHolder method)

rsplit() (SCons.Subst.CmdStringHolder method)

rstr() (SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

rstrip() (SCons.Subst.CmdStringHolder method)

ruler (SCons.Script.Interactive.SConsInteractiveCmd
attribute)

run() (SCons.Job.Jobs method)

(SCons.Job.Worker method)

RunProg() (SCons.SConf.CheckContext method)

S

save() (SCons.cpp.DumbPreProcessor method)

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)

Save() (SCons.Variables.Variables method)

save_strings() (in module SCons.Node.FS)

sbuilder (SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.restore')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.restore')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.restore')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.retrieve_from_cache')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.retrieve_from_cache')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.retrieve_from_cache')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.retrieve_from_cache')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.retrieve_from_cache')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.retrieve_from_cache')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.retrieve_from_cache')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Executor.TSList.reverse')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeList.reverse')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.TargetList.reverse')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Subst.ListSubber.reverse')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Subst.Targets_or_Sources.reverse')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.CLVar.reverse')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.NodeList.reverse')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.UniqueList.reverse')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.rexists')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.rexists')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.rexists')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.rexists')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.rexists')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.rexists')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.rexists')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Executor.rfile')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.rfile')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.rfile')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.rfile')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.rfile')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.rfile')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.Rfindalldirs')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.Rfindalldirs')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.Rfindalldirs')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.Rfindalldirs')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.root')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.root')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.root')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.rstr')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.rstr')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.rstr')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.rstr')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Job.Worker.run')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.save')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.save')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.save')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.save')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.sbuilder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.sbuilder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.sbuilder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.sbuilder')

scan() (in module SCons.Scanner.Prog)

(SCons.Executor.Executor method)

(SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

(SCons.Scanner.Classic method)

(SCons.Scanner.ClassicCPP method)

(SCons.Scanner.D.D method)

(SCons.Scanner.Fortran.F90Scanner method)

(SCons.Scanner.LaTeX.LaTeX method)

scan_in_memory() (in module SCons.Scanner.Dir)

scan_on_disk() (in module SCons.Scanner.Dir)

scan_recurse() (SCons.Scanner.LaTeX.LaTeX
method)

scan_sources() (SCons.Executor.Executor method)

scan_targets() (SCons.Executor.Executor method)

scandir() (SCons.Node.FS.FS method)

(SCons.Node.FS.LocalFS method)

Scanner() (in module SCons.Scanner)

(SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

scanner_key() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

scanner_map_delete() (SCons.Environment.Base
method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

scanner_paths (SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

ScannerBase (class in SCons.Scanner)

SConf() (in module SCons.SConf)

SConfBase (class in SCons.SConf)

SConfBase.TestWrapper (class in SCons.SConf)

SConfBuildInfo (class in SCons.SConf)

SConfBuildTask (class in SCons.SConf)

SConfError

SConfWarning

SCons

module

SCons (SCons.Executor.NullEnvironment attribute)

SCons.Action

module

SCons.Builder

module

SCons.CacheDir

module

SCons.compat

module

SCons.Conftest

module

SCons.cpp

module

SCons.dblite

module

SCons.Debug

module

SCons.Defaults

module

SCons.Environment

module

SCons.Errors

module

SCons.Executor

module

SCons.exitfuncs

module

SCons.Job

module

SCons.Memoize

module

SCons.Node

module

SCons.Node.Alias

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Executor.Executor.scan')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.Alias.scan')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.scan')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.scan')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.scan')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.scan')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.scan')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.scan')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.scan')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Classic.scan')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ClassicCPP.scan')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.D.D.scan')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Fortran.F90Scanner.scan')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.LaTeX.LaTeX.scan')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.scandir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.Scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.scanner_key')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.scanner_key')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.scanner_key')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.scanner_key')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.scanner_key')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.scanner_key')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.scanner_key')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.scanner_map_delete')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.scanner_map_delete')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.scanner_map_delete')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.scanner_map_delete')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.scanner_paths')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.scanner_paths')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.scanner_paths')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Action')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.CacheDir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.compat')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Conftest')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.cpp')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.dblite')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Debug')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Defaults')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Environment')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Errors')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Executor')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.exitfuncs')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Job')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Memoize')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Node')

module

SCons.Node.FS

module

SCons.Node.Python

module

SCons.PathList

module

SCons.Platform

module

SCons.Platform.aix

module

SCons.Platform.cygwin

module

SCons.Platform.darwin

module

SCons.Platform.hpux

module

SCons.Platform.irix

module

SCons.Platform.mingw

module

SCons.Platform.os2

module

SCons.Platform.posix

module

SCons.Platform.sunos

module

SCons.Platform.virtualenv

module

SCons.Platform.win32

module

SCons.Scanner

module

SCons.Scanner.C

module

SCons.Scanner.D

module

SCons.Scanner.Dir

module

SCons.Scanner.Fortran

module

SCons.Scanner.IDL

module

SCons.Scanner.LaTeX

module

SCons.Scanner.Prog

module

SCons.Scanner.RC

module

SCons.Scanner.SWIG

module

SCons.SConf

module

SCons.SConsign

module

SCons.Script

module

SCons.Script.Interactive

module

SCons.Script.Main

module

SCons.Script.SConscript

module

SCons.Script.SConsOptions

module

SCons.Subst

module

SCons.Taskmaster

module

SCons.Tool

module

SCons.Util

module

SCons.Variables

module

SCons.Variables.BoolVariable

module

SCons.Variables.EnumVariable

module

SCons.Variables.ListVariable

module

SCons.Variables.PackageVariable

module

SCons.Variables.PathVariable

module

SCons.Warnings

module

scons_current_file() (SCons.cpp.DumbPreProcessor
method)

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)

scons_subst() (in module SCons.Subst)

scons_subst_list() (in module SCons.Subst)

scons_subst_once() (in module SCons.Subst)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Node.Alias')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Node.FS')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Node.Python')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.PathList')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Platform')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.aix')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.cygwin')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.darwin')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.hpux')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.irix')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.mingw')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.os2')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.posix')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.sunos')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.virtualenv')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.win32')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.C')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.D')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.Dir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.Fortran')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.IDL')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.LaTeX')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.Prog')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.RC')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.SWIG')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.SConf')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.SConsign')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Script')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Script.Interactive')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Script.Main')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Script.SConscript')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Script.SConsOptions')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Subst')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Taskmaster')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Tool')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Util')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Variables')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Variables.BoolVariable')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Variables.EnumVariable')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Variables.ListVariable')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Variables.PackageVariable')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Variables.PathVariable')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#module-SCons.Warnings')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.scons_current_file')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.scons_current_file')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.scons_current_file')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.scons_current_file')

SConsCPPConditionalScanner (class in
SCons.Scanner.C)

SConsCPPConditionalScannerWrapper (class in
SCons.Scanner.C)

SConsCPPScanner (class in SCons.Scanner.C)

SConsCPPScannerWrapper (class in
SCons.Scanner.C)

SConscript()
(SCons.Script.SConscript.SConsEnvironment method)

SConscript_exception() (in module
SCons.Script.SConscript)

SConscriptChdir()
(SCons.Script.SConscript.SConsEnvironment method)

SConscriptReturn

SConsEnvironment (class in SCons.Script.SConscript)

SConsEnvironmentError

sconsign() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.RootDir method)

sconsign_dir() (in module SCons.Node.FS)

sconsign_none() (in module SCons.Node.FS)

SConsignEntry (class in SCons.SConsign)

SConsignFile() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

SConsIndentedHelpFormatter (class in
SCons.Script.SConsOptions)

SConsInteractiveCmd (class in
SCons.Script.Interactive)

SConsOption (class in SCons.Script.SConsOptions)

SConsOptionGroup (class in
SCons.Script.SConsOptions)

SConsOptionParser (class in
SCons.Script.SConsOptions)

SConsPrintHelpException

SConsValues (class in SCons.Script.SConsOptions)

SConsWarning

searched (SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

select() (SCons.Scanner.C.SConsCPPConditionalScan
nerWrapper method)

(SCons.Scanner.C.SConsCPPScannerWrapper
method)

(SCons.Scanner.Classic method)

(SCons.Scanner.ClassicCPP method)

(SCons.Scanner.Current method)

(SCons.Scanner.D.D method)

(SCons.Scanner.Fortran.F90Scanner method)

(SCons.Scanner.LaTeX.LaTeX method)

(SCons.Scanner.ScannerBase method)

(SCons.Scanner.Selector method)

select_paths_in_venv() (in module
SCons.Platform.virtualenv)

select_scanner() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

Selector (class in SCons.Scanner)

(class in SCons.Util)

semi_deepcopy() (in module SCons.Util)

semi_deepcopy_dict() (in module SCons.Util)

Serial (class in SCons.Job)

set() (SCons.Job.InterruptState method)

(SCons.Node.FS.DiskChecker method)

set_action_list() (SCons.Executor.Executor method)

(SCons.Executor.Null method)

set_always_build() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

set_build_result() (SCons.SConf.SConfBuildInfo
method)

set_conflict_handler()
(SCons.Script.SConsOptions.SConsOptionGroup
method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.sconsign')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.sconsign')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.SConsignFile')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.SConsignFile')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.SConsignFile')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.SConsignFile')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.searched')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.searched')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.searched')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScannerWrapper.select')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScannerWrapper.select')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Classic.select')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ClassicCPP.select')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Current.select')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.D.D.select')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Fortran.F90Scanner.select')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.LaTeX.LaTeX.select')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ScannerBase.select')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Selector.select')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.select_scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.select_scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.select_scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.select_scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.select_scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.select_scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.select_scanner')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.Selector')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DiskChecker.set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.set_action_list')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.set_always_build')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.set_always_build')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.set_always_build')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.set_always_build')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.set_always_build')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.set_always_build')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.set_always_build')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.set_conflict_handler')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.set_conflict_handler')

set_default()
(SCons.Script.SConsOptions.SConsOptionParser
method)

set_defaults()
(SCons.Script.SConsOptions.SConsOptionParser
method)

set_description()
(SCons.Script.SConsOptions.SConsOptionGroup
method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

set_diskcheck() (in module SCons.Node.FS)

set_duplicate() (in module SCons.Node.FS)

set_entry() (SCons.SConsign.Base method)

(SCons.SConsign.DB method)

(SCons.SConsign.Dir method)

(SCons.SConsign.DirFile method)

set_executor() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

set_explicit() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

set_hash_format() (in module SCons.Util)

set_local() (SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

set_long_opt_delimiter() (SCons.Script.SConsOptions.
SConsIndentedHelpFormatter method)

set_max_drift() (SCons.Node.FS.FS method)

set_missing_sconscript_error() (in module
SCons.Script)

set_mode() (SCons.Util.DisplayEngine method)

set_nocache() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

set_noclean() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

set_option()
(SCons.Script.SConsOptions.SConsValues method)

set_parser() (SCons.Script.SConsOptions.SConsIndent
edHelpFormatter method)

set_precious() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

set_process_default_values()
(SCons.Script.SConsOptions.SConsOptionParser
method)

set_pseudo() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

set_SConstruct_dir() (SCons.Node.FS.FS method)

set_short_opt_delimiter() (SCons.Script.SConsOptions.
SConsIndentedHelpFormatter method)

set_specific_source() (SCons.Node.Alias.Alias method)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.set_description')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.set_description')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConsign.DB.set_entry')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConsign.Dir.set_entry')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConsign.DirFile.set_entry')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.set_executor')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.set_executor')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.set_executor')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.set_executor')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.set_executor')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.set_executor')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.set_executor')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.set_explicit')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.set_explicit')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.set_explicit')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.set_explicit')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.set_explicit')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.set_explicit')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.set_explicit')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.set_local')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.set_local')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.set_local')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.set_local')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.set_nocache')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.set_nocache')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.set_nocache')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.set_nocache')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.set_nocache')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.set_nocache')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.set_nocache')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.set_noclean')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.set_noclean')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.set_noclean')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.set_noclean')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.set_noclean')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.set_noclean')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.set_noclean')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.set_precious')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.set_precious')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.set_precious')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.set_precious')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.set_precious')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.set_precious')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.set_precious')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.set_pseudo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.set_pseudo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.set_pseudo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.set_pseudo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.set_pseudo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.set_pseudo')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.set_pseudo')

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

set_src_builder() (SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

set_src_suffix() (SCons.Builder.BuilderBase method)

set_state() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

set_suffix() (SCons.Builder.BuilderBase method)

set_title()
(SCons.Script.SConsOptions.SConsOptionGroup
method)

set_usage()
(SCons.Script.SConsOptions.SConsOptionParser
method)

SetAllowableExceptions() (in module SCons.Subst)

SetBuildType() (in module SCons.SConf)

SetCacheMode() (in module SCons.SConf)

setDaemon() (SCons.Job.Worker method)

setdefault() (SCons.Builder.CallableSelector method)

(SCons.Builder.DictCmdGenerator method)

(SCons.Builder.DictEmitter method)

(SCons.Builder.OverrideWarner method)

SetDefault() (SCons.Environment.Base method)

setdefault() (SCons.Environment.Base method)

(SCons.Environment.BuilderDict method)

SetDefault() (SCons.Environment.OverrideEnvironment
method)

setdefault() (SCons.Environment.OverrideEnvironment
method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Node.Alias.AliasNameSpace method)

SetDefault()
(SCons.Script.SConscript.SConsEnvironment method)

setdefault()
(SCons.Script.SConscript.SConsEnvironment method)

(SCons.Util.Selector method)

SetLIBS() (SCons.SConf.CheckContext method)

setName() (SCons.Job.Worker method)

SetOption() (in module SCons.Script.Main)

(SCons.Script.SConscript.SConsEnvironment
method)

SetProgressDisplay() (in module SCons.SConf)

settable (SCons.Script.SConsOptions.SConsValues
attribute)

shared (SCons.Node.Alias.Alias.Attrs attribute)

(SCons.Node.FS.Base.Attrs attribute)

(SCons.Node.FS.Dir.Attrs attribute)

(SCons.Node.FS.Entry.Attrs attribute)

(SCons.Node.FS.File.Attrs attribute)

(SCons.Node.FS.RootDir.Attrs attribute)

(SCons.Node.Node.Attrs attribute)

(SCons.Node.Python.Value.Attrs attribute)

SharedFlagChecker() (in module SCons.Defaults)

SharedObjectEmitter() (in module SCons.Defaults)

show() (SCons.Script.Main.CleanTask method)

side_effect (SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)

side_effects (SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)

SideEffect() (SCons.Environment.Base method)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.set_specific_source')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.set_specific_source')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.set_specific_source')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.set_specific_source')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.set_specific_source')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.set_specific_source')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.set_specific_source')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.set_src_builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.set_src_builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.set_src_builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.set_src_builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.set_state')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.set_state')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.set_state')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.set_state')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.set_state')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.set_state')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.set_state')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictCmdGenerator.setdefault')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictEmitter.setdefault')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Builder.OverrideWarner.setdefault')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.BuilderDict.setdefault')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.setdefault')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.setdefault')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNameSpace.setdefault')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.Selector.setdefault')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.SetOption')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.SetOption')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.Attrs.shared')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.Attrs.shared')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.Attrs.shared')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.Attrs.shared')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.Attrs.shared')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.Attrs.shared')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.Attrs.shared')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.side_effect')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.side_effect')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.side_effect')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.side_effect')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.side_effect')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.side_effect')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.side_effect')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.side_effects')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.side_effects')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.side_effects')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.side_effects')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.side_effects')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.side_effects')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.side_effects')

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

silent_intern() (in module SCons.Util)

size (SCons.Node.FS.FileNodeInfo attribute)

sort() (SCons.Builder.ListEmitter method)

(SCons.Executor.TSList method)

(SCons.Node.NodeList method)

(SCons.Script.TargetList method)

(SCons.Subst.ListSubber method)

(SCons.Subst.Targets_or_Sources method)

(SCons.Util.CLVar method)

(SCons.Util.NodeList method)

(SCons.Util.UniqueList method)

sort_key() (SCons.Scanner.Classic static method)

(SCons.Scanner.ClassicCPP method)

(SCons.Scanner.D.D static method)

(SCons.Scanner.Fortran.F90Scanner static
method)

(SCons.Scanner.LaTeX.LaTeX method)

sources (SCons.Executor.Batch attribute)

(SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)

sources_set (SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)

spawn() (in module SCons.Platform.win32)

spawnve() (in module SCons.Platform.win32)

SpecialAttrWrapper (class in SCons.Subst)

spinner() (SCons.Script.Main.Progressor method)

Split() (in module SCons.Util)

(SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

split() (SCons.Subst.CmdStringHolder method)

splitext() (in module SCons.Util)

(SCons.Builder.BuilderBase method)

splitlines() (SCons.Subst.CmdStringHolder method)

src_builder() (SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

src_builder_sources() (SCons.Builder.BuilderBase
method)

src_suffixes() (SCons.Builder.BuilderBase method)

(SCons.Builder.DictCmdGenerator method)

srcdir (SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

srcdir_duplicate() (SCons.Node.FS.Dir method)

(SCons.Node.FS.RootDir method)

srcdir_find_file() (SCons.Node.FS.Dir method)

(SCons.Node.FS.RootDir method)

srcdir_list() (SCons.Node.FS.Dir method)

(SCons.Node.FS.RootDir method)

srcnode() (SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

StackSizeWarning

standard_option_list
(SCons.Script.SConsOptions.SConsOptionParser
attribute)

start() (SCons.Job.Parallel method)

(SCons.Job.Serial method)

(SCons.Job.Worker method)

start_handling_includes()
(SCons.cpp.DumbPreProcessor method)

(SCons.cpp.PreProcessor method)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.SideEffect')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.SideEffect')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.SideEffect')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.SideEffect')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Executor.TSList.sort')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeList.sort')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.TargetList.sort')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Subst.ListSubber.sort')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Subst.Targets_or_Sources.sort')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.CLVar.sort')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.NodeList.sort')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.UniqueList.sort')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ClassicCPP.sort_key')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.D.D.sort_key')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Fortran.F90Scanner.sort_key')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Fortran.F90Scanner.sort_key')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.LaTeX.LaTeX.sort_key')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.Alias.sources')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.sources')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.sources')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.sources')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.sources')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.sources')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.sources')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.sources')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.sources_set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.sources_set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.sources_set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.sources_set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.sources_set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.sources_set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.sources_set')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.Split')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Split')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Split')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Split')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Split')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Builder.BuilderBase.splitext')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.src_builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.src_builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.src_builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.src_builder')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictCmdGenerator.src_suffixes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.srcdir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.srcdir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.srcdir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.srcdir_duplicate')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.srcdir_find_file')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.srcdir_list')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.srcnode')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.srcnode')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.srcnode')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.srcnode')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Job.Serial.start')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Job.Worker.start')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.start_handling_includes')

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)

startswith() (SCons.Subst.CmdStringHolder method)

stat() (SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.FS method)

(SCons.Node.FS.LocalFS method)

(SCons.Node.FS.RootDir method)

state (SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)

StaticObjectEmitter() (in module SCons.Defaults)

Stats (class in SCons.Script.Main)

(class in SCons.Taskmaster)

status (SCons.Errors.BuildError attribute)

stop() (SCons.Taskmaster.Taskmaster method)

stop_handling_includes()
(SCons.cpp.DumbPreProcessor method)

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)

StopError

STORE_ACTIONS
(SCons.Script.SConsOptions.SConsOption attribute)

store_info (SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)

store_info() (SCons.SConsign.Base method)

(SCons.SConsign.DB method)

(SCons.SConsign.Dir method)

(SCons.SConsign.DirFile method)

store_info_file() (in module SCons.Node)

store_info_pass() (in module SCons.Node)

store_option_strings() (SCons.Script.SConsOptions.SC
onsIndentedHelpFormatter method)

str_for_display() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Python.Value method)

str_to_node() (SCons.Node.Alias.AliasNodeInfo
method)

(SCons.Node.FS.DirNodeInfo method)

(SCons.Node.FS.FileNodeInfo method)

(SCons.Node.Python.ValueNodeInfo method)

Streamer (class in SCons.SConf)

strerror (SCons.Errors.MSVCError attribute)

strfunction() (SCons.Action.ActionCaller method)

(SCons.Action.CommandAction method)

(SCons.Action.FunctionAction method)

(SCons.Action.LazyAction method)

string (SCons.SConf.SConfBuildInfo attribute)

string() (SCons.Script.Main.Progressor method)

string_to_classes() (in module SCons.Debug)

StringSubber (class in SCons.Subst)

strip() (SCons.Subst.CmdStringHolder method)

subprocess_spawn() (in module SCons.Platform.posix)

subst() (SCons.Action.ActionCaller method)

(SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

subst_args() (SCons.Action.ActionCaller method)

subst_dict() (in module SCons.Subst)

subst_kw() (SCons.Action.ActionCaller method)

(SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.start_handling_includes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.start_handling_includes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.start_handling_includes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.stat')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.stat')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.stat')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.stat')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.stat')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.stat')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.state')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.state')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.state')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.state')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.state')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.state')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.state')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Stats')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.stop_handling_includes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.stop_handling_includes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.stop_handling_includes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.stop_handling_includes')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.store_info')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.store_info')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.store_info')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.store_info')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.store_info')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.store_info')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.store_info')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConsign.DB.store_info')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConsign.Dir.store_info')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConsign.DirFile.store_info')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.str_for_display')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.str_for_display')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.str_for_display')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.str_for_display')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.str_for_display')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.str_for_display')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirNodeInfo.str_to_node')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileNodeInfo.str_to_node')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueNodeInfo.str_to_node')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandAction.strfunction')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.FunctionAction.strfunction')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction.strfunction')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.subst')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.subst')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.subst')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.subst')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.subst')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.subst')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.subst')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.subst_kw')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.subst_kw')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.subst_kw')

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

subst_list() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

subst_path() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.PathList._PathList method)

(SCons.Script.SConscript.SConsEnvironment
method)

subst_src_suffixes() (SCons.Builder.BuilderBase
method)

subst_target_source() (SCons.Environment.Base
method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

substitute() (SCons.Subst.ListSubber method)

(SCons.Subst.StringSubber method)

SubstitutionEnvironment (class in SCons.Environment)

suppressWarningClass() (in module SCons.Warnings)

swapcase() (SCons.Subst.CmdStringHolder method)

SWIGScanner() (in module SCons.Scanner.SWIG)

symlink() (SCons.Node.FS.FS method)

(SCons.Node.FS.LocalFS method)

sync() (SCons.dblite.dblite method)

synonyms
(SCons.Script.Interactive.SConsInteractiveCmd
attribute)

T

Tag() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

take_action()
(SCons.Script.SConsOptions.SConsOption method)

takes_value()
(SCons.Script.SConsOptions.SConsOption method)

target_from_source() (SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

target_from_source_base() (in module SCons.Node)

target_from_source_none() (in module SCons.Node)

Target_or_Source (class in SCons.Subst)

target_peers (SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)

target_string (SCons.Script.Main.Progressor attribute)

TargetList (class in SCons.Script)

TargetNotBuiltWarning

targets (SCons.Executor.Batch attribute)

Targets_or_Sources (class in SCons.Subst)

Task (class in SCons.Taskmaster)

Taskmaster (class in SCons.Taskmaster)

TaskmasterNeedsExecuteWarning

TempFileMunge (class in SCons.Platform)

test_load_all_site_scons_dirs() (in module
SCons.Script.Main)

this_word() (SCons.Subst.ListSubber method)

ThreadPool (class in SCons.Job)

timestamp (SCons.Node.FS.FileNodeInfo attribute)

title() (SCons.Subst.CmdStringHolder method)

to_bytes() (in module SCons.Util)

to_str() (in module SCons.Util)

to_String() (in module SCons.Util)

to_String_for_signature() (in module SCons.Util)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.subst_kw')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.subst_kw')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.subst_kw')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.subst_kw')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.subst_list')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.subst_list')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.subst_list')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.subst_list')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.subst_list')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.subst_list')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.subst_path')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.subst_path')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.subst_path')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.subst_path')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.PathList._PathList.subst_path')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.subst_path')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.subst_path')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.subst_target_source')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.subst_target_source')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.subst_target_source')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.subst_target_source')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.subst_target_source')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.subst_target_source')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Subst.StringSubber.substitute')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.symlink')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.Tag')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.Tag')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.Tag')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.Tag')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.Tag')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.Tag')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.Tag')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.target_from_source')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.target_from_source')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.target_from_source')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.target_from_source')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.target_peers')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.target_peers')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.target_peers')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.target_peers')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.target_peers')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.target_peers')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.target_peers')

to_String_for_subst() (in module SCons.Util)

Tool (class in SCons.Tool)

Tool() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

tool_list() (in module SCons.Tool)

ToolInitializer (class in SCons.Tool)

ToolInitializerMethod (class in SCons.Tool)

ToolQtDeprecatedWarning

touch_func() (in module SCons.Defaults)

Trace() (in module SCons.Debug)

trace_message() (SCons.SConf.SConfBuildTask
method)

(SCons.Script.Main.BuildTask method)

(SCons.Script.Main.CleanTask method)

(SCons.Script.Main.QuestionTask method)

(SCons.Taskmaster.AlwaysTask method)

(SCons.Taskmaster.OutOfDateTask method)

(SCons.Taskmaster.Task method)

(SCons.Taskmaster.Taskmaster method)

trace_node() (SCons.Taskmaster.Taskmaster method)

translate() (SCons.Subst.CmdStringHolder method)

TreePrinter (class in SCons.Script.Main)

TryAction() (SCons.SConf.CheckContext method)

(SCons.SConf.SConfBase method)

TryBuild() (SCons.SConf.CheckContext method)

(SCons.SConf.SConfBase method)

TryCompile() (SCons.SConf.CheckContext method)

(SCons.SConf.SConfBase method)

TryLink() (SCons.SConf.CheckContext method)

(SCons.SConf.SConfBase method)

TryRun() (SCons.SConf.CheckContext method)

(SCons.SConf.SConfBase method)

TSList (class in SCons.Executor)

TSObject (class in SCons.Executor)

tupleize() (SCons.cpp.DumbPreProcessor method)

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)

two_arg_commands (SCons.Scanner.LaTeX.LaTeX
attribute)

TYPE_CHECKER
(SCons.Script.SConsOptions.SConsOption attribute)

TYPED_ACTIONS
(SCons.Script.SConsOptions.SConsOption attribute)

TYPES (SCons.Script.SConsOptions.SConsOption
attribute)

U

Unbuffered (class in SCons.Util)

undoc_header
(SCons.Script.Interactive.SConsInteractiveCmd
attribute)

unique() (in module SCons.Util)

UniqueList (class in SCons.Util)

uniquer() (in module SCons.Util)

uniquer_hashables() (in module SCons.Util)

UnknownVariables() (SCons.Variables.Variables
method)

unlink() (SCons.Node.FS.FS method)

(SCons.Node.FS.LocalFS method)

UnlinkFunc() (in module SCons.Node.FS)

up() (SCons.Node.FS.Dir method)

(SCons.Node.FS.RootDir method)

update() (SCons.Builder.CallableSelector method)

(SCons.Builder.DictCmdGenerator method)

(SCons.Builder.DictEmitter method)

(SCons.Builder.OverrideWarner method)

(SCons.Environment.BuilderDict method)

(SCons.Node.Alias.AliasNameSpace method)

(SCons.Node.Alias.AliasNodeInfo method)

(SCons.Node.FS.DirNodeInfo method)

(SCons.Node.FS.FileNodeInfo method)

(SCons.Node.NodeInfoBase method)

(SCons.Node.Python.ValueNodeInfo method)

(SCons.Util.Selector method)

Update() (SCons.Variables.Variables method)

updrive() (in module SCons.Util)

upper() (SCons.Subst.CmdStringHolder method)

use_rawinput
(SCons.Script.Interactive.SConsInteractiveCmd
attribute)

UserError

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Tool')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Tool')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Tool')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Tool')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.trace_message')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.trace_message')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.trace_message')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.trace_message')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.trace_message')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.trace_message')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Taskmaster.trace_message')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBase.TryAction')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBase.TryBuild')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBase.TryCompile')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBase.TryLink')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBase.TryRun')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.tupleize')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.tupleize')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.tupleize')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.tupleize')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.unlink')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.up')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictCmdGenerator.update')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictEmitter.update')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Builder.OverrideWarner.update')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.BuilderDict.update')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNameSpace.update')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNodeInfo.update')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirNodeInfo.update')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileNodeInfo.update')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeInfoBase.update')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueNodeInfo.update')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.Selector.update')

V

validate_CacheDir_class() (SCons.Environment.Base
method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

Value (class in SCons.Node.Python)

Value() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

Value.Attrs (class in SCons.Node.Python)

ValueBuildInfo (class in SCons.Node.Python)

ValueNodeInfo (class in SCons.Node.Python)

values (SCons.Script.Main.FakeOptionParser attribute)

values() (SCons.Builder.CallableSelector method)

(SCons.Builder.DictCmdGenerator method)

(SCons.Builder.DictEmitter method)

(SCons.Builder.OverrideWarner method)

(SCons.Environment.Base method)

(SCons.Environment.BuilderDict method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Node.Alias.AliasNameSpace method)

(SCons.Script.SConscript.SConsEnvironment
method)

(SCons.Util.Selector method)

ValueWithMemo() (in module SCons.Node.Python)

Variable_Method_Caller (class in SCons.Defaults)

Variables (class in SCons.Variables)

Variables() (in module SCons.Script)

variant_dir_target_climb() (SCons.Node.FS.FS
method)

variant_dirs (SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

VariantDir() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Node.FS.FS method)

(SCons.Script.SConscript.SConsEnvironment
method)

version_string() (in module SCons.Script.Main)

Virtualenv() (in module SCons.Platform.virtualenv)

visited() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

VisualCMissingWarning

VisualStudioMissingWarning

VisualVersionMismatch

W

waiting_parents (SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)

waiting_s_e (SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)

walk() (SCons.Node.FS.Dir method)

(SCons.Node.FS.RootDir method)

Walker (class in SCons.Node)

warn() (in module SCons.Warnings)

(SCons.Builder.OverrideWarner method)

warningAsException() (in module SCons.Warnings)

WarningOnByDefault

were_interrupted() (SCons.Job.Jobs method)

WhereIs() (in module SCons.Util)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.validate_CacheDir_class')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.validate_CacheDir_class')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.validate_CacheDir_class')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.validate_CacheDir_class')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Value')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Value')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Value')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Value')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictCmdGenerator.values')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictEmitter.values')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Builder.OverrideWarner.values')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.values')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.BuilderDict.values')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.values')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.values')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.values')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.values')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNameSpace.values')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.values')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.values')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.Selector.values')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.variant_dirs')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.variant_dirs')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.variant_dirs')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.VariantDir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.VariantDir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.VariantDir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.VariantDir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.VariantDir')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.visited')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.visited')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.visited')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.visited')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.visited')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.visited')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.visited')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.waiting_parents')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.waiting_parents')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.waiting_parents')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.waiting_parents')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.waiting_parents')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.waiting_parents')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.waiting_parents')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.waiting_s_e')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.waiting_s_e')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.waiting_s_e')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.waiting_s_e')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.waiting_s_e')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.waiting_s_e')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.waiting_s_e')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.walk')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Builder.OverrideWarner.warn')

(SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

will_not_build() (SCons.Taskmaster.Taskmaster
method)

with_traceback() (SCons.Errors.BuildError method)

(SCons.Errors.ExplicitExit method)

(SCons.Errors.InternalError method)

(SCons.Errors.MSVCError method)

(SCons.Errors.SConsEnvironmentError method)

(SCons.Errors.StopError method)

(SCons.Errors.UserError method)

(SCons.Node.FS.EntryProxyAttributeError method)

(SCons.Node.FS.FileBuildInfoFileToCsigMappingError
method)

(SCons.SConf.ConfigureCacheError method)

(SCons.SConf.ConfigureDryRunError method)

(SCons.SConf.SConfError method)

(SCons.SConf.SConfWarning method)

(SCons.Script.Main.SConsPrintHelpException method)

(SCons.Script.SConscript.SConscriptReturn method)

(SCons.Util._NoError method)

(SCons.Warnings.CacheVersionWarning method)

(SCons.Warnings.CacheWriteErrorWarning method)

(SCons.Warnings.CorruptSConsignWarning method)

(SCons.Warnings.DependencyWarning method)

(SCons.Warnings.DeprecatedDebugOptionsWarning
method)

(SCons.Warnings.DeprecatedMissingSConscriptWarning
method)

(SCons.Warnings.DeprecatedOptionsWarning method)

(SCons.Warnings.DeprecatedSourceCodeWarning
method)

(SCons.Warnings.DeprecatedWarning method)

(SCons.Warnings.DevelopmentVersionWarning method)

(SCons.Warnings.DuplicateEnvironmentWarning
method)

(SCons.Warnings.FortranCxxMixWarning method)

(SCons.Warnings.FutureDeprecatedWarning
method)

(SCons.Warnings.FutureReservedVariableWarning
method)

(SCons.Warnings.LinkWarning method)

(SCons.Warnings.MandatoryDeprecatedWarning
method)

(SCons.Warnings.MisleadingKeywordsWarning
method)

(SCons.Warnings.MissingSConscriptWarning
method)

(SCons.Warnings.NoObjectCountWarning method)

(SCons.Warnings.NoParallelSupportWarning
method)

(SCons.Warnings.PythonVersionWarning method)

(SCons.Warnings.ReservedVariableWarning
method)

(SCons.Warnings.SConsWarning method)

(SCons.Warnings.StackSizeWarning method)

(SCons.Warnings.TargetNotBuiltWarning method)

(SCons.Warnings.TaskmasterNeedsExecuteWarning
method)

(SCons.Warnings.ToolQtDeprecatedWarning
method)

(SCons.Warnings.VisualCMissingWarning method)

(SCons.Warnings.VisualStudioMissingWarning
method)

(SCons.Warnings.VisualVersionMismatch method)

(SCons.Warnings.WarningOnByDefault method)

wkids (SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)

Worker (class in SCons.Job)

write() (in module SCons.SConsign)

(SCons.Node.Python.Value method)

(SCons.SConf.Streamer method)

(SCons.SConsign.DB method)

(SCons.SConsign.DirFile method)

(SCons.Script.Main.Progressor method)

(SCons.Util.Unbuffered method)

writelines() (SCons.SConf.Streamer method)

(SCons.Util.Unbuffered method)

Z

zfill() (SCons.Subst.CmdStringHolder method)

file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.WhereIs')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.WhereIs')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.WhereIs')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.WhereIs')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.WhereIs')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Errors.ExplicitExit.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Errors.InternalError.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Errors.MSVCError.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Errors.SConsEnvironmentError.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Errors.StopError.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Errors.UserError.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.EntryProxyAttributeError.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfoFileToCsigMappingError.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfoFileToCsigMappingError.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConf.ConfigureCacheError.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConf.ConfigureDryRunError.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfError.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfWarning.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.SConsPrintHelpException.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConscriptReturn.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util._NoError.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.CacheVersionWarning.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.CacheWriteErrorWarning.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.CorruptSConsignWarning.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DependencyWarning.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DeprecatedDebugOptionsWarning.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DeprecatedDebugOptionsWarning.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DeprecatedMissingSConscriptWarning.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DeprecatedMissingSConscriptWarning.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DeprecatedOptionsWarning.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DeprecatedSourceCodeWarning.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DeprecatedSourceCodeWarning.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DeprecatedWarning.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DevelopmentVersionWarning.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DuplicateEnvironmentWarning.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DuplicateEnvironmentWarning.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.FortranCxxMixWarning.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.FutureDeprecatedWarning.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.FutureDeprecatedWarning.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.FutureReservedVariableWarning.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.FutureReservedVariableWarning.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.LinkWarning.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.MandatoryDeprecatedWarning.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.MandatoryDeprecatedWarning.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.MisleadingKeywordsWarning.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.MisleadingKeywordsWarning.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.MissingSConscriptWarning.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.MissingSConscriptWarning.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.NoObjectCountWarning.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.NoParallelSupportWarning.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.NoParallelSupportWarning.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.PythonVersionWarning.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.ReservedVariableWarning.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.ReservedVariableWarning.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.SConsWarning.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.StackSizeWarning.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.TargetNotBuiltWarning.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.TaskmasterNeedsExecuteWarning.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.TaskmasterNeedsExecuteWarning.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.ToolQtDeprecatedWarning.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.ToolQtDeprecatedWarning.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.VisualCMissingWarning.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.VisualStudioMissingWarning.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.VisualStudioMissingWarning.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.VisualVersionMismatch.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Warnings.WarningOnByDefault.with_traceback')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.wkids')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.wkids')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.wkids')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.wkids')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.wkids')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.wkids')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.wkids')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.write')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConf.Streamer.write')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConsign.DB.write')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.SConsign.DirFile.write')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.Progressor.write')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.Unbuffered.write')
file:///home/bdeegan/devel/scons/git/as_scons/doc/('','#SCons.Util.Unbuffered.writelines')

Python Module Index

s

SCons

SCons.Action

SCons.Builder

SCons.CacheDir

SCons.compat

SCons.Conftest

SCons.cpp

SCons.dblite

SCons.Debug

SCons.Defaults

SCons.Environment

SCons.Errors

SCons.Executor

SCons.exitfuncs

SCons.Job

SCons.Memoize

SCons.Node

SCons.Node.Alias

SCons.Node.FS

SCons.Node.Python

SCons.PathList

SCons.Platform

SCons.Platform.aix

SCons.Platform.cygwin

SCons.Platform.darwin

SCons.Platform.hpux

SCons.Platform.irix

SCons.Platform.mingw

SCons.Platform.os2

SCons.Platform.posix

SCons.Platform.sunos

SCons.Platform.virtualenv

SCons.Platform.win32

SCons.Scanner

SCons.Scanner.C

SCons.Scanner.D

SCons.Scanner.Dir

SCons.Scanner.Fortran

SCons.Scanner.IDL

SCons.Scanner.LaTeX

SCons.Scanner.Prog

SCons.Scanner.RC

SCons.Scanner.SWIG

SCons.SConf

SCons.SConsign

SCons.Script

SCons.Script.Interactive

SCons.Script.Main

SCons.Script.SConscript

SCons.Script.SConsOptions

SCons.Subst

SCons.Taskmaster

SCons.Tool

SCons.Util

SCons.Variables

SCons.Variables.BoolVariable

SCons.Variables.EnumVariable

SCons.Variables.ListVariable

SCons.Variables.PackageVariable

SCons.Variables.PathVariable

SCons.Warnings

	SCons Project API Documentation
	SCons package
	Module contents
	Subpackages
	SCons.Node package
	Submodules
	SCons.Node.Alias module
	SCons.Node.FS module
	SCons.Node.Python module
	Module contents

	SCons.Platform package
	Submodules
	SCons.Platform.aix module
	SCons.Platform.cygwin module
	SCons.Platform.darwin module
	SCons.Platform.hpux module
	SCons.Platform.irix module
	SCons.Platform.mingw module
	SCons.Platform.os2 module
	SCons.Platform.posix module
	SCons.Platform.sunos module
	SCons.Platform.virtualenv module
	SCons.Platform.win32 module
	Module contents

	SCons.Scanner package
	Submodules
	SCons.Scanner.C module
	SCons.Scanner.D module
	SCons.Scanner.Dir module
	SCons.Scanner.Fortran module
	SCons.Scanner.IDL module
	SCons.Scanner.LaTeX module
	SCons.Scanner.Prog module
	SCons.Scanner.RC module
	SCons.Scanner.SWIG module
	Module contents

	SCons.Script package
	Submodules
	SCons.Script.Interactive module
	SCons.Script.Main module
	SCons.Script.SConsOptions module
	SCons.Script.SConscript module
	Module contents

	SCons.Tool package
	Module contents

	SCons.Variables package
	Submodules
	SCons.Variables.BoolVariable module
	SCons.Variables.EnumVariable module
	SCons.Variables.ListVariable module
	SCons.Variables.PackageVariable module
	SCons.Variables.PathVariable module
	Module contents

	SCons.compat package
	Module contents

	Submodules
	SCons.Action module
	SCons.Builder module
	SCons.CacheDir module
	SCons.Conftest module
	SCons.Debug module
	SCons.Defaults module
	SCons.Environment module
	SCons.Errors module
	SCons.Executor module
	SCons.Job module
	SCons.Memoize module
	SCons.PathList module
	SCons.SConf module
	SCons.SConsign module
	SCons.Subst module
	SCons.Taskmaster module
	SCons.Util module
	SCons.Warnings module
	SCons.cpp module
	SCons.dblite module
	SCons.exitfuncs module

	SCons.compat package
	Module contents

	SCons.Node package
	Submodules
	SCons.Node.Alias module
	SCons.Node.FS module
	SCons.Node.Python module
	Module contents

	SCons.Platform package
	Submodules
	SCons.Platform.aix module
	SCons.Platform.cygwin module
	SCons.Platform.darwin module
	SCons.Platform.hpux module
	SCons.Platform.irix module
	SCons.Platform.mingw module
	SCons.Platform.os2 module
	SCons.Platform.posix module
	SCons.Platform.sunos module
	SCons.Platform.virtualenv module
	SCons.Platform.win32 module
	Module contents

	SCons.Scanner package
	Submodules
	SCons.Scanner.C module
	SCons.Scanner.D module
	SCons.Scanner.Dir module
	SCons.Scanner.Fortran module
	SCons.Scanner.IDL module
	SCons.Scanner.LaTeX module
	SCons.Scanner.Prog module
	SCons.Scanner.RC module
	SCons.Scanner.SWIG module
	Module contents

	SCons.Script package
	Submodules
	SCons.Script.Interactive module
	SCons.Script.Main module
	SCons.Script.SConsOptions module
	SCons.Script.SConscript module
	Module contents

	SCons.Tool package
	Module contents

	SCons.Variables package
	Submodules
	SCons.Variables.BoolVariable module
	SCons.Variables.EnumVariable module
	SCons.Variables.ListVariable module
	SCons.Variables.PackageVariable module
	SCons.Variables.PathVariable module
	Module contents

	Indices and Tables
	Index
	Python Module Index

