

Sharan Ramjee

MASTER'S STUDENT AT STANFORD UNIVERSITY

□ (+1) 765-772-6865 | □ sramjee@stanford.edu | □ sharanramjee.github.io | □ sharanramjee | □ sharanramjee

Education

Stanford University

Stanford, CA

MASTER OF SCIENCE IN COMPUTER SCIENCE (CONCENTRATION: ARTIFICIAL INTELLIGENCE)

Sep. 2020 - Jun. 2022

- GPA: 4.04/4.00

Purdue University

West Lafayette, IN

BACHELOR OF SCIENCE IN COMPUTER ENGINEERING

Aug. 2016 - May. 2020

- GPA: 4.00/4.00; Graduated with Highest Distinction

Industry Experience

Stripe

San Francisco, CA

MACHINE LEARNING ENGINEER

Apr 2022 - Present

- Accelerating the adoption of LLM technology at Stripe as an MLE on the Applied ML Accelerator team
- Building and pre-training a foundation model that leverages Stripe's unique perspective into the world's financial ecosystem
- Tech stack: LLMs, RAG, fine-tuning, benchmarking, LLM evals, prompt engineering, assistants

Stripe

San Francisco, CA

MACHINE LEARNING ENGINEER

Jul 2022 - Apr 2024

- Built ML models to balance Stripe's losses and UX as an MLE on the Fraud Discovery team

- Led a team of engineers, strategists, data scientists, and ops specialists to propose and build Scorpion - Stripe's first multivariate time-series transformer model for Risk Detection, saving \$16M+ / year in losses

- Tech stack: SQL, Presto, PySpark, Airflow, Kafka, Flink, Flyte, Databricks, PyTorch, TensorFlow

Palo Alto Networks

Stanford, CA

PRODUCT MANAGER INTERN

Sep 2021 - Nov 2021

- Product Manager at Palo Alto Networks for Stanford University EE 205: Product Management for Electrical and Computer Scientists

- Analyzed the business and operating models of competitors offering CAASM (Cyber Asset Attack Surface Management) products

- Performed a Product Opportunity Assessment (POA) and delivered a Minimum Viable Product (MVP) for Palo Alto Networks' first CAASM product

Stripe

San Francisco, CA

SOFTWARE ENGINEER INTERN

Jun 2021 - Sep 2021

- Built ML models for merchant fraud detection as an MLE on the Fraud Intelligence team

- Proposed and built FI-Explain - an ML explainability tool to probe Stripe's merchant fraud models to gain insights on the decisions they make to trade-off losses and UX during fraud incidents

- Tech stack: PyTorch, XGBoost, transformers, SHAP, LIME, Git, Bazel

Google

Seattle, WA

MACHINE LEARNING ENGINEER INTERN

Sep 2019 - Dec 2019

- Built ML explainability for models on Google Cloud as a SWE on the Google Cloud AI team

- Added Model Distillation capabilities to convert black-box ML models deployed on Google Cloud into interpretable tree-based models (Soft Decision Trees, Random Forests, Gradient Boosted Decision Trees)

- Tech stack: TensorFlow, Keras, scikit-learn, Fig, Blaze

Qualcomm

San Diego, CA

MACHINE LEARNING ENGINEER INTERN

May 2019 - Aug 2019

- Built ML models for power-efficient Qualcomm chips as an MLE on the ML application analysis team

- Proposed and built a time-series LSTM model to estimate QoS parameters that trade-off performance and power depending on the Snapdragon chip's use-cases (AR/VR, Gaming, Multimedia, etc.)

- Tech stack: PyTorch, scikit-learn, Git

Sapient

Bengaluru, India

DATA SCIENCE INTERN

May 2017 - Jun 2017

- Trained primitive neural networks for big data analytics using TensorFlow
- Implemented core functionality from Pandas in Spark, Flink, and Hadoop

Research Experience

Google Scholar: [\[LINK\]](#) | Research Interests: Computer Vision, Natural Language Processing, Signal Processing

Stanford University

GRADUATE RESEARCHER

Stanford, CA

- Intuitive human-robot interaction using Reinforcement Learning at the Stanford Vision and Learning Lab (SVL)

Sep 2020 - Jan 2021

Massachusetts Institute of Technology

RESEARCH ASSISTANT

Boston, MA

- Bridging the gap between human intelligence and machine intelligence at the MIT Center for Brains, Minds, and Machines (CBMM)

Jul 2020 - Aug 2020

Purdue University

RESEARCH ASSISTANT

West Lafayette, IN

- Deep Learning for Signal Processing applications (Modulation Classification and Interference Identification) at Aly El Gamal's lab

May 2018 - May 2020

Publications

[J4] **Sharan Ramjee**, Aly El Gamal. "Efficient Wrapper Feature Selection using Autoencoder and Model Based Elimination". Submitted to IEEE Letters of the Computer Society (**LOCS**), May. 2020 [\[PREPRINT\]](#)

[J3] **Sharan Ramjee**, Shengtai Ju, Diyu Yang, Xiaoyu Liu, Aly El Gamal, Yonina C. Eldar. "Ensemble Wrapper Subsampling for Deep Modulation Classification". IEEE Transactions on Cognitive Communications and Networking (**TCCN**), Aug. 2021 [\[LINK\]](#)

[J2] Xingchen Wang, Shengtai Ju, Xiwen Zhang, **Sharan Ramjee**, Aly El Gamal. "Efficient Training of Deep Classifiers for Wireless Source Identification using Test SNR Estimates". IEEE Wireless Communication Letters (**WCL**), Apr. 2020 [\[LINK\]](#)

[C1] Xiwen Zhang, Tolunay Seyfi, Shengtai Ju, **Sharan Ramjee**, Aly El Gamal, Yonina C. Eldar. "Deep Learning for Interference Identification: Band, Training SNR, and Sample Selection". IEEE Signal Processing Advances in Wireless Communications (**SPAWC**), Jul. 2019 [\[LINK\]](#)

[J1] **Sharan Ramjee**, Shengtai Ju, Diyu Yang, Xiaoyu Liu, Aly El Gamal, Yonina C. Eldar. "Fast Deep Learning for Automatic Modulation Classification". IEEE Machine Learning for Communications Emerging Technologies Initiatives (**MLCETI**), Jan. 2019 [\[LINK\]](#)

Skills

Frameworks Spark, SQL, Presto, Airflow, Kafka, Flink, Flyte, Databricks, Bazel, Git

Stanford, CA
Spring 2022

Languages Python, C, C++, Ruby, Scala, Java, JavaScript, Solidity, MATLAB

Stanford, CA
Winter 2022

Hardware System Verilog, Embedded C, Assembly, VHDL, LTspice

Stanford, CA
Fall 2021

ML & AI PyTorch, TensorFlow, Transformers, XGBoost, OpenCV, scikit-learn

Teaching Assistantships

Artificial Intelligence

CS 221 - STANFORD UNIVERSITY

Stanford, CA
Spring 2022

Web Applications

CS 142 - STANFORD UNIVERSITY

Stanford, CA
Winter 2022

Deep Learning

CS 230 [HEAD TA] - STANFORD UNIVERSITY

Stanford, CA
Fall 2021

Computer Organization & Systems

CS 107 - STANFORD UNIVERSITY

Stanford, CA
Spring 2021

Microprocessor Systems and Interfacing

ECE 362 - PURDUE UNIVERSITY

West Lafayette, IN
Spring 2019

ASIC Design Laboratory

ECE 337 - PURDUE UNIVERSITY

West Lafayette, IN
Spring 2019

Advanced C Programming

ECE 264 - PURDUE UNIVERSITY

West Lafayette, IN
Spring 2019

Electronic Measurement Techniques

ECE 207 - PURDUE UNIVERSITY

West Lafayette, IN
Fall 2018

Programming Applications For Engineers

CS 159 - PURDUE UNIVERSITY

West Lafayette, IN
Spring 2018

Talks

RESEARCH TALKS

Deep Learning for Interference Identification: Band, Training SNR, and Sample Selection
IEEE SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (SPAWC) 2019 [\[LINK\]](#)

Cannes, France
Jul 2019

Deep Neural Network Architectures for Modulation Classification using PCA
THE SUMMER UNDERGRADUATE RESEARCH FELLOWSHIP (SURF) SYMPOSIUM [\[LINK\]](#)

West Lafayette, IN
Aug 2018

A PyTorch Framework for Automatic Modulation Classification
THE SUMMER UNDERGRADUATE RESEARCH FELLOWSHIP (SURF) SYMPOSIUM [\[LINK\]](#)

West Lafayette, IN
Aug 2018

OTHER TALKS

Attention-Weighted Integrated Gradients for Target-Aware Cyberbullying Detection
STANFORD UNIVERSITY CS 329T: TRUSTWORTHY MACHINE LEARNING [\[LINK\]](#)

Stanford, CA
Jun 2022

An ML Driven Analysis of Private Equity Funding in Seed-Stage Healthcare Startups
STANFORD UNIVERSITY GENE225: HEALTHCARE VENTURE CAPITAL [\[LINK\]](#)

Stanford, CA
Jun 2022

AutoChef: Computer Vision for Automated Ingredient-to-Recipe Matching
STANFORD UNIVERSITY CS 329S: MACHINE LEARNING SYSTEMS DESIGN [\[LINK\]](#)

Stanford, CA
Mar 2022

FLITE: Focusing LITE for Memory-Efficient Meta Learning
STANFORD UNIVERSITY CS 330: DEEP MULTI-TASK AND META LEARNING [\[LINK\]](#)

Stanford, CA
Dec 2021

Project Aerial: CAASM for Palo Alto Networks
STANFORD UNIVERSITY EE 205: PRODUCT MANAGEMENT FOR ELECTRICAL ENGINEERS AND COMPUTER SCIENTISTS [\[LINK\]](#)

Stanford, CA
Dec 2021

Context-Aware Action Recognition via Spatial and Temporal Transformer Networks
STANFORD UNIVERSITY CS 231N: CONVOLUTIONAL NEURAL NETWORKS FOR VISUAL RECOGNITION [\[LINK\]](#)

Stanford, CA
Jun 2021

Unsupervised Neural Network Models of the Ventral Visual Stream
STANFORD UNIVERSITY CS 431: HIGH-LEVEL VISION: FROM NEURONS TO DEEP NEURAL NETWORKS [\[LINK\]](#)

Stanford, CA
Mar 2021

Single-Image Stereo Depth Estimation using GANs
STANFORD UNIVERSITY CS 231A: COMPUTER VISION, FROM 3D RECONSTRUCTION TO RECOGNITION [\[LINK\]](#)

Stanford, CA
Mar 2021

Super-Resolution of Low-Quality Images for Realtime Pothole Detection
STANFORD UNIVERSITY CS 230: DEEP LEARNING [\[LINK\]](#)

Stanford, CA
Nov 2020

Model Distillation
GOOGLE CLOUD AI [\[LINK\]](#)

Seattle, WA
Dec 2019

QoS Optimization with ML
QUALCOMM MACHINE LEARNING ANALYSIS [\[LINK\]](#)

San Diego, CA
Aug 2019

Activities

Stanford TreeHacks

TECH FELLOW [\[LINK\]](#)

Stanford, CA

Jun 2021 - Jun 2022

- Worked on adding documentation to and building the TreeHacks websites using JSDoc and JavaScript
- Worked on improving the Stanford TreeHacks Hackathon experience as a part of the TreeHacks tech team

Purdue IEEE Computer Society (CSociety)

PRESIDENT [\[LINK\]](#)

West Lafayette, IN

Aug 2017 - Aug 2019

- Led several teams in the completion of projects for the Purdue Spark Challenge that is held every semester
- Served as the product manager for the 'Neural Style Transfer using Hardware Convolution' project (Spring 2019) and served as the head of the data analysis team for the 'QUEVIHN: Biomedical Robot' project (Fall 2018) [\[LINK\]](#)

Autonomous Motorsports Purdue (AMP)

West Lafayette, IN

Nov 2018 - Aug 2019

SOFTWARE TEAM LEAD [\[LINK\]](#)

- Led the software team for the development of SLAM algorithms in preparation for the autonomous racing competition held every May [\[LINK\]](#)
- Successfully developed computer vision software using the YOLOv2 for the Velodyne LiDAR [\[LINK\]](#)
- Created onboarding documents to get new recruits up to speed with the Robot Operating System (ROS) framework

Undergraduate Research Society of Purdue (UGRSP)

West Lafayette, IN

Oct 2018 - Aug 2019

FOUNDING AMBASSADOR [\[LINK\]](#)

- Served as the founding ambassador for the College of Engineering to help guide students with research
- Taught students how to present their research, conduct literature reviews, write journal/conference papers
- Engaged in outreach and spreading awareness to recruit a diverse group of students that were passionate about research

Honors & Awards

AI Fellowship , Bain Capital Ventures	Jun 2024
Best Product Opportunity Assessment (POA) Presentation , Stanford EE 205: Product Management	Nov 2021
Tech Fellowship , Stanford TreeHacks	Jun 2021
Honorable Mention , Stanford AIMI-HIAE COVID-19 Researchathon	Jun 2020
Graduation with Highest Distinction , Purdue University	May 2020
Ideas and Innovation Tournament (I²TC) Qualifier , Purdue University	Feb 2020
Eta Kappa Nu (Beta Chapter) Outstanding Junior Scholarship , Purdue University	2019-2020
Eli Shay Scholarship , (3 times) Purdue University	2017-2020
Dean's List , (8 times) Purdue University	2016-2020
Wolfram Alpha Award , MadHacks (University of Wisconsin-Madison)	Nov 2018
Engineering Design Excellence Award , Purdue University	Dec 2016
12th Board Exam Scholarship , DRDO	May 2016
10th Board Exam Scholarship , DRDO	May 2014

Open Source Contributions

TensorFlow	Remote
GOOGLE SUMMER OF CODE DEVELOPER	May 2020 - Aug 2020
• Worked on implementing key research data in TensorFlow Datasets (TFDS)	
OpenMRS	Remote
GOOGLE CODE-IN DEVELOPER	Dec 2014 - Feb 2015
• Worked on detecting, documenting, and fixing bugs on the Open Medical Record System (OpenMRS) interface	

Certifications

Generative AI with Large Language Models	DeepLearning.AI
COURSERA [LINK]	Dec 2023
Adventures in Design Thinking: A d.school Experience	Stanford University
STANFORD GRADUATE SUMMER INSTITUTE	Sep 2021
Deep Learning Specialization	DeepLearning.AI
COURSERA [LINK]	Dec 2020
Machine Learning	Stanford University
COURSERA [LINK]	Sep 2017

Peer Reviews

IEEE CL , IEEE Communication Letters	2019-2022
IEEE WCL , IEEE Wireless Communication Letters	2019-2022
IEEE TCCN , IEEE Transactions on Cognitive Communications and Networking	2020-2021
NCC , National Conference on Communications	2021
CVPR , Conference on Computer Vision and Pattern Recognition	2021
IEEE GC , IEEE GLOBECOM 2020 Workshop on Edge Learning over 5G Networks and Beyond	2020
IEEE 5GWF , IEEE 3rd 5G World Forum	2020
IEEE TCOM , IEEE Transactions on Communications	2019
IEEE SPAWC , IEEE Signal Processing Advances in Wireless Communications	2019

Relevant Coursework

STANFORD UNIVERSITY

CS 329T	Trustworthy Machine Learning
GENE 225	Healthcare Venture Capital
DESINST 215	The Design of Data
MS&E 472	Entrepreneurial Thought Leaders' Seminar
CS 329S	Machine Learning Systems Design
CS 259Q	Quantum Computing
CS 246	Mining Massive Data Sets
CS 522	Seminar in Artificial Intelligence in Healthcare
CS 330	Deep Multi-Task and Meta Learning
CS 251	Cryptocurrencies and Blockchain Technologies
EE 205	Product Management for Electrical Engineers and Computer Scientists
CS 523	Research Seminar in Computer Vision and Healthcare
CS 361	Engineering Design Optimization
CS 231N	Convolutional Neural Networks for Visual Recognition
CS 142	Web Applications
CS 431	High-level Vision: From Neurons to Deep Neural Networks
CS 231A	Computer Vision, From 3D Reconstruction to Recognition
CS 224W	Machine Learning with Graphs
CS 224N	Natural Language Processing with Deep Learning
CS 300	Departmental Lecture Series
CS 230	Deep Learning
CS 229	Machine Learning
CS 221	Artificial Intelligence: Principles and Techniques

PURDUE UNIVERSITY

ECE 496	Deep Learning and Neural Networks
ECE 469	Operating Systems Engineering
ECE 404	Computer Security
ECE 368	Data Structures and Algorithms
ECE 362	Microprocessor Systems and Interfacing
ECE 337	ASIC Design Laboratory
ECE 296	Deep Learning for Wireless Communications
ECE 295	Introduction to Data Science

Projects

Attention-Weighted Integrated Gradients for Target-Aware Cyberbullying Detection

Stanford, CA

CS 329T: TRUSTWORTHY MACHINE LEARNING [\[LINK\]](#)

Jun. 2022

- The self-attention layer of transformer models are combined with Integrated Gradients for more robust and fair cyberbullying detection

An ML Driven Analysis of Private Equity Funding in Seed-Stage Healthcare Startups

Stanford, CA

GENE 225: HEALTHCARE VENTURE CAPITAL [\[LINK\]](#)

Jun. 2022

- SHAP is applied on an ML model to gain insights on factors driving private equity investment decisions in healthcare startups

AutoChef: Computer Vision for Automated Ingredient-to-Recipe Matching

Stanford, CA

CS 329S: MACHINE LEARNING SYSTEMS DESIGN [\[LINK\]](#)

Mar. 2022

- AutoChef is a web app that uses an object detection model for automated ingredient-to-recipe matching using a single picture of your ingredients

FLITE: Focusing LITE for Memory-Efficient Meta Learning

Stanford, CA

CS 330: DEEP MULTI-TASK AND META LEARNING [\[LINK\]](#)

Dec. 2021

- FLITE is a meta learning wrapper that uses heuristics for gradient estimation during meta training for fast and memory-efficient learning

AdaLA: Adapting Gradient Estimation by Looking Ahead

Stanford, CA

CS 361: ENGINEERING DESIGN OPTIMIZATION [\[LINK\]](#)

Jun. 2021

- AdaLA is an ML optimizer that modifies AdaBelief by using a "look-ahead" strategy to adaptively estimate step sizes to take during gradient descent

Context-Aware Skeleton Action Recognition via Spatial and Temporal Transformer Networks

Stanford, CA

CS 231N: CONVOLUTIONAL NEURAL NETWORKS FOR VISUAL RECOGNITION [\[LINK\]](#)

Jun. 2021

- The Spatial-Temporal Context-aware Transformer Network (ST-CTR) uses graph learning on pose skeletons for improved action recognition

Single-Image Stereo Depth Estimation using GANs

Stanford, CA

CS 231A: COMPUTER VISION, FROM 3D RECONSTRUCTION TO RECOGNITION [\[LINK\]](#)

Mar. 2021

- The single-image stereo depth estimation pipeline uses two GANs in sequence to generate a stereo image counterpart for depth estimation

Histogram Gradient Boosting Trees for Graph Learning with Wasserstein Embeddings

Stanford, CA

CS 224W: MACHINE LEARNING WITH GRAPHS [\[LINK\]](#)

Mar. 2021

- HGBTs are used to predict HIV-inhibiting properties in molecules through graph learning by embedding them in a Wasserstein space

Aspect-Target Sentiment Classification for Cyberbullying Detection

Stanford, CA

CS 224N: NATURAL LANGUAGE PROCESSING WITH DEEP LEARNING [\[LINK\]](#)

Mar. 2021

- Aspect-Target Sentiment Classification uses BERT to perform sentiment classification with respect to a target for cyberbullying detection

Super-Resolution of Low-Quality Dashcam Images for Realtime Pothole Detection

Stanford, CA

CS 230: DEEP LEARNING [\[LINK\]](#)

Nov. 2020

- Super-Resolution GANs are used to address the domain mismatch issue in low-quality dashcams for improved real-time pothole detection

Image Data Augmentation for Plant Leaf Disease Classification Using Neural Style Transfer

Stanford, CA

CS 229: MACHINE LEARNING [\[LINK\]](#)

Nov. 2020

- Neural Style Transfer is used to detect new diseases in new plant species through data augmentation by transferring old diseases to new plants