
Pre-training via Denoising for Molecular Property Prediction
Sheheryar Zaidi∗1†, Michael Schaarschmidt∗2, James Martens2, Hyunjik Kim2, Yee Whye Teh2, Alvaro Sanchez-Gonzalez2, Peter Battaglia2, Razvan Pascanu2, Jonathan Godwin2

1University of Oxford, 2DeepMind
†Work done during an internship at DeepMind

∗Equal contribution

Overview

• We propose a simple and effective technique for pre-training neural networks that take 3D molecular
structures as input.

• The pre-training objective is self-supervised and based on denoising molecular structures. Denoising
structures is shown to be equivalent to learning an approximation of per-atom forces.

• Our experiments demonstrate that pre-training via denoising significantly improves performance onmul-
tiple challenging datasets, setting, in particular, a new state-of-the-art on 10 out of 12 targets in QM9.Private & Confidential
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Denoising Molecular Structures

Let Dstructures = {S1, . . . , Sn} be an (upstream)
dataset of equilibrium molecular structures. Each
structure S = {(a1,p1), . . . , (a|S|,p|S|)} is a set of
atomic nuclei, where ai is the atomic number and
pi ∈ R3 the spatial coordinate.

Step 1: Perturb molecule coordinates with noise:

S̃ = {(a1, p̃1), . . . , (a|S|, p̃|S|)},
where p̃i = pi + σϵi and ϵi ∼ N (0, I3).

Step 2: Predict the noise per-vertex:

Let gnnθ denote a neural network backbone return-
ing vertex-level predictions. Minimize the following
pre-training objective w.r.t. θ:

Ep(S̃,S)

[∥∥∥gnnθ(S̃)− (ϵ1, . . . , ϵ|S|)
∥∥∥2] , (1)

where p(S̃, S) is the joint noising distribution.

Fine-tune the model for molecular property predic-
tion by replacing the vertex-level output module
with a graph-level one for predicting scalar labels.

Denoising as Learning Forces

Denoising is equivalent to learning an approxima-
tion of per-atom forces directly from a dataset of
equilibrium structures, explaining why it is useful
for representation learning of molecules.

• An equilibrium structure x = (p1, . . . ,pN ) ∈ R3N

locallyminimizes the energyE(x) and locallymax-
imizes the (Boltzmann) distribution pphysical(x) ∝
exp(−E(x)).

• The force field−∇xE(x) is equal to the score func-
tion ∇x log pphysical(x) of pphysical.

• Learning the forces corresponds to score-matching:

Epphysical(x)

[
∥gnnθ(x)−∇x log pphysical(x)∥2

]
.

• pphysical is unknown, but can be approximated with
a mixture of Gaussians qσ(x̃ | xi) centered at the
local maxima of pphysical, i.e. equilibrium structures
xi ∈ Dstructures:

pphysical(x̃) ≈ qσ(x̃) :=
1

n

n∑
i=1

qσ(x̃ | xi).

Conclusion: By the result of Vincent (2011), score-
matching with qσ is equivalent to the denoising ob-
jective in eq. (1).

Molecular Property Prediction on QM9

• Pre-train the model on PCQM4Mv2,
with over 3 million equilibrium molec-
ular structures.

• Fine-tune the model on QM9, sepa-
rately for each of the 12 properties.

• We use GNS-TAT as the model, an
improved architecture we contribute
by applying Tailored Activation Trans-
forms (TAT) to the original GNS.

• Pre-trained GNS-TAT achieves SOTA re-
sults on QM9.

Target Unit SchNet E(n)-GNN DimeNet++ SphereNet PaiNN TorchMD-NET GNS
+ NN

GNS-TAT
+ NN

Pre-trained
GNS-TAT
+ NN

µ D 0.033 0.029 0.030 0.027 0.012 0.011 0.025 0.021 0.016
α a30 0.235 0.071 0.043 0.047 0.045 0.059 0.052 0.047 0.040
ϵHOMO meV 41.0 29.0 24.6 23.6 27.6 20.3 20.4 17.3 14.9
ϵLUMO meV 34.0 25.0 19.5 18.9 20.4 18.6 17.5 17.1 14.7
∆ϵ meV 63.0 48.0 32.6 32.3 45.7 36.1 28.6 25.7 22.0〈
R2

〉
a20 0.07 0.11 0.33 0.29 0.07 0.033 0.70 0.65 0.44

ZPVE meV 1.700 1.550 1.210 1.120 1.280 1.840 1.160 1.080 1.018
U0 meV 14.00 11.00 6.32 6.26 5.85 6.15 7.30 6.39 5.76
U meV 19.00 12.00 6.28 7.33 5.83 6.38 7.57 6.39 5.76
H meV 14.00 12.00 6.53 6.40 5.98 6.16 7.43 6.42 5.79
G meV 14.00 12.00 7.56 8.00 7.35 7.62 8.30 7.41 6.90
cv

cal
molK 0.033 0.031 0.023 0.022 0.024 0.026 0.025 0.022 0.020

Test MAE on QM9. “NN” stands for Noisy Nodes, which is denoising applied during fine-tuning as an auxiliary task.

Energy Prediction on DES15K

• DES15K is a small dataset of dimers with non-covalent interactions, la-
belled with the interaction energies.

• DES15K is generated using CCSD(T), which is more expensive than DFT.

• Pre-train GNS-TAT on PCQM4Mv2, as above with QM9.

• Pre-training via denoising yields best performance. DFT-generated
pre-training datasets can even improve downstream performance on
CCSD(T)-generated datasets. 0.0 0.2 0.4 0.6 0.8 1.0
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Data and Model Scaling

Data Scaling (left plot)

• Using a pre-trained model improves performance across different
downstream dataset sizes.

• Pre-training can be especially useful in the small data regime.

Model Scaling (right plot)

• Downstream performance continues to improve as we scale the
pre-trained model from 11 million parameters to over a billion
parameters on the Open Catalyst 2020 dataset.

• A smaller pre-trained model can outperform a larger model
trained from scratch.
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More in the paper! See for further experiments, including other datasets and
architectures (e.g. TorchMD-NET).

Full paper on arXiv .

https://www.iro.umontreal.ca/~vincentp/Publications/smdae_techreport.pdf
https://arxiv.org/abs/2206.00133

