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Overview

Pre-training via Denoising for Molecular Property Prediction

* We propose a simple and effective technique for pre-training neural networks that take 3D molecular

structures as input.

* The pre-training objective is self-supervised and based on denoising molecular structures. Denoising
structures is shown to be equivalent to learning an approximation of per-atom forces.

» Our experiments demonstrate that pre-training via denoising significantly improves performance on mul-
tiple challenging datasets, setting, in particular, a new state-of-the-art on 10 out of 12 targets in QM9.

( Pre-training via Denoising h
30
£ Q Q ————————————————————————— E(n)-GNN
[5+] b}
- — Grilph Ne‘lj(ral > 28 || PaiNN
3 etwork {7 W | . LieConv-SE(3)
> o) 26
) ) = S ———— DimeNet++
L Add noise to atom coordinates Predict noise g 24 | . SphereNet
( ) Y22
Graph Neural HOMO = Torch-MD-Net
m—’ Network | ° eneray G20 [T (SOTA)
§ g
g\ /18
]
S r ~ 16 Pre-trained GNS-TAT
8 SV = Graph N | Int ti
X ra eura nteraction
’ ) g Npetwork P cnergy 14
) 0 200 400 600 800 1000
_ J Gradient step (thousands)

Pre-training via Denoising
Denoising Molecular Structures

Let Dstructures = {S1,...,5,} be an (upstream)
dataset of equilibrium molecular structures. Each
structure S = {(a1,p1),..-,(ais, Ps))} is a set of
atomic nuclei, where a; is the atomic number and
p; € R3 the spatial coordinate.

Step 1: Perturb molecule coordinates with noise:
S = {(ala f)l)a XN (a|S|7 f’\s‘)}7
where f)z = p; +0€; and €; ~ ./\[(O, .[3)

Step 2: Predict the noise per-vertex:
Let GNNy denote a neural network backbone return-

ing vertex-level predictions. Minimize the following
pre-training objective w.r.t. 6:

~ 2
E, .5 |:HGNN9(S) (13| } .
where p(g, S) is the joint noising distribution.
Fine-tune the model for molecular property predic-

tion by replacing the vertex-level output module
with a graph-level one for predicting scalar labels.

Denoising as Learning Forces

Denoising is equivalent to learning an approxima-
tion of per-atom forces directly from a dataset of
equilibrium structures, explaining why it is useful
for representation learning of molecules.

* An equilibrium structure x = (p1,...,py) € R3V
locally minimizes the energy E'(x) and locally max-
imizes the (Boltzmann) distribution ppnysical(x) o<
exp(—E(x)).

» The force field —Vx E(x) is equal to the score func-
tion Vx 1ngphysical(x) of Pphysical-

» Learning the forces corresponds to score-matching:

) [|GNNg(x) — Vi log pphysical (%))

Pphyslcal
* Dphysical IS UNknown, but can be approximated with
a mixture of Gaussians ¢,(x | x;) centered at the

local maxima of ppnysicat, /.. equilibrium structures
X; € Dstructures:

qux‘xz

Conclusion: By the result of Vincent (2011), score-
matching with ¢, is equivalent to the denoising ob-
jective in eq. (I).

pphysical( ) ~ qo
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Data and Model Scaling

*Equal contribution

Molecular Property Prediction on QM9
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Pre-train the model on PCQM4Mv2, , . . GNS GNS-TAT Pre-trained
with over 3 million equilibrium molec- Target Unit  SchNet E(n)-GNN DimeNet++ SphereNet PaiNN TorchMD-NET NN+ NN GNS[\-ILAT
ular structures. +
1 D 0.033 0.029 0.030 0.027 0.012 0.011 0.025 0.021 0.016
Fine-tune the model on QM9, sepa- « ag 0.235 0.071 0.043 0.047 0.045 0.059 0.052 0.047 0.040
rately for each of the 12 properties. eqomo meV  41.0 29.0 24.6 23.6 27.6 20.3 20.4 17.3 149
e.umo meV 340 25.0 19.5 18.9 20.4 18.6 17.5 171 14.7
We use GNSTAT as the model an Ae  meV 630 480 326 323 457 361 286 257 220
improved architecture we contribute (R?) a2 007 011 0.33 029 007 0033 070 065 044
by applying Tailored Activation Trans- ZPVE meV 1700 1550 1210 1120 1280 1840 1160 1080  1.018
forms (TAT) to the original GNS. Uy ~meV 1400 1100 632 626 585 615 730 639 576
U meV 19.00 12.00 6.28 7.33 5.83 6.38 7.57 6.39 5.76
. . H meV 14.00 12.00 6.53 6.40 5.98 6.16 743 6.42 5.79
ELTt';rj:‘“g‘:gNs'TAT achieves SOTA re- G meV 1400 1200 756 800 735 762 830 741 690
= Cy mcogilK 0.033 0.031 0.023 0.022 0.024 0.026 0.025 0.022 0.020

Test MAE on OM9. “NN” stands for Noisy Nodes, which is denoising applied during fine-tuning as an auxiliary task.

Energy Prediction on DES15K

Interaction Energy Prediction on DES15K

DES15K is a small dataset of dimers with non-covalent interactions, la-
belled with the interaction energies.

DES15K is generated using CCSD(T), which is more expensive than DFT.
Pre-train GNS-TAT on PCQM4Mv2, as above with QM9.

Pre-training via denoising yields best performance. DFT-generated
pre-training datasets can even improve downstream performance on
CCSD(T)-generated datasets.

Data Scaling (left plot)

¢ Using a pre-trained model improves performance across different
downstream dataset sizes.

¢ Pre-training can be especially useful in the small data regime.

Model Scaling (right plot)

* Downstream performance continues to improve as we scale the
pre-trained model from 11 million parameters to over a billion
parameters on the Open Catalyst 2020 dataset.

e A smaller pre-trained model can outperform a larger model
trained from scratch.
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More in the paper! See for further experiments, including other datasets and

architectures (e.g. TorchMD-NET).

Full paper on arXiv (7.
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