

When Does Re-initialization Work?

Sheheryar Zaidi^{1*}, Tudor Berariu^{2*}, Hyunjik Kim³, Jörg Bornschein³, Claudia Clopath^{2,3}, Yee Whye Teh^{1,3}, Razvan Pascanu³

*Equal contribution, ¹University of Oxford, ²Imperial College London, ³DeepMind

Imperial College London

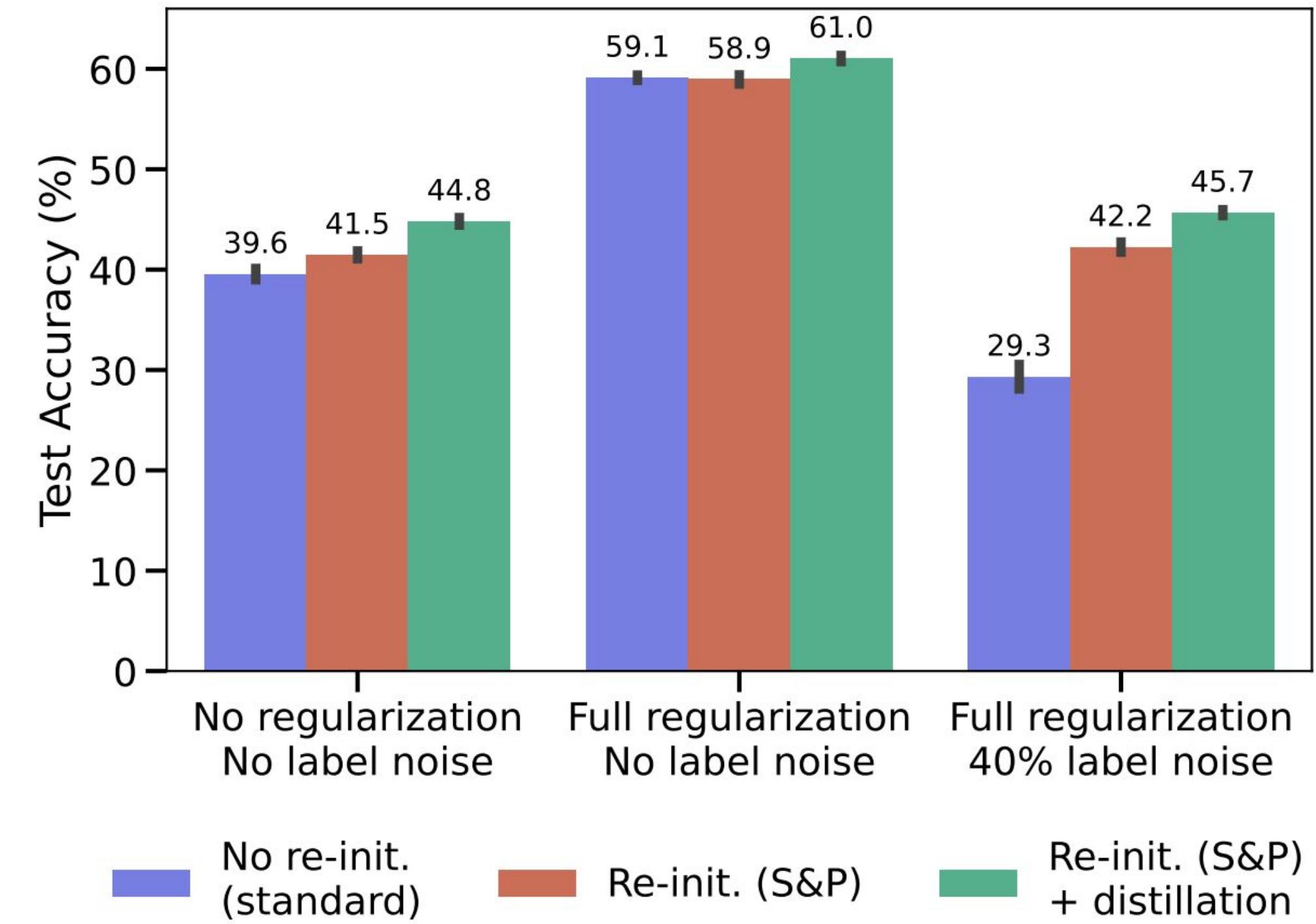
Summary

A study of the effect of repeatedly **re-initializing** a neural network during training on generalization performance.

Re-initialization regularizes learning and improves generalization compared to standard training (i.e. without re-initialization) in the absence of other regularization techniques.

In SOTA training protocols, re-initialization offers little benefit, apart from **robustness to optimization hyperparameters**.

Under label noise, re-initialization significantly improves performance, even alongside other regularization techniques.

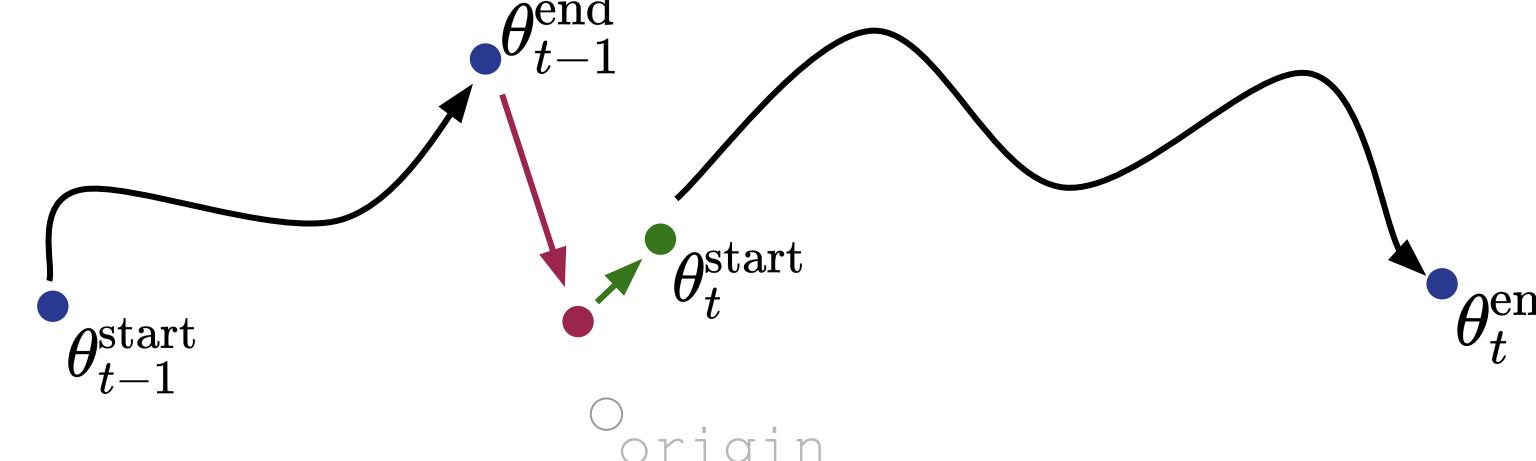
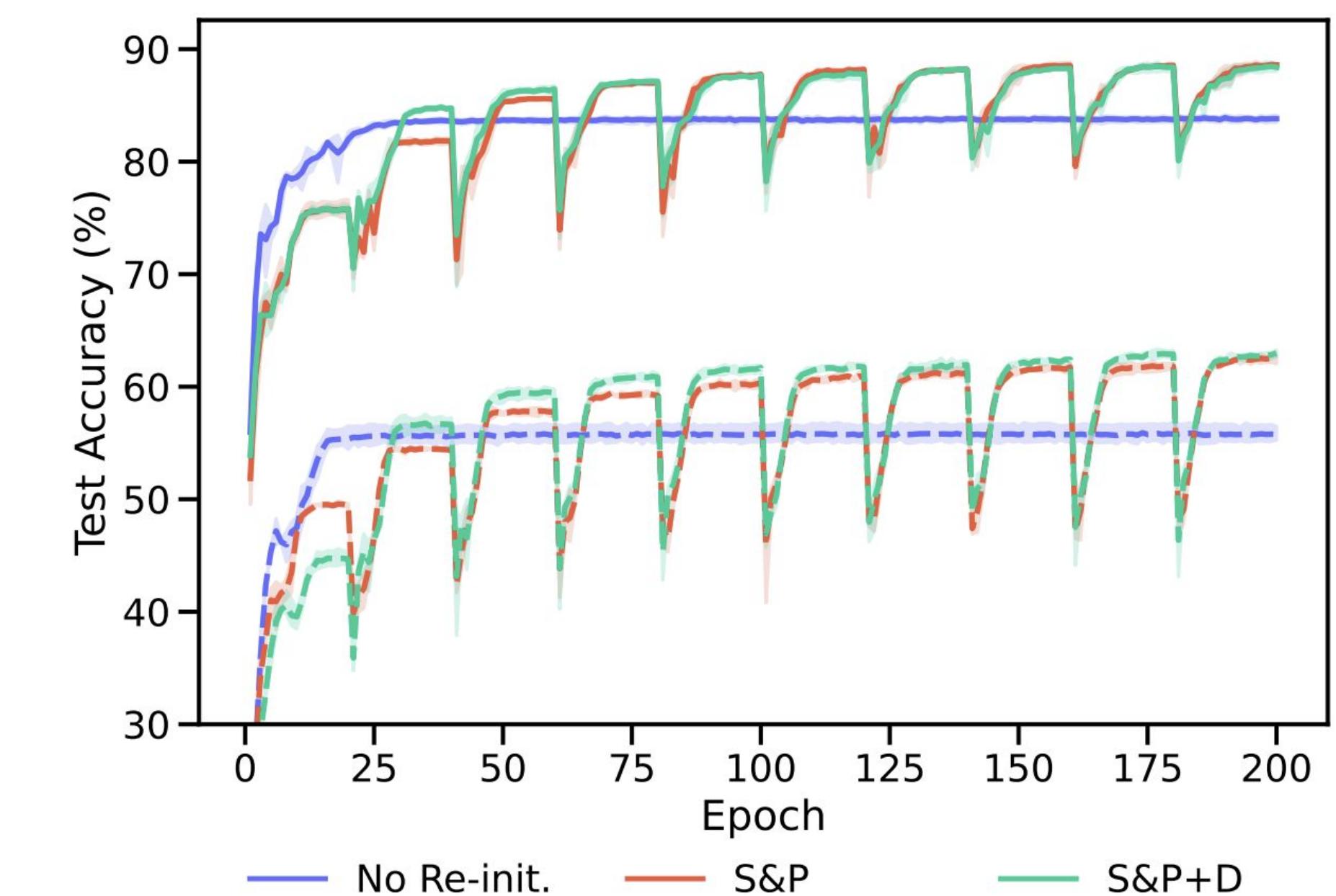


Comparison of standard training with re-initialization using *Shrink & Perturb* in three scenarios on Tiny ImageNet with PreAct-ResNet-18.

The Regularizing Effect of Re-initialization

In a simple setting without any other regularization, re-initialization—even upto 25 times during training—considerably improves generalization.

Shrink & Perturb (S&P) is a re-initialization method that multiplicatively *shrinks* and additively *perturbs* (with Gaussian noise) the weights: $\theta_{RI} = \lambda\theta + \gamma\theta_{init}$



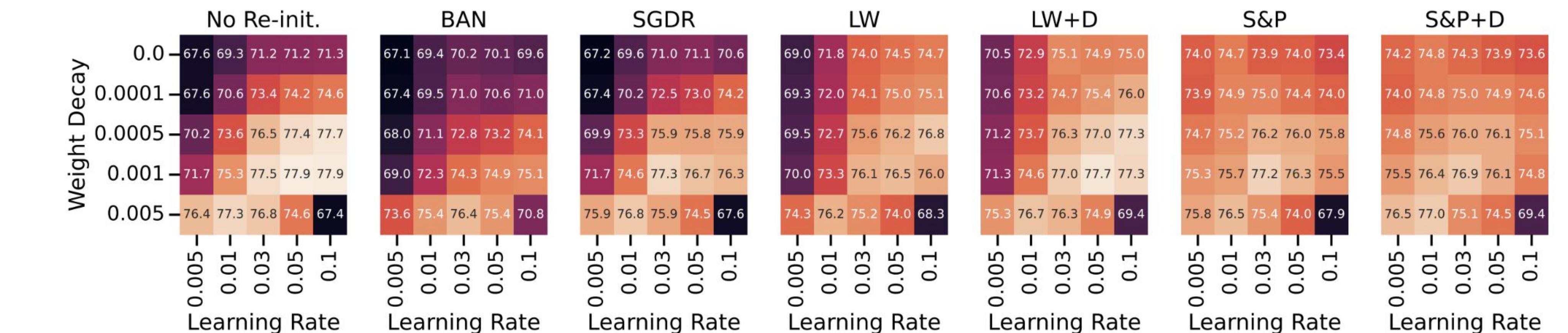
ResNet18 trained with 10 stages of re-initialization.

Re-initialization Alongside Other Regularization

With other regularization (data augmentation, learning rate schedule and weight decay), re-initialization methods offer no further performance benefit.

But performance becomes less sensitive to LR/WD hyperparameter choices.

Data Aug.	Cosine Anneal.	Weight Decay	No Re-initialization	Self-distillation (standard training)	SGDR	Layer-wise Re-initialization		Shrink & Perturb	
			(standard)	(fixed-budget BAN)		w/o dist.	w/ dist.	w/o dist.	w/ dist.
\times	\times	\times	55.5 \pm 0.6	56.4 \pm 0.5	N/A	61.0 \pm 0.6	62.5 \pm 0.2	63.1 \pm 0.6	63.5 \pm 0.3
✓	\times	\times	70.8 \pm 0.1	70.5 \pm 0.5	N/A	72.1 \pm 0.3	74.7 \pm 0.2	71.9 \pm 0.1	74.0 \pm 0.6
✓	✓	\times	71.2 \pm 0.2	70.9 \pm 0.4	71.0 \pm 0.6	74.6 \pm 0.5	75.4 \pm 0.2	75.4 \pm 0.3	75.4 \pm 0.4
✓	✓	✓	77.9 \pm 0.2	77.2 \pm 0.1	77.5 \pm 0.2	77.5 \pm 0.1	77.3 \pm 0.3	77.5 \pm 0.2	77.0 \pm 0.3



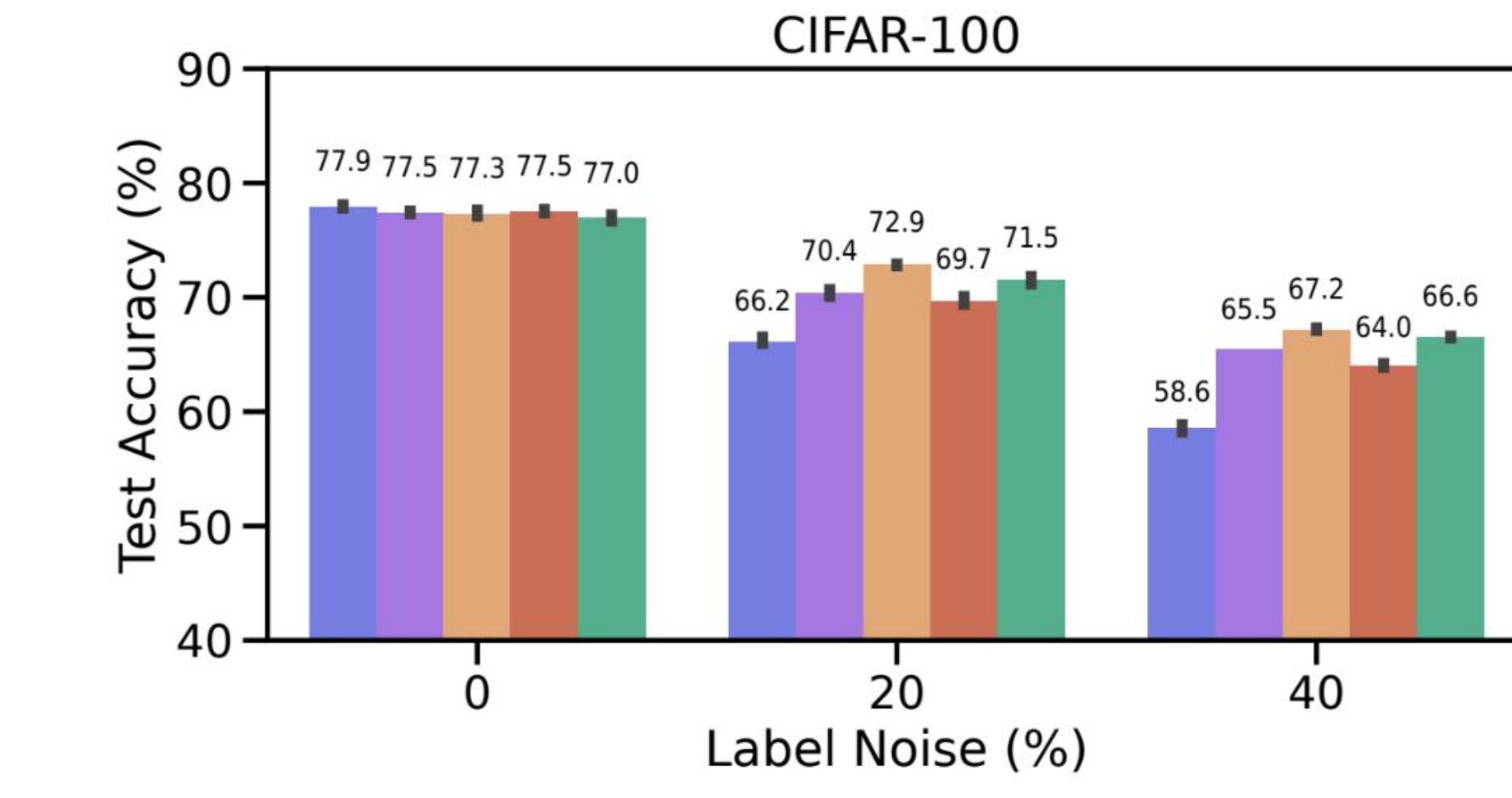
ResNet-18 trained on CIFAR-100.

Test accuracy vs. LR/WD choices on CIFAR-100 with ResNet-18.

Re-initialization Under Label Noise

Even if all other regularization is used and carefully tuned, re-initialization offers significant (>10 points) benefit over standard training!

See paper for more findings.



Training under label noise with all other regularization: the benefit of re-initialization improves as noise increases.

