Graphs (Fpagov)

KO8 Aopéc Aedopévwy Kal Texvikéc MNpoypappatiopoy

Kwotac Xat{nkokoAdknc

Graphs

* Graphs are collections of nodes in which various pairs are connected by
line segments. The nodes are usually called vertices (Kkopu@éc) and the
line segments edges (aKHEC).

* Graphs are more general than trees. Graphs are allowed to have cycles
and can have more than one connected component.

« Some authors use the terms nodes (kopBot) and arcs (t6€a) instead of
vertices and edges.

Example of Graphs (Directed)

et b
oo

Example of Graphs (Undirected)

et b
o o

Examples of Graphs

« Transportation networks

* Interesting problem: What is the path with one or more stops of shortest
overall distance connecting a starting city and a destination city?

Examples

« A network of oil pipelines

* Interesting problem: What is the maximum possible overall flow of oil
From the source to the destination?

Examples

« The Internet

* Interesting problem: Deliver an e-mail from user A to user B

Examples

« The Web

* Interesting problem: What is the PageRank of a Web site?

Examples

e The Facebook social network

* Interesting problem: Are John and Mary connected? What interesting
clusters exist?

Formal Definitions

» Agraph G = (V, E) consists of a set of vertices V and a set of edges F
, where the edgesin E are formed from pairs of distinct verticesin V.

* |f the edges have directions then we have a directed graph
(kateuBuvopevo ypa@o) or digraph. In this case edges are ordered pairs
of vertices e.g., (u, v) and are called directed. If (u, v) is a directed edge

then w is called its origin and v is called its destination.

* |f the edges do not have directions then we have an undirected graph
(Hn-kateuBuvopevoc ypa@o). In this case edges are unordered pairs of
vertices e.qg., {u, v} and are called undirected.

« Forsimplicity, we will use the directed pair notation noting thatin the
undirected case (u, v) is the same as (v, u) .

« When we say simply graph, we will mean an undirected graph.

Example of a Directed Graph

© & ®
@
3 \4 G
(8)
©
O—@

, B)
2,3,4,5,6,7,8,
1,2),(1,3), (2,

(V
1 10,11

G
|4 9,
L 5) (3 4) (5 4)7(576)7(67707(879)7(8710)7(10711:

(1,2

Example of an Undirected Graph

©
©— @
V,FE)

G = (V,
V =1,2,3.456,7,18,910,11
E = (1,2),(1,3),(2,5),(3,4), (5,4), (5,6), (6,70, (8,9), (8,10), (10,11

More Definitions

- Two different vertices v;, v; in a graph G = (V, E) are said to be
adjacent (yettovikéq) if there exists an edge (v;, vj) c L.

« An edge is said to be incident (npoonintouca) on a vertex if the vertex s
one of the edge’s endpoints.

* Apath (povonat) pinagraph G = (V, E), is a sequence of vertices of
V of theformp = v1vsy . .. vy, (n > 2) in which each vertex v;, is
adjacent tothe nextonev;.i (forl <2< n —1).

* The length of a path is the number of edges iniit.
« A pathissimpleif each vertex in the path is distinct.

* Acycleisapathp = vivy ... v, of length greater than one that begins
and ends at the same vertex (i.e., v{ = v,).

Definitions

« Adirected path is a path such that all edges are directed and are traversed
along their direction.

- Adirected cycle is similarly defined.

Definitions

* Asimple cycle is a path that travels through three or more distinct
vertices and connects them into a loop.

Example

Four simple cycles: (1,2,3,1) (4,5,6,7,4) (4,5,6,4) (4,6,7,4)

Example

Two non-simple cycles: (1,2,1) (4,5,6,4,7,6,4)

Example

A path that is not a cycle: (1,2,4,6,8)

Connectivity and Components

» Twovertices inagraph G = (V, E) are said to be connected
(ouvdedepéveg) if there is a path from the first to the secondin G

* Formally,ifz € V andy € V, where x # y, then x and y are
connected if there exists a pathp = v1vy ...v,, € Ginsuchthatx = v
andy = v,

Connectivity and Components

* Inthe graph G = (V, E) , a connected component (GUVEKTIKH
ouviotwoa) is a subset S of the vertices V' that are all connected to one
another.

* Aconnected component S of G is a maximal connected component
(H€vioTn ouVEKTIKN ocuvioTtwaoa) provided there is no bigger subset 1" of
verticesin V' such that T properly contains S and such that T itself is a
connected component of G.

* An undirected graph G can always be separated into maximal connected
components 1,52, ..., 9, suchthat S; N .S; = & whenevert # j.

Example of Undirected Graph and its
Separation into Two Maximal Connected
Components

et b
o o

Connectivity and Components in Directed
Graphs

* Asubset S of vertices in a directed graph (G is strongly connected
(loxupa ouvekTiko) if for each pair of distinct vertices (v, fvj) in.S, v;is
connected to v; and v, is connected to v;.

* Asubset S of vertices in a directed graph G is weakly connected
(acBevwg cuvekTikO) if for each pair of distinct vertices (v, fvj)in S, v; is
connected to v; or v; is connected to v;.

Example: A Strongly Connected Digraph

Example: A Weakly Connected Digraph

Degree in Undirected Graphs

* |In an undirected graph G the degree (Ba@poc) of vertex x is the number
of edges e in which « is one of the endpoints of e.

* The degree of a vertex x is denoted by deg(x).

Example

The degree of node 1 is 2.
The degree of node 4 is 4.
The degree of node 8is 1.

Predecessors and Successors in Directed Graphs

* If zisavertexin adirected graph G = (V, E) then the set of
predecessors (nponyoupevwyv) of x denoted by Pred(x) is the set of all
verticesy € V suchthat (y,z) € E.

» Similarly the set of successors (endpevwv) of & denoted by Succ(z) is
the set of all verticesy € V such that (z,y) € E.

In-Degree and Out-Degree in Directed Graphs

* The in-degree of a vertex x is the number of predecessors of x

* The out-degree of a vertex x is the number of successors of x

« We can also define the in-degree and the out-degree by referring to the
incoming and outgoing edges of a vertex.

* The in-degree and out-degree of a vertex x are denoted by indeg(x) and
outdeg(x) respectively.

Example

The in-degree of node 4 is 2. The out-degree of node 4 is 1.

Proposition
* |If G is an undirected graph with m edges, then

Z deg(v) = 2m

e Proof?

- Each edgeis counted twice

Proposition
 |f isadirected graph with edges, then

Z indeg(v) = Z outdeg(v) = m

velG velG

e Proof?

- Each edgeis counted once

Proposition

* Let GG be a graph with n vertices and m edges. If G is undirected, then

m < n("2_1) and if G is directed, thenm < n(n — 1).

 Proof?

- If GG is undirected then the maximum degree of a vertexisn — 1.
Therefore, from the previous proposition about the sum of the
degrees, we have 2m < n(n — 1).

- |If GG is directed then the maximum in-degree of a vertexisn — 1.
Therefore, from the previous proposition about the sum of the in-
degrees, we havem < n(n — 1).

More definitions

« Asubgraph (unoypa@oc) of a graph GG is a graph H whose vertices and
edges are subsets of the vertices and edges of G respectively.

* A spanning subgraph (unoypa@oc¢ enitkaAuwng) of G is a subgraph of G
that contains all the vertices of GG.

* Aforest (6aooc) is a graph without cycles.

« Afree tree (eAeuBepo EvOpoO) is a connected foresti.e., a connected
graph without cycles. The trees that we studied in earlier lectures are
rooted trees (6évdpa pe pila) and they are different than free trees.

« A spanning tree (6évdpo entk@Auwncg) of a graph is a spanning subgraph
that is a free tree.

Example

The thick green lines define a spanning tree of the graph.

Example

1
{5

The thick green lines define a forest which consists of two free trees.

Graph Representations: Adjacency Matrices

* Let G = (V, E) be a graph. Suppose we number the verticesin V as
V1,V2...0q

* The adjacency matrix (nivakac yettviaonc) corresponding to G is an
n X n matrix such that T'[¢, j| = 1if there is an edge (v;, v,;) € E, and
Ti,j] = Qif thereis nosuch edgein E.

Example

1 2 3 4
1 0 1 0 O
2 0 0 1 1
31 0 0 1
41 0 0 O

Agraph G The adjacency matrix for graph G

Adjacency Matrices

* The adjacency matrix of an undirected graph G is a symmetric matrix
i.e.,T|i,j] =T|j,t] forallandintherangel < i,57 < n

* The adjacency matrix for a directed graph need not be symmetric.

Adjacency Matrices

* The diagonal entries in an adjacency matrix (of a directed or undirected
graph) are zero, since graphs as we have defined them are not permitted
to have looping self-referential edges that connect a vertex to itself.

Example

A WO N
N =
_ ok, O
_ O ke
©S R = = N

An undirected graph G The adjacency matrix for graph G

Adjacency Sets

* Another way to define a graph G = (V/, E) is to specify adjacency sets
(oUvoAa yvertviaonc) for each vertexin V.

* Let V, stand for the set of all vertices adjacent to x in an undirected graph
(= or the set of all vertices that are successors of x in a directed graph G.

* If we give both the vertex set v and the collection A = {V,|x € V'} of

adjacency sets for each vertex in then we have given enough information
to define the graph G.

Graph Representations: Adjacency Lists

« Another family of representations for a graph uses adjacency lists (AtoTeC
vewtviaong) to represent the adjacency set V. for each vertex x in the
graph.

Example Directed Graph

Adirected graph G

\Nfirtme;(er Out Degree Adjacency list
1 2 23

2 3 345

3 1 4

4 0

5 1 1

The sequential adjacency lists for graph
G. Notice that vertices are listed in their
natural order.

Example Directed Graph

1-1 ° " 2 1 3| e

2:] o o] 3 | e 4 | o 5| e
3:1 4 | e

4.1 e

5| 1] e

Adirected graph G

The linked adjacency lists for graph G.
Notice that vertices in a list are organized
according to their natural order.

Example Undirected Graph

\N]irtme;er Degree Adjacency list
1 3 235
2 4 1345
3 3 124
4 2 2 4
5 4 5 2 12
An undirected graph G

The sequential adjacency lists for graph G

Graph Searching

* To search a graph GG, we need to visit all vertices of GG in some systematic
order.

* Each vertex v can be a structure with a bool valued member v. Visited

which isinitially false for all vertices of G. When we visit v, we will set it
to true.

An Algorithm for Graph Searching

// WeLOOKWOLKAC, EMLOKEWYN OAwV TwV KOUBwV TOU ypdeou

volid graph_search(G) {
Let G = (V,E) be a graph
Let C be an empty container

for (each vertex x in V) {
X.visited = false;

}

Insert v into C;

while (C 1is non-empty) {
Remove a vertex x from container C;
if (!x.visited) {
visit(x);
X.visited = true;
for (each vertex w adjacent to x) {
if ('w.visited))
Insert w into C;

Graph Searching

Interesting case: the container C'is a stack.

In what order vertices are visited?

Graph Searching

Eg. the container C'is a stack.

The vertices are visited in the order 1, 4, 8,7, 3, 2, 6, 5.

Depth-First Search (DFS)

« When C'is a stack, the treein the previous example is searched in depth-
fFirst order.

« Depth-first search (avalntnon npwTta kata Badoc) at a vertex always
goes down (by visiting unvisited children) before going across (by visiting
unvisited brothers and sisters).

» Depth-first search of a graph is analogous to a pre-order traversal of an
ordered tree.

Graph Searching

Anotherinterestg case: the container C'is a queue.

What is the order vertices are visited?

Graph Searching

Anotherinterestg case: the container C'is a queue.

The vertices are visited in the order 1, 2, 3,4, 5, 6, 7 and 8.

Breadth-First Search (BFS)

« When C'is a queue, the tree in the previous example is searched in
breadth-first order.

* Breadth-First search (avalftnon npwTta Kata nAAtocg) at a vertex
always goes broad before going deep.

« Breadth-first traversal of a graph is analogous to a traversal of an ordered
tree that visits the nodes of the tree in level-order.

* BFSsubdivides the vertices of a graph in levels. The starting vertex is at
level 0, then we have the vertices adjacent to the starting vertex at level 1,
then the vertices adjacent to these vertices at level 2 etc.

Example

What is the order of visiting vertices for DFS?

Example

Depth-first search visits the vertices in the order 1, 4, 8,6, 5, 7, 3 and 2

Example

What is the order of visit for BFS?

Example

Breadth-first search visits the vertices in the order 1, 2, 3, 4, 5, 6, 7 and 8.

Exhaustive Search

« Either the stack version or the queue version of the algorithm
GraphSearch will visit every vertex in a graph GG provided that GG consists
of a single strongly connected component.

* |f thisis not the case, then we can enumerate all the vertices of GG and run
GraphSearch starting from each one of them in order to visit all the

vertices of G.

Exhaustive Search

volid graph_exhaustive_search(G) {
Let G = (V,E) be a graph.
for (each vertex v in G) {
graph_search(G, v)

}

Recursive DFS

« DFS can be also written recursively

* The stack is essentially replaced by the Function call stack

Recursive DFS

// YeUdOKWOLKAC, EMLOKEWYN OAwv TwV KOUBwV TOU ypapou

volid graph_dfs(G) {
for (each vertex x in V) {
x.visited = false;
b
for (each vertex x in V) {
if (!x.visited))
traverse(G, Xx);

}

void traverse(G, x) {
visit(x);
X.visited = true;

for (each vertex w adjacent to v) {
if ('w.visited))
traverse(G, w);

Example of Recursive DFS

What is the order vertices are visited?

Example

The vertices are visited in the order 1, 2, 5, 6, 3, 4, 7 and 8. This is different
than the order we got when using a stack!

Complexity of DFS

DFS as implemented above (with adjacency lists) on a graph with e edges
and n vertices has complexity O(n + e).

To see why observe that on no vertex is traverse called more than once,
because as soon as we call traverse with parameter x , we mark x visited
and we never call traverse on a vertex that has previously been marked as
visited.

Thus, the total time spent going down the adjacency lists is proportional to
the lengths of those lists, that is O(e)

The initialization steps in graph_dfs have complexity O(n)

Thus, the total complexity is O(n + e)

Complexity of DFS

« |If DFSisimplemented using an adjacency matrix, then its complexity will

be O(n?).

- IFthe graph is dense (nukvaég), that is, it has close to O(n?) edges the

difference of the two implementations is minor as they would both runin
O(n?) time.

* If the graph is sparse (apatdg), that is, it has close to O(n) edges, then

the adjacency matrix approach would be much slower than the adjacency
list approach.

Complexity of BFS

* BFSwith adjacency lists has the same complexity as DFSi.e., O(n + e).

Readings

« T. A.Standish. Data Structures, Algorithms and Software Principles in C.
Chapter 10

« R.Kruse and C.L. Tondo and B. Leung. Data Structures and Program Design
in C. 2nd edition. Chapter 11

« A.V.Aho, J. E. Hopcroft and J. D. Ullman. Data Structures and Algorithmes.
Chapters 6 and 7

« M. T. Goodrich, R. Tamassia and D. Mount. Data Structures and Algorithms
in C++. 2nd edition. Chapter 13

