
Graphs (Γράφοι)Graphs (Γράφοι)
K08 Δομές Δεδομένων και Τεχνικές Προγραμματισμού

Κώστας Χατζηκοκολάκης

1

GraphsGraphs

Graphs are collections of nodes in which various pairs are connected by
line segments. The nodes are usually called vertices (κορυφές) and the
line segments edges (ακμές).

•

Graphs are more general than trees. Graphs are allowed to have cycles
and can have more than one connected component.

•

Some authors use the terms nodes (κόμβοι) and arcs (τόξα) instead of
vertices and edges.

•

2

Example of Graphs (Directed)Example of Graphs (Directed)

3

Example of Graphs (Undirected)Example of Graphs (Undirected)

4

Examples of GraphsExamples of Graphs

Transportation networks•

Interesting problem: What is the path with one or more stops of shortest
overall distance connecting a starting city and a destination city?

•

5

ExamplesExamples

A network of oil pipelines•

Interesting problem: What is the maximum possible overall flow of oil
from the source to the destination?

•

6

ExamplesExamples

The Internet•

Interesting problem: Deliver an e-mail from user A to user B•

7

ExamplesExamples

The Web•

Interesting problem: What is the PageRank of a Web site?•

8

ExamplesExamples

The Facebook social network•

Interesting problem: Are John and Mary connected? What interesting
clusters exist?

•

9

Formal DefinitionsFormal Definitions

A graph consists of a set of vertices and a set of edges

, where the edges in are formed from pairs of distinct vertices in .

• G = (V ,E) V E

E V

If the edges have directions then we have a directed graph
(κατευθυνόμενο γράφο) or digraph. In this case edges are ordered pairs
of vertices e.g., and are called directed. If is a directed edge

then is called its origin and is called its destination.

•

(u, v) (u, v)
u v

If the edges do not have directions then we have an undirected graph
(μη-κατευθυνόμενος γράφο). In this case edges are unordered pairs of
vertices e.g., { } and are called undirected.

•

u, v

For simplicity, we will use the directed pair notation noting that in the
undirected case is the same as .

•
(u, v) (v,u)

When we say simply graph, we will mean an undirected graph.•

10

Example of a Directed GraphExample of a Directed Graph

1

2

3 4

5 6

7

8
9

10
11

G = (V ,E)
V = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
E = (1, 2), (1, 3), (2, 5), (3, 4), (5, 4), (5, 6), (6, 70, (8, 9), (8, 10), (10, 11)

11

Example of an Undirected GraphExample of an Undirected Graph

1

2

3 4

5 6

7

8
9

10
11

G = (V ,E)
V = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
E = (1, 2), (1, 3), (2, 5), (3, 4), (5, 4), (5, 6), (6, 70, (8, 9), (8, 10), (10, 11)

12

More DefinitionsMore Definitions

Two different vertices in a graph are said to be

adjacent (γειτονικές) if there exists an edge .

• v ​, v ​i j G = (V ,E)
(v ​, v ​) ∈i j E

An edge is said to be incident (προσπίπτουσα) on a vertex if the vertex is
one of the edge’s endpoints.

•

A path (μονοπάτι) in a graph , is a sequence of vertices of

 of the form in which each vertex , is

adjacent to the next one (for).

• p G = (V ,E)
V p = v ​v ​ … v ​, (n ≥1 2 n 2) v ​i

v ​i+1 1 ≤ i ≤ n − 1

The length of a path is the number of edges in it.•

A path is simple if each vertex in the path is distinct.•

A cycle is a path of length greater than one that begins

and ends at the same vertex (i.e.,).

• p = v ​v ​ … v ​1 2 n

v ​ =1 v ​n

13

DefinitionsDefinitions

A directed path is a path such that all edges are directed and are traversed
along their direction.

•

A directed cycle is similarly defined.•

14

DefinitionsDefinitions

A simple cycle is a path that travels through three or more distinct
vertices and connects them into a loop.

•

15

ExampleExample

1

2

5

4 6

7
8

3

Four simple cycles: (1,2,3,1) (4,5,6,7,4) (4,5,6,4) (4,6,7,4)

16

ExampleExample

1

2

5

4 6

7
8

3

Two non-simple cycles: (1,2,1) (4,5,6,4,7,6,4)

17

ExampleExample

1

2

5

4 6

7
8

3

A path that is not a cycle: (1,2,4,6,8)

18

Connectivity and ComponentsConnectivity and Components

Two vertices in a graph are said to be connected

(συνδεδεμένες) if there is a path from the first to the second in

• G = (V ,E)
G

Formally, if , then and are

connected if there exists a path in such that

and

• x ∈ V and y ∈ V , where x ​= y x y

p = v ​v ​ … v ​ ∈1 2 n G x = v ​1

y = v ​n

19

Connectivity and ComponentsConnectivity and Components

In the graph , a connected component (συνεκτική

συνιστώσα) is a subset of the vertices that are all connected to one
another.

• G = (V ,E)
S V

A connected component of is a maximal connected component
(μέγιστη συνεκτική συνιστώσα) provided there is no bigger subset of

vertices in such that properly contains and such that itself is a

connected component of .

• S G

T

V T S T

G

An undirected graph can always be separated into maximal connected

components such that whenever .

• G

S ​,S ​, … ; ,S ​1 2 n S ​ ∩i S ​ =j ∅ i ​= j

20

Example of Undirected Graph and itsExample of Undirected Graph and its
Separation into Two Maximal ConnectedSeparation into Two Maximal Connected
ComponentsComponents

21

Connectivity and Components in DirectedConnectivity and Components in Directed
GraphsGraphs

A subset of vertices in a directed graph is strongly connected

(ισχυρά συνεκτικό) if for each pair of distinct vertices in , is

connected to and is connected to .

• S G

(v ​, v ​)i j S v ​i

v ​j v ​j v ​i

A subset of vertices in a directed graph is weakly connected

(ασθενώς συνεκτικό) if for each pair of distinct vertices in , is

connected to or is connected to .

• S G

(v ​, v ​)i j S v ​i

v ​j v ​j v ​i

22

Example: A Strongly Connected DigraphExample: A Strongly Connected Digraph

23

Example: A Weakly Connected DigraphExample: A Weakly Connected Digraph

24

Degree in Undirected GraphsDegree in Undirected Graphs

In an undirected graph the degree (βαθμός) of vertex is the number

of edges in which is one of the endpoints of .

• G x

e x e

The degree of a vertex is denoted by .• x deg(x)

25

ExampleExample

1

2

5

4 6

7
8

3

.

The degree of node 1 is 2.
The degree of node 4 is 4.
The degree of node 8 is 1.

26

Predecessors and Successors in Directed GraphsPredecessors and Successors in Directed Graphs

If is a vertex in a directed graph then the set of

predecessors (προηγούμενων) of denoted by is the set of all

vertices such that .

• x G = (V ,E)
x Pred(x)

y ∈ V (y,x) ∈ E

Similarly the set of successors (επόμενων) of denoted by is

the set of all vertices such that .

• x Succ(x)
y ∈ V (x, y) ∈ E

27

In-Degree and Out-Degree in Directed GraphsIn-Degree and Out-Degree in Directed Graphs

The in-degree of a vertex is the number of predecessors of • x x

The out-degree of a vertex is the number of successors of • x x

We can also define the in-degree and the out-degree by referring to the
incoming and outgoing edges of a vertex.

•

The in-degree and out-degree of a vertex are denoted by and

 respectively.

• x indeg(x)
outdeg(x)

28

ExampleExample

1

2 3

4 5

The in-degree of node 4 is 2. The out-degree of node 4 is 1.

29

PropositionProposition

If is an undirected graph with edges, then

.

• G m

​ deg(v) =
v∈G

∑ 2m

Proof?•

Each edge is counted twice-

30

PropositionProposition

If is a directed graph with edges, then•

​ indeg(v) =
v∈G

∑ outdeg(v) =
v∈G

∑ m

Proof?•

Each edge is counted once-

31

PropositionProposition

Let be a graph with vertices and edges. If is undirected, then

 and if is directed, then .

• G n m G

m ≤ ​2
n(n−1)

G m ≤ n(n − 1)

Proof?•

If is undirected then the maximum degree of a vertex is .
Therefore, from the previous proposition about the sum of the
degrees, we have

- G n − 1

2m ≤ n(n − 1).

If is directed then the maximum in-degree of a vertex is .
Therefore, from the previous proposition about the sum of the in-
degrees, we have .

- G n − 1

m ≤ n(n − 1)

32

More definitionsMore definitions

A subgraph (υπογράφος) of a graph is a graph whose vertices and

edges are subsets of the vertices and edges of respectively.

• G H

G

A spanning subgraph (υπογράφος επικάλυψης) of is a subgraph of

that contains all the vertices of .

• G G

G

A forest (δάσος) is a graph without cycles.•

A free tree (ελεύθερο δένδρο) is a connected forest i.e., a connected
graph without cycles. The trees that we studied in earlier lectures are
rooted trees (δένδρα με ρίζα) and they are different than free trees.

•

A spanning tree (δένδρο επικάλυψης) of a graph is a spanning subgraph
that is a free tree.

•

33

ExampleExample

1

2

5

4 6

7
8

3

The thick green lines define a spanning tree of the graph.

34

ExampleExample

The thick green lines define a forest which consists of two free trees.

35

Graph Representations: Adjacency MatricesGraph Representations: Adjacency Matrices

Let be a graph. Suppose we number the vertices in as• G = (V ,E) V

v ​, v ​ … v ​1 2 n

The adjacency matrix (πίνακας γειτνίασης) corresponding to is an

 matrix such that if there is an edge , and

 if there is no such edge in .

• G

n × n T [i, j] = 1 (v ​, v ​) ∈i j E

T [i, j] = 0 E

36

ExampleExample

0 1 0 0
0 0 1 1
1 0 0 1
1 0 0 0

1 2

3 4

A graph G The adjacency matrix for graph G

1 2 3 4

1

2
3
4

37

Adjacency MatricesAdjacency Matrices

The adjacency matrix of an undirected graph is a symmetric matrix

i.e., for all and in the range

• G

T [i, j] = T [j, i] 1 ≤ i, j ≤ n

The adjacency matrix for a directed graph need not be symmetric.•

38

Adjacency MatricesAdjacency Matrices

The diagonal entries in an adjacency matrix (of a directed or undirected
graph) are zero, since graphs as we have defined them are not permitted
to have looping self-referential edges that connect a vertex to itself.

•

39

ExampleExample

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

1 2

3 4

An undirected graph G The adjacency matrix for graph G

1 2 3 4

1

2
3
4

40

Adjacency SetsAdjacency Sets

Another way to define a graph is to specify adjacency sets

(σύνολα γειτνίασης) for each vertex in .

• G = (V ,E)
V

Let stand for the set of all vertices adjacent to in an undirected graph

 or the set of all vertices that are successors of in a directed graph .

• V ​x x

G x G

If we give both the vertex set and the collection of
adjacency sets for each vertex in then we have given enough information
to define the graph .

• v A = {V ​∣x ∈x V }

G

41

Graph Representations: Adjacency ListsGraph Representations: Adjacency Lists

Another family of representations for a graph uses adjacency lists (λίστες
γειτνίασης) to represent the adjacency set for each vertex in the
graph.

•
V ​x x

42

Example Directed GraphExample Directed Graph

1 2 2 3
2 3 3 4 5
3 1 4
4 0
5 1 1

1 3

5 4

A directed graph G
The sequential adjacency lists for graph
G. Notice that vertices are listed in their
natural order.

2

Adjacency listOut Degree
Vertex
Number

43

Example Directed GraphExample Directed Graph

1 3

5 4

A directed graph G

The linked adjacency lists for graph G.
Notice that vertices in a list are organized
according to their natural order.

2
2 3 .
3 4 5 .

4

1 .

.
.

1:

2:

3:

4:

5:

44

Example Undirected GraphExample Undirected Graph

1 3 2 3 5
2 4 1 3 4 5
3 3 1 2 4
4 2 2 4
5 2 1 2

1 3

5 4

An undirected graph G
The sequential adjacency lists for graph G

2

Adjacency listDegree
Vertex
Number

45

Graph SearchingGraph Searching

To search a graph , we need to visit all vertices of in some systematic
order.

• G G

Each vertex can be a structure with a bool valued member . Visited

which is initially false for all vertices of . When we visit , we will set it
to true.

• v v

G v

46

An Algorithm for Graph SearchingAn Algorithm for Graph Searching

// Ψευδοκώδικας, επίσκεψη όλων των κόμβων του γράφου

void graph_search(G) {
 Let G = (V,E) be a graph
 Let C be an empty container

 for (each vertex x in V) {
 x.visited = false;
 }
 Insert v into C;

 while (C is non-empty) {
 Remove a vertex x from container C;
 if (!x.visited) {
 visit(x);
 x.visited = true;
 for (each vertex w adjacent to x) {
 if (!w.visited))
 Insert w into C;
 }
 }
 }
}

47

Graph SearchingGraph Searching

Interesting case: the container is a stack.

1

2 3 4

5 6 7 8

In what order vertices are visited?

C

48

Graph SearchingGraph Searching

Eg. the container is a stack.

1

2 3 4

5 6 7 8

The vertices are visited in the order 1, 4, 8, 7, 3, 2, 6, 5.

C

49

Depth-First Search (DFS)Depth-First Search (DFS)

When is a stack, the tree in the previous example is searched in depth-
first order.

• C

Depth-first search (αναζήτηση πρώτα κατά βάθος) at a vertex always
goes down (by visiting unvisited children) before going across (by visiting
unvisited brothers and sisters).

•

Depth-first search of a graph is analogous to a pre-order traversal of an
ordered tree.

•

50

Graph SearchingGraph Searching

Another interestg case: the container is a queue.

1

2 3 4

5 6 7 8

What is the order vertices are visited?

C

51

Graph SearchingGraph Searching

Another interestg case: the container is a queue.

1

2 3 4

5 6 7 8

The vertices are visited in the order 1, 2, 3, 4, 5, 6, 7 and 8.

C

52

Breadth-First Search (BFS)Breadth-First Search (BFS)

When is a queue, the tree in the previous example is searched in

breadth-first order.

• C

Breadth-first search (αναζήτηση πρώτα κατά πλάτος) at a vertex
always goes broad before going deep.

•

Breadth-first traversal of a graph is analogous to a traversal of an ordered
tree that visits the nodes of the tree in level-order.

•

BFS subdivides the vertices of a graph in levels. The starting vertex is at
level 0, then we have the vertices adjacent to the starting vertex at level 1,
then the vertices adjacent to these vertices at level 2 etc.

•

53

ExampleExample

1

2

3

4

5

6

7

8

What is the order of visiting vertices for DFS?

54

ExampleExample

1

2

3

4

5

6

7

8

Depth-first search visits the vertices in the order 1, 4, 8, 6, 5, 7, 3 and 2

55

ExampleExample

1

2

3

4

5

6

7

8

What is the order of visit for BFS?

56

ExampleExample

1

2

3

4

5

6

7

8

Breadth-first search visits the vertices in the order 1, 2, 3, 4, 5, 6, 7 and 8.

57

Exhaustive SearchExhaustive Search

Either the stack version or the queue version of the algorithm
GraphSearch will visit every vertex in a graph provided that consists
of a single strongly connected component.

•
G G

If this is not the case, then we can enumerate all the vertices of and run
GraphSearch starting from each one of them in order to visit all the
vertices of .

• G

G

58

Exhaustive SearchExhaustive Search

void graph_exhaustive_search(G) {
 Let G = (V,E) be a graph.
 for (each vertex v in G) {
 graph_search(G, v)
 }
}

59

Recursive DFSRecursive DFS

DFS can be also written recursively•

The stack is essentially replaced by the function call stack•

60

Recursive DFSRecursive DFS

// Ψευδοκώδικας, επίσκεψη όλων των κόμβων του γράφου

void graph_dfs(G) {
 for (each vertex x in V) {
 x.visited = false;
 }
 for (each vertex x in V) {
 if (!x.visited))
 traverse(G, x);
 }
}

void traverse(G, x) {
 visit(x);
 x.visited = true;

 for (each vertex w adjacent to v) {
 if (!w.visited))
 traverse(G, w);
 }
}

61

Example of Recursive DFSExample of Recursive DFS

What is the order vertices are visited?

1

2 3 4

5 6 7 8

62

ExampleExample

The vertices are visited in the order 1, 2, 5, 6, 3, 4, 7 and 8. This is different
than the order we got when using a stack!

1

2 3 4

5 6 7 8

63

Complexity of DFSComplexity of DFS

DFS as implemented above (with adjacency lists) on a graph with edges

and vertices has complexity .

• e

n O(n + e)

To see why observe that on no vertex is traverse called more than once,
because as soon as we call traverse with parameter , we mark visited
and we never call traverse on a vertex that has previously been marked as
visited.

•
x x

Thus, the total time spent going down the adjacency lists is proportional to
the lengths of those lists, that is

•
O(e)

The initialization steps in graph_dfs have complexity • O(n)

Thus, the total complexity is • O(n + e)

64

Complexity of DFSComplexity of DFS

If DFS is implemented using an adjacency matrix, then its complexity will
be .

•
O(n)2

If the graph is dense (πυκνός), that is, it has close to edges the
difference of the two implementations is minor as they would both run in

 time.

• O(n)2

O(n)2

If the graph is sparse (αραιός), that is, it has close to edges, then
the adjacency matrix approach would be much slower than the adjacency
list approach.

• O(n)

65

Complexity of BFSComplexity of BFS

BFS with adjacency lists has the same complexity as DFS i.e., .• O(n + e)

66

ReadingsReadings

T. A. Standish. Data Structures , Algorithms and Software Principles in C.
Chapter 10

•

R. Kruse and C.L. Tondo and B. Leung. Data Structures and Program Design
in C. 2nd edition. Chapter 11

•

A. V. Aho, J. E. Hopcroft and J. D. Ullman. Data Structures and Algorithms.
Chapters 6 and 7

•

M. T. Goodrich, R. Tamassia and D. Mount. Data Structures and Algorithms
in C++. 2nd edition. Chapter 13

•

67

68

