Hashing (Katakeppatiopoc)

KO8 Aopéc Aedopévwy Kal Texvikéc MNpoypappatiopoy

Kwotac Xat{nkokoAdknc



Efficient implementation of ADT Map

* We need fast equality search

Balanced trees
- AVL /B-trees /Red-black /...
- Store (key, value) in each node

Or any efficient implementation of ADT Set
- Store (key, value) aselementsin the set

The above provide search in O(log n)

- But also ordered traversal, which is not needed!

Can we do better?

- Yes, using hashing!



Hashing

We need to store a (key, value) pair

|dea: use the key as an index in an array

Thisis easy if key is a small integer

- Insert: simply store value in array[key]

- Find:read array[key]

Problem: does not work when key is large (or not an integer)

- Solution: apply a hash function that transforms keys to indexes



Example

* Keys:integers,eg1, 3, 18

* Storedatainanarrayofsize M =7
- called a hash table

* Use asimple hash Function
h(k) =k mod 7

* Apair (key, value) isstored atindex h(key)



Table T after Inserting keys 2, 10, 14, 19

Table T

0 14
1

2 2
3 10
4

5 19
6

» Keys are stored in their hash addresses

* The cells of the table are often called buckets (kadot)



Insert 24

Table T

0 14
1

2 2
3 10
4

5 19
6

* Collision, h(24) = 3 is already taken

* Resolution policy

- look at lower locations of the table to find a place for the key



Insert 24

h(24) = 3

Table T

0 14

1 24 <+ 3rd probe
2 2 < 2ndprobe
3 10 <+ 1stprobe
4

5 19

6



Insert 23

h(23) = 2

Table T

0 14 < 3rd probe
1 24 <+ 2nd probe
2 2 < 1stprobe
3 10

4

5 19

6 23 < 4th probe



Open Addressing

* Open addressing

- The method of inserting colliding keys into empty locations

* Probe

- The inspection of each location

- The locations we examined are called a probe sequence

 Linear probing

- Examine consecutive addresses



Double Hashing

* Double hashing uses non-linear probing by computing different probe
decrements for different keys using a second hash function p(k).

« Let us define the following probe decrement function:

k
p(k) = max(1, )



Insert 24

Table T

0 14 <+ 2nd probe
1

2 2

3 10 < 1stprobe
4 24 <+ 3rd probe
5 19

6

h(24) = 3
We use a probe decrement of p(24) = 3



Insert 23

Table T

0 14

1

2 2 < 1stprobe
3 10

4 24

5 19

6 23 <+ 2th probe

h(23) = 2
We use a probe decrement of p(23) = 3



Collision Resolution by Separate Chaining

« The method of collision resolution by separate chaining (xwptotn
aAucidwon) uses a linked list to store keys at each table entry.

« This method should not be chosen if space is at a premium, for example, if
we are implementing a hash table for a mobile device.



Example

Table T

0 14

1

2 2 — 23
3 10 — 24
4

5 19

6



Good Hash Functions

* Suppose 1'is a hash table having entries whose addresses lie in the range 0
toM — 1.

* An ideal hashing Function A (k) maps keys onto table addresses in a
uniform and random fashion.

 In otherwords, for any arbitrarily chosen key, any of the possible table
addresses is equally likely to be chosen.

* Also, the computation of a hash function should be very Fast.



Collisions

* A collision between two keys k and k' happens if, when we try to store

both keys in a hash table 7" both keys have the same hash address h(k) =
h(k).

« Collisions are relatively frequent even in sparsely occupied hash tables.
* A good hash function should minimize collisions.

* The von Mises paradox: if there are more than 23 people in a room, there
is a greater than 50% chance that two of them will have the same birthday
(M = 365).



Primary clustering

 Linear probing suffers from what we call primary clustering
(npwtapxikn cuctadonoinon).

« A cluster (cuotadda) is a sequence of adjacent occupied entries in a hash
table.

« |In open addressing with linear probing such clusters are formed and then
grow bigger and bigger. This happens because all keys colliding in the
same initial location trace out identical search paths when looking for an
empty table entry.

« Double hashing does not suffer from primary clustering because initially
colliding keys search for empty locations along separate probe sequence
paths.



Ensuring that Probe Sequences Cover the
Table

 In order for the open addressing hash insertion and hash searching
algorithms to work properly, we have to guarantee that every probe
sequence used can probe all locations of the hash table.

« This is obvious for linear probing.

* |sittrue for double hashing?



Choosing Table Sizes and Probe
Decrements

* |If we choose the table size to be a prime number (npwtoc¢ apt®poc) M

and probe decrements to be positive integersin therange 1 < p(k) <
M then we can ensure that the probe sequences cover all table addresses

in therange 0 to M — 1 exactly once.



Good Double Hashing Choices

* Choose the table size M to be a prime number, and choose probe
decrements, any integerin therange 1to M — 1.

* Choose the table size M to be a power of 2 and choose as probe
decrements any odd integer in the range 1 to M — 1.

* |In otherwords, it is good to choose probe decrements to be relatively
prime with M



Deletion

The function for deletion from a hash table is left as an exercise.

But notice that deletion poses some problems.

If we delete an entry and leave a table entry with an empty key in its place
then we destroy the validity of subsequent search operations because a
search terminates when an empty key is encountered.

As a solution, we can leave the deleted entry inits place and mark it as
deleted (or substitute it by a special entry “available”). Then search
algorithms can treat these entries as not deleted while insert algorithms
can treat them as deleted and insert other entries in their place.

However, in this case, if we have many deletions, the hash table can easily
become clogged with entries marked as deleted.



Load Factor

The load Factor (cuvteAeotn¢ nARPpwong) a of a hash table of size M with
IN occupied entries is defined by

o= —

M

« The load factoris an important parameter in characterizing the
performance of hashing techniques.



Performance Formulas

* Hash table of size M with exactly N occupied entries

_ _ N
load factora = i

« (' :average number of probes during a successful search

. ]’V : average number of probes during an unsuccessful search

- orinsertion



Efficiency of Linear Probing

* For open addressing with linear probing, we have the following
performance formulas:

1 1
CN:§(1+1—04)
Cn' = S(1 4 (——)?)
N ™9 1—a

* The formulas are known to apply when the table T"is up to 70% full (i.e.,
whena < 0.7).



Efficiency of Double Hashing

* For open addressing with double hashing, we have the following
performance formulas:




Efficiency of Separate Chaining

For separate chaining, we have the following performance formulas:

1



Important

Important consequence of these formulas:

* The performance depends only on the load factor o

* Not on the number of keys or the size of the table



Theoretical Results: Apply the Formulas

e Let us now compare the performance of the techniques we have seen for
different load factors using the formulas we presented.

« Experimental results are similar.



Successful Search

Load Factors

0.10 0.25 0.50 0.75 0.90 0.99
Separate chaining 1.05 1.12 1.25 1.37 1.45 1.49
Open/linear probing 1.06 1.17 1.50 2.50 5.50 50.5
Open/double hashing 1.05 1.15 1.39 1.85 2.56 4.65



Unsuccessful Search

Load Factors

0.10 0.25 0.50 0.75 0.90 0.99
Separate chaining 0.10 0.25 0.50 0.75 0.90 0.99
Open/linear probing 1.12 1.39 250 8.50 50.5 5000
Open/double hashing 1.11 1.33 2.50 4.00 10.0 100.0



Complexity of Hashing

* Use a hash table that is never more than half-full (o < 0.50)

* |f the table becomes more than half-full, we can expand the table by
choosing a new table twice as big and by rehashing the entries in the new
table.

« Suppose also that we use one of the hashing methods we presented.

« Then the previous tables show that successful search can never take more
than 1.50 key comparisons and unsuccessful search can never take more
than 2.50 key comparisons.

« So the behaviour of hash tables is independent of the size of the table or
the number of keys, hence the complexity of searchingis O(1)



Complexity of Hashing

 Insertion takes the same number of comparisons as an unsuccessful
search, so it has complexity O(1) as well.

* Retrieving and updating also take O(1) time.

* For ordered traversal we must sort the keys (O(n log n)), so hash tables
are not good candidates for ADT Set



Important observations

1.1t can happen that all entries hash to the same index

» So the worst-case complexity of search/insertis O(n)
* But the average-case remains O(1)

- Under the assumption of a good hash function
2. Rehashing takes O(n) time

* So the real-time complexity of insertis O(n)

« Butit happensrarely
- So the amortized-time complexity is O(1)

- Similarly to a dynamic array



Complexity, summary

Search Worst-case Average-case
Real-time O(n) O(1)
Amortized-time O(n) O(1)
Insert Worst-case Average-case
Real-time O(n) O(n)

Amortized-time O(n) O(1)



Load Factors and Rehashing

« Experiments and average case analysis suggest that we should maintain
- o < 0.5 for open addressing schemes
- a < 0.9 for separate chaining

« With open addressing, as the load factor grows beyond 0.5 and starts
approaching 1, clusters of items in the table start to grow as well.

« At the limit, when a is close to 1, all table operations have linear
expected running times since, in this case, we expect to encounter a
linear number of occupied cells before finding one of the few remaining
empty cells.



Load Factors and Rehashing

 |f the load factor of a hash table goes significantly above a specified
threshold, then it is common to require the table to be resized to regain
the specified load factor. This process is called rehashing
(avakatakeppatiopocg) or dynamic hashing (duvapikog
KATAKEPHATIGHOC).

« When rehashing to a new table, a good requirement is having the new
array's size be at least double the previous size.



Summary: Open Addressing or Separate Chaining?

« Open addressing schemes save space but they are not faster.

« Asyou can see in the above theoretical results (and corresponding
experimental results), the separate chaining method is either competitive
or faster than the other methods depending on the load factor of the
table.

* So, if memory is not a major issue, the collision handling method of
choice is separate chaining.



Comparing ADT Map implementations

Search Insert Delete Ordered traversal
SortedArray O(logn) O(n) O(n) O(n)
AVL O(logn) O(logn) O(logn) O(n)

Hashing O(1) O(1) O(1) O(nlogn)



Choosing a Good Hash Function

* |deally, a hash function will map keys unifFormly and randomly onto the
entire range of the hash table locations with each location being equally
likely to be the target of the function for a randomly chosen key.



Example of a Bad Choice

Keys
- Strings of 3 ASCII characters
- 24-bit integer containing the 3 8-bit bytes

Use open addressing with double hashing.

Select atable size M = 28 = 256

Define our hashing function as h(k) = k mod 256



Example

* This hash function is a poor one because it selects the low-order
character of the three-character key as the value of h(k)

* |fthe keyis 321, when considered as a 24-bit integer, it has the numerical
value 3 x 2562 + 2 x 256! + 1 x 256°

* Thus when we do the modulo 256 operation, we get the value 1



Example

« “Similar” keys create collisions
h(AAA) = h(ABA) = h(ACA) = h(BAA) = ...

« Thus this hash function will create and preserve clusters instead of
spreading them as a good hash function will do.

» Hash functions should take into account all the bits of a key, not just
some of them.



Hash Functions

Hash function h(k) as consisting of two actions:

 Hash code

- Map the key kto an integer

 Compression Function
- Map the hash code to the range of indicesOto M — 1



Hash Codes

« The first action that a hash function performs is to take an arbitrary key
and map it into an integer value.

* Thisinteger need not be in therange 0 to M — 1 and may even be
negative, but we want the set of hash codes to avoid collisions.

 |f the hash codes of our keys cause collisions, then there is no hope for the
compression function to avoid them.



Hash Codesin C

« The hash codes described below are based on the assumption that the
number of bits of each data type is known.



Converting to an Integer

« Forany data type thatis D represented using at most as many bits as our
integer hash codes, we can simply take an integer interpretation of the
bits as a hash code for elements of D.

« Thus, for the C basic types char, short int and int, we can achieve a
good hash code simply by casting this type to int.



Converting to an Integer

« On many machines, the type long int has a bit representation thatis
twice as long as type int.

« One possible hash code for a long element is to simply cast it down to an
int.

* But notice that this hash code ignores half of the information presentin
the original value. So if many of the keys differ only in these bits, they will
collide using this simple hash code.

* A better hash code, which takes all the original bits into consideration,
sums an integer representation of the high-order bits with an integer
representation of the low-order bits.



Converting to an Integer

* In general, if we have an object £ whose binary representation can be
viewed as a k-tuple of integers (zg, 1, ..., Tr_1), we can form a hash

k—1
codeforas ) ., x;

- Example: Given any floating-point number, we can sum its mantissa and
exponent as long integers and then apply a hash code for long integers to

the result.



Summation Hash Codes

* The summation hash code, described above, is not a good choice for
character strings or other variable-length objects that can be viewed as
tuples of the form (zg, 1, ..., Tr_1) where the order of the x;'s is
significant.

- Example: Consider a hash code for a string s that sums the ASCII values of
the charactersin s. This hash code produces lots of unwanted collisions for
common groups of strings e.g., temp01 and temp10.

* A better hash code should take the order of the x;'s into account.



Polynomial Hash Codes

Let be an integer constant such thata # 1

We can use the polynomial
woak_l -+ wlak_2 + o+ X200 + Th_1

as a hash code for (g, €1, ..., Tr_1).

This is called a polynomial hash code.

To evaluate the polynomial we should use the efficient Horner’s method:

rp 1+ a(zg_o+alry_s+ - +a(zxr +ax,))...))



Polynomial Hash Codes

« Experiments show thatin a list of over 50,000 English words, if we choose
a= 33, 37, 39, 41 we produce less than seven collisions in each case.

« For the sake of speed, we can apply the hash code to only a fraction of the
characters in a long string.



Polynomial Hash Codes

// dbj2 hash function

uint hash_string(Pointer value) {
uint hash = 5381;

value; *s I= '\0'; s++)

for (char* s =
= (hash * 33)+ *s;

hash

return hash;

}



Polynomial Hash Codes

 In theory, we first compute a polynomial hash code and then apply the
compression function modulo M

* The previous hash function takes the modulo M at each step.

* The two approaches are the same because the following equality holds for
all a, b, ¢, M that are nonnegative integers:

(((az) mod M) +b) mod M = (ax +b) mod M

« The approach of the previous function is preferable because, otherwise,
we get errors with long strings when the polynomial computation
produces overflows (try it!).



Hashing Floating Point Quantities

« We can achieve a better hashing function for floating point numbers than
casting them down to int as follows.

« Assuming that a char is stored as an 8-bit byte, we could interpret a 32-

bit float as a four-element character array and use the hashing
Functions we discussed for strings.



Some Applications of Hash Tables

« Databases
« Symbol tables in compilers
* Browser caches

« Peer-to-peer systems and torrents (distributed hash tables)



Readings

« T.A.Standish. Data Structures, Algorithms and Software Principles in C.
Chapter 11

« M.T. Goodrich, R. Tamassia and D. Mount. Data Structures and Algorithms
in C++. 2nd edition. Chapter 9

« R.Sedgewick. AAyopiBuot o C. 3n Apepikavikn Ekdoon. EkOOTELC
KAedapiBuoc. KepdAatio 14






