Package: spStack 1.1.2.9000

spStack: Bayesian Geostatistics Using Predictive Stacking

Fits Bayesian hierarchical spatial and spatial-temporal process models for point-referenced Gaussian, Poisson, binomial, and binary data using stacking of predictive densities. It involves sampling from analytically available posterior distributions conditional upon candidate values of the spatial process parameters and, subsequently assimilate inference from these individual posterior distributions using Bayesian predictive stacking. Our algorithm is highly parallelizable and hence, much faster than traditional Markov chain Monte Carlo algorithms while delivering competitive predictive performance. See Zhang, Tang, and Banerjee (2025) <doi:10.1080/01621459.2025.2566449>, and, Pan, Zhang, Bradley, and Banerjee (2025) <doi:10.48550/arXiv.2406.04655> for details.

Authors:Soumyakanti Pan [aut, cre], Sudipto Banerjee [aut]

spStack_1.1.2.9000.tar.gz
spStack_1.1.2.9000.zip(r-4.6)spStack_1.1.2.9000.zip(r-4.5)spStack_1.1.2.9000.zip(r-4.4)
spStack_1.1.2.9000.tgz(r-4.6-x86_64)spStack_1.1.2.9000.tgz(r-4.6-arm64)spStack_1.1.2.9000.tgz(r-4.5-x86_64)spStack_1.1.2.9000.tgz(r-4.5-arm64)
spStack_1.1.2.9000.tar.gz(r-4.6-arm64)spStack_1.1.2.9000.tar.gz(r-4.6-x86_64)spStack_1.1.2.9000.tar.gz(r-4.5-arm64)spStack_1.1.2.9000.tar.gz(r-4.5-x86_64)
spStack_1.1.2.9000.tgz(r-4.5-emscripten)
spStack.pdf |spStack.html
spStack/json (API)
NEWS

# Install 'spStack' in R:
install.packages('spStack', repos = c('https://span-18.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/span-18/spstack-dev/issues

Pkgdown/docs site:https://span-18.github.io

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
Datasets:
  • simBinary - Synthetic point-referenced binary data
  • simBinom - Synthetic point-referenced binomial count data
  • simGaussian - Synthetic point-referenced Gaussian data
  • simPoisson - Synthetic point-referenced Poisson count data
  • sim_stvcPoisson - Synthetic point-referenced spatial-temporal Poisson count data simulated using spatially-temporally varying coefficients

On CRAN:

Conda:

openblascpp

5.50 score 1 stars 18 scripts 173 downloads 18 exports 54 dependencies

Last updated from:329bd5b9ad. Checks:13 OK. Indexed: yes.

TargetResultTotal timeArtifact
linux-devel-arm64OK241
linux-devel-x86_64OK251
source / vignettesOK347
linux-release-arm64OK214
linux-release-x86_64OK236
macos-devel-arm64OK231
macos-devel-x86_64OK330
macos-release-arm64OK153
macos-release-x86_64OK296
windows-develOK187
windows-releaseOK193
windows-oldrelOK274
wasm-releaseOK171

Exports:candidateModelscholUpdateDelcholUpdateDelBlockcholUpdateRankOneget_stacking_weightsiDistposteriorPredictrecoverGLMscalesim_spDataspGLMexactspGLMstackspLMexactspLMstackstackedSamplerstvcGLMexactstvcGLMstacksurfaceplotsurfaceplot2

Dependencies:abindbackportsBHbitbit64checkmateclicodetoolscpp11CVXRdigestdistributionalECOSolveRfarverfuturefuture.applygenericsggplot2globalsgluegmpgtableisobandlabelinglatticelifecyclelistenvloomagrittrMatrixmatrixStatsMBAnumDerivosqpparallellypillarpkgconfigposteriorR6RColorBrewerRcppRcppEigenrlangRmpfrrstudioapiS7scalesscstensorAtibbleutf8vctrsviridisLitewithr

Posterior Predictive Inference

Rendered fromposterior-predictive.Rmdusingknitr::rmarkdownon Feb 10 2026.

Last update: 2025-07-12
Started: 2025-07-08

Spatial Regression Models

Rendered fromspatial.Rmdusingknitr::rmarkdownon Feb 10 2026.

Last update: 2025-07-12
Started: 2025-07-08

Spatial-Temporal Regression Models

Rendered fromspatial-temporal.Rmdusingknitr::rmarkdownon Feb 10 2026.

Last update: 2025-07-12
Started: 2025-07-08

spStack: Bayesian Geostatistics Using Predictive Stacking

Rendered fromspStack.Rmdusingknitr::rmarkdownon Feb 10 2026.

Last update: 2025-07-12
Started: 2024-09-29

Technical Overview

Rendered fromtechnical_overview.Rmdusingknitr::rmarkdownon Feb 10 2026.

Last update: 2025-07-11
Started: 2025-07-08

Readme and manuals

  • Image