Package: spStack 1.1.2.9000

spStack: Bayesian Geostatistics Using Predictive Stacking
Fits Bayesian hierarchical spatial and spatial-temporal process models for point-referenced Gaussian, Poisson, binomial, and binary data using stacking of predictive densities. It involves sampling from analytically available posterior distributions conditional upon candidate values of the spatial process parameters and, subsequently assimilate inference from these individual posterior distributions using Bayesian predictive stacking. Our algorithm is highly parallelizable and hence, much faster than traditional Markov chain Monte Carlo algorithms while delivering competitive predictive performance. See Zhang, Tang, and Banerjee (2025) <doi:10.1080/01621459.2025.2566449>, and, Pan, Zhang, Bradley, and Banerjee (2025) <doi:10.48550/arXiv.2406.04655> for details.
Authors:
spStack_1.1.2.9000.tar.gz
spStack_1.1.2.9000.zip(r-4.6)spStack_1.1.2.9000.zip(r-4.5)spStack_1.1.2.9000.zip(r-4.4)
spStack_1.1.2.9000.tgz(r-4.6-x86_64)spStack_1.1.2.9000.tgz(r-4.6-arm64)spStack_1.1.2.9000.tgz(r-4.5-x86_64)spStack_1.1.2.9000.tgz(r-4.5-arm64)
spStack_1.1.2.9000.tar.gz(r-4.6-arm64)spStack_1.1.2.9000.tar.gz(r-4.6-x86_64)spStack_1.1.2.9000.tar.gz(r-4.5-arm64)spStack_1.1.2.9000.tar.gz(r-4.5-x86_64)
spStack_1.1.2.9000.tgz(r-4.5-emscripten)
spStack.pdf |spStack.html✨
spStack/json (API)
NEWS
| # Install 'spStack' in R: |
| install.packages('spStack', repos = c('https://span-18.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/span-18/spstack-dev/issues
Pkgdown/docs site:https://span-18.github.io
- simBinary - Synthetic point-referenced binary data
- simBinom - Synthetic point-referenced binomial count data
- simGaussian - Synthetic point-referenced Gaussian data
- simPoisson - Synthetic point-referenced Poisson count data
- sim_stvcPoisson - Synthetic point-referenced spatial-temporal Poisson count data simulated using spatially-temporally varying coefficients
Last updated from:329bd5b9ad. Checks:13 OK. Indexed: yes.
| Target | Result | Total time | Artifact |
|---|---|---|---|
| linux-devel-arm64 | OK | 241 | |
| linux-devel-x86_64 | OK | 251 | |
| source / vignettes | OK | 347 | |
| linux-release-arm64 | OK | 214 | |
| linux-release-x86_64 | OK | 236 | |
| macos-devel-arm64 | OK | 231 | |
| macos-devel-x86_64 | OK | 330 | |
| macos-release-arm64 | OK | 153 | |
| macos-release-x86_64 | OK | 296 | |
| windows-devel | OK | 187 | |
| windows-release | OK | 193 | |
| windows-oldrel | OK | 274 | |
| wasm-release | OK | 171 |
Exports:candidateModelscholUpdateDelcholUpdateDelBlockcholUpdateRankOneget_stacking_weightsiDistposteriorPredictrecoverGLMscalesim_spDataspGLMexactspGLMstackspLMexactspLMstackstackedSamplerstvcGLMexactstvcGLMstacksurfaceplotsurfaceplot2
Dependencies:abindbackportsBHbitbit64checkmateclicodetoolscpp11CVXRdigestdistributionalECOSolveRfarverfuturefuture.applygenericsggplot2globalsgluegmpgtableisobandlabelinglatticelifecyclelistenvloomagrittrMatrixmatrixStatsMBAnumDerivosqpparallellypillarpkgconfigposteriorR6RColorBrewerRcppRcppEigenrlangRmpfrrstudioapiS7scalesscstensorAtibbleutf8vctrsviridisLitewithr
Posterior Predictive Inference
Rendered fromposterior-predictive.Rmdusingknitr::rmarkdownon Feb 10 2026.Last update: 2025-07-12
Started: 2025-07-08
Spatial Regression Models
Rendered fromspatial.Rmdusingknitr::rmarkdownon Feb 10 2026.Last update: 2025-07-12
Started: 2025-07-08
Spatial-Temporal Regression Models
Rendered fromspatial-temporal.Rmdusingknitr::rmarkdownon Feb 10 2026.Last update: 2025-07-12
Started: 2025-07-08
spStack: Bayesian Geostatistics Using Predictive Stacking
Rendered fromspStack.Rmdusingknitr::rmarkdownon Feb 10 2026.Last update: 2025-07-12
Started: 2024-09-29
Technical Overview
Rendered fromtechnical_overview.Rmdusingknitr::rmarkdownon Feb 10 2026.Last update: 2025-07-11
Started: 2025-07-08
