
Simon Brown

Software architecture
for developers

Simon Brown
Independent consultant specialising in software architecture,

plus the creator of the C4 model and Structurizr

Scheduled for release July 2026,
early access available now

via the O’Reilly platform

Simon Brown

The
C4 Model
Visualizing Software Architecture

What is software
architecture?

Structure
The definition of software in terms

of its building blocks and their interactions

Vision
The process of architecting;

making decisions based upon business goals,
requirements and constraints,

plus being able to communicate this to a team

Enterprise Architecture
Structure and strategy across people, process and technology

System Architecture
High-level structure of a software system

(software and infrastructure)

Application Architecture
The internal structure of an application

“ ”
As a noun, design is the named structure
or behaviour of a system … a design thus

represents one point in a potential
decision space.

Grady Booch

“ ”All architecture is design, but
not all design is architecture.

Grady Booch

“ ”
Architecture represents the

significant decisions, where significance
is measured by cost of change.

Grady Booch

As architects, we define
the significant decisions

Technology
Programming languages, libraries, frameworks,

deployment environments, etc

Elements
How software is decomposed into smaller executable

building blocks at different levels of abstraction
(e.g. monoliths vs microservices, package by layer vs

package by feature) and how data is stored
(e.g. data schemas and formats)

Relationships
Dependencies and interactions between elements

(e.g. synchronous vs asynchronous communication,
data formats, protocols, etc)

What happens if a software
development team doesn’t
think about architecture?

Chaos
Big ball of mud, spaghetti code, inconsistent
approaches to solving the same problems,
quality attributes are ignored, deployment

problems, maintenance issues, etc

vs
Software

Architecture
Document

Big design
up front

No design
up front

“ ”Big design up front is dumb.
Doing no design up front

is even dumber.
Dave Thomas

Software architecture
helps us avoid chaos

Architectural
drivers

Requirements
drive architecture

(use cases, user stories, features, etc)

Requirement
"a thing that is needed or wanted"

(this includes experiments and hypotheses too)

Don’t start designing software
if you have no inputs

Quality attributes
(also known as non-functional requirements,

cross-cutting concerns, service-level agreements, etc)

What quality attributes
might be relevant for the
”Financial Risk System”?

Create a checklist of
quality attributes you
regularly encounter

Performance
Scalability
Availability
Security
Disaster Recovery
Accessibility
Monitoring
Management
Audit
Flexibility
Extensibility
Maintainability
Interoperability
Legal
Regulatory
Compliance
i18n
L10n

Understand how to capture, refine
and challenge quality attributes

Software lives in the real world,
and the real world has

constraints

Typical constraints include
time and budget, technology,
people and skills, politics, etc

Constraints can sometimes
be prioritised

Principles
are selected by the team

Development principles include
coding conventions, naming

guidelines, testing approaches,
review practices, etc

Architecture and design principles
typically relate to modularity

or crosscutting concerns
(architectural layering, separation of concerns,
stateless vs stateful, rich vs anaemic domain,

security, error handling, logging, etc)

Ensure you have a good
understanding of the requirements,

quality attributes, constraints
and principles to create

sufficient foundations

What about agile,
and agility?

Agile is about moving fast,
embracing change, releasing often,

getting feedback, …

Agile is about a mindset of
continuous improvement

Inspect and adapt

“ ”Continuous attention to
technical excellence and

good design enhances agility.
Principle 9 of the Manifesto for Agile Software Development

A good architecture
enables agility

A good architecture rarely
happens through

architecture-indifferent design

Monolithic
big ball of mud

Modular
monolith

Microservices

Distributed
big ball of mud

Number of deployment units

M
od

ul
ar

ity

Agility is a
quality attribute

The software
architecture role

Software development
is not a relay sport

Software
Architecture
Document

AaaS
Architecture as a Service

The software architecture role
is about the “big picture”

and, sometimes, this means
stepping away from the code

Architectural drivers
Understanding the goals;

capturing, refining, and challenging
the requirements and constraints.

Designing software
Creating the technical strategy,

vision, alignment, and roadmap.

Technical risks
Identifying, mitigating and owning
the technical risks to ensure that

the architecture “works”.

Technical leadership
Continuous technical leadership

and ownership of the architecture
throughout the software delivery.

Quality assurance
Introduction and adherence to

standards, guidelines, principles,
etc plus management of

technical debt.

The software architecture role
(technical leadership, and responsible for the technical success of the project/product)

“ ”Software development teams
don’t need architects

Software development teams
do need technical leadership

Every team needs
technical leadership

Continuous
technical leadership
(somebody needs to continuously steer the ship)

Should software architects
write code?

Production code, prototypes,
frameworks, foundations, code

reviews, experimenting, etc

Don’t code all of the time!

There is often a tension between
being “senior” and writing code…

Software architects
should be

master builders

Progress Toward an Engineering Discipline of Software
Mary Shaw

Technology
skills

Good software architects
are typically

good software developers

The people designing software must
understand technology …

all decisions involve trade-offs

Soft skills
(leadership, communication, presentation, influencing,

negotiation, collaboration, coaching and mentoring,
motivation, facilitation, political, etc)

Domain knowledge
(or the ability to learn quickly)

The software architecture role
is multi-faceted

(technology, soft skills, domain knowledge)

Software architects,
solution architects,

tech leads,
principal engineers?

Technical priorities
vs

product priorities?

https://philippe.kruchten.com/wp-content/uploads/2011/10/kruchten-111027-techdebt.pdf

The product owner(s) and
software architect(s) are peers
(“Architecture Owner” is another term you can use)

“ ”Everybody should
be an architect

“everybody is responsible for architecture”
!=

everybody being responsible for architecture

Everybody* should
own the architecture

“ ”
teams should be

agile, autonomous,
and self-organising

“ ”
just hire good people
and trust them to do

the right thing

Does everybody have the skills
and motivation to collaborate

on the software architecture role?

Product vs stream leadership

Service X

Team A
(original authors)

Team B
(adding code to support business capability 1)

Team C
(adding code to support business capability 2)

Hierarchies of architects,
central architecture groups,
technical design authorities,

etc?

Decision making
Centralised vs decentralised

Tactical vs strategic

“Architecture advice process”

Andrew Harmel-Law

Facilitating
Software
Architecture
Empowering Teams
to Make Architectural
Decisions

Introducing control?
Avoiding chaos?

How much control do you need?

Different types of teams need
different leadership styles

Pair architecting

Collaborative technical leadership
is not easy

Collaborate
or fail

Draw one or more
software architecture

diagrams to describe a
solution for the

”Financial Risk System”

c4model.com/frs

⏱ = 1.5 hours
(15:15)

Did you find anything
about this exercise

challenging?

Swap your diagrams
with another group

Review the diagrams
Focus on the diagrams: notation, colour coding, symbols, etc

3 things you like
3 things that could be improved

A score between 1-10

1 1 1 2 2 2

Information is likely
still stuck in your heads

“ ”This doesn’t make sense,
but we’ll explain it.

• What is this shape/symbol?
• What is this line/arrow?
• What do the colours mean?
• What level of abstraction is shown?
• Which diagram do we read first?

7

7

7

7

7

7

6

If you’re going to use “boxes & lines”,
at least do so in a structured way,
using a self-describing notation

Moving fast in the same direction
as a team requires

good communication

Do you use UML?

In my experience,

few people use UML

#2 “Not everybody else on the team knows it.”
#3 “I’m the only person on the team who knows it.”

#36 “You’ll be seen as old.”
#37 “You’ll be seen as old-fashioned.”

#66 “The tooling sucks.”
#80 “It’s too detailed.”

#81 “It’s a very elaborate waste of time.”
#92 “It’s not expected in agile.”

#97 “The value is in the conversation.”

Who are the stakeholders that
you need to communicate
software architecture to;

what information do they need?

There are many different audiences for diagrams
and documentation, all with different interests

(software architects, software developers, operations and support staff, testers,
Product Owners, project managers, Scrum Masters, users, management,

business sponsors, potential customers, potential investors, …)

Our diagramming toolbox should
include UML, ArchiMate, SysML,

BPML, DFDs, ERDs, etc

“ ”
To describe a software architecture,

we use a model composed of
multiple views or perspectives.

Architectural Blueprints - The “4+1” View Model of Software Architecture
Philippe Kruchten

“ ”Our architecture diagrams
don’t match the code.

“model-code gap”

Top-down view
(components, layers, subsystems, bounded contexts, etc)

Bottom-up view
(classes, interfaces, enums, functions, etc)

Would you code it that way?
(ensure that your diagrams reflect

your implementation intent)

Is that how it really works?
(ensure that your diagrams reflect

your actual codebase)

We lack a common vocabulary
to describe software architecture

https://en.wikipedia.org/wiki/Circuit_diagram

https://en.wikipedia.org/wiki/Component_diagram

“ ”Component
a modular unit with well-defined Interfaces
that is replaceable within its environment

https://www.omg.org/spec/UML/2.5.1/PDF

Software System

Web
Application

Logging
Component

Relational
Database

Ubiquitous
language

A common set of abstractions
is more important

than a common notation

Abstractions

A software system is made up of one or more containers (applications and data
stores), each of which contains one or more components, which in turn are

implemented by one or more code elements (classes, interfaces, objects, functions, etc).

Code Code Code

Component Component Component

Container
(e.g. client-side web app, server-side web app, console application,

mobile app, database schema, file system, object store, etc)

Container
(e.g. client-side web app, server-side web app, console application,

mobile app, database schema, fi

Container
(e.g. client-side web app, server-side web app, console application,

mobile app, database schema, fi

Software System

C4
c4model.com

System Context Containers Components Code

Zoom in

Zoom in

Zoom in

Static structure diagrams

Dynamic Deployment System Landscape

Supporting diagrams

Diagrams are maps
that help software developers navigate a large and/or complex codebase

4. Code (e.g. classes)
Component implementation details.

1. System Context
The system plus users and system dependencies.

2. Containers
The overall shape of the architecture and technology choices.

3. Components
Logical components and their interactions within a container.

Overview fi

Zoom & fi

Details on demand

Example
(available on c4model.com)

Level 1

System Context diagram

Level 2

Container diagram

Container diagramSystem context diagram

Zoom in to a software system

Level 3

Component diagram

Component diagramContainer diagram

Zoom in to a container

Level 4

Code diagram

Code diagramComponent diagram

Zoom in to a component

Notation

The C4 model is
notation independent

The C4 model is
notation independent

Should you adopt
a standard (visual) notation?

Titles
Short and meaningful, include the diagram type and scope,

numbered if diagram order is important; for example:

System Context View for Internet Banking System
System Context View: Internet Banking System
[System Context View] Internet Banking System

Visual consistency
Try to be consistent with notation

and element positioning across diagrams

Acronyms
Be wary of using acronyms, especially those related

to the business/domain that you work in

Boxes
Start with simple boxes containing the element name, type,
technology (if appropriate) and a description/responsibilities

Internet Banking System
[Software System]

Allows customers to view information
about their bank accounts and make

payments via the web.

Personal Banking
Customer

[Person]

A customer of the bank with one or
more personal bank accounts.

Core Banking System
Adapter

[Component: Spring Bean]

A Java wrapper around the API provided
by the Core Banking System.

Backend
[Container: Java and Spring Boot]

Provides Internet banking functionality
via a JSON/HTTPS API.

Lines
Favour uni-directional lines showing the most important

dependencies or data flow, with an annotation to be explicit
about the purpose of the line and direction

No Yes

Summarise the intent of the relationship

UI
[Container]

Backend
[Container]

Makes an API request to

UI
[Container]

Backend
[Container]

Makes API calls using

Sends an API response to

Summarise, yet be specific

UI
[Container]

Backend
[Container]

UI
[Container]

Backend
[Container]

Makes API calls using

Uses

Show both directions when
the intents are different

Service A
[Container]

Service B
[Container]

Requests a list of customers from
[JSON/HTTPS]

Sends new customers to
[Kafka topic X]

Show both directions when
the intents are different

Service A
[Container]

Service B
[Container]

Requests a list of customers from
[JSON/HTTPS]

Sends new customers to
[Kafka topic X]

Add more words to make the intent explicit

Trade Data System
[Software System]

Financial Risk System
[Software System]

Trade data

Trade Data System
[Software System]

Financial Risk System
[Software System]

Sends trade data to

If in doubt, read the relationship

Web Application
[Container]

Database
[Container]

Reads from and writes to

Web Application
[Container]

Database
[Container]

Reads from and writes to

Key/legend
Explain shapes, line styles, colours, borders, acronyms, etc

… even if your notation seems obvious!

Arrowheads
Be careful, using different
arrowheads is very subtle;

readers may miss them

Use shape, colour and size
to complement a diagram
that already makes sense

Be careful with icons

Increase the readability of
software architecture diagrams,

so they can stand alone

Any narrative should complement
the diagram rather than explain it

Abstractions first,
notation second

Ensure that your team has a ubiquitous
language to describe software architecture

A set of hierarchical
abstractions

(software systems, containers,
components, and code)

A set of hierarchical
diagrams

(system context, containers, components,
and code)

Notation independent

The C4 model is…

Tooling independent

Draw System Context
and Container

diagrams to describe a
solution for the

”Financial Risk System”

c4model.com/frs

⏱ = finish diagrams
by 14:00

Designing software is where
the complexity should be,

not communicating it!

Similar levels of abstraction provide
a way to easily compare solutions

The diagrams should spark
meaningful questions

No
“What does that arrow mean?”

“Why are some boxes red?”
“Is that a Java application?”

“Is that a monolithic application, or a collection of microservices?”
“How do the users get their reports?”

Yes
“What protocol are your two Java applications using

to communicate with each other?”
“Why do you have two separate C# applications instead of one?”

“Why are you using MongoDB?”
“Why are you using MySQL when our standard is Oracle?”

“Should we really build new applications with .NET Framework
rather than .NET Core?”

Richer diagrams lead to
richer design discussions

Richer diagrams lead to
better communication,

making it easier to scale teams

Runtime/behavioural diagrams

Static structure diagrams
are very useful, but they
don’t tell the whole story

Use dynamic diagrams to describe
patterns or complex interactions

Deployment diagrams

Deployment is about the mapping
of containers to infrastructure

Deployment Node
Physical infrastructure (a physical server or device),

virtualised infrastructure (IaaS, PaaS, a virtual machine),
containerised infrastructure (a Docker container),
database server, Java EE web/application server,

Microsoft IIS, etc

A deployment node can contain
other deployment nodes or

software system/container instances

Infrastructure Node
Routers, firewalls, load balancers,
DNS providers, edge caches, etc

System landscape diagrams

FAQ

What's the inspiration
behind the C4 model?

How widely used
is the C4 model?

I’ve run software architecture
workshops

in ~40 countries
for 10,000+ people

across most industry sectors

My C4 model book is also
used as course material

in many other universities

Are the diagrams for design
or documentation purposes?

Perspectives

What about ownership, security,
technical debt, etc?

Perspectives
Rather than defining another viewpoint and
creating another view, we need some way

to modify and enhance our existing views to
ensure that our architecture exhibits the desired
quality properties. We therefore need something
in our conceptual model that can be considered
“orthogonal” to viewpoints, and we have coined

the term architectural perspective (which we
shorten to perspective) to refer to it.

https://www.viewpoints-and-perspectives.info/home/perspectives/

Event-driven architectures

Message-driven architectures

Message-driven
architectures

Abstraction
vs

organisation

“ ”What are your thoughts on modelling
additional abstractions?

Some of these concepts
are better thought of as

organisational constructs
rather than abstractions

Controller Layer

Service Layer

Repository Layer

❌

✅

✅

Apply this concept to subsystems,
bounded contexts, etc…

Microservices

A microservice should be modelled
as a software system

or a group of containers

Stage 1: 💵
(monolithic architecture)

Stage 2: 💵 💵
(microservices)

software system

Stage 3: 💵 💵 💵
(Conway’s Law)

Dependencies to
“external” containers

Showing “external” containers implies
some understanding of

implementation details, which makes
the diagrams more volatile to change

Tooling?

Documenting
software architecture

“ ”
Working software

over

comprehensive
documentation

Manifesto for Agile Software Development

The code doesn’t tell
the whole story

Useful information
spread across

hundreds of pages;
rarely read or updated

Software
Architecture
Document

Travel Guidebook
(maps, points of interest, sights, itineraries,
history, culture, practical information, etc)

Software Guidebook
(maps, points of interest, sights, itineraries,
history, culture, practical information, etc)

https://leanpub.com/documenting-software-architecture/c/free

The scope is a single
software system

Describe what you
can’t get from the code

Documentation should
be constantly evolving

This is a starting point; add and
remove sections as necessary.

Software
Architecture

A description of the software
architecture, including static

structure (e.g. containers and
components) and dynamic/

runtime behaviour.

Code
A description of important or

complicated component
implementation details,

patterns, frameworks, etc.

Data
Data models, entity

relationship diagrams,
security, data volumes,

archiving strategies, backup
strategies, etc.

Infrastructure
Architecture
A description of the

infrastructure available
to run the software system.

Deployment
The mapping of software (e.g.
containers) to infrastructure.

Context
A system context diagram,
plus some narrative text to

“set the scene”.

Functional
Overview

An overview of the software
system; perhaps including
wireframes, UI mockups,

screenshots, workflow
diagrams, business process

diagrams, etc.

Quality Attributes
A list of the quality attributes

(non-functional requirements;
e.g. performance, scalability,

security, etc).

Constraints
A list of the environmental
constraints (e.g. timescales,

budget, technology,
team size/skills, etc).

Principles
A list of the development and

architecture principles (e.g.
coding conventions,

separation of concerns,
patterns, etc).

Development
Environment

A description of how a new
developer gets started.

Operation and
Support

An overview of how the
software system is operated,
supported, monitored, etc.

Decision Log
A log of the major decisions

made; e.g. as free format text
or a collection of “Architecture

Decision Records”.

“Architecture
Decision Record”

A short description of an
architecturally significant decision

http://thinkrelevance.com/blog/2011/11/15/documenting-
architecture-decisions (Michael Nygard)

Immutable vs mutable ADRs?

Documentation format?
Microsoft Word, Microsoft SharePoint,

Atlassian Confluence, Markdown or AsciiDoc, etc

How long?
Something I can read in 1-2 hours;

a good starting point for exploring the code

How do you keep software
architecture documentation

up to date?

C4 model diagrams
+

software guidebook/arc42
+

architecture decision records

Software architecture
in practice

vs
Software

Architecture
Document

Big design
up front

No design
up front

“ ”Big design up front is dumb.
Doing no design up front

is even dumber.
Dave Thomas

Evolutionary
architecture

How much up front design
should you do?

0% 100%

“ ”it depends

Sometimes requirements are known,
and sometimes they aren’t

(enterprise software development vs product companies and startups)

“ ”just enough

Up front design is not
necessarily about creating a

perfect end-state or
complete architecture

Iteration (via prototyping and experimentation) is great for product design but…

you don’t just “build the car”

Evolutionary Design
Beginning With A Primitive Whole

Evolutionary Design
Beginning With A Primitive Whole

We’re not trying to
make every decision

“ ”I think there is a role for a broad starting point architecture. Such things as
stating early on how to layer the application, how you'll interact with the

database (if you need one), what approach to use to handle the web server.

Martin Fowler
https://martinfowler.com/articles/designDead.html

A starting point
adds value

If you don’t engage in the problem, you end up with
a very simplified and superficial view of the solution

Part of the design activity is about
discovering “unknown unknowns”

The typical s-curve of learning

Slow initial progress

Accelerated learning

Plateau

1. Is that what we’re going to build?

2. Is it going to work?

Diagrams are a visual checklist
for design decisions

System Context diagram
What is the scope of the software system we’re building?

Who is using it? What are they doing?
What system integrations does it need to support?

Container diagram
What are the major technology building blocks?

What are their responsibilities?
How do they communicate?

Understand the
structure

and create a
shared vision

Did the “Financial Risk System”
exercise feel like

big design up front?

1. Is that what we’re going to build?

2. Is it going to work?

Teams need to explicitly
manage technical risk

An example timeline from “Beyond Retrospectives”
Linda Rising, GOTO Aarhus 2011

Problems with new technology

Identify and mitigate
your highest priority risks

Low
1

Medium
2

High
3

Low
1 1 2 3

Medium
2 2 4 6

High
3 3 6 9

Im
pa

ct
Probability

The software architecture role
should own the technical risks

Architecturally significant?
costly to change | complicated | new

Like estimates,
risks are subjective

Visual and collaborative “games”

Risk-storming
A visual and collaborative technique for identifying risk

Threat modelling
(STRIDE, LINDDUN, Attack Trees, etc)

“ ”
Base your architecture on
requirements, travel light

and prove your architecture
with concrete experiments.

Agile Architecture: Strategies for Scaling Agile Development
Scott Ambler

Concrete experiment
Proof of concept, prototype, spike, tracer, vertical slice,
walking skeleton, executable reference architecture, …

Just enough up front design to create
firm and sufficient foundations

How much up front design
should you do?

#52

“I’m good with
maybe a day

for a one-year
effort.”

Up front design is an iterative and
incremental process; stop when:

You understand the significant
architectural drivers (requirements,

quality attributes, constraints).

You understand the context and scope
of what you’re building.

You understand the
significant design decisions

(i.e. technology, modularity, etc).

You have a way to communicate your
technical vision to other people.

You are confident that your design
satisfies the key architectural drivers.

You have identified, and are
comfortable with, the risks associated

with building the software.

Techniques: Workshops, interviews, Event Storming, Impact Mapping, domain modelling, OOAD, CRC, DDD,
architecture reviews, ATAM, architecture dry runs, Risk-storming, concrete experiments, C4 model, ADRs, etc.

How long?
Hours, days or weeks … not months or years

Some Design Up Front
+ Evolutionary Design

Some up front design to create a
starting point and direction

for further evolutionary design

Estimates?

Adopt an agile mindset
Choose a starting point and continuously improve

to discover what works for you

Simon Brown

Thank you!

