Software architecture
for developers

Simon Brown

Simon Brown

Independent consultant specialising in software architecture,
plus the creator of the C4 model and Structurizr

O'REILLY"

. HALL
Robert C. Martin Series ‘

Clean Architecture

A Craftsman’s Guide to
Software Structure and Design

Design It!

to Software Architect

~ Redefining the Architect's Role

in the Digital Enterprise

Software | | 4
architecture
sdevelopers model

for visualising software architecture

Robert C. Martin
@35 Grenning env Simon Brown

oveond by K Michael Keeling
Afterwond by Jason Gorman edited by Susannah Pfalzer

AR ICS
T’ BeE
GrEzPd

llllllllllll

Simon Brown Simon Brown 2+ Edition

OREILLY

Early
Release

RAW &
UNEDITED

Scheduled for release July 2026,
early access available now

Cll. oy ac O,Rellly platform

isualizing Software Architecture

Simon Brown

What is software
architecture?

Structure

The definition of software in terms
of its building blocks and their interactions

Vision
The process of architecting;

making decisions based upon business goals,
requirements and constraints,

plus being able to communicate this to a team

Enterprise Architecture

Structure and strategy across people, process and technology

System Architecture

High-level structure of a software system
(software and infrastructure)

As a noun, design is the namead structure
or behaviour of a system ... a design thus
represents one point in a potential
decision space.

Grady Booch

All architecture is design, but
not all design is architecture.

Grady Booch

Architecture represents the
significant decisions, where significance
IS measured by cost of change.

Grady Booch

As architects, we define
the significant decisions

Technology

Programming languages, libraries, frameworks,
deployment environments, etc

Flements

How software is decomposed into smaller executable
building blocks at different levels of abstraction

(e.g. monoliths vs microservices, package by layer vs
package by feature) and how data is stored

(e.g. data schemas and formats)

Relationships

Dependencies and interactions between elements
(e.g. synchronous vs asynchronous communication,
data formats, protocols, etc)

What happens if a software
development team doesn’t
think about architecture?

Chaos

Big ball of mud, spaghetti code, inconsistent
approaches to solving the same problems,
guality attributes are ignored, deployment

problems, maintenance issues, etc

Mang qe /e

\Pﬁ RAMETEL

Big design
up front

VS

Document

®
No design
Architecture >

up front

Big design up front is dumb.
Doing no design up front
IS even dumber.

Dave Thomas

Software architecture
nelps us avoid chaos

Architectural
drivers

Requirements
drive architecture

(use cases, user stories, features, etc)

Requirement
"a thing that is needed or wanteq"

(this includes experiments and hypotheses too)

Don't start designing software
If you have no inputs

Quality attributes

(also known as non-functional requirements,
Cross-cutting concerns, service-level agreements, etc)

What quality attributes
might be relevant for the
"Financial Risk System”?

m Performance

m Scalability

m Availability

m Security

m Disaster Recovery
m Accessibility

= Monitoring

= Management

m Audit

m Flexibility

m Extensibility

® Maintainability
m |[nteroperability
m | egal

m Regulatory

m Compliance
mi18n

m | 10n

Create a checklist of
guality attributes you
regularly encounter

Understand how to capture, refine
and challenge quality attributes

Software lives in the real world,
and the real world has

constraints

Typical constraints include
time and budget, technology,
people anda skills, politics, etc

Constraints can sometimes
pe prioritised

Principles

are selected by the team

Development principles include
coding conventions, naming
guidelines, testing approaches,

review practices, etc

Architecture and design principles
typically relate to modularity

Or crosscutting concerns

(architectural layering, separation of concerns,
stateless vs stateful, rich vs anaemic domain,
security, error handling, logging, etc)

Ensure you have a good
understanding of the requirements,
guality attributes, constraints

and principles to create
sufficient foundations

What about agile,
ana agility?

Agile is about moving fast,
embracing change, releasing often,
getting feedback, ...

Agile is about a mindset of
continuous improvement

Inspect and adapt

Continuous attention to
technical excellence and
good design enhances agility.

Principle 9 of the Manifesto for Agile Software Development

A good architecture
enables agility

S PN OIU G
SOFTWARE ARCHITECTURE

A RISK-DRIVEN APPROACH
GEORGE FAIRBANKS

FOREWORD BY DAVID GARLAN

T

e DR TR T EAE

.:‘l 4 i
N
e - N
G
s b

—
-
=

A good architecture rarely
nappens through
architecture-indifferent design

- Modularity --------semeemmmeeeeeeas

Microservices

Distributed
big ball of mud

Agility is a
quality attribute

The software
architecture role

Software development
IS not a relay sport

Software
Architecture

Document

AaaS

Architecture as a Service

The software architecture role
IS about the "big picture”
and, sometimes, this means
stepping away from the code

The software architecture role

(technical leadership, and responsible for the technical success of the project/product)

Architectural drivers Designing software Technical risks

Understanding the goals; . . ldentifying, mitigating and ownin
5 5 . Creating the technical strategy, y g .g 5 5
capturing, refining, and challenging w . the technical risks to ensure that
: . vision, alignment, and roadmap. .) ,
the requirements and constraints. the architecture “works”.

Quality assurance

Introduction and adherence to
standards, guidelines, principles,
etc plus management of
technical debt.

Technical leadership

Continuous technical leadership
and ownership of the architecture
throughout the software delivery.

Software development teams
don't need architects

Software development teams
do need technical leadership

Every team neeads
technical leadership

Continuous
technical leadership

(somebody needs to continuously steer the ship)

Should software architects
write code?

Production code, prototypes,
frameworks, foundations, code
reviews, experimenting, etc

Don't code all of the time!

There is often a tension between
peing “senior” and writing code...

Software architects
should be

master builders

software
development
methods

SCIENCE

PROFESSIONALL

ENGINEERING

\ emerging,

but spotty

~ 1990, adoption of
development methods

P Pl o) 4501/5425

Progress Toward an Engineering Discipline of Software
Mary Shaw

Technology
SKills

Good software architects
are typically
good software developers

The people designing software must
understand technology ...

all decisions involve trade-offs

— -Reads from-

A

[Software System)]

Soft skills

(leadership, communication, presentation, influencing,
negotiation, collaboration, coaching and mentoring,

motivation, facilitation, political, etc)

OREILLY"

Redefining the Architect's Role

in the Digital Enterprise

Domain knowledge

(or the ability to learn quickly)

The software architecture role
s multi-faceted

(technology, soft skills, domain knowledge)

Software architects,
solution architects,
tech leads,
principal engineers?

Technical priorities
VS
product priorities?

What'’s in your backlog?

Visible Invisible

Positive Visible Hidden,
| Feature architectural
Value feature

Negative Technical
Value Debt

Source: What colours is your backlog, at http://philippe.kruchten.com/talks

Copyright © 2011 by Philippe Kruchten 28

https://philippe.kruchten.com/wp-content/uploads/2011/10/kruchten-111027-techdebt.pdf

The product owner(s) and
software architect(s) are peers

("Architecture Owner” is another term you can use)

Everybody should
pbe an architect

“everybody is responsible for architecture”

everybody being responsible for architecture

Everybody” should
own the architecture

teams should be
agile, autonomous,
and self-organising

just hire good people
anda trust them to do
the right thing

Does everybody have the skills
and motivation to collaborate
on the software architecture role?

i X

i X

hd

Team A Team

original author (adding code to support business ca

d L

B

pability 1)

o o

D

§

Team C

(adding code to support business ca

Product vs stream leadership

pability 2)

Hierarchies of architects,
central architecture groups,
technical design authorities,

etc?

Decision making

Centralised vs decentralised
Tactical vs strategic

O'REILLY"

Facilitating
Software
Architecture

Empowering Teams
to Make Architectural

Decisions

Andrew Harmel-Law

"Architecture advice process”

Introducing control?
Avoiding chaos?

How much control do you need?

s arowing
self-organizing
teams

Roy Osherove

/“ MANNING

Different types of teams need
different leadership styles

Pair architecting

Collaborative technical leadership
IS not easy

Collaborate
or fail

Draw one or more
software architecture
diagrams to describe a
solution for the
"Financial Risk System”

@ = 1.5 hours
(15:15)

c4dmodel.com/frs

Did you find anything
about this exercise
challenging?

Challonginoy !

\/e(i,&ins BEGRCOATEASS (
t xere‘ A os Uohn

+ o a clor we

’uﬁf—"?ﬁ"ﬁ =

&

~o3) 4 mr s Jy dostachen

B ik dukal?

& Challogine

el - osk QuaShanS /

vwoke ass ‘O honS

= "o v ~hy f,, WS o deAadd
Clen do we -\\’\h" >)

How Mg ¢ toul

1 a\hv(ﬂ Ao 2 4han *‘L(_

RRet tahon? _oves

—_— ‘4_‘ \."\Vbs

Swap your diagrams
with another group

Review the diagrams

Focus on the diagrams: notation, colour coding, symbols, etc

3 things you like . . .

3 things that could be improved
A score between 1-10 .

| Les DATO
| SisTE1 [

¥ { PATA STIEE
NETwoRkr DIk,

7\ S ccac SEL\,.@,—;\A
(DR'TT” PoLL SARVICE |)
e 7;“1. E
eC DT :{ fcfcj—._b Cc),.

AM VALDETIR

___[oem TrAsseeremay | _@lcks 5
eeemy vemmon | > D

l/"_n I | entwere

I~ o R~
—tc P (Cv L9 i (B i

(22N EvenT ; R

o & Ky

pritag ENGING.
A+8 = <

3 ey

Information is likely
still stuck in your heads

This doesn't make sense,
put we'll explain it.

What is this shape/symbol? 3
- wrLCTING | S
What is this line/arrow? B Ve O

peTale N A

What do the colours mean?

B ThE. SwarefRGET
| F LGS s it ¥ ')\\ MM” LS 1
)OO T N7

What level of abstraction is shown? .

Which diagram do we read first? sty No’rSr“L\
DG - Lk kot

—UNCTIONAL - VIEW

s MANALGE /€ T
CALCOUATION
S vl oY /J\
\\WMTOIM@ \(
Refo
\“‘”""’” T
L

Rectare - M?"T

—

e R
DATH PoLt- SRviICE '.@\

R

DATA Readpce

= DATA TRANSARORTION |

D"‘ _______/ ON“GQ‘T\’ vﬂ_‘-. ~ . (a,k'
DY E
EVGNT(

J w u -
a— ——

R ————,
RS
TRANSPET & LOEC
RS | NG

! é:(ﬁﬂag—J

180SS (VGAME CweR (ol vk J

T ——— i e ——

)) 'y - :
WPl | o |

-“ 4'-‘ y,__-' a

4
R

v
FAY, |

> pr. N
IV Ll rmn o s A

f

§
1
S i

=/ Parametecs
(U((eﬂ'{ da‘a

A |

‘ \Nanel al
.. Risw
V,
l ?aramefe(

Ul

(oyﬂmurﬁ(.a{“'@ﬂ ou{'ﬁe&!e FR contex |
— Communication inside FR context

(,ommunicah'm QllfoJ3 FQ (amle,x{- l)vunola:(j

E i Users

Software 5;)5{6‘47\5

TRADE
DATA

- SIS M

(&N F (6
TF\BLE eL*"

'S'NMV”

Wy

r

MAIL
e

s ER

™MANAGEMENT

/7

(RETTTE
REAR'

il e s !

wﬁd
(03—‘

v,
E‘
<
V)

l&

—

(ENTRAL

gQJf vl
\
)

|

Poblorizali Con Ficﬁ me;hr;w | R
g O ‘

r i

Do&o\ P\ehieucj

=T i

Losi C | Kerof C Generator

N

/
— Cigs S \

\ L iee
\ \
| .
- f)mL

\
-

=

< Soreg (ORM) |
e

-
3 ARCHWE / \

"’{ RETENTON
C\eaN\\ND

\

ﬁf{ﬂm HANDLING

| S—

Tf]oz\\ \Si)\v\\b §

T

—_—
'oba
= ' ba

Fr (bear

CArucdure

T0S | RDS :
B, 2

FiLEsvA DeGiSToNS - L
¢ CALCULATioNS ARE A YB TL%ELED
ON SIME DULE ¥y

’x -- « &E((ﬂﬁ CRLCULETiok |V \ ‘
1 Fvanciat face Sestem sl PR EAot e R

L WEQU FR MEwilg RE{CE

Bho reDIEYivg RISK prermetEes. EEN
WWUTHENTIE AV Autrokize usEres [
RgED N $30

z?‘m@uz PoiNT OF EMT%

Ly Fivmione Rici Sua R Ak | i
T;{“\é\p :{F/CE”‘MQH G
Dmnwmrspf——?j o

Uk caLcuLhTion
PG WETER. SERUCE

y . o

\
wEG @ j

|

cowntexT J Bu)l'v&&bs (/(SZF FR Q- g

TS - -
ROSSE o

crl$= Ceg:tra'
rgowtoriv
yﬂ-em

Google software architecture diagram X § @ Q
All Images Videos News Books Maps Web : More Tools
= = Ty s =] __] - L, L ;',
. . . . - P | 1 bl . - - . ,E e ' =

= = Software engineering . ~=~ Visio ; - System Umi ‘s Design « Simple “ Azure | = Component
— s-EEE - . = ol ‘ U I &= o
= -y —_— I - — o
—___JI R AA L CL Bl : 2-Tier Scalable Web Application Architecture in 1 Zone

Ve —— - T - .

.é» B) ‘asew ap ' L e Ak A 1 ———— o . .
: e g e E E St ol Niema
" o S = | 0 — @ — e il aeepm — = = pe
- g ‘:'f:‘ }) ‘T T ——te - | m—e | Ao 51 . ' | . ~—r———
, - . === - =
: e [= = = B - B * :
> -t ™ = - s =, = PN E] o
. 7 . il e e = = -

i == | = E @ = 2 & 23
m Miro 2 Edrawsoft Nulab % Visual Paradigm Online

Software Architecture Diagramming

LY Lucidchart
Draw 5 Types of Architectural D...

— x>
$5 (S {1 Elm
i_ "* o e . - Cn———
’—.
‘ - ' .{u—-
! - A

B IcePanel - Medium

Top 8 diagramming tools for software ...

Software Architecture Diagram | Ed...

What is an architecture diagram, ...

Apphcation Architecrere S L l
g I — il .-
Orcheutretion Apphiotne Lasbuope Dats Maasgreaeet REES e *+
£ | e i 5 ()
H =
—g } B . oo

[T] 'm‘

D Edrawsoft
Application Architecture Diagram: A ...

o
R
Lewene
opaciton Lace - —
Cnda » ey -*’
— o Q
o “ 8 B .
_-rrees : Avbse b
R 1 ’ -
&

H

{} LaTeX Stack Exchange

I1esctussenttas F -

creating software architecture diagram ...

R° ResearchGate
Instrumentation Software Architect...

R° ResearchGate

Software Architecture Diagram | Visual ...

Software architecture di...

PRESENTATION LOGHC

Mol Huly ww o
oo yhote

L .
At | 5 z

- et Pots @~ (e
g . Mo . - g R
s ;. N - L
B
3 ;.' Apynrearces
. cob or meweege
SlideModel

Four Layers Modern Web Application ...

Medium
Top 9 Architecture diagram software for ...

= e
-t Game | i o N
.

© YouTube
Create Software Architecture Diagrams ...

/ —
'''''' - Fon e
.y R et
— . e
Fvraabe e A PO e o
ra r —
r————— eon . e s
>-- [N :
cawat .
oor cemee [] commperana D evvean
~nnre T By G
\1_14--»—.——- b (S—
- =] - aormer /
—— ——
oo .

LY Lucidchart
Draw 5 Types of Architectural Diagrams ...

4 - — ! =)
5 Cuabess - - —dt =l =
R e o == I == =
i | = = F-F = & -
: A S 2=
i , | = :
A —— - B S
> —— —t - r —_— =)
n-:mu- Teet Wiaage u::.u $ - =) l',"..':' "‘;_—_) C—
Tty e ‘ -t - L — 4
. e - A . —_——e
-------- 1 l = o =ri= WA '
1 Q. = - o A== =) Y el
1 1 | —— o § e 3
A W= T
1 ! =) === | me==
L--‘!m--: e Inhurngins e : _—
Ngure 2
= Stack Overflow 8 predic8

tools for architectural diagram ...

What is Software Architecure

4 Red Hat
5 great diagramming tools for ...

. . Software. . =
-.... — Architectural Patterns ..
[LinkedIn

Software architecture diagramming and ...

If you're going to use “boxes & lines”,
at least do so in a structured way,
using a self-describing notation

Moving fast in the same direction
as a team requires

good communication

Do you use UML?

In my experience,

few people use UML

#2 "Not everybody else on the team knows it.”
#3“I'm the only person on the team who knows it.”
#36 “YoU'll be seen as old.”

#37 “YoU'll be seen as old-fashioned.”

#66 "The tooling sucks.”

#30 “It's too detailed.”

97 Ways t() #31 “It's a very elaborate waste of time.”
' “It's not expected in agile.”
Sidestep UML

#97 “The value is in the conversation.”

Knowfa Malliry

Lefols
olsT @l@u-now

PaRAMETEL

Risk Calculation

V

Report Creation

Parameter Management

Monitoring

Report Distribution

Who are the stakeholders that
you need to communicate
software architecture to;
what information do they need?

o

d L

There are many different audiences for diagrams
and documentation, all with different interests

(software architects, software developers, operations and support staft, testers,

Product Owners, project managers, Scrum Masters, users, management,
business sponsors, potential customers, potential investors, ...)

Our diagramming toolbox shoula
include UML, ArchiMate, SysML,

BPML, DFDs, ERDs, etc

To describe a software architecture,
we use a model composed of

multiple views or perspectives.

Architectural Blueprints - The “4+1” View Model of Software Architecture
Philippe Kruchten

The description of an architecture—the decisions made—can be organized around these four views, and

then illustrated by a few selected use cases, or scenarios which become a fifth view. The architecture 1s in
fact partially evolved from these scenarios as we will see later.

End-user Programmers
Functionality Software management

Development

Logical View —» View

J Scenarios J
Process View Physical View
Integrators System engineers
Perforrpgnce Topology
Scalability Communications

Figure 1 — The "4+1" view model

Our architecture diagrams
don't match the code.

Software Reflexion Models:

Bridging the Gap between Source and High-Level Models®

Gail C. Murphy and David Notkin

Dept. of Computer Science & Engineering
University of Washington
Box 352350
Seattle WA, USA 98195-2350

{gmurphy, notkin }@cs.washington.edu

Abstract

Software engineers often use high-level models (for in-
stance, box and arrow sketches) to reason and com-
municate about an existing software system. One
problem with high-level models 1s that they are al-
most always inaccurate with respect to the system’s
source code. We have developed an approach that
helps an engineer use a high-level model of the struc
ture of an existing software system as a lens through
which to see a model of that system’s source code. In
particular, an engineer defines a high-level model and
specifies how the model maps to the source. A tool
then computes a software reflexion model that shows
where the engineer’s high-level model agrees with and
where 1t differs from a model of the source.

The paper provides a formal characterization of re-
flexion models, discusses practical aspects ol the ap-
proach, and relates experiences of applying the ap-
proach and tools to a number of different systems.
The illustrative example used in the paper describes
the application of reflexion models to Net BSD, an im
plementation of Unix comprised of 250,000 lines of C
code. In only a few hours, an engineer computed sev
eral reflexion models that provided him with a useful,
global overview of the structure of the NetBSD vir-
tual memory subsystem. The approach has also been
applied to aid in the understanding and experimen-
tal reengineering of the Microsoft Excel spreadsheet
product.

*This research was funded in part by the NSI grant
CCR-8858804 and a Canadian NSERC post-graduate
scholarship.

Il‘tlmi::ion to make digital/hard copies of all or part of this mate-
rial without fee is granted provided that the copies are not made or dis
tributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication and 1t: date appear, and notice is
given that copyright is by permission of the Association for Comput
ing Machinery, Inc. (ACM). To copy otherwise, to republizh, to post
on servers or to redistribute to lists, requires prior specific permission
andfor a fee.

SIGSOFT '95 Washington, D.C., USA
©1995 ACM 0-89791.716-2/95/0010...$3.50

IlKevin Sullivan

Dept. of Computer Science
University of Virginia
(Charlottesville VA, USA 22903

sullivan@es.virginia.edu

1 Introduction

Software engineers often think about an existing
software system in terms of high-level models.
Box and arrow sketches of a system, for instance,
are often found on engineers’ whiteboards. Al
though these models are commonly used, rea
soning about the system in terms of such models
can be dangerous because the models are almost
always inaccurate with respect to the system’s
source.

Current reverse engineering systems derive
high-level models from the source code. These
derived models are useful because they are, by
their very nature, accurate representations of the
source. Although accurate, the models created
by these reverse engineering systems may differ
from the models sketched by engineers; an exam-
ple of this is reported by Wong et al. [WTMS95].

We have developed an approach, illustrated in
Figure 1, that enables an engineer to produce
sufficiently accurate high-level models in a differ-
ent way. The engineer defines a high-level model

of interest, extracts a source model (such as a

call graph or an inheritance hierarchy) from the
source code, and defines a declarative mapping
between the two models. A software reflexion
model is then computed to determine where the
engineer’s high-level model does and does not
agree with the source model.! An engineer in
terprets the reflexion model and, as necessary,
modifies the input to iteratively compute addi-
tional reflexion models.

1 g) «
['he old English spelling differentiates our use of “re-
flexion” from the field of reflective computing [Smi84].

1 Introduction

Software engineers often think about an existing
soltware system in terms ol high-level models.
Box and arrow sketches of a system, for instance,
are often found on engineers’ whiteboards. Al-
though these models are commonly used, rea-
soning about the system in terms of such models
can be dangerous because the models are almost
always inaccurate with respect to the system’s
source.

Current reverse engineering systems derive
high-level models from the source code. These
derived models are usetul because they are, by
their very nature, accurate representations of the
source. Although accurate, the models created

by these reverse engineering systems may differ
from the models sketched by engineers; an exam-

ple ol this 1s reported by Wong et al. [W T M>Yo].

JUST ENOUGH
SOFTWARE ARCHITECTURE

A RISK-DRIVEN APPROACH
GEORGE FAIRBANKS

FOREWORD BY DAVID GARLAN

o/ AN
N 1, NS

g i mrsgm [X
WY 2 R E=R 1 RYE. 3=
- W=
e e T T —— =g -
- P =
Ny 7 J] "l S B e S\
N ([pe—— - - - - - e
§ | S . 4 =
. iy : 2 . N’ . ™~ |

Model-code gap. Your architecture models and your source code will not show the
same things. The difference between them is the model-code gap. Your architecture

models include some abstract concepts, like components, that your programming lan-
guage does not, but could. Beyond that, architecture models include intensional ele-

ments, like design decisions and constraints, that cannot be expressed in procedural
source code at all.

Consequently, the relationship between the architecture model and source code is

complicated. It is mostly a refinement relationship, where the extensional elements
in the architecture model are refined into extensional elements in source code. This

is shown in Figure 10.3. However, intensional elements are not refined into corre-
sponding elements in source code.

Upon learning about the model-code gap, your first instinct may be to avoid it. But

reflecting on the origins of the gap gives little hope of a general solution in the short
term: architecture models help you reason about complexity and scale because they

are abstract and intensional; source code executes on machines because it is concrete
and extensional.

"model-code gap”

Top-down view

(components, layers, subsystems, bounded contexts, etc)

Bottom-up view

(classes, interfaces, enums, functions, etc)

Would you code it that way?

(ensure that your diagrams reflect
your implementation intent)

Is that how it really works?

(ensure that your diagrams reflect
your actual codebase)

We lack a common vocabulary
to describe software architecture

SEVEN KIi

\J
i

. STOKE] f\j

EWINGTON |

_——=CHALK.FARM - | c
‘ Vo1 F—a \STOVASS //) 2
/ | / | CAMDEN TOWN \# /AL N
| "~ ZSLLondon Zoo & T L A123
N S Bl N s
| /7 " KENSAL:GREEN) < > 5 |® A1208 \ireds W
== e ‘ < N = ° | N\ 9.\109 |
\ S \ \AWN;,Q\;/' \/ _~ CLERKENWELL D el N - \
\ \ —_—— 76‘-\;’\’ MARYLEBONE £ The British:l\VIuseum\ \(/ | Y \ e ‘<
<\ PADDINGTON | 20 2 y / = o
Sy T - ALS\ | 3=l POPLAR= | 2 =)
- ayswate" X7 [- fLONDON\:f‘%i: ‘A1203 m\\\j’> 2 | 5N i
| i A\ LLondol® T Wiy x| i e w‘\ °
e Vale SHEPHERD'S *gl(ensmgtogﬁlace, v S S ;%{b‘, o~ \\J | QANAR@WRQ London City Airport 4
BUSH T A e Paince | Southwark s G (K~ Xy
o KENSINGTON &) Royal Albert Hall, 1 Buckingham Palace | IS 4L F Al12 o
‘ I \\\ <A \ /(/ \)WESTMINSTER) S/ R = X A 7"
= AB\° \?‘39:7;”< I YD/\ BB\ |
= <<:?a / ~~gpimeicos. M / — A~
o i /®\ 5\ \) / N/ WOOLWICH—— =<
' "\

S >\\\\\\\<:\é S : /2

o=
: 3

FULHAM \—
| CAMBERWELL——-PECKHAM

[/\7’7-{\

. N
Ra BRIXTON

oét HERNE HILL” ~EAST/ DULWICH
5 Dulwich
) .
@ & /. \Vilage
> .

", \ / . C m— N\

\ Putney Heath

| \eZ

I

/

,’. BATTERY
” o'

>
g
&

VOLTMETER

PICTORIAL DIAGRAM
OF CIRCUIT

I*4 AMPERES

= EzI12VOLTS

@scnznmc OF CIRCUIT

Figara §8. Diagrom of a basic olrowis,
https://en.wikipedia.org/wiki/Circuit_diagram

id Policy Admin Components Wiring/

IPalicyService

IProductService

P
o o i @ RuleExecytionAP|
.L\ J_‘\ RuleExecut|onAP]
delegate
Application Components::Policy Admin 2 egates - «COES»
nfrastructure Components::
«delegates Rules Engine
¢delegates
RuleExecutionAPI cdeleaates
s . RuleExecutjonAPI
| LY s
3] = |3
Application Components:: $:| E’o & =
ke SIT Application Components:: | @ = , 3:] o
Unylerwriting & Rating Ul G = = eweb semnices)
Engine BRI e O o L S
@ N b o Application Components:: "‘g‘(
IRatingEervide IUndemritin%%ewice |P0|IC}"S/ENICB J} |ACC€SSCOH/LO|Semce E Product Server ug
- =
/\(;/ O/ IUIGenera onSemce O T
IRatingSIamice IUnderwritinlgSe ice s e et
7] IUIGeneratlonFemce Erd] wiE J— Application Components::
eweb services @ N $:| roayctoemice Product Admin Ul
icati =Poli S . = . = in cli
Application Components::Policy IPolicySenice IPolicySenvice . «}hm clients
Server Application Components:: «delegates @
/L IFormsSeIec/tli\onSewice SLC Policy Admin Ul
lAccessControlService
DocumentAdcessAPI \©\ IAccessCoirolSewice
O
IFormsSeIectionSeNice

¢delegates

3]

Application Components::
Forms Management

gdelegates

DocumentAj::essAPI IFormsDeﬂgionSewice

«delegates \M,/
L |
DocumentAEessAPl
@ O ~—0 7
Document}AccessAPI lAccessControlService IAccessC4ntroI89wice COTSs /
=] 9] Infrastructure Components: [—
«COTS» Application Components:: :ldentity Management JNDI

Infrastructure Components::
Document Management

Access Control

AuthenticationAPI AUthUV'Zion API

/OAuthorlz?gonAPI

AuthenticgtionAP]

«LDAP»

Infrastructure Components::
Directory Server

https://en.wikipedia.org/wiki/Component_diagram

Component

a modular unit with well-defined Interfaces
that is replaceable within its environment

https:.//www.omg.org/spec/UML/2.5.1/PDF

Software System

Web
Application

Relational
Database

Component

noun com-po-nent | \kem-'po-nant, ‘kam-, kam-\

Simple Definition of COMPONENT

: one of the parts of something (such as a system or mixture) :

something

Popularity: Top 30% of words

an important piece of

Ubiquitous
language

A common set of abstractions
IS more important
than a common notation

Abstractions

Software System

Container

(e.g. client-side web app, server-side web app, console application,
mobile app, database schema, file system, object store, etc)

Component

A software system is made up of one or more containers (applications and data
stores), each of which contains one or more components, which in turn are
implemented by one or more code elements (classes, interfaces, objects, functions, etc).

cAmodel.com

Personal Banking
Customer

Person]

A customer of the bank with one

or more personal bank accolnts. S s N
~
~
~
~ o
! Sends e-mails to
1 ~
~
1 SO
Views account balances S S -
and makes payments ~o (N
using 5
1 .
. Amazon Web Services
Simple Email Service
- ' Cloud-based email service
) Sends e-mailsto = provider.
Internet Banking System _ - — customers using
[Software System] - L)
Allows customers to view
information about their bank y N
accounts and make payments via T~ ~ < _ Gets bank account
the web. i i i
information from and - Personal Banking
makes payments using =~ = — _ Core B‘a'nkmg System Customer
Software Syster e -~
Handles core banking functions Acutomer of the bank it one AR
including customer information, or more personal bank accounts. ~e.
bank account management, Sends e-mails to
transactions, etc. , \ ~~
. \ ~<
’ Views account balances S~
\ 7 Loads the Ul from and makes payments S~o
| using ~+ Amazon Web Services
’ Simple Email Service

Software Systern]

’ ‘ Cloud-based email service
vid:

System Context View: Internet Banking System

The system context diagram for a fictional Internet Banking System
' I .
. ul .
Static Content | _ _ _ Delivers = — ’ Container: avaScript and Angular] e
Container Drectoy) Single-page app that provides 567
HTML, CSS, JavaScript, etc. Internet banking functionality to Phe
customers via their web browser. .
.
.
o T Sends e-mails to aner aaScrpand Al
1 customers using ims\w;gekapp'mat provl\des
Internet banking functionality to
/7 Makes AP calls to [e customers via their web browser.
tsonHTTPS) .
.
' . :
. . N
\ 4 . . ! N
. Makes sign in requests to .
> Requests a lst of bank
—_ . Requests statements from ' o
Core Banking System LSONHTTPS) | ity
Backend Software System) L ' v N
(Contsiner:Java and Sping Eoot) | _ _ _MakesAPicalisto_ _ _ | _ Handles core banking functions
Provides Internet bankin BaHTTPS) including customer information, K A 4
functionality via a JSON/HTTPS API gemen R
Accounts A i
" mazon Web Services
Statement API Sign In API i N o .
i Sgn! e 5’(“’:“"3'[‘”\5' Email Component Sends e-mails to N Simple Email Service
- - J——— {Companen: Spng ean) == T —customers using: = sofare sysem)
API endpoint for access to APl endpoint for customer s
Reads from and writes to Reads from and writes to PDF sttements P inin A:Lfgﬁ?:i,’ﬁ;ﬂx‘k Sends e-malls to users. ToNHTTES) Cloud-based email service
ovider.
s 52 APUHTTPS] (MYSGL protocolTis] I
. N
, N r < ~——
i \ ! reaquestsssorbane ¥
. ~ \ . accountsfrom , *
Requests stafements from N \ , Y
Validates authentication : .
token usin Validates credentials using Validates authentication ~
St S
tatement Store Database en usin —_—
Comaner: Amaron Web Senvices 53 (Continer:MySQL. Databsse Schermal AN
Bank account statements User account information, access Statement e Core Banking Core Banking System
logs, etc System Adapter oltwars 37
rendered as POF files. | _Requests statement e | -t Makesaricalisto _ gyl Handies core banking functions
information from AJava wrapper around pnes) er inform:
Provides access to PDF h bank account management
T s the API provided by the g
Core Banking System. s, etc
—

Internet Banking System

{ ottare ystemy)
'

1

|

Security
Component
Component pring Bar]

Provides functionality
related to signing in,
changing passwords, etc

Container View: Internet Banking System
The container diagram for the Internet Banking System Reads from and writes to
s o)
|

MySGL protocolmLs)

I
I
, Reads from and writes to
Backend '

continen

Database

ki MySQL tabas Schemal
//7 com.bigbank.ib.component.corebankingsystem\

Statement Store

Container: Amszon Web Se
kel

User account information, access
logs, etc

Bank account statements
rendered as PDF files.

® © CoreBankingSystemAdapter

o BankAccount[] getBankAccounts(Customer)

Internet Banking System

Sofoware syscem)

Component View: Internet Banking System - Backend
I

‘The component diagram for the Internet Banking System Backend

[@ACOreBankingSystemAdapterlmpl
f 1

s J
’ ~

’ N
sinitialises and pools AN

’
1..20"/ \\
1N
@ ACoreBankingSystemConnection \
\
& CoreBankingSystemConnection : Response execute(Request) ‘,
7 A .
’ A !
1 N !
,Creates \\execules Icreptes
i N I'
14 R ;
A Response ARequest| g
(D4Resp (D4Req ,
’
fromXml() toXml()
/
DY ,
1 \ //
! A"
©ABankAccounlsResponse ©ABankAccountsRequesi
o BankAccount[] accounts o Customer customer

Code View: Internet Banking System - Backend - Core Banking System Adapter

A summary of the implementation details for the Core Banking System Adapter component

Static structure diagrams

System Context Containers Components Code

v00e
Amazon Web Services
static Content e - simple Email Service
HTML, €55, Javascript foudrbased emal
T
'
Web Server Web Browser 1 -7 | Mock Simple Email Service
. Sends emails @
Web Server Container Makes APl als to customers using
) .
s 3 1 7
s ~ \ 4 ‘
>
1: Submits credentials to Core Banking System
200C _ = T Tsowmmes T <~ o Backend
- S~ - T ——
ul ~ Sign In API
[Container: JavaScript and Angular] {Component: Spring MVC] R
Single-page app that provides API endpoint for customer > N "
Internet banking functionality to g -F- signin. Reads from and writes to Reads rom and wits to gorebankingdev,
customers via their web browser. RN 6: Sends back an - - s 3 AneToS oS prtocs
“authentication token to - Bank Data Center
[USON/HTTPS]
4 \
’ N Statement Store Database
5:Issues a session token if \ o Amaren e Srves s R
authentication succeeds \ Bank account statements ogs.ete.
| \ rendered 35 POF fles
I 1
1 1
\ 1 Statement Store Server Patabase Server
\ , .)
2: Validates credentials i
\ using Statement Store Server Container Database Server Container
\ 1
\ V Pevelnper Laptop
- Depkoymant o Mcrsol Windoms 1 o Apge macoS]
3: select * from users
R - where username =? _ : Big Bank Wide Area Network
Security - [MySQL protocol/TLs] S~eo : -
Component | y Database Deployment View: nterne Banking System - Development
n example development deployment scenario for the nternet Banking System .
[Component: Spring Bean] (Container: MySQL Database Schemal Pers:natl Banking
Provides functionality User account information, access ustomer
related to signing in, ‘ - logs, etc.
changing passwords, etc. S~ o _-- g 4 Acustomer of the bank meone
~ ~4: Returns user data to ~ - or miore personal bank accounts. ~.
[MySQL protocol/TLS] - s ~ ~
-
- ’ \ N
k d ’ AY ~ N
Backen - ’ S~
| (Conteiner]) - - ~.
Asks questions to . Views account balances Sends e-mails to
ATelephone] Withdraws cash using and makes payments SO
- s
Internet Banking System . , using ~o
| (Software System) . 7 \ S o
J/ . ~ N
~ ~
I . <
Dynamic View: Internet Banking System - Backend
Summarises how the sign in feature works in the single-page application
ATM I"temeﬁﬁani‘y:!@ System Amazon Web Services
Delivers- = = = -—— [Software System] crware Sysen " i i i
: Alows customers it Alows customers o view - Sgemate gy SimPle fmallService
' . information about their bank customers using "
| Customer Service Staff cash and check bank account accounts and make payments via Cloud-based email service
! person) balances. the web, provider.
: Custpmer service staff within the
'
| |
' ' 1
' ' \
. . \ Amazon Web Services
Makes AP requests o ~. SN !
i ~ N Gets bank account
Support customers using Makes transactions using information from and
S~ AN makes payments using.
~ v
R .
~o N
~ ~ I
ib.bigbank.com ib-api.bigbank.com
[Unprovied NS CHNAVE recod
kb
Core Banking System
T T Investigate and et
NS Services | - 2 o i troubleshoot problems "é‘”««{ﬂ core La”k‘"ﬂf unctions
YISk ' " using including customer information,
T Back off'fe staff € bank account management,
! rerser) transactions, etc.
Admiinistration and support|staff
H within the bank
ul Sign In API Security Component Database :
[Container: JavaScript and Angular] [Component: Spring MVC] [Component: Spring Bean] [Container: MySQL Database Schema] Big Bank
1: Submit dentials t Amazon Web Services
. Submits credentials 1o Simple Email Service .
[JSON/HTTPS] s i System Landscape View
————————————————————————— > Static Content o e e A partial system landscape diagram for a fictional bank
. . . " atic Conten !
2: Validates credentials using Forwards ncoming HTTPS
_______________________________ N HTML, S5, Javascrip, etc aifi 1 the Bacsend.

3: select * from users where username = ?
[MySQL protocol/TLS] N :
: Content Store

Sends e-mails to

__________________________ '
4: Returns user data to et ronarts st o i
lMySQL protocol/TLS] _ _ _ _ _ _ _ _ _________ : . e
.) N H : .
5: Issues a session token if authentication succeeds : . ’
6: Sends back an authentication token to
(WSONMTTPS] _ _ _ _ _ L _______ sackend Network Bridge Core Banking System
acken: Gets bank account - S Gets bank account
: X L |- e o _ _ e isemononomand
ul Sign In API Security Component Database : funchonaig e e e comecion seween ke g e
[Container: JavaScript and Angular] [Component: Spring MVC] [Component: Spring Bean] [Container: MySQL Database Schema] : g
.1 Java Virtual Machine R
Dynamic View: Internet Banking System - Backend : 7| | sackend container I
H Reads from and writes to e e - o

Summarises how the sign in feature works in the single-page application :
» Serverless Compute Engine

Statement Store

Bankac
rendered as

statements
POF files.

eu-west-1

: Amazon Web Services

Deployment View: Internet Banking System - Live
A example v deployment scenario for the nternet Banking System

Supporting diagrams

Deployment System Landscape

Dynamic

Personal Banking
Customer

Acustomer of the ban
more personal bank

Views account balances
and makes payments
using
1
1

Allows customers to view
information about their bank

~

Sends e-mails to
~

Sends e-mails to
— = customers using

Amazon Web Services
Simple Email Service

m)
Cloud-based email service
provider.

Personal Banking
Customer

Amazon Web Services
simple Email Service

Statement
Component

Accounts
Sign In API Summary API

Security
Component

Core Banking
L system Adapter

Amazon Web Services
simple Email Service

@ © CoreBankingSystemAdapter

o BankAccount[] getBankAccounts(Customer)

‘@ACoreBankingSyslemAdap(erlmpl

’
’
sinitialises and pools
’
1..20,

@ 4ACoreBankingSystemConnection
| & CoreBankingSystemConnection : Response execute(Request)
bbbt At b At bt S b
, N

/ \

,creates \ executes
N

!

\
— vy JEEE .
®AResponse ®AFlequesI

fromXml() toXml()

accounts and make payments via T -a

Gets bank account
the web.

information from and
makes payments using = = ~
pay! g - ’ 1

© 4ABankAccountsResponse @ABankAccountsRequest
Statement Store Database

o BankAccount[] accounts o Customer customer

Code View: Internet Banking System - Backend - Core Banking System Adapter

A summary of the implementation details for the Core Banking System Adapter component

Internet Banking System

System Context View: Internet Banking System

The system context diagram for a fictional Internet Banking System
Container View: Internet Banking System

The container diagram for the Internet Bankin

Dlagrams are maps

that help software developers navigate a large and/or complex codebase

1. System Context

The system plus users and system dependencies.

Overview first

2. Containers

The overall shape of the architecture and technology choices.

Details on demand

Example

(available on cdmodel.com)

C4 model

Home

Introduction
Abstractions

Diagrams

FAQ

Tooling

Interactive example (4
Book (4

Video (4

Training & workshops (4

Patreon & Discord [

(Q Search C4 model

' Visualising software architecture with the C4 model
1-day masterclass | December 10 | Sydney, Australia

YOW!

The C4 model for visualising software
architecture

The C4 model is an easy to learn, developer friendly approach to software architecture diagramming:

1 A set of hierarchical abstractions - software systems, containers, components, and code.
2 A set of hierarchical diagrams - system context, containers, components, and code.

3 An additional set of supporting diagrams - system landscape, dynamic, and deployment.
4 Notation independent.
5

The
C4 Model

@ Visualising software... 3 Visualizing Software Architecture

wing software

Ire diagrams,
Jftware developer

Level 1

System Context diagram

Internet Banking System

[Software System]

Allows customers to view

information about their bank

accounts and make payments via
the web.

System Context View: Internet Banking System
The system context diagram for a fictional Internet Banking System

Personal Banking
Customer

[Person]

stomer of the bank with
ore personal bank acco

Views account balances
and makes payments
using
[

[

Internet Banking System

[Software System]

Allows customers to view

information about their bank

accounts and make payments via
the web.

System Context View: Internet Banking System
The system context diagram for a fictional Internet Banking System

Personal Banking
Customer

[Person]

stomer of the bank with
ore personal bank acco

Views account balances
and makes payments
using
[

[

Internet Banking System

[Software System]

Allows customers to view

information about their bank

accounts and make payments via
the web.

-~ « Gets bank account
information from and

makes payments using =~

System Context View: Internet Banking System
The system context diagram for a fictional Internet Banking System

~~

Core Banking System

- [Software System]

Handles core banking functions

including customer information,
bank account management,
transactions, etc.

Personal Banking
Customer

[Person]

stomer of the bank with

ore personal bank acco RS
= ~
~
~
\ -
! Sends e-mails to
l ~
~
I ~
~
Views account balances SN -
and makes payments S o
using
| Amazon Web Services
Simple Email Service
[Software System]
- Cloud-based email service
) Sends e-mailsto = ~ provider.
Internet Banking System _ - = customers using
[Software System] -

Allows customers to view

information about their bank

accounts and make payments via

-~ « Gets bank account
the web.

information from and
makes payments using =~ =~

Core Banking System

[Software System)]

Handles core banking functions
including customer information,
bank account management,
transactions, etc.

System Context View: Internet Banking System
The system context diagram for a fictional Internet Banking System

Amazon Web Services

Simple Email Service

Core Banking System

Internet Banking System

Person, Customer

Relationship

Level 2

Container diagram

Personal Banking
Customer

[Person]

A customer of the bank with one

or more personal bank accounts. S S -
~
= ~
1 ~ -
! Sends e-mails to
| ~
~
| ~
=~ ~
Views account balances S o
and makes payments S o
using S
|
|
7 B _ '
. Sends e-mailsto = ~
Internet Banking System _ — — customers using
[Software System] . -

Allows customers to view
information about their bank X
accounts and make payments via -~ o

~ Gets bank account
the web.

information from and
makes payments using = = ~ _ b

System Context View: Internet Banking System

The system context diagram for a fictional Internet Banking System

Amazon Web Services
Simple Email Service

[Software System]

Cloud-based email service
provider.

Core Banking System

[Software System]

Handles core banking functions
including customer information,
bank account management,
transactions, etc.

<o
0/77 :
s) tO 5
SO}?
W
C?/‘@ SJ/SZ.G
™M

System context diagram

Personal Banking
Customer

[Person]

A customer of the bank with one
or more personal bank accounts.

Amazon Web Services
Simple Email Service

[Software System]

Cloud-based email service
provider.

Core Banking System

[Software System]

Handles core banking functions
including customer information,
bank account management,
transactions, etc.

7 A Sends e-mails to
/ \ ~o
’ \ S~
Vi Views account balances S~ ([
Loads the Ul from and makes payments S~
4 using T~
/ \
/ \
/ \
(3 |)
, ul ,i
StatIC content L — — = Delivers = = _> [Container: JavaScript and Angular] . 7
[Container: Directory] Single-page app that provides J
HTML, CSS, JavaScript, etc. Internet banking functionality to L7
customers via their web browser. s,
’
7
| Sends e-mails to
1 customers using
Makes API calls to [JSON/HTTPS]
[SON/HTTPS] ,
| 7
7
\ 4 .
> (
Backend
[Container: Java and Spring Boot] L - - _Makes API calls to _—— e b - _>
Provides Internet banking [XML/HTTPS]
functionality via a JSON/HTTPS API.
\.
4 A Y
’ \
/7 \
Reads from and writes to Reads from and writes to
[AWS S3 API/HTTPS] [MySQL protocol/TLS]
/ \
» 4
~ ey
Statement Store Database
[Container: Am;j?;egw Services 53 [Container: MySQL Database Schema]
Bank account statements User account information, access
rendered as PDF files. logs, etc.
\ e
Internet Banking System
L[Sof’(ware System])

Container View: Internet Banking System
The container diagram for the Internet Banking System

Container diagram

Personal Banking
Customer

[Person]

A customer of the bank with one

Qn re personal bank accounts.

1 Amazon Web Services
Simple Email Service

[Software System]

Cloud-based email service
provider.

Core Banking System

[Software System]

Handles core banking functions
including customer information,
bank account management,
transactions, etc.

Internet Banking System

QSoﬂware System] y

Container View: Internet Banking System
The container diagram for the Internet Banking System

Personal Banking
Customer

[Person]

A customer of the bank with one

Qm re personal bank accounts.

A
\
\
Views account balances
and makes payments
using

Internet Banking System

USoﬁware System]

Ul

[Container: JavaScript and Angular]

Single-page app that provides
Internet banking functionality to
customers via their web browser.

Amazon Web Services
Simple Email Service

[Software System]

Cloud-based email service
provider.

—

Core Banking System

[Software System]

Handles core banking functions
including customer information,
bank account management,
transactions, etc.

Container View: Internet Banking System
The container diagram for the Internet Banking System

Personal Banking
Customer

[Person]

~
~
A customer of the bank with one =~ -
Qm re personal bank accounts. T~ o -
—~ ~ _
7 \ Sends e-mails to
/ \ =~
/ \
/ Views account balances
Loads the Ul from and makes payments
/ using
/ \
/ \
/ \

' 4

Ul

[Container: JavaScript and Angular]

Static Content

[Container: Directory]

= = = = Delivers = =

Single-page app that provides
HTML, CSS, JavaScript, etc. Internet banking functionality to
customers via their web browser.

Internet Banking System

USoﬁware System]

Amazon Web Services
Simple Email Service

[Software System]

Cloud-based email service
provider.

—

Core Banking System

[Software System]

Handles core banking functions
including customer information,
bank account management,
transactions, etc.

Container View: Internet Banking System
The container diagram for the Internet Banking System

Personal Banking
Customer

[Person]

-~
~
A customer of the bank with one =~ -
Qm re personal bank accounts. T~ o
S
~
7 \ Ser;ds e-mails to
/ \ S~
/ \ ~ o
/ Views account balances =~ Ny
Loads the Ul from and makes payments
usin .
& Amazon Web Services
/ \ Simple Email Service
- / \ [Software System]
; Cloud-based email service
provider.
_ ul ,i
StatIC content - — = = Delivers = =— [Container: JavaScript and Angular] 7
.)) ’
[Container: Directory] Single-page app that provides 4
HTML, CSS, JavaScript, etc. Internet banking functionality to ’, g
customers via their web browser. 7’
7’
7
Sends e-mails to
I customers using
Makes API calls to P [USON/HTTPS]
[ISON/HTTPS] P
Ve
| 7/
/’
\ 4 .
> “ 4 Y
- Core Banking System
BaCkend [Software System]
[Container: Java and Spring Boot] L _Makes API calls to —_——d _’ Handles core banking functions
Provides Internet banking [XMU/HTTPS] including customer information,
functionality via a JSON/HTTPS API. bank account management,
transactions, etc.
o y

Internet Banking System

USoﬁware System]

Container View: Internet Banking System
The container diagram for the Internet Banking System

Personal Banking
Customer

[Person]

e
~
A customer of the bank with one =~ -
or more personal bank accounts. T~ o
S ~ - R
7 \ Sends e-mails to
/ \ ™~ -
/ \ ~ o
/ Views account balances S~ o é R
Loads the Ul from and makes payments S~ o -
/ usin ~ .
; & Amazon Web Services
/ \ Simple Email Service
/ \ [Software System]
() . .
; Cloud-based email service
provider.
_ ul ,i
StatIC content - — = = Delivers = =— [Container: JavaScript and Angular] 7
.)) ’
[Container: Directory] Single-page app that provides 4
HTML, CSS, JavaScript, etc. Internet banking functionality to ’, g
customers via their web browser. 7’
7’
7
Sends e-mails to
1 customers using
Makes API calls to P [USON/HTTPS]
[ISON/HTTPS] P
Ve
| 7/
/’
\ 4 .
> “ 4 Y
- Core Banking System
BaCkend [Software System]
[Container: Java and Spring Boot] - _Makes API calls to —_——d _’ Handles core banking functions
Provides Internet banking [XMU/HTTPS] including customer information,
functionality via a JSON/HTTPS API. bank account management,
transactions, etc.
G y
A Y
\
\
Reads from and writes to
[MySQL protocol/TLS]
\
<4
Database
[Container: MySQL Database Schema]
User account information, access
logs, etc.
N —
Internet Banking System
USoﬁware System] y

Container View: Internet Banking System
The container diagram for the Internet Banking System

Personal Banking
Customer

[Person]

~—
~
A customer of the bank with one =~ -
or more personal bank accounts. T~ o
\ T~ ~ _
7 \ Sends e-mails to
/ \ S~
/ \ ~ o
/ Views account balances S~ o
Loads the Ul from and makes payments =~
/ using
/ \
/ AN
/ \
4 ; Y
_ ul
StatIC content - — = = Delivers = =— [Container: JavaScript and Angular]
[Container: Directory] Single-page app that provides)
HTML, CSS, JavaScript, etc. Internet banking functionality to P
customers via their web browser. ’
’

Internet Banking System

USoﬁware System]

4

Sends e-mails to
customers using

Makes API calls to P [USON/HTTPS]
ISON/HTTPS] PA
Ve
| /’
’
\ 4 .
£,
>
Backend
[Container: Java and Spring Boot] L _ Makes API calls to _
Provides Internet banking (XML/HTTPS]
functionality via a JSON/HTTPS API.
4 A Y
/ \
Vs \
Reads from and writes to Reads from and writes to
[AWS S3 API/HTTPS] [MySQL protocol/TLS]
/ \
> <4
<] 2
Statement Store Database

[Container: Amazon Web Services S3
Bucket]

Bank account statements
rendered as PDF files.

[Container: MySQL Database Schema]

User account information, access

logs, etc.

Container View: Internet Banking System
The container diagram for the Internet Banking System

Amazon Web Services
Simple Email Service

[Software System]

Cloud-based email service
provider.

Core Banking System

[Software System]

Handles core banking functions
including customer information,
bank account management,
transactions, etc.

Amazon Web Services Boundary, Internet

Simple Email Service Banking System Container, Relational

Database Schema

Container, Amazon Web

. Container, Directory
Services S3 Bucket

>

Container, Server-side
Application

Container, Single-page Core Banking System
Application

Relationship

Person, Customer

Level 3

Component diagram

S
Personal Banking

Customer
[Person] N - -
A customer of the bank with one S~
or more personal bank accounts. S~ o
S~
7 v Sends e-mails to
4 \ S o -
/ \ ~ o
’ Views account balances S~ 4
Loads the Ul from and makes payments S~
4 usin, S~ H
P X Amazon Web Services
’ \ Simple Email Service
/ \ [Software System]
e R .)
’ ‘ Cloud-based email service
[_] provider.
\
. ul v
StatIC content - — — = Delivers = = [Container: JavaScript and Angular] 7
[Container: Directory] Single-page app that provides I 3¢
HTML, CSS, JavaScript, etc. Internet banking functionality to P <
customers via their web browser. -,
-,
'
I Sends e-mails to
1 customers using
Makes API calls to P USON/HTTPS]
[JSON/HTTPS] 7
. ’
I 7z
7
\ 4 .
> (
- Core Banking System
Backend [Software System]
[Container: Java and Spring Boot] | _ _ _MakesAPlcallsto_ _ _ 1 _ > Handles core banking functions
Provides Internet banking [XML/HTTPS] including customer information,
functionality via a JSON/HTTPS API. bank account management,
transactions, etc.
.
4 A}
’ \

Internet Banking System

k[Software System]

\
Reads from and writes to
[MySQL protocol/TLS]
\

/
Reads from and writes to
[AWS S3 API/HTTPS]

/ \

| < 4

Database

[Container: MySQL Database Schema]

Statement Store

[Container: Amazon Web Services S3
Bucket]

Bank account statements
rendered as PDF files.

User account information, access
logs, etc.

Container View: Internet Banking System
The container diagram for the Internet Banking System

Container diagram

()
D O O ¢
Ul
[Container: JavaScript and Angular]
Single-page app that provides
Internet banking functionality to
customers via their web browser.
7 T
’, ~
’ 1
4 Makes sign in requests to N
, <
Requests statements from po Requests a list of bank
a SONHTTPS 1 accounts from
[I, ! 1 USON/HTTPS]
7 1 N
(v)
Statement API Sign In API S AccountZPI Amazon Web Services
umma H . . . N
Lcormponsnt Spri] [Component SpringVC] Y o Email Component Sends emalieto Simple Email Service
. . e bl - [Software System]
API endpoint for access to API endpoint for customer i .
PDE statements. . sign in. AZIcce:Sﬁtosw;E:::nZank Sends e-mails to users. USON/HTTPS] Cloud-based email service
: } i provider.
information.
T A 7 S v
1 N ~ \ / Requests lists of bank ’
- N \ / accounts from Phd
Requests statements from ~ \ ’ S
1 N .
Validates authentication Validat \d tials usi / s S o
* token using alidates credentials using Validates authentication e S~
N \ token using .’ A
Mo \ / Sends emails using
\ / e : .
Statement N \ , e sc"t"e B?-\:kmtg Core Banking System
N ’ stem Adapter fsoftware System]
mponen s \ / . Y _ _
o [ggpmg?pn:mf] | _Requests statement _ N _ _ _ _ _ _ e m e _ e e m e — - = G ———— > [Component: Spring Bean] | | _ | _MakesAPlcallsto _ Handles core banking functions
Provides access to PDF information from AN \ l . A Java wrapper around [XML/HTTPS] including customer information,
statements. N \ / i the API provided by the bank account management,
) N N \ 1 . 4 Core Banking System. transactions, etc.
e 4 < P> .
1
! .
1 Security
1 Component
1 [Component: Spring Bean]
Reads from and writes to Provides functionality
[AWS S3 API/HTTPS] related to signing in,
| changing passwords, etc.
1
! |
1
| Reads from and writes to
Backend) [MySQL protocol/TLS]
[Container] 1)
1
! 1
' v
Statement Store Database
[Container. Ama‘fg?e\aleb Services 53 [Container: MySQL Database Schema]
Bank account statements User account information, access
rendered as PDF files. logs, etc.
Internet Banking System
\ [Software System])

Component View: Internet Banking System - Backend
The component diagram for the Internet Banking System Backend

Component diagram

r N
Ul
[Container: JavaScript and Angular]
Single-page app that provides
Internet banking functionality to
customers via their web browser.
v |
()
#
Amazon Web Services
Simple Email Service
[Software System]
Cloud-based email service
provider.
~
Core Banking System
[Software System]
Handles core banking functions
including customer information,
bank account management,
transactions, etc.
\
Backend
L[Container] y
Statement Store Database
[Contalner: AmBajZ):e\Gleb Services 53 [Container: MySQL Database Schema]
Bank account statements User account information, access
rendered as PDF files. logs, etc.
S — e
Internet Banking System
dSoﬁware System] y

Component View: Internet Banking System - Backend
The component diagram for the Internet Banking System Backend

e)

Ul

[Container: JavaScript and Angular]

Single-page app that provides
Internet banking functionality to
customers via their web browser.

I
|
Makes sign in requests to
[JSON/HTTPS]
|
|
|

(v)
e e
[csr:pg"t'g’:';v'q Email Component
' [Component: Spring Bean] — =
APl endpoint for customer Sends e-mails to users
sign in. ’
\ '
\ s
\
\
1
Validates credentials using
\ -
\ Sends emails using
\ 7
\
\
\
\
\
<
i
I Security
Component
[Component: Spring Bean]
Provides functionality
related to signing in,
changing passwords, etc.
T
Reads from and writes to
Backend [MySQL protocol/TLS]

L[Container] | _J

Statement Store

[Container: Amazon Web Services S3
Bucket]

Bank account statements
rendered as PDF files.

Internet Banking System

Soft Syst
d oftware System]

\ 4

-l

A

Database

[Container: MySQL Database Schema]

logs, etc.

—

User account information, access

Sends e-mails to
- —customers using" = ->

[JSON/HTTPS]

Amazon Web Services
Simple Email Service

[Software System]

Cloud-based email service
provider.

Component View: Internet Banking System - Backend

The component diagram for the Internet Banking System Backend

Core Banking System

[Software System]

Handles core banking functions
including customer information,
bank account management,
transactions, etc.

e)

Ul

[Container: JavaScript and Angular]

Single-page app that provides
Internet banking functionality to
customers via their web browser.

I <~

AN
I N
Makes sign in requests to N
OSON/HTTPS] Requests a list of bank
| accounts from
| SON/HTTPS]
| N
i A 4
i = i i =
I I Accounts I
[csr:g"t";'A';V'q Summary API Email Component
P o prng [Component: Spring MVC] [Component: Spring Bean]
API endpoint for customer API endpoint for bank Sends e-mails to users.
sign in. accounts summary
information.
~ ~
) 7 . v
\ / Requests lists of bank ’
\ / accounts from e
~
\ / g
Validates credentials usi ! 2 s
alidates credentials usin i P -,
! g Validates authentication P S o
\ token using L7 A (
\ / Sends emails using ' l
7 .
' ! . —I— Core Banking
\ / s
\ / e System Adapter
\ / Vg [Component: Spring Bean]
\ / e A Java wrapper around
\ / e the API provided by the
\ / Pid Core Banking System.
<4 | 4 .
[
I Security
Component
[Component: Spring Bean]
Provides functionality
related to signing in,
changing passwords, etc.
T
Reads from and writes to
Backend [MySQL protocol/TLS]
L[Container] |

Statement Store

[Container: Amazon Web Services S3
Bucket]

Bank account statements
rendered as PDF files.

Internet Banking System

Soft Syst
d oftware System]

\ 4

-l 3

Database

[Container: MySQL Database Schema]

User account information, access
logs, etc.

—

Sends e-mails to

- —customers using" = ->

Component View: Internet Banking System - Backend

The component diagram for the Internet Banking System Backend

[JSON/HTTPS]

_Makes API calls to
[XML/HTTPS]

-»

Amazon Web Services
Simple Email Service

[Software System]

Cloud-based email service
provider.

Core Banking System

[Software System]

Handles core banking functions
including customer information,
bank account management,
transactions, etc.

e)

Ul

[Container: JavaScript and Angular]

Single-page app that provides

Internet banking functionality to
customers via their web browser.

Reads from and writes to
[AWS S3 API/HTTPS]

Backend

L[Container]

[Component: Spring Bean]

Provides functionality
related to signing in,

changing passwords, etc.

Reads from and writes to
[MySQL protocol/TLS]
|

’ S
’ ! N
’ Makes sign in requests to N
Ve “~
Requests statements from o Requests a list of bank
- |
ISONHTTPS] accounts from
P | SON/HTTPS]
’ I N
r K A 4
i = i = i i =
. L L Accounts
Statement API Sign In API Summary API Email Component
[Component: Spring MVC] [Component: Spring MVC] [Component: Spring MVC] [Comporent: Spring Bean]
API| endpoint for access to APl endpoint for customer API endpoint for bank ,
PDF statements. sign in. accounts summary Sends e-mails to users.
information.
~ ~
I \ 7 . '
1 > N \ ! Requests lists of bank ’
: S \ / accounts from P
Requests statlements from S \ / SN
S v
Validates authentication Validat ‘d tials usi ! s S o
* token using alidates crecentials using Validates authentication e S
(S \ token using R A
' l S \ / Sends emails usin
) ! . : | Core Bank
* \ \ .
Statement S \ / P . °tre Z: '“tg
’ stem apter
\ / y p
component - —ReqUEStS statement — : Yo = = = o= o= e - e = = = = - f— = = = = = - _/_, ____________ > [Component: Spring Bean]
[Component: Spring Bean] information from N \ , P R g
Provides access to PDF N < Java wrapper aroun
“ he API provided by the
statements N \ / . the APl p y
' N \ ’ PRe Core Banking System.
4 9 p .
| i
I .
I L Security
! Component
|

A 4

Statement Store

[Container: Amazon Web Services S3
Bucket]

Bank account statements
rendered as PDF files.

Internet Banking System

Soft Syst
d oftware System]

\ 4

-l

A

—

Database

[Container: MySQL Database Schema]

User account information, access

logs, etc.

Sends e-mails to
- —customers using" = ->

[JSON/HTTPS]

Makes API calls to ’
[XML/HTTPS]

Amazon Web Services
Simple Email Service

[Software System]

Cloud-based email service
provider.

Component View: Internet Banking System - Backend
The component diagram for the Internet Banking System Backend

Core Banking System

[Software System]

Handles core banking functions
including customer information,
bank account management,
transactions, etc.

Amazon Web Services Boundary, Container, Boundary, Internet

) Component Container, Amazon Web
Simple Email Service Server-side Application Banking System '
'mp | | | ppiicat ng >y Services S3 Bucket
_____________ >
Container, Relational Container, Single-page Core Banking System | |
Database Schema Application Relationship

Amazon Web Services Simple Email Service
[Software System]

O Statement Store
[Container]

|
I
|
i
| «
i ,l
i 4
1 /
\ /
‘ /
: 7/
| ’,
I /
\ /
‘ /
| ,I
| /
\ /
| ,'
Email Component R
[Copponent] - Statement Component
~-a_ [Component]
~.el . v
T~ Security Component P |
_ L “[Component] P ,
P - A “ S o . - ’ 1
- \ S e - . s !
-7 - ! A N T~ ~ 4 ’ l,
P - | N\ RN - ’ “ I
- | \\ S . Phd |
Phg ! \ S e s !
P i N\ S - 7’ ” !
A i : \\ S~ - P s ’ I
Database : "\ S Statement AP| /
[Container] | AN [Component] !
1 \ 1 I
I \
'| \\ ‘ II
\ f 1
; Accounts Summary API 4
\ [C(‘)rﬁp'onent]ll k
'. b o T T T » - Core Banking System Adapter
|I \ , [Component]- - _ _
L e .
| \ .' -~ Core Banking System
. \ 1
Slgn In API \ | [Software System]
[Component] “ |
“ I
~ - \ !
S \ I
~ \ I
~ - \ i
= ~ \ !
~ N \ 1
~ N v !
Ul

[Container]

Amazon Web Services Simple Email Service
[Software System]

\ O Statement Store
l\ [Container]

/
7/
/
/
/
Email Component ’
(ponett], - Statement Component
B [Component]
Tl : ,v !
T Security Component - !
_ L “[Component] e)
-7 - “ h -7 . !
Phd A \ RN - . e !
P - - | \\ ~ - - o

I I
I - ” !
~ ’ I
l| \\ o ~ -7 !
A’ ’ : \\ o R - ” . l’
Database \ . ~(Y Statement API ,'
[Container] |I AR [Component] !
\ | I
I \
| A "
i
; Accounts Summary API | 4
\ [Component] ______ |
ll ~~~~~ = b LCowan Dowliwme Coinbome Aolowmbos
|
|
" [Accounts Summary API king System
Sign In API : |]
rom Backend [Container]
[Component]
- [Component: Spring MV(]
Th . R AP| endpoint for bank accounts summary information

[Element] [Component)

Security Component

. [Component]

Accounts Summary API

[Component]

-
—
- —
-
-
-
-~ -

» - Core Banking System Adapter

\ [Component]

Ul
[Container]

L evel 4

Code diagram

ul
[Container: JavaScript and Angular]
Single-page app that provides
Internet banking functionality to
customers via their web browser.

Component View: Internet Banking System - Backend
The component diagram for the Internet Banking System Backend

Component diagram

Amazon Web Services
Simple Email Service

[Software System]

Cloud-based email service
provider.

7 1 Y
’ N
! N
4 Makes sign in requests to N
p <
USON/HTTPS] Requests a list of bank
Requests statements from |
- accounts from
SON/HTTPS] -
, I USON/HTTPS]
’ 1 S
(E v)
Accounts
Statement API Sign In API Summary API Email Component Sends e-mails to
[Component: Spring MVC] [Component: Spring MVC] [Component: Spring MVC] [Component: Spring Bean] - - L —customers using‘ - _>
API endpoint for access to APl endpoint for customer AP endpoint for bank Sends e-mails to users USON/HTTPS)
PDF statements. signin. accounts summary .
information.
~ ~
T < Ay 7 . v
1 N \ / Requests lists of bank ’
- N \ / accounts from .7
Requests statements from N \ ’ ~ L
1 N .
Validates authentication Validat \d tials usi / e ~
* token using alidates credentials using Validates authentication . S
N \ token using e A
N \ / Sends emails using
N \ / , s .
Statement N \ ’ . sCotre Bzr;kmtg
h s stem apter
\ ’ y
Component | _Requestsstatement _ > _ _ _ _ _ _ e —— o e —— o — o ______ > [Component: Spring Bean] A _ L _MakesAPlcallsto _ _>
[Component: Spring Bean] information from N 7 [XML/HTTPS]
; \ / -’ A Java wrapper around
Provides access to PDF A P ;
statements N \ / ’ the API proylded by the
. S \ / -, Core Banking System.
AN -,
4 < | 4 .
T
I .
1 Security
1 Component
1 [Component: Spring Bean]
Reads from and writes to Provides functionality
[AWS S3 API/HTTPS] related to signing in,
1 changing passwords, etc.
|
! T
|
] Reads from and writes to
Backend [MySQL protocol/TLS]
k[Comamer] !)
T
! 1
|
Statement Store Database
[Container: Am;j?;‘e\g% Services 53 [Container: MySQL Database Schema]
Bank account statements User account information, access
rendered as PDF files. logs, etc.
Internet Banking System
k[Software System] y

Core Banking System
[Software System]

Handles core banking functions
including customer information,
bank account management,
transactions, etc.

com.bigbank.ib.component.corebankingsystem\

@ © CoreBankingSystemAdapter

o BankAccount[] getBankAccounts(Customer)

b

@ACoreBankingSystemAdapterImpI

@ABankAccountsResponse

@ABankAccountsRequest

o BankAccount[] accounts

o Customer customer

7/ ~
/ ~ N
/ N
sinitialises and pools AN
1..20," \
| \
\
@ ACoreBankingSystemConnection \
\
A CoreBankingSystemConnection : Response execute(Request) ‘l
7 AN
/ \ !
/ h !
,Creates \?xecutes Icrefates
/ \ II
y 4]
A Response A Request /
(D4 Res ORLL ,
/
fromXml() toXml() /
/
4 & /
i \ //
I \ /
\ | 2

Code View: Internet Banking System - Backend - Core Banking System Adapter

A summary of the implementation details for the Core Banking System Adapter component

Code diagram

com.bigbank.ib.component.corebankingsystem\

@ © CoreBankingSystemAdapter

o BankAccount[] getBankAccounts(Customer)

&

@ACoreBankingSystemAdapterImpl

~
~

~
~

N
AN

/
/
/
s initialises and pools

/
1..20},

@ ACoreBankingSystemConnection

A CoreBankingSystemConnection : Response execute(Request)
‘ 7 A ’
/ \
/ \

,creates \\executes Icre

I

/ \ /

, y - ,
A Response A Request /
(D4 Resp (D4Req ,
/
fromXml() toXml() /

4\

/
l

@ABankAccountsResponse

o BankAccount[] accounts

@ABankAccountsRequest

o Customer customer

ates

Code View: Internet Banking System - Backend - Core Banking System Adapter

A summary of the implementation details for the Core Banking System Adapter component

Notation

The C4 model is
notation independent

The C4 model is
notation independent

«Software System»
Spring PetClinic Spring PetClinic - Containers
«Person»

«Container» /
Web Application
(from Spring PetClinic)
Clinic Employee -
[Person) Allows employees to Clinic Employee
An employee of the clinic YIeW anq manage) |
{ Clinic Employee information regarding '
the veterinarians, the Uses «HTTPS»
‘ clients, and their pets.

| SpringPetClinic
Reads from and

writes to
UDFC]

\
v

' «JDBC» «C Onta/'.r‘lerl»
+Reads from and writes to Web Application

«Container»
Database

(from Spring PetClinic) «Container»

. . Database
Stores information

[ssg;ivr;ils’e;ecr:;nlc regal’dlng the
: veterinarians, the
clients, and their pets.
The Container diagram for the Spring PetClinic system.

Container diagram for Spring PetClinic
The Containers diagram for the Spring PetClinic system.
Last modified: Thursday 17 August 2017 10:15 UTC | Version: 95de1d9f8bf63560915331664b27a4a75ce1f1f6

Should you adopt
a standard (visual) notation?

Personal Banking Personal Banking
Customer

Customer
Person]

[Person]
A customer of the bank with one

A customer of the bank with one
or more personal bank accounts. or more personal bank accounts.

| ~
Sends e-mails to
I ~ ~
~ ~
. ~ . ~
Views account balances ~ Views account balances ~
and makes payments

and makes payments
using

using
Amazon Web Services | Amazon Web Services
Simple Email Service

I
Simple Email Service v
Software System]

v [Software System]
[) /' Cloud-based email service [) _ ,' Cloud-based email service
Sends e-mailsto = provider.

. Sends e-mailsto = - provider. .
Internet Banking System — customers using Internet Banking System __ —customers using
[Software System]

[Software System]

| ~
Sends e-mails to |

Allows customers to view Allows customers to view
information about their bank information about their bank
accounts and make payments via Gets bank account accounts anctihmakebpayments via Gets bank account
e web. ; ;
information from and

Core Banking System

the web. i ;
information from and .
makes payments using™ = \> Core B‘gp}:: g%fy5tem makes payments using™ =~ \’ Coftare Sy

Handles core banking functions Handles core banking functions
including customer information, including customer information,
bank account management, bank account management,
transactions, etc. transactions, etc.

[System Context] Internet Banking System

The system context diagram for a fictional Internet Banking System.

[System Context] Internet Banking System

The system context diagram for a fictional Internet Banking System.

T ”®
Personal Banking Personal Banking
Customer

Customer
[Person]

[Person]
A customer of the bank with one A customer of the bank with one
or more personal bank accounts. or more personal bank accounts.

~N
Sends e-mails to
~
~

| ~
Sends e-mails to
~
| - |

. ~ .
Views account balances ~ Views account balances
and makes payments

and makes payments
using using
| Amazon Web Services | Amazon Web Services
Simple Email Service Simple Email Service
[Software System]

v [Software System]
[) " Cloud-based email service _ Cloud-based email service
Sends e-mailsto = provider.

. Sends e-mailsto — provider. .
Internet Banking System — — customers using Internet Banking System __ —customers using
[Software System]

[Software System]

Allows customers to view Allows customers to view
information about their bank

information about their bank
accounts an(:hr:?,\t(eebpayments via Gets bank account accounts an?hr:?n'/(:bpaymems via Gets bank account
' information from and Core Banking System ' ﬂﬁg?s;ﬂm&i’,’é— _ Core Banking System
- [Software System]

makes payments using™ =~ \b [Software System]
Handles core banking functions

Handles core banking functions
including customer information, including customer information,
bank account management, bank account management,
transactions, etc. transactions, etc.

[System Context] Internet Banking System

The system context diagram for a fictional Internet Banking System.

[System Context] Internet Banking System

The system context diagram for a fictional Internet Banking System.

Titles

Short and meaningful, include the diagram type and scope,
numbered if diagram order is important; for example:

System Context View for Internet Banking System
System Context View: Internet Banking System
[System Context View] Internet Banking System

Visual consistency

Try to be consistent with notation
and element positioning across diagrams

ACronyms

Be wary of using acronyms, especially those related
to the business/domain that you work in

Boxes

Start with simple boxes containing the element name, type,
technology (if appropriate) and a description/responsibilities

Personal Banking Internet Banking System
Customer [Software System]

[Person] : . :
Allows customers to view information

A customer of the bank with one or about their bank accounts and make

more personal bank accounts. payments via the web.

Core Banking System
[Container: Java and Spring Boot] Ada pter

[Component: Spring Bean]

Backend

Provides Internet banking functionality
via a JSON/HTTPS API. A Java wrapper around the API provided

by the Core Banking System.

Anonymous User

Relational Database

Twitter

Aggregated User

Web Application

File System

Content Updater

v

GitHub

[Containers] techtribes.je

Administration User

NoSQL Data Store

Anonymous User Aggregated User Administration User

[Person] [Person] [Person]

Uses Uses Uses
[HTFPS]\ [HTips] /[HTTPS]

Web Application

[Container: Spring MVC on
Apache Tomcat 7.x]

Allows users to view people, tribes,
content, events, jobs, etc from the
local tech, digital and IT sector.

Reads from and writes data to Reads f Reads from
[SQL/JDBC, port 3306] €ads from [Mongo DB Wire Protocol, port 27017]

Relational Database

[Container: MySQL 5.5.x] File System
[Container]

NoSQL Data Store
[Container: MongoDB 2.2.x]

Stores people, tribes, tribe
membership, talks, events, jobs, Stores search indexes.

badges, GitHub repos, etc.

: Writes to Reads from and writes data to
Readisgf/r?[)&géd gérr]ttigocé?ta to [Mongo DB Wire Protocol, port 27017]

Stores content from RSS/Atom feeds
(blog posts) and tweets.

Content Updater
[Container: Java 7 Console
Application]

Updates profiles, tweets, GitHub
repos and content on a scheduled
basis.

Gets profile information Gets information Gets content using RSS
and tweets from about public code and Atom feeds from
[HTTPS] repositories from [HTTP]
[HTTPS]

Twitter GitHub Blogs

[Software System] [Software System] [Software System]

[Containers] techtribes.je

Personal Banking
Customer

[Person]

~—
~
A customer of the bank with one =~ -
or more personal bank accounts. T~ o
\ T~ ~ _
7 \ Sends e-mails to
/ \ S~
/ \ ~ o
/ Views account balances S~ o
Loads the Ul from and makes payments =~
/ using
/ \
/ AN
/ \
4 ; Y
_ ul
StatIC content - — = = Delivers = =— [Container: JavaScript and Angular]
[Container: Directory] Single-page app that provides)
HTML, CSS, JavaScript, etc. Internet banking functionality to P
customers via their web browser. ’
’

Internet Banking System

USoﬁware System]

4

Sends e-mails to
customers using

Makes API calls to P [USON/HTTPS]
ISON/HTTPS] PA
Ve
| /’
’
\ 4 .
£,
>
Backend
[Container: Java and Spring Boot] L _ Makes API calls to _
Provides Internet banking (XML/HTTPS]
functionality via a JSON/HTTPS API.
4 A Y
/ \
Vs \
Reads from and writes to Reads from and writes to
[AWS S3 API/HTTPS] [MySQL protocol/TLS]
/ \
> <4
<] 2
Statement Store Database

[Container: Amazon Web Services S3
Bucket]

Bank account statements
rendered as PDF files.

[Container: MySQL Database Schema]

User account information, access

logs, etc.

Container View: Internet Banking System
The container diagram for the Internet Banking System

Amazon Web Services
Simple Email Service

[Software System]

Cloud-based email service
provider.

Core Banking System

[Software System]

Handles core banking functions
including customer information,
bank account management,
transactions, etc.

Personal Bankin

Customer R
[Person] =~ -~ -
7 \ Sends e-mails to
/ \ ~ -~
/ \ T ~a
/ Views account balances S~ o é
Loads the Ul from and makes payments S~ o
/ using N
/ \ .
’ \ Amazon Web Services
4 2 Simple Email Service

a 3\
’ [Software System]

7 I
. = — — — H — — /
Static Content Delivers Ul ,
[Container: Directory] [Container: JavaScript and Angular] P 1
’
7
’

7

Sends e-mails to

1 customers using

Makes API calls to P [USON/HTTPS]
ISON/HTTPS] PA
7
| 7
v ’
/
> ’ :
Backend | - _MakesAPlcallsto _ _ _ 1 _ > Core Banking System
[Container: Java and Spring Boot] [XML/HTTPS] [Software System]
A
4 A Y
/ \
Vs \
Reads from and writes to Reads from and writes to
[AWS S3 API/HTTPS] [MySQL protocol/TLS]
/ \

/ \

| < 4
- |

Statement Store Database

[Container: Amazon Web Services S3

Bucket] [Container: MySQL Database Schema]

Internet Banking System

L[Software System] y

Container View: Internet Banking System
The container diagram for the Internet Banking System

Lines

Favour uni-directional lines showing the most important
dependencies or data flow, with an annotation to be explicit
about the purpose of the line and direction

Yes

T ———_—
D —

—)

Ul Makes an API request to Backend

[Container] [Container]

Sends an API| response to

Ul ﬁ BaCkend
[Container] [Container]

Makes API calls using

Summarise the intent of the relationship

Backend

[Container]

Ul ﬁ
[Container]

Uses

Ul ﬁ BaCkend
[Container] [Container]

Makes API calls using

Summarise, yet be specific

e ——_

Requests a list of customers from

: [JSON/HTTPS] :
Service A Service B

[Container] [Container]

—

Sends new customers to
[Kaftka topic X]

Show both directions when
the intents are different

e ——_

Requests a list of customers from

: [JSON/HTTPS] :
Service A Service B

[Container] [Container]
HE B EEEEEEEEEEEEEEHE

Sends new customers to
[Kaftka topic X]

Show both directions when
the intents are different

Financial Risk System
[Software System]

Trade Data SyStem ﬁ
[Software System]

Trade data

Trade Data System ﬁ Financial Risk System
[Software System] [Software System]

Sends trade data to

Add more words to make the intent explicit

If in doubt, read the relationship

Web Application

[Container]

— Database
[Container]

Reads from and writes to

WEb Application ﬁ Database
[Container] [Container]

Reads from and writes to

Key/legena

Explain shapes, line styles, colours, borders, acronyms, etc
... even if your notation seems obvious!

Arrowheads

Be careful, using different
arrowheads is very subtle;

readers may miss them

Use shape, colour and size
to complement a diagram
that already makes sense

Personal Banking
Customer

[Person]

more personal bank accounts.

A customer of the bank with one or

Amazon Web Services
Simple Email Service

[Software System]

Cloud-based email service
provider.

Core Banking System

[Software System]

Handles core banking functions
including customer information,
bank account management,
transactions, etc.

-~ ~
A\ J ~
4 \ ~ ~
-~
/ \ S S
/ \ S s
Vs \ Sends e-mails to
_’ Views account balances S~
Loads the Ul from and makes payments S~
’ . ~
/ usmg\ ~ o -
/ \ S e
/ \
4 \
/ \
Vi
i | 4 <4 |
4 D f N
) Ul i
StatIC content [Container: JavaScript and Angular] 7
iner: Di L - - i - = . . s
[Container: Directory] Delivers " Single-page app that provides P
HTML, CSS, JavaScript, etc. Internet banking functionality to o
customers via their web browser. ,
7’
7’
\ J \ J - 7
I Sends e-mails to
1 customers using
Makes API calls to [JSON/HTTPS]
[SON/HTTPS] P
1 7
7
v ’
,
(3 4
Backend
[Container: Java and Spring Boot] | _ _Makes API calls to ___1_ _’
Provides Internet banking XML/HTTPS]
functionality via a JSON/HTTPS API.
\ J o
4 AY
/ \
/7 \
Reads from and writes to Reads from and writes to
[AWS S3 API/HTTPS] [MySQL protocol/TLS]
/ \
| / \
4) 4 l
Statement Store Database
[Container: Amazon Web Services S3 Bucket] [Container: MySQL Database Schema]
Bank account statements User account information, access
rendered as PDF files. logs, etc.
\. y \,
Internet Banking System
dSoftware System] y

Container View: Internet Banking System

The container diagram for the Internet Banking System

Personal Banking
Customer

[Person]

-~
A customer of the bank with one =~ -
or more personal bank accounts. S~
~ -~ -
7 \ Sends e-mails to
/ \ N - -
/ \ ~ o
Views account balances S~
Loads the Ul from and makes payments =~
using
\
/ \
/ \
r ’
) ul
Statlc cqntent L — — = Delivers = — _> [Container: JavaScript and Angular]
[Container: Directory] Single-page app that provides
HTML, CSS, JavaScript, etc. Internet banking functionality to P 7
customers via their web browser. ’
7
7
| Sends e-mails to
I customers using
Makes API calls to USON/HTTPS]
[SON/HTTPS] ,
7’
I 7
v ’
/
Backend
[Container: Java and Spring Boot] | _Makes API calls to _ -
Provides Internet banking (XML/HTTPS]
functionality via a JSON/HTTPS API.
4 A Y
/ \
/ \
Reads from and writes to Reads from and writes to
[AWS S3 API/HTTPS] [MySQL protocol/TLS]
\
» 4
N — E—
Statement Store Database
[Container: AmBaLzJ?Ee\Gleb Services 53 [Container: MySQL Database Schema]
Bank account statements User account information, access
rendered as PDF files. logs, etc.
\ ‘/

Internet Banking System

L[Softwa re System]

..__»

Container View: Internet Banking System

The container diagram for the Internet Banking System

Amazon Web Services
Simple Email Service

[Software System]

Cloud-based email service
provider.

A 4

Core Banking System

[Software System)]

Handles core banking functions
including customer information,
bank account management,
transactions, etc.

Be careful with icons

WordPress is one of the world’s most popular web publishing platforms, being used to

Wo rd P ress H OSti n g publish 27% of all websites, from personal blogs to some of the biggest news sites.

This reference architecture simplifies the complexity of deploying a scalable and highly

HOW tO run WOrdPreSS on AWS available WordPress site on AWS.

Region
O /@7 \
e D

|
1

Amazon Route 53

Static and dynamic content is
delivered by Amazon CloudFront.

An Internet gateway allows
communication between instances in
your VPC and the Internet.

NAT gateways in each public subnet
‘| - ‘m] enable Amazon EC2 instances in

. a .
My~ Public Subnet 3~ App Subnet Jj- Data Subnet private subnets (App & Data) to
/ NAT gateway access the Internet.

WordPress Read EFS Mount
Instance Memcached Replica Target

O
1

Use an Application Load Balancer
to distribute web traffic across an Auto
Scaling Group of Amazon EC2
instances in multiple AZs.

-

<<

Bastion

N /
4

Run your WordPress site using an
Auto Scaling group of Amazon EC2
/ instances. Install the latest versions
of WordPress, Apache web server,
PHP 7, and OPcache and build an

Amazon Machine Image that will be
a used by the Auto Scaling group launch
‘ configuration to launch new instances
-« —> in the Auto Scaling group.
@ »:‘ ’ ‘ _ If database access patterns are read-
< . v heavy, consider using a WordPress
Auto Scaling .
Application Load Auto Scaling plugin that takes advantage of a
Amazon Internet Balancer Amazon EFS caching layer like Amazon

CloudFront Gateway ElastiCache (Memcached) in front of
the database layer to cache frequently

1
ole |
g

M

#

a ~ ‘m |
]

— Public Subnet sm— App Subnet — Data Subnet accessed data.
- N\ |/ N—— ™

V4
I

Simplify your database administration
by running your database layer in

5 IXX

>

Amazon RDS using either Aurora or

(6 "' O
MySQL.
- -
ﬁ Amazon EC2 instances access shared
WordPress data in an Amazon EFS

WordPress Memcached Master EFS Mount file system using Mount Targets in
NAT gateway Instance Target each AZ in your VPC.

\ J \ J K / Use Amazon EFS, a simple, highly

available, and scalable network file
system so WordPress instances have

access to your shared, unstructured
/ WordPress data, like php files, config,
\ / themes, plugins, etc.

web services

© 2017, Amazon Web Services, Inc. or its affiliates. All rights reserved.

(.

DNS router

[Infrastructure Node: Route 53]

Routes incoming requests based
upon domain name.

F{

US-East-1
[Deployment Node]

Forwards

—requests to
[HTTPS]

— P

Load Balancer

[Infrastructure Node: Elastic Load Balancer]

Automatically distributes incoming
application traffic.

Forwards

—requests to
[HTTPS]

b Web Application

[Container: Java and Spring Boot]

{5] Amazon EC2 - Ubuntu server
[Deployment Node]

P Autoscaling group
s [Deployment Node]

Reads from and
writes to
[MySQL Protocol/SSL]

» Database Schema

[Container]

mysat] MySQL
[Deployment Node]

%23 Amazon RDS

"l [Deployment Node]
.

Amazon Web Services
[Deployment Node]

Amazon Web Services -
Elastic Load Balancing

Amazon Web Services -
Route 53

Amazon Web Services -
Cloud

Relationship

Amazon Web Services -
EC2

L7

Container, Application

Amazon Web Services -
RDS

R A
4=)
"4 N

Container, Database

Amazon Web Services -
Auto Scaling

Amazon Web Services -
RDS MySQL instance

@

Amazon Web Services -
Region

INncrease the readability of

software architecture diagrams,
so they can stand alone

Any narrative should complement
the diagram rather than explain it

Abstractions first,
notation second

Ensure that your team has a ubiquitous
language to describe software architecture

The C4 model is...

A set of hierarchical
abstractions

(software systems, containers,
components, and code)

Notation independent

A set of hierarchical
diagrams

(system context, containers, components,
and code)

Tooling independent

C4 model (Q Search C4 model

Diagrams |/ Review checklist

Home

YQW' Visualising software architecture with the C4 model
Introduction

1-day masterclass | December 10 | Sydney, Australia

Abstractions v

Diagrams A
1. System context diagram Software architecture diagram review checklist

2. Container diagram

3. Component diagram General
4. Code diagram
, Does the diagram have a title? Yes No
System landscape diagram
Dynamic diagram Do you understand what the diagram type is? Yes No
Blephentinains lzelall Do you understand what the diagram scope is? Yes No
Notation
Does the diagram have a key/legend? Yes No
Review checklist
FAQ
Tooling v Elements
FAQ
Does every element have a name? Yes No
Interactive example (4
Book (7 Do you understand the type of every element? (i.e. the level of Ves No
abstraction; e.g. software system, container, etc)
Video 4
Training & workshops Do you understand what every element does? Yes No
Patreon & Discord [Where applicable, do you understand the technology choices

Yes No

acenciated with averyv ealement?

Draw System Context
and Container

diagrams to describe a
solution for the
"Financial Risk System”

® = finish diagrams
by 14:00

c4dmodel.com/frs

Designing software is where
the complexity should be,
Nnot communicating It!

Similar levels of abstraction provide
a way to easily compare solutions

The diagrams should spark
meaningful questions

NO

“What does that arrow mean?”
“Why are some boxes red?”
“Is that a Java application?”
“Is that a monolithic application, or a collection of microservices?”
"How do the users get their reports?”

Yes

“What protocol are your two Java applications using
to communicate with each other?”
“Why do you have two separate C# applications instead of one?”
“Why are you using MongoDB?”
“Why are you using MySQL when our standard is Oracle?”
“Should we really build new applications with .NET Framework
rather than .NET Core?”

Richer diagrams lead to
richer design discussions

Richer diagrams lead to
better communication,
making it easier to scale teams

Runtime/behavioural diagrams

Static structure diagrams
are very useful, but they
don't tell the whole story

Ul

[Container: JavaScript and Angular]

1: Submits credentials to
[JSON/HTTPS]

JSON/HTTPS]

Ul

[Container: JavaScript and Angular]

Sign In API
[Component: Spring MVC]

6: Sends back an authentication token to

LSONHTIRS

Security Component
[Component: Spring Bean]

2: Validates credentials using

T SRR REERT R REERR SRR REEE TR TEER TR TR R TR R e

5: Issues a session token if authentication succeeds

Sign In API
[Component: Spring MVC]

[MySQL protocol/TLS]

4: Returns user data to
MySQL protocol/TLS]

Dynamic View: Internet Banking System - Backend

Summarises how the sign in feature works in the single-page application

Security Component
[Component: Spring Bean]

3: select * from users where username = ?

& MySQL protocol/TLS) _ _ _ _ _ _ _

-

Database
[Container: MySQL Database Schemal]

Database
[Container: MySQL Database Schemal]

1: Submits credentials to
— = = T[SON/HTTPS] = ™ =~

- -
-
-
Ul
[Container: JavaScript and Angular]
Single-page app that provides
Internet banking functionality to
customers via their web browser. S e

authentication token to
[JSON/HTTPS]

Internet Banking System

k[Softwa re System]

~ ~ _ 6:Sendsbackan -

Sign In API

[Component: Spring MV(]
API endpoint for customer

. -~ sign in.
7 \
5: Issues a session token if \

authentication succeeds \
[} \
I i
\ I

\ 1

\ f

\ 2: Validates credentials

usin

\ . &
\ /

Security
Component

[Component: Spring Bean]

Provides functionality
related to signing in,
changing passwords, etc.

Backend

L[Container]

3: select * from users

[MySQL protocol/TLS]

= =~4: Returns user data to
[MySQL protocol/TLS]

.Where username =?
— —

—

Database

[Container: MySQL Database Schema]

User account information, access
logs, etc.

Dynamic View: Internet Banking System - Backend
Summarises how the sign in feature works in the single-page application

Use dynamic diagrams to describe
patterns or complex interactions

Deployment diagrams

Deployment is about the mapping
of containers to infrastructure

Deployment Node

Physical infrastructure (a physical server or device),
virtualised infrastructure (laaS, PaaS, a virtual machine),
containerised infrastructure (a Docker container),
database server, Java EE web/application server,
Microsoft IS, etc

A deployment node can contain
other deployment nodes or
software system/container instances

Infrastructure Node

Routers, firewalls, load balancers,
DNS providers, edge caches, etc

Static Content

[Container: Directory]

HTML, CSS, JavaScript, etc.

= = = Delivers = = = =

Statement Store

[Container: Amazon Web Services S3

Statement Store Server

[Deployment Node: MinlQ]
-

>

[Deployment Node: Docker]
\

Statement Store Server Container

Developer Laptop

[Deployment Node: Microsoft Windows 11 or Apple macOS]
\,

Ul

[Container: JavaScript and Angular]

Single-page app that provides
Internet banking functionality to
customers via their web browser.

Amazon Web Services
Simple Email Service

[Software System]

Cloud-based email service
provider.

4

Bucket] User account information, access
Bank account statements logs, etc.
rendered as PDF files.
— e

A

~ A

Database

[Container: MySQL Database Schema]

Database Server

[Deployment Node: MySQL 8.4 LTS]
.

Database Server Container

[Deployment Node: Docker]

1 4
7’ . . -
Web Server Web Browser | »” | Mock Simple Email Service
[Deployment Node: nginx] [Deployment Node: Chrome, Firefox, Safari, or Edge] P s { [Deployment Node: Docker]
1 7
I Sends e-mails to
Web Server Container Makes API calls to customers using
. [Deployment Node: Docker] [SON/HTTPS] P AISON/HTTPS]
W
| 7
/ W NN EEEEEEEE NN NN NN NN NN NN RN RN NN
| 7 -
1 7
V L) {
' ,
> 4
Core Banking System
BaCkend . [Software System)]
[Container: Java and Spring Boot] L] e e e e e e e e e e e e e e . MakesAPlcallsto, _ _ _ _ _ _ _ _ _ 4 _ _ _ _ . - ’ Handles core banking functions
Provides Internet banking (XML/HTTPS] . including customer information,
functionality via a JSON/HTTPS API. bank account management,
transactions, etc.
> > \.
- ~ -
Pad S o
P Java Virtual Machine feade i corebanking-dev
Reads from and writes to L [Deployment Node: Eclipse Temurin - JDK 21 - LTS] eaas from and writes to | [Deployment Node: Ubuntu 24.04 LTS]
[AWS S3 API/HTTPS] [MySQL protocol/‘T LS] s
{ PA - ~ .
7 ~ 4 r .
s o - H
> - Big Bank Data Center

- Big Bank Wide Area Network

Deployment View: Internet Banking System - Development
An example development deployment scenario for the Internet Banking System

Amazon Web Services

Container, Server-side

Container, Relational
Database Schema

Container, Amazon Web
Services S3 Bucket

Container, Directory

Simple Email Service

Application

Container, Single-page Core Banking System Deployment Node Group

Application Relationship

Ul

[Container: JavaScript and Angular]

————————————— Delivers= = = = [= = -1-r---
Single-page app that provides 1
Internet banking functionality to 1
customers via their web browser. 1
I
I
I
Web Browser !
[Deployment Node: Chrome, Firefox, Safari, or Edge] I
I
I
Customer's computer !
[Deployment Node: Microsoft Windows or Apple macOS] 1
I
Makes API requests to
[SON/HTTPS]
I
e s e s R s s R R e s s R s E s s R e s s R s E s s s sessensnna s n o e E s s s s s
1

ib-api.bigbank.com
[Infrastructure Node: DNS CNAME]
Unproxied DNS CNAME record
providing access to the
Internet Banking System

ib.bigbank.com
[Infrastructure Node: DNS CNAME]
Proxied DNS CNAME record
providing cached access to
static content.

Amazon Web Services

1 1
DNS Services ! !
[Deployment Node: Cloudflare D‘IS] I
T T
1 1
1 1
Cloudflare)]
| I
Is an alias for Is an alias for
[HTTPS] [SON/HTTPS]
P E R R R D R
. 1 1 .
- 1 1] -
: ' . 1 7 :
: v ! :
: Amazon Web Services :
: i | Simple Email Service :
: [Software System] .
: Load Balancer Cloud-based email service .
N . [Infrastructure Node: Application Load PrOVider- .
R N A B Static Content Balancer] :
. (Container: D'recmr}’] Forwards incoming HTTPS \ .
: HTML, CSS, Javascript, etc. traffic to the Backend. v .
: -, :
= 4 -
: , :
. ’ .
: -, .
. 1 < .
: . . Sends e-mails to .
: Static Content Store Forwards APl requests to customers using .
E [Deployment Node: S3 Bucket]) LISON/;—!TTPS] /[ISON/H'I'I'PS] :
. ' -, .
N 1 e .
- ' -
. 1 e :
. 1 A :
: T , . BesEsEEsEsEEsEsEEsEsEEsEEEEsEEEEEEEEEEEEEEEE
: p . . :
. 1 , . . .
. > : T N -
: A 4 ‘ : : :
. > : : (") .
: - Network Bridge : : Core Banking System :
: Backend Gets bank account (Infrastructure Mode: Amazon Web services : Gets bank account . [Software System] :
. [Container: Java and Spring Boot] information from and . . . - information from and . Handles core banking functions .
: F--1r-|-"- L= Provides a private dedicated . = " 8 .
. Provides Internet banking makes payments using network cor?nection between : makes payments using . including customer information, :
. i ity Vi XMLHTTPS] . XML/HTTPS . .
: functionality via a JSON/HTTPS API. v] AWS and the on-premises : L] - bank account management, :
: network. : . transactions, etc. .
. . : \) B
: > : : :
: ., S : : .
: 17 ~ : : :
: ~ 1Java Virtual Machine AN : : | corebanking-live :
N P 4 [Deployment Node: Eclipse Temurin - JDK 21 - LTS] ~ N . . [Deployment Node: Ubuntu 24.04 LTS] -
L J . oL J .
. 4 ~ . . .
~ - - -
. L7 g f\ : s .
: , . Reads from and writes to . . .
: . Backend Container 1.10 (MySQL protocol/TLS] : : Big Bank Data Center :
N . [Deployment Node: Docker] XT.. ~ . i ssaRssEssEssEsEsEEEEEEEEEEEEEEEEREEEERE e
. Reads from and writes to \ J < :
. [AWS S3 API/HTTPS] ~ r N .
: , ~ :
- e . N -
: . Serverless Compute Engine S) :
N A [Deployment Node: Amazon Web Services Fargate] A .
: Statement Store Database :
: [Container: Am;jg;‘e‘a'“ services 53 [Container: MySQL Database Schema] :
: Bank account statements User account information, access :
: rendered as PDF files. logs, etc. .
: Cloud Object Storage Database Server :
: [Deployment Node: Amazon Web Services Simple Storage Service] [Deployment Node: MySQL 8.4 LTS] .
: Relational Database Service :
. L [Deployment Node: Amazon Web Services Relational Database Service] N
. | eu-west-1 :
: L [Deployment Node: Amazon Web Services Region] :

Deployment View: Internet Banking System - Live
An example live deployment scenario for the Internet Banking System

————————————— Delivers= = = = |- =

]

[Container: JavaScript and Angular]

Single-page app that provides I
Internet banking functionality to |
customers via their web browser. |
|
|
|
Web Browser :
{ [Deployment Node: Chrome, Firefox, Safari, or Edge] |
’ I
|
Customer's Computer :
[Deployment Node: Microsoft Windows or Apple macOS] |
\ J I
Makes API requests to
[JSON/HTTPS]
|
J lll I llllllllllllllllllllll
|

[Infrastructure

ib.bigbank.com

Proxied DNS CNAME record
providing cached access to
static content.

Node: DNS CNAME]

ib-api.bigbank.com
[Infrastructure Node: DNS CNAME]
Unproxied DNS CNAME record
providing access to the
Internet Banking System

Backend.

T T
| |
DNS Services ! :
[Deployment Node: Cloudflare piis] |
. J
I 1
| |
| |
Cloudflare |)
| |
Is an alias for Is an alias for
[HTTPS] [SON/HTTPS]
Illlllllllllllllllllll@lilll‘lll@llllllllllllllllllll
| |
f]]
7 ! N\ I —
v -
4 ~

Static

HTML, CSS,

[Container: Directory]

Content

JavaScript, etc.

[Deployment Node: S3 Bucket]
.

Static Content Store

Forwards incoming HTTPS
traffic to the Backend.

Load Balancer

[Infrastructure Node: Application Load

Balancer]

Forwards API requests to

[SON/HTTPS]
|]

| 7
1 N

Sends e-mails to

customers using
/USON/HﬂPS]

7

Amazon Web Services
Simple Email Service

[Software System]

Cloud-based email service
provider.

Static Content

[Container: Directory]

HTML, CSS, JavaScript, etc.

Static Content Store

[Deployment Node: S3 Bucket]
\

Statement Store

[Container: Amazon Web Services S3
Bucket]

Bank account statements
rendered as PDF files.

Cloud Object Storage

[Deployment Node: Amazon Web Services Simple Storage Service]
.

e
7
7’

[AWS S3 API/HTTPS]

7

7’

eu-west-1

[Deployment Node: Amazon Web Services Region]
\.

7

Reads from and writes to

Load Balancer

[Infrastructure Node: Application Load
Balancer]

Forwards incoming HTTPS
traffic to the Backend.

Forwards API requests to
[JSON/HTTPS]

[P

7’

[7)
A 4 ‘
.
Backend
[Container: Java and Spring Boot] A
Provides Internet banking
functionality via a JSON/HTTPS API.
y

s, NN

4 , N
- 1J)ava Virtual Machine
” 1 . [Deployment Node: Eclipse Temurin - JDK 21 - LTS]

A

Backend Container

[Deployment Node: Docker]

Serverless Compute Engine

[Deployment Node: Amazon Web Services Fargate]
\

_ _information fromand _ _ _

~

Sends e-mails to
customers using
_ USON/HTTPS]

Gets bank account

makes payments using
[XML/HTTPS]

~
~
~

~
Reads from and writes to
[MySQL protocol/TLS]
~

~
~
~
~

Amazon Web Services
Simple Email Service

[Software System]

Cloud-based email service
provider.

Network Bridge

[Infrastructure Node: Amazon Web Services
Direct Connect]

Provides a private dedicated
network connection between

AWS and the on-premises
network.

A
—

A

Database

[Container: MySQL Database Schema]

User account information, access
logs, etc.

Database Server

[Deployment Node: MySQL 8.4 LTS]

Relational Database Service

[Deployment Node: Amazon Web Services Relational Database Service]
\

Amazon Web Services

Deployment View: Internet Banking System - Live

An example live deployment scenario for the Internet Banking System

Gets bank account
information from and

makes payments using
IXML/HTTPS]

Core Banking System

[Software System]

.’ Handles core banking functions .
including customer information,
bank account management,
transactions, etc.

corebanking-live

[Deployment Node: Ubuntu 24.04 LTS]
\.

Big Bank Data Center

Amazon Web Services Container, Server-side

Container, Relational
Database Schema

Container, Amazon Web

, Container, Directory
Services S3 Bucket

Simple Email Service Application

Container, Single-page Core Banking System Deployment Node Group Infrastructure Node
Application

————————————— . >

via Private Network
Connection

Relationship

(.

DNS router

[Infrastructure Node: Route 53]

Routes incoming requests based
upon domain name.

F{

US-East-1
[Deployment Node]

Forwards

—requests to
[HTTPS]

— P

Load Balancer

[Infrastructure Node: Elastic Load Balancer]

Automatically distributes incoming
application traffic.

Forwards

—requests to
[HTTPS]

b Web Application

[Container: Java and Spring Boot]

{5] Amazon EC2 - Ubuntu server
[Deployment Node]

P Autoscaling group
s [Deployment Node]

Reads from and
writes to
[MySQL Protocol/SSL]

» Database Schema

[Container]

mysat] MySQL
[Deployment Node]

%23 Amazon RDS

"l [Deployment Node]
.

Amazon Web Services
[Deployment Node]

Amazon Web Services -
Elastic Load Balancing

Amazon Web Services -
Route 53

Amazon Web Services -
Cloud

Relationship

Amazon Web Services -
EC2

L7

Container, Application

Amazon Web Services -
RDS

R A
4=)
"4 N

Container, Database

Amazon Web Services -
Auto Scaling

Amazon Web Services -
RDS MySQL instance

@

Amazon Web Services -
Region

System landscape diagrams

Personal Banking
Customer

[Person]

A customer of the bank with one

”
” ~
” ~
” ~
” ~
” ~
g / \ ~
- - / \ > ~ -
e / \ ~
Asks questions to ! Views account balances Sends e-mails to
ATelephone] Withdraws cash using and makes payments S o
P ‘ using ~
7 / > ~
- / \ N o
R R R R EEE R R R R R R R R R R R R R R RN R RN w N NN NN NN NN EEEE R R R R R R R R R R R R R R R R RN RN E R R R R R R R RN R R R RN \
. . ~
- , \ - \ \
: ATM Internet Banking System | - Amazon Web Services
. [Software System]
: [Software System] . : “mai Simple Email Service
. : Allows customers to view - - Sendse-mailsto_ _
. Allows customers to withdraw information about their bank - customers using [Software System]
. Customer Service Staff cash and check bank account accounts and make payments via : Cloud-based email service
- [Person] balances. the web . provider.
. Customer service staff within the ' .
. bank. .
. - .
= y I =
= -~ =
- \ -
- \ I -
. I .
. I .
. _ Gets bank account .
. Support customers using Makes transactions using information from and .
' R o makes payments using '
. ~ S ! .
= ~ -~ - N\ I =
. RS AN I .
= -~ -~ ~ =
= ~ v =
- \ -
- \ -
= ~ ~ 1 =
= -~ =
- \ -
: Core Banking System :
: Investigate and ottwaresysem :
. troubleshoot problems = = = = = = = = = = = = = = > ‘Halnc('JjI.es Coretba“kif‘gfo”CtLQ”S .
. usin including customer information, .
. Back O[Fzrfsioie Staff 8 bank account management, .
. transactions, etc. .
. within the bank. L y .

System Landscape View
A partial system landscape diagram for a fictional bank

Amazon Web Services
Simple Email Service

Person, Bank Staff

ATM

Person, Customer

Core Banking System

Relationship

Group

Internet Banking System

What's the inspiration
penhind the C4 model?

How widely used
s the C4 model?

've run software architecture
WOrkshops

in ~40 countries
for 10,000+ people
across most industry sectors

D STtructurizr UCITV rrOoUucLS LOLUllIchitallull SUpPpPUIL 0 2DIE

Academic establishments

A free subscription is available for students and staff at academic establishments, for teaching purposes (e.g. preparation of teaching
material, use in assignments, etc). It's based upon the regular cloud service subscription with 5 workspaces, and is granted automatically
to users who sign up with an e-mail address from the following 94 academic establishments:

Facultad de Ingenieria de la Universidad de Buenos Aires, Argentina (@fi.uba.ar)

Universidad Tecnoldgica Nacional, Argentina (@ca. frre.utn.ed.ar, @lu.frt.utn.edu.ar, @frt.utn.edu.ar, @doc.frt.utn.edu.ar)
RMIT University, Australia (@rmit.edu.au, @student.rmit.edu.au)

University of Queensland, Australia (@ug.edu.au, @uq.net.au, @student.uq.edu.au)

University of Tasmania, Australia (@utas.edu.au)

OS8B8G ()

Vienna University of Economics and Business, Austria (@wu.ac.at, @s.wu.ac.at)

‘ ' Howest University of Applied Sciences, Belgium (@howest.be, @student.howest.be)
‘ ' PXL University of Applied Sciences and Arts, Belgium (@px1l.be, @student.pxl.be)
@ Universidade Federal de Mato Grosso do Sul, Brazil (@ufms.br, @facom.ufms.br)
@ Universidade Federal do Parg, Brazil (@ig.ufpa.br, @icen.ufpa.br)

@ Universidade federal de Pernambuco, Brazil (@ufpe.br, @cin.ufpe.br)

‘*' Université de Sherbrooke, Canada (@usherbrooke.ca)

""' Ecole de Technologie Supérieure, Canada (@etsmtl.ca, @ens.etsmtl.ca)

(4 My C4 model book is also

used as course material
modae]

for visualising software architecture i n m a ny Ot h e r U n ive rS iti e S

Simon Brown

Are the diagrams for design
or documentation purposes?

Perspectives

What about ownership, security,
technical debt, etc?

Software Systems
CAItecture

~~ Second Edition__

Working With Stakeholders Using Viewpoints and Perspectives
NICK ROZANSKI - EOIN WOODS

Perspectives

Rather than defining another viewpoint and
creating another view, we need some way

to modify and enhance our existing views to
ensure that our architecture exhibits the desired
guality properties. We therefore need something
in our conceptual model that can be considered
“orthogonal” to viewpoints, and we have coined

the term architectural perspective (which we

shorten to perspective) to refer to it.

https://www.viewpoints-and-perspectives.info/home/perspectives/

Personal Banking

Customer

[Person]

stomer of the bank with

one
unts.

Views account balances
and makes payments

using

~

IIIIIIIlIIII.-IlIIIlll.lIIIIIlIIIIIIlIIIIIllwlIIIIIIIIIIlIIIIIIIlll.llllIIIIIlIIIIIIllIIIIIIIIIIIIIlIIIIIIIl..lllIIIIIIllII@I.l

Customer Service Staff

[Person]

Custpmer service staff withi
bank.

Back Office Staff

[Person]

Admiinistration and support|staff
within the bank.

Big Bank

- ore personal bank acco
”
”
”
-~
-
Es
”
”
-~
”
-~
Asks questions to
ATelephone] Withdraws cash using
” 4
e
N /
-~
/

ATM

[Software System]

Allows customers to withdraw
cash and check bank account
balances.

Investigate and

using

troubleshoot problems = = = = = = = = = = = = = =

\

Internet Banking System

[Software System)

Allows customers to view

information about their bank

accounts and make payments via

O}

1
Gets bank account
information from and
makes payments using
1

Core Banking System

[Software System]

Handles core banking functions
including customer information,
bank account management,
transactions, etc.

Sends e-mails to
-y

~

_ _Sends e-mailsto_ _

customers using

Amazon Web Services
Simple Email Service

[Software System]

Cloud-based email service
provider.

ATM

[Software System]

Allows customers to withdraw
cash and check bank account
balances.

Big Bank

Internet Banking System

[Software System]

Allows customers to view

information about their bank
accounts and make payments via
the web.

®

Core Banking System

[Software System]

Handles core banking functions
including customer information,
bank account management,
transactions, etc.

Amazon Web Services

ATM Internet Banking System | .
[Software System] [Software System] : E
) R a
Allows customers to withdraw i né
cash and check bank account acco

balances.

Perspective: Ownership

Team C

Core Banking System

[Software System]

Handles core banking functions
including customer information, .
bank account management, .
transactions, etc. .

Big Bank

' _ Depl Node: Dock Al.. 1V
Reads from and writes to L[eployment fode: Docker! J
[AWS S3 API/HTTPS]
/
Ve .
. Serverless Compute Engine
A [Deployment Node: Amazon Web Services Fargate]
Statement Store
[Container: Amazon Web Services S3
Bucket]
Bank account statements
rendered as PDF files.
Cloud Object Storage
[Deployment Node: Amazon Web Services Simple Storage Service]
eu-west-1
[Deployment Node: Amazon Web Services Region]

Amazon Web Services

Deployment View: Internet Banking System - Live
An example live deployment scenario for the Internet Banking System | Simon Brown | c4model.com | License: CC BY 4.0

Statement Store

[Container: Amazon Web Services S3
Bucket]

Bank account statements
rendered as PDF files.

Perspective: Security

Objects are server-side encrypted using AES-256.

Amazon Web Services

Deployment View: Internet Banking System - Live
An example live deployment scenario for the Internet Banking System | Simon Brown | c4model.com | License: CC BY 4.0

Fvent-driven architectures

Sends events of
type Ato

Message-driven architectures

Message-driven
architectures

Service C

[Container]

Service A

[Container]

~ _ v

-~ -_

Sends messages to Sends messages to
\ -
-
Message Bus
[Container]
~

-_ L.
Sends messages to Sends messages to
Ll \

~ 7 R

Service D

[Container]

Service B

[Container]

Service A

[Container]

Service B

[Container]

— Sends messages to—

— Sends messages to=

Queue X

[Container]

Queue Y

[Container]

— Sends messages to-

— Sends messages to-

Service C

[Container]

Service D

[Container]

Service A

[Container]

Service B

[Container]

Sends messages to
[via Queue X]

Sends messages to
[via Queue Y]

Service C

[Container]

Service D

[Container]

Service C

[Container]

_Subscribes to messages __

Queue X
from

[Container]

Service A

— Publishes messages to—
[Container]

Service D

[Container]

» —
Subscribes to messages
from
—
-
Serw;e B — Publishes messages to— TOpIC Y
[Container] [Container]
\
S
Subscribes to messages
from
- S~

Service E

[Container]

Abstraction

VS

organisation

What are your thoughts on modelling
additional abstractions?

Camera
A _Sends control __ Hardware System]

[Software System] signals to . ‘

Element Relationship

Some of these concepts
are better thought of as
organisational constructs
rather than abstractions

User

[Person]

Repository Layer

Service A Service B

[Component] [Component]

. Service Layer

Repository A Repository B

[Component] [Component]

Repository Layer

Service A Service B

[Component] [Component]

. app-service.jar :

Repository A Repository B

[Component] [Component]

app-repository.jar

Apply this concept to subsystems,
bounded contexts, etc...

A E Sends events of : C
[Software System] type A to | [Software System]

|
Sends events of

type Ato
|

[Software System]

' Bounded Context 1

__

Microservices

A microservice should be modelled
as a software system
or a group of containers

(monolithic architecture)

Software system X

[Software System]

— — — -DoesA, B, Cusing —
& Provides business capabilities A, B,

C
User

[Person]

System Context View: Software system X

User

[Person]

Container View: Software system X

— = = Does A, B, Cusing: =

Web app

[Container: Java and Spring MV(]

Implements Ul and business logic
for capabilities A, B, C

Software system X

[Software System]

_ _Readsfromand_ _

writes to

Database schema

[Container: MySQL]

Stores data related to capabilities
A, B, C

L= '@J ‘L — -l
® - — . ©T : :,_:@,J\

(Microservices)

martinFowler.com

Refactoring Agile Architecture About Thoughtworks N ¥ @ (i

Microservices

a definition of this new architectural term

The term "Microservice Architecture” has sprung up over the last few years to describe a
particular way of designing software applications as suites of independently deployable
services. While there is no precise definition of this architectural style, there are certain
common characteristics around organization around business capability, automated
deployment, intelligence in the endpoints, and decentralized control of languages and
data.

CONTENTS

Characteristics of a Microservice Architecture
Componentization via Services

Organized around Business Capabilities
James Lewis Products not Projects

Smart endpoints and dumb pipes

James Lewis is a Principal Consultant at Thoughtworks and :
Decentralized Governance

member of the Technology Advisory Board. James' interest in .
Decentralized Data Management

building applications out of small collaborating services

In short, the microservice architectural style [1] is an approach to developing a single
software system as a suite of small services, each running in its own process and
communicating with lightweight mechanisms, often an HTTP resource API. These
services are built around business capabilities and independently deployable by fully
automated deployment machinery. There is a bare minimum of centralized
management of these services, which may be written in different programming

languages and use different data storage technologies.

Software system X

[Software System]

— — — -DoesA, B, Cusing —
& Provides business capabilities A, B,

C
User

[Person]

System Context View: Software system X

User

[Person]

— — = DoesA, B, Cusing= =

Web app

[Container: Java and Spring MVC]

Implements Ul for capabilities A, B,
C

Software system X

L[Software System)]

_ _ DoesBusing, _ _

Does A using
[JSON/HTTPS]
L 4

[SON/HTTPS]

Does C using
USON/HTTPS]
~

Service A API

[Container: Spring Boot]

Implements business logic
for capability A

Service B API

[Container: Spring Boot]

Implements business logic
for capability B

Service C API

[Container: Spring Boot]

Implements business logic
for capability C

_ _Readsfromand _ _

_ _Readsfromand _ _

_ _Readsfromand _ _

Service A database
schema

[Container: MySQL]

writes to

Stores data related to capability A

Service B database
schema

[Container: MySQL]

writes to

Stores data related to capability B

Service C database
schema

[Container: MySQL]

writes to

Stores data related to capability C

User

[Person]

— — = DoesA, B, Cusing= =

Web app

[Container: Java and Spring MV(C]

Implements Ul for capabilities A, B,
C

Software system X

k[Software System)]

Does A using
[JSON/HTTPS]
L 4

_ _ DoesBusing, _ _

[JSON/HTTPS]

Does C using
USON/HTTPS]
~

v

Service A API

[Container: Spring Boot]

Implements business logic
for capability A

- Service A

Service B API

[Container: Spring Boot]

Implements business logic
for capability B

Service C API

[Container: Spring Boot]

Implements business logic
for capability C

- Service C

_ _Reads from and _

writes to

_ _Reads from and _

writes to

_ _Reads fromand _ _

writes to

-)- schema

-> schema

Service A database

[Container: MySQL]

Stores data related to capability A

Service B database

[Container: MySQL]

Stores data related to capability B

N

Service C database
schema

[Container: MySQL]

Stores data related to capability C

User

[Person]

DoesA,B,C,D
using

- P

Web app

[Container: Java and Spring MV(]

Implements Ul for capabilities A, B,
C,D

—

Software system X

L[Software System]

Y4

Does A using
USON/HTTPS]
’

-
. -
Does B using
. SON/HTTPS]

“Does C using

USON/HTTPS)
~

Does D using
USON/HTTPS]
AN

writes to

Reads fromand _

Service A database
schema

[Container: MySQL]

Stores data related to capability A

: Service A API

. [Container: Spring Boot] _
. Implements business logic

. for capability A

¥Service A

Service B API

[Container: Spring Boot]

Implements business logic
for capability B

: Service B

Service C API

[Container: Spring Boot]

Implements business logic
for capability C

Service D

- Service D

\/

\/

: [Container: AWS Lambda - Python] :
. Implements business logic .
. for capability D .

_ _Reads from and_
writes to

_ _Reads from and_
writes to

-

—

Service B database
schema

[Container: MySQL]

Stores data related to capability B

-

-

Service C database
schema

[Container: MySQL]

Stores data related to capability C

e |

(Conway's Law)

Service A

[Software System]

Implements business capability A

Does A using
USON/HTTPS)
7

s Service B

[Software System]

Implements business capability B

-

Does B using
. =[USON/HTTPS]

Software system X

- _DOES A B, CD - [Software System]
using Provides business capabilities A, B,
C,D
User -
[Person] Does C using
USON/HTTPS]~
Service C
[Software System]
N Implements business capability C
N
N\
Does D using
[JSON/HTTPS]
~»
N
N
N\
N
N
N
Service D
[Software System]
Implements business capability D
S

System Context View: Software system X

Service A

[Software System]

Implements business capability A

Does A using

USON/HTTPS]
7
7
L7 Service B
[Software System]
Implements business capability B
. , -
Does B using
_. =USON/HTTPS]
-

Web app

Does A, B, C, D [Container: Java and Spring MV(C]

using Implements Ul for capabilities A, B,

C,D
User

[Person]

~—
~ .
Does C using
USON/HTTPS]~

Software system X S Service C
L[Software System])‘ N [Software System]
N . Implements business capability C
N
Does D using
[)SON/HTTPS]
~
\
\
N
N
N
A .
Service D
[Software System]
Implements business capability D
\ y

Container View: Software system X

Software system X
[Software System] _ _Does Ausing_

Provides business capabilities A, B, USON/HTTPS]
C,D

Service A

[Software System]

Implements business capability A

System Context View: Service A

Software system X Service A API Service A database
[Software System] _ _Does A using_ [Container: Spring Boot] _ Reads from and. schema

Provides business capabilities A, B, USON/HTTPS] Implements business logic writes to o
[Container: MySQL]

C,D for capability A N
Stores data related to capability A

Service A

[Software System]

Container View: Service A

Dependencies to
"external” containers

Service A API

[Container: Spring Boot]

Service A database

Reads from and
- schema

: ; writes to
Imple;nents bLt;'Sll'?;,SAS logic [Container: MySQL]
or capabili
7 Stores data related to capability A
/
.~ | Service A
7 [Software System] y
’
’
/s
’
’
/s
’ 4)
e
Does A using
JSON/HTTPS]
’
’
g Service B API
’ ervice
e [Container: Spring Boot] _Reads from and Service B database
L7 Implements business logic writes to [Container: MySQL]
’ for capability B Stores data related to capability B
, A 2
7’ -
7 - -
Does B using™
_ = [ISON/HTTPS]
Service B
WEb app L[Software System] y
_ _ DoesA,B,C,D_ _ _ [Container: Java and Spring MVC]
using Implements Ul for capabilities A, B,
C,D
~ “Does C using
USON/HTTPS]® o _
Software system X S <o
~—
[Software System] ~

Service C API .
[Container: Spring Boot] _Reads from and Service C database

Implements business logic writes to [Container: MySQL]
far ranmahilitns CtAarnec Aot ralatad +A carmashilityvy

Showing “external” containers implies
some understanding of
Implementation details, which makes
the diagrams more volatile to change

Tooling?

Documenting
software architecture

Working software
over

comprehensive
documentation

The code doesn't tell
the whole story

Software
Archltecture Useful information
Document spread across

hundreds of pages,;
rarely read or updated

SIGHT GUIDES

Channel Islands

pocket guide

Gmat Brealrs YT TR :

”JERSEY

Travel Guidebook

(maps, points of interest, sights, itineraries,
history, culture, practical information, etc)

Channel Islands

pocket guide

Gmat Bmaks YT TR :

”JERSEY

Software Guidebook

(maps, points of interest, sights, itineraries,
history, culture, practical information, etc)

The

software
guidebook

Simon Brown

https://leanpub.com/documenting-software-architecture/c/free

The scope is a single
software system

Describe what you
can't get from the code

Documentation shoula
pe constantly evolving

F Functional \ f \ f w f w

Context Overview Quality Attributes Constraints " fl::u(:cul)les .
PV An overview of th? software A list of the quality attributes A list of the environmental aIrj:h(i)tectjreevreir?criml]eesn(ean
Iu)s/ s T tixt tc’) sy;tem; perhaps including (non-functional requirements; constraints (e.g. timescales, codin coFr)wventFi)ons &
PIuS St i} wireframes, Ul mockups, e.g. performance, scalability, budget, technology, 5 '
set the scene”. screenshots, workflow sy, @il team size/skills, etc). separation of concerns,
diagrams, business process patterns, etc).
K diagrams, etc. j K j k J k J
Software Data
Architecture Code Data models, entity . o o
A description of the software A description of important or relationship diagrams This is a starting point; add and
hitecture, including stati complicated component . ' :
S e e T mplementation details security, data volumes, remove sections as necessary.
structure (e.g. containers and P ' archiving strategies, backup
components) and dynamic/ patterns, frameworks, etc. g

runtime behaviour.

ﬁ Overview Docs FAQ Examples Training Download About

arc42 Template Overview

arc42 is a template for architecture communication and
documentation.

Photo credit: unsplash

arc42 answers the following two questions in a pragmatic way, but can be tailored to your specific needs:

e |What should we document/communicate about our architecture?

e How should we document/communicate?

ol Goals Stakeholder 1. Introduction and Goals
' Goal Description Who? | Expectation? L . ..
?::;};i 1 T Short description of the requirements, driving forces, extract (or abstract) of
I “ae “ee e “es
requirements. Top three (max five) quality goals for the architecture which have

highest priority for the major stakeholders. A table of important stakeholders
with their expectation regarding architecture.

Read More

Title These documents have names that are short
noun phrases. For example, "ADR 1: Deployment on

Ruby on Rails 3.0.10" or "ADR 9: LDAP for
Multitenant Integration”

Context This section describes the forces at play,
including technological, political, social, and project
local. These forces are probably in tension, and
should be called out as such. The language in this
section is value-neutral. It is simply describing facts.

Decision This section describes our response to these
forces. It is stated in full sentences, with active voice.

"We will ..."

Status A decision may be "proposed" if the project
stakeholders haven't agreed with it yet, or "accepted”
once it is agreed. If a later ADR changes or reverses a
decision, it may be marked as "deprecated” or
"superseded" with a reference to its replacement.

Consequences This section describes the resulting
context, after applying the decision. All consequences
should be listed here, not just the "positive" ones. A
particular decision may have positive, negative, and
neutral consequences, but all of them affect the team
and project in the future.

“Architecture
Decision Record”

A short description of an

architecturally significant decision

http://thinkrelevance.com/blog/2011/11/15/documenting-
architecture-decisions (Michael Nygard)

Immutable vs mutable ADRS?

Documentation format?

Microsoft Word, Microsoft SharePoint,
Atlassian Confluence, Markdown or AsciiDoc, etc

How long?

Something | can read in 1-2 hours;
a good starting point for exploring the code

How do you keep software
architecture documentation

up to date?

C4 model diagrams

+

software guidebook/arc42

+

architecture aecision recorads

Software architecture
In practice

Mang qe /e

\Pﬁ RAMETEL

Big design
up front

VS

Document

®
No design
Architecture >

up front

<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>