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What is software
architecture?




Structure

The definition of software in terms
of its building blocks and their interactions




Vision
The process of architecting;

making decisions based upon business goals,
requirements and constraints,

plus being able to communicate this to a team



Enterprise Architecture

Structure and strategy across people, process and technology

System Architecture

High-level structure of a software system
(software and infrastructure)




As a noun, design is the namead structure
or behaviour of a system ... a design thus
represents one point in a potential
decision space.

Grady Booch



All architecture is design, but
not all design is architecture.

Grady Booch



Architecture represents the
significant decisions, where significance
IS measured by cost of change.

Grady Booch



As architects, we define
the significant decisions



Technology

Programming languages, libraries, frameworks,
deployment environments, etc



Flements

How software is decomposed into smaller executable
building blocks at different levels of abstraction

(e.g. monoliths vs microservices, package by layer vs
package by feature) and how data is stored

(e.g. data schemas and formats)



Relationships

Dependencies and interactions between elements
(e.g. synchronous vs asynchronous communication,
data formats, protocols, etc)



What happens if a software
development team doesn’t
think about architecture?




Chaos

Big ball of mud, spaghetti code, inconsistent
approaches to solving the same problems,
guality attributes are ignored, deployment

problems, maintenance issues, etc
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Big design up front is dumb.
Doing no design up front
IS even dumber.

Dave Thomas



Software architecture
nelps us avoid chaos



Architectural
drivers



Requirements
drive architecture

(use cases, user stories, features, etc)



Requirement
"a thing that is needed or wanteq"

(this includes experiments and hypotheses too)



Don't start designing software
If you have no inputs



Quality attributes

(also known as non-functional requirements,
Cross-cutting concerns, service-level agreements, etc)



What quality attributes
might be relevant for the
"Financial Risk System”?



m Performance

m Scalability

m Availability

m Security

m Disaster Recovery
m Accessibility

= Monitoring

= Management

m Audit

m Flexibility

m Extensibility

® Maintainability
m |[nteroperability
m | egal

m Regulatory

m Compliance
mi18n

m | 10n

Create a checklist of
guality attributes you
regularly encounter



Understand how to capture, refine
and challenge quality attributes



Software lives in the real world,
and the real world has

constraints




Typical constraints include
time and budget, technology,
people anda skills, politics, etc



Constraints can sometimes
pe prioritised



Principles

are selected by the team



Development principles include
coding conventions, naming
guidelines, testing approaches,

review practices, etc



Architecture and design principles
typically relate to modularity

Or crosscutting concerns

(architectural layering, separation of concerns,
stateless vs stateful, rich vs anaemic domain,
security, error handling, logging, etc)



Ensure you have a good
understanding of the requirements,
guality attributes, constraints

and principles to create
sufficient foundations




What about agile,
ana agility?



Agile is about moving fast,
embracing change, releasing often,
getting feedback, ...



Agile is about a mindset of
continuous improvement



Inspect and adapt



Continuous attention to
technical excellence and
good design enhances agility.

Principle 9 of the Manifesto for Agile Software Development




A good architecture
enables agility
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A good architecture rarely
nappens through
architecture-indifferent design



- Modularity --------semeemmmeeeeeeas

Microservices

Distributed
big ball of mud



Agility is a
quality attribute




The software
architecture role




Software development
IS not a relay sport

Software
Architecture

Document




AaaS

Architecture as a Service



The software architecture role
IS about the "big picture”
and, sometimes, this means
stepping away from the code



The software architecture role

(technical leadership, and responsible for the technical success of the project/product)

Architectural drivers Designing software Technical risks

Understanding the goals; . . ldentifying, mitigating and ownin
5 5 . Creating the technical strategy, y g .g 5 5
capturing, refining, and challenging w . the technical risks to ensure that
: . vision, alignment, and roadmap. . ) ,
the requirements and constraints. the architecture “works”.

Quality assurance

Introduction and adherence to
standards, guidelines, principles,
etc plus management of
technical debt.

Technical leadership

Continuous technical leadership
and ownership of the architecture
throughout the software delivery.



Software development teams
don't need architects



Software development teams
do need technical leadership



Every team neeads
technical leadership



Continuous
technical leadership

(somebody needs to continuously steer the ship)




Should software architects
write code?



Production code, prototypes,
frameworks, foundations, code
reviews, experimenting, etc



Don't code all of the time!



There is often a tension between
peing “senior” and writing code...



Software architects
should be

master builders




software
development
methods

SCIENCE

PROFESSIONALL

ENGINEERING

\ emerging,

but spotty

~ 1990, adoption of
development methods

P Pl o) 4501/5425

Progress Toward an Engineering Discipline of Software
Mary Shaw



Technology
SKills



Good software architects
are typically
good software developers



The people designing software must
understand technology ...

all decisions involve trade-offs



— -Reads from-

A

[Software System)]




Soft skills

(leadership, communication, presentation, influencing,
negotiation, collaboration, coaching and mentoring,

motivation, facilitation, political, etc)




OREILLY"

Redefining the Architect's Role

in the Digital Enterprise




Domain knowledge

(or the ability to learn quickly)



The software architecture role
s multi-faceted

(technology, soft skills, domain knowledge)



Software architects,
solution architects,
tech leads,
principal engineers?



Technical priorities
VS
product priorities?



What'’s in your backlog?

Visible Invisible

Positive Visible Hidden,
| Feature architectural
Value feature

Negative Technical
Value Debt

Source: What colours is your backlog, at http://philippe.kruchten.com/talks

Copyright © 2011 by Philippe Kruchten 28

https://philippe.kruchten.com/wp-content/uploads/2011/10/kruchten-111027-techdebt.pdf



The product owner(s) and
software architect(s) are peers

("Architecture Owner” is another term you can use)



Everybody should
pbe an architect



“everybody is responsible for architecture”

everybody being responsible for architecture



Everybody” should
own the architecture




teams should be
agile, autonomous,
and self-organising




just hire good people
anda trust them to do
the right thing




Does everybody have the skills
and motivation to collaborate
on the software architecture role?
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Product vs stream leadership

pability 2)




Hierarchies of architects,
central architecture groups,
technical design authorities,

etc?



Decision making

Centralised vs decentralised
Tactical vs strategic



O'REILLY"

Facilitating
Software
Architecture

Empowering Teams
to Make Architectural

Decisions

Andrew Harmel-Law

"Architecture advice process”



Introducing control?
Avoiding chaos?



How much control do you need?



s arowing
self-organizing
teams

Roy Osherove

/“ MANNING

Different types of teams need
different leadership styles



Pair architecting




Collaborative technical leadership
IS not easy




Collaborate
or fail



Draw one or more
software architecture
diagrams to describe a
solution for the
"Financial Risk System”

@ = 1.5 hours
(15:15)

c4dmodel.com/frs



Did you find anything
about this exercise
challenging?
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Swap your diagrams
with another group



Review the diagrams

Focus on the diagrams: notation, colour coding, symbols, etc

3 things you like . . .

3 things that could be improved
A score between 1-10 .
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Information is likely
still stuck in your heads



This doesn't make sense,
put we'll explain it.



What is this shape/symbol? 3
- wrLCTING | S
What is this line/arrow? B Ve O

peTale N A

What do the colours mean?
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What level of abstraction is shown? .

Which diagram do we read first? sty No’rSr“L\
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If you're going to use “boxes & lines”,
at least do so in a structured way,
using a self-describing notation



Moving fast in the same direction
as a team requires

good communication



Do you use UML?



In my experience,

few people use UML




#2 "Not everybody else on the team knows it.”
#3“I'm the only person on the team who knows it.”
#36 “YoU'll be seen as old.”

#37 “YoU'll be seen as old-fashioned.”

#66 "The tooling sucks.”

#30 “It's too detailed.”

97 Ways t() #31 “It's a very elaborate waste of time.”
' “It's not expected in agile.”
Sidestep UML

#97 “The value is in the conversation.”

Knowfa Malliry




Lefols
olsT @l@u-now

PaRAMETEL

Risk Calculation

V

Report Creation

Parameter Management

Monitoring

Report Distribution




Who are the stakeholders that
you need to communicate
software architecture to;
what information do they need?



o

d L

There are many different audiences for diagrams
and documentation, all with different interests

(software architects, software developers, operations and support staft, testers,

Product Owners, project managers, Scrum Masters, users, management,
business sponsors, potential customers, potential investors, ...)



Our diagramming toolbox shoula
include UML, ArchiMate, SysML,

BPML, DFDs, ERDs, etc



To describe a software architecture,
we use a model composed of

multiple views or perspectives.

Architectural Blueprints - The “4+1” View Model of Software Architecture
Philippe Kruchten



The description of an architecture—the decisions made—can be organized around these four views, and

then illustrated by a few selected use cases, or scenarios which become a fifth view. The architecture 1s in
fact partially evolved from these scenarios as we will see later.

End-user Programmers
Functionality Software management

Development

Logical View —» View

J Scenarios J
Process View Physical View
Integrators System engineers
Perforrpgnce Topology
Scalability Communications

Figure 1 — The "4+1" view model




Our architecture diagrams
don't match the code.



Software Reflexion Models:

Bridging the Gap between Source and High-Level Models®

Gail C. Murphy and David Notkin

Dept. of Computer Science & Engineering
University of Washington
Box 352350
Seattle WA, USA 98195-2350

{gmurphy, notkin }@cs.washington.edu

Abstract

Software engineers often use high-level models (for in-
stance, box and arrow sketches) to reason and com-
municate about an existing software system. One
problem with high-level models 1s that they are al-
most always inaccurate with respect to the system’s
source code. We have developed an approach that
helps an engineer use a high-level model of the struc
ture of an existing software system as a lens through
which to see a model of that system’s source code. In
particular, an engineer defines a high-level model and
specifies how the model maps to the source. A tool
then computes a software reflexion model that shows
where the engineer’s high-level model agrees with and
where 1t differs from a model of the source.

The paper provides a formal characterization of re-
flexion models, discusses practical aspects ol the ap-
proach, and relates experiences of applying the ap-
proach and tools to a number of different systems.
The illustrative example used in the paper describes
the application of reflexion models to Net BSD, an im
plementation of Unix comprised of 250,000 lines of C
code. In only a few hours, an engineer computed sev
eral reflexion models that provided him with a useful,
global overview of the structure of the NetBSD vir-
tual memory subsystem. The approach has also been
applied to aid in the understanding and experimen-
tal reengineering of the Microsoft Excel spreadsheet
product.

*This research was funded in part by the NSI grant
CCR-8858804 and a Canadian NSERC post-graduate
scholarship.

Il‘tlmi::ion to make digital/hard copies of all or part of this mate-
rial without fee is granted provided that the copies are not made or dis
tributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication and 1t: date appear, and notice is
given that copyright is by permission of the Association for Comput
ing Machinery, Inc. (ACM). To copy otherwise, to republizh, to post
on servers or to redistribute to lists, requires prior specific permission
andfor a fee.

SIGSOFT '95 Washington, D.C., USA
©1995 ACM 0-89791.716-2/95/0010...$3.50

IlKevin Sullivan

Dept. of Computer Science
University of Virginia
(Charlottesville VA, USA 22903

sullivan@es.virginia.edu

1 Introduction

Software engineers often think about an existing
software system in terms of high-level models.
Box and arrow sketches of a system, for instance,
are often found on engineers’ whiteboards. Al
though these models are commonly used, rea
soning about the system in terms of such models
can be dangerous because the models are almost
always inaccurate with respect to the system’s
source.

Current reverse engineering systems derive
high-level models from the source code. These
derived models are useful because they are, by
their very nature, accurate representations of the
source. Although accurate, the models created
by these reverse engineering systems may differ
from the models sketched by engineers; an exam-
ple of this is reported by Wong et al. [WTMS95].

We have developed an approach, illustrated in
Figure 1, that enables an engineer to produce
sufficiently accurate high-level models in a differ-
ent way. The engineer defines a high-level model

of interest, extracts a source model (such as a

call graph or an inheritance hierarchy) from the
source code, and defines a declarative mapping
between the two models. A software reflexion
model is then computed to determine where the
engineer’s high-level model does and does not
agree with the source model.! An engineer in
terprets the reflexion model and, as necessary,
modifies the input to iteratively compute addi-
tional reflexion models.

1 g ) . . . . «
['he old English spelling differentiates our use of “re-
flexion” from the field of reflective computing [Smi84].

1 Introduction

Software engineers often think about an existing
soltware system in terms ol high-level models.
Box and arrow sketches of a system, for instance,
are often found on engineers’ whiteboards. Al-
though these models are commonly used, rea-
soning about the system in terms of such models
can be dangerous because the models are almost
always inaccurate with respect to the system’s
source.

Current reverse engineering systems derive
high-level models from the source code. These
derived models are usetul because they are, by
their very nature, accurate representations of the
source. Although accurate, the models created

by these reverse engineering systems may differ
from the models sketched by engineers; an exam-

ple ol this 1s reported by Wong et al. [W T M>Yo].
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Model-code gap. Your architecture models and your source code will not show the
same things. The difference between them is the model-code gap. Your architecture

models include some abstract concepts, like components, that your programming lan-
guage does not, but could. Beyond that, architecture models include intensional ele-

ments, like design decisions and constraints, that cannot be expressed in procedural
source code at all.

Consequently, the relationship between the architecture model and source code is

complicated. It is mostly a refinement relationship, where the extensional elements
in the architecture model are refined into extensional elements in source code. This

is shown in Figure 10.3. However, intensional elements are not refined into corre-
sponding elements in source code.

Upon learning about the model-code gap, your first instinct may be to avoid it. But

reflecting on the origins of the gap gives little hope of a general solution in the short
term: architecture models help you reason about complexity and scale because they

are abstract and intensional; source code executes on machines because it is concrete
and extensional.

"model-code gap”



Top-down view

(components, layers, subsystems, bounded contexts, etc)

Bottom-up view

(classes, interfaces, enums, functions, etc)



Would you code it that way?

(ensure that your diagrams reflect
your implementation intent)



Is that how it really works?

(ensure that your diagrams reflect
your actual codebase)



We lack a common vocabulary
to describe software architecture
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Component

a modular unit with well-defined Interfaces
that is replaceable within its environment

https:.//www.omg.org/spec/UML/2.5.1/PDF



Software System

Web
Application

Relational
Database

Component

noun com-po-nent | \kem-'po-nant, ‘kam-, kam-\

Simple Definition of COMPONENT

: one of the parts of something (such as a system or mixture) :

something

Popularity: Top 30% of words

an important piece of




Ubiquitous
language




A common set of abstractions
IS more important
than a common notation




Abstractions




Software System

Container

(e.g. client-side web app, server-side web app, console application,
mobile app, database schema, file system, object store, etc)

Component

A software system is made up of one or more containers (applications and data
stores), each of which contains one or more components, which in turn are
implemented by one or more code elements (classes, interfaces, objects, functions, etc).
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System Context View: Internet Banking System
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Container View: Internet Banking System

The container diagram for the Internet Bankin

Dlagrams are maps

that help software developers navigate a large and/or complex codebase




1. System Context

The system plus users and system dependencies.

Overview first

2. Containers

The overall shape of the architecture and technology choices.

Details on demand
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System Context diagram
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System Context View: Internet Banking System
The system context diagram for a fictional Internet Banking System
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The system context diagram for a fictional Internet Banking System
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System Context View: Internet Banking System
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Titles

Short and meaningful, include the diagram type and scope,
numbered if diagram order is important; for example:

System Context View for Internet Banking System
System Context View: Internet Banking System
[System Context View] Internet Banking System



Visual consistency

Try to be consistent with notation
and element positioning across diagrams



ACronyms

Be wary of using acronyms, especially those related
to the business/domain that you work in



Boxes

Start with simple boxes containing the element name, type,
technology (if appropriate) and a description/responsibilities
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Lines

Favour uni-directional lines showing the most important
dependencies or data flow, with an annotation to be explicit
about the purpose of the line and direction

Yes
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Ul Makes an API request to Backend

[Container] [Container]

Sends an API| response to

Ul ﬁ BaCkend
[Container] [Container]

Makes API calls using

Summarise the intent of the relationship
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Ul ﬁ BaCkend
[Container] [Container]

Makes API calls using

Summarise, yet be specific



e ——_

Requests a list of customers from
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Service A Service B

[Container] [Container]

—

Sends new customers to
[Kaftka topic X]

Show both directions when
the intents are different



e ——_

Requests a list of customers from

: [JSON/HTTPS] :
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Financial Risk System
[Software System]

Trade Data SyStem ﬁ
[Software System]

Trade data

Trade Data System ﬁ Financial Risk System
[Software System] [Software System]

Sends trade data to

Add more words to make the intent explicit



If in doubt, read the relationship

Web Application

[Container]

— Database
[Container]

Reads from and writes to

WEb Application ﬁ Database
[Container] [Container]

Reads from and writes to



Key/legena

Explain shapes, line styles, colours, borders, acronyms, etc
... even if your notation seems obvious!



Arrowheads

Be careful, using different
arrowheads is very subtle;

readers may miss them




Use shape, colour and size
to complement a diagram
that already makes sense
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The container diagram for the Internet Banking System
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The container diagram for the Internet Banking System
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Be careful with icons



WordPress is one of the world’s most popular web publishing platforms, being used to

Wo rd P ress H OSti n g publish 27% of all websites, from personal blogs to some of the biggest news sites.

This reference architecture simplifies the complexity of deploying a scalable and highly
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[Infrastructure Node: Route 53]

Routes incoming requests based
upon domain name.
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INncrease the readability of

software architecture diagrams,
so they can stand alone



Any narrative should complement
the diagram rather than explain it



Abstractions first,
notation second

Ensure that your team has a ubiquitous
language to describe software architecture




The C4 model is...

A set of hierarchical
abstractions

(software systems, containers,
components, and code)

Notation independent

A set of hierarchical
diagrams

(system context, containers, components,
and code)

Tooling independent



C4 model (Q Search C4 model

Diagrams |/ Review checklist

Home

YQW' Visualising software architecture with the C4 model
Introduction

1-day masterclass | December 10 | Sydney, Australia

Abstractions v

Diagrams A
1. System context diagram Software architecture diagram review checklist

2. Container diagram

3. Component diagram General
4. Code diagram
, Does the diagram have a title? Yes No
System landscape diagram
Dynamic diagram Do you understand what the diagram type is? Yes No
Blephentinains lzelall Do you understand what the diagram scope is? Yes No
Notation
Does the diagram have a key/legend? Yes No
Review checklist
FAQ
Tooling v Elements
FAQ
Does every element have a name? Yes No
Interactive example (4
Book (7 Do you understand the type of every element? (i.e. the level of Ves No
abstraction; e.g. software system, container, etc)
Video 4
Training & workshops Do you understand what every element does? Yes No
Patreon & Discord [ Where applicable, do you understand the technology choices

Yes No

acenciated with averyv ealement?



Draw System Context
and Container

diagrams to describe a
solution for the
"Financial Risk System”

® = finish diagrams
by 14:00

c4dmodel.com/frs



Designing software is where
the complexity should be,
Nnot communicating It!



Similar levels of abstraction provide
a way to easily compare solutions



The diagrams should spark
meaningful questions



NO

“What does that arrow mean?”
“Why are some boxes red?”
“Is that a Java application?”
“Is that a monolithic application, or a collection of microservices?”
"How do the users get their reports?”



Yes

“What protocol are your two Java applications using
to communicate with each other?”
“Why do you have two separate C# applications instead of one?”
“Why are you using MongoDB?”
“Why are you using MySQL when our standard is Oracle?”
“Should we really build new applications with .NET Framework
rather than .NET Core?”



Richer diagrams lead to
richer design discussions



Richer diagrams lead to
better communication,
making it easier to scale teams



Runtime/behavioural diagrams



Static structure diagrams
are very useful, but they
don't tell the whole story
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Sign In API
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4: Returns user data to
MySQL protocol/TLS]

Dynamic View: Internet Banking System - Backend

Summarises how the sign in feature works in the single-page application
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Database
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Dynamic View: Internet Banking System - Backend
Summarises how the sign in feature works in the single-page application




Use dynamic diagrams to describe
patterns or complex interactions



Deployment diagrams




Deployment is about the mapping
of containers to infrastructure



Deployment Node

Physical infrastructure (a physical server or device),
virtualised infrastructure (laaS, PaaS, a virtual machine),
containerised infrastructure (a Docker container),
database server, Java EE web/application server,
Microsoft IS, etc



A deployment node can contain
other deployment nodes or
software system/container instances



Infrastructure Node

Routers, firewalls, load balancers,
DNS providers, edge caches, etc



Static Content

[Container: Directory]

HTML, CSS, JavaScript, etc.

= = = Delivers = = = =

Statement Store

[Container: Amazon Web Services S3

Statement Store Server

[Deployment Node: MinlQ]
-

>

[Deployment Node: Docker]
\

Statement Store Server Container

Developer Laptop

[Deployment Node: Microsoft Windows 11 or Apple macOS]
\,

Ul

[Container: JavaScript and Angular]

Single-page app that provides
Internet banking functionality to
customers via their web browser.

Amazon Web Services
Simple Email Service

[Software System]

Cloud-based email service
provider.

4

Bucket] User account information, access
Bank account statements logs, etc.
rendered as PDF files.
— e

A

~ A

Database

[Container: MySQL Database Schema]

Database Server

[Deployment Node: MySQL 8.4 LTS]
.

Database Server Container

[Deployment Node: Docker]

1 4
7’ . . -
Web Server Web Browser | »” | Mock Simple Email Service
[Deployment Node: nginx] [Deployment Node: Chrome, Firefox, Safari, or Edge] P s { [Deployment Node: Docker]
1 7
I Sends e-mails to
Web Server Container Makes API calls to customers using
. [Deployment Node: Docker] [SON/HTTPS] P AISON/HTTPS]
W
| 7
/ W NN EEEEEEEE NN NN NN NN NN NN RN RN NN
| 7 -
1 7
V L) {
' ,
> 4
Core Banking System
BaCkend . [Software System)]
[Container: Java and Spring Boot] L ] e e e e e e e e e e e e e e . MakesAPlcallsto, _ _ _ _ _ _ _ _ _ 4 _ _ _ _ . - ’ Handles core banking functions
Provides Internet banking (XML/HTTPS] . including customer information,
functionality via a JSON/HTTPS API. bank account management,
transactions, etc.
> > \.
- ~ -
Pad S o
P Java Virtual Machine feade i corebanking-dev
Reads from and writes to L [Deployment Node: Eclipse Temurin - JDK 21 - LTS] eaas from and writes to | [Deployment Node: Ubuntu 24.04 LTS]
[AWS S3 API/HTTPS] [MySQL protocol/‘T LS] s
{ PA - ~ .
7 ~ 4 r .
s o - H
> - Big Bank Data Center

- Big Bank Wide Area Network

Deployment View: Internet Banking System - Development
An example development deployment scenario for the Internet Banking System
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Deployment View: Internet Banking System - Live
An example live deployment scenario for the Internet Banking System
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System landscape diagrams
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What's the inspiration
penhind the C4 model?



How widely used
s the C4 model?



've run software architecture
WOrkshops

in ~40 countries
for 10,000+ people
across most industry sectors
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Academic establishments

A free subscription is available for students and staff at academic establishments, for teaching purposes (e.g. preparation of teaching
material, use in assignments, etc). It's based upon the regular cloud service subscription with 5 workspaces, and is granted automatically
to users who sign up with an e-mail address from the following 94 academic establishments:

Facultad de Ingenieria de la Universidad de Buenos Aires, Argentina (@fi.uba.ar)

Universidad Tecnoldgica Nacional, Argentina (@ca. frre.utn.ed.ar, @lu.frt.utn.edu.ar, @frt.utn.edu.ar, @doc.frt.utn.edu.ar)
RMIT University, Australia (@rmit.edu.au, @student.rmit.edu.au)

University of Queensland, Australia (@ug.edu.au, @uq.net.au, @student.uq.edu.au)

University of Tasmania, Australia (@utas.edu.au)

OS8B8G ()

Vienna University of Economics and Business, Austria (@wu.ac.at, @s.wu.ac.at)

‘ ' Howest University of Applied Sciences, Belgium ( @howest.be, @student.howest.be)
‘ ' PXL University of Applied Sciences and Arts, Belgium (@px1l.be, @student.pxl.be)
@ Universidade Federal de Mato Grosso do Sul, Brazil (@ufms.br, @facom.ufms.br)
@ Universidade Federal do Parg, Brazil (@ig.ufpa.br, @icen.ufpa.br)

@ Universidade federal de Pernambuco, Brazil (@ufpe.br, @cin.ufpe.br)

‘*' Université de Sherbrooke, Canada ( @usherbrooke.ca)

""' Ecole de Technologie Supérieure, Canada (@etsmtl.ca, @ens.etsmtl.ca)



( 4 My C4 model book is also

used as course material
modae]

for visualising software architecture i n m a ny Ot h e r U n ive rS iti e S

Simon Brown




Are the diagrams for design
or documentation purposes?



Perspectives



What about ownership, security,
technical debt, etc?



Software Systems
CAItecture

~~ Second Edition__

Working With Stakeholders Using Viewpoints and Perspectives
NICK ROZANSKI - EOIN WOODS

Perspectives

Rather than defining another viewpoint and
creating another view, we need some way

to modify and enhance our existing views to
ensure that our architecture exhibits the desired
guality properties. We therefore need something
in our conceptual model that can be considered
“orthogonal” to viewpoints, and we have coined

the term architectural perspective (which we

shorten to perspective) to refer to it.

https://www.viewpoints-and-perspectives.info/home/perspectives/



Personal Banking

Customer

[Person]

stomer of the bank with

one
unts.

Views account balances
and makes payments

using

~
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Customer Service Staff

[Person]

Custpmer service staff withi
bank.

Back Office Staff

[Person]

Admiinistration and support|staff
within the bank.

Big Bank

- ore personal bank acco
”
”
”
-~
-
Es
”
”
-~
”
-~
Asks questions to
ATelephone] Withdraws cash using
” 4
e
N /
-~
/

ATM

[Software System]

Allows customers to withdraw
cash and check bank account
balances.

Investigate and

using

troubleshoot problems = = = = = = = = = = = = = =

\

Internet Banking System

[Software System)

Allows customers to view

information about their bank

accounts and make payments via

O}

1
Gets bank account
information from and
makes payments using
1

Core Banking System

[Software System]

Handles core banking functions
including customer information,
bank account management,
transactions, etc.

Sends e-mails to
-y

~

_ _Sends e-mailsto_ _

customers using

Amazon Web Services
Simple Email Service

[Software System]

Cloud-based email service
provider.




ATM

[Software System]

Allows customers to withdraw
cash and check bank account
balances.

Big Bank

Internet Banking System

[Software System]

Allows customers to view

information about their bank
accounts and make payments via
the web.

®

Core Banking System

[Software System]

Handles core banking functions
including customer information,
bank account management,
transactions, etc.

Amazon Web Services



ATM Internet Banking System | .
[Software System] [Software System] : E
) R a
Allows customers to withdraw i né
cash and check bank account acco

balances.

Perspective: Ownership

Team C

Core Banking System

[Software System]

Handles core banking functions
including customer information, .
bank account management, .
transactions, etc. .

Big Bank



' _ Depl Node: Dock Al.. 1V
Reads from and writes to L[ eployment fode: Docker! J
[AWS S3 API/HTTPS]
/
Ve .
. Serverless Compute Engine
A [Deployment Node: Amazon Web Services Fargate]
Statement Store
[Container: Amazon Web Services S3
Bucket]
Bank account statements
rendered as PDF files.
Cloud Object Storage
[Deployment Node: Amazon Web Services Simple Storage Service]
eu-west-1
[Deployment Node: Amazon Web Services Region]

Amazon Web Services

Deployment View: Internet Banking System - Live
An example live deployment scenario for the Internet Banking System | Simon Brown | c4model.com | License: CC BY 4.0



Statement Store

[Container: Amazon Web Services S3
Bucket]

Bank account statements
rendered as PDF files.

Perspective: Security

Objects are server-side encrypted using AES-256.

Amazon Web Services

Deployment View: Internet Banking System - Live
An example live deployment scenario for the Internet Banking System | Simon Brown | c4model.com | License: CC BY 4.0



Fvent-driven architectures



Sends events of
type Ato




Message-driven architectures



Message-driven
architectures



Service C

[Container]

Service A

[Container]

~ _ v

-~ -_

Sends messages to Sends messages to
\ -
-
Message Bus
[Container]
~

-_ L.
Sends messages to Sends messages to
Ll \

~ 7 R

Service D

[Container]

Service B

[Container]



Service A

[Container]

Service B

[Container]

— Sends messages to—

— Sends messages to=

Queue X

[Container]

Queue Y

[Container]

— Sends messages to-

— Sends messages to-

Service C

[Container]

Service D

[Container]



Service A

[Container]

Service B

[Container]

Sends messages to
[via Queue X]

Sends messages to
[via Queue Y]

Service C

[Container]

Service D

[Container]



Service C

[Container]

_Subscribes to messages __

Queue X
from

[Container]

Service A

— Publishes messages to—
[Container]

Service D

[Container]

» —
Subscribes to messages
from
—
-
Serw;e B — Publishes messages to— TOpIC Y
[Container] [Container]
\
S
Subscribes to messages
from
- S~

Service E

[Container]




Abstraction

VS

organisation




What are your thoughts on modelling
additional abstractions?



Camera
A _Sends control __ Hardware System]

[Software System] signals to . ‘

Element Relationship




Some of these concepts
are better thought of as
organisational constructs
rather than abstractions



User

[Person]

Repository Layer




Service A Service B

[Component] [Component]

. Service Layer

Repository A Repository B

[Component] [Component]

Repository Layer



Service A Service B

[Component] [Component]

. app-service.jar :

Repository A Repository B

[Component] [Component]

app-repository.jar




Apply this concept to subsystems,
bounded contexts, etc...



A E Sends events of : C
[Software System] type A to | [Software System]

|
Sends events of

type Ato
|

[Software System]

' Bounded Context 1

__________________________________________________



Microservices



A microservice should be modelled
as a software system
or a group of containers




(monolithic architecture)



Software system X

[Software System]

— — — -DoesA, B, Cusing —
& Provides business capabilities A, B,

C
User

[Person]

System Context View: Software system X



User

[Person]

Container View: Software system X

— = = Does A, B, Cusing: =

Web app

[Container: Java and Spring MV(]

Implements Ul and business logic
for capabilities A, B, C

Software system X

[Software System]

_ _Readsfromand_ _

writes to

Database schema

[Container: MySQL]

Stores data related to capabilities
A, B, C
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(Microservices)



martinFowler.com

Refactoring Agile Architecture About Thoughtworks N ¥ @ (i

Microservices

a definition of this new architectural term

The term "Microservice Architecture” has sprung up over the last few years to describe a
particular way of designing software applications as suites of independently deployable
services. While there is no precise definition of this architectural style, there are certain
common characteristics around organization around business capability, automated
deployment, intelligence in the endpoints, and decentralized control of languages and
data.

CONTENTS

Characteristics of a Microservice Architecture
Componentization via Services

Organized around Business Capabilities
James Lewis Products not Projects

Smart endpoints and dumb pipes

James Lewis is a Principal Consultant at Thoughtworks and :
Decentralized Governance

member of the Technology Advisory Board. James' interest in .
Decentralized Data Management

building applications out of small collaborating services



In short, the microservice architectural style [1] is an approach to developing a single
software system as a suite of small services, each running in its own process and
communicating with lightweight mechanisms, often an HTTP resource API. These
services are built around business capabilities and independently deployable by fully
automated deployment machinery. There is a bare minimum of centralized
management of these services, which may be written in different programming

languages and use different data storage technologies.



Software system X

[Software System]

— — — -DoesA, B, Cusing —
& Provides business capabilities A, B,

C
User

[Person]

System Context View: Software system X



User

[Person]

— — = DoesA, B, Cusing= =

Web app

[Container: Java and Spring MVC]

Implements Ul for capabilities A, B,
C

Software system X

L[Software System)]

_ _ DoesBusing, _ _

Does A using
[JSON/HTTPS]
L 4

[SON/HTTPS]

Does C using
USON/HTTPS]
~

Service A API

[Container: Spring Boot]

Implements business logic
for capability A

Service B API

[Container: Spring Boot]

Implements business logic
for capability B

Service C API

[Container: Spring Boot]

Implements business logic
for capability C

_ _Readsfromand _ _

_ _Readsfromand _ _

_ _Readsfromand _ _

Service A database
schema

[Container: MySQL]

writes to

Stores data related to capability A

Service B database
schema

[Container: MySQL]

writes to

Stores data related to capability B

Service C database
schema

[Container: MySQL]

writes to

Stores data related to capability C




User

[Person]

— — = DoesA, B, Cusing= =

Web app

[Container: Java and Spring MV(C]

Implements Ul for capabilities A, B,
C

Software system X

k[Software System)]

Does A using
[JSON/HTTPS]
L 4

_ _ DoesBusing, _ _

[JSON/HTTPS]

Does C using
USON/HTTPS]
~

v

Service A API

[Container: Spring Boot]

Implements business logic
for capability A

- Service A

Service B API

[Container: Spring Boot]

Implements business logic
for capability B

Service C API

[Container: Spring Boot]

Implements business logic
for capability C

- Service C

_ _Reads from and _

writes to

_ _Reads from and _

writes to

_ _Reads fromand _ _

writes to

-)- schema

-> schema

Service A database

[Container: MySQL]

Stores data related to capability A

Service B database

[Container: MySQL]

Stores data related to capability B

N

Service C database
schema

[Container: MySQL]

Stores data related to capability C




User

[Person]

_DoesA,B,C,D_
using

- P

Web app

[Container: Java and Spring MV(]

Implements Ul for capabilities A, B,
C,D

—

Software system X

L[Software System]

Y4

Does A using
USON/HTTPS]
’

-
. -
Does B using
. SON/HTTPS]

“Does C using

USON/HTTPS)
~

Does D using
USON/HTTPS]
AN

writes to

_Reads fromand_ _

Service A database
schema

[Container: MySQL]

Stores data related to capability A

: Service A API

. [Container: Spring Boot] _
. Implements business logic

. for capability A

¥Service A

Service B API

[Container: Spring Boot]

Implements business logic
for capability B

: Service B

Service C API

[Container: Spring Boot]

Implements business logic
for capability C

Service D

- Service D

\/

\/

: [Container: AWS Lambda - Python] :
. Implements business logic .
. for capability D .

_ _Reads from and_
writes to

_ _Reads from and_
writes to

-

—

Service B database
schema

[Container: MySQL]

Stores data related to capability B

-

-

Service C database
schema

[Container: MySQL]

Stores data related to capability C

e |




(Conway's Law)



Service A

[Software System]

Implements business capability A

Does A using
USON/HTTPS)
7

s Service B

[Software System]

Implements business capability B

-

Does B using
. =[USON/HTTPS]

Software system X

- _DOES A B, CD - [Software System]
using Provides business capabilities A, B,
C,D
User -
[Person] Does C using
USON/HTTPS]~
Service C
[Software System]
N Implements business capability C
N
N\
Does D using
[JSON/HTTPS]
~»
N
N
N\
N
N
N
Service D
[Software System]
Implements business capability D
S

System Context View: Software system X



Service A

[Software System]

Implements business capability A

Does A using

USON/HTTPS]
7
7
L7 Service B
[Software System]
Implements business capability B
. , -
Does B using
_. =USON/HTTPS]
-

Web app

Does A, B, C, D [Container: Java and Spring MV(C]

using Implements Ul for capabilities A, B,

C,D
User

[Person]

~—
~ .
Does C using
USON/HTTPS]~

Software system X S Service C
L[Software System] )‘ N [Software System]
N . Implements business capability C
N
Does D using
[)SON/HTTPS]
~
\
\
N
N
N
A .
Service D
[Software System]
Implements business capability D
\ y

Container View: Software system X



Software system X
[Software System] _ _Does Ausing_

Provides business capabilities A, B, USON/HTTPS]
C,D

Service A

[Software System]

Implements business capability A

System Context View: Service A



Software system X Service A API Service A database
[Software System] _ _Does A using_ [Container: Spring Boot] _ Reads from and. schema

Provides business capabilities A, B, USON/HTTPS] Implements business logic writes to o
[Container: MySQL]

C,D for capability A N
Stores data related to capability A

Service A

[Software System]

Container View: Service A



Dependencies to
"external” containers



Service A API

[Container: Spring Boot]

Service A database

Reads from and
- schema

: ; writes to
Imple;nents bLt;'Sll'?;,SAS logic [Container: MySQL]
or capabili
7 Stores data related to capability A
/
.~ | Service A
7 [Software System] y
’
’
/s
’
’
/s
’ 4 )
e
Does A using
JSON/HTTPS]
’
’
g Service B API
’ ervice
e [Container: Spring Boot] _Reads from and Service B database
L7 Implements business logic writes to [Container: MySQL]
’ for capability B Stores data related to capability B
, A 2
7’ -
7 - -
Does B using™
_ = [ISON/HTTPS]
Service B
WEb app L[Software System] y
_ _ DoesA,B,C,D_ _ _ [Container: Java and Spring MVC]
using Implements Ul for capabilities A, B,
C,D
~ “Does C using
USON/HTTPS]® o _
Software system X S <o
~—
[Software System] ~

Service C API .
[Container: Spring Boot] _Reads from and Service C database

Implements business logic writes to [Container: MySQL]
far ranmahilitns CtAarnec Aot ralatad +A carmashilityvy




Showing “external” containers implies
some understanding of
Implementation details, which makes
the diagrams more volatile to change



Tooling?



Documenting
software architecture




Working software
over

comprehensive
documentation



The code doesn't tell
the whole story



Software
Archltecture Useful information
Document spread across

hundreds of pages,;
rarely read or updated




SIGHT GUIDES

Channel Islands

pocket guide

Gmat Brealrs YT TR :

”JERSEY

Travel Guidebook

(maps, points of interest, sights, itineraries,
history, culture, practical information, etc)



Channel Islands

pocket guide

Gmat Bmaks YT TR :

”JERSEY

Software Guidebook

(maps, points of interest, sights, itineraries,
history, culture, practical information, etc)



The

software
guidebook

Simon Brown

https://leanpub.com/documenting-software-architecture/c/free



The scope is a single
software system




Describe what you
can't get from the code



Documentation shoula
pe constantly evolving




F Functional \ f \ f w f w

Context Overview Quality Attributes Constraints " fl::u(:cul)les .
PV An overview of th? software A list of the quality attributes A list of the environmental aIrj:h(i)tectjreevreir?criml]eesn(ean
Iu)s/ s T tixt tc’) sy;tem; perhaps including (non-functional requirements; constraints (e.g. timescales, codin coFr)wventFi)ons &
PIuS St i} wireframes, Ul mockups, e.g. performance, scalability, budget, technology, 5 '
set the scene”. screenshots, workflow sy, @il team size/skills, etc). separation of concerns,
diagrams, business process patterns, etc).
K diagrams, etc. j K j k J k J
Software Data
Architecture Code Data models, entity . o o
A description of the software A description of important or relationship diagrams This is a starting point; add and
hitecture, including stati complicated component . ' :
S e e T mplementation details security, data volumes, remove sections as necessary.
structure (e.g. containers and P ' archiving strategies, backup
components) and dynamic/ patterns, frameworks, etc. g

runtime behaviour.



ﬁ Overview Docs FAQ Examples Training Download About

arc42 Template Overview

arc42 is a template for architecture communication and
documentation.

Photo credit: unsplash

arc42 answers the following two questions in a pragmatic way, but can be tailored to your specific needs:

e |What should we document/communicate about our architecture?

e How should we document/communicate?

ol Goals Stakeholder 1. Introduction and Goals
' Goal Description Who? | Expectation? L . ..
?::;};i 1 T Short description of the requirements, driving forces, extract (or abstract) of
I “ae “ee e “es
requirements. Top three (max five) quality goals for the architecture which have

highest priority for the major stakeholders. A table of important stakeholders
with their expectation regarding architecture.

Read More



Title These documents have names that are short
noun phrases. For example, "ADR 1: Deployment on

Ruby on Rails 3.0.10" or "ADR 9: LDAP for
Multitenant Integration”

Context This section describes the forces at play,
including technological, political, social, and project
local. These forces are probably in tension, and
should be called out as such. The language in this
section is value-neutral. It is simply describing facts.

Decision This section describes our response to these
forces. It is stated in full sentences, with active voice.

"We will ..."

Status A decision may be "proposed" if the project
stakeholders haven't agreed with it yet, or "accepted”
once it is agreed. If a later ADR changes or reverses a
decision, it may be marked as "deprecated” or
"superseded" with a reference to its replacement.

Consequences This section describes the resulting
context, after applying the decision. All consequences
should be listed here, not just the "positive" ones. A
particular decision may have positive, negative, and
neutral consequences, but all of them affect the team
and project in the future.

“Architecture
Decision Record”

A short description of an

architecturally significant decision

http://thinkrelevance.com/blog/2011/11/15/documenting-
architecture-decisions (Michael Nygard)



Immutable vs mutable ADRS?



Documentation format?

Microsoft Word, Microsoft SharePoint,
Atlassian Confluence, Markdown or AsciiDoc, etc



How long?

Something | can read in 1-2 hours;
a good starting point for exploring the code



How do you keep software
architecture documentation

up to date?



C4 model diagrams

+

software guidebook/arc42

+

architecture aecision recorads



Software architecture
In practice




Mang qe /e

\Pﬁ RAMETEL

Big design
up front

VS

Document

®
No design
Architecture >

up front
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