Break New Ground

San Francisco
September 16-19, 2019

Collections Corner Cases

Stuart W. Marks

Consulting Member of Technical Staff
Java Platform Group

Oracle —
{ =, Stuart Marks
. i;i 90,428
Twitter: @stuartmarks Stack Overflow: 02001520215

Copyright © 2019 Oracle and/or its affiliates.

#CollectionsCornerCases

. e A
H#CollectionsCornerCases

Overview

 Two corners of the Collections Framework API
« Not new, they've always been there
 Not well known, and even obscure

 Part1: View Collections

« Part 2: Sorted Collections
» ...and Comparators and “consistent with equals”

H#CollectionsCornerCases

View Collections

 Most Collections contain their own elements
 ArraylList, HashMap, etc.

 View Collections don’t contain their own elements
e instead, the elements are stored elsewhere

H#CollectionsCornerCases

List View of Array
String[] array = { "a", "b", "c", "d", "e", "f" };
List<String> list = Arrays.aslList(array);

array[0] = "XXX";
// list is now [XXX, b, c, d, e, f]

Tist.set (1, "YYY'");
// array is now { XXX, YYY, c, d, e, f }

H#CollectionsCornerCases

List View of Array get set

.........................

Arrays.aslList

Stringl[]

. A e
H#CollectionsCornerCases

Map Views

Map<Integer, String> map = new HashMap<>(...);
Set<Integer> keySet = map.keySet();
Collection<String> values = map.values();

Set<Map.Entry<Integer, String>> entrySet =
map.entrySet();

H#CollectionsCornerCases

Map.Entry

interface Map.Entry<K, V> {
K getKey();
V getValue();
V setValue(V value);

#CollectionsCornerCases
A HashMap

HashMap<Integer, String>

Copyright © 2019 Oracle and/or its affiliates. E

#CollectionsCornerCases
Map Key Set View

............................

Set<Integer> Map.keySet()

HashMap<Integer, String>

Copyright © 2019 Oracle and/or its affiliates. E

H#CollectionsCornerCases

Map Values View

............................

Collection<String> Map.values()

HashMap<Integer, String>

Copyright © 2019 Oracle and/or its affiliates. E

H#CollectionsCornerCases

Map Entry-set View

Set<Map.Entry<Integer, String>>
Map.entrySet()

HashMap<Integer, String>

Copyright © 2019 Oracle and/or its affiliates. E

DEMO

Copyright © 2019 Oracle and/or its affiliates.

H#CollectionsCornerCases

Extended Map Views Example

« Given two maps mapA and mapB, find the keys of mapB

corresponding to values that occur in both maps
var mapA = Map.of(1, "a", 2, "b", 3, "c")
var mapB = Map.of(5, "a", 6, "d", 7, "c")

« Result should be a set containing...
[5, 7]

« Maps might contain 15,000 entries

» algorithm is important!
« https://stackoverflow.com/a/57931314 /1441122

H#CollectionsCornerCases

Solution Attempt #1

Map<Integer, String> mapA = ... ;
Map<Integer, String> mapB = ... ;

Set<Integer> result = mapB.keySet().stream()
.filter(keyB -> mapA.keySet().stream()
.filter(keyA ->
mapA.get(keyA) .equals(mapB.get(keyB)))
.count() > 0)
.collect(toSet());

019 Oracle and/or its affiliates. E

H#CollectionsCornerCases

Solution Attempt #2

Map<Integer, String> mapA = ... ;
Map<Integer, String> mapB = ... ;

Set<Integer> result = mapB.entrySet().stream()

.filter(Centry ->
mapA.values().contains(entry.getValue()))

.map(Map.Entry: :getKey)
.collect(toSet());

019 Oracle and/or its affiliates. E

H#CollectionsCornerCases

Insight

» Use HashSet to strength-reduce contains() operations
« contains() on the values() view is linear, O(n)
« doing it for every key results in O(n?)
* bring it into a HashSet to reduce contains() to constant, O(1)
« overall time reduced from O(n?) to O(n)

H#CollectionsCornerCases

Solution Attempt #2 + variation

Map<Integer, String> mapA = ... ;
Map<Integer, String> mapB = ... ;

var aVals = new HashSet<>(mapA.values());
Set<Integer> result = mapB.entrySet().stream()
.filter(entry -> aVals.contains(entry.getValue()))
.map(Map.Entry: :getKey)
.collect(toSet());

019 Oracle and/or its affiliates. E

H#CollectionsCornerCases

Insight+

« (Consider set intersection
e problem statement says “... values that occur in both maps”

« Set intersection achieved using the retainAll() method
« AcretainAll(B) leaves set intersection in A

- ~ = ~

A --_B A --_B
N\

\ \
| |

, removes o
e _~- ~_><’ retains

this part
> this part

Copyright © 2019 Oracle and/or its affiliates. E

H#CollectionsCornerCases

Insight++

« Use bulk operations on the values() view of the map
* removes unwanted entries from the map
« leaving only the desired entries

« Use keySet() view
« we don't want the whole map, just the keys

H#CollectionsCornerCases

Solution Attempt #3

Map<Integer, String> mapA = ... ;
Map<Integer, String> mapB = ... ;

var aVals = new HashSet<>(mapA.values());
var mapBcopy = new HashMap<>(mapB);
mapBcopy.values().retainAll(aVals);
Set<Integer> result = mapBcopy.keySet();

H#CollectionsCornerCases

Part 1 Summary

« Know and use view collections
 view collections of Map are particularly interesting

» (Collections have rich set of bulk operations
« combined with view collections can be very powerful
e sometimes can be more effective than streams

H#CollectionsCornerCases

Part 2: Sorted Collections & Comparators

* Sorted Collections

* Interfaces
« SortedSet, SortedMap, NavigableSet, NavigableMap

* implementations
« TreeSet, TreeMap, ConcurrentSkipListSet, ConcurrentSkipListMap

« [l talk about SortedSet but same issues apply to all

« Sorted Collections are ordered by a Comparator
« also Comparable and “natural order” but issues are the same
« a Comparator might or might not be “consistent with equals”

19 Oracle and/or its affiliates. E

H#CollectionsCornerCases

Iteration Order

« For HashSet and Set.of(), iteration order is undefined
Set.of("a", "bb", "CCC", "dddd", "eeeee")
[eeeee, bb, a, ccc, dddd]

nhew HashSet<>(List.of("a", "bb", "ccc", "dddd", "eeeee'"))
[bb, a, ccc, eeeee, dddd]

« For SortedSet et. al., iteration order is well-defined
« you provide the order using a Comparator
* (“comparison method”)

H#CollectionsCornerCases

Comparator<T>

e |nterface with one method: int compare(T a, T b)
« Compares two objects and reports their relative ordering
<0 “aislessthanb”
O “aisequaltob”
>0 “ais greater than b”
« Must impose a total ordering
« Must follow rules: transitive, reflexive, antisymmetric, ...
« Example: string alphabetical order (case sensitive)

019 Oracle and/or its affiliates. E

DEMO

Copyright © 2019 Oracle and/or its affiliates.

#CollectionsCornerCases
Set Membership

* Typical set (e.g., HashSet)

e contains no two elements (a, b) where a.equals(b) is true

« Sorted set (e.g., TreeSet)
e contains no two elements (a, b) where compare(a, b) ==

 |n other words, the comparator not only determines
order but also membership

H#CollectionsCornerCases

Comparator<T>

e Interface with one method: int compare(T a, T b)
« Compares two objects and reports their relative ordering

<0 “aislessthanb”

O “edsequattob’— “alisequivalenttobinthe

>0 “ais greater than b” context of this ordering”

» Equivalence not a property of the objects themselves
(like equals) but instead determined by comparator

019 Oracle and/or its affiliates. E

#CollectionsCornerCases
“Consistent With Equals”

From the Comparator specification:

The ordering imposed by a comparator ¢ on a set of elements S is said to be consistent with
equals if and only if c.compare(el, e2)==0 has the same boolean value as el.equals(e2) for
everyelande2inS.

Caution should be exercised when using a comparator capable of imposing an ordering
inconsistent with equals to order a sorted set (or sorted map). Suppose a sorted set (or
sorted map) with an explicit comparator ¢ is used with elements (or keys) drawn from a set
S. If the ordering imposed by ¢ on S is inconsistent with equals, the sorted set (or sorted
map) will behave “strangely.” In particular the sorted set (or sorted map) will violate the
general contract for set (or map), which is defined in terms of equals.

Copyright © 2019 Oracle and/or its affiliates. E

#CollectionsCornerCases
“Consistent With Equals”

From the SortedSet specification:

Note that the ordering maintained by a sorted set (whether or not an explicit comparator is
provided) must be consistent with equals if the sorted set is to correctly implement the Set
interface. (See the Comparable interface or Comparator interface for a precise definition of
consistent with equals.) This is so because the Set interface is defined in terms of the equals
operation, but a sorted set performs all element comparisons using its compareTo (or
compare) method, so two elements that are deemed equal by this method are, from the
standpoint of the sorted set, equal. The behavior of a sorted set is well-defined even If its
ordering is inconsistent with equals; it just fails to obey the general contract of the Set
interface.

Copyright © 2019 Oracle and/or its affiliates. E

Copyright © 2019 Oracle and/or its affiliates.

DEMO

Copyright © 2019 Oracle and/or its affiliates.

H#CollectionsCornerCases

Explanation

 Membership contract
« Typical set membership determined by equals()
« SortedSet membership determined by comparator

 |f these disagree (“inconsistent with equals”)

* “behaves strangely”
« “violates the general contract of Set”

» Behavior can be unexpected if you're expecting one set’s
semantics but the other’s is used

019 Oracle and/or its affiliates. E

. e A
H#CollectionsCornerCases

Practical Impact

« (Obscure edge case, never occurs in real world?
 actually occurs quite easily
e many comparators for sorting are inconsistent with equals

* Repurposing a sorting-comparator for a sorted set can
be perilous

« ‘“duplicate” elements will be eliminated

DEMO

Copyright © 2019 Oracle and/or its affiliates.

H#CollectionsCornerCases

Lessons

« SortedSet with inconsistent-with-equals comparator
« use only with SortedSets with the same comparator
« DO NOT MIX with sets that use other semantics

 |dentityHashMap keys

« membership determined by ==, inconsistent with equals

« Surprisingly easy to create comparators that are
Inconsistent with equals

* When in doubt, put elements in a list and sort them

019 Oracle and/or its affiliates. E

Summary

« Don't forget about good old collections '
» especially Map views and bulk operations Java

. sorted collections very powerful Generics

* can be used safely in isolation and Collections
« dangerous if mixed without care

« Following up
* Q&A: Oracle Groundbreaker Hub, Wed 1:30pm
« Naftalin and Wadler, Java Generics and Collections
o Twitter: #CollectionsCornerCases

Copyright © 2019 Oracle and/or its affiliates. E

O’REILLY"

Safe Harbor

The preceding is intended to outline our general product direction. It is intended for information
purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any
material, code, or functionality, and should not be relied upon in making purchasing decisions. The
development, release, timing, and pricing of any features or functionality described for Oracle’s products

may change and remains at the sole discretion of Oracle Corporation.

Statements in this presentation relating to Oracle’s future plans, expectations, beliefs, intentions and
prospects are “forward-looking statements” and are subject to material risks and uncertainties. A detailed
discussion of these factors and other risks that affect our business is contained in Oracle’s Securities and
Exchange Commission (SEC) filings, including our most recent reports on Form 10-K and Form 10-Q
under the heading “Risk Factors.” These filings are available on the SEC's website or on Oracle’s website
at . All information in this presentation is current as of September 2019
and Oracle undertakes no duty to update any statement in light of new information or future events.

Copyright © 2019 Oracle and/or its affiliates.

Break New Ground

San Francisco
September 16-19, 2019

v Map Views Demo
v jshell overview
¢ introduced in Java 9
e evaluates expressions and prints the result; REPL: read-eval-print loop
¢ (mostly) no semicolons, TAB completion

v jshell commands begin with /

e /open ccc.jshell

e |oads some stuff from a file

e 1 + 2
"hello".toUpperCase()
var 1ist = List.of(1, 2, 3)
/var Tlist

¢ it's a bit unfortunate that "var" is part of the language but "slash var" is a jshell command the displays
a variable's type and value

e these are views onto the map, so changes to the map affect the views, and changes from the view affect
the underlying map

e map
{1=a, 2=b, 3=c, 4=d, 5=e}
var keySet = map.keySet()
var values map.values()
var entrySet = map.entrySet()
map.put(6, "f")
// show map, keySet, and values
keySet.remove(3)
// show keySet, map, and values
keySet.removeIf(k -> k % 2 == 0)
// show keySet, map, and values
// can't add to keySet, values, or entrySet; throws UOE

e What's the point of entrySet? You can iterate set of entries and remove them using an iterator, or call
setValue on an entry

e var it = entrySet.iterator()
var entry = it.next()
entry.getKey()
entry.getValue()
entry.setValue("XXX")
// entry, entrySet, and map have all changed

v Sorted Collections and Comparators

[

Simple Comparator example; alpha order, case sensitive

Comparator<String> cso = String::compareTo

cso.compare('a", "z")
cso.compare("z", "a")
cso.compare("x", "x")

Use comparator with a sorted collection

strings

["eeeee", "bb", "a", "ccc", "dddd"] // random
var tree = new TreeSet<>(cso)
tree.addAl1(strings) // show sorted
tree.add("cz")

tree.add("TTT"™)

A sorted collection is kind of like a sorted list, right? No: treatment of duplicates

var list = new ArraylList<>(strings)
Tist.add("bb")

Tist.sort(cso)

// duplicates preserved
tree.clear()

tree.addA1T1(list)

// duplicates elided!

v Inconsistent with Equals Demo

e cso.compare("a", "a") // O
"a".equals("a") // true
cso.compare("a", "A") // nonzero

"a".equals("A") // false

// what could be inconsistent? if == 0 then equals ought to be true right?
Comparator<String> cio = String.CASE_INSENSITIVE_ORDER

cio.compare("a", "a") // O

cio.compare("a", "A") // 0O

"a".equals("A") // false

e Being inconsistent with equals is NOT A BUG; there are valid use cases

e They can give rise to inconsistency, "strange behavior", "violate general set contract"

v Sorted Collection with I-W-E Comparator

e var tree = new TreeSet<>(cio)
tree.addA1T(List.of ("MMM", "aaa", "zzz")
// MMM sorts in middle; case insensitive
tree.contains("MMM") // true
tree.contains("mmm") // also true

¢ var hash = new HashSet<>(tree)
hash.contains("MMM") // true
hash.contains("mmm") // false

o setl.equals(set?) is true iff sizes equal and every element of set2 is also contained in set1

e // show hash and tree; they look equal
hash.equals(tree) // true
tree.equals(hash) // true

¢ hash.remove("MMM")
hash.add("mmm"™)
// show hash and tree; they look unequal
hash.equals(tree) // false
tree.equalsChash) // truel!!

v Employee Demo

[]

/1ist Employee

/var employees

employees.forEach(System.out: :println)

Comparator<Employee> salaryOrder = Comparator.comparing(Employee::getSalary)
employees.sort(salaryOrder)

works fine for sorting a list

suppose your manager asks you to maintain a data structure in the same order; easy, right?

var tree = new TreeSet<>(salaryOrder)
tree.addAl1(employees)
tree

Pat is missing! Why? salaryOrder is inconsistent with equals

pat.equals(terry) // false
salaryOrder.compare(pat, terry) // O

it considers unequal employees (pat and terry) that have the same salary to be equal thus duplicates
solution
e either augment the comparator to distinguish EVERY object (e.g., employee ID)

e or keep in list and sort, which preserves "duplicates”

var origMap = Map.of(1, "a", 2, "b", 3, "c¢", 4, "4d", 5,
var map = new HashMap<>(origMap)
var map2 = Map.of(1, "x", 2, "B", 3, "

c",
var mapA = Map.of(l, "a", 2, "b", 3, "c")
var mapB = Map.of(5, "a", 6, "d", 7, "c")

var strings = new ArrayList<>(List.of("a", "bb", "ccc", "dddd",
"eeeee"))
Collections.shuffle(strings)

public class Employee {
final String name;
final int salary;

public Employee(String name, int salary) {
this.name = name;
this.salary = salary;

}
public String toString() {
return String.format("Employee[%s,%s %d]", name,

pad(name, 5), salary);

}

public String getName() { return name; }
public int getSalary() { return salary; }

public boolean equals(Object o) {

if (o == this) return true;
if (! (o instanceof Employee)) return false;
Employee other = (Employee) o;

return this.name.equals(other.name) && (this.salary ==
other.salary);

}

public int hashCode() {
return (name.hashCode() * 31)

A

salary;

}

private static String pad(String s, int width) {

return ".repeat(Math.max(width - s.length(), 0));

}

Employee pat;
Employee terry;

var origEmployees = List.of(
new Employee("Robin", 400),
terry = new Employee("Terry", 300),
new Employee("Dana", 100),
new Employee("Kelly", 200),
pat = new Employee("Pat", 300),
new Employee("Glenn", 500)
)i

var employees = new ArrayList<>(origEmployees);

System.out.println("ccc loaded")

