
Copyright © 2019 Oracle and/or its affiliates.

Copyright © 2019 Oracle and/or its affiliates.

Collections Corner Cases

Consulting Member of Technical Staff

Java Platform Group

Oracle

Twitter: @stuartmarks
Stack Overflow:

Stuart W. Marks

Copyright © 2019 Oracle and/or its affiliates.

#CollectionsCornerCases

#CollectionsCornerCases

Copyright © 2019 Oracle and/or its affiliates.

Overview

•  Two corners of the Collections Framework API

•  Not new, they’ve always been there

•  Not well known, and even obscure

•  Part 1: View Collections

•  Part 2: Sorted Collections

•  ... and Comparators and “consistent with equals”

#CollectionsCornerCases

Copyright © 2019 Oracle and/or its affiliates.

View Collections

•  Most Collections contain their own elements

•  ArrayList, HashMap, etc.

•  View Collections don’t contain their own elements

•  instead, the elements are stored elsewhere

#CollectionsCornerCases

Copyright © 2019 Oracle and/or its affiliates.

List View of Array

String[] array = { "a", "b", "c", "d", "e", "f" };

List<String> list = Arrays.asList(array);

array[0] = "XXX";
 // list is now [XXX, b, c, d, e, f]

list.set(1, "YYY");
 // array is now { XXX, YYY, c, d, e, f }

#CollectionsCornerCases

get set

String[]

Arrays.asList

Copyright © 2019 Oracle and/or its affiliates.

List View of Array

#CollectionsCornerCases

Copyright © 2019 Oracle and/or its affiliates.

Map Views

Map<Integer, String> map = new HashMap<>(...);

Set<Integer> keySet = map.keySet();

Collection<String> values = map.values();

Set<Map.Entry<Integer, String>> entrySet =
 map.entrySet();

#CollectionsCornerCases

Copyright © 2019 Oracle and/or its affiliates.

Map.Entry

interface Map.Entry<K, V> {
 K getKey();
 V getValue();
 V setValue(V value);
}

#CollectionsCornerCases

Copyright © 2019 Oracle and/or its affiliates.

A HashMap

HashMap<Integer, String>

#CollectionsCornerCases

HashMap<Integer, String>

Set<Integer> Map.keySet()

Copyright © 2019 Oracle and/or its affiliates.

Map Key Set View

#CollectionsCornerCases

HashMap<Integer, String>

Collection<String> Map.values()

Copyright © 2019 Oracle and/or its affiliates.

Map Values View

#CollectionsCornerCases

HashMap<Integer, String>

Set<Map.Entry<Integer, String>>
Map.entrySet()

Copyright © 2019 Oracle and/or its affiliates.

Map Entry-set View

DEMO

Copyright © 2019 Oracle and/or its affiliates.

#CollectionsCornerCases

Copyright © 2019 Oracle and/or its affiliates.

Extended Map Views Example

•  Given two maps mapA and mapB, find the keys of mapB
corresponding to values that occur in both maps

 var mapA = Map.of(1, "a", 2, "b", 3, "c")

 var mapB = Map.of(5, "a", 6, "d", 7, "c")

•  Result should be a set containing...

[5, 7]

•  Maps might contain 15,000 entries

•  algorithm is important!

•  https://stackoverflow.com/a/57931314/1441122

#CollectionsCornerCases

Copyright © 2019 Oracle and/or its affiliates.

Solution Attempt #1

Map<Integer, String> mapA = ... ;
Map<Integer, String> mapB = ... ;

Set<Integer> result = mapB.keySet().stream()
 .filter(keyB -> mapA.keySet().stream()
 .filter(keyA ->
 mapA.get(keyA).equals(mapB.get(keyB)))
 .count() > 0)
 .collect(toSet());

#CollectionsCornerCases

Copyright © 2019 Oracle and/or its affiliates.

Solution Attempt #2

Map<Integer, String> mapA = ... ;
Map<Integer, String> mapB = ... ;

Set<Integer> result = mapB.entrySet().stream()
 .filter(entry ->
 mapA.values().contains(entry.getValue()))
 .map(Map.Entry::getKey)
 .collect(toSet());

#CollectionsCornerCases

Copyright © 2019 Oracle and/or its affiliates.

Insight

•  Use HashSet to strength-reduce contains() operations

•  contains() on the values() view is linear, O(n)

•  doing it for every key results in O(n2)

•  bring it into a HashSet to reduce contains() to constant, O(1)

•  overall time reduced from O(n2) to O(n)

#CollectionsCornerCases

Copyright © 2019 Oracle and/or its affiliates.

Solution Attempt #2 + variation

Map<Integer, String> mapA = ... ;
Map<Integer, String> mapB = ... ;

var aVals = new HashSet<>(mapA.values());
Set<Integer> result = mapB.entrySet().stream()
 .filter(entry -> aVals.contains(entry.getValue()))
 .map(Map.Entry::getKey)
 .collect(toSet());

#CollectionsCornerCases

A B BA

removes
this part retains

this part
Copyright © 2019 Oracle and/or its affiliates.

Insight+

•  Consider set intersection

•  problem statement says “... values that occur in both maps”

•  Set intersection achieved using the retainAll() method

•  A.retainAll(B) leaves set intersection in A

#CollectionsCornerCases

Copyright © 2019 Oracle and/or its affiliates.

Insight++

•  Use bulk operations on the values() view of the map

•  removes unwanted entries from the map

•  leaving only the desired entries

•  Use keySet() view

•  we don’t want the whole map, just the keys

#CollectionsCornerCases

Copyright © 2019 Oracle and/or its affiliates.

Solution Attempt #3

Map<Integer, String> mapA = ... ;
Map<Integer, String> mapB = ... ;

var aVals = new HashSet<>(mapA.values());
var mapBcopy = new HashMap<>(mapB);
mapBcopy.values().retainAll(aVals);
Set<Integer> result = mapBcopy.keySet();

#CollectionsCornerCases

Copyright © 2019 Oracle and/or its affiliates.

Part 1 Summary

•  Know and use view collections

•  view collections of Map are particularly interesting

•  Collections have rich set of bulk operations

•  combined with view collections can be very powerful

•  sometimes can be more effective than streams

#CollectionsCornerCases

Copyright © 2019 Oracle and/or its affiliates.

Part 2: Sorted Collections & Comparators

•  Sorted Collections

•  interfaces

•  SortedSet, SortedMap, NavigableSet, NavigableMap

•  implementations

•  TreeSet, TreeMap, ConcurrentSkipListSet, ConcurrentSkipListMap

•  I’ll talk about SortedSet but same issues apply to all

•  Sorted Collections are ordered by a Comparator

•  also Comparable and “natural order” but issues are the same

•  a Comparator might or might not be “consistent with equals”

#CollectionsCornerCases

Copyright © 2019 Oracle and/or its affiliates.

Iteration Order

•  For HashSet and Set.of(), iteration order is undefined

Set.of("a", "bb", "ccc", "dddd", "eeeee")
[eeeee, bb, a, ccc, dddd]

new HashSet<>(List.of("a", "bb", "ccc", "dddd", "eeeee"))
[bb, a, ccc, eeeee, dddd]

•  For SortedSet et. al., iteration order is well-defined

•  you provide the order using a Comparator

•  (“comparison method”)

#CollectionsCornerCases

Copyright © 2019 Oracle and/or its affiliates.

Comparator<T>

•  Interface with one method: int compare(T a, T b)
•  Compares two objects and reports their relative ordering

•  Must impose a total ordering

•  Must follow rules: transitive, reflexive, antisymmetric, ...

•  Example: string alphabetical order (case sensitive)

< 0
 “a is less than b”

0
 “a is equal to b”

> 0
 “a is greater than b”

DEMO

Copyright © 2019 Oracle and/or its affiliates.

#CollectionsCornerCases

Copyright © 2019 Oracle and/or its affiliates.

Set Membership

•  Typical set (e.g., HashSet)

•  contains no two elements (a, b) where a.equals(b) is true

•  Sorted set (e.g., TreeSet)

•  contains no two elements (a, b) where compare(a, b) == 0

•  In other words, the comparator not only determines
order but also membership

#CollectionsCornerCases

Copyright © 2019 Oracle and/or its affiliates.

Comparator<T>

•  Interface with one method: int compare(T a, T b)
•  Compares two objects and reports their relative ordering

•  Equivalence not a property of the objects themselves
(like equals) but instead determined by comparator

< 0
 “a is less than b”

0
 “a is equal to b”

> 0
 “a is greater than b”

“a is equivalent to b in the
context of this ordering”

#CollectionsCornerCases

Copyright © 2019 Oracle and/or its affiliates.

“Consistent With Equals”

From the Comparator specification:

The ordering imposed by a comparator c on a set of elements S is said to be consistent with
equals if and only if c.compare(e1, e2)==0 has the same boolean value as e1.equals(e2) for
every e1 and e2 in S.

Caution should be exercised when using a comparator capable of imposing an ordering
inconsistent with equals to order a sorted set (or sorted map). Suppose a sorted set (or
sorted map) with an explicit comparator c is used with elements (or keys) drawn from a set
S. If the ordering imposed by c on S is inconsistent with equals, the sorted set (or sorted
map) will behave “strangely.” In particular the sorted set (or sorted map) will violate the
general contract for set (or map), which is defined in terms of equals.

#CollectionsCornerCases

Copyright © 2019 Oracle and/or its affiliates.

“Consistent With Equals”

From the SortedSet specification:

Note that the ordering maintained by a sorted set (whether or not an explicit comparator is
provided) must be consistent with equals if the sorted set is to correctly implement the Set
interface. (See the Comparable interface or Comparator interface for a precise definition of
consistent with equals.) This is so because the Set interface is defined in terms of the equals
operation, but a sorted set performs all element comparisons using its compareTo (or
compare) method, so two elements that are deemed equal by this method are, from the
standpoint of the sorted set, equal. The behavior of a sorted set is well-defined even if its
ordering is inconsistent with equals; it just fails to obey the general contract of the Set
interface.

Copyright © 2019 Oracle and/or its affiliates.

WAT

DEMO

Copyright © 2019 Oracle and/or its affiliates.

#CollectionsCornerCases

Copyright © 2019 Oracle and/or its affiliates.

Explanation

•  Membership contract

•  Typical set membership determined by equals()

•  SortedSet membership determined by comparator

•  If these disagree (“inconsistent with equals”)

•  “behaves strangely”

•  “violates the general contract of Set”

•  Behavior can be unexpected if you’re expecting one set’s
semantics but the other’s is used

#CollectionsCornerCases

Copyright © 2019 Oracle and/or its affiliates.

Practical Impact

•  Obscure edge case, never occurs in real world?

•  actually occurs quite easily

•  many comparators for sorting are inconsistent with equals

•  Repurposing a sorting-comparator for a sorted set can
be perilous

•  “duplicate” elements will be eliminated

DEMO

Copyright © 2019 Oracle and/or its affiliates.

#CollectionsCornerCases

Copyright © 2019 Oracle and/or its affiliates.

Lessons

•  SortedSet with inconsistent-with-equals comparator

•  use only with SortedSets with the same comparator

•  DO NOT MIX with sets that use other semantics

•  IdentityHashMap keys

•  membership determined by == , inconsistent with equals

•  Surprisingly easy to create comparators that are
inconsistent with equals

•  When in doubt, put elements in a list and sort them

#CollectionsCornerCases

Copyright © 2019 Oracle and/or its affiliates.

Summary

•  Don’t forget about good old collections

•  especially Map views and bulk operations

•  sorted collections very powerful

•  can be used safely in isolation

•  dangerous if mixed without care

•  Following up

•  Q&A: Oracle Groundbreaker Hub, Wed 1:30pm

•  Naftalin and Wadler, Java Generics and Collections

•  Twitter: #CollectionsCornerCases

The preceding is intended to outline our general product direction. It is intended for information
purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any
material, code, or functionality, and should not be relied upon in making purchasing decisions. The
development, release, timing, and pricing of any features or functionality described for Oracle’s products
may change and remains at the sole discretion of Oracle Corporation.

Statements in this presentation relating to Oracle’s future plans, expectations, beliefs, intentions and
prospects are “forward-looking statements” and are subject to material risks and uncertainties. A detailed
discussion of these factors and other risks that affect our business is contained in Oracle’s Securities and
Exchange Commission (SEC) filings, including our most recent reports on Form 10-K and Form 10-Q
under the heading “Risk Factors.” These filings are available on the SEC’s website or on Oracle’s website
at http://www.oracle.com/investor. All information in this presentation is current as of September 2019
and Oracle undertakes no duty to update any statement in light of new information or future events.

Safe Harbor

Copyright © 2019 Oracle and/or its affiliates.

Copyright © 2019 Oracle and/or its affiliates.

introduced in Java 9

evaluates expressions and prints the result; REPL: read-eval-print loop

(mostly) no semicolons, TAB completion

/open ccc.jshell

loads some stuff from a file

1 + 2

"hello".toUpperCase()

var list = List.of(1, 2, 3)

/var list

it's a bit unfortunate that "var" is part of the language but "slash var" is a jshell command the displays
a variable's type and value

jshell commands begin with /

jshell overview

these are views onto the map, so changes to the map affect the views, and changes from the view affect
the underlying map

map

{1=a, 2=b, 3=c, 4=d, 5=e}

var keySet = map.keySet()

var values = map.values()

var entrySet = map.entrySet()

map.put(6, "f")

// show map, keySet, and values

keySet.remove(3)

// show keySet, map, and values

keySet.removeIf(k -> k % 2 == 0)

// show keySet, map, and values

// can't add to keySet, values, or entrySet; throws UOE

What's the point of entrySet? You can iterate set of entries and remove them using an iterator, or call
setValue on an entry

var it = entrySet.iterator()

var entry = it.next()

entry.getKey()

entry.getValue()

entry.setValue("XXX")

// entry, entrySet, and map have all changed

Map Views Demo

Simple Comparator example; alpha order, case sensitive

Comparator<String> cso = String::compareTo

cso.compare("a", "z")

cso.compare("z", "a")

cso.compare("x", "x")

Use comparator with a sorted collection

strings

["eeeee", "bb", "a", "ccc", "dddd"] // random

var tree = new TreeSet<>(cso)

tree.addAll(strings) // show sorted

tree.add("cz")

tree.add("TTT")

A sorted collection is kind of like a sorted list, right? No: treatment of duplicates

var list = new ArrayList<>(strings)

list.add("bb")

list.sort(cso)

// duplicates preserved

tree.clear()

tree.addAll(list)

// duplicates elided!

Sorted Collections and Comparators

cso.compare("a", "a") // 0

"a".equals("a") // true

cso.compare("a", "A") // nonzero

"a".equals("A") // false

// what could be inconsistent? if == 0 then equals ought to be true right?

Comparator<String> cio = String.CASE_INSENSITIVE_ORDER

cio.compare("a", "a") // 0

cio.compare("a", "A") // 0

"a".equals("A") // false

Being inconsistent with equals is NOT A BUG; there are valid use cases

They can give rise to inconsistency, "strange behavior", "violate general set contract"

var tree = new TreeSet<>(cio)

tree.addAll(List.of("MMM", "aaa", "zzz")

// MMM sorts in middle; case insensitive

tree.contains("MMM") // true

tree.contains("mmm") // also true

var hash = new HashSet<>(tree)

hash.contains("MMM") // true

hash.contains("mmm") // false

set1.equals(set2) is true iff sizes equal and every element of set2 is also contained in set1

// show hash and tree; they look equal

hash.equals(tree) // true

tree.equals(hash) // true

hash.remove("MMM")

hash.add("mmm")

// show hash and tree; they look unequal

hash.equals(tree) // false

tree.equals(hash) // true!!

Sorted Collection with I-W-E Comparator

Inconsistent with Equals Demo

/list Employee

/var employees

employees.forEach(System.out::println)

Comparator<Employee> salaryOrder = Comparator.comparing(Employee::getSalary)

employees.sort(salaryOrder)

works fine for sorting a list

suppose your manager asks you to maintain a data structure in the same order; easy, right?

var tree = new TreeSet<>(salaryOrder)

tree.addAll(employees)

tree

Pat is missing! Why? salaryOrder is inconsistent with equals

pat.equals(terry) // false

salaryOrder.compare(pat, terry) // 0

it considers unequal employees (pat and terry) that have the same salary to be equal thus duplicates

either augment the comparator to distinguish EVERY object (e.g., employee ID)

or keep in list and sort, which preserves "duplicates"

solution

Employee Demo

// ========== MAPS ==========

var origMap = Map.of(1, "a", 2, "b", 3, "c", 4, "d", 5, "e")
var map = new HashMap<>(origMap)
var map2 = Map.of(1, "X", 2, "B", 3, "C", 4, "D", 5, "E")
var mapA = Map.of(1, "a", 2, "b", 3, "c")
var mapB = Map.of(5, "a", 6, "d", 7, "c")

// ========== COMPARATORS ==========

var strings = new ArrayList<>(List.of("a", "bb", "ccc", "dddd",
"eeeee"))
Collections.shuffle(strings)

// ========== EMPLOYEE ==========

public class Employee {
 final String name;
 final int salary;

 public Employee(String name, int salary) {
 this.name = name;
 this.salary = salary;
 }

 public String toString() {
 return String.format("Employee[%s,%s %d]", name,
pad(name, 5), salary);
 }

 public String getName() { return name; }

 public int getSalary() { return salary; }

 public boolean equals(Object o) {
 if (o == this) return true;
 if (! (o instanceof Employee)) return false;
 Employee other = (Employee) o;
 return this.name.equals(other.name) && (this.salary ==
other.salary);
 }

 public int hashCode() {
 return (name.hashCode() * 31) ^ salary;
 }

 private static String pad(String s, int width) {

 return " ".repeat(Math.max(width - s.length(), 0));
 }
}

Employee pat;
Employee terry;

var origEmployees = List.of(
 new Employee("Robin", 400),
 terry = new Employee("Terry", 300),
 new Employee("Dana", 100),
 new Employee("Kelly", 200),
 pat = new Employee("Pat", 300),
 new Employee("Glenn", 500)
);

var employees = new ArrayList<>(origEmployees);

System.out.println("ccc loaded")

