
Copyright © 2019, Oracle and/or its affiliates. All rights reserved. 1

What We Hate About
Serialization
And what we might do about it…

Brian Goetz (@briangoetz)
Java Language Architect, Oracle

Stuart Marks (@stuartmarks)
Java Libraries Team, Oracle

November 2019

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. 2

The following is intended to outline our general product
direction. It is intended for information purposes only,
and may not be incorporated into any contract.
It is not a commitment to deliver any material, code, or
functionality, and should not be relied upon in making
purchasing decisions. The development, release, and
timing of any features or functionality described for
Oracle’s products remains at the sole discretion of
Oracle.

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. 3

Everyone hates serialization

§  Joshua Bloch
–  “Prefer alternatives to Java serialization” (Effective Java)

§ Mark Reinhold
–  “Serialization was a horrible mistake”

§ Brian Goetz
–  “Serialization is the gift that keeps on giving”

§ Stuart Marks
–  “Serialization is a full-employment act for vulnerability engineers”

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. 4

Everyone hates serialization

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. 5

What’s with all the hate?

§  The concept of serialization makes perfect sense
–  Applications need to store documents on disk, in databases, and send them on

the wire
–  Java might well not have been successful without serialization!

§  Essential to RMI and EJB remoting
–  Today’s problems come from yesterday’s solutions

§ But, the approach taken to Java serialization in 1997 was a disaster
–  Undermines encapsulation in non-obvious ways
–  Hard to evolve serializable classes
–  Too hard to reason about security
–  Ongoing tax on evolving the language
–  Cannot verify correctness by reading the code (!)

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. 6

The benefits...

§  In the 80s and 90s, persistence (and later remoting) were hard but
important problems

–  Every application had to write lots of fiddly, error-prone, ad-hoc code to
write out and read in documents

–  In-memory representation was hard to map to stream representation
–  Main promise of “object databases” was eliminating the impedance

mismatch between in-memory and offline representation
§  “Orthogonal Persistence” was one of the big promises of OO

–  Rather than every application implementing its own ad-hoc, error-prone
mechanism, OO systems with introspection could do it once

–  This was a huge benefit
–  But, at a cost…

Out-of-the-box (almost) persistence

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. 7

... and the costs

§ Serialization is extralinguistic
–  State is extracted from object via magic field scraping
–  Objects reconstruction bypasses constructors, uses magic field rewriting
–  Bypasses language’s accessibility model

§ Serialization is monolithic
–  Complects graph walking, state extraction, wire encoding, etc – all or nothing
–  Tightly tied to specific (ugly) encoding

§ Serialization is hard for programmers to use
–  Customization mechanisms are ad-hoc and confusing

§  readObject() is like a constructor, but nothing like a constructor
–  Too easy to create security risks

Too much to fit on a slide…

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. 8

Serialization mechanics

§ On serialization
–  For each object, reflectively scrape data from fields (including private ones)
–  Recursively serialize any referred-to objects
–  Write back-references to previously seen objects, to preserve cycles

§ On deserialization
–  create an “empty” object, bypassing constructors
–  read data from stream, write fields reflectively (including private, final ones)
–  recursively reconstitute objects referred to from fields
–  if backref encountered, substitute reference to actual object

What could possibly go wrong?

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. 9

Casualty: thread safety

	
public	class	Container	implements	Serializable	{	
				private	final	Map<Integer,	Integer>	map	=	new	TreeMap<>();	
	
				public	synchronized	void	insert(Integer	key,	Integer	value)	{	
								map.put(key,	value);	
				}	
	
				public	synchronized	Integer	remove(Integer	key)	{	
								return	map.remove(key);	
				}	
}	
				private	writeObject(ObjectOutputStream	s)	{	
								s.writeObject(map);	
				}	
}	
	

private final field,
initialized at
construction

access to field only
via synchronized
methods

Should be thread-safe, right?

NOT THREAD SAFE! New
code effectively added by
serialization. Unsynch’ed
access leads to errors. 😯

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. 10

Casualty: invariants

class	Range	implements	Serializable	{	
	
				private	final	int	start;	
				private	final	int	end;	
	
				public	Range(int	start,	int	end)	{	
								if	(start	>	end)	
												throw	new	IllegalArgumentException();	
								this.start	=	start;	
								this.end			=	end;	
				}	
}	
	

Preconditions checked
in constructor. This is
safe, right?

WRONG! Malicious stream could have
start > end, but deserialization bypasses
constructor, so no check is done. 😳

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. 11

Casualty: initialization mechanics

class	DateHolder	implements	Serializable	{	
	
				private	final	Date	date;	
	
				public	DateHolder(Date	d)	{	
								date	=	new	Date(d.getTime());	
				}	
}	
	
class	SonOfDate	extends	Date	{	
				public	long	getTime()	{	
								return	random.nextLong();	
				}	
}	
	
	

Defensive copy. We
know ‘date’ is an
instance of
java.util.Date, right?

WRONG! Malicious stream could
insert instance of Date subclass.
Deserialization bypasses constructor,
so no defensive copy is done. 😨

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. 12

Casualty: confinement

class	DateHolder	implements	Serializable	{	
	
				private	final	Date	date;	
	
				public	DateHolder(Date	d)	{	
								date	=	new	Date(d.getTime());	
								if	(isInvalid(date))	
												throw	new	IllegalArgumentException();	
				}	
}	
	
	

Imagine Date were final, averting subclass attack

Defensive copy. This class
has exclusive access to
this Date instance. Date is
mutable, so this is safe,
right?

WRONG! Malicious stream could
include ‘backrefs’ in order to get
another reference to the same object. 😰

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. 13

Casualty: confinement

class	DateHolder	implements	Serializable	{	
	
				private	final	Date	date;	
	
				public	DateHolder(Date	d)	{	
								date	=	new	Date(d.getTime());	
								if	(isInvalid(date))	
												throw	new	IllegalArgumentException();	
				}	
	
				private	void	readObject(ObjectInputStream	s)	throws	...	{	
								s.defaultReadObject();	
								date	=	new	Date(date.getTime());	
								if	(isInvalid(date))	
												throw	new	InvalidObjectException();	
				}	
}	
	
	

Fix this by adding code
to rewrite private field
with defensive copy

field no longer final

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. 14

Effective Java, Item 88

§  Item 88 covers some of the preceding issues in more detail
§  It makes several good recommendations:

–  Add a readObject() method
–  Make defensive copies in constructor and in readObject()
–  Perform invariant checks on copies in constructor and in readObject()

§ Checks are easy to forget and are error-prone
§ But after all that, they aren’t good enough

Write readObject() methods defensively

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. 15

Special bonus attack: finalization

§  If readObject() encounters an error, it throws an exception
–  Object not returned to the caller
–  Reference is thrown away, so object is unreachable, right?

§ Finalization can “resurrect” an otherwise unreachable object!
–  Mechanics are complicated, but a malicious stream can include an object

that has a finalizer, and resurrect it later with invalid data
–  Note, your object doesn’t have to use finalization; it is instead an innocent

victim of finalization (in combination with serialization)

😱 Possible to defend against finalization attacks, at
the cost of adding even more defensive code

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. 16

Serialization scorecard

ü Break thread safety with hidden, unsynchronized access

ü Bypass constructors, creating instances with bad data

ü Use polymorphism to inject malicious subclass

ü Defeat object containment using backrefs

ü Interferes with sensible use of final fields

ü Resurrect invalid, discarded object using finalization

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. 17

Lessons

§ Serialization was intended to be simple
–  It provides the appearance of simplicity, but lots of hidden complexity
–  The code that isn’t there can hurt you
–  Surprising and unexpected interactions with existing mechanisms

§ You can add code to defend against these problems
–  Easy to forget, it’s error-prone, and you have to be a serialization expert
–  It wasn’t supposed to be this difficult!

§ Well-intentioned effort to implement orthogonal persistence
–  Error was use of an extralinguistic mechanism to accomplish its goals
–  Undermines integrity of Java’s object model

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. 18

Why not “just” use JSON?

§  JSON is merely a wire encoding of the serialized information
–  The same information could be represented in JSON, XML, YAML...
–  None of the problems described earlier are related to the wire encoding!

§  In theory, serializing to JSON could be safer
–  If all you do is unmarshal stuff by hand out of a DOM tree
–  ... but nobody actually does this

§ Core problem: framework’s relationship to the object model
–  Particularly, how deserialization creates and populates objects
–  JSON frameworks all provide ways to reconstruct objects

§  Because it’s so darn convenient!
–  And now we're back to the same exploits we've been talking about

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. 19

Why not “just” use JSON?

“As we will conclude, the format used for the serialization is not relevant. It
can be binary data, text such as XML, JSON or even custom binary formats.
[...] Attackers may be able to gain code execution opportunities regardless of
the format.”

Muñoz and Mirosh, Friday the 13th JSON Attacks, Black Hat USA 2017
https://www.blackhat.com/docs/us-17/thursday/us-17-Munoz-Friday-The-13th-JSON-Attacks-wp.pdf

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. 20

Why not “just” use JSON?

§ There might be good reasons to switch the wire encoding
§ Switching wire encodings doesn’t address the core problem
§ The framework’s relationship to objects is the core problem

Deserialization of JSON (or any other data format) to Java objects
can give rise to all the same issues as occur in Java serialization.

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. 21

A language designer looks at serialization

§ DISCLAIMER: What follows is merely an exploration, not a plan!
§ The problems of serialization have a common root – it undermines the

language and object model
–  External libraries that use JSON or XML make the same mistakes

§  If we want serialization to be safe and reliable, it has to be brought into
the object model

–  The class author has to be in control of serialization
–  In a way that is natural, and readers can reason about

§ Secondarily, Serialization 1.0 probably aimed too high
–  Should have focused on serializing data, rather than objects
–  Many of the sins of serialization were committed due to this overreach

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. 22

The root problem(s)

§ The big problem: everything about serialization is magic
–  Magic object deconstruction (field scraping)
–  Magic object reconstruction (bypasses constructors)
–  Magic accessibility back door

§ Humans can’t easily reason about extralinguistic behavior we can’t see
–  So let’s make these things explicit

Magic is dangerous

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. 23

Banishing the magic

§ Where a class meets serialization should be part of the design process
§ For any class, the author should be able to control

–  The serialized form (which need not be the same as the in-memory
representation)
§  A data-modeling consideration, not a wire-encoding one

–  How the in-memory representation maps to the serialized form
–  How to validate the serialized form and create the instance

§ This should be done through ordinary Java code
–  Constructors and factories already know how to validate their inputs, let’s

just lean on those
–  We may even be able to reuse an existing public member

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. 24

Deserialization is construction

§ We all know how to write defensive constructors
–  Argument validation, defensive copies, encapsulation
–  These are needed during deserialiation too

§ By default, deserialization is entirely undefended
–  And, writing a readObject() method is too hard
–  Because it’s not a constructor

§ Rather than invent an alternate, harder way of doing the same thing
–  Let's use what we already know – constructors

§  Ensure deserialization proceeds through standard constructors
§  Sometimes, we can even re-use an existing constructor
§  Sometimes, we might have to write a constructor just for deserialization

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. 25

Digression: pattern matching

§ Pattern matching (destructuring) is coming to Java
if	(x	instanceof	Range(int	low,	int	high))	{	…	}	

§ Patterns combines an applicability test along with conditional extraction
–  Above pattern invokes a deconstruction pattern declared in Range
–  Deconstruction patterns are like a constructor in reverse

§  Constructor aggregates state components into an object
§  Deconstruction pattern decomposes an an object into state

components
§ We can use a constructor for reconstructing objects from serial form

–  And deconstruction patterns for extracting the serial form

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. 26

Digression: pattern matching

class	Range	{	
				private	final	int	low,	high;	
	
				public	Range(int	low,	int	high)	{	
								if	(low	>=	high)	
												throw	new	IllegalArgumentException(...);	
								this.low	=	low;	
								this.high	=	high;	
				}	
	
				public	pattern	Range(int	low,	int	high)	{	
								low	=	this.low;	
								high	=	this.high;	
				}	
}	

A class designed for deconstruction and reconstruction

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. 27

Serialization is deconstruction

§ From this simple example, we can already see shape of the solution
–  Use patterns to extract object state into a serialized form
–  Use matching constructors or factories to reconstruct from serialized form

§  State validated in the usual way!
–  Replace magic field scraping and object reconstitution with ordinary code

§  Some of which might already have been written and tested

§ Still need to somehow indicate which patterns and constructors should
be used for serialization and deserialization

–  Communicating design intent to frameworks is what annotations are for!

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. 28

Choosing a serial form

§ Serial form need not be the same as in-memory representation
–  For example, the serial form of a LinkedList is just its elements
class	LinkedList	{	
	
				@Deserializer	
				public	static	LinkedList	deserialize(Object[]	elements)	{	
								LinkedList	list	=	new	LinkedList();	
								for	(Object	o	:	elements)	
												list.add(o);	
								return	list;	
				}	
	
				@Serializer	
				public	pattern	LinkedList(Object[]	elements)	{	
								elements	=	this.toArray();	
				}	
	
}	

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. 29

Versioning

§ As classes evolve, the serialized form may evolve with them
–  But serialized instances from past versions may still be floating around

§ Programming model should capture past serial forms, so readers can
reason about all the ways an instance can come into existence

–  Should be able to explicitly support (or not) specific past serial forms
–  Easy – have multiple deserializers, one for each supported version

§ Explicit serializers and deserializers can have version metadata
–  So that it is obvious which old versions, and how, we support

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. 30

Access control

§ There’s still one bit of magic left to banish – access control
–  In default serialization, a private class in a non-exported package is still

effectively public, because we can construct it through serialization

§  If we want serialization to be an ordinary, nonprivileged library, we
need to either:

–  Make these public (yuck)
–  Provide an explicit way to express “this member is for serialization only”,

which reflection will make limited exceptions for

§ Similar to what we do for “open” modules, just at a finer granularity
–  Dynamically accessible, but not statically accessible

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. 31

Towards better serialization

§ With the following:
–  Patterns for state extraction
–  Constructors or factories for reconstruction
–  Annotations to capture serialization intent and versioning
–  Explicit mechanism to capture dynamic accessibility

§ Split the problem in two
–  Author is in charge of serialized form, state extraction, object reconstruction

§  Which can be defended against bad data
§  Can often reuse existing constructors and deconstruction patterns

–  Serialization framework is in charge of finding serialization members, and wire
encoding and decoding – and that’s it

§ Serialization frameworks no longer need privileged magic
–  Not for extraction, not for reconstruction, not for accessibility

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. 32

The bad news

§ Writing explicit serializers is more work than just saying “implements
Serializable”

–  “Don’t take away my magic”
–  But, can make this less painful with language improvements

§ Cyclic object graphs – the “always deserialize through a constructor”
makes it much harder to serialize cyclic object graphs

–  If serialization is about data, rather than programs, this is unlikely to be a
serious limitation

§ Every class must bring its own serialization – cannot inherit
serialization from supertypes

–  Tricky for lambdas and anonymous classes

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. 33

The long road ahead

§ This approach doesn’t address all the problems of serialization
–  But it puts it on a solid footing, where it can be reasoned about
–  Makes it possible for ordinary developers to write correct serializable

classes
–  Provides a migration path away from the more dangerous mechanism

§ More work needed to defend against presence of (often unknown)
insecure serializable classes in existing libraries

–  But, there can be no security without correctness

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. 34

The long road ahead

§ Teach core serialization about explicit serialization members
–  Use this in preference to existing serialization approaches

§ Migrate serializable JDK classes to use new approach
–  Three releases (18 months) to maintain +1/-1 compatibility
–  But not all classes have to migrate at once

§  If other serialization frameworks support this approach too
–  Then a class authored for safe deconstruction and reconstruction can be

used with these frameworks too
–  Frameworks free to compete on the basis of encoding and performance

Updating the JDK

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. 35

Summary

§  If we knew then what we know now …
–  And had the language then that we have now …

§  We’re at the beginning of a very long migration
§  Goals include

–  Reduce security serialization attack surface
–  Make it easier to reason about correctness
–  Level the playing field for serialization frameworks by eliminating the need for

privilege

§  For more information
–  Towards Better Serialization
–  http://cr.openjdk.java.net/~briangoetz/amber/serialization.html

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. 36

Q & A

