
Hydrangea++: Enhancing Hydrangea with Optimistic Proposals

Nibesh Shrestha1 and Aniket Kate2

1Supra Research, n.shrestha@supra.com
2Supra Research/Purdue University, aniket@purdue.edu

Abstract

Achieving both low latency and strong fault tolerance remains a fundamental challenge in distributed
consensus. Recent efforts toward low-latency consensus have focused on optimistic protocols that commit
blocks in two rounds when the number of faults remains below a defined threshold. The state-of-the-
art protocol Hydrangea demonstrated that such optimistic two-round commits are possible while also
improving fault resilience. However, existing approaches (including Hydrangea) primarily optimize com-
mit latency while retaining a 2δ proposal delay, where δ represents a single network delay. This delay
increases queuing time for client transactions and ultimately worsens end-to-end finality.

In this work, we introduce Hydrangea++, which addresses this limitation by enabling proposals
every network delay—cutting proposal latency to the theoretical minimum δ. In a system of n =
3f + 2c + m + 1 parties (where m is a tunable parameter), under synchrony and an honest leader,
Hydrangea++ additionally achieves two-round commits when at most p = ⌊ c+m

2
⌋ parties are faulty, and

guarantees three-round commits even with up to f Byzantine and c crash faults. Our geo-distributed
evaluation shows that Hydrangea++ delivers up to 11% lower end-to-end latency and nearly 2× higher
throughput compared to state-of-the-art protocols.

1 Introduction

Consensus lies at the core of state machine replication (SMR), which is a foundational abstraction for building
fault-tolerant distributed systems, replicated databases, and blockchains. A consensus protocol must ensure
safety (no two honest parties commit conflicting blocks) and liveness (honest parties eventually commit) in
the presence of both network asynchrony and process faults. In this work, we are interested in consensus
under the partially synchronous model [9], where the network delay is unbounded until some unknown Global
Stabilization Time (GST) after which message delays are bounded by a known constant ∆.

The latency–resilience trade-off. A major goal consensus protocol design is to minimize commit latency,
defined as the number of communication rounds required for honest parties to reach a decision in the good-
case case, that is, after GST has passed and the designated leader is honest. It is known that protocols
tolerating the optimal number of Byzantine faults (f < n/3) in this model require at least three rounds to
commit in the good case [3]. A long line of optimistic consensus protocols [1,12,15] can achieve commits in
fewer than three rounds, but only by sacrificing resilience. Specifically, these protocols operate in a system
of n = 3f + 2p + 1 parties, where f denotes the maximum number of Byzantine faults and p is a tunable
parameter. They achieve optimistic two-round commits when the number of Byzantine faults does not exceed
p ≤ f , and guarantee three-round commits when up to f Byzantine faults are present.

Hydrangea: closing the gap. Hydrangea [18] recently closed this gap by introducing the first protocol
that simultaneously achieves low-latency optimistic commits and strong fault tolerance. In a system of
n = 3f +2c+m+1 parties, where m ≥ 0 is a tunable parameter, Hydrangea achieves optimistic two-round
commits under synchrony when at most p = ⌊ c+m

2 ⌋ parties are faulty (Byzantine or crash), and three-round
commits in the good-case even with f Byzantine faults and c crash faults. Hydrangea thus tolerates strictly
more faults than prior optimistic protocols while retaining fast-path commit latency. By combining high

1

fault resilience with low-latency finality in favorable settings, Hydrangea resolves a long-standing tension
between latency and resilience in partially synchronous consensus.

The remaining bottleneck: proposal delay. Most modern consensus protocols operate in a rotating-
leader model, where each view assigns a unique leader responsible for making a single proposal. This design
helps ensure fairness, censorship resistance, and balanced workload distribution across the system. However,
in this setting, most protocols (including Hydrangea) still incur a minimum block period of 2δ between
proposals from consecutive honest leaders, where δ denotes network delay. The reason is that the leader of
view v + 1 must first obtain a block certificate from view v before issuing its own proposal, even in fully
synchronous conditions.

This conservative timing creates a performance bottleneck: client transactions experience an extra δ
delay before they can be included in the next proposal, increasing end-to-end latency. At the same time, the
strict 2δ spacing restricts pipelining and reduces block production rates in geo-distributed environments. In
short, while Hydrangea optimizes commit latency, it does not optimize proposal latency (the time between
proposals of consecutive honest leaders) leaving noticeable performance improvements unexploited when the
network is operating well.

Our contribution: Hydrangea++

In this work, we introduce Hydrangea++, a new variant of Hydrangea that eliminates proposal delays by
enabling leaders to make optimistic proposals, following ideas from Moonshot [8]. Hydrangea++ contributes
in three key ways:

1. Optimistic proposals. We introduce a mechanism that enables the leader of view v+1 to optimisti-
cally propose a block as soon as it receives the proposal for view v, rather than waiting for that block
to be certified. This reduces the proposal delay from 2δ to the theoretical minimum of δ, effectively
matching the underlying network delay.

2. Preservation of latency guarantees. We prove that Hydrangea++ preserves Hydrangea’s opti-
mistic two-round and good-case three-round commit latencies, along with its enhanced fault resilience.
Our results demonstrate that reducing proposal delay does not compromise either safety or liveness.

3. Performance benefits By shortening the proposal delay, Hydrangea++ improves both throughput
and end-to-end decision latency under synchrony. This makes it particularly well-suited for high-
performance deployments such as geo-replicated databases and permissioned blockchains.

2 Preliminaries

We consider a system P = P1, . . . , Pn of n = 3f+2c+m+1 parties, where up to f parties may be Byzantine
and up to c parties may experience crash faults. Byzantine parties may behave arbitrarily, while crashed
parties simply halt and cease communication. Any party that does not fail and follows the protocol is referred
to as honest. The parameter m satisfies 0 ≤ m ≤ 2f + c − 4 when c is even and 0 ≤ m ≤ 2f + c − 3 when
c is odd. Let p = ⌊ c+m+2

2 ⌋. For these values of m, it holds that p + 1 ≤ f + c, ensuring that the number
of faults tolerable on the fast path never exceeds the total fault budget of the system, consistent with the
lower bound established in [18].

We assume the classical partial synchrony model of Dwork et al. [9]. Initially, the system may be
asynchronous, allowing the adversary to arbitrarily delay messages between honest parties. After some
unknown Global Stabilization Time (GST), the system becomes partially synchronous: every message sent
by an honest party is delivered within a known upper bound ∆. Let δ denote the actual (and possibly
variable) transmission delay, where δ ≤ ∆ holds after GST. We assume that local clocks have no drift but
may be arbitrarily skewed.

We assume the existence of digital signatures and a public-key infrastructure (PKI) to prevent spoofing,
protect against replay attacks, and enable message authentication. We use ⟨x⟩i to denote a message x digitally

2

signed by party Pi using its private key. We use H(x) to denote the application of the cryptographic hash
function H on input x.

State Machine Replication. A state machine replication (SMR) protocol run by a network P of n nodes
receives requests (transactions) from external parties, called clients, as input, and outputs a totally ordered
log of these requests. We recall the definition of SMR given in [2], below.

Definition 1 (Byzantine Fault-Tolerant State Machine Replication [2]). A Byzantine fault-tolerant state
machine replication protocol commits client requests as a linearizable log to provide a consistent view of the
log akin to a single non-faulty node, providing the following two guarantees.

• Safety. Honest parties do not commit different values at the same log position.

• Liveness. Each client request is eventually committed by all honest parties.

3 The Hydrangea++ Protocol

3.1 Protocol Definitions

View-based execution. Our protocol progresses through a sequence of numbered views, beginning with
all parties in view 1 and advancing to higher views as execution progresses. Each view v has a designated
leader Lv, responsible for proposing a new block. Leader selection is rotated across views and is independent
of the progress achieved within any single view.

Blocks and block format. Client requests are batched into blocks, where each block (except the genesis
block) references its immediate predecessor. The position of a block within the chain is called its height. A
block Bk at height k is represented as Bk := (bk, H(Bk−1)), where bk is the block’s payload and H(Bk−1) is
the hash of its predecessor Bk−1. The genesis block has ⊥ as its predecessor.

A block Bk is considered valid if:

1. its predecessor is valid (or is ⊥ when k = 1), and

2. the client requests it contains satisfy application-level validity conditions and are consistent with the
sequence of requests in its ancestor blocks.

We say that a block Bk extends a block Bl (k ≥ l) if Bl is an ancestor of Bk (noting that a block trivially
extends itself). Two blocks Bk and B′

k′ are said to equivocate (or conflict) if they are distinct and neither
extends the other.

Block certificate and weak block certificate. Following Moonshot [8], we employ three types of signed
vote messages: the optimistic vote (opt-vote), the normal vote (vote), and the fallback vote (fb-vote). Cru-
cially, vote messages of different types cannot be aggregated. Consequently, we define three corresponding
types of block certificates. An optimistic certificate Co

v(Bh) for a block Bh consists of ⌈n+f+1
2 ⌉ distinct

opt-vote messages for Bh in view v. Similarly, a normal certificate Cn
v (Bh) comprises ⌈n+f+1

2 ⌉ distinct vote

messages for Bh in view v, and a fallback certificate Cfv(Bh) comprises ⌈n+f+1
2 ⌉ distinct fb-vote messages for

Bh in view v. When the type is irrelevant, we simply denote a block certificate as Cv(Bh). Block certificates
are ordered by view number, i.e., Cv ≤ Cv′ whenever v ≤ v′.

Additionally, we also define a weak block certificate WCv(Bk) for view v as a collection of f + p + 1
distinct signed vote messages for a block Bk. We also differentiate between weak block certificate based
on the vote type and define three corresponding types of weak block certificates. An optimistic weak block
certificate WCo

v(Bk) for a block Bk consists of f+p+1 distinct opt-vote messages for Bk in view v. Similarly,
a normal weak block certificate WCn

v (Bk) comprises f + p + 1 distinct vote messages for Bh in view v, and
a fallback weak block certificate WCf

v (Bk) comprises f + p + 1 distinct fb-vote messages for Bk in view v.
When the type is irrelevant, we simply denote a weak block certificate as WCv(Bk).

3

Weak block certificates are first ordered by their view number, such that WCv(Bk) ≤ WCv′(Bh) whenever
v ≤ v′. Within the same view v, fallback weak block certificates take the highest priority, followed by normal
weak block certificates, and finally optimistic weak block certificates, formally: WCf

v > WCn
v > WCo

v. To
compare a block certificate Cv(Bk) and a weak block certificate WCv′(Bh), we rank Cv(Bk) higher if v ≥ v′,
and otherwise WCv′(Bh) ranks higher.

Timeout messages and timeout certificates. To guarantee liveness, our protocol requires parties to
trigger a leader change if they detect a lack of progress in their current view beyond a specified timeout
threshold. Each party signals this by broadcasting a signed timeout message for the current view. A timeout
message contains (i) the party’s most recent votes in a view, and (ii) the highest weak block certificate or
the highest-ranked block certificate observed by that party. The votes included in a timeout message must
comply with the protocol’s voting rules. For instance, a party is prohibited from casting both a vote and a
fb-vote within the same view. Likewise, if a party has already cast an opt-vote for a block, it is forbidden
from later casting a vote for an equivocating block in the same view.

A timeout certificate for view v, denoted T Cv, is formed by collecting n − f − c distinct, valid timeout
messages for view v. The certificate serves as cryptographic evidence that a quorum of parties agrees to
advance from view v to view v + 1.

Progress certificate and safe block selection. We use the notion of a progress certificate to justify that
a leader in a given view can safely propose a block. Each progress certificate is associated with a view v and
is denoted by PCv; it is used by the leader of view v + 1 to determine a safe block to extend. A progress
certificate in view v is either a block certificate Cv or a timeout certificate T Cv. The purpose of PCv is to
identify the safe block in view v: a block such that no conflicting (equivocating) block could have been, or
can still be, committed—ensuring it is safe to extend.

A T Cv aggregates block certificates, weak block certificates, and the highest votes contained in the
included timeout messages. If the votes in PCv provide sufficient support for a block, a weak block certificate
can be constructed, and we select the highest-ranked weak block certificate that can be formed. The safe
block is then chosen as the block associated with the highest-ranked certificate—either a block certificate or
a weak block certificate.

4 Security Analysis

Claim 1. Any two quorums Q1 and Q2 of size ⌈n+f+1
2 ⌉ intersect in at least one honest party.

Proof. Each quorum contains at least ⌈n+f+1
2 ⌉ parties. Hence, the intersection of two quorums Q1 and Q2

is of size at least ⌈n+f+1
2 ⌉+ ⌈n+f+1

2 ⌉−n ≥ f +1. Since at most f parties can be Byzantine, this guarantees
that Q1 and Q2 share at least one honest party.

Claim 2. If Co
v(Bk) exists then T Cv−1 does not exist, and vice-versa.

Proof. Suppose, for the sake of contradiction, that both certificates exist. LetQ1 denote the set of parties that
contributed to Co

v(Bk) and Q2 the set of parties that contributed to T Cv−1. By definition, |Q1| = ⌈n+f+1
2 ⌉

and |Q2| = n− f − c. Hence, their intersection satisfies |Q1 ∩Q2| ≥ ⌈n+f+1
2 ⌉+(n− f − c)−n = f +1+ ⌈k

2 ⌉.
Since at most f parties can be Byzantine, there must exist at least one honest party (say Pi) that appears
in both Q1 and Q2. Thus, Pi must have sent both ⟨opt-vote, H(Bk), v⟩i and a view v − 1 timeout message.

By the optimistic vote rule, Pi must have had timeout view < v − 1 when casting its optimistic vote
for Bk, which implies that its timeout message for view v − 1 was sent after voting for Bk. However, the
optimistic vote rule also requires that Pi be in view v when voting for Bk. By the timeout rule, a party in
view v cannot multicast T messages for view v − 1 or any lower view after casting a vote in view v. This
yields a contradiction, completing the proof.

Claim 3. If Co
v(Bk) and Cn

v (Bl) exist then Bk = Bl.

4

Each party Pi runs the following protocol while in view v:

1. Propose. Upon entering v and after executing Advance View and Lock, if Pi is Lv , propose using one of the following
rules:

(a) Normal Propose. If Lv entered v by receiving Cv−1(Bk−1), multicast ⟨propose, Bk, Cv−1(Bk−1), v⟩ such that Bk

extends Bk−1.

(b) Fallback Propose. If Lv entered v by receiving T Cv−1, multicast ⟨fb-propose, Bk, T Cv−1, v⟩, where Bk extends
Bk−1 that is proposed in some view v′ < v , and is considered a safe block according to the accompanying T Cv−1.

2. Vote. Pi votes at most twice in view v when the following conditions are met:

(a) Optimistic Vote. Upon receiving ⟨opt-propose, Bk, v⟩ such that Bk extends Bk−1, if (i) timeout viewi < v− 1, (ii)
locki = Cv−1(Bk−1) and (iii) Pi has not voted in v, set last-opt-votei := ⟨opt-vote, H(Bk), v⟩i multicast last-opt-votei
to all parties.

(b) After executing Advance View and Lock with all embedded certificates, vote once when one of the following conditions
are satisfied:

i. Normal Vote. Upon receiving ⟨propose, Bk, Cv−1(Bk−1), v⟩, if (i) timeout viewi < v, (ii) Bk directly ex-
tends Bk−1 and (iii) Pi has not sent an optimistic vote for an equivocating block B′

k′ in v, set last-votei :=
⟨vote, H(Bk), v⟩i and multicast last-votei to all parties.

ii. Fallback Vote. Upon receiving ⟨fb-propose, Bk, T Cv−1, v⟩ if (i) timeout viewi < v, (ii) Bk directly extends
Bk−1 that was proposed in a previous view v′ < v, and Bk−1 is considered a safe block according to the
accompanying T Cv−1, set last-fb-votei := ⟨fb-vote, H(Bk), v⟩i and multicast last-fb-votei to all parties. If Bk−1

is deemed safe due to a weak block certificate WCv′ (Bk−1) included in T Cv−1, then hwci := WCv′ (Bk−1).

3. Optimistic Propose. Upon voting for Bk in view v, if Pi is Lv+1, multicast ⟨opt-propose, Bk+1, v + 1⟩ such that Bk+1

extends Bk.

4. Direct Pre-commit. Upon receiving Cv(Bk) whilst in any view v′ ≤ v if timeout viewi < v, multicast ⟨commit, H(Bk), v⟩i.
5. Indirect Pre-commit. Upon receiving Cv(Bk) in any view, if a party has previously multicast a commit for any

descendant of Bk and its timeout viewi < v, then it multicasts ⟨commit, H(Bk), v⟩i if it has not already done so.

6. Timeout. When view-timeri expires, party Pi multicasts ⟨timeout, v, h-certi, last-opt-votei, last-votei, last-fb-votei⟩Pi

(if it has not already done so) and updates timeout viewi to max(timeout viewi, v). Furthermore, upon receiv-
ing either f + 1 distinct messages of the form ⟨timeout, v′, , ⟩∗ or a valid T Cv′ for some v′ ≥ v, it multicasts
⟨timeout, v′, h-certi, last-opt-votei, last-votei, last-fb-votei⟩Pi

and updates timeout viewi to max(timeout viewi, v
′). Here,

h-certi refers to the higher-ranked certificate between locki and hwci.

7. Advance View. Pi enters v′ where v′ > v using one of the following rules:

- Upon receiving Cv′−1(Bh). Also, multicast Cv′−1(Bh).

- Upon receiving T Cv′−1. Also, unicast T Cv′−1 to Lv′ .

Finally, reset view-timeri to 3∆ and start counting down.

Pi additionally performs the following actions in any view:

1. Lock. Upon receiving Cv(Bk) in any protocol message whilst having locki = Cv′ (Bk′) such that v > v′, set locki to
Cv(Bk).

2. Direct Commit. Pi directly commits Bk whilst in any view using one of the following rules:

- (Fast Commit.) Upon receiving n− p distinct vote messages of the same type (i.e., opt-vote, vote, or fb-vote) for Bk

in view v,

- (Slow Commit.) Upon receiving 2f + c+ 1 distinct ⟨commit, H(Bk), v⟩∗ messages.

3. Indirect Commit. Upon directly committing Bk, commit all of its uncommitted ancestors.

Figure 1: The Hydrangea++ protocol

Proof. By Claim 1 and the requirement that a block certificate be formed from a quorum of votes of the same
type for the same block, there must exist at least one honest node (say Pi) that voted for both Bk and Bl.
By the optimistic vote rule, Pi could have voted for Bk only if it had not yet voted in view v, which implies
that its vote for Bl must have occurred after its vote for Bk. Furthermore, the normal vote rule permits Pi

to vote for Bl only if it has not already issued an optimistic vote for a conflicting block. Consequently, Pi

could have voted for Bl after voting for Bk only if Bl = Bk. Since Pi must have voted for both blocks, it

5

follows that Bl = Bk.

Claim 4. If Cv(Bk) and Cv(Bl) exist then Bk = Bl.

Proof. By Claim 1, there must exist at least one honest node (say Pi) that contributed votes to both
certificates. We analyze four possible cases:

1. Both certificates have the same type. Since each vote rule can be triggered at most once in a given
view, Pi could have voted for both certificates only if Bk = Bl.

2. Cv(Bk) = Cn
v (Bk) and Cv(Bl) = Cf

v (Bl) (or vice versa). The respective vote rules prohibit a party from
voting for a proposal of one type if it has already voted for a proposal of the other type. Hence, Pi

could not have voted for both certificates—contradicting the earlier conclusion.

3. Cv(Bk) = Co
v(Bk) and Cv(Bl) = Cf

v (Bl) (or vice versa). By the fallback vote rule, Pi could have voted
for Bl only if it had a justification from T Cv−1. By Claim 2, this would make Co

v(Bk) impossible,
contradicting the assumption that it exists.

4. Cv(Bk) = Co
v(Bk) and Cv(Bl) = Cn

v (Bl) (or vice versa). This case is handled by Claim 3.

Since all cases either force Bk = Bl or lead to a contradiction, it follows that Bk = Bl.

Claim 5. A set Q of n− f − p honest parties and a set Q′ of n− 2f − c honest parties must intersect in at
least f + p+ 1 honest parties.

Proof. The intersection of Q and Q′ has size at least n− f − p+ n− 2f − c− (n− f) = f + c+ k + 1− p.
We now analyze this quantity based on the parity of c+ k:

- When c+ k is even, p = c+k
2 ; so, f + c+ k + 1− p = f + c+k

2 + 1 = f + p+ 1.

- When c+ k is odd, p = c+k−1
2 ; so f + c+ k + 1− p = f + c+k+1

2 + 1 > f + p+ 1.

Thus, in both cases, the intersection has size at least f + p+ 1 honest parties.

Claim 6. If a block Bk proposed in view v is directly committed via the fast commit rule and a corresponding
T Cv exists, then WCv(Bk) must appear in T Cv, and no weak block certificate for a conflicting block with
rank higher than WCv(Bk) can appear in T Cv.

Proof. For a block Bk to be directly committed via the fast commit rule, it must collect at least n− p votes
of the same type (either opt-vote, vote, or fb-vote) in view v. This voting set contains a subset Q of at
least n− f − p honest parties. The corresponding T Cv contains timeout messages from a set Q′ of at least
n− 2f − c honest parties. By Claim 5, the intersection Q∩Q′ contains a set S of at least f + p+ 1 honest
parties. Then every party in S must have cast its last vote for Bk in view v and subsequently contributed
to T Cv.

We now analyze each possible case based on the type of votes that triggered the fast commit rule:

- Fast commit triggered by n− p opt-vote for Bk. Since n− p > ⌈n+f+1
2 ⌉, by Claim 3, T Cv−1 cannot

exist. Hence, no honest party can send a fb-vote in view v. Similarly, by the normal vote rule, an honest
party that has sent opt-vote for Bk in view v cannot later send a vote for a conflicting block. Therefore,
at most f + p parties could have sent either vote or opt-vote for a conflicting block in view v, which is
insufficient to form a weak block certificate.

- Fast commit triggered by n− p vote for Bk. As above, at most f + p parties could have cast any vote
for a conflicting block in view v, which is not enough to form a weak block certificate.

- Fast commit triggered by n− p fb-vote for Bk. In this case, there must be at least f + p+ 1 fb-vote
for Bk included in T Cv. Since WCf

v (Bk) has the highest rank among all weak block certificates in view v,
no weak block certificate of higher rank can exist in T Cv.

6

Hence, in all cases, WCv(Bk) appears in T Cv, and no weak block certificate for a conflicting block of
rank higher than WCv(Bk) can exist in T Cv.

Lemma 1. If an honest party directly commits block Bk proposed in view v using the fast commit rule, and
Bk′ is the safe block as per PCv′ such that v′ ≥ v then Bk′ extends Bk.

Proof. Suppose an honest party Pi directly commits block Bk proposed in view v using the fast commit
rule, having received at least n − p votes of the same type for Bk. This ensures that a set Q of at least
n− f − p honest parties voted for Bk in view v. We first consider the case where v′ = v. If PCv is a block
certificate for view v, then by Claim 4, no conflicting block certificate can exist in the same view. Hence,
PCv = Cv(Bk), and Bk is the only safe block. Next, we consider the case where PCv = T Cv, and specifically
when T Cv does not contain Cv(Bk). In this case, by Claim 6, WCv(Bk) is the highest ranked weak block
certificate in PCv and only Bk qualifies as a safe block under PCv.

We now consider the case where v′ > v. Suppose, for contradiction, that there exists PCv′ at the lowest
such view v′ > v, where the associated safe block Bk′ does not extend Bk. Note that PCv′ could either
be Cv′(Bk′) or T Cv′ . First, consider the case where PCv′ = Cv′(Bk′). For this certificate to exist, at least
⌈n−f+1

2 ⌉ honest parties must have voted for Bk′ in view v′. However, by assumption, in every intermediate
view v ≤ v′′ < v′, the safe block determined by PCv′′ extends Bk. Since honest parties vote only for blocks
that extend the safe block from the previous view, they would not have voted for Bk′ in view v′ unless it
also extended Bk. This contradicts the assumption that Bk′ does not extend Bk. A similar argument rules
out the existence of a weak block certificate or block certificate for a conflicting block in any view v′′ such
that v ≤ v′′ ≤ v′.

Now, consider the case where PCv′ = T Cv′ , which consists of timeout messages from view v′ sent by
n− f − c parties, among which a subset Q′ of at least n− 2f − c are honest. By Claim 5, Q and Q′ intersect
in set S of at least f + p + 1 honest parties. As mentioned before, honest parties do not vote for blocks in
view v′ if it does not extend Bk. Therefore, all honest parties in S must have last voted in views v′′ such
that v ≤ v′′ ≤ v′, and these votes must extend Bk. If these honest parties did not vote in any view higher
than v, then their high votes in view v will be included in T Cv′ , collectively forming WCv(Bk). If instead
they voted in a higher view v′′ > v, they would either update their hwc to WCv(Bk) (or a higher ranked
one), or update their lock to a block certificate from some view in the range [v, v′ − 1]. As shown earlier, all
weak block certificates and block certificates in views v ≤ v′′ ≤ v′ must extend Bk. Therefore, T Cv′ must
include either a block certificate for some view in the range [v, v′ − 1] or a weak block certificate from some
view v′′ such that it extends Bk. Thus, the safe block computed from T Cv′ must necessarily extend Bk,
contradicting the assumption that the safe block determined by PCv′ does not extend Bk.

Lemma 2. If an honest party directly commits block Bk proposed in view v using the slow commit rule, and
Bk′ is the safe block determined by PCv′ for some view v′ ≥ v, then Bk′ must extend Bk.

Proof. Suppose an honest party Pi directly commits block Bk proposed in view v using the slow commit
rule, having received at least 2f+c+1 commit messages for Bk. This implies that a set Q of at least f+c+1
honest parties must have received Cv(Bk) before sending a timeout message for view v or exiting the view.
Consequently, the progress certificate PCv must be the block certificate Cv(Bk), since at least f+c+1 honest
parties observed it and this intersects with the n− f − c messages in the timeout certificate T Cv. Moreover,
by Claim 4, no conflicting block certificate can exist in view v. Hence, PCv = Cv(Bk), and Bk extends itself.

We now consider the case where v′ > v. Suppose, for the sake of contradiction, that there exists a
progress certificate PCv′ for some lowest view v′ > v such that the corresponding safe block Bk′ does not
extend Bk. Note that PCv′ could either be a block certificate Cv′(Bk′) or a timeout certificate T Cv′ . First,
consider the case where PCv′ = Cv′(Bk′). For such a certificate to exist, at least ⌈n−f+1

2 ⌉ honest parties
must have voted for Bk′ in view v′. However, by assumption, in every view v′′ such that v ≤ v′′ < v′, the
safe block identified by PCv′′ extends Bk, and honest parties vote only for blocks that extend the safe block
of the previous view. Therefore, honest parties would not have voted for Bk′ in view v′ if it did not extend
Bk. This leads to a contradiction. This implies that no block certificate for a conflicting block (i.e., one that
does not extend Bk) can exist in the range of views [v, v′].

7

Now consider the case where PCv′ = T Cv′ , which consists of timeout messages from view v′ sent by a set
Q′ of n− f − c parties. As established earlier, honest parties do not vote for blocks in view v′ unless those
blocks extend Bk. Let v

∗ denote the view corresponding to the highest-ranked weak block certificate present
in PCv′ . If v < v∗ < v′, then by assumption, all blocks voted for or potentially certified in this range of
views must extend Bk. As a result, the weak block certificate for a block from view v∗ must also extend Bk.
Furthermore, if v∗ = v′, then the weak block certificate must still extend Bk, since the safe block identified
by PCv∗−1 also extends Bk. Alternatively, if v∗ ≤ v, then PCv′ must include either the block certificate
Cv(Bk) or higher-ranked block certificate, since the intersection of the honest voting sets Q (from view v)
and Q′ (from view v′) contains at least one honest party. As argued before all block certificates in the range
of views [v, v′] must extend Bk. Therefore, in either case, the safe block determined from PCv′ must extend
Bk, contradicting the assumption that it does not.

The proof of the following lemma (Lemma 3) follows immediately from Lemma 1 and Lemma 2.

Lemma 3. If an honest party directly commits a block Bk proposed in view v, and Bk′ is the safe block
determined by PCv′ for some view v′ ≥ v, then Bk′ must extend Bk.

Theorem 1 (Safety). Honest parties do not commit different values at the same log position.

Proof. We show that if two honest parties Pi and Pj commit Bk and B′
k, then Bk = B′

k. Suppose, for the
sake of contradiction, that Pi and Pj commit Bk and B′

k but Bk ̸= B′
k. By the indirect commit rule, both

parties must have directly committed descendant blocks—specifically, Pi committed block Bℓ in view v such
that Bℓ extends Bk with ℓ ≥ k, and Pj committed block Bo in view v′ such that Bo extends B′

k with o ≥ k.
By Lemma 3, either v ≤ v′ and Bo extends Bl, or v ≥ v′ and Bl extends Bo. Therefore, since Bl and Bo are
a part of the same chain and because each block in the chain has exactly one parent, Bk = B′

k.

Claim 7. If an honest party enters view v then at least one honest party must have already entered v − 1.

Proof. An honest party enters view v only after receiving either a block certificate for view v− 1 (i.e., Cv−1)
or a timeout certificate (i.e., T Cv−1). In the case of Cv−1, the voting rule mandates that parties must be in
view v − 1 when casting votes, implying that at least one honest party was already in view v − 1. In the
case of T Cv−1, at least one honest party must have experienced a view timeout while in view v − 1 before
any honest party can multicast a view v− 1 timeout message. Therefore, in either case, an honest party can
enter view v only if at least one honest party has already entered view v − 1.

Claim 8. If the first honest party enters view v at time t then no honest party multicasts timeout for view
v′ ≥ v before t+ 3∆.

Proof. Since t is defined as the time at which the first honest party enters view v, the timeout rule guarantees
that no honest party’s view timer can expire in view v before time t+ 3∆. At most f timeout messages for
view v may exist prior to this point, all from Byzantine parties. Because the timeout rule requires an honest
party to either (i) have its own view timer expire in v or (ii) observe at least f + 1 timeout messages for
v before it can multicast a timeout message for v, no honest party can send a timeout message for view v
before time t+ 3∆.

Furthermore, by Claim 7, no honest party can enter any view v′′ > v before time t. Applying the same
reasoning, it follows that no honest party can send a timeout message for any view v′′ > v before time
t+ 3∆.

Corollary 1 follows from Claim 8 and the requirement that timeout certificates be constructed from
n− f − c of timeout messages for the same view.

Corollary 1. If the first honest party enters view v at time t then T Cv′ cannot exist for v′ ≥ v before t+3∆.

Claim 9. Let tg denote GST. If the first honest party to enter view v, say Pi, does so at time t ≥ tg, then
every honest party enters view v or a higher view by time t+ 2∆.

8

Proof. If an honest party enters view v′ ≥ v via a certificate Cv′−1 before time t + ∆, then it must have
multicast Cv′−1. As a result, all honest parties will receive this certificate and enter view v′ or higher before
time t+ 2∆. Now suppose that no honest party enters view v′ via Cv′−1 before t+∆. In this case, Pi must
have entered view v using a timeout certificate T Cv−1. This implies that at least n− 2f − c honest parties
must have multicast view v− 1 timeout messages before time t, and thus all honest parties will receive these
messages by time t+∆.

Furthermore, since t is defined as the time at which the first honest party enters view v, by Corollary 1,
a valid T Cv′ for any v′ ≥ v cannot exist before time t + 3∆. Consequently, all honest parties must still be
in view v or lower when they receive the aforementioned timeout messages for view v − 1. By the timeout
rule, every honest party in view v− 1 or lower that has not yet multicast a view v− 1 timeout messages will
do so by time t+∆.

Moreover, every honest party that enters view v before this time must have done so via T Cv−1, and by
the timeout rule, must also multicast a timeout message for view v − 1 before t+∆. As a result, all honest
parties will have multicast view v − 1 timeout message by this time, enabling each of them to construct
T Cv−1 before t+ 2∆. Thus, every honest party will enter view v or higher before time t+ 2∆.

Lemma 4. Let tg denote GST. If the first honest party to enter view v, say Pi, does so at time t, then all
honest parties will enter view v or higher by time max(tg, t) + 3∆.

Proof. If t ≥ tg, then by Claim 9, all honest parties will enter view v or higher before time max(tg, t) + 2∆.
Now consider the case when t < tg. Let v

′′ be the highest view reached by any honest party at time tg, and
let Pj be a party in view v′′ at this moment. Note that v′′ ≥ v.

If any honest party enters a view higher than v′′, say v∗, during the interval [tg, tg +∆], then by Claim 9,
all honest parties will enter view v∗ > v or higher by time tg + 3∆ = max(tg, t) + 3∆.

Otherwise, assume no honest party enters a view higher than v′′ before tg + ∆. If some honest party
enters view v′′ via a block certificate Cv′′−1 before this time, then all honest parties will enter v′′ before
tg + 2∆ < max(tg, t) + 3∆.

In the remaining case, Pj (and any other party in v′′ at time tg) must have entered v′′ via a timeout
certificate T Cv′′−1 and thus would have sent a timeout message for view v′′ − 1 no later than the time of
entry. Since a valid T Cv′′−1 requires at least n− 2f − c honest parties to have sent timeout messages before
tg, all honest parties in views lower than v′′ will receive these messages by time tg +∆. By the timeout rule,
they will multicast their own timeout messages for view v′′ − 1 if they have not already done so.

As a result, all honest parties will multicast a timeout message for view v′′ − 1 before tg + ∆, enabling
them to construct T Cv′′−1 and enter view v′′ before tg + 2∆ < max(tg, t) + 3∆.

Therefore, in all cases, every honest party will enter view v or higher before time max(tg, t) + 3∆.

Lemma 5. All honest parties keep entering increasing views.

Proof. Suppose, for the sake of contradiction, that at least one honest party, say Pi, becomes stuck in view v,
and let v′ be the highest view reached by any honest party at any time. If v′ > v, then by Lemma 4, Pi must
eventually enter view v′ or higher, contradicting the assumption that it remains stuck in v. On the other
hand, if v′ = v, then no honest party ever enters a view higher than v. But since Lemma 4 guarantees that all
honest parties will eventually enter view v, this implies that all honest parties become stuck in v. However,
by the view advancement and timeout rules, every honest party will eventually multicast a timeout message
for view v, allowing them to construct T Cv and enter view v + 1. This again contradicts the assumption
that they remain stuck in v.

Claim 10. If the first honest party enters view v at time t after GST and the leader Lv is honest, then Lv

will propose a block by time t+∆, and all honest parties will receive this proposal by time t+ 2∆.

Proof. Let Pi be the first honest party to enter view v at time t. By the view advancement rule, Pi may
have entered v either via a block certificate Cv−1 or a timeout certificate T Cv−1. In the former case, Pi

multicasts Cv−1 to all parties; in the latter case, it unicasts T Cv−1 to the leader Lv. Thus, in either case,
the honest leader Lv will receive a valid certificate enabling it to enter view v and propose a block by time

9

t+∆, according to the proposal rule. Since Lv is honest, it multicasts the proposal, ensuring that all honest
parties receive it by time t+ 2∆.

Lemma 6. If the first honest party enters view v at time t after GST and the leader Lv is honest, then all
honest parties receive the block certificate Cv(Bk) for some block Bk proposed by Lv by time t+ 3∆.

Proof. By Claim 4, only one block can be certified in a given view. Thus, if Cv(Bk) exists, any party that
receives a view-v block certificate must receive Cv(Bk). Additionally, by Claim 9 and Claim 10, all honest
parties enter view v or higher and receive the proposal from Lv by t+2∆. Since t is the time when the first
honest party enters view v, no honest party will multicast a view v timeout message before t+3∆. Therefore,
if any honest party enters a view higher than v before t+2∆, then by Claim 7, some honest party must have
already entered v+1 via Cv(Bk). By the view advancement rule, this party would have multicast Cv(Bk), so
all honest parties receive this certificate by t + 3∆, completing the proof. Alternatively, if no honest party
receives Cv(Bk) before t+ 2∆, then all honest parties will enter v before t+ 2∆.

Since Lv is honest, it will generate either a normal or fallback proposal that extends the safe block
determined by PCv−1 at time t +∆. If Lv created a normal proposal, any equivocal optimistic proposal it
might have previously generated must have a different parent than the normal proposal, since honest leaders
propose a fixed block payload for a given view. Consequently, by Claim 4, the parent of such an equivocal
optimistic proposal cannot be certified, and thus, by the optimistic vote rule, no honest node can vote for it.

Furthermore, all honest parties will receive Lv’s proposal by time t+ 2∆, and at this time none of them
will have timeout viewi ≥ v. By the voting rules, they will therefore all vote for the proposed block, allowing
every honest party to construct Cv(Bk) by time t+ 3∆.

Lemma 7. If the first honest party to enter view v does so at time t after GST and Lv is honest, then all
honest parties commit block Bk proposed by Lv by time t+ 4∆.

Proof. By Lemma 6, all honest parties obtain Cv(Bk) for the block Bk proposed by Lv by time t+3∆. Con-
sequently, following the pre-commit rule, if each honest party multicasts ⟨commit, H(Bk), v⟩∗ upon receiving
this certificate, then all honest parties will commit Bk by time t+ 4∆.

Otherwise, suppose for contradiction that at least one honest party, say Pi, fails to send ⟨commit, H(Bk), v⟩∗
by t+ 3∆. However, by Claim 8, no honest party’s view timer can expire before this time, so Pi must have
timeout viewi < v upon receiving Cv(Bk).

Thus, by the pre-commit rules, upon receiving Cv(Bk), Pi must neither be in view v or lower nor have
previously multicast a commit message for any descendant of Bk. Let v

′ be the view Pi is in upon receiving
Cv(Bk). Since, by Corollary 1, no timeout certificate for v or higher can exist before t + 3∆, Pi must have
entered v′ via a block certificate Cv′−1(Bl).

By the direct pre-commit rule, it must have multicast ⟨commit, H(Bl), v
′ − 1⟩i upon receiving this cer-

tificate, implying Bl is not a descendant of Bk. However, because v′ > v + 1 and the only way to transition
between these views (before t + 3∆) is via block certificates, and since Cv(Bk) exists and, by Claim 4, no
conflicting certificate exists in view v, it follows that honest parties only vote for blocks in view v + 1 that
extend Bk. By induction, this implies Bl must be a descendant of Bk, contradicting the earlier conclusion.

Therefore, all honest parties must multicast ⟨commit, H(Bk), v⟩∗ before t + 3∆, and hence all honest
parties commit Bk before t+ 4∆.

Theorem 2 (Liveness). Each client request is eventually committed by all honest parties.

Proof. By Lemma 5, all honest parties continue to make progress by entering higher views. As the leader
rotates across views, honest leaders will eventually be elected. Then, by Lemma 7, any block proposed by
an honest leader after GST will be committed.

10

5 Related Work

Classical three-round BFT protocols. Classical partially synchronous consensus protocols [4, 5, 8, 16]
primarily optimize block commit latency, achieving finality in three communication rounds while tolerating
up to f < n/3 Byzantine faults [9]. This three-round bound has been proven to be optimal [3]. These
designs naturally extend to the more general n ≥ 3f + 2c + 1 setting, where f and c represent Byzantine
and crash faults, respectively. However, despite variations in implementation and performance, this entire
class of protocols [7] fundamentally remains constrained to three-round block commit latency.

Optimistic two-round BFT protocols. A complementary line of work [1,11,12,14,15,17] explores proto-
cols that can optimistically commit the proposed block in two rounds under favorable conditions—specifically,
when the actual number of faulty parties is below a certain threshold. These protocols typically operate in
systems of n = 3f +2p+1 where f is the tolerated Byzantine faults and p is a tunable optimism parameter.
They ensure three-round block commits, but achieve two-round block commits when at most p ≤ f faulty
parties are present, gaining speed at the cost of reduced resilience.

A recent work, Hydrangea [18] introduced a new resilience model capturing both Byzantine and crash
faults, operating in systems of n = 3f + 2c +m + 1, where m ≥ 0 is a tunable parameter. Hydrangea can
commit blocks in two rounds when the number of faulty parties (Byzantine or crash) is at most p = ⌊ c+m

2 ⌋,
while still guaranteeing three-round block commit even with up to f Byzantine and c crash faults. Compared
to prior optimistic two-round protocols, Hydrangea additionally tolerates crash faults without sacrificing
optimistic two-round block commitment.

Alpenglow [13] claims to tolerate up to < 20% Byzantine and 20% crash faults while committing op-
timistically; however, this guarantee does not hold under partial synchrony, as acknowledged in their own
analysis [13, Section 2.11, Example 44]. In practice, Alpenglow supports a fast two round commit with
< 20% Byzantine faults, or alternatively up to 40% crash faults with no Byzantine faults.

Recent two-round BFT protocols. Both Minimmit [6] and ChonkyBFT [10] operate in the n ≥ 5f + 1
setting and therefore tolerate only 20% Byzantine faults. These protocols eliminate the three-round fallback
path entirely and always attempt to commit in two rounds, requiring n − f votes (approximately 81% of
parties) to finalize a block. Minimmit further improves proposal latency by allowing the leader of view v+1
to propose as soon as the previous block in view v 2f + 1 votes, rather than waiting for 3f + 1 as in earlier
protocols. In geo-distributed deployments, collecting fewer messages can shorten proposal delays and reduce
end-to-end latency.

However, while these protocols achieve two-round commit, they rely on large quorum sizes. In practice,
a three-round fallback that requires fewer messages (e.g., 61% in the second round and 41% in the third)
can outperform a two-round path that requires 81%.

All of these protocols (except Moonshot) focus primarily on reducing block commit latency while still
incurring a 2δ proposal delay. Proposal delay directly translates to queuing delay for client transactions, and
therefore has a substantial impact on end-to-end latency. Moonshot improves on this by enabling δ-delay
proposals, but still requires three rounds to commit a block.

Hydrangea++ advances Hydrangea’s design by optimizing both sides of the latency equation. While
Hydrangea retains a minimum 2δ gap between honest proposals, Hydrangea++ reduces this to the theo-
retical minimum of δ by incorporating optimistic proposals, inspired by Moonshot’s approach. Crucially,
Hydrangea++ does so without sacrificing any correctness guarantees: it preserves Hydrangea’s two-round
optimistic and three-round block commit paths while significantly improving throughput and end-to-end
latency under optimistic network conditions.

References

[1] Ittai Abraham, Guy Gueta, Dahlia Malkhi, and Jean-Philippe Martin. Revisiting fast practical byzan-
tine fault tolerance: Thelma, velma, and zelma. arXiv preprint arXiv:1801.10022, 2018.

11

[2] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Maofan Yin. Sync hotstuff: Simple and
practical synchronous state machine replication. In IEEE S&P, pages 106–118. IEEE, 2020.

[3] Ittai Abraham, Kartik Nayak, Ling Ren, and Zhuolun Xiang. Good-case latency of byzantine broadcast:
A complete categorization. In Proceedings of the 2021 ACM Symposium on Principles of Distributed
Computing, pages 331–341, 2021.

[4] Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on bft consensus. arXiv preprint
arXiv:1807.04938, 2018.

[5] Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance. In OSDI, volume 99, pages
173–186, 1999.

[6] Brendan Kobayashi Chou, Andrew Lewis-Pye, and Patrick O’Grady. Minimmit: Fast finality with even
faster blocks. arXiv preprint arXiv:2508.10862, 2025.

[7] Allen Clement, Manos Kapritsos, Sangmin Lee, Yang Wang, Lorenzo Alvisi, Mike Dahlin, and Taylor
Riche. Upright cluster services. In Proceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles, pages 277–290, 2009.

[8] Isaac Doidge, Raghavendra Ramesh, Nibesh Shrestha, and Joshua Tobkin. Moonshot: Optimizing
block period and commit latency in chain-based rotating leader bft. In 2024 54th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), pages 470–482. IEEE, 2024.

[9] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial synchrony.
Journal of the ACM (JACM), 35(2):288–323, 1988.

[10] Bruno França, Denis Kolegov, Igor Konnov, and Grzegorz Prusak. Chonkybft: Consensus protocol of
zksync. arXiv preprint arXiv:2503.15380, 2025.

[11] Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and Marko Vukolić. The next 700 bft protocols. In
Proceedings of the 5th European conference on Computer systems, pages 363–376, 2010.

[12] Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas, Michael Reiter,
Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu. Sbft: A scalable and decentralized trust
infrastructure. In 2019 49th Annual IEEE/IFIP international conference on dependable systems and
networks (DSN), pages 568–580. IEEE, 2019.

[13] Quentin Kniep, Jakub Sliwinski, and Roger Wattenhofer. Solana alpenglow consensus. https://drive.
google.com/file/d/1Rlr3PdHsBmPahOInP6-Pl0bMzdayltdV.

[14] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund Wong. Zyzzyva. ACM
Transactions on Computer Systems, 27(4):1–39, 2009.

[15] J-P Martin and Lorenzo Alvisi. Fast byzantine consensus. IEEE Transactions on Dependable and Secure
Computing, 3(3):202–215, 2006.

[16] Victor Shoup. Sing a song of simplex. In 38th International Symposium on Distributed Computing
(DISC 2024), pages 37–1. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2024.

[17] Victor Shoup, Jakub Sliwinski, and Yann Vonlanthen. Kudzu: Fast and Simple High-Throughput BFT.
In 39th International Symposium on Distributed Computing (DISC 2025), volume 356, pages 42:1–42:19,
2025.

[18] Nibesh Shrestha, Aniket Kate, and Kartik Nayak. Hydrangea: Optimistic two-round partial synchrony
with improved fault resilience. Cryptology ePrint Archive, 2025.

12

https://drive.google.com/file/d/1Rlr3PdHsBmPahOInP6-Pl0bMzdayltdV
https://drive.google.com/file/d/1Rlr3PdHsBmPahOInP6-Pl0bMzdayltdV

	Introduction
	Preliminaries
	The Hydrangea++ Protocol
	Protocol Definitions

	Security Analysis
	Related Work

