
7. Estimating unknown quantities from a sample

At the start of the last chapter I highlighted the critical distinction between descriptive statistics
and inferential statistics. As discussed in Chapter 4, the role of descriptive statistics is to concisely
summarise what we do know. In contrast, the purpose of inferential statistics is to “learn what we
do not know from what we do”. Now that we have a foundation in probability theory we are in a
good position to think about the problem of statistical inference. What kinds of things would we
like to learn about? And how do we learn them? These are the questions that lie at the heart of
inferential statistics, and they are traditionally divided into two “big ideas”: estimation and hypothesis
testing. The goal in this chapter is to introduce the first of these big ideas, estimation theory, but
I’m going to witter on about sampling theory first because estimation theory doesn’t make sense until
you understand sampling. As a consequence, this chapter divides naturally into two parts Sections 7.1
through 7.3 are focused on sampling theory, and Sections 7.4 and 7.5 make use of sampling theory to
discuss how statisticians think about estimation.

7.1

Samples, populations and sampling

In the prelude to Part III I discussed the riddle of induction and highlighted the fact that all learning
requires you to make assumptions. Accepting that this is true, our first task to come up with some
fairly general assumptions about data that make sense. This is where sampling theory comes in.
If probability theory is the foundations upon which all statistical theory builds, sampling theory is
the frame around which you can build the rest of the house. Sampling theory plays a huge role in
specifying the assumptions upon which your statistical inferences rely. And in order to talk about
“making inferences” the way statisticians think about it we need to be a bit more explicit about what it
is that we’re drawing inferences from (the sample) and what it is that we’re drawing inferences about
(the population).

In almost every situation of interest what we have available to us as researchers is a sample of
data. We might have run experiment with some number of participants, a polling company might
have phoned some number of people to ask questions about voting intentions, and so on. In this way
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the data set available to us is finite and incomplete. We can’t possibly get every person in the world
to do our experiment, for example a polling company doesn’t have the time or the money to ring up
every voter in the country. In our earlier discussion of descriptive statistics (Chapter 4) this sample
was the only thing we were interested in. Our only goal was to find ways of describing, summarising
and graphing that sample. This is about to change.

7.1.1 Defining a population

A sample is a concrete thing. You can open up a data file and there’s the data from your sample.
A population, on the other hand, is a more abstract idea. It refers to the set of all possible people,
or all possible observations, that you want to draw conclusions about and is generally much bigger
than the sample. In an ideal world the researcher would begin the study with a clear idea of what the
population of interest is, since the process of designing a study and testing hypotheses with the data
does depend on the population about which you want to make statements.

Sometimes it’s easy to state the population of interest. For instance, in the “polling company”
example that opened the chapter the population consisted of all voters enrolled at the time of the
study, millions of people. The sample was a set of 1000 people who all belong to that population.
In most studies the situation is much less straightforward. In a typical psychological experiment
determining the population of interest is a bit more complicated. Suppose I run an experiment using
100 undergraduate students as my participants. My goal, as a cognitive scientist, is to try to learn
something about how the mind works. So, which of the following would count as “the population”:

• All of the undergraduate psychology students at the University of Adelaide?
• Undergraduate psychology students in general, anywhere in the world?
• Australians currently living?
• Australians of similar ages to my sample?
• Anyone currently alive?
• Any human being, past, present or future?
• Any biological organism with a su!cient degree of intelligence operating in a terrestrial environ-

ment?
• Any intelligent being?

Each of these defines a real group of mind-possessing entities, all of which might be of interest to
me as a cognitive scientist, and it’s not at all clear which one ought to be the true population of
interest. As another example, consider the Wellesley-Croker game that we discussed in the prelude.
The sample here is a specific sequence of 12 wins and 0 losses for Wellesley. What is the population?

• All outcomes until Wellesley and Croker arrived at their destination?
• All outcomes if Wellesley and Croker had played the game for the rest of their lives?
• All outcomes if Wellseley and Croker lived forever and played the game until the world ran out

of hills?
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Figure 7.1: Simple random sampling without replacement from a finite population
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• All outcomes if we created an infinite set of parallel universes and the Wellesely/Croker pair
made guesses about the same 12 hills in each universe?

Again, it’s not obvious what the population is.

7.1.2 Simple random samples

Irrespective of how I define the population, the critical point is that the sample is a subset of the
population and our goal is to use our knowledge of the sample to draw inferences about the properties
of the population. The relationship between the two depends on the procedure by which the sample
was selected. This procedure is referred to as a sampling method and it is important to understand
why it matters.

To keep things simple, let’s imagine that we have a bag containing 10 chips. Each chip has a
unique letter printed on it so we can distinguish between the 10 chips. The chips come in two colours,
black and white. This set of chips is the population of interest and it is depicted graphically on the
left of Figure 7.1. As you can see from looking at the picture there are 4 black chips and 6 white
chips, but of course in real life we wouldn’t know that unless we looked in the bag. Now imagine you
run the following “experiment”: you shake up the bag, close your eyes, and pull out 4 chips without
putting any of them back into the bag. First out comes the a chip (black), then the c chip (white),
then j (white) and then finally b (black). If you wanted you could then put all the chips back in the
bag and repeat the experiment, as depicted on the right hand side of Figure 7.1. Each time you get
di"erent results but the procedure is identical in each case. The fact that the same procedure can
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Figure 7.2: Biased sampling without replacement from a finite population
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

lead to di"erent results each time we refer to as a random process.1 However, because we shook the
bag before pulling any chips out, it seems reasonable to think that every chip has the same chance
of being selected. A procedure in which every member of the population has the same chance of
being selected is called a simple random sample. The fact that we did not put the chips back in the
bag after pulling them out means that you can’t observe the same thing twice, and in such cases the
observations are said to have been sampled without replacement.

To help make sure you understand the importance of the sampling procedure, consider an alter-
native way in which the experiment could have been run. Suppose that my 5-year old son had opened
the bag and decided to pull out four black chips without putting any of them back in the bag. This
biased sampling scheme is depicted in Figure 7.2. Now consider the evidential value of seeing 4 black
chips and 0 white chips. Clearly it depends on the sampling scheme, does it not? If you know that the
sampling scheme is biased to select only black chips then a sample that consists of only black chips
doesn’t tell you very much about the population! For this reason statisticians really like it when a data
set can be considered a simple random sample, because it makes the data analysis much easier.

A third procedure is worth mentioning. This time around we close our eyes, shake the bag, and
pull out a chip. This time, however, we record the observation and then put the chip back in the
bag. Again we close our eyes, shake the bag, and pull out a chip. We then repeat this procedure
until we have 4 chips. Data sets generated in this way are still simple random samples, but because
we put the chips back in the bag immediately after drawing them it is referred to as a sample with
replacement. The di"erence between this situation and the first one is that it is possible to observe
the same population member multiple times, as illustrated in Figure 7.3.

In my experience, most psychology experiments tend to be sampling without replacement, because
1The proper mathematical definition of randomness is extraordinarily technical, and way beyond the scope of this

book. We’ll be non-technical here and say that a process has an element of randomness to it whenever it is possible to
repeat the process and get di!erent answers each time.
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Figure 7.3: Simple random sampling with replacement from a finite population
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

the same person is not allowed to participate in the experiment twice. However, most statistical theory
is based on the assumption that the data arise from a simple random sample with replacement. In
real life this very rarely matters. If the population of interest is large (e.g., has more than 10 entities!)
the di"erence between sampling with- and without- replacement is too small to be concerned with.
The di"erence between simple random samples and biased samples, on the other hand, is not such an
easy thing to dismiss.

7.1.3 Most samples are not simple random samples

As you can see from looking at the list of possible populations that I showed above, it is almost
impossible to obtain a simple random sample from most populations of interest. When I run exper-
iments I’d consider it a minor miracle if my participants turned out to be a random sampling of the
undergraduate psychology students at Adelaide university, even though this is by far the narrowest
population that I might want to generalise to. A thorough discussion of other types of sampling
schemes is beyond the scope of this book, but to give you a sense of what’s out there I’ll list a few of
the more important ones.

• Stratified sampling. Suppose your population is (or can be) divided into several di"erent sub-
populations, or strata. Perhaps you’re running a study at several di"erent sites, for example.
Instead of trying to sample randomly from the population as a whole, you instead try to collect a
separate random sample from each of the strata. Stratified sampling is sometimes easier to do
than simple random sampling, especially when the population is already divided into the distinct
strata. It can also be more e!cient than simple random sampling, especially when some of the
sub-populations are rare. For instance, when studying schizophrenia it would be much better to
divide the population into two2 strata (schizophrenic and not-schizophrenic) and then sample

2Nothing in life is that simple. There’s not an obvious division of people into binary categories like “schizophrenic”
and “not schizophrenic”. But this isn’t a clinical psychology text so please forgive me a few simplifications here and there.
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an equal number of people from each group. If you selected people randomly you would get so
few schizophrenic people in the sample that your study would be useless. This specific kind of
of stratified sampling is referred to as oversampling because it makes a deliberate attempt to
over-represent rare groups.

• Snowball sampling is a technique that is especially useful when sampling from a “hidden” or
hard to access population and is especially common in social sciences. For instance, suppose
the researchers want to conduct an opinion poll among transgender people. The research team
might only have contact details for a few trans folks, so the survey starts by asking them to
participate (stage 1). At the end of the survey the participants are asked to provide contact
details for other people who might want to participate. In stage 2 those new contacts are
surveyed. The process continues until the researchers have su!cient data. The big advantage
to snowball sampling is that it gets you data in situations that might otherwise be impossible to
get any. On the statistical side, the main disadvantage is that the sample is highly non-random,
and non-random in ways that are di!cult to address. On the real life side, the disadvantage is
that the procedure can be unethical if not handled well, because hidden populations are often
hidden for a reason. I chose transgender people as an example here to highlight this issue. If
you weren’t careful you might end up outing people who don’t want to be outed (very, very
bad form), and even if you don’t make that mistake it can still be intrusive to use people’s
social networks to study them. It’s certainly very hard to get people’s informed consent before
contacting them, yet in many cases the simple act of contacting them and saying “hey we want
to study you” can be hurtful. Social networks are complex things, and just because you can use
them to get data doesn’t always mean you should.

• Convenience sampling is more or less what it sounds like. The samples are chosen in a way that
is convenient to the researcher, and not selected at random from the population of interest.
Snowball sampling is one type of convenience sampling, but there are many others. A com-
mon example in psychology are studies that rely on undergraduate psychology students. These
samples are generally non-random in two respects. First, reliance on undergraduate psychology
students automatically means that your data are restricted to a single sub-population. Second,
the students usually get to pick which studies they participate in, so the sample is a self selected
subset of psychology students and not a randomly selected subset. In real life most studies are
convenience samples of one form or another. This is sometimes a severe limitation, but not
always.

7.1.4 How much does it matter if you don’t have a simple random sample?

Okay, so real world data collection tends not to involve nice simple random samples. Does that
matter? A little thought should make it clear to you that it can matter if your data are not a simple
random sample. Just think about the di"erence between Figures 7.1 and 7.2. However, it’s not
quite as bad as it sounds. Some types of biased samples are entirely unproblematic. For instance,
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when using a stratified sampling technique you actually know what the bias is because you created
it deliberately, often to increase the e"ectiveness of your study, and there are statistical techniques
that you can use to adjust for the biases you’ve introduced (not covered in this book!). So in those
situations it’s not a problem.

More generally though, it’s important to remember that random sampling is a means to an end,
and not the end in itself. Let’s assume you’ve relied on a convenience sample, and as such you can
assume it’s biased. A bias in your sampling method is only a problem if it causes you to draw the
wrong conclusions. When viewed from that perspective, I’d argue that we don’t need the sample to be
randomly generated in every respect, we only need it to be random with respect to the psychologically-
relevant phenomenon of interest. Suppose I’m doing a study looking at working memory capacity. In
study 1, I actually have the ability to sample randomly from all human beings currently alive, with one
exception: I can only sample people born on a Monday. In study 2, I am able to sample randomly
from the Australian population. I want to generalise my results to the population of all living humans.
Which study is better? The answer, obviously, is study 1. Why? Because we have no reason to
think that being “born on a Monday” has any interesting relationship to working memory capacity. In
contrast, I can think of several reasons why “being Australian” might matter. Australia is a wealthy,
industrialised country with a very well-developed education system. People growing up in that system
will have had life experiences much more similar to the experiences of the people who designed the
tests for working memory capacity. This shared experience might easily translate into similar beliefs
about how to “take a test”, a shared assumption about how psychological experimentation works, and
so on. These things might actually matter. For instance, “test taking” style might have taught the
Australian participants how to direct their attention exclusively on fairly abstract test materials much
more than people who haven’t grown up in a similar environment. This could therefore lead to a
misleading picture of what working memory capacity is.

There are two points hidden in this discussion. First, when designing your own studies, it’s impor-
tant to think about what population you care about and try hard to sample in a way that is appropriate
to that population. In practice, you’re usually forced to put up with a “sample of convenience” (e.g.,
psychology lecturers sample psychology students because that’s the least expensive way to collect
data, and our co"ers aren’t exactly overflowing with gold), but if so you should at least spend some
time thinking about what the dangers of this practice might be. Second, if you’re going to criticise
someone else’s study because they’ve used a sample of convenience rather than laboriously sampling
randomly from the entire human population, at least have the courtesy to o"er a specific theory as
to how this might have distorted the results.

7.1.5 Population parameters and sample statistics

Okay. Setting aside the thorny methodological issues associated with obtaining a random sample,
let’s consider a slightly di"erent issue. Up to this point we have been talking about populations the
way a scientist might. To a psychologist a population might be a group of people. To an ecologist
a population might be a group of bears. In most cases the populations that scientists care about are
concrete things that actually exist in the real world. Statisticians, however, are a funny lot. On the one

- 127 -



60 80 100 120 1400
.0

0
0

0
.0

1
0

0
.0

2
0

IQ Score

P
ro

b
a

b
ili

ty
 D

e
n

si
ty

IQ Score

F
re

q
u

e
n

cy

60 80 100 120 140

0
5

1
0

1
5

IQ Score

F
re

q
u

e
n

cy

60 80 100 120 140

0
4

0
0

8
0

0
1

2
0

0

(a) (b) (c)

Figure 7.4: The population distribution of IQ scores (panel a) and two samples drawn randomly
from it. In panel b we have a sample of 100 observations, and panel c we have a sample of 10,000
observations.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hand, they are interested in real world data and real science in the same way that scientists are. On
the other hand, they also operate in the realm of pure abstraction in the way that mathematicians do.
As a consequence, statistical theory tends to be a bit abstract in how a population is defined. In much
the same way that psychological researchers operationalise our abstract theoretical ideas in terms of
concrete measurements (Section 2.1), statisticians operationalise the concept of a “population” in
terms of mathematical objects that they know how to work with. You’ve already come across these
objects in Chapter 6. They’re called probability distributions.

The idea is quite simple. Let’s say we’re talking about IQ scores. To a psychologist the population
of interest is a group of actual humans who have IQ scores. A statistician “simplifies” this by oper-
ationally defining the population as the probability distribution depicted in Figure 7.4a. IQ tests are
designed so that the average IQ is 100, the standard deviation of IQ scores is 15, and the distribution
of IQ scores is normal. These values are referred to as the population parameters because they are
characteristics of the entire population. That is, we say that the population mean µ is 100 and the
population standard deviation ω is 15.

Now suppose I run an experiment. I select 100 people at random and administer an IQ test, giving
me a simple random sample from the population. My sample would consist of a collection of numbers
like this:

106 101 98 80 74 ... 107 72 100

Each of these IQ scores is sampled from a normal distribution with mean 100 and standard deviation
15. So if I plot a histogram of the sample I get something like the one shown in Figure 7.4b. As
you can see, the histogram is roughly the right shape but it’s a very crude approximation to the true
population distribution shown in Figure 7.4a. When I calculate the mean of my sample, I get a number
that is fairly close to the population mean 100 but not identical. In this case, it turns out that the
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people in my sample have a mean IQ of 98.5, and the standard deviation of their IQ scores is 15.9.
These sample statistics are properties of my data set, and although they are fairly similar to the true
population values they are not the same. In general, sample statistics are the things you can calculate
from your data set and the population parameters are the things you want to learn about. Later on in
this chapter I’ll talk about how you can estimate population parameters using your sample statistics
(Section 7.4) and how to work out how confident you are in your estimates (Section 7.5) but before
we get to that there’s a few more ideas in sampling theory that you need to know about.

7.2

The law of large numbers

In the previous section I showed you the results of one fictitious IQ experiment with a sample size
of N “ 100. The results were somewhat encouraging as the true population mean is 100 and the
sample mean of 98.5 is a pretty reasonable approximation to it. In many scientific studies that level
of precision is perfectly acceptable, but in other situations you need to be a lot more precise. If we
want our sample statistics to be much closer to the population parameters, what can we do about it?

The obvious answer is to collect more data. Suppose that we ran a much larger experiment,
this time measuring the IQs of 10,000 people. We can simulate the results of this experiment using
JASP. The IQsim.jasp file is a JASP data file. In this file I have generated 10,000 random numbers
sampled from a normal distribution for a population with mean = 100 and sd = 15. By the way, I
did this entirely within JASP computing a new variable using the R code rnorm(10000, 100, 15). A
histogram and density plot shows that this larger sample is a much better approximation to the true
population distribution than the smaller one. This is reflected in the sample statistics. The mean IQ
for the larger sample turns out to be 100.107 and the standard deviation is 14.995. These values are
now very close to the true population. See Figure 7.5

I feel a bit silly saying this, but the thing I want you to take away from this is that large samples
generally give you better information. I feel silly saying it because it’s so bloody obvious that it
shouldn’t need to be said. In fact, it’s such an obvious point that when Jacob Bernoulli, one of the
founders of probability theory, formalised this idea back in 1713 he was kind of a jerk about it. Here’s
how he described the fact that we all share this intuition:

For even the most stupid of men, by some instinct of nature, by himself and without any
instruction (which is a remarkable thing), is convinced that the more observations have
been made, the less danger there is of wandering from one’s goal (see Stigler 1986, p65)

Okay, so the passage comes across as a bit condescending (not to mention sexist), but his main point
is correct. It really does feel obvious that more data will give you better answers. The question is, why
is this so? Not surprisingly, this intuition that we all share turns out to be correct, and statisticians
refer to it as the law of large numbers. The law of large numbers is a mathematical law that applies
to many di"erent sample statistics but the simplest way to think about it is as a law about averages.
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Figure 7.5: A random sample drawn from a normal distribution using JASP
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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The sample mean is the most obvious example of a statistic that relies on averaging (because that’s
what the mean is... an average), so let’s look at that. When applied to the sample mean what the
law of large numbers states is that as the sample gets larger, the sample mean tends to get closer
to the true population mean. Or, to say it a little bit more precisely, as the sample size “approaches”
infinity (written as N Ñ 8), the sample mean approaches the population mean (X̄ Ñ µ).3

I don’t intend to subject you to a proof that the law of large numbers is true, but it’s one of the
most important tools for statistical theory. The law of large numbers is the thing we can use to justify
our belief that collecting more and more data will eventually lead us to the truth. For any particular
data set the sample statistics that we calculate from it will be wrong, but the law of large numbers
tells us that if we keep collecting more data those sample statistics will tend to get closer and closer
to the true population parameters.

7.3

Sampling distributions and the central limit theorem

The law of large numbers is a very powerful tool but it’s not going to be good enough to answer all
our questions. Among other things, all it gives us is a “long run guarantee”. In the long run, if we were
somehow able to collect an infinite amount of data, then the law of large numbers guarantees that
our sample statistics will be correct. But as John Maynard Keynes famously argued in economics, a
long run guarantee is of little use in real life.

[The] long run is a misleading guide to current a!airs. In the long run we are all dead.
Economists set themselves too easy, too useless a task, if in tempestuous seasons they
can only tell us, that when the storm is long past, the ocean is flat again. (Keynes 1923,
p. 80)

As in economics, so too in psychology and statistics. It is not enough to know that we will eventually
arrive at the right answer when calculating the sample mean. Knowing that an infinitely large data
set will tell me the exact value of the population mean is cold comfort when my actual data set has
a sample size of N “ 100. In real life, then, we must know something about the behaviour of the
sample mean when it is calculated from a more modest data set!

7.3.1 Sampling distribution of the mean

With this in mind, let’s abandon the idea that our studies will have sample sizes of 10,000 and
3Technically, the law of large numbers pertains to any sample statistic that can be described as an average of

independent quantities. That’s certainly true for the sample mean. However, it’s also possible to write many other
sample statistics as averages of one form or another. The variance of a sample, for instance, can be rewritten as a kind
of average and so is subject to the law of large numbers. The minimum value of a sample, however, cannot be written
as an average of anything and is therefore not governed by the law of large numbers.
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Table 7.1: Ten replications of the IQ experiment, each with a sample size of N “ 5.

Person 1 Person 2 Person 3 Person 4 Person 5 Sample Mean
Replication 1 124 74 87 86 109 96.0
Replication 2 91 125 104 106 109 107.0
Replication 3 111 122 91 98 86 101.6
Replication 4 98 96 119 99 107 103.8
Replication 5 105 113 103 103 98 104.4
Replication 6 81 89 93 85 114 92.4
Replication 7 100 93 108 98 133 106.4
Replication 8 107 100 105 117 85 102.8
Replication 9 86 119 108 73 116 100.4
Replication 10 95 126 112 120 76 105.8

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

consider instead a very modest experiment indeed. This time around we’ll sample N “ 5 people and
measure their IQ scores. As before, I can simulate this experiment in JASP by modifying the rnorm
function that was used to generate the IQsim data column. If you double-click on the fx label beside
IQsim, JASP will open up the ‘Computed Column’ dialog, which contains the R code rnorm(10000,
100, 15). Since I only need 5 participant IDs this time, I simply need to change 10000 to 5 and then
click ‘Compute column’ (see Figure 7.6). These are the five numbers that JASP generated for me
(yours will be di"erent!). I rounded to the nearest whole number for convenience:

124 74 87 86 109

The mean IQ in this sample turns out to be exactly 96. Not surprisingly, this is much less accurate
than the previous experiment. Now imagine that I decided to replicate the experiment. That is, I
repeat the procedure as closely as possible and I randomly sample 5 new people and measure their IQ.
Again, JASP allows me to simulate the results of this procedure, and generates these five numbers:

91 125 104 106 109

This time around, the mean IQ in my sample is 107. If I repeat the experiment 10 times I obtain
the results shown in Table 7.1, and as you can see the sample mean varies from one replication to the
next.

Now suppose that I decided to keep going in this fashion, replicating this “five IQ scores” experiment
over and over again. Every time I replicate the experiment I write down the sample mean. Over time,
I’d be amassing a new data set, in which every experiment generates a single data point. The first 10
observations from my data set are the sample means listed in Table 7.1, so my data set starts out
like this:

96.0 107.0 101.6 103.8 104.4 ...
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Figure 7.6: Using JASP to draw a random sample of 5 from a normal distribution with µ “ 100 and
ω “ 15.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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What if I continued like this for 10,000 replications, and then drew a histogram. Well that’s exactly
what I did, and you can see the results in Figure 7.7. As this picture illustrates, the average of 5 IQ
scores is usually between 90 and 110. But more importantly, what it highlights is that if we replicate
an experiment over and over again, what we end up with is a distribution of sample means! This
distribution has a special name in statistics, it’s called the sampling distribution of the mean.

Sampling distributions are another important theoretical idea in statistics, and they’re crucial for
understanding the behaviour of small samples. For instance, when I ran the very first “five IQ scores”
experiment, the sample mean turned out to be 96. What the sampling distribution in Figure 7.7 tells
us, though, is that the “five IQ scores” experiment is not very accurate. If I repeat the experiment,
the sampling distribution tells me that I can expect to see a sample mean anywhere between 80 and
120.

Figure 7.7: The sampling distribution of the mean for the “five IQ scores experiment”. If you sample
5 people at random and calculate their average IQ you’ll almost certainly get a number between 80
and 120, even though there are quite a lot of individuals who have IQs above 120 or below 80. For
comparison, the black line plots the population distribution of IQ scores.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.3.2 Sampling distributions exist for any sample statistic!

One thing to keep in mind when thinking about sampling distributions is that any sample statistic
you might care to calculate has a sampling distribution. For example, suppose that each time I
replicated the “five IQ scores” experiment I wrote down the largest IQ score in the experiment. This
would give me a data set that started out like this:

124 125 122 119 113 ...
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Figure 7.8: The sampling distribution of the maximum for the “five IQ scores experiment”. If you
sample 5 people at random and select the one with the highest IQ score you’ll probably see someone
with an IQ between 100 and 140.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Doing this over and over again would give me a very di"erent sampling distribution, namely the
sampling distribution of the maximum. The sampling distribution of the maximum of 5 IQ scores is
shown in Figure 7.8. Not surprisingly, if you pick 5 people at random and then find the person with
the highest IQ score, they’re going to have an above average IQ. Most of the time you’ll end up with
someone whose IQ is measured in the 100 to 140 range.

7.3.3 The central limit theorem

At this point I hope you have a pretty good sense of what sampling distributions are, and in
particular what the sampling distribution of the mean is. In this section I want to talk about how
the sampling distribution of the mean changes as a function of sample size. Intuitively, you already
know part of the answer. If you only have a few observations, the sample mean is likely to be quite
inaccurate. If you replicate a small experiment and recalculate the mean you’ll get a very di"erent
answer. In other words, the sampling distribution is quite wide. If you replicate a large experiment and
recalculate the sample mean you’ll probably get the same answer you got last time, so the sampling
distribution will be very narrow. You can see this visually in Figure 7.9, showing that the bigger the
sample size, the narrower the sampling distribution gets. We can quantify this e"ect by calculating
the standard deviation of the sampling distribution, which is referred to as the standard error. The
standard error of a statistic is often denoted SE, and since we’re usually interested in the standard
error of the sample mean, we often use the acronym SEM. As you can see just by looking at the
picture, as the sample size N increases, the SEM decreases.
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Figure 7.9: An illustration of the how sampling distribution of the mean depends on sample size. In
each panel I generated 10,000 samples of IQ data and calculated the mean IQ observed within each
of these data sets. The histograms in these plots show the distribution of these means (i.e., the
sampling distribution of the mean). Each individual IQ score was drawn from a normal distribution
with mean 100 and standard deviation 15, which is shown as the solid black line. In panel a, each data
set contained only a single observation, so the mean of each sample is just one person’s IQ score. As a
consequence, the sampling distribution of the mean is of course identical to the population distribution
of IQ scores. However, when we raise the sample size to 2 the mean of any one sample tends to be
closer to the population mean than a one person’s IQ score, and so the histogram (i.e., the sampling
distribution) is a bit narrower than the population distribution. By the time we raise the sample size
to 10 (panel c), we can see that the distribution of sample means tend to be fairly tightly clustered
around the true population mean.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Okay, so that’s one part of the story. However, there’s something I’ve been glossing over so far. All
my examples up to this point have been based on the “IQ scores” experiments, and because IQ scores
are roughly normally distributed I’ve assumed that the population distribution is normal. What if it
isn’t normal? What happens to the sampling distribution of the mean? The remarkable thing is this,
no matter what shape your population distribution is, as N increases the sampling distribution of the
mean starts to look more like a normal distribution. To give you a sense of this I ran some simulations.
To do this, I started with the “ramped” distribution shown in the histogram in Figure 7.10. As you
can see by comparing the triangular shaped histogram to the bell curve plotted by the black line,
the population distribution doesn’t look very much like a normal distribution at all. Next, I simulated
the results of a large number of experiments. In each experiment I took N “ 2 samples from this
distribution, and then calculated the sample mean. Figure 7.10b plots the histogram of these sample
means (i.e., the sampling distribution of the mean for N “ 2). This time, the histogram produces a
X-shaped distribution. It’s still not normal, but it’s a lot closer to the black line than the population
distribution in Figure 7.10a. When I increase the sample size to N “ 4, the sampling distribution of
the mean is very close to normal (Figure 7.10c), and by the time we reach a sample size of N “ 8 it’s
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almost perfectly normal. In other words, as long as your sample size isn’t tiny, the sampling distribution
of the mean will be approximately normal no matter what your population distribution looks like!

On the basis of these figures, it seems like we have evidence for all of the following claims about
the sampling distribution of the mean.

• The mean of the sampling distribution is the same as the mean of the population
• The standard deviation of the sampling distribution (i.e., the standard error) gets smaller as the

sample size increases
• The shape of the sampling distribution becomes normal as the sample size increases

As it happens, not only are all of these statements true, there is a very famous theorem in statistics
that proves all three of them, known as the central limit theorem. Among other things, the central
limit theorem tells us that if the population distribution has mean µ and standard deviation ω, then
the sampling distribution of the mean also has mean µ and the standard error of the mean is

SEM “ ω?
N

Because we divide the population standard deviation ω by the square root of the sample size N,
the SEM gets smaller as the sample size increases. It also tells us that the shape of the sampling
distribution becomes normal.4

This result is useful for all sorts of things. It tells us why large experiments are more reliable than
small ones, and because it gives us an explicit formula for the standard error it tells us how much
more reliable a large experiment is. It tells us why the normal distribution is, well, normal. In real
experiments, many of the things that we want to measure are actually averages of lots of di"erent
quantities (e.g., arguably, “general” intelligence as measured by IQ is an average of a large number of
“specific” skills and abilities), and when that happens, the averaged quantity should follow a normal
distribution. Because of this mathematical law, the normal distribution pops up over and over again
in real data.

7.4

Estimating population parameters

In all the IQ examples in the previous sections we actually knew the population parameters ahead of
time. As every undergraduate gets taught in their very first lecture on the measurement of intelligence,

4As usual, I’m being a bit sloppy here. The central limit theorem is a bit more general than this section implies. Like
most introductory stats texts I’ve discussed one situation where the central limit theorem holds: when you’re taking an
average across lots of independent events drawn from the same distribution. However, the central limit theorem is much
broader than this. There’s a whole class of things called “U-statistics” for instance, all of which satisfy the central limit
theorem and therefore become normally distributed for large sample sizes. The mean is one such statistic, but it’s not
the only one.
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Figure 7.10: A demonstration of the central limit theorem. In panel a, we have a non-normal population
distribution, and panels b-d show the sampling distribution of the mean for samples of size 2,4 and 8
for data drawn from the distribution in panel a. As you can see, even though the original population
distribution is non-normal the sampling distribution of the mean becomes pretty close to normal by
the time you have a sample of even 4 observations.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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IQ scores are defined to have mean 100 and standard deviation 15. However, this is a bit of a lie.
How do we know that IQ scores have a true population mean of 100? Well, we know this because
the people who designed the tests have administered them to very large samples, and have then
“rigged” the scoring rules so that their sample has mean 100. That’s not a bad thing of course, it’s
an important part of designing a psychological measurement. However, it’s important to keep in mind
that this theoretical mean of 100 only attaches to the population that the test designers used to
design the tests. Good test designers will actually go to some lengths to provide “test norms” that
can apply to lots of di"erent populations (e.g., di"erent age groups, nationalities etc).

This is very handy, but of course almost every research project of interest involves looking at a
di"erent population of people to those used in the test norms. For instance, suppose you wanted to
measure the e"ect of low level lead poisoning on cognitive functioning in Port Pirie, a South Australian
industrial town with a lead smelter. Perhaps you decide that you want to compare IQ scores among
people in Port Pirie to a comparable sample in Whyalla, a South Australian industrial town with a
steel refinery.5 Regardless of which town you’re thinking about, it doesn’t make a lot of sense simply
to assume that the true population mean IQ is 100. No-one has, to my knowledge, produced sensible
norming data that can automatically be applied to South Australian industrial towns. We’re going to
have to estimate the population parameters from a sample of data. So how do we do this?

7.4.1 Estimating the population mean

Suppose we go to Port Pirie and 100 of the locals are kind enough to sit through an IQ test.
The average IQ score among these people turns out to be X̄ “ 98.5. So what is the true mean IQ
for the entire population of Port Pirie? Obviously, we don’t know the answer to that question. It
could be 97.2, but it could also be 103.5. Our sampling isn’t exhaustive so we cannot give a definitive
answer. Nevertheless, if I was forced at gunpoint to give a “best guess” I’d have to say 98.5. That’s
the essence of statistical estimation: giving a best guess.

In this example estimating the unknown poulation parameter is straightforward. I calculate the
sample mean and I use that as my estimate of the population mean. It’s pretty simple, and in
the next section I’ll explain the statistical justification for this intuitive answer. However, for the

5Please note that if you were actually interested in this question you would need to be a lot more careful than I’m
being here. You can’t just compare IQ scores in Whyalla to Port Pirie and assume that any di!erences are due to lead
poisoning. Even if it were true that the only di!erences between the two towns corresponded to the di!erent refineries
(and it isn’t, not by a long shot), you need to account for the fact that people already believe that lead pollution causes
cognitive deficits. If you recall back to Chapter 2, this means that there are di!erent demand e!ects for the Port Pirie
sample than for the Whyalla sample. In other words, you might end up with an illusory group di!erence in your data,
caused by the fact that people think that there is a real di!erence. I find it pretty implausible to think that the locals
wouldn’t be well aware of what you were trying to do if a bunch of researchers turned up in Port Pirie with lab coats and
IQ tests, and even less plausible to think that a lot of people would be pretty resentful of you for doing it. Those people
won’t be as co-operative in the tests. Other people in Port Pirie might be more motivated to do well because they don’t
want their home town to look bad. The motivational e!ects that would apply in Whyalla are likely to be weaker, because
people don’t have any concept of “iron ore poisoning” in the same way that they have a concept for “lead poisoning”.
Psychology is hard.
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moment what I want to do is make sure you recognise that the sample statistic and the estimate of
the population parameter are conceptually di"erent things. A sample statistic is a description of your
data, whereas the estimate is a guess about the population. With that in mind, statisticians often
di"erent notation to refer to them. For instance, if the true population mean is denoted µ, then
we would use µ̂ to refer to our estimate of the population mean. In contrast, the sample mean is
denoted X̄ or sometimes m. However, in simple random samples the estimate of the population mean
is identical to the sample mean. If I observe a sample mean of X̄ “ 98.5 then my estimate of the
population mean is also µ̂ “ 98.5. To help keep the notation clear, here’s a handy table:

Symbol What is it? Do we know what it is?

X̄ Sample mean Yes, calculated from the raw data
µ True population mean Almost never known for sure
µ̂ Estimate of the population mean Yes, identical to the sample mean in sim-

ple random samples

7.4.2 Estimating the population standard deviation

So far, estimation seems pretty simple, and you might be wondering why I forced you to read
through all that stu" about sampling theory. In the case of the mean our estimate of the population
parameter (i.e. µ̂) turned out to identical to the corresponding sample statistic (i.e. X̄). However,
that’s not always true. To see this, let’s have a think about how to construct an estimate of the
population standard deviation, which we’ll denote ω̂. What shall we use as our estimate in this case?
Your first thought might be that we could do the same thing we did when estimating the mean, and
just use the sample statistic as our estimate. That’s almost the right thing to do, but not quite.

Here’s why. Suppose I have a sample that contains a single observation. For this example, it helps
to consider a sample where you have no intuitions at all about what the true population values might
be, so let’s use something completely fictitious. Suppose the observation in question measures the
cromulence of my shoes. It turns out that my shoes have a cromulence of 20. So here’s my sample:

20

This is a perfectly legitimate sample, even if it does have a sample size of N “ 1. It has a sample
mean of 20 and because every observation in this sample is equal to the sample mean (obviously!)
it has a sample standard deviation of 0. As a description of the sample this seems quite right, the
sample contains a single observation and therefore there is no variation observed within the sample.
A sample standard deviation of s “ 0 is the right answer here. But as an estimate of the population
standard deviation it feels completely insane, right? Admittedly, you and I don’t know anything at all
about what “cromulence” is, but we know something about data. The only reason that we don’t see
any variability in the sample is that the sample is too small to display any variation! So, if you have a
sample size of N “ 1 it feels like the right answer is just to say “no idea at all”.

Notice that you don’t have the same intuition when it comes to the sample mean and the population
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mean. If forced to make a best guess about the population mean it doesn’t feel completely insane to
guess that the population mean is 20. Sure, you probably wouldn’t feel very confident in that guess
because you have only the one observation to work with, but it’s still the best guess you can make.

Let’s extend this example a little. Suppose I now make a second observation. My data set now
has N “ 2 observations of the cromulence of shoes, and the complete sample now looks like this:

20, 22

This time around, our sample is just large enough for us to be able to observe some variability: two
observations is the bare minimum number needed for any variability to be observed! For our new data
set, the sample mean is X̄ “ 21, and the sample standard deviation is s “ 1. What intuitions do
we have about the population? Again, as far as the population mean goes, the best guess we can
possibly make is the sample mean. If forced to guess we’d probably guess that the population mean
cromulence is 21. What about the standard deviation? This is a little more complicated. The sample
standard deviation is only based on two observations, and if you’re at all like me you probably have
the intuition that, with only two observations we haven’t given the population “enough of a chance”
to reveal its true variability to us. It’s not just that we suspect that the estimate is wrong, after all
with only two observations we expect it to be wrong to some degree. The worry is that the error is
systematic. Specifically, we suspect that the sample standard deviation is likely to be smaller than the
population standard deviation.

This intuition feels right, but it would be nice to demonstrate this somehow. There are in fact
mathematical proofs that confirm this intuition, but unless you have the right mathematical back-
ground they don’t help very much. Instead, what I’ll do is simulate the results of some experiments.
With that in mind, let’s return to our IQ studies. Suppose the true population mean IQ is 100 and
the standard deviation is 15. First I’ll conduct an experiment in which I measure N “ 2 IQ scores and
I’ll calculate the sample standard deviation. If I do this over and over again, and plot a histogram of
these sample standard deviations, what I have is the sampling distribution of the standard deviation.
I’ve plotted this distribution in Figure 7.11. Even though the true population standard deviation is 15
the average of the sample standard deviations is only 8.5. Notice that this is a very di"erent result
to what we found in Figure 7.9b when we plotted the sampling distribution of the mean, where the
population mean is 100 and the average of the sample means is also 100.

Now let’s extend the simulation. Instead of restricting ourselves to the situation where N “ 2, let’s
repeat the exercise for sample sizes from 1 to 10. If we plot the average sample mean and average
sample standard deviation as a function of sample size, you get the results shown in Figure 7.12. On
the left hand side (panel a) I’ve plotted the average sample mean and on the right hand side (panel b)
I’ve plotted the average standard deviation. The two plots are quite di"erent:on average, the average
sample mean is equal to the population mean. It is an unbiased estimator, which is essentially the
reason why your best estimate for the population mean is the sample mean.6 The plot on the right is

6I should note that I’m hiding something here. Unbiasedness is a desirable characteristic for an estimator, but there
are other things that matter besides bias. However, it’s beyond the scope of this book to discuss this in any detail. I just
want to draw your attention to the fact that there’s some hidden complexity here.
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Figure 7.11: The sampling distribution of the sample standard deviation for a “two IQ scores” ex-
periment. The true population standard deviation is 15 (dashed line), but as you can see from the
histogram the vast majority of experiments will produce a much smaller sample standard deviation than
this. On average, this experiment would produce a sample standard deviation of only 8.5, well below
the true value! In other words, the sample standard deviation is a biased estimate of the population
standard deviation.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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quite di"erent: on average, the sample standard deviation s is smaller than the population standard
deviation ω. It is a biased estimator. In other words, if we want to make a “best guess” ω̂ about the
value of the population standard deviation ω we should make sure our guess is a little bit larger than
the sample standard deviation s.

The fix to this systematic bias turns out to be very simple. Here’s how it works. Before tackling
the standard deviation let’s look at the variance. If you recall from Section 4.2, the sample variance
is defined to be the average of the squared deviations from the sample mean. That is:

s2 “ 1
N

Nÿ

i“1
pXi ´ X̄q2

The sample variance s2 is a biased estimator of the population variance ω2. But as it turns out, we
only need to make a tiny tweak to transform this into an unbiased estimator. All we have to do is
divide by N ´ 1 rather than by N. If we do that, we obtain the following formula:

ω̂2 “ 1

N ´ 1
Nÿ

i“1
pXi ´ X̄q2

This is an unbiased estimator of the population variance ω. Moreover, this finally answers the
question we raised in Section 4.2. Why did JASP give us slightly di"erent answers for variance? It’s
because JASP calculates ω̂2 not s2, that’s why. A similar story applies for the standard deviation.
If we divide by N ´ 1 rather than N our estimate of the population standard deviation becomes:

ω̂ “

gffe 1

N ´ 1
Nÿ

i“1
pXi ´ X̄q2

and when we use JASP’s built in standard deviation function, what it’s doing is calculating ω̂, not
s.a

aOkay, I’m hiding something else here. In a bizarre and counter-intuitive twist, since ω̂2 is an unbiased estimator
of ω2, you’d assume that taking the square root would be fine and ω̂ would be an unbiased estimator of ω. Right?
Weirdly, it’s not. There’s actually a subtle, tiny bias in ω̂. This is just bizarre: ω̂2 is an unbiased estimate of the
population variance ω2, but when you take the square root, it turns out that ω̂ is a biased estimator of the population
standard deviation ω. Weird, weird, weird, right? So, why is ω̂ biased? The technical answer is “because non-linear
transformations (e.g., the square root) don’t commute with expectation”, but that just sounds like gibberish to everyone
who hasn’t taken a course in mathematical statistics. Fortunately, it doesn’t matter for practical purposes. The bias
is small, and in real life everyone uses ω̂ and it works just fine. Sometimes mathematics is just annoying.

One final point. In practice, a lot of people tend to refer to ω̂ (i.e., the formula where we divide
by N ´ 1) as the sample standard deviation. Technically, this is incorrect. The sample standard
deviation should be equal to s (i.e., the formula where we divide by N). These aren’t the same
thing, either conceptually or numerically. One is a property of the sample, the other is an estimated
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Figure 7.12: An illustration of the fact that the sample mean is an unbiased estimator of the population
mean (panel a), but the sample standard deviation is a biased estimator of the population standard
deviation (panel b). For the figure I generated 10,000 simulated data sets with 1 observation each,
10,000 more with 2 observations, and so on up to a sample size of 10. Each data set consisted of fake
IQ data, that is the data were normally distributed with a true population mean of 100 and standard
deviation 15. On average, the sample means turn out to be 100, regardless of sample size (panel a).
However, the sample standard deviations turn out to be systematically too small (panel b), especially
for small sample sizes.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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characteristic of the population. However, in almost every real life application what we actually care
about is the estimate of the population parameter, and so people always report ω̂ rather than s. This
is the right number to report, of course. It’s just that people tend to get a little bit imprecise about
terminology when they write it up, because “sample standard deviation” is shorter than “estimated
population standard deviation”. It’s no big deal, and in practice I do the same thing everyone else
does. Nevertheless, I think it’s important to keep the two concepts separate. It’s never a good idea to
confuse “known properties of your sample” with “guesses about the population from which it came”.
The moment you start thinking that s and ω̂ are the same thing, you start doing exactly that.

To finish this section o", here’s another couple of tables to help keep things clear.

Symbol What is it? Do we know what it is?

s Sample standard deviation Yes, calculated from the raw data
ω Population standard deviation Almost never known for sure
ω̂ Estimate of the population Yes, but not the same as the

standard deviation sample standard deviation

Symbol What is it? Do we know what it is?

s2 Sample variance Yes, calculated from the raw data
ω2 Population variance Almost never known for sure
ω̂2 Estimate of the population Yes, but not the same as the

variance sample variance

7.5

Estimating a confidence interval

Statistics means never having to say you’re certain

– Unknown origin7

Up to this point in this chapter, I’ve outlined the basics of sampling theory which statisticians rely on
to make guesses about population parameters on the basis of a sample of data. As this discussion
illustrates, one of the reasons we need all this sampling theory is that every data set leaves us with a
some of uncertainty, so our estimates are never going to be perfectly accurate. The thing that has
been missing from this discussion is an attempt to quantify the amount of uncertainty that attaches

7This quote appears on a great many t-shirts and websites, and even gets a mention in a few academic papers (e.g.,
http://www.amstat.org/publications/jse/v10n3/friedman.html), but I’ve never found the original source.
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to our estimate. It’s not enough to be able guess that, say, the mean IQ of undergraduate psychology
students is 115 (yes, I just made that number up). We also want to be able to say something that
expresses the degree of certainty that we have in our guess. For example, it would be nice to be able
to say that there is a 95% chance that the true mean lies between 109 and 121. The name for this
is a confidence interval for the mean.

Armed with an understanding of sampling distributions, constructing a confidence interval for
the mean is actually pretty easy. Here’s how it works. Suppose the true population mean is µ and
the standard deviation is ω. I’ve just finished running my study that has N participants, and the
mean IQ among those participants is X̄. We know from our discussion of the central limit theorem
(Section 7.3.3) that the sampling distribution of the mean is approximately normal. We also know
from our discussion of the normal distribution Section 6.5 that there is a 95% chance that a normally-
distributed quantity will fall within about two standard deviations of the true mean.

To be more precise, the more correct answer is that there is a 95% chance that a normally-
distributed quantity will fall within 1.96 standard deviations of the true mean. Next, recall that the
standard deviation of the sampling distribution is referred to as the standard error, and the standard
error of the mean is written as SEM. When we put all these pieces together, we learn that there is
a 95% probability that the sample mean X̄ that we have actually observed lies within 1.96 standard
errors of the population mean.

Mathematically, we write this as:

µ´ p1.96ˆ SEMq ! X̄ ! µ` p1.96ˆ SEMq

where the SEM is equal to ω{
?
N and we can be 95% confident that this is true. However, that’s

not answering the question that we’re actually interested in. The equation above tells us what we
should expect about the sample mean given that we know what the population parameters are.
What we want is to have this work the other way around. We want to know what we should believe
about the population parameters, given that we have observed a particular sample. However, it’s
not too di!cult to do this. Using a little high school algebra, a sneaky way to rewrite our equation
is like this:

X̄ ´ p1.96ˆ SEMq ! µ ! X̄ ` p1.96ˆ SEMq
What this is telling us is that the range of values has a 95% probability of containing the population
mean µ. We refer to this range as a 95% confidence interval, denoted CI95. In short, as long as
N is su!ciently large (large enough for us to believe that the sampling distribution of the mean is
normal), then we can write this as our formula for the 95% confidence interval:

CI95 “ X̄ ˘
ˆ
1.96ˆ ω?

N

˙

Of course, there’s nothing special about the number 1.96. It just happens to be the multiplier you
need to use if you want a 95% confidence interval. If I’d wanted a 70% confidence interval, I would
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have used 1.04 as the magic number rather than 1.96.

7.5.1 A slight mistake in the formula

As usual, I lied. The formula that I’ve given above for the 95% confidence interval is approximately
correct, but I glossed over an important detail in the discussion. Notice my formula requires you to use
the standard error of the mean, SEM, which in turn requires you to use the true population standard
deviation ω. Yet, in Section 7.4 I stressed the fact that we don’t actually know the true population
parameters. Because we don’t know the true value of ω we have to use an estimate of the population
standard deviation ω̂ instead. This is pretty straightforward to do, but this has the consequence that
we need to use the percentiles of the t-distribution rather than the normal distribution to calculate
our magic number, and the answer depends on the sample size. When N is very large, we get pretty
much the same value using the t-distribution or the normal distribution: 1.96. But when N is small
we get a much bigger number when we use the t distribution: 2.26.

There’s nothing too mysterious about what’s happening here. Bigger values mean that the confi-
dence interval is wider, indicating that we’re more uncertain about what the true value of µ actually
is. When we use the t distribution instead of the normal distribution we get bigger numbers, indicat-
ing that we have more uncertainty. And why do we have that extra uncertainty? Well, because our
estimate of the population standard deviation ω̂ might be wrong! If it’s wrong, it implies that we’re a
bit less sure about what our sampling distribution of the mean actually looks like, and this uncertainty
ends up getting reflected in a wider confidence interval.

7.5.2 Interpreting a confidence interval

The hardest thing about confidence intervals is understanding what they mean. Whenever people
first encounter confidence intervals, the first instinct is almost always to say that “there is a 95%
probability that the true mean lies inside the confidence interval”. It’s simple and it seems to capture
the common sense idea of what it means to say that I am “95% confident”. Unfortunately, it’s not
quite right. The intuitive definition relies very heavily on your own personal beliefs about the value
of the population mean. I say that I am 95% confident because those are my beliefs. In everyday
life that’s perfectly okay, but if you remember back to Section 6.2, you’ll notice that talking about
personal belief and confidence is a Bayesian idea. However, confidence intervals are not Bayesian tools.
Like everything else in this chapter, confidence intervals are frequentist tools, and if you are going to
use frequentist methods then it’s not appropriate to attach a Bayesian interpretation to them. If you
use frequentist methods, you must adopt frequentist interpretations!

Okay, so if that’s not the right answer, what is? Remember what we said about frequentist
probability. The only way we are allowed to make “probability statements” is to talk about a sequence
of events, and to count up the frequencies of di"erent kinds of events. From that perspective, the
interpretation of a 95% confidence interval must have something to do with replication. Specifically,
if we replicated the experiment over and over again and computed a 95% confidence interval for each
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replication, then 95% of those intervals would contain the true mean. More generally, 95% of all
confidence intervals constructed using this procedure should contain the true population mean. This
idea is illustrated in Figure 7.13, which shows 50 confidence intervals constructed for a “measure 10
IQ scores” experiment (top panel) and another 50 confidence intervals for a “measure 25 IQ scores”
experiment (bottom panel). A bit fortuitously, across the 100 replications that I simulated, it turned
out that exactly 95 of them contained the true mean.

The critical di"erence here is that the Bayesian claim makes a probability statement about the
population mean (i.e., it refers to our uncertainty about the population mean), which is not allowed
under the frequentist interpretation of probability because you can’t “replicate” a population! In
the frequentist claim, the population mean is fixed and no probabilistic claims can be made about it.
Confidence intervals, however, are repeatable so we can replicate experiments. Therefore a frequentist
is allowed to talk about the probability that the confidence interval (a random variable) contains the
true mean, but is not allowed to talk about the probability that the true population mean (not a
repeatable event) falls within the confidence interval.

I know that this seems a little pedantic, but it does matter. It matters because the di"erence in
interpretation leads to a di"erence in the mathematics. There is a Bayesian alternative to confidence
intervals, known as credible intervals. In most situations credible intervals are quite similar to confi-
dence intervals, but in other cases they are drastically di"erent. As promised, though, I’ll talk more
about the Bayesian perspective in Chapter 14.

7.5.3 Calculating confidence intervals in JASP

As of this edition, JASP does not (yet) include a simple way to calculate confidence intervals for
the mean as part of the ‘Descriptives’ functionality. But the ‘Descriptives’ do have a check box for
the S.E. Mean, so you can use this to calculate the lower 95% confidence interval as:

Mean - (1.96 * S.E. Mean) , and the upper 95% confidence interval as:

Mean + (1.96 * S.E. Mean)

95% confidence intervals are the de facto standard in psychology. So, for example, if I load the
IQsim.jasp file, check mean and S.E mean under ‘Descriptives’, I can work out the confidence interval
associated with the simulated mean IQ:

Lower 95% CI = 100.107 - (1.96 * 0.150) = 99.813

Upper 95% CI = 100.107 + (1.96 * 0.150) = 100.401

So, in our simulated large sample data with N=10,000, the mean IQ score is 100.107 with a 95%
CI from 99.813 to 100.401. Hopefully that’s clear and fairly easy to interpret. So, although there
currently is not a straightforward way to get JASP to calculate the confidence interval as part of the
variable ‘Descriptives’ options, if we wanted to we could pretty easily work it out by hand.

Similarly, when it comes to plotting confidence intervals in JASP, this is also not (yet) available
as part of the ‘Descriptives’ options. However, when we get onto learning about specific statistical
tests, for example in Chapter 12, we will see that we can plot confidence intervals as part of the data
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Figure 7.13: 95% confidence intervals. The top (panel a) shows 50 simulated replications of an
experiment in which we measure the IQs of 10 people. The dot marks the location of the sample
mean and the line shows the 95% confidence interval. In total 47 of the 50 confidence intervals do
contain the true mean (i.e., 100), but the three intervals marked with asterisks do not. The lower
graph (panel b) shows a similar simulation, but this time we simulate replications of an experiment
that measures the IQs of 25 people.
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analysis. That’s pretty cool, so we’ll show you how to do that later on.

7.6

Summary

In this chapter I’ve covered two main topics. The first half of the chapter talks about sampling
theory, and the second half talks about how we can use sampling theory to construct estimates of the
population parameters. The section breakdown looks like this:

• Basic ideas about samples, sampling and populations (Section 7.1)
• Statistical theory of sampling: the law of large numbers (Section 7.2), sampling distributions

and the central limit theorem (Section 7.3).
• Estimating means and standard deviations (Section 7.4)
• Estimating a confidence interval (Section 7.5)

As always, there’s a lot of topics related to sampling and estimation that aren’t covered in this
chapter, but for an introductory psychology class this is fairly comprehensive I think. For most applied
researchers you won’t need much more theory than this. One big question that I haven’t touched
on in this chapter is what you do when you don’t have a simple random sample. There is a lot of
statistical theory you can draw on to handle this situation, but it’s well beyond the scope of this book.
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