
9. Categorical data analysis

Now that we’ve covered the basic theory behind hypothesis testing it’s time to start looking at specific
tests that are commonly used in psychology. So where should we start? Not every textbook agrees
on where to start, but I’m going to start with “ω2 tests” (this chapter, pronounced “chi-square”1) and
“t-tests” (Chapter 10). Both of these tools are very frequently used in scientific practice, and whilst
they’re not as powerful as “regression” (Chapter 11) and “analysis of variance” (Chapter 12) they’re
much easier to understand.

The term “categorical data” is just another name for “nominal scale data”. It’s nothing that we
haven’t already discussed, it’s just that in the context of data analysis people tend to use the term
“categorical data” rather than “nominal scale data”. I don’t know why. In any case, categorical data
analysis refers to a collection of tools that you can use when your data are nominal scale. However,
there are a lot of di!erent tools that can be used for categorical data analysis, and this chapter covers
only a few of the more common ones.

9.1

The ω2 (chi-square) goodness-of-fit test

The ω2 goodness-of-fit test is one of the oldest hypothesis tests around. It was invented by Karl
Pearson around the turn of the century (Pearson 1900), with some corrections made later by Sir
Ronald Fisher (Fisher 1922a). It tests whether an observed frequency distribution of a nominal variable
matches an expected frequency distribution. For example, suppose a group of patients has been
undergoing an experimental treatment and have had their health assessed to see whether their condition
has improved, stayed the same or worsened. A goodness-of-fit test could be used to determine whether
the numbers in each category - improved, no change, worsened - match the numbers that would be
expected given the standard treatment option, or di!er significantly from those numbers, lending
evidence to the claim that the experimental treatment is more e!ective than the standard treatment.
Let’s think about this some more, with some psychology.

1Also sometimes referred to as “chi-squared”
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9.1.1 The cards data

Over the years there have been many studies showing that humans find it di"cult to simulate ran-
domness. Try as we might to “act” random, we think in terms of patterns and structure and so, when
asked to “do something at random”, what people actually do is anything but random. As a conse-
quence, the study of human randomness (or non-randomness, as the case may be) opens up a lot of
deep psychological questions about how we think about the world. With this in mind, let’s consider
a very simple study. Suppose I asked people to imagine a shu#ed deck of cards, and mentally pick
one card from this imaginary deck “at random”. After they’ve chosen one card I ask them to mentally
select a second one. For both choices what we’re going to look at is the suit (hearts, clubs, spades
or diamonds) that people chose. After asking, say, N “ 200 people to do this, I’d like to look at the
data and figure out whether or not the cards that people pretended to select were really random. The
data are contained in the randomness.csv file in which, when you open it up in JASP, you will see
three variables. These are: an id variable that assigns a unique identifier to each participant, and the
two variables choice_1 and choice_2 that indicate the card suits that people chose.

For the moment, let’s just focus on the first choice that people made. We’ll use the Frequency
tables option under ‘Descriptives’ - ‘Descriptive Statistics’ to count the number of times that we
observed people choosing each suit. This is what we get:

clubs diamonds hearts spades
35 51 64 50

That little frequency table is quite helpful. Looking at it, there’s a bit of a hint that people might
be more likely to select hearts than clubs, but it’s not completely obvious just from looking at it
whether that’s really true, or if this is just due to chance. So we’ll probably have to do some kind of
statistical analysis to find out, which is what I’m going to talk about in the next section.

Excellent. From this point on, we’ll treat this table as the data that we’re looking to analyse.
However, since I’m going to have to talk about this data in mathematical terms, it might be a good
idea to be clear about what the notation is. In mathematical notation, we shorten the human-readable
word “observed” to the letter O, and we use subscripts to denote the position of the observation. So
the second observation in our table is written as O2 in maths. The relationship between the English
descriptions and the mathematical symbols are illustrated below:

label index, i math. symbol the value
clubs, → 1 O1 35

diamonds, ↑ 2 O2 51
hearts, ↓ 3 O3 64
spades, ↔ 4 O4 50

It’s also worth noting that mathematicians prefer to talk about general rather than specific things,
so you’ll also see the notation Oi , which refers to the number of observations that fall within the
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i-th category (where i could be 1, 2, 3 or 4). Finally, if we want to refer to the set of all observed
frequencies, statisticians group all observed values into a vector2, which I’ll refer to using boldface
type as O.

O “ pO1, O2, O3, O4q

Again, this is nothing new or interesting. It’s just notation. If I say that O “ p35, 51, 64, 50q all
I’m doing is describing the table of observed frequencies (i.e., observed), but I’m referring to it using
mathematical notation.

9.1.2 The null hypothesis and the alternative hypothesis

As the last section indicated, our research hypothesis is that “people don’t choose cards randomly”.
What we’re going to want to do now is translate this into some statistical hypotheses and then
construct a statistical test of those hypotheses. The test that I’m going to describe to you is Pearson’s
ω2 (chi-square) goodness-of-fit test, and as is so often the case we have to begin by carefully
constructing our null hypothesis. In this case, it’s pretty easy. First, let’s state the null hypothesis in
words:

H0: All four suits are chosen with equal probability

Now, because this is statistics, we have to be able to say the same thing in a mathematical way. To
do this, let’s use the notation Pj to refer to the true probability that the j-th suit is chosen. If the null
hypothesis is true, then each of the four suits has a 25% chance of being selected. In other words,
our null hypothesis claims that P1 “ .25, P2 “ .25, P3 “ .25 and finally that P4 “ .25. However,
in the same way that we can group our observed frequencies into a vector O that summarises the
entire data set, we can use P to refer to the probabilities that correspond to our null hypothesis. So
if I let the vector P “ pP1, P2, P3, P4q refer to the collection of probabilities that describe our null
hypothesis, then we have:

H0: P “ p.25, .25, .25, .25q
In this particular instance, our null hypothesis corresponds to a vector of probabilities P in which all of
the probabilities are equal to one another. But this doesn’t have to be the case. For instance, if the
experimental task was for people to imagine they were drawing from a deck that had twice as many
clubs as any other suit, then the null hypothesis would correspond to something like P “ p.4, .2, .2, .2q.
As long as the probabilities are all positive numbers, and they all sum to 1, then it’s a perfectly
legitimate choice for the null hypothesis. However, the most common use of the goodness-of-fit test
is to test a null hypothesis that all of the categories are equally likely, so we’ll stick to that for our
example.

2A vector is a sequence of data elements of the same basic type
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What about our alternative hypothesis, H1? All we’re really interested in is demonstrating that
the probabilities involved aren’t all identical (that is, people’s choices weren’t completely random). As
a consequence, the “human friendly” versions of our hypotheses look like this:

H0: All four suits are chosen with equal probability
H1: At least one of the suit-choice probabilities isn’t 0.25

and the “mathematician friendly” version is:

H0: P “ p.25, .25, .25, .25q
H1: P ‰ p.25, .25, .25, .25q

9.1.3 The “goodness-of-fit” test statistic

At this point, we have our observed frequencies O and a collection of probabilities P corresponding
to the null hypothesis that we want to test. What we now want to do is construct a test of the null
hypothesis. As always, if we want to test H0 against H1, we’re going to need a test statistic. The
basic trick that a goodness-of-fit test uses is to construct a test statistic that measures how “close”
the data are to the null hypothesis. If the data don’t resemble what you’d “expect” to see if the null
hypothesis were true, then it probably isn’t true. Okay, if the null hypothesis were true, what would
we expect to see? Or, to use the correct terminology, what are the expected frequencies. There are
N “ 200 observations, and (if the null is true) the probability of any one of them choosing a heart is
P3 “ .25, so I guess we’re expecting 200ˆ .25 “ 50 hearts, right? Or, more specifically, if we let Ei
refer to “the number of category i responses that we’re expecting if the null is true”, then

Ei “ N ˆ Pi
This is pretty easy to calculate.If there are 200 observations that can fall into four categories, and we
think that all four categories are equally likely, then on average we’d expect to see 50 observations in
each category, right?

Now, how do we translate this into a test statistic? Clearly, what we want to do is compare the
expected number of observations in each category (Ei) with the observed number of observations in
that category (Oi). And on the basis of this comparison we ought to be able to come up with a good
test statistic. To start with, let’s calculate the di!erence between what the null hypothesis expected us
to find and what we actually did find. That is, we calculate the “observed minus expected” di!erence
score, Oi ´ Ei . This is illustrated in the following table.

→ ↑ ↓ ↔
expected frequency Ei 50 50 50 50
observed frequency Oi 35 51 64 50

di!erence score Oi ´ Ei -15 1 14 0

So, based on our calculations, it’s clear that people chose more hearts and fewer clubs than the
null hypothesis predicted. However, a moment’s thought suggests that these raw di!erences aren’t
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quite what we’re looking for. Intuitively, it feels like it’s just as bad when the null hypothesis predicts
too few observations (which is what happened with hearts) as it is when it predicts too many (which
is what happened with clubs). So it’s a bit weird that we have a negative number for clubs and a
positive number for hearts. One easy way to fix this is to square everything3, so that we now calculate
the squared di!erences, pOi ´ Eiq2. As before, we can do this by hand:

→ ↑ ↓ ↔
expected frequency Ei 50 50 50 50
observed frequency Oi 35 51 64 50

di!erence score Oi ´ Ei -15 1 14 0
squared di!erence pOi ´ Eiq2 225 1 196 0

Now we’re making progress. What we’ve got now is a collection of numbers that are big whenever
the null hypothesis makes a bad prediction (clubs and hearts), but are small whenever it makes a good
one (diamonds and spades). Next, for some technical reasons that I’ll explain in a moment, let’s
also divide all these numbers by the expected frequency Ei , so we’re actually calculating the scaled
squared di!erence, pEi´Oi q2

Ei
. Since Ei “ 50 for all categories in our example, it’s not a very interesting

calculation, but let’s do it anyway:

→ ↑ ↓ ↔
expected frequency Ei 50 50 50 50
observed frequency Oi 35 51 64 50

di!erence score Oi ´ Ei -15 1 14 0
squared di!erence pOi ´ Eiq2 225 1 196 0

scaled sq. di!. pOi ´ Eiq2{Ei 4.50 0.02 3.92 0.00

In e!ect, what we’ve got here are four di!erent “error” scores, each one telling us how big a
“mistake” the null hypothesis made when we tried to use it to predict our observed frequencies. So, in
order to convert this into a useful test statistic, one thing we could do is just add these numbers up.
The result is called the goodness-of-fit statistic, conventionally referred to either as ω2 (chi-square)
or GOF. We can calculate it as 4.50` 0.02` 3.92` 0.00 “ 8.44.

If we let k refer to the total number of categories (i.e., k “ 4 for our cards data), then the ω2

statistic is given by:

ω2 “
kÿ

i“1

pOi ´ Eiq2
Ei

Intuitively, it’s clear that if ω2 is small, then the observed data Oi are very close to what the null
hypothesis predicted Ei , so we’re going to need a large ω2 statistic in order to reject the null.

3One could also take the absolute value, but there are a lot of reasons not to do this...mostly, it comes down to
calculus, which we’ll not discuss here.

- 185 -



As we’ve seen from our calculations, in our cards data set we’ve got a value of ω2 “ 8.44. So
now the question becomes is this a big enough value to reject the null?

9.1.4 The sampling distribution of the GOF statistic

To determine whether or not a particular value of ω2 is large enough to justify rejecting the null
hypothesis, we’re going to need to figure out what the sampling distribution for ω2 would be if the null
hypothesis were true. So that’s what I’m going to do in this section. I’ll show you in a fair amount of
detail how this sampling distribution is constructed, and then, in the next section, use it to build up a
hypothesis test. If you want to cut to the chase and are willing to take it on faith that the sampling
distribution is a ω2 (chi-square) distribution with k ´ 1 degrees of freedom, you can skip the rest of
this section. However, if you want to understand why the goodness-of-fit test works the way it does,
read on.

Okay, let’s suppose that the null hypothesis is actually true. If so, then the true probability that
an observation falls in the i-th category is Pi . After all, that’s pretty much the definition of our null
hypothesis. Let’s think about what this actually means. This is kind of like saying that “nature” makes
the decision about whether or not the observation ends up in category i by flipping a weighted coin
(i.e., one where the probability of getting a head is Pj). And therefore we can think of our observed
frequency Oi by imagining that nature flipped N of these coins (one for each observation in the data
set), and exactly Oi of them came up heads. Obviously, this is a pretty weird way to think about the
experiment. But what it does (I hope) is remind you that we’ve actually seen this scenario before. It’s
exactly the same set up that gave rise to the binomial distribution in Section 6.4. In other words, if
the null hypothesis is true, then it follows that our observed frequencies were generated by sampling
from a binomial distribution:

Oi „ BinomialpPi , Nq
Now, if you remember from our discussion of the central limit theorem (Section 7.3.3) the binomial
distribution starts to look pretty much identical to the normal distribution, especially when N is large
and when Pi isn’t too close to 0 or 1. In other words as long as N ˆ Pi is large enough. Or, to
put it another way, when the expected frequency Ei is large enough then the theoretical distribution
of Oi is approximately normal. Better yet, if Oi is normally distributed, then so is pOi ´ Eiq{?

Ei .
Since Ei is a fixed value, subtracting o! Ei and dividing by

?
Ei changes the mean and standard

deviation of the normal distribution but that’s all it does. Okay, so now let’s have a look at what our
goodness-of-fit statistic actually is. What we’re doing is taking a bunch of things that are normally-
distributed, squaring them, and adding them up. Wait. We’ve seen that before too! As we discussed
in Section 6.6, when you take a bunch of things that have a standard normal distribution (i.e., mean 0
and standard deviation 1), square them and then add them up, the resulting quantity has a chi-square
distribution. So now we know that the null hypothesis predicts that the sampling distribution of the
goodness-of-fit statistic is a chi-square distribution. Cool.

There’s one last detail to talk about, namely the degrees of freedom. If you remember back to
Section 6.6, I said that if the number of things you’re adding up is k , then the degrees of freedom for
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the resulting chi-square distribution is k . Yet, what I said at the start of this section is that the actual
degrees of freedom for the chi-square goodness-of-fit test is k ´ 1. What’s up with that? The answer
here is that what we’re supposed to be looking at is the number of genuinely independent things that
are getting added together. And, as I’ll go on to talk about in the next section, even though there are
k things that we’re adding only k ´ 1 of them are truly independent, and so the degrees of freedom
is actually only k ´ 1. That’s the topic of the next section.4

9.1.5 Degrees of freedom

0 2 4 6 8 10

Value

df = 3

df = 4

df = 5

Figure 9.1: ω2 (chi-square) distributions with di!erent values for the “degrees of freedom”.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

When I introduced the chi-square distribution in Section 6.6, I was a bit vague about what “degrees
of freedom” actually means. Obviously, it matters. Looking at Figure 9.1, you can see that if we
change the degrees of freedom then the chi-square distribution changes shape quite substantially. But
what exactly is it? Again, when I introduced the distribution and explained its relationship to the
normal distribution, I did o!er an answer: it’s the number of “normally distributed variables” that I’m

4If you rewrite the equation for the goodness-of-fit statistic as a sum over k´1 independent things you get the “proper”
sampling distribution, which is chi-square with k ´ 1 degrees of freedom. It’s beyond the scope of an introductory book
to show the maths in that much detail. All I wanted to do is give you a sense of why the goodness-of-fit statistic is
associated with the chi-square distribution.
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squaring and adding together. But, for most people, that’s kind of abstract and not entirely helpful.
What we really need to do is try to understand degrees of freedom in terms of our data. So here goes.

The basic idea behind degrees of freedom is quite simple. You calculate it by counting up the
number of distinct “quantities” that are used to describe your data and then subtracting o! all of
the “constraints” that those data must satisfy.5 This is a bit vague, so let’s use our cards data as
a concrete example. We describe our data using four numbers, O1, O2, O3 and O4 corresponding
to the observed frequencies of the four di!erent categories (hearts, clubs, diamonds, spades). These
four numbers are the random outcomes of our experiment. But my experiment actually has a fixed
constraint built into it: the sample size N.6 That is, if we know how many people chose hearts,
how many chose diamonds and how many chose clubs, then we’d be able to figure out exactly how
many chose spades. In other words, although our data are described using four numbers, they only
actually correspond to 4 ´ 1 “ 3 degrees of freedom. A slightly di!erent way of thinking about it is
to notice that there are four probabilities that we’re interested in (again, corresponding to the four
di!erent categories), but these probabilities must sum to one, which imposes a constraint. Therefore
the degrees of freedom is 4´1 “ 3. Regardless of whether you want to think about it in terms of the
observed frequencies or in terms of the probabilities, the answer is the same. In general, when running
the ω2 (chi-square) goodness-of-fit test for an experiment involving k groups, then the degrees of
freedom will be k ´ 1.

9.1.6 Testing the null hypothesis

The final step in the process of constructing our hypothesis test is to figure out what the rejection
region is. That is, what values of ω2 would lead us to reject the null hypothesis. As we saw earlier,
large values of ω2 imply that the null hypothesis has done a poor job of predicting the data from our
experiment, whereas small values of ω2 imply that it’s actually done pretty well. Therefore, a pretty
sensible strategy would be to say there is some critical value such that if ω2 is bigger than the critical
value we reject the null, but if ω2 is smaller than this value we retain the null. In other words, to use
the language we introduced in Chapter 8 the chi-square goodness-of-fit test is always a one-sided
test. Right, so all we have to do is figure out what this critical value is. And it’s pretty straightforward.
If we want our test to have significance level of ε “ .05 (that is, we are willing to tolerate a Type I
error rate of 5%), then we have to choose our critical value so that there is only a 5% chance that
ω2 could get to be that big if the null hypothesis is true. This is illustrated in Figure 9.2.

5I feel obliged to point out that this is an over-simplification. It works nicely for quite a few situations, but every now
and then we’ll come across degrees of freedom values that aren’t whole numbers. Don’t let this worry you too much;
when you come across this just remind yourself that “degrees of freedom” is actually a bit of a messy concept, and that
the nice simple story that I’m telling you here isn’t the whole story. For an introductory class it’s usually best to stick to
the simple story, but I figure it’s best to warn you to expect this simple story to fall apart. If I didn’t give you this warning
you might start getting confused when you see df “ 3.4 or something, (incorrectly) thinking that you had misunderstood
something that I’ve taught you rather than (correctly) realising that there’s something that I haven’t told you.

6In practice, the sample size isn’t always fixed. For example, we might run the experiment over a fixed period of
time and the number of people participating depends on how many people show up. That doesn’t matter for the current
purposes.
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Value of the GOF Statistic

The critical value is 7.81

The observed GOF value is 8.44
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Figure 9.2: Illustration of how the hypothesis testing works for the ω2 (chi-square) goodness-of-fit
test.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ah but, I hear you ask, how do I find the critical value of a chi-square distribution with k ´ 1
degrees of freedom? Many many years ago when I first took a psychology statistics class we used to
look up these critical values in a book of critical value tables, like the one in Figure 9.3. Looking at
this Figure, we can see that the critical value for a ω2 distribution with 3 degrees of freedom, and
p=0.05 is 7.815.

So, if our calculated ω2 statistic is bigger than the critical value of 7.815, then we can reject the
null hypothesis (remember that the null hypothesis, H0, is that all four suits are chosen with equal
probability). Since we actually already calculated that before (i.e., ω2 “ 8.44) we can reject the null
hypothesis. And that’s it, basically. You now know “Pearson’s ω2 test for the goodness-of-fit”. Lucky
you.

9.1.7 Doing the test in JASP

Not surprisingly, JASP provides an analysis that will do these calculations for you. From the main
‘Analyses’ toolbar select ‘Frequencies’ - ‘Multinomial Test’. Then in the analysis window that appears
move the variable you want to analyse (choice_1) across into the ‘Factor’ box. Also, click on the
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Figure 9.3: Table of critical values for the chi-square distribution
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

‘Descriptives’ check box so that you see the expected counts in the results table. When you have
done all this, you should see the analysis results in JASP as in Figure 9.4. No surprise then that JASP
provides the same expected counts and statistics that we calculated by hand above, with a ω2 value
of 8.44 with 3 d.f. and p=0.038. Note that we don’t need to look up a critical p-value threshold value
any more, as JASP gives us the actual p-value of the calculated ω2 for 3 d.f.

9.1.8 Specifying a di!erent null hypothesis

At this point you might be wondering what to do if you want to run a goodness-of-fit test but your
null hypothesis is not that all categories are equally likely. For instance, let’s suppose that someone had
made the theoretical prediction that people should choose red cards 60% of the time, and black cards
40% of the time (I’ve no idea why you’d predict that), but had no other preferences. If that were the
case, the null hypothesis would be to expect 30% of the choices to be hearts, 30% to be diamonds,
20% to be spades and 20% to be clubs. In other words we would expect hearts and diamonds to
each appear 60 times (30% of 200 is 60), and spades and clubs to each appear 40 times (20% of
200 is 40). This seems like a silly theory to me, but nonetheless, it’s pretty easy to test this explicitly
specified null hypothesis with the data in our JASP analysis. In the analysis window (see Figure 9.4)
you can click the radio button for ‘Custom expected proportions (ω2 test)’. When you do this, there
are options for entering di!erent expected counts for the variable you have selected, in our case this
is choice_1. Change the counts to reflect the new null hypothesis, as in Figure 9.5, and see how the
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Figure 9.4: A ω2 goodness-of-fit test in JASP, with table showing both observed and expected fre-
quencies.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

results change.

The expected counts are now:
→ ↑ ↓ ↔

expected frequency Ei 40 60 60 40

and the ω2 statistic is 4.742, 3 d.f., p = 0.192. Now, the results of our updated hypotheses and
the expected frequencies are di!erent from what they were last time. As a consequence our ω2 test
statistic is di!erent, and our p-value is di!erent too. Annoyingly, the p-value is .192, so we can’t
reject the null hypothesis (look back at section 8.5 to remind yourself why). Sadly, despite the fact
that the null hypothesis corresponds to a very silly theory, these data don’t provide enough evidence
against it.

9.1.9 How to report the results of the test

So now you know how the test works, and you know how to do the test using a wonderful JASP-
flavoured magic computing box. The next thing you need to know is how to write up the results.
After all, there’s no point in designing and running an experiment and then analysing the data if you
don’t tell anyone about it! So let’s now talk about what you need to do when reporting your analysis.
Let’s stick with our card-suits example. If I wanted to write this result up for a paper or other report,
then the conventional way to report this would be to write something like this:
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Figure 9.5: Changing the expected proportions in the ω2 goodness-of-fit test in JASP
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Of the 200 participants in the experiment, 64 selected hearts for their first choice, 51
selected diamonds, 50 selected spades, and 35 selected clubs. A chi-square goodness-of-
fit test was conducted to test whether the choice probabilities were identical for all four
suits. The results were significant (ω2p3q “ 8.44, p ! .05), suggesting that people did
not select suits purely at random.

There are a few things that you should note about this description:

• The statistical test is preceded by the descriptive statistics. That is, I told the reader something
about what the data look like before going on to do the test. In general, this is good practice.
Always remember that your reader doesn’t know your data anywhere near as well as you do. So,
unless you describe it to them properly, the statistical tests won’t make any sense to them and
they’ll get frustrated and cry.

• The description tells you what the null hypothesis being tested is. To be honest, writers don’t
always do this but it’s often a good idea in those situations where some ambiguity exists, or
when you can’t rely on your readership being intimately familiar with the statistical tools that
you’re using. Quite often the reader might not know (or remember) all the details of the test
that your using, so it’s a kind of politeness to “remind” them! As far as the goodness-of-fit
test goes, you can usually rely on a scientific audience knowing how it works (since it’s covered
in most intro stats classes). However, it’s still a good idea to be explicit about stating the
null hypothesis (briefly!) because the null hypothesis can be di!erent depending on what you’re
using the test for. For instance, in the cards example my null hypothesis was that all the four
suit probabilities were identical (i.e., P1 “ P2 “ P3 “ P4 “ 0.25), but there’s nothing special
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about that hypothesis. I could just as easily have tested the null hypothesis that P1 “ 0.7 and
P2 “ P3 “ P4 “ 0.1 using a goodness-of-fit test. So it’s helpful to the reader if you explain to
them what your null hypothesis was. Also, notice that I described the null hypothesis in words,
not in maths. That’s perfectly acceptable. You can describe it in maths if you like, but since
most readers find words easier to read than symbols, most writers tend to describe the null using
words if they can.

• A “stat block” is included. When reporting the results of the test itself, I didn’t just say that the
result was significant, I included a “stat block” (i.e., the dense mathematical-looking part in the
parentheses) which reports all the “key” statistical information. For the chi-square goodness-of-
fit test, the information that gets reported is the test statistic (that the goodness-of-fit statistic
was 8.44), the information about the distribution used in the test (ω2 with 3 degrees of freedom
which is usually shortened to ω2p3q), and then the information about whether the result was
significant (in this case p ! .05). The particular information that needs to go into the stat block
is di!erent for every test, and so each time I introduce a new test I’ll show you what the stat
block should look like.7 However the general principle is that you should always provide enough
information so that the reader could check the test results themselves if they really wanted to.

• The results are interpreted. In addition to indicating that the result was significant, I provided
an interpretation of the result (i.e., that people didn’t choose randomly). This is also a kindness
to the reader, because it tells them something about what they should believe about what’s
going on in your data. If you don’t include something like this, it’s really hard for your reader to
understand what’s going on.8

As with everything else, your overriding concern should be that you explain things to your reader.
Always remember that the point of reporting your results is to communicate to another human being.
I cannot tell you just how many times I’ve seen the results section of a report or a thesis or even a
scientific article that is just gibberish, because the writer has focused solely on making sure they’ve
included all the numbers and forgotten to actually communicate with the human reader.

9.1.10 A comment on statistical notation

Satan delights equally in statistics and in quoting scripture
7Well, sort of. The conventions for how statistics should be reported tend to di!er somewhat from discipline to

discipline. I’ve tended to stick with how things are done in psychology, since that’s what I do. But the general principle
of providing enough information to the reader to allow them to check your results is pretty universal, I think.

8To some people, this advice might sound odd, or at least in conflict with the “usual” advice on how to write a
technical report. Very typically, students are told that the “results” section of a report is for describing the data and
reporting statistical analysis, and the “discussion” section is for providing interpretation. That’s true as far as it goes,
but I think people often interpret it way too literally. The way I usually approach it is to provide a quick and simple
interpretation of the data in the results section, so that my reader understands what the data are telling us. Then, in
the discussion, I try to tell a bigger story about how my results fit with the rest of the scientific literature. In short,
don’t let the “interpretation goes in the discussion” advice turn your results section into incomprehensible garbage. Being
understood by your reader is much more important.
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– H.G. Wells

If you’ve been reading very closely, and are as much of a mathematical pedant as I am, there is one
thing about the way I wrote up the chi-square test in the last section that might be bugging you a
little bit. There’s something that feels a bit wrong with writing “ω2p3q “ 8.44”, you might be thinking.
After all, it’s the goodness-of-fit statistic that is equal to 8.44, so shouldn’t I have written X2 “ 8.44
or maybe GOF“ 8.44? This seems to be conflating the sampling distribution (i.e., ω2 with df “ 3)
with the test statistic (i.e., X2). Odds are you figured it was a typo, since ω and X look pretty similar.
Oddly, it’s not. Writing ω2p3q “ 8.44 is essentially a highly condensed way of writing “the sampling
distribution of the test statistic is ω2p3q, and the value of the test statistic is 8.44”.

In one sense, this is kind of silly. There are lots of di!erent test statistics out there that turn out
to have a chi-square sampling distribution. The X2 statistic that we’ve used for our goodness-of-fit
test is only one of many (albeit one of the most commonly encountered ones). In a sensible, perfectly
organised world we’d always have a separate name for the test statistic and the sampling distribution.
That way, the stat block itself would tell you exactly what it was that the researcher had calculated.
Sometimes this happens. For instance, the test statistic used in the Pearson goodness-of-fit test is
written X2, but there’s a closely related test known as the G-test9 (Sokal and Rohlf 1994), in which
the test statistic is written as G. As it happens, the Pearson goodness-of-fit test and the G-test both
test the same null hypothesis, and the sampling distribution is exactly the same (i.e., chi-square with
k ´ 1 degrees of freedom). If I’d done a G-test for the cards data rather than a goodness-of-fit test,
then I’d have ended up with a test statistic of G “ 8.65, which is slightly di!erent from the X2 “ 8.44
value that I got earlier and which produces a slightly smaller p-value of p “ .034. Suppose that the
convention was to report the test statistic, then the sampling distribution, and then the p-value. If
that were true, then these two situations would produce di!erent stat blocks: my original result would
be written X2 “ 8.44,ω2p3q, p “ .038, whereas the new version using the G-test would be written
as G “ 8.65,ω2p3q, p “ .034. However, using the condensed reporting standard, the original result
is written ω2p3q “ 8.44, p “ .038, and the new one is written ω2p3q “ 8.65, p “ .034, and so it’s
actually unclear which test I actually ran.

So why don’t we live in a world in which the contents of the stat block uniquely specifies what
tests were ran? The deep reason is that life is messy. We (as users of statistical tools) want it
to be nice and neat and organised. We want it to be designed, as if it were a product, but that’s
not how life works. Statistics is an intellectual discipline just as much as any other one, and as
such it’s a massively distributed, partly-collaborative and partly-competitive project that no-one really
understands completely. The things that you and I use as data analysis tools weren’t created by an
Act of the Gods of Statistics. They were invented by lots of di!erent people, published as papers in
academic journals, implemented, corrected and modified by lots of other people, and then explained
to students in textbooks by someone else. As a consequence, there’s a lot of test statistics that
don’t even have names, and as a consequence they’re just given the same name as the corresponding
sampling distribution. As we’ll see later, any test statistic that follows a ω2 distribution is commonly

9Complicating matters, the G-test is a special case of a whole class of tests that are known as likelihood ratio tests.
I don’t cover LRTs in this book, but they are quite handy things to know about.
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called a “chi-square statistic”, anything that follows a t-distribution is called a “t-statistic”, and so on.
But, as the ω2 versus G example illustrates, two di!erent things with the same sampling distribution
are still, well, di!erent.

As a consequence, it’s sometimes a good idea to be clear about what the actual test was that
you ran, especially if you’re doing something unusual. If you just say “chi-square test” it’s not actually
clear what test you’re talking about. Although, since the two most common chi-square tests are the
goodness-of-fit test and the independence test (Section 9.2), most readers with stats training can
probably guess. Nevertheless, it’s something to be aware of.

9.2

The ω2 test of independence (or association)

GUARDBOT 1: Halt!
GUARDBOT 2: Be you robot or human?
LEELA: Robot...we be.
FRY: Uh, yup! Just two robots out roboting it up! Eh?
GUARDBOT 1: Administer the test.
GUARDBOT 2: Which of the following would you most prefer?

A: A puppy, B: A pretty flower from your sweetie,
or C: A large properly-formatted data file?

GUARDBOT 1: Choose!

– Futurama, “Fear of a Bot Planet”

The other day I was watching an animated documentary examining the quaint customs of the natives
of the planet Chapek 9. Apparently, in order to gain access to their capital city a visitor must prove that
they’re a robot, not a human. In order to determine whether or not a visitor is human, the natives ask
whether the visitor prefers puppies, flowers, or large, properly formatted data files. “Pretty clever,” I
thought to myself “but what if humans and robots have the same preferences? That probably wouldn’t
be a very good test then, would it?” As it happens, I got my hands on the testing data that the civil
authorities of Chapek 9 used to check this. It turns out that what they did was very simple. They
found a bunch of robots and a bunch of humans and asked them what they preferred. I saved their
data in a file called chapek9.csv, which we can now load into JASP. As well as the ID variable that
identifies individual people, there are two nominal text variables, species and choice. In total there
are 180 entries in the data set, one for each person (counting both robots and humans as “people”)
who was asked to make a choice. Specifically, there are 93 humans and 87 robots, and overwhelmingly
the preferred choice is the data file. You can check this yourself by asking JASP for Frequency Tables,
under the ‘Descriptives’ - ‘Descriptive Statistics’ button. However, this summary does not address
the question we’re interested in. To do that, we need a more detailed description of the data. What
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we want to do is look at the choices broken down by species. That is, we need to cross-tabulate the
data. In JASP we do this using the ‘Frequencies’ - ‘Contingency Tables’ button, moving species into
the ‘Columns’ box and choice into the ‘Rows’ box. This procedure should produce a table similar to
this:

Robot Human Total
Puppy 13 15 28
Flower 30 13 43
Data 44 65 109
Total 87 93 180

From this, it’s quite clear that the vast majority of the humans chose the data file, whereas the
robots tended to be a lot more even in their preferences. Leaving aside the question of why the
humans might be more likely to choose the data file for the moment (which does seem quite odd,
admittedly), our first order of business is to determine if the discrepancy between human choices and
robot choices in the data set is statistically significant.

9.2.1 Constructing our hypothesis test

How do we analyse this data? Specifically, since my research hypothesis is that “humans and robots
answer the question in di!erent ways”, how can I construct a test of the null hypothesis that “humans
and robots answer the question the same way”? As before, we begin by establishing some notation to
describe the data:

Robot Human Total
Puppy O11 O12 R1
Flower O21 O22 R2
Data O31 O32 R3
Total C1 C2 N

In this notation we say that Oi j is a count (observed frequency) of the number of respondents that
are of species j (robots or human) who gave answer i (puppy, flower or data) when asked to make a
choice. The total number of observations is written N, as usual. Finally, I’ve used Ri to denote the
row totals (e.g., R1 is the total number of people who chose the flower), and Cj to denote the column
totals (e.g., C1 is the total number of robots).10

10A technical note. The way I’ve described the test pretends that the column totals are fixed (i.e., the researcher
intended to survey 87 robots and 93 humans) and the row totals are random (i.e., it just turned out that 28 people
chose the puppy). To use the terminology from my mathematical statistics textbook (Hogg, McKean, and Craig 2005),
I should technically refer to this situation as a chi-square test of homogeneity and reserve the term chi-square test of
independence for the situation where both the row and column totals are random outcomes of the experiment. In the
initial drafts of this book that’s exactly what I did. However, it turns out that these two tests are identical, and so I’ve
collapsed them together.
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So now let’s think about what the null hypothesis says. If robots and humans are responding in
the same way to the question, it means that the probability that “a robot says puppy” is the same
as the probability that “a human says puppy”, and so on for the other two possibilities. So, if we use
Pi j to denote “the probability that a member of species j gives response i ” then our null hypothesis is
that:

H0: All of the following are true:
P11 “ P12 (same probability of saying “puppy”),
P21 “ P22 (same probability of saying “flower”), and
P31 “ P32 (same probability of saying “data”).

And actually, since the null hypothesis is claiming that the true choice probabilities don’t depend on
the species of the person making the choice, we can let Pi refer to this probability, e.g., P1 is the true
probability of choosing the puppy.

Next, in much the same way that we did with the goodness-of-fit test, what we need to do is
calculate the expected frequencies. That is, for each of the observed counts Oi j , we need to figure
out what the null hypothesis would tell us to expect. Let’s denote this expected frequency by Ei j .
This time, it’s a little bit trickier. If there are a total of Cj people that belong to species j , and the
true probability of anyone (regardless of species) choosing option i is Pi , then the expected frequency
is just:

Ei j “ Cj ˆ Pi
Now, this is all very well and good, but we have a problem. Unlike the situation we had with the
goodness-of-fit test, the null hypothesis doesn’t actually specify a particular value for Pi . It’s something
we have to estimate (Chapter 7) from the data! Fortunately, this is pretty easy to do. If 28 out of 180
people selected the flowers, then a natural estimate for the probability of choosing flowers is 28{180,
which is approximately .16. If we phrase this in mathematical terms, what we’re saying is that our
estimate for the probability of choosing option i is just the row total divided by the total sample size:

P̂i “ Ri
N

Therefore, our expected frequency can be written as the product (i.e. multiplication) of the row total
and the column total, divided by the total number of observations:11

Ei j “ Ri ˆ Cj
N

11Technically, Ei j here is an estimate, so I should probably write it Êi j . But since no-one else does, I won’t either.
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Now that we’ve figured out how to calculate the expected frequencies, it’s straightforward to define
a test statistic, following the exact same strategy that we used in the goodness-of-fit test. In fact,
it’s pretty much the same statistic.

For a contingency table with r rows and c columns, the equation that defines our X2 statistic is

X2 “
rÿ

i“1

cÿ

j“1

pEi j ´Oi jq2
Ei j

The only di!erence is that I have to include two summation signs (i.e.,
!

) to indicate that we’re
summing over both rows and columns.

As before, large values of X2 indicate that the null hypothesis provides a poor description of the
data, whereas small values of X2 suggest that it does a good job of accounting for the data. Therefore,
just like last time, we want to reject the null hypothesis if X2 is too large.

Not surprisingly, this statistic is ω2 distributed. All we need to do is figure out how many degrees
of freedom are involved, which actually isn’t too hard. As I mentioned before, you can (usually) think
of the degrees of freedom as being equal to the number of data points that you’re analysing, minus
the number of constraints. A contingency table with r rows and c columns contains a total of r ˆ c
observed frequencies, so that’s the total number of observations. What about the constraints? Here,
it’s slightly trickier. The answer is always the same

df “ pr ´ 1qpc ´ 1q

but the explanation for why the degrees of freedom takes this value is di!erent depending on the
experimental design. For the sake of argument, let’s suppose that we had honestly intended to survey
exactly 87 robots and 93 humans (column totals fixed by the experimenter), but left the row totals
free to vary (row totals are random variables). Let’s think about the constraints that apply here.
Well, since we deliberately fixed the column totals by Act of Experimenter, we have c constraints right
there. But, there’s actually more to it than that. Remember how our null hypothesis had some free
parameters (i.e., we had to estimate the Pi values)? Those matter too. I won’t explain why in this
book, but every free parameter in the null hypothesis is rather like an additional constraint. So, how
many of those are there? Well, since these probabilities have to sum to 1, there’s only r ´ 1 of these.
So our total degrees of freedom is:

df “ (number of observations) ´ (number of constraints)
“ prcq ´ pc ` pr ´ 1qq
“ rc ´ c ´ r ` 1
“ pr ´ 1qpc ´ 1q

Alternatively, suppose that the only thing that the experimenter fixed was the total sample size N.
That is, we quizzed the first 180 people that we saw and it just turned out that 87 were robots and
93 were humans. This time around our reasoning would be slightly di!erent, but would still lead us
to the same answer. Our null hypothesis still has r ´ 1 free parameters corresponding to the choice
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probabilities, but it now also has c ´ 1 free parameters corresponding to the species probabilities,
because we’d also have to estimate the probability that a randomly sampled person turns out to be
a robot.12 Finally, since we did actually fix the total number of observations N, that’s one more
constraint. So, now we have rc observations, and pc ´ 1q ` pr ´ 1q ` 1 constraints. What does that
give?

df “ (number of observations) ´ (number of constraints)
“ rc ´ ppc ´ 1q ` pr ´ 1q ` 1q
“ rc ´ c ´ r ` 1
“ pr ´ 1qpc ´ 1q

Amazing.

9.2.2 Doing the test in JASP

Okay, now that we know how the test works let’s have a look at how it’s done in JASP. As
tempting as it is to lead you through the tedious calculations so that you’re forced to learn it the long
way, I figure there’s no point. I already showed you how to do it the long way for the goodness-of-fit
test in the last section, and since the test of independence isn’t conceptually any di!erent, you won’t
learn anything new by doing it the long way. So instead I’ll go straight to showing you the easy way.
After you have run the test in JASP (‘Frequencies’ - ‘Contingency Tables’), all you have to do is look
underneath the contingency table in the JASP results window and there is the ω2 statistic for you.
This shows a ω2 statistic value of 10.722, with 2 d.f. and p-value = 0.005.

That was easy, wasn’t it! You can also ask JASP to show you the expected counts - just click on
the check box for ‘Counts’ - ‘Expected’ in the ‘Cells’ options and the expected counts will appear in
the contingency table. And whilst you are doing that, an e!ect size measure would be helpful. We’ll
choose Cramer’s V, and you can specify this from a check box in the ‘Statistics’ options, and it gives
a value for Cramer’s V of 0.244. We will talk about this some more in just a moment.

This output gives us enough information to write up the result:

Pearson’s ω2 revealed a significant association between species and choice (ω2(2) = 10.7,
p ! .01). Robots appeared to be more likely to say that they prefer flowers, but the
humans were more likely to say they prefer data.

Notice that, once again, I provided a little bit of interpretation to help the human reader understand
what’s going on with the data. Later on in my discussion section I’d provide a bit more context. To
illustrate the di!erence, here’s what I’d probably say later on:

The fact that humans appeared to have a stronger preference for raw data files than
robots is somewhat counter-intuitive. However, in context it makes some sense, as the
civil authority on Chapek 9 has an unfortunate tendency to kill and dissect humans when
they are identified. As such it seems most likely that the human participants did not

12A problem many of us worry about in real life.
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respond honestly to the question, so as to avoid potentially undesirable consequences.
This should be considered to be a substantial methodological weakness.

This could be classified as a rather extreme example of a reactivity e!ect, I suppose. Obviously,
in this case the problem is severe enough that the study is more or less worthless as a tool for
understanding the di!erence preferences among humans and robots. However, I hope this illustrates
the di!erence between getting a statistically significant result (our null hypothesis is rejected in favour
of the alternative), and finding something of scientific value (the data tell us nothing of interest about
our research hypothesis due to a big methodological flaw).

9.2.3 Postscript

I later found out the data were made up, and I’d been watching cartoons instead of doing work.

9.3

The continuity correction

Okay, time for a little bit of a digression. I’ve been lying to you a little bit so far. There’s a tiny
change that you need to make to your calculations whenever you only have 1 degree of freedom. It’s
called the “continuity correction”, or sometimes the Yates correction. Remember what I pointed out
earlier: the ω2 test is based on an approximation, specifically on the assumption that the binomial
distribution starts to look like a normal distribution for large N. One problem with this is that it often
doesn’t quite work, especially when you’ve only got 1 degree of freedom (e.g., when you’re doing a
test of independence on a 2ˆ2 contingency table). The main reason for this is that the true sampling
distribution for the X2 statistic is actually discrete (because you’re dealing with categorical data!) but
the ω2 distribution is continuous. This can introduce systematic problems. Specifically, when N is
small and when df “ 1, the goodness-of-fit statistic tends to be “too big”, meaning that you actually
have a bigger ε value than you think (or, equivalently, the p values are a bit too small).

Yates (1934) suggested a simple fix, in which you redefine the goodness-of-fit statistic as:

ω2 “
ÿ

i

p|Ei ´Oi | ´ 0.5q2
Ei

Basically, he just subtracts o! 0.5 everywhere.

As far as I can tell from reading Yates’ paper, the correction is basically a hack. It’s not derived
from any principled theory. Rather, it’s based on an examination of the behaviour of the test, and
observing that the corrected version seems to work better. You can specify this correction in JASP
from a check box in the ‘Statistics’ options, where it is called ‘ω2 continuity correction’.
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9.4

E!ect size

As we discussed earlier (Section 8.8), it’s becoming commonplace to ask researchers to report some
measure of e!ect size. So, let’s suppose that you’ve run your chi-square test, which turns out to be
significant. So you now know that there is some association between your variables (independence
test) or some deviation from the specified probabilities (goodness-of-fit test). Now you want to report
a measure of e!ect size. That is, given that there is an association or deviation, how strong is it?

There are several di!erent measures that you can choose to report, and several di!erent tools
that you can use to calculate them. I won’t discuss all of them but will instead focus on the most
commonly reported measures of e!ect size.

By default, the two measures that people tend to report most frequently are the ϑ statistic and
the somewhat superior version, known as Cramér’s V .

Mathematically, they’re very simple. To calculate the ϑ statistic, you just divide your X2 value by
the sample size, and take the square root:

ϑ “
c
X2

N

The idea here is that the ϑ statistic is supposed to range between 0 (no association at all) and
1 (perfect association), but it doesn’t always do this when your contingency table is bigger than
2ˆ 2, which is a total pain. For bigger tables it’s actually possible to obtain ϑ " 1, which is pretty
unsatisfactory. So, to correct for this, people usually prefer to report the V statistic proposed by
Cramer (1946). It’s a pretty simple adjustment to ϑ. If you’ve got a contingency table with r rows
and c columns, then define k “ minpr, cq to be the smaller of the two values. If so, then Cramér’s
V statistic is

V “
d

X2

Npk ´ 1q

And you’re done. This seems to be a fairly popular measure, presumably because it’s easy to
calculate, and it gives answers that aren’t completely silly. With Cramer’s V, you know that the value
really does range from 0 (no association at all) to 1 (perfect association).
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9.5

Assumptions of the test(s)

All statistical tests make assumptions, and it’s usually a good idea to check that those assumptions
are met. For the chi-square tests discussed so far in this chapter, the assumptions are:

• Expected frequencies are su!ciently large. Remember how in the previous section we saw that
the ω2 sampling distribution emerges because the binomial distribution is pretty similar to a
normal distribution? Well, like we discussed in Chapter 6 this is only true when the number
of observations is su"ciently large. What that means in practice is that all of the expected
frequencies need to be reasonably big. How big is reasonably big? Opinions di!er, but the default
assumption seems to be that you generally would like to see all your expected frequencies larger
than about 5, though for larger tables you would probably be okay if at least 80% of the the
expected frequencies are above 5 and none of them are below 1. However, from what I’ve been
able to discover (e.g., Cochran 1954) these seem to have been proposed as rough guidelines,
not hard and fast rules, and they seem to be somewhat conservative (Larntz 1978).

• Data are independent of one another. One somewhat hidden assumption of the chi-square test
is that you have to genuinely believe that the observations are independent. Here’s what I mean.
Suppose I’m interested in proportion of babies born at a particular hospital that are boys. I
walk around the maternity wards and observe 20 girls and only 10 boys. Seems like a pretty
convincing di!erence, right? But later on, it turns out that I’d actually walked into the same
ward 10 times and in fact I’d only seen 2 girls and 1 boy. Not as convincing, is it? My original 30
observations were massively non-independent, and were only in fact equivalent to 3 independent
observations. Obviously this is an extreme (and extremely silly) example, but it illustrates the
basic issue. Non-independence “stu!s things up”. Sometimes it causes you to falsely reject the
null, as the silly hospital example illustrates, but it can go the other way too. To give a slightly
less stupid example, let’s consider what would happen if I’d done the cards experiment slightly
di!erently Instead of asking 200 people to try to imagine sampling one card at random, suppose
I asked 50 people to select 4 cards. One possibility would be that everyone selects one heart, one
club, one diamond and one spade (in keeping with the “representativeness heuristic”; Tversky &
Kahneman 1974). This is highly non-random behaviour from people, but in this case I would get
an observed frequency of 50 for all four suits. For this example the fact that the observations
are non-independent (because the four cards that you pick will be related to each other) actually
leads to the opposite e!ect, falsely retaining the null.

If you happen to find yourself in a situation where independence is violated, it may be possible to use
the nonparametric tests, such as the McNemar test or the Cochran test. Similarly, if your expected
cell counts are too small, check out the Fisher exact test. At present, JASP does not implement these
tests, but check back later! For now, we’ll just mention that these tests exist, but describing them is
beyond the scope of this book.
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9.6

Summary

The key ideas discussed in this chapter are:

• The ω2 (chi-square) goodness-of-fit test (Section 9.1) is used when you have a table of observed
frequencies of di!erent categories, and the null hypothesis gives you a set of “known” probabilities
to compare them to.

• The ω2 (chi-square) test of independence (Section 9.2) is used when you have a contingency
table (cross-tabulation) of two categorical variables. The null hypothesis is that there is no
relationship or association between the variables.

• E!ect size for a contingency table can be measured in several ways (Section 9.4). In particular
we noted the Cramér’s V statistic.

• Both versions of the Pearson test rely on two assumptions: that the expected frequencies are suf-
ficiently large, and that the observations are independent (Section 9.5). Various nonparametric
tests can be used for certain kinds of violations of independence or count assumptions.

If you’re interested in learning more about categorical data analysis a good first choice would be
Agresti (1996) which, as the title suggests, provides an Introduction to Categorical Data Analysis.
If the introductory book isn’t enough for you (or can’t solve the problem you’re working on) you
could consider Agresti (2002), Categorical Data Analysis. The latter is a more advanced text, so it’s
probably not wise to jump straight from this book to that one.
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