
Rigging Specifications

T.R.I.E.
Kris Coward∗, D.R. Toliver∗

with

Cory Sulpizi∗, Adam Gravitis∗, Alexander Fertman∗, Mike Everson∗,
Robert Moir, Jon Levin

v0.9876, January 2023

1 Introduction

This document serves as a normative specification of rigging. A well-formed
rig links two things together, such that the integrity of the one is extended
to the other. By continuing to build the rig, this integrity-at-a-distance can
be maintained between them even if the first is entirely oblivious about the
existence of the second.

Rigging is employed a variety of places, including within TODA files, where
the proof of provenance is composed of rigs. For a formal analysis of the prop-
erties of rigging, see [1]

This document builds up rigging gradually, starting from the smallest com-
ponents, but we begin with a brief top down overview of the architecture.

A rig is a cryptographic data structure that binds an untrusted leadline to
a trusted corkline. The rig provides a simple but powerful guarantee: if the
corkline has not equivocated, then the leadline has not equivocated. This holds
true regardless of what any other line in the rig has done1.

Rigs are made by composing hitches. A hitch is itself a minimal rig: it
provides the rig guarantee over its topline and its footline. Hitches compose
horizontally by splicing together and vertically by lashing together with ex-
isting rigs, allowing them to maintain rig structures under arbitrarily complex
circumstances. Checking the validity of a rig is primarily a matter of checking
the validity of its hitches and their composition operations.

A line is an object that evolves over time. Each update to a line is called a
twist. Lines are defined by (hash-based) identifiers in their constituent twists,
so they have unique histories but potentially equivocal futures.

∗TODAQ
1Note that the rigs described in this work belong to G↑, a supportive guild, as described

in [1]

1

Each twist is composed of atoms, the smallest unit of meaning in a rig. In
addition to their structural purpose in a rig twists can carry semantic content,
which is also expressed as atoms – the subject of the next section.

2 Atoms

The data in a rig is composed of individual atoms. Each atom pairs an identifier
(generally a hash) and its corresponding packet. A packet wraps content, adding
descriptions of its length and structural shape. This serialization scheme is the
Atomic Serialization Protocol.

2.1 Identifiers

An identifier is a data structure with the following layout:
1 byte (hashing) algorithm
n bytes the output of the algorithm

The current hashing algorithm identifiers:

ID byte Name Length Description
0x00 NULL 0 bytes Has specialized meaning in rigs
0x22 Symbol 32 bytes Arbitrary bytes
0x41 SHA-256 32 bytes The 256 bit SHA-2 digest in FIPS PUB 180-4
0x42 Blake3-256 32 bytes (not yet implemented)
0x43 Blake3-512 64 bytes (not yet implemented)
0xFF UNIT 0 bytes

The NULL, SYMBOL, and UNIT algorithms all operate without an input
packet.

In the NULL and UNIT case, this lack of entropy in the input space is
characterized by a zero-length output. Thus NULL and UNIT atoms have one
byte in total length (the algorithm byte). By definition nothing hashes to NULL
or UNIT (they have no matching preimage)2.

The Symbol algorithm 0x22 is always followed by 32 arbitrary bytes. They
provide the capacity for meaningless names to be created. Symbols, like the
NULL and UNIT hashes, are complete atoms unto themselves3. An identi-
fier whose algorithm is SYMBOL, is called a symbol. Like NULL and UNIT,
symbols have no matching preimage, by definition.

Each SHA-256 identifier is characterized by a 32 byte output, hence each
identifier using the SHA-256 hash algorithm is 33 bytes in total, with the first
byte always being 0x41.

Additional identifier algorithms are expected to be added over time, and
implementations must be designed to support the addition of new algorithms.

2Typically the NULL hash is used to signify nothing, either at the start of a sequence or
over some duration, and the UNIT hash is used to terminate a sequence.

3Symbols are used whenever a name must be introduced: occasionally within the rigging
structure, but much more frequently within the cargo.

2

Note that algorithm outputs may have lengths other than the 32 bytes of SHA-
256.

Notationally, given an identifier I, we employ the following selectors:
alg(h) is the algorithm identifier byte of I,
hash(I) is the hash function identified by alg(I), and
digest(I) is the output of hash(I) applied to the data being hashed, so

I = alg(I)|digest(I)

For NULL and UNIT digest(I) and hash(I) are undefined. For symbols,
digest(I) is the symbol’s 32 bytes, and hash(I) is the constant function re-
turning those 32 bytes, by definition.

2.2 Packets

A packet is structured content with the following layout:

1 byte the shape
4 bytes the content length (big endian)
n bytes the content

The length slot counts the number of bytes of content, and can therefore
accommodate content of up to four gigabytes, after which the data will need to
be split across additional packets. This is a 32 bit integer in big endian byte
order4.

The packet itself is five bytes longer than the length count, because it does
not include the shape and length bytes. Zero length packets are not currently
allowed.

Notationally, given a packet P, we employ the following selectors:
shape(P) is the shape byte of P,
length(P) is the content length, and
content(P) is its content, so

P = shape(P)|length(P)|content(P)

2.3 Atoms

Atoms are the topmost structure of the Atomic Serialization Protocol, and the
fundamental representation of data structures in rigging. An atom is an identi-
fier concatenated with its matching packet.

Given an identifier, its “matching packet” is one where applying the identi-
fier’s hash function to the packet yields the identifier’s digest value. The whole
packet must be hashed, including its shape and length values. Given an identi-
fier I and a packet P, they match if and only if

digest(I) = hash(I)(P)

4In general, multibyte values used in the atomic serialization format are laid out in big
endian byte order, though of course user supplied content (i.e. the contents of arb packets
referenced in a cargo trie) may vary.

3

Notationally, given an atom a, we employ the following selectors:
P(a) is the packet contained in a,
I(a) is the identifier of that packet, and
C(a) is the content of that packet, so

a = I(a)|P(a)

C(a) = content(P(a))

Diagramatically, we can represent an atom as follows:

alg digest shape length content

Or condensed (we can also partially condense it):

2.4 List of Atoms

Identifiers are self-describing in terms of their length, as are packets. Atoms
are therefore also self-describing in terms of their length, and can safely be
concatenated one after the other, both at rest and in transit. A list of atoms is
also referred to as a lat.

Symbols, NULL, and UNIT are complete atoms unto themselves, and are
only used in-place within values. They are never included as top level atoms
within a lat.

2.5 Errors

None of the error types at this level are fatal (so they should all be treated as
having a status colour of ”yellow”), but they do differ in their severity. Refer
to Section 8.1 for more error handling commentary.

2.5.1 Atomic Errors

There are two cases that result in atomic errors:

• An atom’s packet does not match its identifier

• A packet ends before its specified length

4

These atomic errors may result from a faulty transmission channel, and do
not prove anything about the rig. They should generally be considered a case of
missing information, not necessarily an error to be reported. The invalid data
can be safely discarded, which may trigger a search for the actual atom with
that identifier.

2.5.2 Nospec Errors

The following are nospec errors:

• An unknown algorithm byte in the identifier

• A packet with an unrecognized shape byte

Nospec errors occur when the client does not know how to interpret the
atom. A nospec error may indicate that a new shape or algorithm is being used
that this client has not been updated with, or they may arise from malformed
atoms.

2.5.3 Lat Errors

A list of atoms that includes NULL, UNIT, or symbols, is a lat error. A lat
error should normally be considered a sign of faulty transmission (though it can
also be a sign of the list having been compiled by a non-compliant tool), and is
non-fatal (i.e. has a status colour of ”yellow”).

While a list of atoms containing an atom with an atomic error, is reasonably
likely to indicate a problem that warrants discarding much (or even all) of the
atoms in the list; we abstain from identifying these cases as lat errors, in order
to avoid assigning too many statuses to a single blob of data.

Lat errors are generally fixable by excising the errant atoms. Alternatively,
the entire lat could be thrown away and retrieved again.

3 Shapes

The shape of an atom characterizes its structure. This provides constraints for
the values that can occupy a given slot, and allows efficient parsing of structured
content.

The currently defined shapes:

ID byte Name Class Basic Structure
0x48 basic twist twist 2 concatenated identifiers
0x49 basic body body 6 concatenated identifiers
0x63 pairtrie trie A map of identifiers, expressed as a list of key-

value pairs
0x61 hashes list A list of identifiers concatenated together
0x60 arb arb Arbitrary binary content

5

Values are constrained by shape class. For instance, a particular slot might
require a twist. Any atom with a shape in the twist class will suffice. The basic
twist shape is the first shape in the twist class5.

The trie shape class specifically refers to Merkle tries, and all trie shapes
carry the guarantee that a specific key has a unique value67.

The pairtrie shape is the first shape in the trie shape class. It can be thought
of as a Merkle trie with a particularly large branching factor. It is expressed as
a lexicographically ordered list of key | value pairs of identifiers8, ordered by
key.

The pairtrie content must consist of a strictly positive even number of iden-
tifiers, ordered as just described, with no duplicate keys. Any failure to meet
these requirements is a shape error (as described in Section 3.1). In particular,
it is a shape error for a pairtrie if:

• the pairtrie’s keys are not listed in ascending order,

• the pairtrie’s content contains duplicate keys,

• the pairtrie’s content contains no identifiers (use NULL instead),

• the pairtrie’s content contains an odd number of identifiers.

Additional trie shapes are expected to be added over time, and implemen-
tations must be designed to support the addition of new trie shapes.

Shapes are used by rigging constructs like twists to specify which atoms can
occupy particular slots. Those specifications also include NULL as a shape class,
which is occupied by exclusively by NULL.

Through their specification role, shapes provide the glue between the atom
layer and higher layers of rigging.

3.1 Shape Errors

Shape errors occur when a packet provably fails to meet the requirements of its
shape, such as a pairtrie that contains only a single identifier.

Shape errors are generally breaking. They represent a provably invalid con-
struction, unlike an atomic or nospec error, which could change if additional
information is provided. Only well-formed atoms can have shape errors, and in
a well-formed atom the packet uniquely matches the identifier, and is therefore
provably erroneous in the cases listed below.

Provably invalid constructions (aka “red errors”) can be useful at higher
levels of the system, because given a particular rig its red errors won’t change,

5Most shape classes will gradually acquire more instances. In particular, additional body
and trie shapes are already on the drawing board.

6Or no value at all, when that key can be proven to not exist in that Merkle trie. Except
where stated otherwise, no value and the NULL value are treated as equivalent.

7In order to guarantee that a key has a unique value, it is required that it only appear
once in the list; repetition of an entire key-value pair is still a shape error, even though only
one value is provided for the key.

8e.g. k0 | v0 | k1 | v1

6

whereas errors related to missing data (aka “yellow errors”) may disappear as
more information arrives. This may provide opportunities for considering red
errors to be a non-operation in cases where it is important to show something
could not have happened, providing some amount of resilience to breaking fail-
ures of this kind9.

The following are shape errors for a given packet:

• A packet of zero length

• Packet contains less than five bytes

• Packet’s shape requires exactly N identifiers but its content does not con-
tain exactly N identifiers

• Packet’s shape requires concatenated identifiers, but the final identifier in
its content does not have its required number of bytes (e.g. a SHA256
algorithm byte followed by 10 digest bytes).

• Packet’s shape requires a shape-specific property that can be determined
entirely within its atom and the atom does not have that property

4 Twists

Twists are the structure out of which all rigging is created.
The machinery of a twist is primarily concerned with establishing the con-

nections to other twists that are needed to construct a well-formed rig (Section
7).

Both the basic twist shape and the basic body shape specify a fixed list of
slots that must be filled by atoms with particular shapes. Inappropriately filled
slots result in errors during rig checking.

4.1 Basic Twist Shape

Currently, the only representation of a twist is the basic twist (shape 0x48).
The basic twist shape (Section 3) has two slots, which contain identifiers for the
following structures:

body the identifier of the twist’s body basic body (shape 0x49)
sats the identifier of its satisfactions trie trie shape or NULL

Thus a basic twist t has the form

C(t)↔ I(t.body)|I(t.sats)

A twist t also has as its identifier I(t).
To ensure uniqueness of the identifier, the identifier of the body must have

the algorithm as the twist’s own identifier. i.e. alg(I(t)) must equal alg(I(t.body)).

9The current specification does not take advantage of this opportunity, as it is being
considered in the larger context of proof structure resilience.

7

If the algorithm in the twist’s identifier and the algorithm for its body identifier
differ then the twist atom was not computed using alg(I(t.body)), and this
is an error. In particular, since it is a failure to meet a structural requirement
of the shape, and can be diagnosed without reference to data outside the atom
with that shape, it is a shape error.

4.2 Basic Body Shape

A twist body must incorporate the following fundamental components into its
structure:

Component Description Required Shape
prev previous twist twist or NULL
teth tether twist, NULL, or UNIT
shld temporary secret arb or NULL
reqs requirements trie trie or NULL
rigs rigging trie trie or NULL
carg cargo trie trie or NULL

In the basic twist (shape 0x48), the satisfactions often need to securely
reference the rest of the twist data. Aggregating the identifiers of the first six
components into a basic body (shape 0x49), provides a body identifier that can
be used as this secure reference:

C(t.body)↔ I(t.prev)|I(t.teth)|I(t.shld)|I(t.reqs)|I(t.rigs)|I(t.carg)

8

0x49

0x48 trie

t t.sats

t.body

t.prev

t.teth

t.shld

t.reqs

t.rigs

t.carg

twist

twist

0x60

trie

trie

trie

As structures are constructed in which twists are components, the above
diagram is too much to reproduce in diagrams of those structures, so twists can
be represented in a simplified form (like atoms were above):

satsprev teth shld reqs rigs carg

Which can be further condensed (or partially condensed):

9

It is worth noting that since a basic twist body must consist of exactly 6
identifiers, and a basic twist must consist of exactly 2 identifiers; either of these
shapes consisting of a different number of identifiers constitutes a shape error.

A twist with a non-NULL tether is called a fast twist, and it is made fast
by hitching it as described in Section 6. A twist with NULL as the value of its
tether slot is a loose twist.

The status objects that describe twist errors are found in section 9.2.

5 Lines

Each twist t has a unique previous twist, called its predecessor. Continuing
this prev sequence reveals all the ancestors of t. We call such a linked list of
ancestors a line. Each twist has a single line of ancestors.

In the forward direction a successor of a twist t has t as its prev, and so
on. A sequence of such successive successors are descendants of t.

The line of succession of t is not inherently unique, as any new twist may set
t as its prev. So our first concern is in determining the legitimacy of a claimed
successor: does it satisfy the requirements of its predecessor? A twist that does
is declared a legitimate successor.

In contrast to the notion of a line, which may extend indefinitely into the
past and the future, a segment has precisely defined endpoints. A segment is
a sequence of twists, each a legitimate successor of the last, and it is uniquely
defined by its oldest (leftmost) and newest (rightmost) twists. We often use the
word line when referring to segments, using the latter term only when disam-
biguation is necessary.

The status objects that describe line and segment errors are found in section
9.4.

5.1 Requirements and Satisfactions

Each twist may declare requirements. If it does, then its legitimate successors
must carry satisfactions for those requirements. We refer to this system of
requirements and satisfactions collectively as reqsats.

A twist’s requirements are specified in its requirements trie reqs, and its
satisfactions are provided in its satisfactions trie sats. Each entry in reqs

must be satisfied by a corresponding entry in sats. When the reqs trie is
NULL (and therefore has no keys), it is satisfied by a NULL sats trie.

10

More precisely:

function satisfies(x, y)

if x.reqs == NULL

if y.sats == NULL

return true

return false

if y.sats == NULL

return false

if y.sats.keys != x.reqs.keys

return false

foreach (key in y.sats.keys)

if satisfies(x.reqs[key], y.sats[key]) == false

return false

return true

With satisfaction defined, we can now also define validity of a twist as sat-
isfying its prev’s requirements:

function valid(t)

if t.prev == NULL

return (t.sats == NULL)

return satisfies(t.prev.reqs, t.sats)

The status objects that describe general requirement and satisfaction errors
are found in section 9.3, with errors for more specific reqsat types described in
their own sections.

5.1.1 Signature Reqsats

The simplest type of requirement is for a cryptographic signature over the suc-
cessor using a public key cryptosystem. This provides holders of the private key
exclusive control over the creation of legitimate successors.

For a signature reqsat, the key in the reqs trie designates a specific type of
signature: for example, ECDSA using the secp256r1 curve and paramaters, as
implemented in Java.

Let sigalg be a identifier representing a type of public key signature, key.pub
and key.priv be representions of the public and private parts of a keypair for
that signature type, and sig(data, key) be the signature of data by (the
private part of) key; then we incorporate a signature reqsat as follows:

• x.reqs[sigalg] = I(key.pub)

• y.sats[sigalg] = I(sig(body, key))

The requirement is satisfied if and only if the signature is valid.

11

reqs

sigalg

pubkey

valid sig

equal type

pk signature

sigalg

satsprev

body

The signature algorithms currently available within requirements and satisfac-
tions are:
secp256r1

identifier: 0x22eabd2839f9e57cf2c372e686e5856cf651d7f07d0d396b3699d1d228b5931945

public key format: Java EC X509EncodedKeySpec (i.e. X.509)
signature format: Java SHA256withECDSA (i.e. ANSI X9.62 signature

of SHA256 hash) of body identifier (which might not
use SHA256)

ed25519
identifier: 0x223d5f4f95cdb1cdfc71014efa1a669fd42599a0ce2000d914a409e48bccaed584

public key format: Java Ed25519 key (i.e. X.509)
signature format: Java Ed25519 (i.e. Ed25519 signature per RFC 8032)

5.1.2 List Reqsats

The next type of reqsat is a weighted list of reqsats, referred to as a rslist. This
allows multiple keys to share control over the succession of an object.

In a requirements trie, the value associated with the rslist key (0x22c9bf129a42fd9478fc42c986ba5b8786675ee42109cd3a9fdba208f4e9654148)
must be the identifier of a list of reqlist entries I(listEntries[0,...,n]). Ad-
ditionally, each entry is the identifier of a 2-entry list containing a weight and
a requirement: listEntries[i] = I(weight, reqs) where each weight is an
arb representing an unsigned 8-bit integer and each reqs is a requirements trie
identifier (which is treated the same as a twist’s requirements trie identifier).

12

In a satisfactions trie, the value associated with the rslist key must be the
identifier of a list of identifiers of satisfactions tries (the satlist) I(listSats[0,...,n]),
where each listSats[i] is a satisfactions trie (with the same structure as a
twist’s satisfactions trie).

To satisfy the rslist requirement the length of listEntries must equal the
length of listSats, and the sum of listEntries[i].weight across those values
of i for which listEntries[i].reqs is satisfied by listSats[i] must be at
least 255.

It should be noted that because the rslist uses the same format as twists
for requirements tries and satisfaction tries, rslists can be nested to produce
more complex requirements (and satisfactions). Because rslists, like all atoms,
are referenced using their identifiers (which involve hashes), they form a strict
DAG without recursive loops.

It is also worth noting that NULL requirements/satisfactions are permitted
as members of rslists, as they provide functionality, in addition to avoiding
special cases for their exclusion.

As an example of this functionality, consider a group of 150 parties who wish
to require a 2/3 majority to validate a successor to a twist. If an rslist consisting
only of their individual requirements is constructed where they all have a weight
of 2, then 128 satisfactions would be needed to validate the successor instead
of the desired 100. On the other hand, if their weights are all set to 3, then
only 85 of them are needed to validate a successor. However, including a NULL
requirement with a weight of 155, and assigning a weight of 1 to each of the
individual requirements, would produce an rslist that controls succession as
desired.

13

reqs weight0 req0 weight1 req1

t0 r0 t1 r1

...

...

equal type if satisfied... if satisfied... ...

≥255
t0 s0 t1 s1 ...

sat0 sat1 ...satsprev

sum

rslist

rslist

6 Hitches

The fundamental unit of rigging is called a hitch. A hitch connecting segment A
to segment B proves, roughly, that if B hasn’t equivocated then A hasn’t either.

More precisely, it proves an exclusive relationship between the segment A,
the footline of the hitch, and the segment B, the topline of the hitch. No other
hitch can be formed between the oldest twist in A, the lead of the hitch, and
newest twist in B, the hoist of the hitch.

A is therefore canonical with respect to B. This provides the mechanism for
uniquely selecting a twist’s successor. In particular the newest twist in A, the
meet of the hitch, is the canonical successor of the oldest twist in A, the hitch’s
lead.

This exclusive relationship is the basis of integrity-at-a-distance, which al-
lows the state of an asset to be managed by an untrusted system, while still
maintaining the full integrity of its issuer.

14

A hitch involves 5 twists:

• the fastener hitch.fastener

• the lead hitch.lead

• the meet hitch.meet

• the hoist hitch.hoist

• the post hitch.post

Each position in the hitch has a simple relationship with another, except the
hoist, which has a more complicated relationship with several positions.

• hitch.fastener = hitch.lead.teth

The hitch’s fastener is defined by its lead.

• hitch.lead = fastPrev(hitch.meet)

The hitch’s lead is the first fast predecessor of its meet.10

• hitch.meet = fastPrev(hitch.post)

The hitch’s meet is the first fast predecessor of its post.

• hitch.post.rigs[hitch.lead] = hitch.hoist

The hitch’s post associates its lead and its hoist.

• hitch.hoist is the first successor of hitch.fastener to hoist hitch.lead

The hitch’s topline is the segment from fastener to hoist:
hitch.topline = [hitch.fastener, ..., hitch.hoist]

The hitch’s footline is the segment from lead to meet:
hitch.footline = [hitch.lead, ..., hitch.meet]

A segment A is hitched to a segment B if and only if there is a hitch with
hitch.footline = A and hitch.topline = B.

fastener hoist

topline

lead meet post

footline

10The function fastPrev is defined in Section 6.2.

15

6.1 Hoisting

The heart of a hitch is its hoist. Hoisting a twist binds it to its succes-
sor. The hoist of a hitch canonizes hitch.meet as the next fast successor of
hitch.lead11.

The hoist is the one place that coordination is required between the topline
and the footline, as information from the footline must be incorporated into the
topline. Otherwise the footline can act entirely independently.

Were the hitch to set the key-value pair [lead,meet] in its rigging trie, this
would be sufficient to link the two from the standpoint of the proof structure.

Operationally, however, anyone who knew the lead could post an alternate
value, with deleterious effects on the footline. Additionally, anyone who saw
[lead,meet] before it was added to the hoist (including the topline operator)
could likewise introduce an alternate value.

What is needed is a mechanism that allows values sent to the topline to be
accepted obliviously. That is, the topline operator should be able to add all
received key-value pairs to their rigging trie without introducing the potential
for harm. We use the mechanism from [2], which is called shielding.

To summarize how shielding is carried out, the footline operator keeps secret
the value of the lead.shld until the lead gets hitched. This secret value is used
in a shield function, called S here, which prepends it to an input value, hashes
the result into an identifier (using alg(I(lead))), and outputs that resulting
identifier.

Instead of setting [lead,meet] in the hoist’s rigging trie, [S(lead),meet] is
set. This prevents other parties from trying to occupy that spot before this
key-value pair is sent.

A malicious party who sees the new key S(lead) before it is hoisted could
still try to fill it with an alternate value. Therefore a second pair of values is
required in the same rigging trie; namely, the shielded versions of the key and
its value: [S(S(lead)), S(meet)].

Since only the footline operator knows the secret value, only they can con-
struct this second pair correctly. If the value of the first pair is changed, the value
in the second pair will not match. The footline operator can easily prove that
the second identifier does not match the hash of the first identifier prepended
with their secret, which is a condition for this twist to serve as a valid hoist for
the lead.

Once the hoist is constructed then the lead’s secret value is incorporated into
the rig, in order to prove that the meet is its canonical successor. The atom
containing the secret value from the lead of a hitch is normally (only) included
in a rigging proof when that rigging proof contains the hoist of the same hitch
(i.e. once the lead and meet have been hoisted, and the risk of a bogus meet
value getting hoisted has been mitigated).

For a more detailed chronology of the generation, use, and disclosure of the
secret value. refer to [2]

11Such integrity guarantees are always relative; in this case, to the hitch’s topline.

16

6.1.1 Shield details

We define the shield function
shield(twist, data) = hash(I(twist))(C(twist.shld) | data)

Recall that C takes the content of a packet, so C(twist.shld) is twist.shld
without the initial shape and length bytes. Because shields are only used in
hitches, and the shield used in a hitch is that of the hitch’s lead, we impose the
requirement of being an arb shape on lead.shld. Setting it to a shape other
than arb results in an issue of INVALID in the lead’s status.

Note also that because content length is included as a field in the packet of
each atom, and the last shapes in the bitstreams (that are hashed to produced
shielded values) are all shapes with constant content lengths (defined in this
specification), a length extension attack on these shielding hashes will necessarily
render that hashed data invalid.

If twist.shld is NULL the above devolves to
shield(twist, data) = hash(I(twist))(data).
Note that zero-length packets are a shape error, so setting twist.shld to NULL
is the only way to achieve this version.

Shields on loose twists are ignored, and should generally be set to NULL.
Given a particular hitch, we define that hitch’s shield function s(hitch) as

s(hitch)(data) = shield(hitch.lead, data)

and require hitch.hoist.rigs to contain the following two key-value pairs:

• hitch.hoist.rigs[S(hitch, I(hitch.lead))] = I(hitch.meet)

• hitch.hoist.rigs[S(hitch, S(hitch, I(hitch.lead)))] = S(hitch,

I(hitch.meet))

As indicated in [2], for the functional value of shielding to be properly re-
alized, the shielded key-value pairs used in the hoist cannot have a matching
key and value. While this is of limited concern in the hoist itself (because it
requires a collision in a cryptographic hash function), it is relevant to the rest
of the topline, which is important to the proof.

In addition to containing proof that hitch.hoist contains those key-value
pairs, the hitch must also provide proof that no twist between hitch.fastener

and hitch.hoist contains a pair of entries matching the following description
(for arbitrary data):

• twist.rigs[S(hitch, I(hitch.lead))] = data

• twist.rigs[S(hitch, S(hitch, I(hitch.lead)))] = S(hitch, data)

• twist.rigs[S(hitch, I(hitch.lead))] != S(hitch, I(hitch.lead))

This proof can consist of proofs of any of the following:

• twist.rigs[S(hitch, I(hitch.lead))] is not present in the trie,

17

• twist.rigs[S(hitch, S(hitch, I(hitch.lead)))] is not present in the
trie,

• twist.rigs[S(hitch, I(hitch.lead))] = S(hitch, I(hitch.lead)),
OR

• twist.rigs[S(hitch, S(hitch, I(hitch.lead)))] != S(hitch, twist.rigs[S(hitch,

I(hitch.lead))])

postlead

fastener

meet

teth shld prev prev rigs

prev rigs

hoist

The status objects that describe hitch errors are found in section 9.5.

6.2 Length and Height

A fast segment12 begins and ends with a fast twist (i.e. it has no loose ends).
The length of a segment, used in rigging, is defined on fast segments.

To define length formally, we introduce a twist-valued function fastPrev, of
a twist t, which is called the immediate fast predecessor :

function fastPrev(t)

if (t == NULL)

NULL

else

if (t.prev.teth != NULL)

t.prev

else

fastPrev(t.prev)

12In the sense of “fasten”, rather than the sense of having a high velocity.

18

Less formally, the immediate fast predecessor of t is the closest predecessor
to t that is fast (or NULL if t has no predecessors that are fast).

With this function and a fast segment L (containing n twists), we can
now define the length L.length of our fast segment to be the value satisfy-
ing fastprevL.length(L[n− 1]) == L[0] Or more intuitively L.length is one less
than the number of fast twists in L (or the number of sections of fence that can
be supported by fenceposts corresponding to the fast twists).

Analogously to a length determining how far away two twists are in time,
we also have a height, which determines how far away two lines are in a sort
of space, where the unit of distance is a tether. To do this, we introduce a
twist-valued function fastTeth of a fast twist t, which is called the fast tether :

fastTeth(t) = if (t.teth.teth != 0)

t.teth

else

fastPrev(t.teth)

And thus we define the height of the tether from twist to segment, height(twist,
segment) to be the smallest n so that fastTethn(twist) is in segment.

7 Rigging

While hitches allow uniqueness of succession in a topline to provide uniqueness of
succession in a footline, the tethering must be direct, and the footline’s length
is limited to 1. In order to allow uniqueness guarantees to be made through
indirect tethering, and to provide unique succession for segments with a length
greater than 1, we use rigs.

Rigs are assembled from hitches, using rigging operations. A rig R is a data
structure which includes a corkline (R.corkline), whose uniqueness of succes-
sion enables the rig to prove unique succession in its leadline (R.leadline).
Much like how in normal fishing operations the corkline being buoyed with
cork, makes up the top of the net, and the leadline being weighted with lead,
makes up the bottom of the net; in a rig consisting of a single hitch, the topline
functions as a corkline, and the footline as a leadline. We also identify a rig as
having a height R.height = height(R.leadline[0], R.corkline).

A rig is constructed from simpler rigs, using the operations we call splicing
and lashing. The simplest rigs (i.e. the inductive/recursive base case) are half-
hitches. A half-hitch has the first four twist of a hitch, but omits the post. Each
hitch begins as a half-hitch, before its post is added.

Splicing allows a rig to be extended in time, (which in our diagrams is
represented horizontally, and may be referred to as the horizontal direction) by
combining it with another rig. Lashing allows a tetherline to extend farther
from a desired authority which is represented by a corkline (similar to time
being horizontal, this is the vertical direction), and does this by combining it
with an additional half-hitch.

19

Because rigs are used to determine whether a particular line has integrity, it
is essential that their correct formation be tested. The status objects that shall
describe the results of these tests are described in Section 9.6.

7.1 Splicing

To construct rigs across longer lines a composition operation is required that
allows a fast successor to be followed by another fast successor. Note that the
meet on a half-hitch is a fast twist and therefore has its own tether, which points
to the fastener for a hitch in which it is the lead.

We define this operation, called splicing, and use it to construct a rig splicedRig
whose leadline splicedRig.leadline has a length splicedRig.leadline.length >
1.

Definition. If left is a rig with the following properties:

• its leadline has length left.leadline.length == 1

• left.leadline == [a0, ..., a1], where a0 and a1 are consecutive fast
twists, with any number of loose twists between them

• there is a hitch spliceHitch with spliceHitch.lead == a0 and splicHitch.meet

= a1

and right is a rig with the following properties:

• right.leadline.length == n-1 >= 1

• right.leadline == [a1, ..., an], where an is fast (a1 is the same
fast twist as specified in left)

• a2 (which is possibly equal to an) is the fast twist in right.leadline with
fastPrev(a2) == a1 (i.e. the first fast twist after a1

• spliceHitch.post == a2 (spliceHitch being the same hitch specified in
left)

and the corklines left.corkline and right.corkline of the rigs are aligned
then together they constitute a rig splicedRig that is said to be obtained by
splicing left to right and whose corkline splicedRig.corkline is an en-
veloping segment for left.corkline and right.corkline, and whose lead-
line splicedRig.leadline = [a0, ..., an], which is the enveloping line for
left.leadline and right.leadline.

20

a0 a1 a2

left right

left.leadline right.leadline

spliceHitch

7.2 Lashing

At this point we can now identify arbitrarily many canonical successors along a
line, but only if the twists in the line tether directly to the relevant authority.
This severely limits the utility of the structures from our guild, so we need to
introduce another operation for constructing a rig from simpler rigs. Thus we
define the operation of lashing.

Definition. Given:

• bottom is a half-hitch

• top is a rig

• bottom.topline is a subline of top.leadline

• bottom.fastener is not present in top.corkline

then together bottom and top constitute a rig lashedRig, that is said to be
obtained by lashing bottom to top; with a corkline lashedRig.corkline =

top.corkline, and a leadline lashedRig.leadline = bottom.footline.

21

top

bottom

bottom.topline top.leadline

The last requirement (that bottom.fastener not be present in top.corkline)
may seem a little odd. It is however, necessary for the proofs of the security
guarantees provided in [1].

Roughly speaking, this requirement eliminates the possibility of a corkline
tethering (likely indirectly) back into itself13, and introducing the risk that one
of the times the corkline is reached, it might support a different leadline than on
one of the other times. (This risk seems unlikely to be realized, but impossibility
is not yet proven.)

Where this is particularly odd is that this requirement is only imposed on
the corkline, and not on any intermediate lines (which are entirely skipped over
by the requirement). While a tethering loop can be reached before the corkline
in verifying a rig, it being a(n infinite) loop will prevent the corkline from ever
being reached, and thus prevent a valid rig with that corkline from ever being
constructed.

If a tethering loop doesn’t prevent the corkline from being reached, then it
is at least partly above the corkline, and the portion above the corkline must
be ignored. As an example, consider a line leadline that is expected to be
supported by corkline0, where corkline0 is tethered to corkline1, which
is tethered to corkline 2, which is tethered back to corkline 0. If a rig is
provided that includes not only the rigging connecting leadline to corkline0,
but additionally includes the rigging connecting corkline0, corkline1, and
corkline2, then a rig checker must stop the first time it reaches corkline0,
instead of proceeding through the tethering loop and declaring the rig invalid
on account of the loop’s existence.

Thus, a rig checker should return a failure upon detection of a tethering
loop, if and only if it occurs before the corkline is reached (if such a failure is
not returned, the checker will very likely crash anyway). This failure shall be
identified as a MISMATCH, and be presented in either a lash or splice status
object (depending on how the checker traverses rigs, and which operation it was
processing when the loop was detected).

13When a line tethers to itself, directly or indirectly, we will call that a tethering loop.

22

The MISMATCH must only be used if there is a provable tether loop. If an
implementation avoids following infinite loops by e.g. setting a height limit on
rigs, a red error would be inappropriate, and the failure should be identified in
a similar object as UNKNOWN.

7.3 Traversal Algorithm

As rig data is provided as a collection of atoms, it is important to be able to
reconstruct the structure of the rig from this collection.

This traversal algorithm determines whether the leadline of a rig is supported
by its corkline. It is designed to be applied even in cases where the full collection
of atoms is not at hand, and must for instance be queried from a database. As
such, it takes as its inputs merely the endpoints of the corkline and leadline,
also known as the corners of the rig.

The inputs expected by this rig traversal algorithm are:

1. a supporting twist (i.e. corkline end) z w

2. a corkline beginning z a

3. a leadline beginning f a

4. a lat associating identifiers to the atoms/packets they identify

In cases where the full set of atoms is known in advance, and are for instance
guaranteed to have no equivocal successors, a simpler rig traversal algorithm
may be used. Regardless of which algorithm is used, however, all implementa-
tions must construct the same rig structure as is constructed by this example
algorithm when given the same rig as input.

The example algorithm relies on a store of lines; this store needs to be able
to:

1. record a new line from the rig (linestore.add(newline))

2. extend an existing line from the rig by a new line that overlaps or abuts
it (linestore.extend(line, extension))

3. indicate whether a specified twist is a member of a line in the store
(linestore.contains(twist))

4. for any twist in the store, identify its successor twist in the line containing
it (or indicate that it is the most recent twist in that line) (linestore.getnext(twist))

The algorithm (in pseudocode) follows:

function construct_line(start, end)

line = [end]

curr = end

while (curr != start)

curr = curr.prev

23

line.append(curr)

linestore.add(line)

// a function to verify that a line extension is properly supported

// before updating the linestore with it

function extend_line(meet, post, hoist, lead)

if post.rig[lead] = hoist

extension = [post]

curr = post

while (curr != meet)

curr = curr.prev

extension.append(curr)

linestore.extend(meet, extension)

// returns the most recent fast twist that is

// a predecessor or equal to the argument twist

function active_fast(twist)

curr = twist

while (curr.teth == NULL AND curr != FAIL)

curr = curr.prev

return curr

// returns the first fast twist that is

// a successor of the argument twist

function next_fast(twist)

curr = linestore.getnext(twist)

while (curr != FAIL)

if (curr.teth != NULL)

return curr

curr = linestore.getnext(curr)

return FAIL

// returns the most recent known fast twist that is

// a successor of the argument twist

function last_fast(twist)

curr = twist

next = next_fast(curr)

while (next != FAIL)

curr = next

next = next_fast(curr)

return curr

// returns the first known successor of fastener with lead as

// a rigging trie key, FAIL if no such successor is known

function find_hoist(fastener, lead)

curr = linestore.getnext(fastener)

24

while (curr != FAIL)

if (curr.rig.keys contains lead)

return curr

curr = linestore.getnext(curr)

return FAIL

// returns hoist of hitch for which provided twist is lead

function verify_hitch(lead)

// follow the lead’s tether up to the topline/fastener

fastener = lead.teth

// if the topline is already in the linestore, we can try to

// follow it forward to a hoist

if (linestore.contains(fastener))

hoist = find_hoist(fastener, lead)

// if the linestore line had a valid hoist,

// we can return it and are done

if (hoist != FAIL)

return hoist

// otherwise we follow the stored line to its last fast twist

// and identify it as current

curr = last_fast(fastener)

// and set the current twist’s fast predecessor as

// the previous fast twist

prev = active_fast(curr.prev)

// if the topline isn’t already in the linestore,

// we need to move up another level to be able to move forward

else

// we begin by identifying the lead for the hitch

// that our fastener is in the footline of

toplead = active_fast(fastener)

// and then we use that lead to fill in the hitch

tophoist = verify_hitch(toplead)

// with the hitch filled in, we can set its meet as our current twist

curr = tophoist.rig[toplead]

// and load this new footline into the linestore

construct_line(toplead, curr)

// we check the new footline for the hoist of our original footline

hoist = find_hoist(toplead, curr)

// and if it is present, we can return it and are done

if (hoist != FAIL)

return hoist

// otherwise its meet is already set as the current twist,

// so we set its lead as our previous to continue

prev = toplead

// having followed the topline for at least one fast twist

// and failed to find a hoist, we continue to extend it forwards,

25

// one footline at a time, until we find a hoist

while (hoist == FAIL)

// we set up hoist information to verify proper support

// of the new segment we’re constructing

// note that this code requires that tophoist is

// the hoist supporting the last segment of the stored line

// (the provided pseudocode does not make this the case

// when extending a stored line)

oldhoist = tophoist

tophoist = verify_hitch(curr)

next = tophoist.rig[curr]

extend_line(curr, next, oldhoist, prev)

// now that the curr-next segment is in the linestore,

// we check it for the hoist we were originally looking for

hoist = find_hoist(curr, lead)

// and advance our previous and current twists, in case it wasn’t there

prev = curr

curr = next

// if the hoist was present, the while loop will exit,

// and we can return it;

// otherwise we try moving forward again

return hoist

// returns last successor of f_a that is supported by z_w

function main(f_a, z_a, z_w)

// set up our corkline

construct_line(z_a, z_w)

// find the hoist of the hitch that supports

// the next fast twist in our leadline

hoist = verify_hitch(f_a)

// store the footline of that hitch and

// get ready to extend it forward

curr = f_a

next = hoist.rig[f_a]

construct_line(f_a, next)

// keep extending forward as long as we can

while (hoist != FAIL)

oldhoist = hoist

prev = curr

curr = next

hoist = verify_hitch(curr)

if (hoist != FAIL)

next = hoist.rig[curr]

extend_line(curr, next, oldhoist, prev)

// when we can no longer extend forward,

// return the last twist we reached

26

return curr

For an example of the steps of this algorithm applied to a rig (with several ir-
regular features which might not be traversed correctly by a poorly implemented
traversal function) refer to Appendix B.

8 Commentary

8.1 Error Handling Notes

An invalid atom, for instance one with a packet length that is longer than its
content, can cause subsequent atoms to be considered invalid as well, since their
offsets will be misaligned. Ensure you check the validity of atoms before you
write them.14

Up-to-date clients should treat atoms with nospec errors carefully: unlike
atomic errors, they are not recoverable by simply re-requesting the information,
but unlike shape errors they are not provably broken. Storing them for re-
examination after updating the client could result in an exploitable memory
leak. They should be discarded and ignored, and proofs that contain them
considered broken for most purposes: just not provably broken.

8.2 Evolution and Modularity

Rigging is built using cryptographic primitives which are the subject of ongoing
cryptanalysis. Between this cryptanalysis and more general advances in comput-
ing, these primitives can be expected over time to lose the properties necessary
to support security guarantees. Consequently, it is helpful to point out which
parts of this protocol are expected to remain static over time, and which are ex-
pected to evolve, so that this information can inform implementation decisions
(e.g. around modularity).

The fundamental nature of shapes, packets, identifiers, and atoms is expected
to remain static, however new hash algorithms and new shapes are expected to
be introduced. Some of these shapes may also be introduced into new class
(which may also incorporate existing shapes; e.g. if a novel representation of a
twist body is developed, then ”twist body” would become a new class of rigging
shape, which would incorporate the existing ”basic body” shape).

The fundamental role and essential constituents of a twist are expected to
remain static (even if new representations emerge), as are previous, next, suc-
cessor, and predecessor relations, the definition of a line, and the role of a reqsat.
The role of a reqsat remaining static however, does not preclude the introduc-
tion of new types of reqsat (signature type reqsats being an obvious example of
a type into which new replacements will need to be introduced, as cryptographic
technology progresses, and old signing algorithms cease to be secure).

14Particularly if they are being rebroadcast.

27

All of the rigging structures and operations introduced so far (i.e. hitches,
rigs, lashing, and splicing) are not expected to change significantly, though the
preconditions on the operations (e.g. that no twist in the bottom half-hitch
in a lash be present in the corkline of the top rig’s corkline) may be relaxed
or removed as they are proven unnecessary for the security guarantees a rig
provides. Additionally, new operations are expected to be introduced to allow
the construction of more diverse rigs (e.g. rigs where the footline of a hitch can
support the topline, and these rigs can be combined with each other and with
existing rigs). No changes to rigging will be made however, which undermine
the fundamental rigging guarantee: that any two twists succA and succB which
are supported as successors of the same twist init by colinear supports suppA

and suppB will be colinear themselves.
The general model used for verification (i.e. the status objects and their

nesting structure) will also remain static, however evolution in other parts of
the protocol will have corresponding evolutions in the status objects. (E.g. the
introduction of a new type of reqsat will be accompanied by the introduction
of status objects for that reqsat type; or the relaxation of preconditions on a
rigging operation will be accompanied by the removal or reduction of scope of
red statuses for the relaxed condition being unmet).

9 Status Abjects

When presented a list of atoms that do not form the expected rig, it can be
difficult to determine what went wrong through manual inspection. Status
abjects (using the abjects defined in [3]) provide a way for that information to
be communicated in an interoperable form, similar to a stack trace.

9.1 Description

9.1.1 Basics

For each defined structure within a rig, whether it is a concrete structure repre-
sented exactly by an atom (e.g. a twist body), or a logical structure composed
of multiple concrete structures and the relations between them (e.g. a half-hitch
or a reqsat), there is a structure status, which is presented as a DI.

In order to justify a result, it is often necessary for a structure status to
refer to the status of subordinate structures, whose status structures are made
available as children of the initial status structure. These relationships are
described in 9.1.4.

The status abject for the rig then consists of the structure status for the
rig itself (which is the focus of the abject). If the rig’s structure status (or any
other included structure status) has a non-green colour that is determined by
its children, then the structure statuses for those children shall also be included.

A structure status DI has the following fields:

28

structype symbol indicates the type of structure being checked
colour symbol indicates the status of the structure (good,

bad, or unknown)
issue symbol

(optional)
indicates the problem with the structure (if
there is one)

children trie
(optional)

children of this status abject, as described in
Section 9.1.4

reference undefined
(optional)

the hash of the specific instance of the struc-
ture, whose status is described by this DI

The symbols representing these fields are as follows:

• structype

0x2299c4857f9cc846feed9155d2df4f25f79f15ecfedaa3ac6ddfa3d102a3c503af

• colour

0x2266fccf371f70335ab69bb4157f4a06f3588defddd4493c2490304dc30b80ce18

• issue

0x22027072c8fa69e32fa6cb4d6adcbd8d0d5182a186bfbb21d817ffb3039bc6c286

• children

0x22bc2d4a3c033b26b15eaa8aafe96fd95370e26779aba66c05b13335ade086ce27

• reference

0x2242cb1cadebe0f6d30a7352322580225e50fc1730e222eb5c8eaac068d63f02cc

9.1.2 Colours

The colour of the focus structure status indicates whether the provided data
constitutes a valid rig (green), might constitute a valid rig (yellow), or cannot
constitute a valid rig (red). In descendant structure statuses, the colour indi-
cates whether an object is provably good, does not have enough information to
prove whether it is good or bad, or is provably bad.

Thus the colours (and the symbols used to represent them) are:

• green: proven to be good 0x2224691d8ddb740e9909846dac2cd1356b3328b15583fde539f94b250262edf6bd

• yellow: cannot be proven to be good or bad with the information provided
0x224642657982312fd36471bfb468b650fbc1cadc3c571c079178109f709a41c8a5

• red: proven to be irredeemably bad 0x22ed860e74ea0574b0fd5a275804c00f68ce73a1aa06e22c1ab322ff8fb30f47f4

The colour of structure status is determined according to the following rules:

1. The status is marked as green if the result is not marked with any other
colour, and does not inherit a colour from any of its children

2. The status is marked as red if the result is marked with a red issue (ie.
INVALID, MISMATCH)

29

3. The status is marked as yellow if the result is marked with a yellow issue
(ie. MISSING, UNKNOWN) and is not marked with a red issue

4. The status inherits the colour of its children using the following rules, if
it is not marked with an issue providing colour of its own:

(a) If the result has been assigned a colour due to any described “Colour
Rules”, the result’s colour does not change

(b) Else if any of the result’s children are marked as ‘red‘, then the result
itself is marked as ‘red‘

(c) Else if any of the result’s children are marked as ‘yellow‘, then the
result itself is marked as ‘yellow‘

5. A rig checker may treat an atomic error as a yellow error, and/or a shape
error as a red, however it may also terminate without providing a status
at all on either of these errors.

9.1.3 Issues

Each structure status has a list of potential issues. The order of the list is
important: the first issue encountered will be the issue assigned to that status
object.
Issues are assigned one of the following types:

• MISSING: indicates that a piece of required information was not provided

• UNKNOWN: indicates that it was unclear how to interpret a piece of infor-
mation

• INVALID: indicates that the provided information or satisfaction is invalid
(e.g., the given satisfaction does not satisfy the given requirement, a given
packet has the incorrect shape, etc.)

• MISMATCH: indicates that two provided pieces of information do not align

Additionally, atomic errors and shape errors may also be coded as issues,
and are given symbols for this purpose. When this is done, these errors take
precedence over any status (as they should, since they often render a status
impossible to compute).

The symbols used to represent the issues are:

• MISSING: 0x22dad0e4311d00c017ea5f8f8304b99bbbc93d798d3d7c0d1af4d0aaae164e843b

• UNKNOWN: 0x222a0ed5cbc7b198a3d088f2c70c6681c8164a90fdd74d9496171b25e08b1eaf78

• INVALID: 0x22c9f630e9dbcb8d55bf4d0bebb6051b5b587863f31fe734404bedfadc012608a4

• MISMATCH: 0x2293ca80267f8eed7ed9d8c8b6a4755c87f91e12d1e52ce0f8a1b946d2b78a7c1b

• atomic error: 0x2223fd016f0a8653cca6e7b679fa69e579ce5fc76443a8c75a7a18551a63d647b8

• shape error: 0x220ad9dd65d2d069c61f8cb9b2c449c3cee145b7f459537feeb8f4b2b4b2defdfe

30

9.1.4 Children

Each structure status description includes a list of structure status types which
may be present as keys in the children trie. Sometimes there are multiple
potential children of the same type; in these cases keys are provided in the
description of the parent structure status type, and these keys are used instead
of the child’s type. When a listed status type key is present, the associated value
is the identifier of the DI implementing that structure status, which provides
the status of the corresponding child object. Any green children are omitted
from the ‘children‘ trie.

Additionally, some children are given identifiers that end in []. As is con-
vention, this denotes that the child in question is actually a list. Because the
children trie is simply a trie, and not a DI with a schema, this list is provided
without any abject machinery. The value associated with a key whose identifer
has [] appended is the identifier for an atom with the 0x61 ”hashes” shape.
The identifiers for the child DIs from the lists are then included in that shape
in the order described in the child description.

The ‘children‘ trie of a status object should be omitted entirely if:

• The status object itself is green

• The status object itself has an issue

• There are no non-green children to include

9.1.5 Logical Objects

Logical objects do not have a naturally corresponding atom: for example, a
reqsat is a combination of a requirement object and its children with a satis-
faction object and its children. Lacking a natural atom from which to draw
their identity, they wander the nomenclature wastelands, seeking the solace of
an alternative reference wherever it may be found.

9.2 Twist Structure Statuses

These are the results from the checks to ensure that provided twists are consis-
tent with the description in Section 4.

twist
0x221267ca19a66c372b90849cb4f807f6c22b1f36c1057f6bba4f5209b12827beae

Possible Issues
MISSING: Missing the packet
INVALID: Not a twist

Children
twist-body

31

twist-body
0x2295085430dc7c03412d07e4ff91dd5c2c961cccd6ef910f63a408d6f315e41fa3

Possible Issues
MISSING: there is no atom available whose identifier matches the body iden-

tifier
INVALID: the shape of the body packet is not a twist body shape

9.3 Reqsat Structure Statuses

These are the results from the checks to ensure that provided requirements are
satisfied in provided satisfactions in accordance with the description in Section
5.1.

reqsat
0x07b12223bd3d6ce73ed9f70813e7a00d9621326a288540ea53e3a9bf1ce0857e

Notes

• This is a logical object; there is no “reqsat” atom in the rigging. It has
no reference value.

• If the ‘reqtrie‘ child or the ‘sattrie‘ child are non-‘green‘, the other children
are not calculated and therefore should be omitted.

Possible Issues
MISMATCH The requirements trie is NULL XOR the satisfactions trie is NULL
MISMATCH The keys in the reqtrie differ from the keys in the sattrie
UNKNOWN A key in the reqtrie and sattrie does not correspond to a known

reqsat interpreter

Children
reqtrie A reqtrie structure status
sattrie A sattrie structure status
rslist-reqsat Only present if both tries contain an rslist
secp256r1-reqsat Only present if both tries contain a secp256r1 signa-

ture
ed25519-reqsat Only present if both tries contain an ed25519 signature

reqtrie
0x22298f51b6a027ee01e7cc628818018c9e5361aa15ecb2ead84c4c40f15344f8f4

Possible Issues
MISSING The atom corresponding to the reqtrie identifier was not provided
INVALID The provided reqtrie is neither NULL nor a trie

No Children

sattrie
0x22f05766cc59b6d87d8b81020058b67900bf8195418ba87abe851ee22284da9dfe

32

Possible Issues
MISSING The atom corresponding to the sattrie identifier was not provided
INVALID The provided sattrie is neither NULL nor a trie

No Children

9.3.1 List Reqsat Structure Statuses

rslist-reqsat
0x22c9bf129a42fd9478fc42c986ba5b8786675ee42109cd3a9fdba208f4e9654148

Notes

• This is a logical object; there is no “rslist-reqsat” object in the rigging.

• This object does NOT inheret the colours of its ‘rslist-req-entry‘ children.

• If the ‘rslist-req‘ child or the ‘rslist-sat‘ child are non-‘green‘, the ‘rslist-
req-entries‘ child is not calculated and therefore should be omitted.

Special Rules The rslist-reqsat object shall be coloured green if and only if
The total sum of all ‘green‘ rslist-req-entries is ¿= 255.

The rslist-reqsat object shall be coloured yellow if it shall not be coloured
green, and

• The sum of weights of all green and yellow rslist-req-entries is ≥ 255, or;

• A rslist-req-entry child with a yellow rslist-req-weight child is
non-red

Otherwise, the rslist-reqsat object shall be coloured as red.

Possible Issues
MISMATCH The number of requirements differs from the number of satisfac-

tions

Children
rslist-req

rslist-sat

rslist-req-entries A list of status objects, corresponding to the entries
defined in the requirements list. Note that this child
is only returned if both other children are green.

rslist-req
0x2241c5142f5ac4cd48cdadd6c11f3c17106b4c7c31b160c241f36b6f65aca45e8e

Possible Issues
MISSING The atom corresponding to the rslist-req identifier was not provided
INVALID The packet corresponding to the rslist-req identifier does not have

hashes as its shape

No Children

33

rslist-sat
ox2232088b6ba2cfb1a8116b096e5af5eadb1986b2b1b9e168cb17779f2ee48277ea

Possible Issues
MISSING The atom corresponding to the rslist-sat identifier was not provided
INVALID The packet corresponding to the rslist-sat identifier does not have

hashes as its shape

No Children

rslist-req-entry
0x22362e4554299e2ad4e20a13712ada3c23175d129ae0741abdfc2bde7d4165e706

Possible Issues
MISSING The packet corresponding to this entry was not provided
INVALID The packet corresponding to this entry is not a hashes packet

Children
rslist-req-weight

reqsat

rslist-req-weight
0x2227f2fbd1e21f73fc5d25f314eeaaa3a693d4083bda1b6cc01135b9d5b54f6517

Possible Issues
MISSING The packet corresponding to this weight was not provided
INVALID The packet corresponding to this weight is not an arbitrary packet

with a 1-byte content
No Children

9.3.2 Signature Reqsat Structure Statuses

secp256r1-reqsat
0x22eabd2839f9e57cf2c372e686e5856cf651d7f07d0d396b3699d1d228b5931945

Notes
This is a logical object; there is no secp256r1-reqsat atom in the rigging.

It has no reference.

Possible Issues
INVALID the provided signature is not valid

Children
secp256r1-req

secp256r1-sat

secp256r1-req
0x2210f601d3262625b2f7ac3d51110f61333755b66d4433261b148aadeaffd75cec

Possible Issues
MISSING The packet corresponding to this req was not provided
INVALID The packet corresponding to this req is not an arbitrary packet

34

No Children

secp256r1-sat
0x22fd10613c50d9199489e8f56c723dc09c3cefec00e55a7e93a2fb3f46a1a5f76a

Possible Issues
MISSING The packet corresponding to this sat was not provided
INVALID The packet corresponding to this sat is not an arbitrary packet

No Children

ed25519-reqsat
0x223d5f4f95cdb1cdfc71014efa1a669fd42599a0ce2000d914a409e48bccaed584

Notes This is a logical object; there is no “ed25519-reqsat” object in the rigging.
This structure status has no reference.

Possible Issues
INVALID the provided signature is not valid

Children
ed25519-req

ed25519-sat

ed25519-req
0x2261443389b6e2999cd2c25c054be8a11657fb6a06820943bc2cf9229d424c1a12

Possible Issues
MISSING The packet corresponding to this req was not provided
INVALID The packet corresponding to this req is not an arbitrary packet

No Children

ed25519-sat
0x22b2cfec6188557738125b7e4d41dfd3bd82e38e453aecb747ae9d741d129fa296

Possible Issues
MISSING The packet corresponding to this sat was not provided
INVALID The packet corresponding to this sat is not an arbitrary packet

No Children

9.4 Line Structure Statuses

These are the results from the checks to ensure that provided lines are consistent
with the description in Section 5.

succession
0x227fd8ded12940e8b4d16001ab8bc1b80c55052eadba8bd707a6df766d5f50e3ef

Notes A succession is a logical object. The ‘successor‘’s twist is used as a
reference.

35

Children
successor A twist status object corresponding to the successor
predecessor twist status object corresponding to the predecessor
reqsat the reqsat for the relation in question (req from pre-

decessor, sat from successor)

line-segment
0x22366a8aa7e49d39bd21eb95cf26c6b6e899d9213b4c80b638c7d352b68c24954e

Notes This is a logical object. Its reference is the identifier for the most recent
(newest) twist in the line-segment. Given a fast twist start, we walk backwards
until we reach another fast twist

Possible Issues
INVALID the start twist is not a fast twist (either a loose twist or a non-twist

shape)
UNKNOWN the start twist has a shape that has not (yet) been assigned
MISMATCH NULL is reached

Children
twist the twist result for the start twist
succession[] A reverse-chronological list of succession objects, start-

ing at a fast twist and ending when it reaches another
fast twist. If a succession object is non-green, this list
is short-circuited

9.5 Hitch Structure Statuses

These are the results from the checks to ensure that provided hitches are con-
sistent with the description in Section 5.

hitch
0x22d0eb6e7af1ca49d58104b3862955078f2e33a1c67645e15459d6808157fd5c88

Note

• A hitch is a logical object; its reference is the identifier of its post

• The half-hitch (child) structure status may be returned with an invalid
lead-footline before the post-key is calculated

Possible Issues
MISMATCH The terminal twist of the post-footline does not match the meet of

the half-hitch, or the post-footline contains a fast twist other than
at its endpoints

Children
post

post-footline A line-segment object starting at the post
post-key

half-hitch The half-hitch object.

36

half-hitch
0x222008d2f5c875b46e4f52896ecae0c12f686cc43f57409bde83760fe50388b868

Notes

• The half-hitch is a logical object; its reference is the identifier of its meet

• The half-hitch status may be shortcut in the event that the hitch cannot
locate the lead (e.g. the lead-footline is invalid). In that event, the
lead-footline will be the only child returned.

• The fastener is intentionally omitted as a child; it is a grandchild via the
topline

Possible Issues
MISMATCH The terminal twist of the lead-footline does not match the lead

Children
lead

hoist

meet

lead-footline A line-segment object starting at the meet
topline

lead
0x2288dc9ca034029a13c404ecf210d42698c9971ad78594d72c6e790dc5c4945b2f

Notes
Because the lead is a twist, its reference is the identifier for the twist which

instantiates it.

Possible issues
INVALID The lead’s tether has a known non-twist shape, or its shield is

something other than an arb or NULL
MISMATCH The hitch being checked has a specified fastener, and the lead’s

tether is a twist other than that fastener
UNKNOWN The lead’s tether has an unrecognized shape
MISSING There is no provided atom whose identifier matches the lead’s

tether

Children
twist

hoist
0x22863bfdc943c67ed29ee7a3e199ac281e93df674809a4a7795317ded106210b30

Notes
Because the hoist is a twist, its reference is the identifier for the twist which

instantiates it.

Possible issues

37

MISSING there is insufficient trie data to establish whether the provided lead
is a key15

INVALID the hoist’s rigging packet has a non-trie shape
UNKNOWN the hoist’s rigging packet has an unassigned shape
MISMATCH the hoist’s rigging trie is provably incapable of hoisting the provided

lead
(i.e. there is a null proof for shield(lead,I(lead))
or for shield(lead,(shield(lead,I(lead))));
or rig[shield(lead,(shield(lead,I(lead)))] !=

shield(lead,(rig[shield(lead,I(lead))]));
or rig[shield(lead,I(lead))] = shield(lead,I(lead)))

Children
twist

meet
0x22a94d1bc7016fb4422f0dab55c9c3800b9b98d70cbbb4198a8bc4bff7c15c9bb8

Notes
Because the meet is a twist, its reference is the identifier for the twist which

instantiates it.

Possible issues
INVALID The meet’s tether is NULL

Children
twist

post
0x224abe314aa6feb47cdfdc2b07c00c64a2b668f0d9edd4454d95e6c8c01254e73c

Notes
Because the post is a twist, its reference is the identifier for the twist which

instantiates it.

Possible issues
UNKNOWN The post’s tether has an unassigned shape
INVALID The post’s tether is NULL or has a non-twist, non-UNIT shape

Children
twist

post-key
0x227290df7d067bf0608a4785024376d744e50b7c4d285ddd5c3b932e8e78e3ce26

Notes
This is treated as a logical object. Its reference is the twist identifier for the

post whose rigging trie is being examined (i.e. the same reference as the sibling
post structure status).

38

Possible Issues
MISSING there is no atom whose identifier matches post.rigs
UNKNOWN the post’s rigging has an unassigned shape
INVALID the post’s rigging has a non-trie shape
MISMATCH cannot find the ‘lead‘ in the post’s rigging, or the value for that

key is not the hoist’s identifier

No Children

topline
0x22031c1b1fc93d62b5cac2456f2408a0e4fe6c30560efc82a4270864fbb779e520

Notes
This is a logical object. Its reference is the hoist for the hitch it is the topline

of (which is also its most recent twist).

Possible issues
MISMATCH the provided topline does not include the provided fastener as one

of its twists (i.e., NULL is reached)

Children
succession[] A reverse-chronological list of succession objects, start-

ing at the hoist and ending at the successor of the fas-
tener. If a succession object is non-green, this list is
short-circuited

topline-key[] A reverse-chronological list of topline-key structure
statuses, starting at the predecessor of the hoist and
ending at the successor of the fastener.

topline-key
0x22e335eaae9e2cbbf1f1139999dd67c7ad9370a63d30e16a6eb4615d158b459e7b

Notes
This is treated as a logical object. Its reference is the identifier for the twist

(in the topline) whose trie contents are being reported on.

Possible issues
INVALID the rigging shape is a known non-trie, non-NULL shape
MISMATCH the rigging trie provided satisfies the hoist condition for the pro-

vided lead
MISSING there is insufficient rigging trie data to establish whether the trie

satisfies the hoist condition
UNKNOWN the rigging shape is not a known shape

No Children

9.6 Rigging Structure Statuses

These are the results from the checks to ensure that provided rigging is consistent
with the description in Section 7.

39

Because each rig could be either of: a single half-hitch, the result of a lashing
operation, or the result of a splicing operation, the rig status object is taken
to include all of these things. In particular, one of the operands in the splicing
operation (the one whose leadline has a length of 1) must be either a single
half-hitch, or the result of a lashing operation. Likewise, one of the operands in
the lashing operation muse be a single half-hitch.

Thus our rig object is taken to have a rig and a splice as optional children,
which are null if the rig’s leadline has a length of 1. The rig supporting the most
recent fast segment of the leadline is handled in the remaining objects.

Of these remaining objects, there is another rig object, and a lashing

object, which are also optional (they are null if the most recent fast segment of
the leadline is supported by a single half-hitch), and a mandatory half-hitch

object, which always represents the half-hitch whose footline is the most recent
fast segment of the leadline.

rig
0x22d7357365f862a15d5fc6de991334e96c084bbabfcff1150425c9944fb3937a9e

Notes

• The reference for this structure status is the identifier of the earliest twist
on its leadline.

Possible Issues
INVALID The corkline does not support this rig’s leadline
MISMATCH The leadline of this rig is not disjoint from its corkline

Children
corkline The corkline specified by arguments to the check
lash

splice This object is only present if this rig is being spliced
onto a previous rig

half-hitch The half-hitch whose lead is the earliest twist on the
rig’s leadline

hitch A hitch object with a post equal to the meet of the
half-hitch specified above. This object is only present
if there is a splice

corkline
0x222db7e19336b76c355ec281232f9aaad367d4a8544f092e4f147ca5bf7344cd8e

Notes
This is a logical object. Its reference is the identifier for the most recent

twist in the corkline.

Possible Issues
MISMATCH The corkline traversal reached NULL rather than the specified ear-

liest twist

40

Children
succession[] A list of succession objects in reverse chronological or-

der, starting at the specified end twist

splice
0x22fd2e95961c3986ff20ea8371b2406f24fe893a1faaf7759276c9704c1143aa3c

Notes
This is a logical object. Its reference is the identifier of the twist in the

leadline that is common to the two rigs being spliced.

Possible Issues
MISMATCH The meet of the hitch does not match the meet of the spliced half-

hitch
MISMATCH The hoist of the hitch does not match the hoist of the spliced half-

hitch
MISMATCH A tether loop was detected while checking the splice
UNKNOWN A tetherline which exceeded the checker’s maximum height was

detected while checking the splice

Children
rig The rig that is spliced onto the earlier side of the par-

ent rig

lash
0x22586938dc68fa248d582fd7f76adf6f67da179f7baa547e6bc485869545c58d7a

Notes
This is a logical object. Its reference is the identifier of the meet from the

bottom half-hitch.
Possible Issues
MISMATCH A tether loop was detected while checking the lash
UNKNOWN A tetherline which exceeded the checker’s maximum height was

detected while checking the lash

Children
rig The rig that the sibling half-hitch of this lash structure

status is lashed onto (the bottom of)
fast-tether

lashing-trie

fast-tether
0x228b730494b3603f48d0650380107043ec621890db2cc421339f713fb38f126ab9

Notes

• This is a logical object. Its reference is the (twist) identifier of the lead
in the half-hitch (inside the grandparent rig) which is being lashed (via
parent lash) up to a (sibling) rig.

41

• This object verifies the line connecting the tether of the lead just men-
tioned, to the fast tether of said same lead

Possible Issues
MISMATCH The tether and all its predecessors back to NULL are loose
MISSING A fast tether could not be found from the provided tether and

predecessors

Children
succession[] a list of succession objects in reverse chronological or-

der, starting at the fastener of the half-hitch (from the
grantparent rig)

lashing-trie
0x22b4cee32aea047c8aa6236bf95e9ad24991e9d57f5c7d6c9a0b0ef2ff662a21bd

Notes

• This is a logical object. It is referenced by the identifier of the the twist
with a missing rigging trie.

• This object ensures that the leadline of the (upper) rig in the lashing
has sufficient rigging trie information to properly establish a hoist for the
(lower) half-hitch

• The name of this object is subject to change (we don’t think it fits our
conventions very well, and don’t like it).

Possible Issues
MISSING The referenced twist’s rigging trie has missing information

A Notation Conventions

A number of data structures are described in this document, as well as functions
and relations between them. They are, like code, in the monospace font, with
camelCase names.

Some relations and expectations are defined by reference to iterated func-
tions. Iteration of functions are denoted by superscripts in the usual manner
(i.e. fn0(obj) = obj and fnn+1(obj) = fn(fn

n
(obj))).

The term hash refers to a cryptographic hash function when used as a verb,
unless otherwise specified. When used as a noun, it refers to the result of
applying a cryptographic hash function, unless otherwise specified.

The term trie is used to refer to Merkle tries, as well as other key-value
structures that are equally cryptographically secure, such as the pairtrie struc-
ture. Additionally, in a trie trie, the value associated with a key key is denoted
as trie[key].

When the value associated with the key in a trie is itself a trie in which a
value is being looked up, evaluation is done from left to right – i.e. if trie[key0]

42

is itself a trie, then the value associated with the key1 in that trie is denoted
trie[key0][key1].

The notation a|b is used to for the concatenation of a and b, as bytestreams,
with a preceding b.

Constant bytestreams are represented in hexadecimal with a preceding 0x.

B Rig Traversal Example

In order to demonstrate how the rig traversal algorithm verifies the various
components of a rig, the following example has been constructed. It includes
an assortment of tether transitions and other such elements that are expected
to be relatively commonplace in actual implemented rigs (and a few that are
expected to be less common, but nonetheless possible). The line containing
the twists whose labels begin with a will be referred to as the A line, etc. The
labelled twists are not intended to constitute all the twists in the rig, however
any unlabelled twists (except those in the K line are required to be loose.

f0 f1 f2 f3 f4 f5

a0

a1 a2

a3

a4 a5

a6

b0
b1 b2

c0
c1 c2 c3

c4

r0

r1

r2

s0 s1

t0
t1 t2 t3

k0 k1 k2 k3 k4 k5

t4

A rig checker shall be provided with all the the atoms needed to construct this
rig, and will additionally take as arguments: the (bottom-left) twist f0 whose

43

successors are being checked for support, the (bottom-right) twist f5 whose
support as a successor is bring checked, the (top-right) twist k5 supporting
the rig, and the (top-left) twist k0 which is the oldest corkline twist needed to
support the leadline.

The steps to be undertaken by a rig checker following the traversal algorithm
provided in Section 7.3 are as follows:

1. The (cork)line K is checked (and recorded in the linestore) by following
prev(s) from k5 to k0.

2. The tether of f0 is followed to to a1.

3. Because a1 is not on a line in the linestore, it is on a line that still requires
support. Further because it is loose, to get this support we follow prev(s)
until we reach a fast twist a0.

4. The tether of a0 is followed to to r0.

5. Because r0 is not on a line in the linestore, it is on a line that requires
support. Further, because it is fast, we can get this support by following
its tether to k1.

6. Because k1 is in K, we trace forward on K until we reach a twist whose
rigging trie meets the criteria to hoist r0; that twist is k3.

7. Having k3 we can now inspect the half-hitch with r0 as a lead and k3 as
a hoist. This yields R as a footline (which is recorded in the linestore).

8. Because r0 is on R which is now in the linestore, we trace forward on R

until we reach a twist whose rigging trie meets the criteria to hoist a0;
that twist is r1.

9. Having r1 we can now inspect the half-hitch with a0 as a lead and r1 as
a hoist. This yields A’ (a subline of A from a0 to a3) as a footline (which
is recorded in the linestore).

10. Because a1 is on A’ which is now in the linestore, we trace forward on A’

until we reach a twist whose rigging trie meets the criteria to hoist f0 –
but A’ does not contain such a twist, so we continue along A.

11. Because a3 is the most recent twist in A’, the tether of a3 is followed to
s0.

12. Because s0 is not on a line in the linestore, it is on a line that still requires
support. Further, because it is fast, we can get this support by following
its tether to k0.

13. Because k0 is in K, we trace forward on K until we reach a twist whose
rigging trie meets the criteria to hoist s0; that twist is k4.

44

14. Having k4 we can now inspect the half-hitch with s0 as a lead and k4 as
a hoist. This yields S as a footline (which is recorded in the linestore).

15. Because s0 is on S which is now in the linestore, we trace forward on S

until we reach a twist whose rigging trie meets the criteria to hoist a3;
that twist is s1.

16. Having s1 we can now inspect the half-hitch with a3 as a lead and s1 as
a hoist. This yields A’’ (a subline of A from a3 to a6) as a footline (which
is not yet recorded in the linestore).

17. Because the starting twist of A’’ is the same as the ending twist of A’
(namely a3), we verify the splice of the rigs which meet at a3 (i.e. those
supporting A’ and A’’). This includes verifying that a6 is the post of the
hitch with a0 as a lead. This verification being done, A’ is extended in
the linestore by A’’, yielding A in the linestore.

18. Because a1 is on A which is now in the linestore, we trace forward on A

until we reach a twist whose rigging trie meets the criteria to hoist f0;
that twist is a4.

19. Having a4 we can now inspect the half-hitch with f0 as a lead and a4 as
a hoist. This yields F1 as a footline (which is recorded in the linestore).
The meet of this half-hitch f1 is not f5, so we continue along F.

20. Because f1 is the most recent twist in F1, the tether of f1 is followed to
a2.

21. Because a2 is on A which is in the linestore, we trace forward on A until we
reach a twist whose rigging trie meets the criteria to hoist f1; that twist
is a5.

22. Having a5 we can now inspect the half-hitch with f1 as a lead and a5

as a hoist. This yields F′2 as a footline (which is not yet recorded in the
linestore).

23. Because the starting twist of F′2 is the same as the ending twist of F1
(namely f1), we verify the splice of the rigs which meet at f1 (i.e. those
supporting F′2 and F1). Thus includes verifying that f2 is the post of the
hitch with f0 as a lead. This verification being done, F1 is extended in
the linestore by F′2, yielding F2 in the linestore.

24. The bottom-right of the verified rig is f2, not f5, so we continue along F

and follow the tether from f2 to b1.

25. Because b1 is not on a line in the linestore, it is on a line that still requires
support. Further because it is loose, to get this support we follow prev(s)
until we reach a fast twist b0.

26. The tether of b0 is followed to to t0.

45

27. Because t0 is not on a line in the linestore, it is on a line that requires
support. Further, because it is fast, we can get this support by following
its tether to k2.

28. Because k2 is in K, we trace forward on K until we reach a twist whose
rigging trie meets the criteria to hoist t0; that twist is k5.

29. Having k5 we can now inspect the half-hitch with t0 as a lead and k5 as
a hoist. This yields T as a footline (which is recorded in the linestore).

30. Because t1 is on T which is now in the linestore, we trace forward on T

until we reach a twist whose rigging trie meets the criteria to hoist b0;
that twist is t2.

31. Having t2 we can now inspect the half-hitch with b0 as a lead and t2 as
a hoist. This yields B as a footline (which is recorded in the linestore).

32. Because b1 is on B which is now in the linestore, we trace forward on B

until we reach a twist whose rigging trie meets the criteria to hoist f2;
that twist is b2.

33. Having b2 we can now inspect the half-hitch with f2 as a lead and b2

as a hoist. This yields F′3 as a footline (which is not yet recorded in the
linestore).

34. Because the starting twist of F′3 is the same as the ending twist of F2
(namely f2), we verify the splice of the rigs which meet at f2 (i.e. those
supporting F′3 and F2). This includes verifying that f3 is the post of the
hitch with f1 as a lead. This verification being done, F2 is extended in
the linestore by F′3, yielding F3 in the linestore.

35. The bottom-right of the verified rig is f3, not f5, so we continue along F

and follow the tether from f3 to c0.

36. Because c0 is not on a line in the linestore, it is on a line that requires
support. Further, because it is fast, we can get this support by following
its tether to t1.

37. Because t1 is on T which is in the linestore, we trace forward on T until we
reach a twist whose rigging trie meets the criteria to hoist c0; that twist
is t3.

38. Having t3 we can now inspect the half-hitch with c0 as a lead and t3 as
a hoist. This yields C as a footline (which is recorded in the linestore).

39. Because c0 is on C which is now in the linestore, we trace forward on C

until we reach a twist whose rigging trie meets the criteria to hoist f3;
that twist is c2.

46

40. Having c2 we can now inspect the half-hitch with f3 as a lead and c2

as a hoist. This yields F′4 as a footline (which is not yet recorded in the
linestore).

41. Because the starting twist of F′4 is the same as the ending twist of F3
(namely f3), we verify the splice of the rigs which meet at f3 (i.e. those
supporting F′4 and F3). Thus includes verifying that f4 is the post of the
hitch with f2 as a lead. This verification being done, F3 is extended in
the linestore by F′4, yielding F4 in the linestore.

42. The bottom-right of the verified rig is f4, not f5, so we continue slong F

and follow tether from f4 to c1.

43. Because c1 is on C which is in the linestore, we trace forward on C until we
reach a twist whose rigging trie meets the criteria to hoist f4; that twist
is c3.

44. Having c3 we can now inspect the half-hitch with f4 as a lead and c3

as a hoist. This yields F′5 as a footline (which is not yet recorded in the
linestore).

45. Because the starting twist of F′5 is the same as the ending twist of F4
(namely f4), we verify the splice of the rigs which meet at f4 (i.e. those
supporting F′5 and F4). This includes verifying that f5 is the post of the
hitch with f3 as a lead. This verification being done, F4 is extended in the
linestore by F′5, yielding F in the linestore, and completing the verification.

C Glossary

In addition to terms and definitions, this glossary includes a symbol for each
term. Translations and terminology shifts may change the particular words we
use, but these symbols provide canonical nomenclature for the concepts.

arb An atom containing arbitrary binary data
0x224629c3aada7d7435c0f80430f92313c265dd9f6522e930d9c64dc77d11809866

atom
An identifier concatenated with its matching packet
0x228967b176fed39884dc895c6e45bb17c1eb5acf770d9180f6145bff0508c99652

basic body
A simple body shape containing all twist elements except for the satis-
factions
0x2286dcf3cae43636d736de687478bcb9c8fda275628e759b3685e1ab77d3a0fc40

basic twist
A simple twist shape containing a body and a satisfactions trie
0x226d5fbc31b56883513b96fb17ce9476b0c535040890d00eeb565effaa32d7c5c7

47

body Twist element that is not the satisfactions
0x2295085430dc7c03412d07e4ff91dd5c2c961cccd6ef910f63a408d6f315e41fa3

cargo
Twist body element containing cargo information
0x22da124d85769da9ef497178c90666f9b218bfaf529bed80cfbc3ddc0ed0f37eee

corkline
The line in a rig that provides integrity by supporting the leadline; rhymes
with dorkline
0x222db7e19336b76c355ec281232f9aaad367d4a8544f092e4f147ca5bf7344cd8e

fast A fast twist has a non-NULL value for its tether element
0x2214939b77d4af6d8cbb56599f4b5a0405c02f155da77c5ad801885833623f618a

fastener
The first twist on the topline of a hitch, and tether of the hitch’s lead
0x2208632db7be34fcb88c72048c3dee66a1de6a9e8b554494bc60a56e94447d58bf

footline
The line in a hitch containing the lead, meet, and post
0x221ff39e9e734a7a758e7a8f36187cf3172ca613d3f904e6d3663c856919624aa1

identifier
A hash algorithm byte, followed by a fixed number of bytes determined
by that hash algorithm
0x2295e1873822a7fbe7eda22b4a895593aaf6ae47645741c3884a21b7c83d810061

half-hitch
A hitch without the post, and with a footline terminating at the meet;
also a minimal rig
0x222008d2f5c875b46e4f52896ecae0c12f686cc43f57409bde83760fe50388b868

hitch Fundamental unit of rigging
0x22d0eb6e7af1ca49d58104b3862955078f2e33a1c67645e15459d6808157fd5c88

hoist The first twist in the topline of a hitch that connects the lead and the meet
0x22863bfdc943c67ed29ee7a3e199ac281e93df674809a4a7795317ded106210b30

lash The result of lashing
0x22586938dc68fa248d582fd7f76adf6f67da179f7baa547e6bc485869545c58d7a

lashing
Vertical composition operator for rigs
0x2234962a88b36217584749c86973c6ad924e58e3b4808287b2e07310ca1b64d47d

lead The first fast twist on the footline of a hitch; rhymes with mead
0x2288dc9ca034029a13c404ecf210d42698c9971ad78594d72c6e790dc5c4945b2f

48

leadline
The line in a rig that is gaining integrity by support from the corkline;
rhymes with deadline
0x22c0f2930535e522db887925af31c97d204c94eb059869f53c6a548b100ed6daa8

line A sequence of successor twists
0x22366a8aa7e49d39bd21eb95cf26c6b6e899d9213b4c80b638c7d352b68c24954e

meet The second fast twist on the footline of a hitch; rhymes with meat
0x22a94d1bc7016fb4422f0dab55c9c3800b9b98d70cbbb4198a8bc4bff7c15c9bb8

packet
A shape byte and four bytes of length, followed by length additional bytes
0x228ecb044099eab83fbd52b6ddc505b82d57376d1afc7cdb8263146ccf2f6a85eb

pairtrie
A simple trie shape containing an ordered list of keys and their values
0x22d9cc0f7b6e15db2cd47642bc32502194ab4737d3eece406e0ebe9320f76677df

post The third and final fast twist on the footline of a hitch; rhymes with most
0x224abe314aa6feb47cdfdc2b07c00c64a2b668f0d9edd4454d95e6c8c01254e73c

predecessor
A twist that precedes another through prev chaining
0x22b02f4d647e52783e5287a421874f60cf05b2f0de7460366e0f2ec6e464a9ee64

prev Twist body element containing the previous twist
0x22158e49e4e6239b1d4649ea36ab7a8cbd0a15ccfb5c26fb5cc313d622894a15d8

requirements
Twist element that be satisfied by a legitimate successor
0x2296b985194b1e7ae9034a021c5fbe2a3ab0eb93bfe3375fec28530037ee9d501a

rig A cryptographic data structure proving the corkline supports the leadline
0x22d7357365f862a15d5fc6de991334e96c084bbabfcff1150425c9944fb3937a9e

satisfactions
Twist element that attempts to meet the requirements of its predecessor
0x22bae131f4c554fdf8a8f0bc6bfe255b6592733c6b13b1e9e3748dce5b3fd6f466

shape
A byte at the beginning of a packet describing its data structure
0x22e2b6f5b7b675160d08dea05d32f992c35cf4e219ce9f6f718f14303994b0477e

shield
Twist body element containing the shield information
0x22695cc55218f63f312343fe5a43f8bb8bcde964e70dc2370bb495c2f734d56b68

splice
The result of splicing
0x22fd2e95961c3986ff20ea8371b2406f24fe893a1faaf7759276c9704c1143aa3c

49

splicing
Horizontal composition operation for rigs
0x228fe955023b969ad90028010fbbd1e43095cfd3e7ce76b87a532d6e6c9101d3f3

successor
A twist that succeeds another through inverse prev chaining
0x22292105b6e05dd9eb8d77f276b1af78cd398509089ad43a895d1d7d25c9993673

support
A line L1 supports L2 when L2 has the same integrity as L1
0x2292daacaece9550dd3d7eaf51f7fcfad64b327c6bc64763e7148d9a8dab50dac5

symbol
An atom formed of a single identifier containing 32 arbitrary byes
0x22274a4d3486b3e29eb56ba22a727d7f39cecbe3d2bca67ca78652d2fa761d17b4

tether
Twist body element containing the tether twist
0x220de6828f486f46b3da3a23ec23900e6d7b709d80373015023e775a5438a404c1

topline
The line in a hitch containing the fastener and the hoist
0x22031c1b1fc93d62b5cac2456f2408a0e4fe6c30560efc82a4270864fbb779e520

trie A data type for recording key-value pairs
0x22b72533ee7c1fee3ef7a39ad923c16b0fe504d39f5271af1e3639ef6e42ccc4d7

twist An update to a line, a placemoment in spacetime, a name and a now
0x221267ca19a66c372b90849cb4f807f6c22b1f36c1057f6bba4f5209b12827beae

D Credits and Acknowledgements

Toliver dreamt it. Coward and Toliver worked it, formalized it, specified it.
Sulpizi contributed while writing the Clojure implementation, and helped shape
status objects. Gravitis contributed while writing the JS implementation. Ev-
erson, Fertman, Moir and Levin contributed valuable feedback.

The authors are grateful to TODAQ for their generous financial support of
this work.

References

[1] Kris Coward and D. R. Toliver, Simple rigs hold fast, 2022.

[2] , Simple rigs hold fast, 2022.

[3] Adam Gravitis and D. R. Toliver, Adot objects: Units of meaning in the
world of rigging, Tech. report, 2022.

50

	Introduction
	Atoms
	Identifiers
	Packets
	Atoms
	List of Atoms
	Errors
	Atomic Errors
	Nospec Errors
	Lat Errors

	Shapes
	Shape Errors

	Twists
	Basic Twist Shape
	Basic Body Shape

	Lines
	Requirements and Satisfactions
	Signature Reqsats
	List Reqsats

	Hitches
	Hoisting
	Shield details

	Length and Height

	Rigging
	Splicing
	Lashing
	Traversal Algorithm

	Commentary
	Error Handling Notes
	Evolution and Modularity

	Status Abjects
	Description
	Basics
	Colours
	Issues
	Children
	Logical Objects

	Twist Structure Statuses
	Reqsat Structure Statuses
	List Reqsat Structure Statuses
	Signature Reqsat Structure Statuses

	Line Structure Statuses
	Hitch Structure Statuses
	Rigging Structure Statuses

	Notation Conventions
	Rig Traversal Example
	Glossary
	Credits and Acknowledgements

