
S Y M M E T R Y

Am Anfang war die Symmetrie – In the beginning was symmetry!

Werner Heisenberg, Der Teil und das Ganze:
Gespräche im Umkreis der Atomphysik, 1969,

English translation, Physics and Beyond, 1971.

by

Marc Bezem

Ulrik Buchholtz

Pierre Cagne

Bjørn Ian Dundas

Daniel R. Grayson

Book version: 566bcea (2026-01-22)

ii

Copyright © 2025 by Marc Bezem, Ulrik Buchholtz, Pierre Cagne,

Bjørn Ian Dundas, and Daniel R. Grayson. All rights reserved.

This work is licensed under the Creative Commons Attribution-ShareAlike

4.0 International License. To view a copy of this license, visit:

http://creativecommons.org/licenses/by-sa/4.0/

This book is available at: https://unimath.github.io/SymmetryBook/book.pdf

To cite the book, the following BibT
E
X code may be useful:

@misc{Symmetry,

title = {Symmetry},

author = {Marc Bezem and Ulrik Buchholtz and Pierre Cagne

and Bjørn Ian Dundas and Daniel R. Grayson},

date = {2026-01-22},

howpublished = {\url{https://github.com/UniMath/SymmetryBook}},

note = {Commit: \texttt{566bcea}}

}

http://creativecommons.org/licenses/by-sa/4.0/
https://unimath.github.io/SymmetryBook/book.pdf

Short contents

Short contents · iii

Contents · v

1 Introduction to the topic of this book · 1

2 An introduction to univalent mathematics · 8

3 The universal symmetry: the circle · 64

4 Groups, concretely · 99

5 Group actions and subgroups · 122

6 A categorical interlude · 147

7 Groups, abstractly · 158

8 Constructing groups · 172

9 Normal subgroups and quotients · 185

10 Finite groups · 209

11 Group presentations · 216

12 Abelian Groups · 225

13 Rings, fields and vector spaces · 234

14 Geometry and groups · 246

15 Galois theory · 254

A Historical remarks · 257

B Metamathematical remarks · 258

Bibliography · 268

Glossary · 271

iii

short contents iv

Index · 274

Contents

Short contents · iii

Contents · v

1 Introduction to the topic of this book · 1

2 An introduction to univalent mathematics · 8

2.1 What is a type? · 8

2.2 Types, elements, families, and functions · 9

2.3 Universes · 12

2.4 The type of natural numbers · 13

2.5 Identity types · 15

2.6 Product types · 19

2.7 Identifying elements in members of families of types · 20

2.8 Sum types · 22

2.9 Equivalences · 23

2.10 Identifying pairs · 26

2.11 Binary products · 28

2.12 More inductive types · 28

2.13 Univalence · 32

2.14 Heavy transport · 33

2.15 Propositions, sets and groupoids · 34

2.16 Propositional truncation and logic · 39

2.17 More on equivalences; surjections and injections · 41

2.18 Decidability, excluded middle and propositional resizing · 44

2.19 The replacement principle · 45

2.20 Predicates and subtypes · 45

2.21 Pointed types · 48

2.22 Operations that produce sets · 49

2.23 More on natural numbers · 54

2.24 The type of finite sets · 56

2.25 Type families and maps · 58

2.26 Higher truncations · 60

2.27 Higher structure: stuff, structure, and properties · 62

3 The universal symmetry: the circle · 64

3.1 The circle and its universal property · 64

3.2 The integers · 67

3.3 Set bundles · 68

3.4 The symmetries in the circle · 73

3.5 A reinterpretation of the circle · 75

v

contents vi

3.6 Connected set bundles over the circle · 79

3.7 Interlude: combinatorics of permutations · 87

3.8 The 𝑚th
root: set bundles over the components of Cyc · 88

3.9 Higher images · 92

3.10 Universal property of Cyc𝑛 · 96

4 Groups, concretely · 99

4.1 Brief overview of the chapter · 99

4.2 The type of groups · 100

4.3 Abstract groups · 106

4.4 Homomorphisms · 108

4.5 The sign homomorphism · 113

4.6 Bicycles · 116

4.7 Infinity groups (∞-groups) · 120

5 Group actions and subgroups · 122

5.1 Brief overview of the chapter · 122

5.2 Group actions (𝐺-sets) · 122

5.3 Subgroups · 128

5.4 Invariant maps and orbits · 133

5.5 The classifying type is the type of torsors · 140

5.6 Any symmetry is a symmetry in Set · 143

5.7 The lemma that is not Burnside’s · 144

6 A categorical interlude · 147

6.1 Brief overview of the chapter · 147

6.2 Categories · 148

6.3 Abstract notions and duality · 152

6.4 Functors and natural transformations · 153

6.5 Adjunctions · 156

6.6 Limits and Colimits · 157

6.7 The Yoneda Lemma · 157

6.8 Monoidal categories · 157

7 Groups, abstractly · 158

7.1 Brief overview of the chapter · 158

7.2 Monoids and abstract groups · 158

7.3 Abstract homomorphisms · 161

7.4 Groups: from abstract to concrete and back · 162

7.5 Homomorphisms, from abstract to concrete and back · 165

7.6 Actions, from abstract to concrete and back · 168

7.7 Heaps (†) · 170

8 Constructing groups · 172

8.1 Brief overview of the chapter · 172

8.2 Semidirect products · 172

8.3 Wreath products · 176

8.4 The pullback · 176

8.5 Pushouts of types · 178

8.6 Sums of groups · 178

contents vii

8.7 Free groups · 182

9 Normal subgroups and quotients · 185

9.1 Brief overview of the chapter · 185

9.2 Epimorphisms · 185

9.3 Images, kernels and cokernels · 188

9.4 The action on the set of subgroups · 194

9.5 Normal subgroups · 195

9.6 Intersecting with normal subgroups · 200

9.7 Automorphisms of groups · 201

9.8 The Weyl group · 204

9.9 The isomorphism theorems · 206

9.10 More about automorphisms · 206

10 Finite groups · 209

10.1 Brief overview of the chapter · 210

10.2 Lagrange’s theorem, counting version · 210

10.3 Cauchy’s theorem · 212

10.4 Sylow’s Theorems · 213

11 Group presentations · 216

11.1 Brief overview of the chapter · 216

11.2 Graphs and Cayley graphs · 217

11.3 Examples · 220

11.4 Subgroups of free groups · 220

11.5 Intersecting subgroups · 223

11.6 Connections with automata (*) · 223

12 Abelian Groups · 225

12.1 Brief overview of the chapter · 225

12.2 Abelian groups · 225

12.3 Direct sums and reduced wreath products · 233

12.4 Stabilization · 233

13 Rings, fields and vector spaces · 234

13.1 Rings, abstract and concrete · 234

13.2 vector spaces · 244

13.3 the general linear group as automorphism group · 245

13.4 determinants (†) · 245

13.5 examples: rationals, polynomials, adding a root, field

extensions · 245

13.6 ordered fields, real-closed fields, pythagorean fields, euclidean

fields · 245

13.7 complex fields, quadratically closed fields, algebraically closed

fields · 245

14 Geometry and groups · 246

14.1 Inner product spaces · 246

14.2 Euclidean spaces · 247

14.3 Geometric objects · 249

contents viii

14.4 The icosahedron · 250

14.5 Frieze patterns · 250

14.6 Incidence geometries and the Levi graph · 250

14.7 Affine geometry · 250

14.8 Inversive geometry (Möbius) · 252

14.9 Projective geometry · 252

15 Galois theory · 254

15.1 Covering spaces and field extensions · 254

15.2 Intermediate extensions and subgroups · 256

15.3 separable/normal/etc. · 256

15.4 fundamental theorem · 256

A Historical remarks · 257

B Metamathematical remarks · 258

B.1 Equality by definition · 259

B.2 The Limited Principle of Omniscience · 260

B.3 Topology · 261

B.4 Choice for finite sets (†) · 261

Bibliography · 268

Glossary · 271

Index · 274

1
Introduction to the topic of this book

Poincaré sagte gelegentlich, dass alle Mathematik eine Gruppenge-
schichte war. Ich erzählte ihm dann über dein Programm, das er
nicht kannte.

Poincaré was saying that all of mathematics was a tale about groups.
I then told him about your program, which he didn’t know about.

(Letter from Sophus Lie to Felix Klein, October 1882)

Since this book is called “Symmetry” it is reasonable to hope that

by the time you’ve reached the end you’ll have a clear idea of what

symmetry means.

Ideally the answer should give a solid foundation for dealing with

questions about symmetries. It should also equip you with language

with which to talk about symmetries, making precise – but also reflecting

faithfully – the intuition humans seem to be born with.

So, we should start by talking about how one intuitively can approach

the subject while giving hints about how this intuition can be made into

the solid, workable tool, which is the topic of this book.

What is symmetry?

When we say that something is “symmetric” or possesses many “sym-

metries”, we mean that the thing remains unchanged, even if we “do

things to it.” The best examples to begin with is if the something is some

shape, for instance this square □. Rotating by 90 degrees doesn’t change

it, so we may say that “rotation by 90 degrees is a symmetry of □” Of

course, rotating by 90 degrees will move individual points in □, but that

is not of essence – the shape remains the same. However, the outcome

of rotating by 360 degree or not at all is the same - even from the point

of view of each individual point in □ – so it probably feels contrived to

count rotations by 0 and 360 degrees as different rotations.

It feels reasonable to consider the rotations by 0°, 90°, 180°, and 270°

to be all the (rotational) symmetries of □. Two thoughts may strike you:

(1) are these all the symmetries?

(2) “rotation” indicates a motion, through different squares, joining □
with itself via a “journey in the world of squares”.

The following cartoon animates a rotation of □ by 90°. The center of

the square should be thought of as being in the same place all the

time.

1

introduction to the topic of this book 2

How is that reconcilable with a precise notion of symmetry?

The answer to the first question clearly depends on the context. For

example, if we allow reflections the answer is “no”. Each context has its

own answer to what the symmetries of the square are.

Actually, the two questions should be seen as connected. If a symmetry

of □ is like a round trip (loop) in the world (type) of squares, what

symmetries are allowed is dependent on how big a “world of squares”

we consider. Is it, for instance, big enough to contain a loop representing

a reflection?

We argue that in order to pin down the symmetries of a thing (a

“shape”), all you need to do is specify

(1) a type 𝑋 (of things), and

(2) the particular thing 𝑥 (in 𝑋).

It is (almost) that simple!

Note that this presupposes that our setup is strong enough to support

the notion of a round trip.

From “things” to mathematical objects

Different setups have different advantages. The theory of sets is an

absolutely wonderful setup, but supporting the notion of a round trip in

sets requires at the very least developing fields like mathematical analysis,
topology and homotopy theory, which (while fun and worthwhile in itself)

is something of a detour.

The setup we adopt, homotopy type theory, or univalent foundations,

seems custom-built for supporting the notion of a round trip of a thing

𝑥 in a type 𝑋. We get support for important operations on round trips

of 𝑥: one can do such round trips after another (composition), one can

go any round trip in the reversed direction (inverse), and there is always

the trivial round trip of staying in place (unit). This provides round trips

with a structure that is called a group in mathematics, satisfying all the

properties that these operations ought to have.

In practice, one of the most important things is to be able to compare
symmetries of “thing 1” and “thing 2”. In our case this amounts to

nothing but a function, 𝑓 :𝑋1 → 𝑋2, that takes thing 1, 𝑥1 in 𝑋1, to

thing 2, 𝑥2 in 𝑋2.

𝑋1

𝑥1
𝑓

𝑋2

𝑥2

introduction to the topic of this book 3

𝑥

𝑥

𝑎 𝑏

While such comparisons of symmetries are traditionally handled by

something called a group homomorphism which is a function satisfying a

rather long list of axioms, in our setup the only thing we need to know

of the function is that it really does take thing 1 to thing 2 – everything

else then follows naturally.

Some important examples have provocatively simple representations

in this framework. For instance, consider the circle shown in the margin,

with one designated point 𝑥 on it. Since symmetries of 𝑥 are interpreted

as loops, you see that you have a loop for every integer – the number

7 can be represented by looping seven times counterclockwise. As we

shall see, in our setup any loop in the circle is naturally identified with

a unique integer (the winding number if you will). Everything you can

wish to know about the structure of the group of integers is built-in in the

circle.

Another example is the free group of words in two letters 𝑎 and 𝑏. This

is represented by the figure eight in the margin. In order to be able to

distinguish the two circles we call them 𝑎 and 𝑏, with the point 𝑥 as the

(only) point on both. The word 𝑎𝑏2𝑎−1
is represented by looping around

circles 𝑎 and 𝑏 respectively 1, 2 and −1 times in succession – notice that

since the 𝑏2
is in the middle it prevents the 𝑎 and the 𝑎−1

from meeting

and cancelling each other out. If you wanted the abelian group on the

letters 𝑎 and 𝑏 (where 𝑎 and 𝑏 are allowed to move past each other), you

should instead look at the torus:

𝑎

𝑏

Just why this last example works can remain a puzzle for now.

The importance of the ambient type 𝑋 “of things”

In many situations, the type 𝑋 “of things” can be more difficult to draw,

or to define mathematically. For instance, what is the “type of all squares”

which we discussed earlier, representing all rotational symmetries of □?

You have perhaps already visualized it as the type of all squares in the

plane, with □ being the shape the loop must start and stop in. This idea

works well for the oriented square depicted in the margin. Note that the

only reflective symmetry of the oriented square is reflection in the center

– and the outcome is the same as a rotation by 180°. However, for □ we

would get reflective symmetries that are not rotations. It is actually a

little difficult to come up with a simple geometry of the plane that gives

exactly the rotational symmetries of □. Later in the book, we will first

pursue an algebraic approach, using that any rotational symmetry of □
can be reached by doing the 90°-rotation a few times, together with the

fact that taking any loop four times reduces to not doing anything at all:

they represent the cyclic group of order four.
A by-product of this line of thinking is the distinguished position of

the circle. To express this it is convenient to give names to things: let •

introduction to the topic of this book 4

Type of empty sets:

flying elephants

live dodos

· · ·

Type of one-element sets:

{1}

{Calvin}

· · ·

Type of two-element sets:

{1, 2}
{Calvin,Hobbes}

{9, Louise}

{Thelma,Hobbes}

· · ·

.

.

.

(i.e., a dot) be the chosen base point in the circle and ⟲ the loop winding

once around the circle counterclockwise. Then a symmetry of a shape

𝑥0 in 𝑋 is uniquely given by the image of ⟲ under a function S1 → 𝑋

taking • to 𝑥0. So,

the study of symmetries is the study of (pointed) functions

between types of things, with the circle being the type that

gives you access to individual symmetries.

This is similar to the idea of replacing membership in a set 𝑆 by

function from a one-point set 1 into 𝑆: a point 𝑠 in 𝑆 is uniquely given

by the function 1→ 𝑆 taking the value 𝑠.

Just as you don’t need much information about the one-point set to

get this to work, you don’t need much information about the circle to

embark on a study of symmetries. Essentially you need to know of • and

⟲, and that there is no “hidden relation” between the symmetries of •.

Contrast this to the type of squares which has such a “hidden relation”:

where we identified a 360° rotation with doing nothing. This point of

view has the benefit of being readily formalized while offering geometric

intuition.

Symmetries have natural scopes

The natural scope of the symmetries of a thing 𝑥 in a type 𝑋 are the

things in 𝑋 that can be reached from 𝑥 by a journey in 𝑋.

Let’s make this precise with an example. In our setup, as a consequence

of univalence, journeys from one set to another in the type of sets

are uniquely given by one-to-one correspondences between these sets,

commonly called bĳections.
Now consider the set {1, 2, 3}. Then a symmetry of {1, 2, 3} in the type

of finite sets amounts to the same thing as a symmetry of {1, 2, 3} in the

type of sets with three elements: a symmetry of {1, 2, 3}will not “pass

through” sets that have, say, five elements. Think of the type of finite

sets as being the disjoint union of all the types of sets with 𝑛-elements,

where 𝑛 = 0, 1, 2, . . . : if a symmetry is a loop it should not be allowed to

jump between the type of sets with three elements and the type of sets

with five elements.

In fact, any type 𝑋 can be naturally divided into “components”: each

element 𝑥0 in 𝑋 belongs to one and only one component, and the one

𝑥0 belongs to we call 𝑋(𝑥0), and the symmetries of 𝑥0 in 𝑋 may be

identified with the symmetries of 𝑥0 in 𝑋(𝑥0). Hence from the perspective

of symmetries of 𝑥0 only the component containing it matters, and we

confine our discussion to “connected” types of things, i.e., those having

just one component.

The geometric intuition also points to the possibility of seemingly

different symmetries being identified: when looping once around the

circle it shouldn’t matter “how” or “how fast” you do it. Consider the

picture of the abelian group on two letters 𝑎 and 𝑏 from before, but now

together with a more frivolous loop (in pink) homotopic to 𝑎:

introduction to the topic of this book 5

1
There’s a subtle point, which may

be a source of confusion if brushed

under the carpet: a priori there could

be “several ways” in which two

symmetries should be identified.

For many purposes this poses no

problem, but we want to present

a theory that mirrors the classical

theory faithfully, and so restrict

our “types of things” where there

aren’t multiple ways of identifying

symmetries. The technical term –

when we get that far will be “pointed

connected groupoids”. This means

disallowing types like the sphere:

𝑥0

There are fundamentally different

ways of identifying the symmetry

represented of 𝑥0 by the equator

with the trivial symmetry: when

thought of as a rubber band the

equator can contract either over the

north or the south poles (or more

complicated ways). There’s some-

thing called “truncation” which can

fix any type to one of the desired sort

where identifications of symmetries

are unique.

𝑂

𝐴
𝐴′

𝐵

𝐵′
𝐶

𝐶′

Figure 1.1: A perspectivity identifies

the planes determined by the trian-

gles 𝐴𝐵𝐶 and 𝐴′𝐵′𝐶′ in a way that

doesn’t preserve Euclidean distances

or angles.

𝑎

𝑏

You might think of a symmetries of 𝑥0 as a rubber band confined to

the circle and pinned to 𝑥0. In the picture we’ve drawn such a rubber

band (in orange) which can be deformed to 𝑎, and this deformation we

consider as an identification of the two symmetries. In the language we

adopt, this is hard-wired, and so our arguments are independent of any

picture: pictures serve only as inspirations and are very helpful when

trying to discover proofs.
1

Our use of univalent foundations has several advantages. Roughly,

univalence is the assertion that two types are “equivalent” if and only if

there is a “path” (called an “identification”) between them in the (large)

“type of types”. In group theory, two groups share exactly the same

properties if there is an “isomorphism” between them (an invertible

homomorphism), and with univalent foundation this is manifested by

the isomorphism corresponding to a path between the groups in the

type of groups. Hence we can use this path to transport any theorem

about one group to the other: the two groups are “identified”. The

power of univalence is hard to overstate; it will simplify many proofs

and make many statements accessible that otherwise would have been

out of reach.

There are many kinds of symmetry and many ways of studying it.

Euclidean plane geometry is the study of properties that are invariant

under rigid motions of the plane. Other kinds of geometry arise by

considering other notions of transformation. Univalent mathematics

gives a new perspective on symmetries: Motions of the plane are forms

of identifying the plane with itself in possibly non-trivial ways. It may

also be useful to consider different presentations of planes (for instance

as embedded in a common three-dimensional space) and different

identifications between them. For instance, when drawing images in

perspective we identify planes in the scene with the image plane, not

in a rigid Euclidean way, but rather via a perspectivity (see Figure 1.1).

This gives rise to projective geometry.

Does that mean that a plane from the point of view of Euclidean

geometry is not the same as a plane from the point of view of projective

or affine geometry? Yes. These are of different types, because they

have different notions of identification, and thus they have different

properties.

Here we follow Quine’s dictum: No entity without identity! To know

a type of objects is to know what it means to identify representatives of

the type. The collection of self-identifications (self-transformations) of a

given object form a group.

Group theory emerged from many different directions in the latter

half of the 19
th

century. Lagrange initiated the study of the invariants

under permutations of the roots of a polynomial equation 𝑓 (𝑥) = 0,

which culminated in the celebrated work of Abel and Galois, proving

introduction to the topic of this book 6

the unsolvability of general quintic (and higher degree) polynomials by

radicals. In number theory, Gauss had made detailed studies of modular

arithmetic, proving for instance that the group of units of ℤ/𝑛ℤ is cyclic

precisely when 𝑛 is 1, 2, 4, 𝑝𝑘 or 2𝑝𝑘 , where 𝑝 is an odd prime and

𝑘 > 0. Klein was bringing order to geometry by considering groups of

transformation, while Lie was applying group theory in analysis to the

study of differential equations.

Galois was the first to use the word “group” in a technical sense,

speaking of collections of permutations closed under composition. He

realized that the existence of a resolvent equation is equivalent to the

existence of a normal subgroup of prime index in the group of the

equation.

1.0.1 Who is this book for?

At the outset the plan for this book was that it ought to cater for two very

groups of readers. If you already have a classical first course in abstract

group theory, this text has as its ambition that you should gain a new

perspective on the material, and at the same time learn about homotopy

type theory by seeing it applied to a field you are familiar with. However,

at the outset, another audience seemed just as plausible to us: what if

you’re not well versed in abstract algebra, but open to learning about it

from a type theoretic perspective? This might apply to a computer science

student with aspirations towards the many applications of algebra.

The first audience may have become our predominant target as the

book has progressed, partially because it probably is more sizable than

the second since most students have been brain-washed to think only in

terms of sets at the time they’re ready for this book.

1.0.2 Outline of the book

TBD

All of mathematics is a tale, not about groups, but about∞-groupoids.

However, a lot of the action happens already with groups.

Glossary of coercions

Throughout this book we will use the following coercions to make the

text more readable.

• If 𝑋 is the pointed type (𝐴, 𝑎), then 𝑥 :𝑋 means 𝑥 :𝐴.

• On hold, lacking context: If 𝑝 and 𝑞 are paths, then (𝑝, 𝑞) means

(𝑝, 𝑞)=.

• If 𝑒 is a pair of a function and a proof, we also use 𝑒 for the function.

• If 𝑒 is an equivalence between types 𝐴 and 𝐵, we use 𝑒 for the

identification of 𝐴 and 𝐵 induced by univalence.

• If 𝑝 :𝐴 = 𝐵 with 𝐴 and 𝐵 types, then we use 𝑝̃ for the canonical

equivalence from 𝐴 to 𝐵 (also only as function).

• If 𝑋 is (𝐴, 𝑎, . . .)with 𝑎 :𝐴, then pt𝑋 and even just pt mean 𝑎.

introduction to the topic of this book 7

How to read this book

A word of warning. We include a lot of figures to make it easier to follow

the material. But like all mathematical writing, you’ll get the most out of

it, if you maintain a skeptical attitude: Do the pictures really accurately

represent the formal constructions? Don’t just believe us: Think about it!

The same goes for the proofs: When we say that something clearly
follows, it should be clear to you. So clear, in fact, that you could go and

convince a proof assistant, should you so desire.

Acknowledgement

The authors acknowledge the support of the Centre for Advanced Study

(CAS) at the Norwegian Academy of Science and Letters in Oslo, Norway,

which funded and hosted the research project Homotopy Type Theory

and Univalent Foundations during the academic year 2018/19, as well

as the CAS Alumni Fellowship, which financed several meetings and

gatherings instrumental to getting the book closer to its final form.

1
The grammar of a programming lan-

guage consists of all the language’s

rules. A statement or expression in a

programming language is grammati-

cally well formed if it follows all the

rules.

2
A string is a sequence of characters,

such as “qwertyuiop”.

3
In a programming language, the well

formed expression 1/𝑥 may produce

a run-time error if 𝑥 happens to have

the value 0.

4
A Boolean value is either true or false.

5
An example of a floating point number
is . 625 × 233

– the mantissa . 625 and

the exponent 33 are stored inside the

floating point number. The “point”,

when the number is written in base 2
notation, is called “floating”, because

its position is easily changed by

modifying the exponent.

6
In mathematics there are no “run-

time” errors; rather, it is legitimate

to write the expression 1/𝑥 only if

we already know that 𝑥 is a non-zero

real number.

2
An introduction to univalent mathematics

2.1 What is a type?

In some computer programming languages, all variables are introduced

along with a declaration of the type of thing they will refer to. Knowing

the type of thing a variable refers to allows the computer to determine

which expressions in the language are grammatically well formed1
, and

hence valid. For example, if 𝑠 is a string
2

and 𝑥 is a real number, we may

write 1/𝑥, but we may not write 1/𝑠.3
To enable the programmer to express such declarations, names are

introduced to refer to the various types of things. For example, the

name Bool may be used to declare that a variable is a Boolean value
4
, Int

may refer to 32-bit integers, and Real may refer to 64-bit floating point

numbers
5
.

Types occur in mathematics, too, and are used in the same way: all

variables are introduced along with a declaration of the type of thing

they will refer to. For example, one may say “consider a real number

𝑥”, “consider a natural number 𝑛”, “consider a point 𝑃 of the plane”,

or “consider a line 𝐿 of the plane”. After that introduction, one may say

that the type of 𝑛 is natural number and that the type of 𝑃 is point of the
plane. Just as in a computer program, type declarations such as those are

used to determine which mathematical statements are grammatically

well formed. Thus one may write “𝑃 lies on 𝐿” or 1/𝑥, but not “𝐿 lies on

𝑃” nor 1/𝐿.
6

Often ordinary English writing is good enough for such declarations in

mathematics expositions, but, for convenience, mathematicians usually

introduce symbolic names to refer to the various types of things under

discussion. For example, the name ℕ is usually used when declaring

that a variable is a natural number, the name ℤ is usually used when

declaring that a variable is an integer, and the name ℝ is usually used

when declaring that a variable is a real number. Ways are also given

for constructing new type names from old ones: for example, the name

ℝ×ℝ may be used when declaring that a variable is a point of the plane,

for it conveys the information that a point of the plane is a pair of real

numbers.

Once one becomes accustomed to the use of names such as ℕ in

mathematical writing and speaking, it is natural to take the next step

and regard those names as denoting things that exist. Thus, we shall

refer to ℕ as the type of all natural numbers, and we will think of it as a

mathematical object in its own right. Intuitively and informally, it is a

collection whose members (or elements) are the natural numbers.

8

an introduction to univalent mathematics 9

7
TO DO : Include some pointers to

discussions of potential infinity and

actual infinity, perhaps.

8
The term “univalent” is a word

coined by Vladimir Voevodsky, who

introduced it to describe his prin-

ciple that types that are equivalent
in a certain sense can be identified

with each other. The principle is

stated precisely in Principle 2.13.2.

As Voevodsky explained, the word

comes from a Russian translation

of a mathematics book, where the

English mathematical term “faith-

ful” was translated into Russian as

the Russian word that sounds like

“univalent”. He also said “Indeed

these foundations seem to be faithful

to the way in which I think about

mathematical objects in my head.”

9
The notation in mathematics based

on set theory that corresponds (sort

of) to this is 𝑎 ∈ 𝑋.

Once we view the various types as existing as mathematical objects,

they become worthy of study. The language of mathematics is thereby

improved, and the scope of mathematics is broadened. For example, we

can consider statements such as “ℕ is infinite” and to try to prove it.

Historically, there was some hesitation
7

about introducing the collec-

tion of all natural numbers as a mathematical object, perhaps because

if one were to attempt to build the collection from nothing by adding

numbers to it one at a time, it would take an eternity to complete the

assembly. We won’t regard that as an obstacle.

We have said that the types of things are used to determine whether

mathematical statements are well formed. Therefore, if we expect “ℕ is

infinite” to be a well-formed statement, we’ll have to know what type of

thing ℕ is, and we’ll have to have a name for that type. Similarly, we’ll

have to know what type of thing that type is, and we’ll have to have a

name for it, and so on forever. Indeed, all of that is part of what will be

presented in this chapter.

2.2 Types, elements, families, and functions

In this section we build on the intuition imparted in the previous section.

In univalent mathematics,8 types are used to classify all mathematical

objects. Every mathematical object is an element (or a member) of some

type. Before one can talk about an object of a certain type, one must

introduce the type itself. There are enough ways to form new types from

old ones to provide everything we need to write mathematics.

One expresses the declaration that an object 𝑎 is an element of the type
𝑋 by writing 𝑎 :𝑋.

9

Using that notation, each variable 𝑥 is introduced along with a decla-

ration of the form 𝑥 :𝑋, which declares that 𝑥 will refer to something of

type 𝑋, but provides no other information about 𝑥. The declared types

of the variables are used to determine which statements of the theory

are grammatically well formed.

After introducing a variable 𝑥 :𝑋, it may be possible to form an

expression 𝑇 representing a type, all of whose components have already

been given a meaning. (Here the variable 𝑥 is regarded also as having

already been given a meaning, even though the only thing known about

it is its type.) To clarify the dependence of 𝑇 on 𝑥 primarily, we may

write 𝑇(𝑥) (or 𝑇𝑥) instead of 𝑇. Such an expression will be called a family
of types parametrized by the variable 𝑥 of type 𝑋. Such a family provides

a variety of types, for, if 𝑎 is any expression denoting an object of 𝑋,

one may replace all occurrences of 𝑥 by 𝑎 in 𝑇, thereby obtaining a new

expression representing a type, which may be regarded as a member and

which may be denoted by 𝑇(𝑎).
Naturally, if the expression 𝑇 doesn’t actually involve the variable 𝑥,

then the members of the family are all the same, and we’ll refer to the

family as a constant family of types.

Here’s an example of a family of types: let 𝑇 be the type of all natural

numbers greater than 2. For any element 𝑛 of 𝑇 we let 𝑃𝑛 be the type of

𝑛-sided polygons in the plane. It gives a family of types parametrized

by the elements of 𝑇. One of the members of the family is the type 𝑃5 of

all pentagons in the plane.

an introduction to univalent mathematics 10

A family of types may be parametrized by more than one variable.

For example, after introducing a variable 𝑥 :𝑋 and a family of types

𝑇 parametrized by 𝑥, we may introduce a variable 𝑡 :𝑇. Then it may

be possible to form an expression 𝑆 representing a type that involves

the variables 𝑥 and 𝑡. Such an expression will be called a family of

types parametrized by 𝑥 and 𝑡, and we may write 𝑆(𝑥, 𝑡) instead of 𝑆 to

emphasize the dependence on 𝑥 and 𝑡. The same sort of thing works

with more variables.

After introducing a variable 𝑥 :𝑋 and a family of types 𝑇, it may be

possible to form an expression 𝑒 of type 𝑇, all of whose components have

already been given a meaning. Such an expression will also be called

a family of elements of 𝑇 parametrized by the elements of 𝑋, when we

wish to focus on the dependence of 𝑒 (and perhaps 𝑇) on the variable 𝑥.

To clarify the dependence of 𝑒 on 𝑥 primarily, we may write 𝑒(𝑥) (or 𝑒𝑥)

instead of 𝑒. Such a family provides a variety of elements of members

of the family 𝑇, for, if 𝑎 is any expression denoting an object of 𝑋, one

may replace all occurrences of 𝑥 by 𝑎 in 𝑒 and in 𝑇, thereby obtaining an

element of 𝑇(𝑎), which may be regarded as a member of the family 𝑒 and

which will be denoted by 𝑒(𝑎).
Naturally, if the expressions 𝑒 and 𝑇 don’t actually involve the variable

𝑥, then the members of the family are all the same, and we’ll refer to the

family as a constant family of elements.

Here’s an example of a family of elements in a constant family of

types: we let 𝑛 be a natural number and consider the real number

√
𝑛.

It gives a family of real numbers parametrized by the natural numbers.

(The family may also be called a sequence of real numbers). One of the

members of the family is

√
11.

Here’s an example of a family of elements in a (non-constant) family

of types. As above, let 𝑇 be the type of all natural numbers greater

than 2 and let 𝑃𝑛 be the type of 𝑛-sided polygons in the plane, for any

𝑛 :𝑇. Now consider the regular 𝑛-sided polygon 𝑝𝑛 of radius 1 with

a vertex on the positive 𝑥-axis, for any 𝑛 :𝑇. We see that 𝑝𝑛 :𝑃𝑛 . One

of the members of this family of elements 𝑝𝑛 is the regular pentagon 𝑝5

of radius 1 with a vertex on the positive 𝑥-axis. The pentagon 𝑝5 is an

element of the type 𝑃5, which is a member of the family of types 𝑃𝑛 (𝑛 :𝑇).

In short, 5 :𝑇 and 𝑝5 :𝑃5.

The type 𝑋 containing the variable for a family of types or a family of

elements is called the parameter type of the family.

Just as a family of types may depend on more than one variable, a

family of elements may also depend on more than one variable.

Families of elements can be enclosed in mathematical objects called

functions (or maps), as one might expect. Let 𝑒 be a family of elements of

a family of types 𝑇, both of which are parametrized by the elements 𝑥 of

𝑋. We use the notation 𝑥 ↦→ 𝑒 for the function that sends an element 𝑎

of 𝑋 to the element 𝑒(𝑎) of 𝑇(𝑎); the notation 𝑥 ↦→ 𝑒 can be read as “𝑥

maps to 𝑒” or “𝑥 goes to 𝑒”. (Recall that 𝑒(𝑎) is the expression that is

obtained from 𝑒 by replacing all occurrences of 𝑥 in 𝑒 by 𝑎.) If we name

the function 𝑓 , then that element of 𝑇 will be denoted by 𝑓 (𝑎). The type
of the function 𝑥 ↦→ 𝑒 is called a product type and will be denoted by

∏𝑥 :𝑋 𝑇(𝑥). If 𝑇 is a constant family of types, then the type will also be

called a function type and will be denoted by 𝑋 → 𝑇. Thus when we

an introduction to univalent mathematics 11

10
Students of trigonometry are already

familiar with the concept of function,

as something enclosed this way. The

sine and cosine functions, sin and

cos, are examples.

11
Students of calculus are familiar with

the concept of dummy variable and

are accustomed to using identities

such as

∫ 𝑏
𝑎 𝑓 (𝑡) 𝑑𝑡 =

∫ 𝑏
𝑎 𝑓 (𝑥) 𝑑𝑥.

write 𝑓 :𝑋 → 𝑇, we mean that 𝑓 is an element of the type 𝑋 → 𝑇, and

we are saying that 𝑓 is a function from 𝑋 to 𝑇. The type 𝑋 may be called

the domain of 𝑓 , and the type 𝑇 may be called the codomain of 𝑓 .

Given an element 𝑡 of 𝑇, we can consider the function 𝑥 ↦→ 𝑡 mapping

all elements of 𝑋 to 𝑡. Such functions are called constant functions, and

they occur so often that we introduce a special notation for them.

Definition 2.2.1. Let 𝑋 and 𝑇 be types, and 𝑡 an element of 𝑇. Define

cst𝑋𝑡 :𝑋 → 𝑇 to be 𝑥 ↦→ 𝑡, the constant function at 𝑡. ⌟

An example of a function is the function 𝑛 ↦→ √𝑛 of type ℕ→ ℝ.

Another example of a function is the function 𝑛 ↦→ 𝑝𝑛 of type ∏𝑛 :ℕ 𝑃𝑛 ,

where 𝑃𝑛 is the type of polygons introduced above, and 𝑝𝑛 is the polygon

introduced above.

Another example of a function is the function 𝑚 ↦→ (𝑛 ↦→ 𝑚 + 𝑛) of

type ℕ → (ℕ → ℕ). It is a function that accepts a natural number as

argument and returns a function as its value. The function returned is

of type ℕ→ ℕ. It accepts a natural number as argument and returns a

natural number as value.

The reader may wonder why the word “product” is used when

speaking of product types. To motivate that, we consider a simple

example informally. We take 𝑋 to be a type with just two elements, 𝑏 and

𝑐. We take 𝑇(𝑥) to be a family of types parametrized by the elements of

𝑋, with 𝑇(𝑏) being a type with 5 elements and 𝑇(𝑐) being a type with 11
elements. Then the various functions 𝑓 of type ∏𝑥 :𝑋 𝑇(𝑥) are plausibly

obtained by picking a suitable element for 𝑓 (𝑏) from the 5 possibilities in

𝑇(𝑏) and by picking a suitable element for 𝑓 (𝑐) from the 11 possibilities

in 𝑇(𝑐). The number of ways to make both choices is 5 × 11, which is a

product of two numbers. Thus ∏𝑥 :𝑋 𝑇(𝑥) is sort of like the product of

𝑇(𝑏) and 𝑇(𝑐), at least as far as counting is concerned.

The reader may wonder why we bother with functions at all: doesn’t

the expression 𝑒 serve just as well as the function 𝑥 ↦→ 𝑒, for all practical

purposes? The answer is no. One reason is that the expression 𝑒 doesn’t

inform the reader that the variable under consideration is 𝑥. Another

reason is that we may want to use the variable 𝑥 for elements of a different

type later on: then 𝑒(𝑥) is no longer well formed. For example, imagine

first writing this: “For a natural number 𝑛 we consider the real number√
𝑛” and then writing this: “Now consider a triangle 𝑛 in the plane.”

The result is that

√
𝑛 is no longer usable, whereas the function 𝑛 ↦→ √𝑛

has enclosed the variable and the family into a single object and remains

usable.
10

Once a family 𝑒 has been enclosed in the function 𝑥 ↦→ 𝑒, the variable

𝑥 is referred to as a dummy variable or as a bound variable.11
This signifies

that the name of the variable no longer matters, in other words, that

𝑥 ↦→ 𝑒(𝑥) and 𝑡 ↦→ 𝑒(𝑡)may regarded as identical. Moreover, the variable

𝑥 that occurs inside the function 𝑥 ↦→ 𝑒 is regarded as unrelated to

variables 𝑥 which may appear elsewhere in the discussion.

If the variable 𝑥 in our notation 𝑥 ↦→ 𝑒(𝑥) is a dummy variable, and

its name doesn’t matter, then we may consider the possibility of not

specifying a variable at all. We introduce now a methodical way to do

that, by replacing the occurrences of the variable 𝑥 in the expression 𝑒(𝑥)
by an underscore, yielding 𝑒(_) as alternative notation for the function

an introduction to univalent mathematics 12

12
The convention that 𝑓 ≡ (𝑎 ↦→ 𝑓 (𝑎))
is referred to as the 𝜂-rule in the

jargon of type theory.

𝑥 ↦→ 𝑒(𝑥). For example, the notation

√
_ can serve as alternative notation

for the function 𝑛 ↦→ √𝑛 introduced above, and 2 + _ can serve as

alternative notation for the function 𝑛 ↦→ 2 + 𝑛 of type ℕ→ ℕ.

We have mentioned above the possibility of giving a name to a function.

We expand on that now by introducing notation for making and for

using definitions.
The notation 𝑥 :≡ 𝑧 will be an announcement that we are defining

the expression 𝑥 to be the expression 𝑧, all of whose components have

already been given a meaning; in that case, we will say that 𝑥 has been

defined to be (or to mean) 𝑧. The forms allowed for the expression 𝑥 will

be made clear by the examples we give.

For example, after writing 𝑛 :≡ 12, we will say that 𝑛 has been defined

to be 12.

For another example, naming the function 𝑥 ↦→ 𝑒(𝑥) as 𝑓 (as we did

above) can be done by writing 𝑓 :≡ (𝑥 ↦→ 𝑒(𝑥)). Alternatively and more

traditionally, we may write 𝑓 (𝑥) :≡ 𝑒(𝑥). Both mean that 𝑓 has been

defined to be 𝑥 ↦→ 𝑒(𝑥) and that, consequently, 𝑓 (𝑎) has been defined to

be 𝑒(𝑎), for any element 𝑎 of 𝑋.

The notation 𝑏 ≡ 𝑐 will denote the statement that the expressions 𝑏

and 𝑐 become the same thing if all the subexpressions within 𝑏 or 𝑐 are

expanded according to their definitions, if any; in that case, we will say

that 𝑏 and 𝑐 are the same by definition. For example, after writing 𝑛 :≡ 12
and 𝑚 :≡ 𝑛, we may say that 𝑗 + 12 ≡ 𝑗 + 𝑚 and that 𝑚 × 11 ≡ 12 × 11.

Whenever two expressions are the same by definition, we may replace

one with the other inside any other expression, because the expansion

of definitions is regarded as trivial and transparent.

We proceed now to the promised example. Consider functions 𝑓 :𝑋 →
𝑌 and 𝑔 :𝑌 → 𝑍. We define the composite function 𝑔 ◦ 𝑓 :𝑋 → 𝑍 by

setting 𝑔 ◦ 𝑓 :≡ (𝑎 ↦→ 𝑔(𝑓 (𝑎))). In other words, it is the function that

sends an arbitrary element 𝑎 of 𝑋 to 𝑔(𝑓 (𝑎)) in 𝑍. (The expression 𝑔 ◦ 𝑓
may be read as “𝑔 circle 𝑓 ” or as “𝑔 composed with 𝑓 ”.) The composite

function 𝑔 ◦ 𝑓 may also be denoted simply by 𝑔 𝑓 .

Now consider functions 𝑓 :𝑋 → 𝑌, 𝑔 :𝑌 → 𝑍, and ℎ :𝑍 →𝑊 . Then

(ℎ ◦ 𝑔) ◦ 𝑓 and ℎ ◦ (𝑔 ◦ 𝑓) are the same by definition, since applying the

definitions within expands both expressions to 𝑎 ↦→ ℎ(𝑔(𝑓 (𝑎))). In other

words, we have established that (ℎ ◦ 𝑔) ◦ 𝑓 ≡ ℎ ◦ (𝑔 ◦ 𝑓). Thus, we may

write ℎ ◦ 𝑔 ◦ 𝑓 for either expression, without danger of confusion.

One may define the identity function id𝑋 :𝑋 → 𝑋 by setting id𝑋 :≡
(𝑎 ↦→ 𝑎). Application of definitions shows that 𝑓 ◦ id𝑋 is the same by

definition as 𝑎 ↦→ 𝑓 (𝑎), which, by a standard convention, which we

adopt
12

, is to be regarded as the same as 𝑓 . In other words, we have

established that 𝑓 ◦ id𝑋 ≡ 𝑓 . A similar computation applies to id𝑌 ◦ 𝑓 .
In the following sections we will present various other elementary

types and elementary ways to make new types from old ones.

2.3 Universes

In Section 2.2 we have introduced the objects known as types. They have

elements, and the type an element belongs to determines the type of thing

that it is. At various points in the sequel, it will be convenient for types

also to be elements, for that will allow us, for example, to enclose families

an introduction to univalent mathematics 13

13
In fact, type theory can trace its ori-

gins to Russell’s paradox, announced

in a 1902 letter to Frege as follows:

There is just one point where I

have encountered a difficulty. You

state that a function too, can act

as the indeterminate element.

This I formerly believed, but now

this view seems doubtful to me

because of the following contra-

diction. Let 𝑤 be the predicate: to

be a predicate that cannot be pred-

icated of itself. Can 𝑤 be predi-

cated of itself? From each answer

its opposite follows. Therefore

we must conclude that 𝑤 is not

a predicate. Likewise there is no

class (as a totality) of those classes

which, each taken as a totality, do

not belong to themselves.

To which Frege replied:

Incidentally, it seems to me that

the expression “a predicate is

predicated of itself” is not exact. A

predicate is as a rule a first-level

function, and this function re-

quires an object as argument and

cannot have itself as argument

(subject).

Russell then quickly added Appen-
dex B to his Principles of Mathematics
(1903), in which he said that “it is the

distinction of logical types that is the

key to the whole mystery”, where

types are the ranges of significance of

variables. For more on the history of

type theory, see Coquand
14

.

14
Thierry Coquand. “Type Theory”.

In: The Stanford Encyclopedia of Phi-
losophy. Ed. by Edward N. Zalta.

Metaphysics Research Lab, Stan-

ford University, 2018. url: https:
//plato.stanford.edu/archives/
fall2018/entries/type-theory/.

15
Giuseppe Peano. Arithmetices prin-
cipia: nova methodo. See also https:
//github.com/mdnahas/Peano_
Book/ for a parallel translation by

Vincent Verheyen. Fratres Bocca,

1889. url: https://books.google.
com/books?id=z80GAAAAYAAJ.

of types in functions. To achieve this convenience, we introduce types

that are universes. Some care is required, for the first temptation is to

posit a single new typeU called the universe, so that every type is realized

as an element ofU . This universe would be “the type of all types”, but

introducing it would lead to an absurdity, for roughly the same reason

that introduction of a “set of all sets” leads to the absurdity in traditional

mathematics known as Russell’s paradox.
13

Some later approaches to

set theory included the notion of a class, with the collection of all sets

being the primary example of a class. Classes are much like sets, and

every set is a class, but not every class is a set. Then one may wonder

what sort of thing the collection of all classes would be. Such musings

are resolved in univalent mathematics as follows.

(1) There are some types called universes.

(2) IfU is a universe, and 𝑋 :U is an element ofU , then 𝑋 is a type.

(3) If 𝑋 is a type, then it appears as an element in some universe U .

Moreover, if 𝑋 and𝑌 are types, then there is a universeU containing

both of them. This universe U also contains the type 𝑋 → 𝑌 and

similar types constructed from 𝑋 and 𝑌.

(4) If U and U ′ are universes, U :U ′, 𝑋 is a type, and 𝑋 :U , then also

𝑋 :U ′. (Thus we may regardU ′ as being larger thanU .)

(5) There is a particular universe U0, which we single out to serve as

a repository for certain basic types to be introduced in the sequel.

Moreover, U0 :U for every other universe U , and thus U0 is the

smallest universe.

It follows from the properties above that there are an infinite number

of universes, for each one is an element of a larger one. For the sake of

clarity, throughout this book, we use an infinite sequence of universes

U0 :U1 :U2 :
Now suppose we have a type𝑋 and a family𝑇(𝑥) of types parametrized

by a variable 𝑥 of type 𝑋. Choose a universe U with 𝑇(𝑥) :U . Then

we can make a function of type 𝑋 → U , namely 𝑓 :≡ (𝑥 ↦→ 𝑇(𝑥)).
Conversely, if 𝑓 ′ is a function of type 𝑋 →U , then we can make a family

of types parametrized by 𝑥, namely 𝑇′ :≡ 𝑓 ′(𝑥). The flexibility offered by

this correspondence between families of types in U and functions to U
will often be used.

2.4 The type of natural numbers

Here are Peano’s rules
15

for constructing the natural numbers in the

form that is used in type theory.

(P1) there is a type called ℕ in the universe U0 (whose elements will be

called natural numbers);

(P2) there is an element of ℕ called 0, called zero;

(P3) if𝑚 is a natural number, then there is also a natural number succ(𝑚),
called the successor of 𝑚;

(P4) suppose we are given:

https://plato.stanford.edu/archives/fall2018/entries/type-theory/
https://plato.stanford.edu/archives/fall2018/entries/type-theory/
https://plato.stanford.edu/archives/fall2018/entries/type-theory/
https://github.com/mdnahas/Peano_Book/
https://github.com/mdnahas/Peano_Book/
https://github.com/mdnahas/Peano_Book/
https://books.google.com/books?id=z80GAAAAYAAJ
https://books.google.com/books?id=z80GAAAAYAAJ

an introduction to univalent mathematics 14

16
Rule (P4) and our logical framework

are stronger than in Peano’s original

formulation, and this allows us to

omit some rules that Peano had to

include: that different natural num-

bers have different successors; and

that no number has 0 as its successor.

Those omitted rules remain true in

this formulation and can be proved

from the other rules, after we have

introduced the notion of equality in

our logical framework.

a) a family of types 𝑋(𝑚) parametrized by a variable 𝑚 of type

ℕ;

b) an element 𝑎 of 𝑋(0); and

c) a family of functions 𝑔𝑚 :𝑋(𝑚) → 𝑋(succ(𝑚)).

Then from those data we are provided with a family of elements

𝑓 (𝑚) :𝑋(𝑚), satisfying 𝑓 (0) ≡ 𝑎 and 𝑓 (succ(𝑚)) ≡ 𝑔𝑚(𝑓 (𝑚)).

The first three rules present few problems for the reader. They provide

us with the smallest natural number 0 :ℕ, and we may introduce as

many others as we like with the following definitions.

1 :≡ succ(0)
2 :≡ succ(1)
3 :≡ succ(2)

...

You may recognize rule (P4) as “the principle of mathematical induc-

tion”.
16

We will refer to it simply as “induction on ℕ”.

You may also recognize the function 𝑓 in (P4) as “defined by recursion”.

The point of the induction principle is that the type 𝑋(𝑚) of 𝑓 (𝑚)may

depend on 𝑚. An important special case is when 𝑋(𝑚) does not depend

on 𝑚, that is, when 𝑋(𝑚) :≡ 𝑌 for some type Y. In this non-dependent

case we refer to the principle as “the recursion principle for ℕ”. In

other words, throughout this book, the difference between an induction

principle and the corresponding recursion principle is that in the latter

principle the type family is constant.

The resulting family 𝑓 may be regarded as having been defined

inductively by the two declarations 𝑓 (0) :≡ 𝑎 and 𝑓 (succ(𝑚)) :≡ 𝑔𝑚(𝑓 (𝑚)),
and indeed, we will often simply write such a pair of declarations as a

shorthand way of applying rule (P4). The two declarations cover the

two ways of introducing elements of ℕ via the use of the two rules (P2)

and (P3). (In terms of computer programming, those two declarations

amount to the code for a recursive subroutine that can handle any

incoming natural number.)

With that notation in hand, speaking informally, we may regard (P4)

above as defining the family 𝑓 by the following infinite sequence of

definitions.

𝑓 (0) :≡ 𝑎
𝑓 (1) :≡ 𝑔0(𝑎)
𝑓 (2) :≡ 𝑔1(𝑔0(𝑎))
𝑓 (3) :≡ 𝑔2(𝑔1(𝑔0(𝑎)))

...

(The need for the rule (P4) arises from our inability to write down an

infinite sequence of definitions in a finite amount of space, and from the

need for 𝑓 (𝑚) to be defined when 𝑚 is a variable of type ℕ, and thus is

not known to be equal to 0, nor to 1, nor to 2, etc.)

We may use induction on ℕ to define of iteration of functions. Let

𝑌 be a type, and suppose we have a function 𝑒 :𝑌 → 𝑌. We define by

an introduction to univalent mathematics 15

When the type of 𝑎 and 𝑏 is not clear

we may clarify it by writing 𝑎 =→𝑋 𝑏.

induction on ℕ the 𝑚-fold iteration 𝑒𝑚 :𝑌 → 𝑌 by setting 𝑒0 :≡ id𝑌 and

𝑒succ(𝑚) :≡ 𝑒 ◦ 𝑒𝑚 . (Here we apply rule (P4) with the the type 𝑌 → 𝑌 as

the family of types 𝑋(𝑚), the identity function id𝑌 for 𝑎, and the function

𝑑 ↦→ 𝑒 ◦ 𝑑 for the family 𝑔𝑚 : (𝑌 → 𝑌) → (𝑌 → 𝑌) of functions.)

We may now define addition of natural numbers by induction on ℕ.

For natural numbers 𝑛 and 𝑚 we define 𝑛 + 𝑚 :ℕ by induction on ℕ

with respect to the variable 𝑚 by setting 𝑛 + 0 :≡ 𝑛 and 𝑛 + succ(𝑚) :≡
succ(𝑛 + 𝑚). (The reader should be able to extract the family 𝑋(𝑚), the

element 𝑎, and the family of functions 𝑔𝑚 from that pair of definitions.)

Application of definitions shows, for example, that 2 + 2 and 4 are the

same by definition, and thus we may write 2 + 2 ≡ 4, because both

expressions reduce to succ(succ(succ(succ(0)))).
Similarly we define the product 𝑚 · 𝑛 :ℕ by induction on 𝑚 by setting

setting 0 · 𝑛 :≡ 0 and succ(𝑚) · 𝑛 :≡ (𝑚 · 𝑛) + 𝑛.

Alternatively (and equivalently) we may use iteration of functions to

define addition and multiplication, by setting 𝑛 + 𝑚 :≡ succ𝑚(𝑛) and

𝑚 · 𝑛 :≡ (𝑖 ↦→ 𝑖 + 𝑛)𝑚(0).
Finally, we may define the factorial function fact :ℕ→ ℕ by induction

on ℕ, setting fact(0) :≡ 1 and fact(succ(𝑚)) :≡ succ(𝑚) · fact(𝑚). (One

can see that this definition applies rule (P4) with 𝑋(𝑚) :≡ ℕ, with 1 for

𝑎, and with the function 𝑛 ↦→ succ(𝑚) · 𝑛 for 𝑔𝑚 .) Application of the

definitions shows, for example, that fact(3) ≡ 6, as the reader may verify.

2.5 Identity types

One of the most important types is the identity type, which implements a

notion of equality. Identity types are formed of a type and two elements

of that type; we shall have no need to compare elements of different

types.

Here are the rules for constructing and using identity types.

(E1) for any type 𝑋 and for any elements 𝑎 and 𝑏 of it, there is an identity
type 𝑎 =→ 𝑏; moreover, if 𝑋 is an element of a universe U , then so is

𝑎 =→ 𝑏.

(E2) for any type 𝑋 and for any element 𝑎 of it, there is an element refl𝑎
of type 𝑎 =→ 𝑎 (the name refl comes from the word “reflexivity”)

(E3) suppose we are given:

a) a type 𝑋 and an element 𝑎 :𝑋;

b) a family of types 𝑃(𝑏, 𝑒 , . . .) parametrized by a variable 𝑏 of

type 𝑋, a variable 𝑒 of type 𝑎 =→ 𝑏, and perhaps some further

variables; and

c) an element 𝑝 of 𝑃(𝑎, refl𝑎 , . . .).

Then from those data we are provided with a family of elements

𝑓 (𝑏, 𝑒 , . . .) :𝑃(𝑏, 𝑒 , . . .). Moreover, 𝑓 (𝑎, refl𝑎 , . . .) ≡ 𝑝.

We will refer to an element 𝑖 of 𝑎 =→ 𝑏 as an identification of 𝑎 with 𝑏.

Since the word “identification” is a long one, we may also refer to 𝑖 as a

path from 𝑎 to 𝑏 – this has the advantage of incorporating the intuition

that an identification may proceed gradually through intermediate steps.

an introduction to univalent mathematics 16

17
Six, since we allow reflections, other-

wise there are only three.

18
We will see later that numbers only

have trivial symmetries, so the pos-

sibility that there are other ways to

identify fact(2)with 2 doesn’t arise.

19
Notice that the single special case in

such an induction corresponds to the

single way of introducing elements

of identity types via rule (E2), and

compare that with (P4), which dealt

with the two ways of introducing

elements of ℕ.

20
We can also use a geometric intuition:

when 𝑏 “freely ranges” over elements

of 𝐴, together with a path 𝑒 : 𝑎 =→ 𝑏,

while we keep the element 𝑎 fixed,

we can picture 𝑒 as a piece of string

winding through 𝐴, and the “free-

ness” of the pair (𝑏, 𝑒) allows us to

pull the string 𝑒, and 𝑏 with it, until

we have the constant path at 𝑎, refl𝑎 .

𝑎
𝑏

𝐴

𝑒 ↦→
𝑎 refl𝑎

𝐴

Conversely, we can imagine 𝑏 start-

ing at 𝑎 and 𝑒 starting out as

refl𝑎 , and then think of 𝑏 roaming

throughout 𝐴, pulling the string 𝑒

along with it, until it finds every

path from 𝑎 to some other element.

The need to record, using the element 𝑖, the way we identify 𝑎 with 𝑏

may come as a surprise, since normally, in mathematics, one is accus-

tomed to regarding 𝑎 as either equal to 𝑏 or not. However, this reflects

a situation commonly encountered in geometry when congruence of

geometric figures is considered. For example, in Euclidean space, two

equilateral triangles of the same size are congruent in six (different)

ways.
17

The chief novelty of univalent mathematics is that the basic

logical notion of equality, as implemented by the identity types 𝑎 =→ 𝑏,

is carefully engineered to accommodate notions of congruence and sym-

metry from diverse areas of mathematics, including geometry. Exposing

that point of view in the context of geometry is the main point of this

book.

In light of the analogy with geometry just introduced, we will refer

to an element 𝑖 of 𝑎 =→ 𝑎 as a symmetry of 𝑎. Think, for example, of

a congruence of a triangle with itself. An example of a non-trivial

symmetry will be seen in Exercise 2.13.3.

Consider the identity type fact(2) =→ 2, where fact denotes the factorial

function defined in Section 2.4. Expansion of the definitions in fact(2) =→
2 simplifies it to succ(succ(0)) =→ succ(succ(0)), so we see from rule (E2)

that reflsucc(succ(0)) serves as an element of it.
18

We may also write either

refl2 or reflfact(2) for that element. A student might want a more detailed

derivation that fact(2) may be identified with 2, but as a result of our

convention above that definitions may be applied without changing

anything, the application of definitions, including inductive definitions,

is normally regarded as a trivial operation, and the details are usually

omitted.

We will refer to rule (E3) as “induction for identity”. To signal that we

wish to apply it, we may announce that we argue by (path) induction on 𝑒,
or simply by path induction.

The family 𝑓 resulting from an application of rule (E3) may be regarded

as having been completely defined by the single declaration 𝑓 (𝑎, refl𝑎) :≡
𝑝, and indeed, we will often simply write such a declaration as a

shorthand way of applying rule (E3). The rule says that to construct

something from every identification 𝑒 of 𝑎 with something else, it suffices

to consider the special case where the identification 𝑒 is refl𝑎 : 𝑎 =→ 𝑎.19

Intuitively, the induction principle for identity amounts to saying that

the element refl𝑎 “generates” the system of types 𝑎 =→ 𝑏, as 𝑏 ranges over

elements of 𝐴.
20

Equality relations are symmetric. For identity types we establish some-

thing similar, taking into account that the notion of equality implemented

here keeps track of the way two things are identified, and there can be

multiple ways. Given a type 𝑋 and elements 𝑎 and 𝑏 of 𝑋, we have an

identity type 𝑎 =→ 𝑏 of (zero or more) identifications of 𝑎 with 𝑏. We also

have an identity type 𝑏 =→ 𝑎 of identifications of 𝑏 with 𝑎. Symmetry now

takes the form of a function from type 𝑎 =→ 𝑏 to type 𝑏 =→ 𝑎, intuitively

reversing any identification of 𝑎 with 𝑏 to give an identification of 𝑏 with

𝑎. In order to produce an element of 𝑏 =→ 𝑎 from an element 𝑒 of 𝑎 =→ 𝑏,

for any 𝑏 and 𝑒, we argue by induction on 𝑒. We let 𝑃(𝑏, 𝑒) be 𝑏 =→ 𝑎 for

any 𝑏 of type 𝑋 and for any 𝑒 of type 𝑎 =→ 𝑏, for use in rule (E3) above.

Application of rule (E3) reduces us to the case where 𝑏 is 𝑎 and 𝑝 is refl𝑎 ,
and our task is now to produce an element of 𝑎 =→ 𝑎; we choose refl𝑎 for

an introduction to univalent mathematics 17

𝑋

𝑎

𝑏

𝑐
𝑞 ◦ 𝑝 ≡ 𝑝 ∗ 𝑞

𝑝 𝑞

Figure 2.1: Composition (also called

concatenation) of paths in 𝑋

21
We haven’t yet assigned a meaning to

−𝑛, but after we introduce the set of

integers Z below in Definition 3.2.1,

we’ll be justified in writing 𝑝𝑧 for any

𝑧 : Z. See also Example 2.12.9.

it.

Equality relations are also transitive. We proceed in a similar way as

for symmetry. For each 𝑎, 𝑏, 𝑐 :𝑋 and for each 𝑝 : 𝑎 =→ 𝑏 and for each

𝑞 : 𝑏 =→ 𝑐 we want to produce an element of type 𝑎 =→ 𝑐. By induction on

𝑞 we are reduced to the case where 𝑐 is 𝑏 and 𝑞 is refl𝑏 , and we are to

produce an element of 𝑎 =→ 𝑏. The element 𝑝 serves the purpose.

Now we state our symmetry result a little more formally.

Definition 2.5.1. For any type 𝑋 and for any 𝑎, 𝑏 :𝑋, let

symm𝑎,𝑏 : (𝑎 =→ 𝑏) → (𝑏 =→ 𝑎)

be the function defined by induction by setting symm𝑎,𝑎(refl𝑎) :≡ refl𝑎 .
This operation on paths is called path inverse, and we may abbreviate

symm𝑎,𝑏(𝑝) as 𝑝−1
. ⌟

Similarly, we formulate transitivity a little more formally, as follows.

Definition 2.5.2. For any type 𝑋 and for any 𝑎, 𝑏, 𝑐 :𝑋, let

trans𝑎,𝑏,𝑐 : (𝑎 =→ 𝑏) → ((𝑏 =→ 𝑐) → (𝑎 =→ 𝑐))

be the function defined by induction by setting (trans𝑎,𝑏,𝑏(𝑝))(refl𝑏) :≡ 𝑝.

This binary operation is called path composition or path concatenation,

and we may abbreviate (trans𝑎,𝑏,𝑐(𝑝))(𝑞) as either 𝑝 ∗ 𝑞, or as 𝑞 · 𝑝, 𝑞𝑝, or

𝑞 ◦ 𝑝. ⌟

The intuition that the path 𝑝 summarizes a gradual change from 𝑎 to

𝑏, and 𝑞 summarizes a gradual change from 𝑏 to 𝑐, leads to the intuition

that 𝑝 ∗ 𝑞 progresses gradually from 𝑎 to 𝑐 by first changing 𝑎 to 𝑏 and

then changing 𝑏 to 𝑐; see Figure 2.1.

The notation 𝑞 ◦ 𝑝 for path composition, with 𝑝 and 𝑞 in reverse order,

fits our intution particularly well when the paths are related to functions

and the composition of the paths is related to the composition of the re-

lated functions in the same order, as happens, for example, in connection

with transport (defined below in Definition 2.5.4) in Exercise 2.5.5.

The types of symm𝑎,𝑏 and trans𝑎,𝑏,𝑐 express that
=→ is symmetric

and transitive. Another view of symm𝑎,𝑏 and trans𝑎,𝑏,𝑐 is that they are

operations on identifications, namely reversing an identification and

concatenating two identifications. The results of various combinations

of these operations can often be identified: we formulate some of these

identifications in the following exercise.

Exercise 2.5.3. Let 𝑋 be a type and let 𝑎, 𝑏, 𝑐, 𝑑 :𝑋 be elements.

(1) For 𝑝 : 𝑎 =→ 𝑏, construct an identification of type 𝑝 ∗ refl𝑏
=→ 𝑝.

(2) For 𝑝 : 𝑎 =→ 𝑏, construct an identification of type refl𝑎 ∗ 𝑝 =→ 𝑝.

(3) For 𝑝 : 𝑎 =→ 𝑏, 𝑞 : 𝑏 =→ 𝑐, and 𝑟 : 𝑐 =→ 𝑑, construct an identification of

type (𝑝 ∗ 𝑞) ∗ 𝑟 =→ 𝑝 ∗ (𝑞 ∗ 𝑟).

(4) For 𝑝 : 𝑎 =→ 𝑏, construct an identification of type 𝑝−1 ∗ 𝑝 =→ refl𝑏 .

(5) For 𝑝 : 𝑎 =→ 𝑏, construct an identification of type 𝑝 ∗ 𝑝−1 =→ refl𝑎 .

(6) For 𝑝 : 𝑎 =→ 𝑏, construct an identification of type (𝑝−1)−1 =→ 𝑝. ⌟

Given an element 𝑝 : 𝑎 =→ 𝑎, we may use concatenation to define powers

𝑝𝑛 : 𝑎 =→ 𝑎 by induction on 𝑛 :ℕ; we set 𝑝0 :≡ refl𝑎 and 𝑝𝑛+1 :≡ 𝑝 · 𝑝𝑛 .

Negative powers 𝑝−𝑛 are defined as (𝑝−1)𝑛 .
21

an introduction to univalent mathematics 18

22
We sometimes picture this schemat-

ically as follows: We draw 𝑋 as a

(mostly horizontal) line, and we

draw each type 𝑇(𝑥) as a vertical line

lying over 𝑥 :𝑋. As 𝑥 moves around

in 𝑋, these lines can change shape,

and taken all together they form a

2-dimensional blob lying over 𝑋.

The transport functions map points

between the vertical lines.

𝑎
𝑏

𝑋

𝑇(𝑎) 𝑇(𝑏)

𝑒

𝑡
trp𝑇𝑒 (𝑡)

One frequent use of elements of identity types is in substitution, which

is the logical principle that supports our intuition that when 𝑥 can by

identified with 𝑦, we may replace 𝑥 by 𝑦 in mathematical expressions

at will. A wrinkle new to students will likely be that, in our logical

framework where there may be various ways to identify 𝑥 with 𝑦, one

must specify the identification used in the substitution. Thus one may

prefer to speak of using an identification to transport properties and data

about 𝑥 to properties and data about 𝑦.

Here is a geometric example: if 𝑥 is a triangle of area 3 in the plane,

and 𝑦 is congruent to 𝑥, then 𝑦 also has area 3.

Here is another example: if 𝑥 is a right triangle in the plane, and 𝑦

is congruent to 𝑥, then 𝑦 is also a right triangle, and the congruence

informs us which of the 3 angles of 𝑦 is the right angle.

Now we introduce the notion more formally.

Definition 2.5.4. Let 𝑋 be a type, and let 𝑇(𝑥) be a family of types

parametrized by a variable 𝑥 :𝑋 (as discussed in Section 2.2). Suppose

𝑎, 𝑏 :𝑋 and 𝑒 : 𝑎 =→ 𝑏. Then we may construct a function of type 𝑇(𝑎) →
𝑇(𝑏). The function

trp𝑇𝑒 :𝑇(𝑎) → 𝑇(𝑏)

is defined by induction setting trp𝑇refl𝑎
:≡ id𝑇(𝑎). ⌟

The function thus defined may be called the transport function in the
type family 𝑇 along the path 𝑒, or, less verbosely, transport.22

We may also

simplify the notation to just trp𝑒 . The transport functions behave as

expected: we may construct an identification of type trp𝑒’◦𝑒
=→ trp𝑒’ ◦ trp𝑒 .

In words: transport along the composition 𝑒 ◦ 𝑒′ can be identified with

the composition of the two transport functions. This may be proved by

induction in the following exercise.

Exercise 2.5.5. Let 𝑋 be a type, and let 𝑇(𝑥) be a family of types

parametrized by a variable 𝑥 :𝑋. Suppose we are given elements

𝑎, 𝑏, 𝑐 :𝑋, 𝑒 : 𝑎 =→ 𝑏, and 𝑒′ : 𝑏 =→ 𝑐. Construct an identification of

type

trp𝑒’◦𝑒
=→ trp𝑒’ ◦ trp𝑒 . ⌟

Yet another example of good behavior is given in the following exercise.

Exercise 2.5.6. Let 𝑋,𝑌 be types. As discussed in Section 2.2, we may

regard the expression 𝑌 as a constant family of types parametrized by

a variable 𝑥 :𝑋. Produce an identification of type trp𝑌𝑝
=→ id𝑌 , for any

path 𝑝 : 𝑎 =→ 𝑏. ⌟

In Section 2.15 below we will discuss what it means for a type to have at

most one element. When the types𝑇(𝑥)may have more than one element,

we may regard an element of 𝑇(𝑥) as providing additional structure on 𝑥.

In that case, we will refer to the transport function trp𝑒 :𝑇(𝑎) → 𝑇(𝑏) as

transport of structure from 𝑎 to 𝑏.

Take, for example, 𝑇(𝑥) :≡ (𝑥 =→ 𝑥). Then trp𝑒 is of type (𝑎 =→ 𝑎) →
(𝑏 =→ 𝑏) and transports a symmetry of 𝑎 to a symmetry of 𝑏.

By contrast, when the types 𝑇(𝑥) have at most one element, we may

regard an element of 𝑇(𝑥) as providing a proof of a property of 𝑥. In

that case, the transport function trp𝑒 :𝑇(𝑎) → 𝑇(𝑏) provides a way to

establish a claim about 𝑏 from a claim about 𝑎, so we will refer to it as

an introduction to univalent mathematics 19

23
Also known as a Pi-type.

substitution. In other words, elements that can be identified have the

same properties.

2.6 Product types

Functions and product types have been introduced in Section 2.2, where

we have also explained how to create a function by enclosing a family of

elements in one. In this section we treat functions and product types in

more detail.

Recall that if 𝑋 is a type and 𝑌(𝑥) is a family of types parametrized

by a variable 𝑥 of type 𝑋, then there is a product type23 ∏𝑥 :𝑋 𝑌(𝑥) whose

elements 𝑓 are functions that provide elements 𝑓 (𝑎) of type 𝑌(𝑎), one

for each 𝑎 :𝑋. We will refer to 𝑋 as the parameter type of the product. By

contrast, if 𝑌 happens to be a constant family of types, then ∏𝑥 :𝑋 𝑌 will

also be denoted by 𝑋 → 𝑌, and it will also be called a function type.
If 𝑋 and 𝑌(𝑥) are elements of a universeU , then so is ∏𝑥 :𝑋 𝑌(𝑥).
Functions preserve identity, and we will use this frequently later on.

More precisely, functions induce maps on identity types, as the following

definition makes precise.

Definition 2.6.1. For all types 𝑋, 𝑌, functions 𝑓 :𝑋 → 𝑌 and elements

𝑥, 𝑥′ :𝑋, the function

ap 𝑓 ,𝑥,𝑥′ : (𝑥 =→ 𝑥′) → (𝑓 (𝑥) =→ 𝑓 (𝑥′))

is defined by induction by setting ap 𝑓 ,𝑥,𝑥(refl𝑥) :≡ refl 𝑓 (𝑥). ⌟

The function ap 𝑓 ,𝑥,𝑥′ , for any elements 𝑥 and 𝑥′ of 𝑋, is called an

application of 𝑓 to paths or to identifications, and this explains the choice

of the symbol ap in the notation for it. It may also be called the function

(or map) induced by 𝑓 on identity types.

When 𝑥 and 𝑥′ are clear from the context, we may abbreviate ap 𝑓 ,𝑥,𝑥′

by writing ap 𝑓 instead. For convenience, we may abbreviate it even

further, writing 𝑓 (𝑝) for ap 𝑓 (𝑝).
The following lemma shows that ap 𝑓 is compatible with composition.

Construction 2.6.2. Given a function 𝑓 :𝑋 → 𝑌, and elements 𝑥, 𝑥′, 𝑥′′ :𝑋,
and paths 𝑝 : 𝑥 =→ 𝑥′ and 𝑝′ : 𝑥′ =→ 𝑥′′, we have an identification of type
ap 𝑓 (𝑝′ · 𝑝)

=→ ap 𝑓 (𝑝′) · ap 𝑓 (𝑝).
Similarly, we have that ap 𝑓 is compatible with path inverse in that we have

an identification of type ap 𝑓 (𝑝−1) =→ (ap 𝑓 (𝑝))−1 for all 𝑝 : 𝑥 =→ 𝑥′.
Finally, we have an identification of type apid(𝑝)

=→ 𝑝 for all 𝑝 : 𝑥 =→ 𝑥′.

Implementation of Construction 2.6.2. By induction on 𝑝 and 𝑝′, one re-

duces to producing an identification of type

ap 𝑓 (refl𝑥 · refl𝑥) =→ ap 𝑓 (refl𝑥) · ap 𝑓 (refl𝑥).

Both ap 𝑓 (refl𝑥 · refl𝑥) and ap 𝑓 (refl𝑥) · ap 𝑓 (refl𝑥) are equal to refl 𝑓 (𝑥) by

definition, so the identification reflrefl 𝑓 (𝑥) has the desired type.

The other two parts of the construction are also easily done by induction

on 𝑝. □

Exercise 2.6.3. Let 𝑋 be a type and𝑇(𝑥) a family of types parametrized by

a variable 𝑥 :𝑋. Furthermore, let 𝐴 be a type, let 𝑓 :𝐴→ 𝑋 be a function,

an introduction to univalent mathematics 20

24
The notation ptw is chosen to remind

the reader of the word “point-wise”,

because the identifications are pro-

vided just for each point 𝑥. An alter-

native approach goes by considering,

for any 𝑥 :𝑋, the evaluation function

ev𝑥 :
(

∏𝑥 :𝑋 𝑌(𝑥)
)
→ 𝑌(𝑥) defined

by ev𝑥(𝑓) :≡ 𝑓 (𝑥). Then one could

define ptw 𝑓 ,𝑔(𝑝, 𝑥) :≡ apev𝑥 (𝑝). The

functions provided by these two def-

initions are not equal by definition,

but they can be identified, and one

can easily be used in place of the

other.

𝑓 (𝑥) 𝑓 (𝑥′)

𝑔(𝑥) 𝑔(𝑥′)

=

ap 𝑓 (𝑝)

=ℎ(𝑥) = ℎ(𝑥′)

=

ap𝑔 (𝑝)

Figure 2.2: Illustration of Defini-

tion 2.6.5.

25
We picture this as follows: the path

from 𝑦 to 𝑦′ over 𝑝 travels through

the vertical lines representing the

types 𝑌(𝑥) as 𝑥 :𝑋 moves along the

path 𝑝 in 𝑋 from 𝑎 to 𝑎′:

𝑎
𝑎′

𝑋

𝑌(𝑎) 𝑌(𝑎′)

𝑝

𝑦
𝑦′𝑞

let 𝑎 and 𝑎′ be elements of 𝐴, and let 𝑝 : 𝑎 =→ 𝑎′ be a path. Verify that the

two functions trp𝑇◦ 𝑓𝑝 and trp𝑇ap 𝑓 (𝑝)
are of type 𝑇(𝑓 (𝑎)) → 𝑇(𝑓 (𝑎′)). Then

construct an identification between them, i.e., construct an element of

type trp𝑇◦ 𝑓𝑝
=→ trp𝑇ap 𝑓 (𝑝)

. ⌟

If two functions 𝑓 and 𝑔 of type ∏𝑥 :𝑋 𝑌(𝑥) can be identified, then

their values can be identified, i.e., for every element 𝑥 of 𝑋, we may

produce an identification of type 𝑓 (𝑥) =→ 𝑔(𝑥), which can be constructed

by induction, as follows.

Definition 2.6.4. Let 𝑓 , 𝑔 : ∏𝑥 :𝑋 𝑌(𝑥). Define the function

ptw 𝑓 ,𝑔 : (𝑓 =→ 𝑔) →
(

∏
𝑥 :𝑋

𝑓 (𝑥) =→ 𝑔(𝑥)
)
,

by induction by setting ptw 𝑓 , 𝑓 (refl 𝑓) :≡ 𝑥 ↦→ refl 𝑓 (𝑥). 24 ⌟

Conversely, given 𝑓 , 𝑔 : ∏𝑥 :𝑋 𝑌(𝑥), from a basic axiom called function
extensionality, postulated below in Principle 2.9.18, an identification 𝑓 =→
𝑔 can be produced from a family of identifications of type 𝑓 (𝑥) =→ 𝑔(𝑥)
parametrized by a variable 𝑥 of type 𝑋.

Definition 2.6.5. Let 𝑋,𝑌 be types and 𝑓 , 𝑔 :𝑋 → 𝑌 functions. Given an

element ℎ of type ∏𝑥 :𝑋 𝑓 (𝑥) =→ 𝑔(𝑥), elements 𝑥 and 𝑥′ of 𝑋, and a path

𝑝 : 𝑥 =→ 𝑥′, we have two elements ℎ(𝑥′) · ap 𝑓 (𝑝) and ap𝑔(𝑝) · ℎ(𝑥) of type

𝑓 (𝑥) =→ 𝑔(𝑥′). We construct an identification

ns(ℎ, 𝑝) :
(
ℎ(𝑥′) · ap 𝑓 (𝑝)

=→ ap𝑔(𝑝) · ℎ(𝑥)
)
,

between them by induction on 𝑝, by setting ns(ℎ, refl𝑥) to be an element

of ℎ(𝑥) · refl 𝑓 (𝑥)
=→ ℎ(𝑥), which can be constructed by induction on ℎ(𝑥),

as in Exercise 2.5.3. We depict the type of ns(ℎ, 𝑝) in Figure 2.2 and call

ns(ℎ, 𝑝) a naturality square. ⌟

2.7 Identifying elements in members of families of types

If 𝑌(𝑥) is a family of types parametrized by a variable 𝑥 of type 𝑋, and 𝑎

and 𝑎′ are elements of type 𝑋, then after identifying 𝑎 with 𝑎′ it turns

out that it is possible to “identify” an element of 𝑌(𝑎)with an element of

𝑌(𝑎′), in a certain sense. That is the idea of the following definition.

Definition 2.7.1. Suppose we are given a type 𝑋 in a universeU and a

family of types 𝑌(𝑥), also inU , parametrized by a variable 𝑥 of type 𝑋.

Given elements 𝑎, 𝑎′ :𝑋, 𝑦 :𝑌(𝑎), and 𝑦′ :𝑌(𝑎′) and a path 𝑝 : 𝑎 =→ 𝑎′, we

define a new type 𝑦
=−→
𝑝
𝑦′ in U as follows. We proceed by induction

on 𝑎′ and 𝑝, which reduces us to the case where 𝑎′ is 𝑎 and 𝑝 is refl𝑎 ,
rendering 𝑦 and 𝑦′ of the same type 𝑌(𝑎) in U , allowing us to define

𝑦
=−−−→

refl𝑎
𝑦′ to be 𝑦 =→ 𝑦′, which is also inU . ⌟

An element 𝑞 : 𝑦
=−→
𝑝
𝑦′ is called an identification of 𝑦 with 𝑦′ over 𝑝, or a

path from 𝑦 to 𝑦′ over 𝑝. Intuitively, we regard 𝑝 as specifying a way for

𝑎 to change gradually into 𝑎′, and this provides a way for 𝑌(𝑎) to change

gradually into 𝑌(𝑎′); then 𝑞 charts a way for 𝑦 to change gradually into

𝑦′ as 𝑌(𝑎) changes gradually into 𝑌(𝑎′).25

Remark 2.7.2. Given a type 𝑍, Definition 2.7.1 has a special case in which

𝑌(𝑥) :≡ 𝑍 for all 𝑥 :𝑋. Given elements 𝑎, 𝑎′ :𝑋, a path 𝑝 : 𝑎 =→ 𝑎′ and

an introduction to univalent mathematics 21

26
We picture 𝑓 via its graph of the

values 𝑓 (𝑥) as 𝑥 varies in 𝑋. The

dependent application of 𝑓 to 𝑝 is

then the piece of the graph that lies

over 𝑝:

𝑥
𝑥′

𝑋

𝑌(𝑥) 𝑌(𝑥′)

𝑝

𝑓 (𝑥) 𝑓 (𝑥′)
apd 𝑓 (𝑝)

elements 𝑧, 𝑧′ :𝑍, we can form both the type 𝑧
=−→
𝑝
𝑧′ and the identity type

𝑧 =→ 𝑧′. These types are readily identified by induction on 𝑝. ⌟

The following definition identifies the type of paths over 𝑝 with a type

of paths using transport along 𝑝.

Definition 2.7.3. In the context of Definition 2.7.1, define by induction on

𝑝 an identification po𝑝 :
(
𝑦

=−→
𝑝
𝑦′
)

=→
(

trp𝑌𝑝 (𝑦)
=→ 𝑦′

)
in U , by setting

porefl𝑥
:≡ refl𝑦 =→𝑦′ . ⌟

Many of the operations on paths have counterparts for paths over

paths. For example, we may define composition of paths over paths as

follows.

Definition 2.7.4. Suppose we are given a type 𝑋 and a family of types

𝑌(𝑥) parametrized by the elements 𝑥 of 𝑋. Suppose also that we have

elements 𝑥, 𝑥′, 𝑥′′ :𝑋, a path 𝑝 : 𝑥 =→ 𝑥′, and a path 𝑝′ : 𝑥′ =→ 𝑥′′. Suppose

further that we have elements 𝑦 :𝑌(𝑥), 𝑦′ :𝑌(𝑥′), and 𝑦′′ :𝑌(𝑥′′), with

paths 𝑞 : 𝑦
=−→
𝑝
𝑦′ over 𝑝 and 𝑞′ : 𝑦′

=−→
𝑝′

𝑦′′ over 𝑝′. Then we define the

composite path (𝑞′ ◦ 𝑞) : 𝑦 =−−−→
𝑝′◦𝑝

𝑦′′ over 𝑝′ ◦ 𝑝 as follows. First we apply

path induction on 𝑝′ to reduce to the case where 𝑥′′ is 𝑥′ and 𝑝′ is refl𝑥′ .
That also reduces the type 𝑦′

=−→
𝑝′
𝑦′′ to the identity type 𝑦′ =→ 𝑦′′, so we

may apply path induction on 𝑞′ to reduce to the case where 𝑦′′ is 𝑦′ and

𝑞′ is refl𝑦′ . Now observe that 𝑝′ ◦ 𝑝 is 𝑝, so 𝑞 provides the element we

need. ⌟

Similarly, one can define the inverse of a path over a path, writing

𝑞−1 : 𝑦′
=−−→
𝑝−1

𝑦 for the inverse of 𝑞 : 𝑦
=−→
𝑝
𝑦′. For these operations on paths

over paths we have identifications analogous to those for the operations

on paths in Exercise 2.5.3, after some modification. For example, 𝑔−1 ◦ 𝑞
of type 𝑦

=−−−−→
𝑝−1◦𝑝

𝑦 and refl𝑦 of type 𝑦
=−−−→

refl𝑥
𝑦 cannot be directly used to

form an identity type, since their types are not equal by definition. We

will state these identifications when we need them.

Exercise 2.7.5. Try to state some of these identifications yourself. ⌟

The following construction shows how to handle application of a

dependent function 𝑓 to paths using the definition above.

Definition 2.7.6. Suppose we are given a type 𝑋, a family of types 𝑌(𝑥)
parametrized by the elements 𝑥 of 𝑋, and a function 𝑓 : ∏𝑥 𝑌(𝑥). Given

elements 𝑥, 𝑥′ :𝑋 and a path 𝑝 : 𝑥 =→ 𝑥′, we define

apd 𝑓 (𝑝) : 𝑓 (𝑥)
=−→
𝑝
𝑓 (𝑥′)

by induction on 𝑝, setting

apd 𝑓 (refl𝑥) :≡ refl 𝑓 (𝑥). ⌟

The function apd 𝑓 is called dependent application of 𝑓 to paths.
26

For

convenience, we may abbreviate apd 𝑓 (𝑝) to 𝑓 (𝑝), when there is no risk

of confusion.

The following construction shows how functions of two variables may

be applied to paths over paths.

an introduction to univalent mathematics 22

27
Also known as a Sigma-type.

28
We may denote ∑𝑥 :𝑋 𝑌(𝑥) by Tot(𝑌)
and also call it the total type of the

family 𝑌(𝑥). We can picture it, in

the style of the pictures above, as

the entire blob lying over 𝑋. (Each

𝑌(𝑥) is a vertical line over 𝑥 :𝑋, and a

point 𝑦 :𝑌(𝑥) becomes a point (𝑥, 𝑦)
in the blob.)

𝑥

𝑋

∑𝑥 :𝑋 𝑌(𝑥)𝑌(𝑥)

(𝑥, 𝑦)

fst

Another example of an iterated sum

is when 𝑍′(𝑢) is a family of types

parameterized by a variable 𝑢 of

type ∑𝑥 :𝑋 𝑌(𝑥). Elements of the

type ∑𝑢 : ∑𝑥 :𝑋 𝑌(𝑥) 𝑍
′(𝑢) are triples

((𝑥, 𝑦), 𝑧). We use the triple-notation

also for this case.

Definition 2.7.7. Suppose we are given a type 𝑋, a family of types 𝑌(𝑥)
parametrized by the elements 𝑥 of 𝑋, and a type 𝑍. Suppose also we are

given a function 𝑔 : ∏𝑥 :𝑋(𝑌(𝑥) → 𝑍) of two variables. Given elements

𝑥, 𝑥′ :𝑋, 𝑦 :𝑌(𝑥), and 𝑦′ :𝑌(𝑥′), a path 𝑝 : 𝑥 =→ 𝑥′, and a path 𝑞 : 𝑦
=−→
𝑝
𝑦′

over 𝑝, we may construct a path

apap𝑔(𝑝)(𝑞) : 𝑔(𝑥)(𝑦) =→ 𝑔(𝑥′)(𝑦′)

by induction on 𝑝 and 𝑞, setting

apap𝑔(refl𝑥)(refl𝑦) :≡ refl𝑔(𝑥)(𝑦). ⌟

The function 𝑝 ↦→ 𝑞 ↦→ apap𝑔(𝑝)(𝑞) is called application of 𝑔 to paths

over paths. For convenience, we may abbreviate apap𝑔(𝑝)(𝑞) to 𝑔(𝑝)(𝑞).
The following definition will be useful later.

Definition 2.7.8. Suppose we are given a type 𝑋, a family of types 𝑌(𝑥)
parametrized by the elements 𝑥 of 𝑋, and a type 𝑍. Suppose also

we are given a function 𝑔 : ∏𝑥 :𝑋(𝑌(𝑥) → 𝑍) of two variables. Given

an element 𝑥 :𝑋, elements 𝑦, 𝑦′ :𝑌(𝑥), and an identification 𝑞 : 𝑦 =→ 𝑦′,

then we define an identification of type apap𝑔(refl𝑥)(𝑞) =→ ap𝑔(𝑥)(𝑞), by

induction on 𝑞, thereby reducing to the case where 𝑦′ is 𝑦 and 𝑞 is

refl𝑦 , rendering the two sides of the equation equal, by definition, to

refl𝑔(𝑥)(𝑦). ⌟

2.8 Sum types

There are sums of types. By this we mean if 𝑋 is a type and 𝑌(𝑥) is a

family of types parametrized by a variable 𝑥 of type 𝑋, then there will be

a type
27 ∑𝑥 :𝑋 𝑌(𝑥) whose elements are all pairs (𝑎, 𝑏), where 𝑎 :𝑋 and

𝑏 :𝑌(𝑎). Since the type of 𝑏 may depend on 𝑎 we also call such a pair a

dependent pair. We may refer to 𝑋 as the parameter type of the sum.
28

If 𝑋 and 𝑌(𝑥) are elements of a universeU , then so is ∑𝑥 :𝑋 𝑌(𝑥).
Proving something about (or constructing something from) every

element of ∑𝑥 :𝑋 𝑌(𝑥) is done by performing the construction on elements

of the form (𝑎, 𝑏), for every 𝑎 :𝑋 and 𝑏 :𝑌(𝑎). Two important examples

of such constructions are:

(1) first projection, fst : (∑𝑥 :𝑋 𝑌(𝑥)) → 𝑋, fst(𝑎, 𝑏) :≡ 𝑎;

(2) second projection, snd(𝑎, 𝑏) :𝑌(𝑎), snd(𝑎, 𝑏) :≡ 𝑏.

In (2), the type of snd is, in full, ∏𝑧 : ∑𝑥 :𝑋 𝑌(𝑥)𝑌(fst(𝑧)).
Remark 2.8.1. An important special case of sum types is when the type

𝑌(𝑥) does not depend on 𝑥 :𝑋. In that case the sum type ∑𝑥 :𝑋 𝑌(𝑥) is
denoted as 𝑋 × 𝑌 and called a binary product type, see Section 2.11. ⌟

Remark 2.8.2. One may consider sums of sums. For example, suppose 𝑋

is a type, suppose𝑌(𝑥) is a family of types parametrized by a variable 𝑥 of

type𝑋, and suppose𝑍(𝑥, 𝑦) is a family of types parametrized by variables

𝑥 :𝑋 and 𝑦 :𝑌(𝑥). In this case, the iterated sum ∑𝑥 :𝑋 ∑𝑦 :𝑌(𝑥) 𝑍(𝑥, 𝑦)
consists of pairs of the form (𝑥, (𝑦, 𝑧)). For simplicity, we introduce the

notation (𝑥, 𝑦, 𝑧) :≡ (𝑥, (𝑦, 𝑧)), and refer to (𝑥, 𝑦, 𝑧) as a triple or as a

3-tuple.

an introduction to univalent mathematics 23

That process can be repeated: suppose 𝑋1 is a type, suppose 𝑋2(𝑥1)
is a family of types parametrized by a variable 𝑥1 of type 𝑋1, suppose

𝑋3(𝑥1 , 𝑥2) is a family of types parametrized by variables 𝑥1 :𝑋1 and

𝑥2 :𝑋2(𝑥1), and so on, up to a family 𝑋𝑛(𝑥1 , . . . , 𝑥𝑛−1) of types. In this

case, the iterated sum

∑
𝑥1 :𝑋1

∑
𝑥2 :𝑋2(𝑥1)

· · · ∑
𝑥𝑛−1 :𝑋𝑛−1(𝑥1 ,...,𝑥𝑛−2)

𝑋𝑛(𝑥1 , . . . , 𝑥𝑛−1)

consists of elements of the form (𝑥1 , (𝑥2 , (. . . (𝑥𝑛−1 , 𝑥𝑛) . . .))); each such

element is a pair whose second member is a pair, and so on, so we may

refer to it as an iterated pair. For simplicity, we introduce the notation

(𝑥1 , 𝑥2 , . . . , 𝑥𝑛) for such an iterated pair, and refer to it as an 𝑛-tuple. ⌟

2.9 Equivalences

Using a combination of sum, product, and identity types allows us to

express important notions, as done in the following definitions.

The property that a type 𝑋 has “exactly one element” may be made

precise by saying that 𝑋 has an element such that every other element is

equal to it. This property is encoded in the following definition.

Definition 2.9.1. Given a type 𝑋, define a type isContr(𝑋) by setting

isContr(𝑋) :≡ ∑
𝑐 :𝑋

∏
𝑥 :𝑋
(𝑐 =→ 𝑥). ⌟

If (𝑐, ℎ) : isContr(𝑋), then 𝑐will be called the center of the the contraction
ℎ, and we call the type 𝑋 contractible.

By path composition, one sees that any element 𝑥 :𝑋 can serve as the

center of a contraction of a contractible type 𝑋.

The following lemma gives an important example of a contractible

type.

Given a type 𝑋 and an element 𝑎 of 𝑋, the singleton type ∑𝑥 :𝑋(𝑎 =→ 𝑥)
consists of pairs (𝑥, 𝑖) with 𝑖 : 𝑎 =→ 𝑥. The following lemma shows that a

singleton type has exactly one element, justifying the name.

Lemma 2.9.2. For any type 𝑋 and 𝑎 :𝑋, the singleton type ∑𝑥 :𝑋(𝑎 =→ 𝑥) is
contractible.

Proof. Take as center the pair (𝑎, refl𝑎). We have to produce, for any

element 𝑥 of 𝑋 and for any identification 𝑖 : 𝑎 =→ 𝑥, an identification

of type (𝑎, refl𝑎) =→ (𝑥, 𝑖). This is done by path induction on 𝑖, which

reduces us to producing an identification of type (𝑎, refl𝑎) =→ (𝑎, refl𝑎);
reflexivity provides one, namely refl(𝑎,refl𝑎). □

Definition 2.9.3. Given a function 𝑓 :𝑋 → 𝑌 and an element 𝑦 :𝑌, the

fiber (or preimage) 𝑓 −1(𝑦) is encoded by defining

𝑓 −1(𝑦) :≡ ∑
𝑥 :𝑋
(𝑦 =→ 𝑓 (𝑥)).

In other words, an element of the fiber 𝑓 −1(𝑦) is a pair consisting of an

element 𝑥 of 𝑋 and an identification of type 𝑦 =→ 𝑓 (𝑥). ⌟

In set theory, a function 𝑓 :𝑋 → 𝑌 is a bĳection if and only if all

preimages 𝑓 −1(𝑦) consist of exactly one element. We can also express

this in type theory, in a definition due to Voevodsky, for types in general.

an introduction to univalent mathematics 24

29
Note that fst(𝑡(𝑦)) : 𝑓 −1(𝑦),
so fst(fst(𝑡(𝑦))) :𝑋 with

snd(fst(𝑡(𝑦))) : 𝑦 =→ 𝑓 (fst(fst(𝑡(𝑦)))).

30
The Univalent Foundations Program.

Homotopy Type Theory: Univalent
Foundations of Mathematics. Institute

for Advanced Study: https://
homotopytypetheory.org/book,
2013.

Definition 2.9.4. A function 𝑓 :𝑋 → 𝑌 is called an equivalence if 𝑓 −1(𝑦) is
contractible for all 𝑦 :𝑌. The condition is encoded by the type

isEquiv(𝑓) :≡∏
𝑦 :𝑌

isContr(𝑓 −1(𝑦)). ⌟

We may say that 𝑋 and 𝑌 are equivalent if we have an equivalence

between them.

Definition 2.9.5. We define the type 𝑋 ≃→ 𝑌 of equivalences from 𝑋 to 𝑌

by the following definition.

(𝑋 ≃→ 𝑌) :≡ ∑
𝑓 :𝑋→𝑌

isEquiv(𝑓). ⌟

Suppose 𝑓 :𝑋 ≃→ 𝑌 is an equivalence, and let 𝑡(𝑦) : isContr(𝑓 −1(𝑦)),
for each 𝑦 :𝑌, be the corresponding witness to contractibility of the

fiber. Using 𝑡 we can define an inverse function 𝑔 :𝑌 → 𝑋 by setting

𝑔(𝑦) :≡ fst(fst(𝑡(𝑦))). This can be seen as follows.

By unfolding all the definitions
29

, we have an identification of type

𝑓 (𝑔(𝑦)) =→ 𝑦. Moreover, (𝑥, refl 𝑓 (𝑥)) is an element of the fiber 𝑓 −1(𝑓 (𝑥)),
and 𝑡(𝑓 (𝑥)) is a proof that this fiber is contractible. Hence the center

of contraction fst(𝑡(𝑓 (𝑥)) is identified with (𝑥, refl 𝑓 (𝑥)), and so 𝑔(𝑓 (𝑥)) ≡
(fst(fst(𝑡(𝑓 (𝑥))))) =→ 𝑥.

We have shown that 𝑓 and 𝑔 are inverse functions. When it won’t

cause confusion with the notation for the fibers of 𝑓 , we will write 𝑓 −1

instead of 𝑔.

For any type𝑋, the identity function id𝑋 is an equivalence from𝑋 to𝑋.

To see that, observe that for every element 𝑎 in 𝑋, id−1
𝑋 (𝑎) is a singleton

type and hence is contractible. This observation, combined with the fact

that trp𝑇refl𝑥 ≡ id𝑇(𝑥), gives that the function trp𝑇𝑒 from Definition 2.5.4 is

an equivalence from 𝑇(𝑥) to 𝑇(𝑦), for all 𝑒 : 𝑥 =→ 𝑦.

Exercise 2.9.6. Make sure you understand the two applications of fst
in the definition 𝑓 −1(𝑦) :≡ fst(fst(𝑡(𝑦))) above. Show that 𝑓 −1

is an

equivalence from 𝑌 to 𝑋. Give a function (𝑋 ≃→ 𝑌) → (𝑌 ≃→ 𝑋). ⌟

Exercise 2.9.7. Give a function (𝑋 ≃→ 𝑌) → ((𝑌 ≃→ 𝑍) → (𝑋 ≃→ 𝑍)). ⌟

Exercise 2.9.8. Consider types𝐴, 𝐵, and𝐶, functions 𝑓 :𝐴→ 𝐵, 𝑔 :𝐴→ 𝐶

and ℎ : 𝐵→ 𝐶, together with an element 𝑒 : ℎ 𝑓 =→ 𝑔. Prove that if two of

the three functions are equivalences, then so is the third one. ⌟

The following lemma gives an equivalent characterization of equiva-

lence that is sometimes easy to use.

Construction 2.9.9. Let 𝑋,𝑌 be types. For each equivalence 𝑓 :𝑋 → 𝑌, we
have a function 𝑔 :𝑌 → 𝑋 such that for all 𝑥 :𝑋 we have 𝑔(𝑓 (𝑥)) =→ 𝑥 and for
all 𝑦 :𝑌 we have 𝑓 (𝑔(𝑦)) =→ 𝑦. Conversely, if we have such a function 𝑔, then
𝑓 is an equivalence.

Implementation of Construction 2.9.9. Given an equivalence 𝑓 :𝑋 → 𝑌 we

can take 𝑔 :≡ 𝑓 −1
. For the converse, see Chapter 4 of the HoTT Book,

30

or isweq_iso. □

We put Construction 2.9.9 immediately to good use.

https://homotopytypetheory.org/book
https://homotopytypetheory.org/book
https://unimath.github.io/doc/UniMath/e47ce20/UniMath.Foundations.PartA.html#isweq_iso

an introduction to univalent mathematics 25

31
In fact, an alternative proof would

go as follows: First, we use Con-

struction 2.9.9 to construct an ele-

ment of ∑𝑥 :𝑋 ∑𝑦 :𝑌(𝑥) 𝑍(𝑥, 𝑦) ≃→
∑𝑤 : (∑𝑥 :𝑋 𝑌(𝑥)) 𝑍(fst𝑤, snd𝑤), i.e., the

associativity of sum types, where

𝑋 is a type, 𝑌(𝑥) is a family of types

depending on 𝑥 :𝑋, and 𝑍(𝑥, 𝑦) is a

family of types depending on 𝑥 :𝑋
and 𝑦 :𝑌(𝑥). Then, we construct

for any contractible type 𝑋 and for

any family of types 𝑌(𝑥) depending

on 𝑥 :𝑋, an equivalence between

∑𝑥 :𝑋 𝑌(𝑥) and 𝑌(𝑐), where 𝑐 is the

center of contraction of 𝑋.

32
Univalent Foundations Program,

Homotopy Type Theory: Univalent
Foundations of Mathematics.

Lemma 2.9.10. Let 𝑋 be a type with element 𝑎, and let 𝐵(𝑥, 𝑖) be a type for all
𝑥 :𝑋 and 𝑖 : 𝑎 =→ 𝑥. Define 𝑓 (𝑥, 𝑖) : 𝐵(𝑥, 𝑖) → 𝐵(𝑎, refl𝑎) by induction on 𝑖,
setting 𝑓 (𝑎, refl𝑎 , 𝑏) :≡ 𝑏 for all 𝑏 : 𝐵(𝑎, refl𝑎). Then 𝑓 defines an equivalence

𝑓 : ∑
𝑥 :𝑋

∑
𝑖 : 𝑎 =→𝑥

𝐵(𝑥, 𝑖) → 𝐵(𝑎, refl𝑎).

Proof. We can also define 𝑔 : 𝐵(𝑎, refl𝑎) → ∑𝑥 :𝑋 ∑𝑖 : 𝑎 =→𝑥 𝐵(𝑥, 𝑖)mapping

𝑏 : 𝐵(𝑎, refl𝑎) to (𝑎, refl𝑎 , 𝑏). Clearly 𝑓 (𝑔(𝑏)) =→ 𝑏 for all 𝑏 : 𝐵(𝑎, refl𝑎).
Moreover, 𝑔(𝑓 (𝑥, 𝑖, 𝑏)) =→ (𝑥, 𝑖, 𝑏) is clear by induction on 𝑖, for all

𝑏 : 𝐵(𝑥, 𝑖). By Construction 2.9.9 it follows that 𝑓 is an equivalence. □

The above lemma clearly reflects the contractibility of the singleton

type ∑𝑥 :𝑋(𝑎 =→ 𝑥).31
For this reason we call application of this lemma

‘to contract away’ the prefix ∑𝑥 :𝑋 ∑𝑖 : 𝑎 =→𝑥 , in order to obtain a simpler

type. It is often applied in the following simpler form.

Corollary 2.9.11. With conditions as above, but with 𝐵 not depending on 𝑖,
the same 𝑓 establishes an equivalence

∑
𝑥 :𝑋
((𝑎 =→ 𝑥) × 𝐵(𝑥)) ≃→ 𝐵(𝑎).

In the direction of further generality, we offer the following exercise.

Exercise 2.9.12. Suppose𝑋,𝑌 are types related by an equivalence 𝑓 :𝑋 →
𝑌. Let 𝐵(𝑥) be a type parameterized by 𝑥 :𝑋. Construct an equivalence

between ∑𝑥 :𝑋 𝐵(𝑥) and ∑𝑦 :𝑌 𝐵(𝑓 −1(𝑦)). ⌟

The next exercise gives a dual to Corollary 2.9.11 that may be dubbed

‘to substitute away’.

Exercise 2.9.13. Let 𝑋 be a type with element 𝑎, and let 𝐵(𝑥) be a type

parameterized by 𝑥 :𝑋. Give an equivalence between ∏𝑥 :𝑋((𝑎 =→ 𝑥) →
𝐵(𝑥)) and 𝐵(𝑎). ⌟

We proceed now to define the notion of equivalences in families.

Definition 2.9.14. Let 𝑋 be a type, and let 𝑌(𝑥), 𝑍(𝑥) be families of types

parametrized by 𝑥 :𝑋. A map 𝑓 of type ∏𝑥 :𝑋(𝑌(𝑥) → 𝑍(𝑥)) can be

viewed as a family of maps 𝑓 (𝑥) :𝑌(𝑥) → 𝑍(𝑥) and is called a map of

families. The totalization of 𝑓 is defined by tot(𝑓)(𝑥, 𝑦) :≡ (𝑥, 𝑓 (𝑥)(𝑦)).
Using the denotation Tot(_) for the total type of a type family we thus

have

tot(𝑓) : Tot(𝑌) → Tot(𝑍)). ⌟

Lemma 2.9.15. Let conditions be as in Definition 2.9.14. If 𝑓 (𝑥) :𝑌(𝑥) → 𝑍(𝑥)
is an equivalence for every 𝑥 :𝑋 (we say that 𝑓 is an equivalence of families),
then tot(𝑓) is an equivalence.

Proof. If 𝑓 (𝑥) :𝑌(𝑥) → 𝑍(𝑥) is an equivalence for all 𝑥 in 𝑋, then the

same is true of all 𝑓 (𝑥)−1 :𝑍(𝑥) → 𝑌(𝑥). Then we have the totalization

tot(𝑥 ↦→ 𝑓 (𝑥)−1), which can easily be proved to be an inverse of tot(𝑓)
(see the next exercise). Now apply Construction 2.9.9. □

Exercise 2.9.16. Complete the details of the proof of Lemma 2.9.15. ⌟

The converse to Lemma 2.9.15 also holds.

Lemma 2.9.17. Continuing with the setup of Definition 2.9.14, if tot(𝑓) is an
equivalence, then 𝑓 is a equivalence of families.

an introduction to univalent mathematics 26

33
This equivalence is sometimes called

the type-theoretic axiom of choice;

more prosaically, it expresses the

distributivity of products (Π-types)

over sums (Σ-types). We discuss the

real axiom of choice in Section B.4.

34
The special case 𝑍 ≡ 𝑋, 𝑓 ≡ id𝑋
applies to any product type.

35
This canonical equivalence is of-

ten called “currying”, after Haskell

B. Curry, and will be treated trans-

parently, i.e., we will pass between

𝑓 (𝑥, 𝑦) and 𝑓 (𝑥)(𝑦)without denoting

it. Note that the equivalence goes be-

tween (𝑋×𝑌) → 𝑍 and 𝑋 → (𝑌 → 𝑍)
in case 𝑌(𝑥) is constant.

We picture paths between pairs

much in the same way as paths

over paths, cf. Footnote 25. Just

as, to give a pair in the sum type

∑𝑥 :𝑋 𝑌(𝑥), we need both the point

𝑥 in the parameter type 𝑋 as well

as the point 𝑦 in 𝑌(𝑥), to give a

path from (𝑥, 𝑦) to (𝑥′, 𝑦′), we need

both a path 𝑝 : 𝑥 =→ 𝑥′ as well as

a path 𝑞 : 𝑦
=−→
𝑝

𝑦′ over 𝑝. Here’s

a similar picture, where we de-

pict the types in the family as be-

ing 2-dimensional for a change.

𝑥
𝑥′

𝑋
𝑝

𝑦
𝑦′𝑞

For a proof see Theorem 4.7.7 of the HoTT Book
32

.

Yet another application of the notion of equivalence is to postulate

axioms.

Principle 2.9.18. The axiom of function extensionality postulates that the

function ptw 𝑓 ,𝑔 : (𝑓 =→ 𝑔) → ∏𝑥 :𝑋 𝑓 (𝑥) =→ 𝑔(𝑥) in Definition 2.6.4 is

an equivalence. Formally, we postulate the existence of an element

funext : isEquiv(ptw 𝑓 ,𝑔). From that we can construct the corresponding

inverse function

ptw−1
𝑓 ,𝑔 :

(
∏
𝑥 :𝑋

𝑓 (𝑥) =→ 𝑔(𝑥)
)
→ (𝑓 =→ 𝑔).

Thus two functions whose values can all be identified can themselves be

identified. This supports the intuition that there is nothing more to a

function than the values it sends its arguments to. ⌟

Exercise 2.9.19. Let 𝑋 be a type. Construct an equivalence of type

(True→ 𝑋) ≃→ 𝑋. ⌟

Exercise 2.9.20. Let 𝑋 be a type, and regard True as a constant family of

types over 𝑋. Construct an equivalence of type (∑𝑥 :𝑋 True) ≃→ 𝑋. ⌟

Exercise 2.9.21. Let𝑋 and𝑌 be types, and let𝑍(𝑦)be a type parameterized

by 𝑦 :𝑌. Construct an equivalence of type

(
𝑋 ×∑𝑦 :𝑌 𝑍(𝑦)

) ≃→ ∑𝑦 :𝑌(𝑋 ×
𝑍(𝑦)). ⌟

Exercise 2.9.22. Let 𝑋 and 𝑌 be types, and let 𝑍(𝑥, 𝑦) be a type pa-

rameterized by 𝑥 :𝑋 and 𝑦 :𝑌. Construct an equivalence of type(
∑𝑥 :𝑋 ∑𝑦 :𝑌 𝑍(𝑥, 𝑦)

) ≃→ ∑𝑦 :𝑌 ∑𝑥 :𝑋 𝑍(𝑥, 𝑦). ⌟

Exercise 2.9.23. Let 𝑋, 𝑌 and 𝑍 be types. Given functions 𝑓 :𝑋 → 𝑌

and 𝑔 :𝑌 → 𝑍, construct a family of equivalences of type (𝑔 𝑓)−1(𝑧) ≃→
∑𝑤 : 𝑔−1(𝑧) 𝑓

−1(fst𝑤) parameterized by 𝑧 :𝑍. Hint: use Footnote 31. ⌟

Exercise 2.9.24. Let 𝑋 and 𝑌 be types, and let 𝑍(𝑥, 𝑦) be a type pa-

rameterized by 𝑥 :𝑋 and 𝑦 :𝑌. Construct an equivalence of type(
∏𝑥 :𝑋 ∑𝑦 :𝑌 𝑍(𝑥, 𝑦)

) ≃→ ∑ 𝑓 :𝑋→𝑌 ∏𝑥 :𝑋 𝑍(𝑥, 𝑓 (𝑥)).33 ⌟

Exercise 2.9.25. Let𝑋 and𝑍 be types, and let𝑌(𝑥)be a type parameterized

by 𝑥 :𝑋. For any function 𝑓 :𝑍 → 𝑋, construct an equivalence of type(
∏𝑧 :𝑍 𝑌(𝑓 (𝑧))

) ≃→ ∑𝑔 :𝑍→∑𝑥 :𝑋 𝑌(𝑥)(𝑓
=→ fst ◦𝑔).34 ⌟

Exercise 2.9.26. Let𝑋 and𝑍 be types, and let𝑌(𝑥)be a type parameterized

by 𝑥 :𝑋. Construct an equivalence
35

of type

(
(∑𝑥 :𝑋 𝑌(𝑥)) → 𝑍

) ≃→
∏𝑥 :𝑋(𝑌(𝑥) → 𝑍). ⌟

2.10 Identifying pairs

The identity type of two elements of ∑𝑥 :𝑋 𝑌(𝑥) is inductively defined

in Section 2.5, as for any other type, but one would like to express the

identity type for pairs in terms of identifications in the constituent types.

This would explain better what it means for two pairs to be identified.

We start with a definition.

Definition 2.10.1. Suppose we are given a type 𝑋 and a family of types

𝑌(𝑥) parametrized by the elements 𝑥 of 𝑋. Consider the function

pair : ∏
𝑥 :𝑋

(
𝑌(𝑥) → ∑

𝑥′ :𝑋
𝑌(𝑥′)

)

an introduction to univalent mathematics 27

defined by

pair(𝑥)(𝑦) :≡ (𝑥, 𝑦).

For any elements (𝑥, 𝑦) and (𝑥′, 𝑦′) of ∑𝑥 :𝑋 𝑌(𝑥), we define the map(
∑

𝑝 : 𝑥 =→𝑥′
𝑦

=−→
𝑝
𝑦′
)
→
(
(𝑥, 𝑦) =→ (𝑥′, 𝑦′)

)
by

(𝑝, 𝑞) ↦→ apappair(𝑝)(𝑞).

(Refer to Definition 2.7.1 for the meaning of the type 𝑦
=−→
𝑝
𝑦′, and

to Definition 2.7.7 for the definition of apap.) We introduce (𝑝, 𝑞) as

notation for apappair(𝑝)(𝑞). ⌟

Construction 2.10.2. In the situation of Definition 2.10.1, if 𝑥′ is 𝑥, so that
we have (𝑦 =−−−→

refl𝑥
𝑦′) ≡ (𝑦 =→ 𝑦′), then for any 𝑞 : 𝑦 =→ 𝑦′, we can construct an

identification of type:
(refl𝑥 , 𝑞) =→ appair(𝑥) 𝑞

Implementation of Construction 2.10.2. By induction on 𝑞 it suffices to

establish an identification

(refl𝑥 , refl𝑦) =→ appair(𝑥)(refl𝑦),

both sides of which are equal to refl(𝑥,𝑦) by definition. □

The following lemma gives the desired characterization of paths

between pairs.

Lemma 2.10.3. Suppose we are given a type 𝑋 and a family of types 𝑌(𝑥)
parametrized by the elements 𝑥 of 𝑋. For any elements (𝑥, 𝑦) and (𝑥′, 𝑦′) of
∑𝑥 :𝑋 𝑌(𝑥), the map defined in Definition 2.10.1 defined by

(𝑝, 𝑞) ↦→ (𝑝, 𝑞)

is an equivalence of type(
∑

𝑝 : 𝑥 =→𝑥′
𝑦

=−→
𝑝
𝑦′
)
≃→
(
(𝑥, 𝑦) =→ (𝑥′, 𝑦′)

)
.

Proof. Call the map Φ. A map the other way,

Ψ : ((𝑥, 𝑦) =→ (𝑥′, 𝑦′)) → ∑
𝑝 : 𝑥 =→𝑥′

𝑦
=−→
𝑝
𝑦′,

can be defined by induction, by setting

Ψ(refl(𝑥,𝑦)) :≡ (refl𝑥 , refl𝑦).

One proves, by induction on paths, the identifications Ψ(Φ(𝑝, 𝑞)) =→
(𝑝, 𝑞) and Φ(Ψ(𝑟)) =→ 𝑟, so Ψ and Φ are inverse functions. Applying

Construction 2.9.9, we see that Φ and Ψ are inverse equivalences, thereby

obtaining the desired result. □

We often use fst((𝑝, 𝑞)) =→ 𝑝 and snd((𝑝, 𝑞)) =→ 𝑞, which follow by

induction on 𝑝 and 𝑞 from the definitions of ap and (_, _). Similarly,

𝑟 =→ (fst(𝑟), snd(𝑟)) by induction on 𝑟.

an introduction to univalent mathematics 28

36
These cartesian products we illustrate

as usual by rectangles where one

side represents 𝑋 and the other 𝑌.

𝑥
𝑋

𝑦

𝑌

𝑋 × 𝑌

(𝑥, 𝑦)

fst

snd

2.11 Binary products

There is special case of sum types that deserves to be mentioned since

it occurs quite often. Let 𝑋 and 𝑌 be types, and consider the constant

family of types 𝑌(𝑥) :≡ 𝑌. In other words, 𝑌(𝑥) is a type that depends

on an element 𝑥 of 𝑋 that happens to be 𝑌 for any such 𝑥. (Recall

Exercise 2.5.6.) Then we can form the sum type ∑𝑥 :𝑋 𝑌(𝑥) as above.

Elements of this sum type are pairs (𝑥, 𝑦)with 𝑥 in𝑋 and 𝑦 in𝑌(𝑥) ≡ 𝑌.
36

In this case the type of 𝑦 doesn’t depend on 𝑥, and in this special case

the sum type is called the binary product, or cartesian product of the types

𝑋 and 𝑌, denoted by 𝑋 × 𝑌.

At first glance, it might seem odd that a sum is also a product, but

exactly the same thing happens with numbers, for the sum 5 + 5 + 5 is

also referred to as the product 3 × 5. Indeed, that’s one way to define

3 × 5.

Recall that we have seen something similar with the product type

∏𝑥 :𝑋 𝑌(𝑥), which we let 𝑋 → 𝑍 denote in the case where 𝑌(𝑥) is a

constant family of the form 𝑌(𝑥) :≡ 𝑍, for some type 𝑍.

The type 𝑋 ×𝑌 inherits the functions fst, snd from ∑𝑥 :𝑋 𝑌(𝑥), with the

same definitions fst(𝑥, 𝑦) :≡ 𝑥 and snd(𝑥, 𝑦) :≡ 𝑦. Their types can now be

denoted in a simpler way as fst : (𝑋×𝑌) → 𝑋 and snd : (𝑋×𝑌) → 𝑌, and

they are called as before the first and the second projection, respectively.

Again, proving something about (or constructing something from)

every element (𝑎, 𝑏) of 𝑋 × 𝑌 is simply done for all 𝑎 :𝑋 and 𝑏 :𝑌.

There is an equivalence between (𝑎1 , 𝑏1) =→ (𝑎2 , 𝑏2) and (𝑎1
=→ 𝑎2) ×

(𝑏1
=→ 𝑏2). This follows from Lemma 2.10.3 together with Exercise 2.5.6.

If 𝑓 :𝑋 → 𝑌 and 𝑓 ′ :𝑋′ → 𝑌′, then we let 𝑓 × 𝑓 ′ denote the map of

type (𝑋 × 𝑋′) → (𝑌 × 𝑌′) that sends (𝑥, 𝑥′) to (𝑓 (𝑥), 𝑓 ′(𝑥′)).
The following lemma follows from Lemma 2.10.3, combined with

Definition 2.7.3 and Exercise 2.5.6.

Lemma 2.11.1. Suppose we are given type 𝑋 and 𝑌. For any elements (𝑥, 𝑦)
and (𝑥′, 𝑦′) of 𝑋 × 𝑌, the map defined in Definition 2.10.1 defined by

(𝑝, 𝑞) ↦→ (𝑝, 𝑞)

is an equivalence of type

(𝑥 =→ 𝑥′) × (𝑦 =→ 𝑦′) ≃→
(
(𝑥, 𝑦) =→ (𝑥′, 𝑦′)

)
.

Exercise 2.11.2. Let 𝑋,𝑌 be types in a universe U , and consider the

type family 𝑇(𝑧) inU depending on 𝑧 : Bool defined by 𝑇(no) :≡ 𝑋 and

𝑇(yes) :≡ 𝑌. Show that the function (∏𝑏 : Bool 𝑇(𝑏)) → 𝑋 × 𝑌 sending 𝑓

to (𝑓 (no), 𝑓 (yes)), is an equivalence. ⌟

Exercise 2.11.3. Let 𝑋 and 𝑌 be types. Construct an equivalence of type

(𝑋 × 𝑌) ≃→ (𝑌 × 𝑋). ⌟

2.12 More inductive types

There are other examples of types that are conveniently introduced in

the same way as we have seen with the natural numbers and the identity

types. A type presented in this style shares some common features:

there are some ways to create new elements, and there is a way (called

an introduction to univalent mathematics 29

37
From falsehood, anything follows.

Also called the principle of explo-

sion.

induction) to prove something about every element of the type (or family

of types). We will refer to such types as inductive types, and we present

a few more of them in this section, including the finite types, and then

we present some other constructions for making new types from old

ones. For each of these constructions we explain the identity type for

two elements of the newly constructed type in terms of identity types

for elements of the constituent types.

2.12.1 Finite types

Firstly, there is the empty type in the universe U0, denoted by ∅ or by

False. It is an inductive type, with no way to construct elements of it.

The induction principle for ∅ says that to prove something about (or

to construct something from) every element of ∅, it suffices to consider

no special cases (!). Hence, every statement about an arbitrary element

of ∅ can be proven. (This logical principle is traditionally called ex
falso (sequitur) quodlibet.37

) As an example, we may prove that any two

elements 𝑥 and 𝑦 of ∅ are equal (i.e., construct an identification of type

𝑥 =→ 𝑦) by using induction on 𝑥. We may even prove by induction on 𝑥 : ∅
that the elements 0 and succ(0) of ℕ are equal (i.e., construct a function

of type ∅ → (0 =→ succ(0)).
An element of ∅will be called an absurdity. Of course, one expects that

there are no real absurdities in mathematics, nor in any logical system

(such as ours) that attempts to provide a language for mathematics, but

it is important to have such a name so we can discuss the possibility,

which might result inadvertently from the introduction of unwarranted

assumptions. For example, to assert that a type 𝑇 has no elements,

it would be sensible to assert that an element of 𝑇 would lead to an

absurdity. Providing a function of type 𝑇 → ∅ is a convenient way to

make that assertion.

Secondly, there will also be an inductive type called True in the

universe U0 provided with a single element triv; (the name triv comes

from the word “trivial”). Its induction principle states that, in order to

prove something about (or to construct something from) every element

of True, it suffices to consider the special case where the element is

triv. As an example, we may construct, for any element 𝑢 : True, an

identification of type 𝑢 =→ triv; we use induction to reduce to the case

where 𝑢 is triv, and then refltriv provides the desired element. One may

also construct, for any elements 𝑥 and 𝑦 of True, an identification of type

𝑥 =→ 𝑦 by using induction both on 𝑥 and on 𝑦.

There is a function 𝑋 → True, for any type 𝑋, namely: 𝑎 ↦→ triv. This

corresponds, for propositions, to the statement that an implication holds

if the conclusion is true.

Exercise 2.12.2. Let 𝑋 be a type. Define the function 𝑒 of type (True→
𝑋) → 𝑋 by 𝑒(𝑓) :≡ 𝑓 (triv). Prove that 𝑒 is an equivalence. This is called

the universal property of True. ⌟

Thirdly, there will be an inductive type called Bool in the universeU0,

provided with two elements, yes and no. Its induction principle states

that, in order to prove something about (or to construct something from)

every element of Bool, it suffices to consider two cases: the special case

where the element is yes and the special case where the element is no.

an introduction to univalent mathematics 30

38
In a case like this, we can thicken up

the lines denoting 𝑇(no) and 𝑇(yes)
in our picture, if we like:

no yes
Bool

𝑇(no) 𝑇(yes)

𝑥 𝑦

39
Beware that in a picture, the same

point may refer either to 𝑥 in 𝑋 or to

inl𝑥 in the sum 𝑋 ⨿ 𝑌:

𝑋 𝑌

𝑥 𝑦

𝑋 ⨿ 𝑌

We may use substitution to construct an element of type (yes =→
no) → ∅, expressing that the identification of yes with no leads to an

absurdity. To do this, we introduce a family of types 𝑃(𝑏) in the universe

U0 parametrized by a variable 𝑏 : Bool. We define 𝑃(𝑏) by induction

on 𝑏 by setting 𝑃(yes) :≡ True and 𝑃(no) :≡ False. (The definition of

𝑃(𝑏) is motivated by the expectation that we will be able to construct

an equivalence between 𝑃(𝑏) and yes =→ 𝑏.) If there were an element

𝑒 : yes =→ no, we could substitute no for yes in triv :𝑃(yes) to get an

element of 𝑃(no), which is absurd. Since 𝑒 was arbitrary, we have

defined a function (yes =→ no) → ∅, as desired.

In the same way, we may use substitution to prove that it is absurd

that successors of natural numbers are identical to 0, i.e., for any 𝑛 :ℕ
that (0 =→ succ(𝑛)) → ∅. To do this, we introduce a family of types

𝑃(𝑖) in U0 parametrized by a variable 𝑖 :ℕ. Define 𝑃 recursively by

specifying that 𝑃(0) :≡ True and 𝑃(succ(𝑚)) :≡ False. (The definition of

𝑃(𝑖) is motivated by the expectation that we will be able to construct

an equivalence between 𝑃(𝑖) and 0 =→ 𝑖.) If there were an element

𝑒 : 0 =→ succ(𝑛), we could substitute succ(𝑛) for 0 in triv :𝑃(0) to get an

element of 𝑃(succ(𝑛)), which is absurd. Since 𝑒 was arbitrary, we have

defined a function (0 =→ succ(𝑛)) → ∅, establishing the claim.

In a similar way we will in Section 2.24 define types 𝕟 for any 𝑛 in ℕ

such that 𝕟 is a type (set) of 𝑛 elements.

2.12.3 Binary sums

For sum types of the form ∑𝑏 : Bool 𝑇(𝑏), with 𝑇(𝑏) a type depending on 𝑏

in Bool, there is an equivalence with a simpler type.
38

After all, the type

family 𝑇(𝑏) is fully determined by two types, namely by the types 𝑇(no)
and 𝑇(yes). The elements of ∑𝑏 : Bool 𝑇(𝑏) are dependent pairs (no, 𝑥)
with 𝑥 in 𝑇(no) and (yes, 𝑦) with 𝑦 in 𝑇(yes). The resulting type can

be viewed as the disjoint union of 𝑇(no) and 𝑇(yes): from an element of

𝑇(no) or an element of 𝑇(yes)we can produce an element of ∑𝑏 : Bool 𝑇(𝑏).
These disjoint union types can be described more clearly in the

following way. The binary sum of two types 𝑋 and 𝑌, denoted 𝑋 ⨿ 𝑌,

is an inductive type with two constructors: inl :𝑋 → 𝑋 ⨿ 𝑌 and

inr :𝑌 → 𝑋 ⨿ 𝑌.
39

Proving a property of any element of 𝑋 ⨿ 𝑌 means

proving that this property holds of any inl𝑥 with 𝑥 :𝑋 and any inr𝑦 with

𝑦 :𝑌. In general, constructing a function 𝑓 of type ∏𝑧 :𝑋⨿𝑌 𝑇(𝑧), where

𝑇(𝑧) is a type depending on 𝑧, is done by defining 𝑓 (inl𝑥) for all 𝑥 in 𝑋

and 𝑓 (inr𝑦) for all 𝑦 in 𝑌.

Exercise 2.12.4. Let 𝑋,𝑌 be types in a universe U , and consider the type

family 𝑇(𝑧) in U depending on 𝑧 : Bool defined by induction on 𝑧 by

𝑇(no) :≡ 𝑋 and𝑇(yes) :≡ 𝑌. Show that the map 𝑓 :𝑋⨿𝑌 → ∑𝑏 : Bool 𝑇(𝑏),
defined by 𝑓 (inl𝑥) :≡ (no, 𝑥) and 𝑓 (inr𝑦) :≡ (yes, 𝑦), is an equivalence. ⌟

Identification of two elements 𝑎 and 𝑏 in 𝑋 ⨿𝑌 is only possible if they

are constructed with the same constructor. Thus inl𝑥
=→ inr𝑦 is always

empty, and there are equivalences of type (inl𝑥
=→ inl𝑥′) ≃→ (𝑥 =→ 𝑥′) and

(inr𝑦
=→ inr𝑦′) ≃→ (𝑦 =→ 𝑦′).

Exercise 2.12.5. Prove these statements using Exercise 2.12.4, Lemma 2.10.3,

and a characterization of the identity types of Bool. ⌟

an introduction to univalent mathematics 31

40
A point 𝑥 :𝑋 corresponds to the

point in𝑥 : Copy(𝑋):

𝑥

𝑋
↔ in𝑥

Copy(𝑋)
Note that Copy(𝑋) can alternatively

be defined as ∑𝑧 : True 𝑋.

41
We implement this in Defini-

tion 3.2.1.

42
In other places, the type of lists is

denoted List𝑋 or [𝑋].

43
This constructor doesn’t have a name

for us, since all it does is juxtapose

its two arguments. It is often called

“cons”, as it is a kind of prototypical

constructor, since many other kinds

of data can be represented in terms

of lists. This is the basis of Lisp:

the list processing programming

language.

Exercise 2.12.6. Let 𝑋,𝑌, 𝑍 be types. Define a function 𝑒 from (𝑋⨿𝑌) →
𝑍 to (𝑋 → 𝑍)× (𝑌 → 𝑍) by precomposition with the constructors. Prove

that 𝑒 is an equivalence. This is called the universal property of the binary
sum. ⌟

Exercise 2.12.7. Let 𝑋 be a type. Construct an equivalence of type

(𝑋 ⨿ ∅) ≃→ 𝑋. ⌟

2.12.8 Unary sums

Sometimes it is useful to be able to make a copy of a type 𝑋: A new

type that behaves just like 𝑋, though it is not equal to 𝑋 by definition.

The unary sum or wrapped copy of 𝑋 is an inductive type Copy(𝑋)with

a single constructor, in :𝑋 → Copy(𝑋).40
Constructing a function

𝑓 : ∏𝑧 : Copy(𝑋) 𝑇(𝑧), where 𝑇(𝑧) is a type depending on 𝑧 : Copy(𝑋), is

done by defining 𝑓 (in𝑥) for all 𝑥 :𝑋. Taking 𝑇(𝑧) to be the constant

family at 𝑋, we get a function, out : Copy(𝑋) → 𝑋, called the destructor,
with out(in𝑥) :≡ 𝑥 for 𝑥 :𝑋, and the induction principle implies that

inout(𝑧)
=→ 𝑧 for all 𝑧 : Copy(𝑋), so there is an equivalence of type

Copy(𝑋) ≃→ 𝑋, as expected. It follows that there are equivalences of

type (in𝑥 =→ in𝑥′) ≃→ (𝑥 =→ 𝑥′) and (out(𝑧) =→ out(𝑧′)) ≃→ (𝑧 =→ 𝑧′).
Note that we can make several copies of 𝑋 that are not equal to each

other by definition, for instance, by picking different names for the

constructor. We write Copycon(𝑋) for a copy of 𝑋 whose constructor is

con :𝑋 → Copycon(𝑋).

Example 2.12.9. Here’s an example to illustrate why it can be useful

to make such a wrapped type: We introduced the natural numbers

ℕ in Section 2.4. Suppose we want a type consisting of negations

of natural numbers, {. . . ,−2,−1, 0}, perhaps as an intermediate step

towards building the set of integers {. . . ,−2,−1, 0, 1, 2, . . .}.41
Of course,

the type ℕ itself would do, but then we would need to pay extra attention

to whether 𝑛 :ℕ is supposed to represent 𝑛 as an integer or its negation.

So instead we take the wrapped copy ℕ− :≡ Copy−(ℕ), with constructor

− :ℕ→ ℕ−. We will also write− :ℕ− → ℕ for the destructor, inductively

defined by −(−𝑛) :≡ 𝑛. (The ambiguity will always be resolved by the

types.) In fact, the constructor and the destructor are each other’s inverse

since we also have −(−(−𝑛)) ≡ −𝑛, and so by induction −(−𝑚) = 𝑚 for

all 𝑚 :ℕ−. By Construction 2.9.9 we get that they are equivalences. ⌟

2.12.10 Lists

One other very common inductive type is that of lists over a given type

𝑋. Intuitively, a list of elements of type 𝑋 is a sequence 𝑥1𝑥2 . . . 𝑥𝑛 of

elements of 𝑋, which is possibly the empty list, denoted 𝜀. That is, we

allow 𝑛 = 0. The number of elements 𝑛 is called the length of the list.

More formally, we have the following:

Definition 2.12.11. For any type 𝑋, let 𝑋∗ be the type of lists of elements

of 𝑋.
42

This is the inductive type with constructors 𝜀 :𝑋∗ (the empty list)
and concatenation43

of type 𝑋 → 𝑋∗ → 𝑋∗, taking an element 𝑥 :𝑋 and a

list ℓ to the extended list 𝑥ℓ consisting of 𝑥 followed by the elements of ℓ .

In the extended list 𝑥ℓ , 𝑥 is called the head and ℓ is called the tail. ⌟

an introduction to univalent mathematics 32

As an inductive type, 𝑋∗ comes with a induction principle: Construct-

ing a function 𝑓 of type ∏ℓ :𝑋∗ 𝑇(ℓ), where 𝑇(ℓ) is a type depending on

ℓ :𝑋∗, may be done by giving:

(1) an element 𝑡𝜀 :𝑇(𝜀); and

(2) a family of functions 𝑔𝑥,ℓ :𝑇(ℓ) → 𝑇(𝑥ℓ).

The resulting function satisfies 𝑓 (𝜀) ≡ 𝑡𝜀 and 𝑓 (𝑥ℓ) ≡ 𝑔𝑥,ℓ (𝑓 (ℓ)). That is,

we can produce a function on all lists by specifying how to handle the

empty list and how to reduce the case of an extended list to that of its

tail.

For example, we can define a function len :𝑋∗ → ℕ, giving the length

of a list, satisfying len(𝜀) ≡ 0 and len(𝑥ℓ) ≡ succ(len(ℓ)).
Exercise 2.12.12. Prove that len :𝑋∗ → ℕ is an equivalence whenever 𝑋

is contractible. ⌟

Note that there are no general functions producing the head and tail of

an arbitrary list, since the empty list has neither head nor tail. However,

we can use binary sums with the one-element type True to define

hd :𝑋∗ → 𝑋 ⨿ True, tl :𝑋∗ → 𝑋∗ ⨿ True

satisfying hd(𝜀) ≡ inrtriv, hd(𝑥ℓ) ≡ inl𝑥 , tl(𝜀) ≡ inrtriv, and tl(𝑥ℓ) ≡ inlℓ .

Exercise 2.12.13. Define a function of type 𝑋∗ → 𝑋∗ → 𝑋∗ that concate-

nates two lists. (Hint: Use induction on the first argument.)

Use this to define a function rev :𝑋∗ → 𝑋∗ that reverses a list. ⌟

Exercise 2.12.14. Construct an identification of type ℓ1(ℓ2ℓ3) =→ (ℓ1ℓ2)ℓ3

for any ℓ1 , ℓ2 , ℓ3 :𝑋∗. (Hint: Use induction on ℓ1.) ⌟

We shall see in Theorem 2.22.2 below that 𝑋∗ is a set whenever 𝑋

is. Exercise 2.12.14 shows that concatenation of lists is associative, so

we don’t need to use parentheses to indicate grouping within a list. It

also justifies denoting both the binary constructor and concatenation as

juxtaposition, with no separate symbol or name.

2.13 Univalence

The univalence axiom, to be presented in this section, greatly enhances

our ability to produce identifications between the two types and to use

the resulting identifications to transport (in the sense of Definition 2.5.4)

properties and structure between the types. It asserts that if U is a

universe, and 𝑋 and 𝑌 are types in U , then a specific function, mapping

identifications between 𝑋 and 𝑌 to equivalences between 𝑋 and 𝑌, is an

equivalence.

We now define the function that the univalence axiom postulates to

be an equivalence.

Definition 2.13.1. For types𝑋 and𝑌 in a universeU and a path 𝑝 :𝑋 =→ 𝑌,

transport along 𝑝 in the type family idU is a function from 𝑋 to 𝑌. We

recall the definition by path induction from Definition 2.5.4, setting

trpidU
refl𝑋

:≡ id𝑋 . As observed in Section 2.9, transport functions are

equivalences, so that the result is a function

(𝑝 ↦→ trpidU
𝑝) : (𝑋

=→ 𝑌) → (𝑋 ≃→ 𝑌). ⌟

an introduction to univalent mathematics 33

𝑥 𝑌(𝑥) 𝑍(𝑥)

𝑥′ 𝑌(𝑥′) 𝑍(𝑥′)

𝑒

𝑓

trp𝑌𝑒 trp𝑍𝑒

trp𝑌→𝑍𝑒 (𝑓)

Transport using univalence:

𝐴 𝐴 𝐴

𝐵 𝐵 𝐵

𝑔̄

𝑓

𝑔 𝑔

trp𝑔̄ (𝑓)

We may write trpidU
𝑝 more briefly as 𝑝̃, which we also use to denote

the corresponding function of type 𝑋 → 𝑌, instead of 𝑋 ≃→ 𝑌.

We are ready to state the univalence axiom.

Principle 2.13.2 (Univalence Axiom). LetU be a universe. Voevodsky’s

univalence axiom for U postulates that 𝑝 ↦→ 𝑝̃ is an equivalence of type

(𝑋 =→ 𝑌) → (𝑋 ≃→ 𝑌), for all 𝑋,𝑌 :U . Formally, we postulate the

existence of a family of elements

ua𝑋,𝑌 : isEquiv((𝑝 :𝑋 =→ 𝑌) ↦→ trpidU
𝑝)

parameterized by 𝑋,𝑌 :U . ⌟

For an equivalence 𝑓 :𝑋 ≃→ 𝑌, we will adopt the notation 𝑓 :𝑋 =→ 𝑌

to denote (𝑝 ↦→ 𝑝̃)−1(𝑓), the result of applying the inverse function of

(𝑝 ↦→ 𝑝̃), given by ua𝑋,𝑌 , to 𝑓 . Thus there are identifications of type

¯̃𝑝 =→ 𝑝 and
˜̄𝑓 =→ 𝑓 . There are also identifications of type id𝑋

=→ refl𝑋
and 𝑔 𝑓 =→ 𝑔̄ 𝑓 if 𝑔 :𝑌 ≃→ 𝑍.

Exercise 2.13.3. Prove that Bool =→ Bool has exactly two elements, reflBool

and swap (where swap is given by univalence from the equivalence

Bool→ Bool interchanging (swapping) the two elements of Bool), and

that swap · swap =→ reflBool. ⌟

2.14 Heavy transport

In this section we collect useful results on transport in type families that

are defined by a type constructor applied to families of types. Typical

examples of such ‘structured’ type families are 𝑌(𝑥) → 𝑍(𝑥) and 𝑥 =→ 𝑥

parametrized by 𝑥 :𝑋.

Definition 2.14.1. Let 𝑋 be a type, and let 𝑌(𝑥) and 𝑍(𝑥) be families of

types parametrized by a variable 𝑥 :𝑋. Define 𝑌 → 𝑍 to be the type

family with (𝑌 → 𝑍)(𝑥) :≡ 𝑌(𝑥) → 𝑍(𝑥). ⌟

Recall from Definition 2.9.14 that an element 𝑓 : ∏𝑥 :𝑋(𝑌 → 𝑍)(𝑥) is
called a map of families, and 𝑓 is called an equivalence of families, if

𝑓 (𝑥) :𝑌(𝑥) → 𝑍(𝑥) is an equivalence for all 𝑥 :𝑋.

Construction 2.14.2. Let 𝑋 be a type, and let 𝑌(𝑥) and 𝑍(𝑥) be types for
every 𝑥 :𝑋. Then we have for every 𝑥, 𝑥′ :𝑋, 𝑒 : 𝑥 =→ 𝑥′, 𝑓 :𝑌(𝑥) → 𝑍(𝑥), and
𝑦′ :𝑌(𝑥′) (see the diagram in the margin):

trp𝑌→𝑍𝑒 (𝑓)(𝑦′) =→ trp𝑍𝑒
(
𝑓
(
trp𝑌𝑒-1(𝑦′)

))
.

Implementation of Construction 2.14.2. By induction on 𝑒 : 𝑥 =→ 𝑥′. For

𝑒 ≡ refl𝑥 , we have 𝑒−1 ≡ refl𝑥 , and all transports are identity functions of

appropriate type. □

An important special case of the above lemma is with U as parameter

type and type families 𝑌 :≡ 𝑍 :≡ idU . Then 𝑌 → 𝑍 is 𝑋 ↦→ (𝑋 → 𝑋).
Now, if 𝐴, 𝐵 :U and 𝑒 :𝐴 =→ 𝐵 comes from an equivalence 𝑔 :𝐴 ≃→ 𝐵 by

applying the univalence axiom, then the above construction combined

with function extensionality yields that for any 𝑓 :𝐴 → 𝐴 (see the

diagram in the margin)

trp𝑋 ↦→(𝑋→𝑋)𝑔̄ (𝑓) =→ 𝑔 ◦ 𝑓 ◦ 𝑔−1.

an introduction to univalent mathematics 34

44
We picture this in two stages. First,

we show the fiberwise situation as

follows:

𝑥
𝑥′

𝑋

𝑌(𝑥)
𝑌(𝑥′)

𝑒

𝑓

𝑔

𝑓 (𝑥)

𝑔(𝑥)

𝑓 (𝑥′)

𝑔(𝑥′)

trp𝑒 (𝑓 (𝑥))

trp𝑒 (𝑔(𝑥))

apd 𝑓 (𝑒)
apd𝑔(𝑒)

𝑖
trp𝑒 (𝑖)

Here, there’s not room to show all

that’s going on in the fiber 𝑌(𝑥′), so

we illustrate that as follows:

𝑌(𝑥′)

𝑓 (𝑥′)

𝑔(𝑥′)

trp𝑒 (𝑓 (𝑥))

trp𝑒 (𝑔(𝑥))

trp𝑍𝑒 (𝑖)
aptrp𝑌𝑒

(𝑖)
po𝑒

(
apd 𝑓 (𝑒)

)

po𝑒
(
apd𝑔(𝑒)

)

The following construction is implemented by induction on 𝑒 : 𝑥 =→ 𝑥′.

Construction 2.14.3. Let 𝑋,𝑌 be types, 𝑓 , 𝑔 :𝑋 → 𝑌 functions, and let
𝑍(𝑥) :≡ (𝑓 (𝑥) =→ 𝑔(𝑥)) for every 𝑥 :𝑋. Then for all 𝑥, 𝑥′ in 𝑋, 𝑒 : 𝑥 =→ 𝑥′,
and 𝑖 : 𝑓 (𝑥) =→ 𝑔(𝑥) we have:

trp𝑍𝑒 (𝑖)
=→ ap𝑔(𝑒) · 𝑖 · ap 𝑓 (𝑒)−1.

Exercise 2.14.4. Implement Construction 2.14.3 in the following special

cases, where 𝑌 ≡ 𝑋 and 𝑎, 𝑏 are elements of 𝑋:

(1) trp𝑥 ↦→𝑎 =→𝑏
𝑒 (𝑖) =→ 𝑖;

(2) trp𝑥 ↦→𝑎 =→𝑥
𝑒 (𝑖) =→ 𝑒 · 𝑖;

(3) trp𝑥 ↦→𝑥 =→𝑏
𝑒 (𝑖) =→ 𝑖 · 𝑒−1

;

(4) trp𝑥 ↦→𝑥 =→𝑥
𝑒 (𝑖) =→ 𝑒 · 𝑖 · 𝑒−1

(also called conjugation). ⌟

There is also a dependent version of Construction 2.14.3, which is

again proved by induction on 𝑒.44

Construction 2.14.5. Let 𝑋,𝑌(𝑥) be types and 𝑓 (𝑥), 𝑔(𝑥) :𝑌(𝑥) for all 𝑥 :𝑋.
Let 𝑍(𝑥) :≡ (𝑓 (𝑥) =→ 𝑔(𝑥)), with the identification in 𝑌(𝑥), for every 𝑥 :𝑋.
Then for all 𝑥, 𝑥′ in 𝑋, 𝑒 : 𝑥 =→ 𝑥′, and 𝑖 : 𝑓 (𝑥) =→ 𝑔(𝑥) we have:

trp𝑍𝑒 (𝑖)
=→ po𝑒

(
apd𝑔(𝑒)

)
· aptrp𝑌𝑒

(𝑖) · po𝑒
(
apd 𝑓 (𝑒)

)−1
.

The following construction will be used later in the book.

Definition 2.14.6. Let 𝑋,𝑌(𝑥) be types and 𝑓 (𝑥) :𝑌(𝑥) for all 𝑥 :𝑋. Given

elements 𝑥, 𝑥′ :𝑋 and a path 𝑝 : 𝑥 =→ 𝑥′, we define an equivalence

(𝑓 (𝑥) =−→
𝑒
𝑓 (𝑥′)) ≃→ (𝑓 (𝑥) =→ 𝑓 (𝑥)). We do this by inducion on 𝑝, using

Definition 2.7.1, thereby reducing to the case (𝑓 (𝑥) =→ 𝑓 (𝑥)) ≃→ (𝑓 (𝑥) =→
𝑓 (𝑥)), which we solve in the canonical way as before. ⌟

Exercise 2.14.7. Let 𝑋 and 𝑌 be types with elements 𝑥 :𝑋 and 𝑦 :𝑌. Let

𝑓 , 𝑔 :𝑋 → 𝑌 be functions and 𝑒 : 𝑓 =→ 𝑔 and identification. Define by

induction on 𝑒 and for any 𝑝 : 𝑦 =→ 𝑓 (𝑥) an identification trptw(𝑒 , 𝑝),
called pointwise transport, of type trpℎ ↦→(𝑦

=→ℎ(𝑥))
𝑒 (𝑝) =→ ptw(𝑒)(𝑥) · 𝑝. ⌟

2.15 Propositions, sets and groupoids

Let 𝑃 be a type. The property that 𝑃 has at most one element may be

expressed by saying that any two elements are equal. Hence it is encoded

by ∏𝑎,𝑏 :𝑃(𝑎 =→ 𝑏). We shall call a type 𝑃 with that property a proposition,

and its elements will be called proofs of 𝑃. We will use them for doing

logic in type theory. The reason for doing so is that the most relevant

thing about a logical proposition is whether it has a proof or not. It

is therefore reasonable to require for any type representing a logical

proposition that all its members are equal.

Suppose 𝑃 is a proposition. Then English phrases such as “𝑃 holds”,

“we know 𝑃”, and “we have shown 𝑃”, will all mean that we have

an element of 𝑃. We will not use such phrases for types that are not

propositions, nor will we discuss knowing 𝑃 conditionally with a phrase

such as “whether 𝑃”. Similarly, if “𝑄” is the English phrase for a

statement encoded by the proposition 𝑃, then the English phrases “𝑄

an introduction to univalent mathematics 35

45
Sets are thought to consist of points.

Points are entities of dimension 0,

which explains why the count starts

here. One of the contributions of

Vladimir Voevodsky is the extension

of the hierarchy downwards, with

the notion of proposition, including

logic in the same hierarchy. Some

authors therefore call propositions

(−1)-types, and they call contractible

types (−2)-types.

46
Robert Recorde and John Kingston.

The whetstone of witte: whiche is the
seconde parte of Arithmetike, containyng
thextraction of rootes, the cossike prac-
tise, with the rule of equation, and the
woorkes of surde nombers. Imprynted

at London: By Ihon Kyngstone,

1557. url: https://archive.org/
details/TheWhetstoneOfWitte.

47And to auoide the tediouse repetition of

these woordes : is equalle to : I will

sette as I doe often in woorke vse, a

paire of paralleles, or Gemowe lines of

one lengthe, thus: , bicause noe

.2. thynges, can be moare equalle.

holds”, “we know 𝑄”, and “we have shown 𝑄”, will all mean that we

have an element of 𝑃.

Typically, mathematical properties expressed in English as adjectives
will be encoded by types that are propositions, for in English speech,

when you assert that a certain adjective holds, you are simply asserting

it, and not providing further information. Examples: the number 6 is

even; the number 7 is prime; the number 28 is perfect; consider a regular
pentagon; consider an isosceles triangle.

Sometimes adjectives are used in mathematics, not to refer to properties

of an object, but to modify the meaning of a noun, producing a different

noun phrase denoting a different mathematical concept. For example, a

directed graph is a graph, each of whose edges is given a bit of additional

information: a direction in which it points. Other examples: differentiable
manifold; bipartite graph; vector space; oriented manifold.

Let 𝑋 be a type. If for any 𝑥 :𝑋 and any 𝑦 :𝑋 the identity type 𝑥 =→ 𝑦

is a proposition, then we shall say that 𝑋 is a set. The reason for doing

so is that the most relevant thing about a set is which elements it has;

distinct identifications of equal elements are not relevant. Alternatively,

we shall say that 𝑋 is a 0-type.45

The following definition introduces notational alternatives commonly

used in mathematics.

Definition 2.15.1. Let 𝑃 be a proposition as defined above. We define

the negation of 𝑃 by setting ¬𝑃 :≡ (𝑃 → ∅).
Let 𝐴 be a set, as defined above, and let 𝑎 and 𝑏 be elements of 𝐴. We

write 𝑎 = 𝑏 as alternative notation for the type 𝑎 =→ 𝑏. Formally, we

define it as follows.

(𝑎 = 𝑏) :≡ (𝑎 =→ 𝑏)

The type 𝑎 = 𝑏 is called an equation. When it has an element, we say that

𝑎 and 𝑏 are equal. In line with this definition we also define the type

(𝑎 ≠ 𝑏) :≡ ¬(𝑎 = 𝑏); an element of it asserts that the elements 𝑎 and 𝑏 of

the set 𝐴 are not equal. ⌟

Equations are propositions, so we can speak of them being true or

false, and we may use them after the words if, since, whether, and because
in a sentence. In set theory, everything is a set and all equations 𝑎 = 𝑏 are

propositions; our definition of 𝑎 = 𝑏 is designed to make the transition

from set theory to type theory minimally disconcerting.

(Good motivation for the form of the equal sign in the notation 𝑎 = 𝑏 is

provided by a remark made by Robert Recorde in 1557 in the Whetstone
of Witte46

: “And to avoid the tedious repetition of these words is equal to,

I will set, as I do often in work use, a pair of parallels, or twin lines of

one length, thus: =, because no two things can be more equal.”
47

In fact,

the remark of Recorde presages the approach described in this book, for

although those two little lines are congruent, they were not considered

to be equal traditionally, since they are in different places, whereas they

may be considered to be equal in the presence of univalence, which

converts congruences to identifications.)

Let 𝑋 be a type. If for any 𝑥 :𝑋 and any 𝑦 :𝑋 the identity type 𝑥 =→ 𝑦

is a set, then we shall say that 𝑋 is a groupoid, also called a 1-type.

https://archive.org/details/TheWhetstoneOfWitte
https://archive.org/details/TheWhetstoneOfWitte

an introduction to univalent mathematics 36

The pattern continues. If for any 𝑛 :ℕ, any 𝑥 :𝑋, and any 𝑦 :𝑋 the

identity type 𝑥 =→ 𝑦 is an 𝑛-type, then we shall say that𝑋 is an (𝑛+1)-type.
If 𝑋 is an 𝑛-type, we also say that 𝑋 is 𝑛-truncated.

We prove that every proposition is a set, from which it follows by

induction that every 𝑛-type is an (𝑛 + 1)-type.
Lemma 2.15.2. Every type that is a proposition is also a set.

Proof. Let 𝑋 be a type and let 𝑓 : ∏𝑎,𝑏 :𝑋(𝑎 =→ 𝑏). Let 𝑎, 𝑏, 𝑐 :𝑋 and

let 𝑃(𝑥) be the type 𝑎 =→ 𝑥 depending on 𝑥 :𝑋. Then 𝑓 (𝑎, 𝑏) :𝑃(𝑏)
and 𝑓 (𝑎, 𝑐) :𝑃(𝑐). By path induction we construct for all 𝑞 : 𝑏 =→ 𝑐 an

identification of type 𝑞 · 𝑓 (𝑎, 𝑏) =→ 𝑓 (𝑎, 𝑐). For this it suffices to observe

that refl𝑏 · 𝑓 (𝑎, 𝑏) and 𝑓 (𝑎, 𝑏) are equal by definition. Since 𝑎 is arbitrary,

it follows that any 𝑞 : 𝑏 =→ 𝑐 can be identified with 𝑓 (𝑏, 𝑐) · 𝑓 (𝑏, 𝑏)−1
,

which doesn’t depend on 𝑞. Hence 𝑋 is a set. □

A more interesting example of a set is Bool.

Lemma 2.15.3. Bool is a set.

Proof. The following elegant, self-contained proof is due to Simon Huber.

For proving 𝑝 =→ 𝑞 for all 𝑏, 𝑏′ : Bool and 𝑝, 𝑞 : 𝑏 =→ 𝑏′, it suffices (by

induction on 𝑞) to show 𝑝 =→ refl𝑏 for all 𝑏 : Bool and 𝑝 : 𝑏 =→ 𝑏. To this

end, define by induction on 𝑏, 𝑏′ : Bool, a type 𝐶(𝑏, 𝑏′, 𝑝) for all 𝑝 : 𝑏 =→ 𝑏′,

by setting 𝐶(yes, yes, 𝑝) :≡ (𝑝 =→ reflyes), 𝐶(no, no, 𝑝) :≡ (𝑝 =→ reflno),
and arbitrary in the other two cases. By induction on 𝑏 one proves that

𝐶(𝑏, 𝑏, 𝑝) =→ (𝑝 =→ refl𝑏) for all 𝑝. Hence it suffices to prove 𝐶(𝑏, 𝑏′, 𝑝)
for all 𝑏, 𝑏′ : Bool and 𝑝 : 𝑏 =→ 𝑏′. By induction on 𝑝 this reduces to

𝐶(𝑏, 𝑏, refl𝑏), which is immediate by induction on 𝑏 : Bool. □

We now collect a number of useful results on propositions.

Lemma 2.15.4. Let 𝐴 be a type, and let 𝑃 and 𝑄 propositions. Let 𝑅(𝑎) be a
proposition depending on 𝑎 :𝐴. Then we have:

(1) False and True are propositions;

(2) 𝐴→ 𝑃 is a proposition;

(3) ∏𝑎 :𝐴 𝑅(𝑎) is a proposition;

(4) 𝑃 ×𝑄 is a proposition;

(5) if 𝐴 is a proposition, then ∑𝑎 :𝐴 𝑅(𝑎) is a proposition;

(6) 𝑃 ⨿ ¬𝑃 is a proposition.

Proof. (1): If 𝑝, 𝑞 : False, then 𝑝 =→ 𝑞 holds by induction for False. If

𝑝, 𝑞 : True, then 𝑝 =→ 𝑞 is proved by double induction, which reduces the

proof to observing that refltriv : triv =→ triv.

(2): If 𝑝, 𝑞 :𝐴→ 𝑃, then 𝑝 =→ 𝑞 is proved by first observing that 𝑝 and

𝑞 are functions which, by function extensionality, can be identified if

they have equal values 𝑝(𝑥) = 𝑞(𝑥) in 𝑃 for all 𝑥 in 𝐴. This is actually

the case since 𝑃 is a proposition.

(3): If 𝑝, 𝑞 : ∏𝑎 :𝐴 𝑅(𝑎) one can use the same argument as for 𝐴→ 𝑃

but now with dependent functions 𝑝, 𝑞.

an introduction to univalent mathematics 37

(4): If (𝑝1 , 𝑞1), (𝑝2 , 𝑞2) :𝑃 × 𝑄, then (𝑝1 , 𝑞1) =→ (𝑝2 , 𝑞2) is proved com-

ponentwise. Alternatively, we may regard this case as a special case of

(5).

(5): Given (𝑎1 , 𝑟1), (𝑎2 , 𝑟2) : ∑𝑎 𝑅(𝑎), we must establish that (𝑎1 , 𝑟1) =→
(𝑎2 , 𝑟2). Combining the map in Definition 2.10.1 with the identity type in

Definition 2.7.3 yields a map

(
∑𝑢 : 𝑎1=𝑎2 trp𝑌𝑢 (𝑟1) = 𝑟2

)
→ ((𝑎1 , 𝑟1) =→ (𝑎2 , 𝑟2)),

so it suffices to construct an element in the source of the map. Since 𝐴 is

a proposition, we may find 𝑢 : 𝑎1 = 𝑎2. Since 𝑅(𝑎2) is a proposition, we

may find 𝑣 : trp𝑌𝑢 (𝑟1) = 𝑟2. The pair (𝑢, 𝑣) is what we wanted to find.

(6): If 𝑝, 𝑞 :𝑃⨿¬𝑃, then we can distinguish four cases based on inl/inr,

see Section 2.8. In two cases we have both 𝑃 and ¬𝑃 and we are done.

In the other two, either 𝑝 ≡ inl𝑝′ and 𝑞 ≡ inl𝑞′ with 𝑝′, 𝑞′ :𝑃, or 𝑝 ≡ inr𝑝′
and 𝑞 ≡ inr𝑞′ with 𝑝′, 𝑞′ :¬𝑃. In both these cases we are done since 𝑃

and ¬𝑃 are propositions. □

Several remarks can be made here. First, the lemma supports the use

of False and True as truth values, and the use of→,∏,× for implication,

universal quantification, and conjunction, respectively. Since False is a

proposition, it follows by (2) above that 𝐴→ ∅ is a proposition for any

type 𝐴. As noted before, (2) is a special case of (3).

Notably absent in the lemma above are disjunction and existential

quantification. This has a simple reason: True⨿ True has two distinct

elements inltriv and inrtriv, an is therefore not a proposition. Similarly,

∑𝑛 :ℕ True has infinitely many distinct elements (𝑛, triv) and is not a

proposition. We will explain in Section 2.16 how to work with disjunction

and existential quantification for propositions.

The lemma above has a generalization from propositions to 𝑛-types

which we state without proving. (The proof goes by induction on 𝑛,

with the lemma above serving as the base case where 𝑛 is −1.)

Lemma 2.15.5. Let 𝐴 be a type, and let 𝑋 and 𝑌 be 𝑛-types. Let 𝑍(𝑎) be an
𝑛-type depending on 𝑎 :𝐴. Then we have:

(1) 𝐴→ 𝑋 is an 𝑛-type;

(2) ∏𝑎 :𝐴 𝑍(𝑎) is an 𝑛-type;

(3) 𝑋 × 𝑌 is an 𝑛-type.

(4) if 𝐴 is an 𝑛-type, then ∑𝑎 :𝐴 𝑍(𝑎) is an 𝑛-type;

We formalize the definitions from the start of this section.

Definition 2.15.6.

isProp(𝑃) :≡∏𝑝,𝑞 :𝑃(𝑝
=→ 𝑞)

isSet(𝑆) :≡∏𝑥,𝑦 : 𝑆 isProp(𝑥 =→ 𝑦) ≡∏𝑥,𝑦 : 𝑆 ∏𝑝,𝑞 : (𝑥 =→𝑦)(𝑝
=→ 𝑞)

isGrpd(𝐺) :≡∏𝑔,ℎ :𝐺 isSet(𝑔 =→ ℎ) ≡ . . . ⌟

Lemma 2.15.7. For any type 𝐴, the following types are propositions:

(1) isContr(𝐴);

(2) isProp(𝐴);

(3) isSet(𝐴);

an introduction to univalent mathematics 38

(4) isGrpd(𝐴);

(5) the type that encodes whether 𝐴 is an 𝑛-type, for 𝑛 ≥ 0.

Consistent with that, we will use identifiers starting with “is” only

for names of types that are propositions. Examples are isSet(𝐴) and

isGrpd(𝐴), and also isEquiv(𝑓).

Proof. Recall that isContr(𝐴) is ∑𝑎 :𝐴 ∏𝑦 :𝐴(𝑎 =→ 𝑦). Let (𝑎, 𝑓) and (𝑏, 𝑔)
be elements of the type isContr(𝐴). By Definition 2.10.1, to give an

element of (𝑎, 𝑓) =→ (𝑏, 𝑔) it suffices to give an 𝑒 : 𝑎 =→ 𝑏 and an 𝑒′ : 𝑓
=−→
𝑒
𝑔.

For 𝑒 we can take 𝑓 (𝑏); for 𝑒′ it suffices by Definition 2.7.3 to give

an 𝑒′′ : trp𝑒 𝑓
=→ 𝑔. Clearly, 𝐴 is a proposition and hence a set by

Lemma 2.15.2. Hence the type of 𝑔 is a proposition by Lemma 2.15.4(3),

which gives us 𝑒′′.

We leave the other cases as exercises. □

Exercise 2.15.8. Make sure you understand that isProp(𝑃) is a proposition,

using the same lemmas as for isContr(𝐴). Show that isSet(𝑆), isGrpd(𝐺)
and isEquiv(𝑓) are propositions. ⌟

The following exercise shows that the inductive definition of 𝑛-types

can indeed start with 𝑛 as −2, where we have the contractible types.

Exercise 2.15.9. Given a type 𝑃, show that 𝑃 is a proposition if and only

if 𝑝 =→ 𝑞 is contractible, for any 𝑝, 𝑞 :𝑃. ⌟

Remark 2.15.10. We now present the notion of a diagram. A diagram

is a graph whose vertices are types and whose edges are functions or

identifications. This means the edges have a direction. Usually there

is one vertex with only outgoing edges, called the source, and one with

only incoming edges, called the sink. Here is an example.

𝑋 𝑌

𝑆 𝑇

𝑓

𝑝 𝑞

𝑔

The information conveyed by this diagram to the reader is that 𝑋, 𝑌, 𝑆,

and 𝑇 are types, and that 𝑓 , 𝑔, 𝑝, and 𝑞 are functions; moreover, 𝑓 is of

type 𝑋 → 𝑌, 𝑔 is of type 𝑆 → 𝑇, 𝑝 is of type 𝑋 → 𝑆, and 𝑞 is of type

𝑌 → 𝑇. The source is the left upper vertex 𝑋 and the sink is the lower

right vertex 𝑇.

Observe that we can travel through the diagram from 𝑋 to 𝑇 by follow-

ing first the arrow labeled 𝑓 and then the arrow labelled 𝑞. Consequently,

the composite function 𝑞 ◦ 𝑓 is of type 𝑋 → 𝑇.

There is another route from 𝑋 to 𝑇 : we could follow first the arrow

labeled 𝑝 and then the arrow labelled 𝑔. Consequently, the composite

function 𝑔 ◦ 𝑝 is also of type 𝑋 → 𝑇.

We say that a diagram is commutative by definition if, whenever there

are two routes from one vertex to another, the corresponding composite

functions are equal by definition. For example, in the diagram above,

the condition would be that 𝑔 ◦ 𝑝 ≡ 𝑞 ◦ 𝑓 .
When the sink of the diagram is a set, then equality of functions into the

sink is a proposition, and we may consider whether two such functions

are equal. In that case, we say that a diagram is commutative if, whenever

an introduction to univalent mathematics 39

48
When diagrams get more compli-

cated, the information they convey

is not always sufficient to find out

which identity type(s) they represent.

In such cases additional information

will be provided.

49
The name “truncation” is slightly

misleading since it suggests leaving

something out, whereas the correct

intuition is one of adding identifica-

tions so everything becomes equal.

there are two routes from one vertex to another, the corresponding

composite functions are equal. For example, in the diagram above, the

condition would be that 𝑔 ◦ 𝑝 = 𝑞 ◦ 𝑓 .
In general, a diagram is a visual way to represent identity types. For

example, if in the above diagram the type 𝑇 is not a set, then the diagram

represents the identity type 𝑔 ◦ 𝑝 =→ 𝑞 ◦ 𝑓 . To give an element of such

an identity type (which may or may not be possible) is called to fill the

diagram, and such an element is then called a filler of the diagram.

There are other sorts of diagrams. For example, identifications may be

composed, and thus we may have a diagram of identifications between

elements of the same type. For example, suppose𝑊 is a type, suppose

that 𝑥, 𝑦, 𝑠, and 𝑡 are elements of𝑊 , and consider the following diagram.

𝑥 𝑦

𝑠 𝑡

𝑓

𝑝 𝑞

𝑔

It indicates that 𝑓 is of type 𝑥 =→ 𝑦, 𝑔 is of type 𝑠 =→ 𝑡, 𝑝 is of type 𝑥 =→ 𝑠,

and 𝑞 is of type 𝑦 =→ 𝑡. We may also consider whether such a diagram is

commutative by definition, or, in the case where all the identity types are

sets, is commutative. Such diagrams are again a visual way to represent

identity types.
48

For example, the above diagram represents the identity

type 𝑔 ◦𝑝 =→ 𝑞 ◦ 𝑓 , and we also speak of filling diagrams of identifications.

For a concrete example of filling such a diagram, see the naturality square

in Definition 2.6.5. ⌟

2.16 Propositional truncation and logic

As explained in Section 2.15, the type formers→,∏,× can be used with

types that are propositions for the logical operations of implication,

universal quantification, and conjunction, respectively. Moreover, True
and False can be used as truth values, and¬ can be used for negation. We

have also seen that ⨿ and Σ can lead to types that are not propositions,

even though the constituents are propositions. This means we are still

lacking disjunction (𝑃 ∨𝑄) and existence (∃𝑥 :𝑋 𝑃(𝑥)) from the standard

repertoire of logic, as well as the notion of non-emptiness of a type. In

this section we explain how to implement these three notions.

To motivate the construction that follows, consider non-emptiness

of a type 𝑇. In order to be in a position to encode the mathematical

assertion expressed by the English phrase “𝑇 is non-empty”, we will need

a proposition 𝑃. The proposition 𝑃 will have to be constructed somehow

from 𝑇. Any element of 𝑇 should somehow give rise to an element of

𝑃, but, since all elements of propositions are equal to each other, all

elements of 𝑃 arising from elements of 𝑇 should somehow be made to

equal each other. Finally, any proposition 𝑄 that is a consequence of

having an element of 𝑇 should also be a consequence of 𝑃.

We define now an operation called propositional truncation,
49

that

enforces that all elements of a type become equal.

Definition 2.16.1. Let 𝑇 be a type. The propositional truncation of 𝑇 is the

type ∥𝑇∥ defined by the following constructors:

an introduction to univalent mathematics 40

50
Given 𝑡 , 𝑡′ :𝑇, we have an identifi-

cation of type |𝑡| =→ |𝑡′|. The exis-

tence of the function 𝑔 implies that

we have an identification of type

𝑔(|𝑡|) =→ 𝑔(|𝑡′|), and hence an identi-

fication of type 𝑓 (𝑡) =→ 𝑓 (𝑡′). Thus a

necessary condition for the existence

of 𝑔 is the existence of identifications

of type 𝑓 (𝑡) =→ 𝑓 (𝑡′). That justifies

the the hypothesis that 𝑃 is proposi-

tion.

51
We may alternatively say that 𝑇 is

inhabited, in order to avoid confusion

with the concept of 𝑇 not being empty,

which would be represented by the

proposition ¬(𝑇 =→ ∅), which is

equivalent to ¬¬𝑇.

(1) an element constructor |𝑡| : ∥𝑇∥ for all 𝑡 :𝑇;

(2) an identification constructor providing an identification of type 𝑥 =→ 𝑦

for all 𝑥, 𝑦 : ∥𝑇∥.

The identification constructor ensures that ∥𝑇∥ is a proposition. The

induction principle states that, for any family of propositions 𝑃(𝑥)
parametrized by a variable 𝑥 : ∥𝑇∥, in order to prove ∏𝑥 : ∥𝑇∥ 𝑃(𝑥), it

suffices to prove ∏𝑡 :𝑇 𝑃(|𝑡|). In other words, in order to define a function

𝑓 : ∏𝑥 : ∥𝑇∥ 𝑃(𝑥), it suffices to give a function 𝑔 : ∏𝑡 :𝑇 𝑃(|𝑡|). Moreover,

the function 𝑓 will satisfy 𝑓 (|𝑡|) ≡ 𝑔(𝑡) for all 𝑡 :𝑇. ⌟

Consider the special case where the family 𝑃(𝑥) is constant. We see

that any function 𝑔 :𝑇 → 𝑃 to a proposition 𝑃 yields a (unique) function

𝑓 : ∥𝑇∥ → 𝑃 satisfying 𝑓 (|𝑡|) ≡ 𝑔(𝑡) for all 𝑡 :𝑇.
50

A useful consequence

of this recursion principle is that, for any proposition 𝑃, precomposition

with |_| is an equivalence of type

(∥𝑇∥ → 𝑃) ≃→ (𝑇 → 𝑃).

This is called the universal property of propositional truncation.

Definition 2.16.2. Let 𝑇 be a type. We call 𝑇 non-empty if we have an

element of ∥𝑇∥.51 ⌟

When we view propositional truncation as an operation on types,

the type of ∥_∥ is U → U . However, that view does not take into

account that ∥𝑇∥ is a proposition. It is more informative to pack this

information into the codomain of the operation and let ∥_∥ have the

type U → ∑𝑋 :U isProp(𝑋). The type ∑𝑋 :U isProp(𝑋) is also denoted

as PropU and even as Prop. See Example 2.20.6 for more information.

Now that propositional truncation is available, we are ready to define

logical disjunction and existence.

Definition 2.16.3. Given propositions 𝑃 and 𝑄, define their disjunction
by (𝑃 ∨ 𝑄) :≡ ∥𝑃 ⨿ 𝑄∥. It expresses the property that 𝑃 is true or 𝑄 is

true. ⌟

Definition 2.16.4. Given a type 𝑋 and a family 𝑃(𝑥) of propositions

parametrized by a variable 𝑥 of type 𝑋, define a proposition that encodes

the property that there exists a member of the family for which the

property is true by (∃𝑥 :𝑋 𝑃(𝑥)) :≡ ∥∑𝑥 :𝑋 𝑃(𝑥)∥. It expresses the property

that there exists an element 𝑥 :𝑋 for which the property 𝑃(𝑥) is true; the

element 𝑥 is not given explicitly. ⌟

The following logical quantifier could have been defined earlier, since

it doesn’t use propositional truncation. We present it now, for complete-

ness.

Definition 2.16.5. Given a type 𝑋 and a family 𝑃(𝑥) of propositions

parametrized by a variable 𝑥 of type 𝑋, define a proposition that encodes

the property that there exists a unique member of the family for which the

property is true by the proposition (∃!𝑥 :𝑋 𝑃(𝑥)) :≡ isContr(∑𝑥 :𝑋 𝑃(𝑥)).
⌟

Exercise 2.16.6. Given 𝑥 : ∥𝑇∥, prove that ∃𝑡 :𝑇(𝑥 = |𝑡|). ⌟

Exercise 2.16.7. Suppose 𝑃 is a proposition. Produce an equivalence of

type 𝑃 ≃→ ∥𝑃∥. ⌟

an introduction to univalent mathematics 41

52
In Section 2.20 we will define the

notion of subtype. It will turn out

that 𝐴(𝑎) is a subtype of 𝐴.

53
In Exercise 2.22.5 below we will

define the set of connected components
of a type.

54
A function 𝑓 :𝐴 → 𝐵 is a split
surjection if for all 𝑏 : 𝐵 we have

an 𝑎 :𝐴 with 𝑏 =→ 𝑓 (𝑎), in other

words, we have a function of type

∏𝑏 : 𝐵 ∑𝑎 :𝐴(𝑏 =→ 𝑓 (𝑎)). This is equiv-

alent to saying we have a function

𝑔 : 𝐵 → 𝐴 and an identification

𝑝 : 𝑓 ◦ 𝑔 =→ id𝐵 (such a 𝑔 is called a

section of 𝑓).

The exercise above us to easily convert elements of type ∥𝑃∥ to elements

of type 𝑃 when 𝑃 is a proposition.

Definition 2.16.8. Let 𝐴 be a type. For any element 𝑎 of 𝐴, the type

𝐴(𝑎) :≡ ∑𝑥 :𝐴∥𝑎 =→ 𝑥∥ is called the connected component of 𝑎 in 𝐴.
52

We

say that elements 𝑥, 𝑦 of 𝐴 are in the same component of 𝐴 if ∥𝑥 =→ 𝑦∥.
The type 𝐴 is called connected53

if it is non-empty with all elements in the

same component. Formally, this property is encoded by the following

proposition.

isConn(𝐴) :≡ ∥𝐴∥ × ∏
𝑥,𝑦 :𝐴
∥𝑥 =→ 𝑦∥. ⌟

Note that the empty type ∅ is not connected.

One can view being connected as a weak form of being contractible –

without direct access to a center and to identifications of elements.

Exercise 2.16.9. Show that the component of 𝑎 in 𝐴 is connected. Show

that elements in the same component have the same propositional prop-

erties, that is, for any 𝑃 :𝐴 → Prop, 𝑃(𝑥) =→ 𝑃(𝑦) for any 𝑥, 𝑦 :𝐴 with

∥𝑥 = 𝑦∥. ⌟

Exercise 2.16.10. Show that any connected set is contractible. ⌟

Exercise 2.16.11. Let 𝐴 be a connected type, and suppose that 𝑎 =→ 𝑎 is a

proposition for every 𝑎 :𝐴. Show that 𝐴 is contractible. ⌟

Exercise 2.16.12. Show that ∑𝑥 :𝐴 𝐵(𝑥) is connected when 𝐴 is connected

and 𝐵(𝑥) is connected for any 𝑥 :𝐴. ⌟

In the following definition we introduce the adverb merely, which

serves as a quicker way to say the propositional truncation of in English

speech.

Definition 2.16.13. What we mean by merely constructing an element of

a type 𝑇 is constructing an element of ∥𝑇∥. ⌟

For example, a type is non-empty if it merely has an element, and a type

is connected if any two elements can be merely identified with each other.

2.17 More on equivalences; surjections and injections

In this section we collect a number of useful results on equivalences.

Consider the function 𝑓 :𝟙→ 𝟚 that is constant 0. The fibers of 𝑓 at 0
and 1 are ∑𝑥 :𝟙 0 =→ 0 and ∑𝑥 :𝟙 1 =→ 0, respectively. The latter fiber is not

contractible: having an element of it would mean having an element of

1 =→ 0, which would in turn lead to an element in False (using a similar

reasoning as in Section 2.12.1). Hence 𝑓 is not an equivalence. Observe

that both fibers are propositions, that is, contain at most one element.

As a function between sets 𝑓 is an injection (one-to-one), but not a

surjection. We need these important concepts for types in general. We

define them as close as possible to their usual meaning in set theory:

a function from 𝐴 to 𝐵 is surjective if the preimage of any 𝑏 : 𝐵 is non-

empty, and injective if such preimages contain at most one element. This

motivates the following definitions.

Definition 2.17.1. A function 𝑓 :𝐴→ 𝐵 is a surjection, or is surjective, if

for all 𝑏 : 𝐵 there exists an 𝑎 :𝐴 such that 𝑏 =→ 𝑓 (𝑎), that is, ∃𝑎 :𝐴(𝑏 =→
𝑓 (𝑎)).54 ⌟

an introduction to univalent mathematics 42

55
This argument applies generally:

Any non-empty proposition is con-

tractible.

𝐵

𝑓 (𝑎)

𝑏

𝑓 (𝑎′)
ap 𝑓 (𝑞)

𝑝 𝑝′

Definition 2.17.2. A function 𝑓 :𝐴 → 𝐵 is an injection, or is injective, if

𝑓 −1(𝑏) is a proposition for all 𝑏 : 𝐵. The property of being an injection is

encoded by the type isInj(𝑓) :≡ ∏𝑏 : 𝐵 isProp(𝑓 −1(𝑏)). ⌟

Exercise 2.17.3. Let 𝐴 be a type and 𝐵 a set and 𝑓 :𝐴 → 𝐵 a function.

Give maps in both directions between the proposition isInj(𝑓) and the

type ∏𝑎,𝑎′ :𝐴((𝑓 (𝑎) =→ 𝑓 (𝑎′)) → (𝑎 =→ 𝑎′)). Give a function 𝑓 : True→ Set
that is not injective. ⌟

Lemma 2.17.4. For all types 𝐴, 𝐵, a function 𝑓 :𝐴 → 𝐵 is an equivalence if
and only if 𝑓 is an injection and a surjection.

Proof. If 𝑓 :𝐴→ 𝐵 is an equivalence, then all fibers are contractible, so

𝑓 is both an injection and a surjection. Conversely, if 𝑓 is both injective

and surjective, we show that 𝑓 −1(𝑏) is contractible, for each 𝑏 : 𝐵. Being

contractible is a proposition, so by Definition 2.16.1 we can drop the

truncation in ∥∑𝑎 :𝐴 𝑏
=→ 𝑓 (𝑎)∥. Now apply injectivity.

55 □

If the types 𝐴 and 𝐵 in the above lemma are sets, then we call equiva-

lences between 𝐴 and 𝐵 also bĳections.
Corollary 2.17.5. Let 𝐴, 𝐵 be types such that 𝐴 is non-empty and 𝐵 is
connected. Then any injection 𝑓 :𝐴→ 𝐵 is an equivalence.

Proof. By Lemma 2.17.4 it suffices to show that 𝑓 is surjective. This is

a proposition, so by Definition 2.16.1 and ∥𝐴∥we may assume 𝑎 :𝐴, so

𝑓 (𝑎) : 𝐵. By ∏𝑥,𝑦 : 𝐵∥𝑥 =→ 𝑦∥we now get that all preimages under 𝑓 are

non-empty. □

Lemma 2.17.6. Let 𝑓 :𝑋 → 𝑌 be a surjective map from a connected type 𝑋.
Then 𝑌 is connected too.

Proof. For any map 𝑓 :𝑋 → 𝑌 between arbitrary types, if 𝑦, 𝑦′ :𝑌 and

we are given 𝑥, 𝑥′ :𝑋, 𝑝 : 𝑦 =→ 𝑓 (𝑥), 𝑝′ : 𝑦′ =→ 𝑓 (𝑥′) and 𝑞 : 𝑥 =→ 𝑥′, then

we have a path between 𝑦 and 𝑦′ given by the composite

𝑦 𝑓 (𝑥) 𝑓 (𝑥′) 𝑦′.=

𝑝
=

𝑓 (𝑞)
=

𝑝′−1

Now the lemma follows by eliminating the propositional truncations in

the assumptions, using that the conclusion is a proposition. □

Construction 2.17.7. For every 𝑓 :𝐴→ 𝐵, 𝑏 : 𝐵, and 𝑧, 𝑧′ : 𝑓 −1(𝑏), there is
an equivalence

(2.17.1) (𝑧 =→ 𝑧′) ≃→ ap−1
𝑓 (snd 𝑧′ · snd 𝑧−1).

Implementation of Construction 2.17.7. We can construct this equivalence

for 𝑧 ≡ (𝑎, 𝑝) and 𝑧′ ≡ (𝑎′, 𝑝′), where 𝑎, 𝑎′ :𝐴, 𝑝 : 𝑏 =→ 𝑓 (𝑎) and 𝑝′ : 𝑏 =→
𝑓 (𝑎′), as the composition

(𝑧 =→ 𝑧′) ≡
(
(𝑎, 𝑝) =→ (𝑎′, 𝑝′)

)
≃→ ∑

𝑞 : 𝑎 =→𝑎′
𝑝

=−→
𝑞
𝑝′

≃→ ∑
𝑞 : 𝑎 =→𝑎′

ap 𝑓 (𝑞) · 𝑝
=→ 𝑝′

≃→ ∑
𝑞 : 𝑎 =→𝑎′

𝑝′ · 𝑝−1 =→ ap 𝑓 (𝑞)

≡ ap−1
𝑓 (𝑝′ · 𝑝−1).

an introduction to univalent mathematics 43

56Warning: If 𝐴 and 𝐵 are sets, then

each ap 𝑓 is an equivalence if and

only if all implications (𝑓 (𝑎) =→
𝑓 (𝑎′)) → (𝑎 =→ 𝑎′) hold, but this is in

general not sufficient.

57
This diagram actually commutes by

definition.

Thus the image factorization of 𝑓 is

a 6-tuple. For convenience we may

simplify and speak of the "image

factorization 𝑓 =→ ℎ ◦ 𝑔." Here 𝐶 is

implicit in the types of 𝑔 and ℎ. The

particular identification of 𝑓 with

ℎ ◦ 𝑔 follows from the context, as do

the proofs that 𝑔 is an injection and ℎ

is a surjection.

The second equivalence relies on Definition 2.7.3 and Construction 2.14.3.

□

Lemma 2.17.8. A function 𝑓 :𝐴→ 𝐵 is an injection if and only if each induced
function ap 𝑓 : (𝑎 =→ 𝑎′) → (𝑓 (𝑎) =→ 𝑓 (𝑎′)) is an equivalence, for all 𝑎, 𝑎′ :𝐴.56

Proof. It follows directly from (2.17.1) that if ap 𝑓 is an equivalence,

then 𝑓 −1(𝑏) is a proposition, as all its identity types (fibers of ap 𝑓) are

contractible.

On the other hand, if we fix 𝑎, 𝑎′ :𝐴 and 𝑝 : 𝑓 (𝑎) =→ 𝑓 (𝑎′), then (2.17.1)

applied to 𝑏 :≡ 𝑓 (𝑎), 𝑧 :≡ (𝑎, refl 𝑓 (𝑎)) and 𝑧′ :≡ (𝑎′, 𝑝), gives ap−1
𝑓 (𝑝)

≃→
(𝑧 =→ 𝑧′), which shows that if each 𝑓 −1(𝑏) is a proposition, then ap 𝑓 is an

equivalence. □

Corollary 2.17.9. Let 𝐴 and 𝐵 be types and let 𝑓 :𝐴→ 𝐵 be a function. Then
we have:

(1) All fibers of 𝑓 are (𝑛+1)-types if and only if all fibers of each map induced
by 𝑓 on identity types are 𝑛-types;

(2) If 𝐴 is connected and 𝑎 :𝐴, then all fibers of 𝑓 are (𝑛+1)-types if and only
if all fibers of ap 𝑓 : (𝑎 =→ 𝑎) → (𝑓 (𝑎) =→ 𝑓 (𝑎)) are 𝑛-types;

(3) If 𝐴 and 𝐵 are connected, then 𝑓 is an equivalence if and only if each map
induced by 𝑓 on identity types is an equivalence;

(4) If 𝐴 and 𝐵 are connected and 𝑎 :𝐴, then 𝑓 is an equivalence if and only if
ap 𝑓 : (𝑎 =→ 𝑎) → (𝑓 (𝑎) =→ 𝑓 (𝑎)) is an equivalence.

Proof. (1) When 𝑛 is −2 this is Lemma 2.17.8 and the proof for 𝑛 ≥ −1
is similar. (2) By (1) and Exercise 2.16.9. (3) By Lemma 2.17.8 and

Corollary 2.17.5. (4) By (3) and Exercise 2.16.9. □

Exercise 2.17.10. Let 𝐴, 𝐵 :U , 𝐹 :𝐴→U and 𝐺 : 𝐵→U , and 𝑓 :𝐴 ≃→ 𝐵

and 𝑔 : ∏𝑎 :𝐴(𝐹(𝑎) ≃→ 𝐺(𝑓 (𝑎))). Give an equivalence from ∑𝑎 :𝐴 𝐹(𝑎) to
∑𝑏 : 𝐵 𝐺(𝑏). (An important special case is 𝐹 ≡ 𝐺 ◦ 𝑓 .) ⌟

Another application of propositional truncation is the notion of image.

Definition 2.17.11. Let 𝐴, 𝐵 be types and let 𝑓 :𝐴 → 𝐵. We define the

image of 𝑓 as

im(𝑓) :≡ ∑
𝑦 : 𝐵
∃
𝑥 :𝐴
(𝑦 =→ 𝑓 (𝑥)). ⌟

Note that (∃𝑥 :𝐴(𝑦 =→ 𝑓 (𝑥))) ≡ ∥ 𝑓 −1(𝑦)∥, the propositional truncation

of the fiber. For this reason, im(𝑓) is called the propositional image.

Later we will meet other notions of image, based on other truncation

operations.

Exercise 2.17.12. Show that the image of 𝑓 :𝐴→ 𝐵 induces a factorization

𝑓 =→ 𝑖 ◦ 𝑝, visualized by the following diagram
57

𝐴 𝐵

im(𝑓)

𝑓

𝑝 𝑖

an introduction to univalent mathematics 44

58
Besides any philosophical reasons,

there are several pragmatic rea-

sons for developing constructive

mathematics. One is that proofs

in constructive mathematics can

be executed as programs, and an-

other is that the results also hold in

non-standard models, for instance

a model where every type has a

topological structure, and all con-

structions are continuous. See also

Footnote 14.

59
As the naming indicates, we can

think of the Law of Excluded Middle

itself as an omniscience principle,

telling us for every proposition 𝑃,

whether 𝑃 is true or false. It was

this interpretation of the Law of Ex-

cluded Middle that led Brouwer to

reject it in his 1908 paper on De onbe-
trouwbaarheid der logische principes.60

60
Mark van Atten and Göran Sund-

holm. “L.E.J. Brouwer’s ‘Unrelia-

bility of the Logical Principles A

New Translation, with an Introduc-

tion”. In: History and Philosophy of
Logic 38.1 (2017), pp. 24–47. doi:

10.1080/01445340.2016.1210986.
arXiv: 1511.01113.

61
The map 𝑃 ↦→ 𝑃 is welltyped by

cumulativity of the universes, that is,

by point (4) of Section 2.3. Note that

the map is not the identity function

due to its type.

where 𝑝 is surjective and 𝑖 is injective. Show that the following type

of image factorizations of 𝑓 :𝐴→ 𝐵 is contractible:

∑
𝐶 :U

∑
𝑔 :𝐴→𝐶

∑
ℎ :𝐶→𝐵

((𝑓 =→ ℎ ◦ 𝑔) × isSurj(𝑔) × isInj(ℎ)). ⌟

Exercise 2.17.13. Let 𝐴 be a type and 𝐵 as set and 𝑓 :𝐴→ 𝐵. Show that

im(𝑓) is a set. ⌟

Exercise 2.17.14. Let 𝑓 :𝐴 → 𝐵 for 𝐴 and 𝐵 types, and let 𝑃(𝑏) be a

proposition depending on 𝑏 : 𝐵. Show that ∏𝑧 : im(𝑓) 𝑃(fst(𝑧)) if and only

if ∏𝑎 :𝐴 𝑃(𝑓 (𝑎)). ⌟

2.18 Decidability, excluded middle and propositional resizing

Recall from Lemma 2.15.4(6) that 𝑃 ⨿ ¬𝑃 is a proposition whenever 𝑃 is

a proposition.

Definition 2.18.1. A proposition 𝑃 is called decidable if 𝑃 ⨿ ¬𝑃 holds. ⌟

In traditional mathematics, it is usually assumed that every proposition

is decidable. This is expressed by the following principle, commonly

abbreviated LEM.

Principle 2.18.2 (Law of Excluded Middle). For every proposition 𝑃, the

proposition 𝑃 ⨿ ¬𝑃 holds. ⌟

(The “middle” ground excluded by this principle is the possibility

that there is a proposition that is neither true nor false.)

Type theory is born in a constructivist tradition which aims at devel-

oping as much mathematics as possible without assuming the Law of

Excluded Middle.
58

Following this idea, we will explicitly state whenever

we are assuming the Law of Excluded Middle.

Exercise 2.18.3. Show that the Law of Excluded Middle is equivalent to

asserting that the map (yes = _) : Bool→ Prop is an equivalence. ⌟

A useful consequence of the Law of Excluded Middle is the principle of

“proof by contradiction”: to prove a proposition 𝑃, assume its negation

¬𝑃 and derive a contradiction. Without the Law of Excluded Middle,

this proves only the double negation of 𝑃, that is ¬¬𝑃. However, with

the Law of Excluded Middle, one can derive 𝑃 from the latter: indeed,

according to the Law of Excluded Middle, either 𝑃 or ¬𝑃 holds; but ¬𝑃
leads to a contradiction by hypothesis, making 𝑃 hold necessarily.

Exercise 2.18.4. Show that, conversely, LEM follows from the principle

of double-negation elimination: For every proposition 𝑃, if ¬¬𝑃, then 𝑃

holds. ⌟

Remark 2.18.5. We will later encounter a weaker version of the Law of

Excluded Middle, called the Limited Principle of Omniscience (Princi-

ple 3.6.22), which is often enough.
59 ⌟

Sometimes we make use of the following, which is another consequence

of the Law of Excluded Middle:

Principle 2.18.6 (Propositional Resizing). For any pair of nested universes

U :U ′, the map (𝑃 ↦→ 𝑃) : PropU → PropU ′ is an equivalence.
61 ⌟

Exercise 2.18.7. Show that if the Law of Excluded Middle holds, then

Propositional Resizing holds. ⌟

https://doi.org/10.1080/01445340.2016.1210986
https://arxiv.org/abs/1511.01113

an introduction to univalent mathematics 45

62
The terminology small/large is also

known from set theory, where

classes are large collections, and

sets are small collections.

63
Egbert Rĳke. The join construction.

2017. arXiv: 1701.07538.

64
Pushouts are certain higher induc-

tive types that suffice to construct

all the higher inductive types that

we need, but we don’t actually need

them in this book.

2.19 The replacement principle

In this section we fix a universe U . We think of types 𝐴 :U as small
compared to arbitrary types, which are then large in comparison.

62
Often

we run into types that are not in U (small) directly, but are nevertheless

equivalent to types inU .

Definition 2.19.1. We say that a type 𝐴 is essentially U -small if we have a

type 𝑋 :U and an equivalence 𝐴 ≃→ 𝑋. And 𝐴 is locally U -small if all its

identity types are essentiallyU -small. ⌟

Note that ∑𝑋 :U (𝐴 ≃→ 𝑋), the type expressing that 𝐴 is essentially

U -small, is a proposition by the univalence axiom for U . Of course, any

𝐴 :U is essentiallyU -small, and any essentiallyU -small type is locally

U -small.

To show that a type is locally U -small we have to give a reflexive

relation Eq𝐴 :𝐴→ 𝐴→U that induces, by path induction, a family of

equivalences (𝑥 =→ 𝑦) ≃→ Eq𝐴(𝑥, 𝑦).
Exercise 2.19.2. Show that U is locally U -small, and investigate the

closure properties of essentially and locally U -small types. (For in-

stance, show that if 𝐴 :U and 𝐵(𝑥) is a family of locally U -small types

parametrized by 𝑥 :𝐴, then ∏𝑥 :𝐴 𝐵(𝑥) is locallyU -small.) ⌟

Remark 2.19.3. Note that propositional resizing (Principle 2.18.6) equiva-

lently says that any proposition is essentially U -small, where we may

take U to be the smallest universe U0. When we assume this, we get

that any set is locallyU0-small. ⌟

We will make use of the following principle (recall the definition of

the image, Definition 2.17.11).

Principle 2.19.4 (Replacement). For any map 𝑓 :𝐴→ 𝐵 from an essen-

tially U -small type 𝐴 to a locally U -small type 𝐵, the image im(𝑓) is

essentiallyU -small. ⌟

This is reminiscent of the replacement principle of set theory which

states that for a large (class-sized) function with domain a small set and

codomain the class 𝑉 of all small sets, the image is again a small set.

This follows from our replacement principle, assuming propositional

resizing, or the even stronger principle of the excluded middle.

The replacement principle can be proved using the join construction

of the image, cf. Rĳke
63

, which uses as an assumption that the universes

are closed under pushouts.
64

Exercise 2.19.5. Show that the replacement principle implies that for any

locallyU -small type 𝐴, and any element 𝑎 :𝐴, the connected component

𝐴(𝑎) is essentiallyU -small. ⌟

Another consequence is that the type of finite sets, which we’ll define

below in Definition 2.24.5, is essentially small.

2.20 Predicates and subtypes

In this section, we give two (equivalent) definitions of the notion of a

subtype of a given type 𝑇. The first definition is based on the notion of a

predicate on 𝑇. A predicate tells, or ‘predicates’, whether an element of

https://arxiv.org/abs/1701.07538

an introduction to univalent mathematics 46

65
Recall that Prop abbreviates PropU ≡
∑𝑇 :U isProp(𝑇).

66
Note that giving a predicate on 𝑇 is

equivalent to giving a map 𝑄 :𝑇 →
PropU for a suitable universeU ,

and we often say that 𝑄 itself is the

predicate. We leaveU implicit.

67
The phrase ‘subtype’ is often used

for ‘underlying type of the subtype’.

See Footnote 68 for when it is impor-

tant to be precise.

𝑇 belongs to the subtype. The second definition is based on the notion

of injection, defined in Definition 2.17.2.

Definition 2.20.1. Let 𝑇 be a type and let 𝑃(𝑡) : Prop65
be a family of

propositions parametrized by a variable 𝑡 :𝑇. Then we call 𝑃 a predicate
on 𝑇.

66
If 𝑃(𝑡) is a decidable proposition for any 𝑡 :𝑇, then we say that 𝑃

is a decidable predicate on 𝑇. ⌟

Given a type 𝑇 and a function 𝑓 :𝑇 → Bool, Lemma 2.15.3 yields that

𝑓 (𝑡) = yes is a proposition, and we can form the predicate 𝑃(𝑡) :≡ (𝑓 (𝑡) =
yes). Then 𝑃 :𝑇 → Prop is a decidable predicate by Exercise 2.20.2.

However, not every predicate can be given through a 𝑓 :𝑇 → Bool, since

Prop and Bool are only equivalent if LEM holds (Exercise 2.18.3).

In the special case that 𝑃 :𝑇 → U is a decidable predicate we can

define 𝜒𝑃 :𝑇 → Bool by induction (actually, only case distinction) on

𝑑(𝑡) :𝑃(𝑡) ⨿ ¬𝑃(𝑡), setting 𝜒𝑃(𝑡) = yes if 𝑑(𝑡) ≡ inl_ and 𝜒𝑃(𝑡) = no if

𝑑(𝑡) ≡ inr_. In this way, decidable predicates on a type 𝑇 correspond to

their characteristic functions 𝑇 → Bool.

Exercise 2.20.2. Show that 𝑓 (𝑡) = yes is a decidable predicate on𝑇, for any

type 𝑇 and function 𝑓 :𝑇 → Bool. Show that (𝑃 ≃→ True) ⨿ (𝑃 ≃→ False)
holds for every decidable proposition 𝑃. ⌟

Definition 2.20.3. Let 𝑇 be a type. The type of subtypes of 𝑇, denoted by

Sub(𝑇), is defined by

Sub(𝑇) :≡ (𝑇 → Prop).

Given a predicate 𝑃 on 𝑇, we define 𝑇𝑃 :≡ ∑𝑡 :𝑇 𝑃(𝑡) to be the underlying
type of the subtype of 𝑇 characterized by 𝑃. ⌟

The following lemma states that identity types in a subtype
67

are

equivalent to those in the type itself.

Lemma 2.20.4. Let 𝑇 be a type and 𝑃 :𝑇 → Prop a predicate on 𝑇. Recall the
underlying type 𝑇𝑃 ≡ ∑𝑡 :𝑇 𝑃(𝑡), and consider the projection map fst from 𝑇𝑃 to
𝑇. Then apfst : ((𝑥1 , 𝑝1) =→ (𝑥2 , 𝑝2)) → (𝑥1

=→ 𝑥2) is an equivalence, for any
elements (𝑥1 , 𝑝1) and (𝑥2 , 𝑝2) of 𝑇𝑃 .

Proof. Corollary 2.9.11 gives that fst−1(𝑡) ≃ 𝑃(𝑡) for all 𝑡 :𝑇, so that fst is

an injection. Now apply Lemma 2.17.8. □

Remark 2.20.5. A very convenient consequence of Lemma 2.20.4 is that

we can afford not to distinguish carefully between elements (𝑡 , 𝑝) of the

subtype 𝑇𝑃 and elements 𝑡 of type 𝑇 for which the proposition 𝑃(𝑡) holds.

We will hence often silently coerce from 𝑇𝑃 to 𝑇 via the first projection,

and if 𝑡 :𝑇 is such that 𝑃(𝑡) holds, we’ll write 𝑡 :𝑇𝑃 to mean any pair (𝑡 , 𝑝)
where 𝑝 :𝑃(𝑡), since when 𝑃(𝑡) holds, the type 𝑃(𝑡) is contractible. ⌟

Example 2.20.6. The type of types that are propositions and the type of

types that are sets are defined as:

PropU :≡ ∑
𝑋 :U

isProp(𝑋) and SetU :≡ ∑
𝑋 :U

isSet(𝑋).

Both PropU and SetU are subtypes of U , and both are types in a

universe one higher than U . We just write Prop and Set when we don’t

care about the precise universeU .

an introduction to univalent mathematics 47

68
Caution: When identifying ‘sub-

types’, it should be clear whether

they are considered as elements of

Sub(𝑇) or as underlying types of

subtypes, i.e., as elements of some

universeU . The identity types

𝑃 =Sub(𝑇) 𝑄 and 𝑇𝑃
=→U 𝑇𝑄 are

in general not equivalent!

69

𝑋 𝑇

∑𝑡 :𝑇 𝑃(𝑡)

𝑔

𝑓

fst

70
In set theory, if 𝑆 ⊆ 𝑇 and 𝑓 :𝑋 → 𝑇

is such that 𝑓 (𝑥) is in 𝑆 for all 𝑥 in 𝑋,

then 𝑥 ↦→ 𝑓 (𝑥) is the unique function

𝑔 :𝑋 → 𝑆 such that 𝑓 = 𝑖 ◦ 𝑔, where 𝑖

is the inclusion map of 𝑆 in 𝑇.

71
Instead of using this tedious phrase,

we will simply call 𝑆 a ‘subtype’ of

𝑇, if the injection is clear from the

context. The cautioning Footnote 68

applies here as well.

72
The full notation as an element of

Inj(𝑇)would be ({ 𝑡 :𝑇 |𝑃(𝑡) }, fst, 𝑝),
with 𝑝 witnessing that fst is an in-

jection. In traditional set theory one

would call fst the inclusion of the

subset, which is unique for each sub-

set. In contrast, there can be many
pairs (𝑋, 𝑖), with 𝑖 :𝑋 → 𝑇 an in-

jection, defining the same subset

of 𝑇. If in set theory one would de-

fine subsets through such pairs, one

would have to solve a size issue and

define an equivalence relation such

that equivalent pairs define the same

subset. In type theory, however, we

have universes, and the identity type

of InjU (𝑇) identifies precisely the

triples defining the same subset.

Such considerations also apply to

subtypes, and later to subgroups in

Definition 5.3.11.

73
Recall that we can move without

notice between (Sub(𝑇) × Sub(𝑇)) →
Prop and Sub(𝑇) → Sub(𝑇) → Prop.

74
Recall that an partial order on a set

𝑆 is a relation 𝑅 that is (1) reflexive:
𝑅(𝑥, 𝑥), (2) transitive: 𝑅(𝑥, 𝑦) →
𝑅(𝑦, 𝑧) → 𝑅(𝑥, 𝑧), and (3) antisymmet-
ric: 𝑅(𝑥, 𝑦) → 𝑅(𝑦, 𝑥) → 𝑥 = 𝑦. See

also Example 6.2.8.

Following the convention in Remark 2.20.5, when we have a type 𝐴

for which we know that it is a proposition (or a set), we simply write

𝐴 : Prop (or 𝐴 : Set). ⌟

Lemma 2.20.7. The proposition isSet(Prop) holds, that is, Prop is a set.

Proof. We show that 𝑃 =→ 𝑄 is a proposition for all propositions 𝑃 and𝑄.

By univalence, 𝑃 =→ 𝑄 is equivalent to (𝑃 ≃→ 𝑄) ≡ ∑ 𝑓 :𝑃→𝑄 isEquiv(𝑓).
The latter is a proposition by Lemma 2.15.4(2)(5), using that isEquiv(𝑓)
is a proposition. □

Since Prop is a set, Sub(𝑇) is also a set, for any type 𝑇.
68

Exercise 2.20.8. Let 𝑇 and 𝑋 be types, 𝑓 :𝑋 → 𝑇 a function, and 𝑃 :𝑇 →
Prop a predicate. Show that ∏𝑥 :𝑋 𝑃(𝑓 (𝑥)) holds if and only if the

following type
69

is contractible:

∑
𝑔 :𝑋→∑𝑡 :𝑇 𝑃(𝑡)

𝑓 =→ fst ◦𝑔. ⌟

We call the result in Exercise 2.20.8 the universal property of subtypes.70

A pair like (𝑇𝑃 , fst) in Lemma 2.20.4 is actually an example of the

second approach to subtypes, which we will explain now.

Definition 2.20.9. A injection into a type 𝑇 is a type 𝑆 together with an

injection 𝑓 : 𝑆→ 𝑇. The type 𝑆 is called the underlying type of the injection

into 𝑇.
71

Selecting a universeU as a repository for such types 𝑆 allows

us to introduce the type of injections into 𝑇 inU as follows.

InjU (𝑇) :≡ ∑
𝑆 :U

∑
𝑓 : 𝑆→𝑇

isInj(𝑓).

When no confusion can arise, we simply write Inj(𝑇) for InjU (𝑇). ⌟

Lemma 2.20.10. The function mapping any subtype 𝑃 of 𝑇 to the injection
fst :𝑇𝑃 → 𝑇 defines an equivalence from Sub(𝑇) to Inj(𝑇), for any type 𝑇. The
inverse equivalence maps any injection 𝑖 : 𝑆→ 𝑇 to the subtype (𝑡 ↦→ 𝑖−1(𝑡))
of 𝑇.

Proof. We postpone the proof till Construction 2.25.6 (2), where this and

similar results are obtained by a general method. If you just can’t wait,

do Exercise 2.20.11. □

As a consequence, Inj(𝑇) is a set since Sub(𝑇) is, for any type 𝑇.

Exercise 2.20.11. Prove Lemma 2.20.10. Hints: For the round trip starting

with 𝑃, use function extensionality and Corollary 2.9.11. For the round

trip starting with (𝑆, 𝑖), show that the function 𝑔 in Footnote 69 is an

equivalence in case 𝑋 ≡ 𝑆, 𝑓 ≡ 𝑖 is an injection, and 𝑃 ≡ 𝑖−1(_). ⌟

Lemma 2.20.4 has other important consequences:

Corollary 2.20.12. For any 𝑛 ≥ −1, if 𝑇 is a 𝑛-type, then 𝑇𝑃 is also a 𝑛-type.
In particular, if 𝑇 is a set, then 𝑇𝑃 is again a set; we then call 𝑇𝑃 a subset

of 𝑇 and we may denote it by { 𝑡 :𝑇 |𝑃(𝑡) }.72

Exercise 2.20.13. Let 𝑇 be a set. Define the relation ⊆ : (Sub(𝑇) ×
Sub(𝑇)) → Prop by (𝑃0 ⊆ 𝑃1) :≡ ∏𝑡 :𝑇(𝑃0(𝑡) → 𝑃1(𝑡).73

Prove that

the relation ⊆ is a partial order
74

with a least and a greatest element

(even if 𝑇 is the empty type). ⌟

an introduction to univalent mathematics 48

75
Univalent Foundations Program,

Homotopy Type Theory: Univalent
Foundations of Mathematics.

76
The obelus ÷ is sometimes used to

denote division, but is also used to

for subtraction, especially in North-

ern Europe. This inspired our use,

considering its “adjoint” relationship

to + detailed in Exercise 2.21.4.

77
In particular, (𝑔 𝑓)÷ ≡ 𝑔÷ 𝑓÷.

Definition 2.20.14. A type 𝐴 is called a decidable set if the identity type

𝑥 =→ 𝑦 is a decidable proposition for all 𝑥, 𝑦 :𝐴. ⌟

Note the slight subtlety of this definition together with Definition 2.18.1:

Any proposition has decidable identity types (since each instance is

contractible) and is thus a decidable set, even though it may not be

decidable as a proposition.

The way we phrased this definition implies that 𝐴 is a set. The

following celebrated and useful theorem states that this is unnecessary.

Theorem 2.20.15 (Hedberg). Any type 𝐴 for which we have a function of type
∏𝑥,𝑦 :𝐴

(
(𝑥 =→ 𝑦) ⨿ ¬(𝑥 =→ 𝑦)

)
is a decidable set.

For a proof see Theorem 7.2.5 of the HoTT Book
75

.

2.21 Pointed types

Sometimes we need to equip types with additional structure that cannot

be expressed by a proposition such as isProp(𝑋) and isSet(𝑋) above.

Therefore the following is not a subtype ofU .

Definition 2.21.1. A pointed type is a pair (𝐴, 𝑎)where 𝐴 is a type and 𝑎

is an element of 𝐴. The type of pointed types is

U ∗ :≡ ∑
𝐴 :U

𝐴.

Given a type 𝐴we let 𝐴+ be the pointed type you get by adding a default

element: 𝐴+ :≡ (𝐴 ⨿ True, inrtriv). Given a pointed type 𝑋 ≡ (𝐴, 𝑎),
the underlying type is 𝑋÷ :≡ 𝐴,

76
and the base point is pt𝑋 :≡ 𝑎, so that

𝑋 ≡ (𝑋÷ , pt𝑋).
Let 𝑋 :≡ (𝐴, 𝑎) and 𝑌 :≡ (𝐵, 𝑏) be pointed types. Define the map

ev𝑎 : (𝐴 → 𝐵) → 𝐵 by ev𝑎(𝑓) :≡ 𝑓 (𝑎). Then the fiber of ev𝑎 at 𝑏 is the

type ev−1
𝑎 ≡ ∑ 𝑓 :𝐴→𝐵(𝑏 =→ 𝑓 (𝑎)). The latter type is also called the type of

pointed functions from 𝑋 to 𝑌 and denoted by 𝑋 →∗ 𝑌. In the notation

above,

(𝑋 →∗ 𝑌) ≡ ∑
𝑓 :𝑋÷→𝑌÷

(pt𝑌
=→ 𝑓 (pt𝑋)).

Given a pointed function 𝑔 ≡ (𝑓 , 𝑝), the underlying function is 𝑔÷ :≡ 𝑓 ,

and the pointing path is 𝑔pt :≡ 𝑝, so that 𝑔 ≡ (𝑔÷ , 𝑔pt).
If 𝑍 is also a pointed type, and we have pointed functions 𝑓 :𝑋 →∗ 𝑌

and 𝑔 :𝑌 →∗ 𝑍, then their composition 𝑔 𝑓 :𝑋 →∗ 𝑍 is defined as the

pair (𝑔÷ 𝑓÷ , 𝑔÷(𝑓pt)𝑔pt), as illustrated below.
77

pt𝑌 𝑓÷(pt𝑋)

pt𝑍 𝑔÷(pt𝑌) 𝑔÷(𝑓÷(pt𝑋))

𝑓pt

𝑔÷ 𝑔÷

𝑔pt 𝑔÷(𝑓pt)

We may also use the notation 𝑔 ◦ 𝑓 for the composition. ⌟

Definition 2.21.2. If 𝑋 ≡ (𝐴, 𝑎) is a pointed type, then we define the

pointed identity map id𝑋 :𝑋 →∗ 𝑋 by setting id𝑋 :≡ (id𝐴 , refl𝑎). ⌟

Remark 2.21.3. If 𝑋 is a pointed type, then 𝑋÷ is a type, but 𝑋 itself is not
a type. It is therefore unambiguous, and quite convenient, to write 𝑥 :𝑋
for 𝑥 :𝑋÷, and 𝑋 →U for 𝑋÷ →U . Likewise, we can write 𝑓 :𝑋 → 𝑌 for

an introduction to univalent mathematics 49

𝑓÷(pt𝑋)

pt𝑌 𝑔÷(pt𝑋)

ℎ(pt𝑋)
𝑓pt

𝑔pt

Figure 2.3: Transport in 𝑇

𝑓÷ :𝑋÷ → 𝑌÷. In that case we still write 𝑓pt : pt𝑋
=→ 𝑓 (pt𝑌) for the witness

of pointedness. ⌟

Exercise 2.21.4. If 𝐴 is a type and 𝐵 is a pointed type, give an equivalence

from 𝐴→ 𝐵÷ to 𝐴+ →∗ 𝐵. ⌟

Exercise 2.21.5. Let𝐴 be a pointed type and 𝐵 a type. Give an equivalence

from ∑𝑏 : 𝐵(𝐴→∗ (𝐵, 𝑏)) to (𝐴÷ → 𝐵). ⌟

SinceU ∗ and 𝑋 →∗ 𝑌 are sum types, the results on identifying pairs

in Section 2.10 apply to pointed types and pointed maps as well.

Definition 2.21.6. If 𝑋 and 𝑌 are pointed types, we define the type of

pointed equivalences from 𝑋 to 𝑌 as:

𝑋 ≃→∗ 𝑌 :≡ ∑
𝑓 :𝑋→∗𝑌

isEquiv(𝑓÷) ⌟

Exercise 2.21.7. From an identification of pointed types 𝑝 :𝑋 =→ 𝑌,

construct an identification of the underlying types, 𝑝÷ :𝑋÷ =→ 𝑌÷, as well

as an identification 𝑞 : pt𝑌
=→ 𝑝̃÷(pt𝑋). Together, this gives a map of type

(𝑋 =→ 𝑌) → (𝑋 ≃→∗ 𝑌).

Show that this is an equivalence. ⌟

The following result gives a useful characterization of identity types

of pointed maps, extending Principle 2.9.18.

Construction 2.21.8. Let 𝑋 and𝑌 be pointed types and 𝑓 , 𝑔 :𝑋 →∗ 𝑌 pointed
maps from 𝑋 to 𝑌. Then we have an equivalence ptw∗ of type

(𝑓 =→ 𝑔) ≃→ ∑
ℎ : ∏𝑥 :𝑋 (𝑓÷(𝑥) =→𝑔÷(𝑥))

((ℎ(pt𝑋) · 𝑓pt) =→ 𝑔pt).

Implementation of Construction 2.21.8. Define the type family𝑇 by𝑇(𝑘) :≡
(pt𝑌

=→ 𝑘(pt𝑋)) for any 𝑘 :𝑋 → 𝑌. The equivalence ptw∗ is the composite

of the following chain of known equivalences:

(𝑓 =→ 𝑔) ≃→ ∑
𝑒 : (𝑓÷ =→𝑔÷)

(𝑓pt
=−→
𝑒
𝑔pt) by Lemma 2.10.3

≃→ ∑
𝑒 : (𝑓÷ =→𝑔÷)

(trp𝑇𝑒 (𝑓pt) =→ 𝑔pt) by Definition 2.7.3

≃→ ∑
ℎ : ∏𝑥 :𝑋 (𝑓÷(𝑥) =→𝑔÷(𝑥))

(trp𝑇ptw-1(ℎ)(𝑓pt) =→ 𝑔pt) by Exercise 2.9.12

≃→ ∑
ℎ : ∏𝑥 :𝑋 (𝑓÷(𝑥) =→𝑔÷(𝑥))

((ptw(ptw−1(ℎ)))(pt𝑋) · 𝑓pt) =→ 𝑔pt) (*)

≃→ ∑
ℎ : ∏𝑥 :𝑋 (𝑓÷(𝑥) =→𝑔÷(𝑥))

((ℎ(pt𝑋) · 𝑓pt) =→ 𝑔pt) (**).

Here (*) uses pointwise transport from Exercise 2.14.7,

trptw(ptw−1(ℎ), 𝑓pt) : trp𝑇ptw-1(ℎ)(𝑓pt) =→ ((ptw(ptw−1(ℎ)))(pt𝑋) · 𝑓pt),

and (**) uses that ptw is an equivalence. □

2.22 Operations that produce sets

The following lemma holds for 𝑛-types in general, but we only need it

for propostions and sets.

an introduction to univalent mathematics 50

78
Our proof follows the same idea due

to Simon Huber that we used in the

case of Bool in Lemma 2.15.3.

A variation can be used to give

a complete characterization of the

identity types of inductive types. See

the HoTT book, e.g., Section 2.13 for

details on the encode–decode method.
79

For lists, this gives equivalences

(𝜀 =→ 𝜀) ≃→ True

(𝑥ℓ =→ 𝑥′ℓ ′) ≃→ (𝑥 =→ 𝑥′) × (ℓ =→ ℓ ′)
(𝜀 =→ 𝑥ℓ) ≃→ (𝑥ℓ =→ 𝜀) ≃→ False

from which we can deduce more gen-

erally that 𝑋∗ is an 𝑛-type, when 𝑋 is

an 𝑛-type and 𝑛 ≥ 0. Corollary 2.24.9

below gives a different proof of this.

79
Univalent Foundations Program,

Homotopy Type Theory: Univalent
Foundations of Mathematics.

80
Recall that the function apap
from Definition 2.7.7 gives the action

on paths for a function taking two

arguments. Here it takes a path in 𝑋,

𝑞 : 𝑥 = 𝑥′, and a path in 𝑋∗, 𝑟 : ℓ =→ ℓ ′,
to a path between the concatenations,

apap(𝑞)(𝑟) : 𝑥ℓ =→ 𝑥′ℓ ′. On reflexiv-

ities it satisfies apap(refl𝑥)(reflℓ) ≡
refl𝑥ℓ .

Lemma 2.22.1. Let 𝑋 and 𝑌 be types.

(1) If 𝑋 and 𝑌 are propositions, then so are 𝑋 ≃→ 𝑌 and 𝑋 =→ 𝑌. In other
words, Prop is a set.

(2) If 𝑋 and 𝑌 are sets, then so are 𝑋 ≃→ 𝑌 and 𝑋 =→ 𝑌. In other words, Set
is a groupoid.

Proof. By univalence, 𝑋 =→ 𝑌 and 𝑋 ≃→ 𝑌 are equivalent, whereas

the latter is equal by definition to ∑ 𝑓 :𝑋→𝑌 isEquiv(𝑓). If 𝑋 and 𝑌 are

propositions (sets), then by Lemma 2.15.5 also 𝑋 → 𝑌 is a proposition

(set). Moreover, isEquiv(𝑓) is a proposition by Lemma 2.15.7. Now the

lemma follows by Corollary 2.20.12. □

One may wonder whether ℕ as defined in Section 2.12 is a set. The

answer is yes, but it is harder to prove than one would think. In fact we

have the following theorem.

Theorem 2.22.2. All inductive types in Section 2.12 are sets if all constituent
types are sets.78

Proof. We only do the case of lists 𝑋∗, for a set 𝑋, and leave the other

cases to the reader (cf. Exercise 2.22.3). We have to give identifications

of type 𝑝 =→ 𝑞 for all ℓ , ℓ ′ :𝑋∗ and 𝑝, 𝑞 : ℓ = ℓ ′. By induction on 𝑞 it

suffices to give identifications of type 𝑝 =→ reflℓ for all 𝑝 : ℓ =→ ℓ . Note

that this cannot simply be done by induction on 𝑝. Instead we first give

an inversion principle for identifications in 𝑋∗ as follows. Define a type

𝑇(ℓ , ℓ ′, 𝑝) for ℓ , ℓ :𝑋∗ and 𝑝 : ℓ =→ ℓ ′ by induction on ℓ and ℓ ′:80

𝑇(𝜀, 𝜀, 𝑝) :≡ (𝑝 =→ refl𝜀)
𝑇(𝑥ℓ , 𝑥′ℓ ′, 𝑝) :≡ ∑

𝑞 : 𝑥=𝑥′
∑

𝑟 : ℓ =→ℓ ′
(𝑝 =→ apap(𝑞)(𝑟))

For the other cases the choice is immaterial, say𝑇(𝜀, 𝑥ℓ , 𝑝) :≡ 𝑇(𝑥ℓ , 𝜀, 𝑝) :≡
∅. Next we give elements of type𝑇(ℓ , ℓ ′, 𝑝) for all ℓ , ℓ ′, and 𝑝 by induction

on 𝑝, reducing to 𝑇(ℓ , ℓ , reflℓ) for all ℓ :𝑋∗, which we deal with by case

distinction on the list ℓ . For 𝜀 we use reflrefl𝜀 , and for the case 𝑥ℓ we use

the triple (refl𝑥 , reflℓ , reflrefl𝑥ℓ), noting that apap(refl𝑥)(reflℓ) ≡ refl𝑥ℓ .
We can now give identifications of type 𝑝 =→ reflℓ for all 𝑝 : ℓ =→ ℓ by

list induction on ℓ . For 𝜀 we use the element of 𝑇(𝜀, 𝜀, 𝑝) constructed

above. For the case 𝑥ℓ , the element of 𝑇(𝑥ℓ , 𝑥ℓ , 𝑝) constructed above

yields a triple (𝑞, 𝑟, 𝑠) with 𝑞 : 𝑥 = 𝑥, 𝑟 : ℓ =→ ℓ and 𝑠 : 𝑝 =→ apap(𝑞)(𝑟).
Since 𝑋 is a set, we have 𝑞 = refl𝑥 (as already indicated by the ordinary

equals signs), and by induction hypothesis we have an identification

𝑒 : 𝑟 =→ reflℓ . We get the desired identification by concatenating 𝑠 and

apapapap(!)(𝑒):

𝑝 =→ apap(𝑞)(𝑟) =→ apap(refl𝑥)(reflℓ) ≡ refl𝑥ℓ . □

Exercise 2.22.3. Show that 𝑋 ⨿ 𝑌 is a set if 𝑋 and 𝑌 are sets. ⌟

Recall that propositional truncation is turning any type into a proposi-

tion by adding identifications of any two elements. Likewise, there is a

operation turning any type into a set by adding (higher) identifications

of any two identifications of any two elements. The latter operation is

called set truncation. It is yet another example of a higher-inductive

type.

an introduction to univalent mathematics 51

81
Lemma 7.3.12

82
gives an equivalence

from |𝑡|0 = |𝑡′|0 to ∥𝑡 =→ 𝑡′∥ for all

𝑡 , 𝑡 :𝑇.

82
Univalent Foundations Program,

Homotopy Type Theory: Univalent
Foundations of Mathematics.

83
More generally, there are operations

turning any type into an 𝑛-type, sat-

isfying a similar universal property

as propositional truncation and set

truncation. We denote these oper-

ations by ∥_∥𝑛 with corresponding

constructor |_|𝑛 . Propositional trun-

cation ∥_∥ can thus also be denoted

as ∥_∥−1. Sometimes it is convenient

to consider contractible types as

−2-types, with constant truncation

operator ∥𝑇∥−2 :≡ True and construc-

tor |𝑡|−2 :≡ triv.

84Hint: Use maps ∥𝑎 =→ _∥ :𝐴→ Prop
and the fact that the universe of

propositions is a set.

Definition 2.22.4. Let 𝑇 be a type. The set truncation of 𝑇 is a type ∥𝑇∥0

defined by the following constructors:

(1) an element |𝑡|0 : ∥𝑇∥0 for all 𝑡 :𝑇;

(2) a identification 𝑝 =→ 𝑞 for all 𝑥, 𝑦 : ∥𝑇∥0 and 𝑝, 𝑞 : 𝑥 =→ 𝑦.

The (unnamed) second constructor ensures that ∥𝑇∥0 is a set. The

induction principle states that, for any family of sets 𝑆(𝑥) defined for

each 𝑥 : ∥𝑇∥0, in order to define a function 𝑓 : ∏𝑥 : ∥𝑇∥0 𝑆(𝑥), it suffices to

give a function 𝑔 : ∏𝑡 :𝑇 𝑆(|𝑡|0). Computationally, we get 𝑓 (|𝑡|0) ≡ 𝑔(𝑡)
for all 𝑡 :𝑇. ⌟

In the non-dependent case we get that for any set 𝑆 and any function

𝑔 :𝑇 → 𝑆 there is a (unique) function 𝑓 : ∥𝑇∥0 → 𝑆 satisfying 𝑓 (|𝑡|0) ≡
𝑔(𝑡) for all 𝑡 :𝑇.

81
A consequence of this recursion principle is that, for

any set 𝑆, precomposition with |_|0 is an equivalence

(∥𝑇∥0 → 𝑆) → (𝑇 → 𝑆).

This is called the universal property of set truncation.
83

Exercise 2.22.5. Let 𝐴 be a type. Define for every element 𝑧 : ∥𝐴∥0 the

connected component corresponding to 𝑧, 𝐴(𝑧), a subtype of 𝐴, such that

for 𝑎 :𝐴, you recover the notion from Definition 2.16.8: 𝐴(|𝑎|0) ≡ 𝐴(𝑎).84

Prove that the set truncation map |_|0 :𝐴→ ∥𝐴∥0 in this way exhibits

𝐴 as the sum of its connected components, parametrized by ∥𝐴∥0:

𝐴 ≃→ ∑
𝑧 : ∥𝐴∥0

𝐴(𝑧).

Prove that 𝐴 is connected iff ∥𝐴∥0 is contractible. ⌟

2.22.6 Weakly constant maps

The universal property of the propositional truncation, Definition 2.16.1,

only applies directly to construct elements of propositions (that is, to

prove them). Here we discuss how we can construct elements of sets.
Definition 2.22.7. A map 𝑓 :𝐴→ 𝐵 is weakly constant if 𝑓 (𝑥) =→ 𝑓 (𝑥′) for

all 𝑥, 𝑥′ :𝐴. ⌟

This is in contrast to a constant map, which can be identified with one

of the form 𝑥 ↦→ 𝑏 for some 𝑏 : 𝐵. Any constant map is indeed weakly

constant. Note also that when 𝐵 is a set, weak constancy of 𝑓 :𝐴→ 𝐵 is

a proposition.

Theorem 2.22.8. If 𝑓 :𝐴→ 𝐵 is a weakly constant map, and 𝐵 is a set, then
there is an induced map 𝑔 : ∥𝐴∥ → 𝐵 such that 𝑔(|𝑥|) ≡ 𝑓 (𝑥) for all 𝑥 :𝐴.

Proof. Consider the image factorization (Exercise 2.17.12) 𝐴
𝑝
−→ im(𝑓) 𝑖−→

𝐵 of 𝑓 , where 𝑝(𝑥) :≡ (𝑓 (𝑥), |(𝑥, refl 𝑓 (𝑥))|) and 𝑖(𝑦, _) :≡ 𝑦.

The key point is that im(𝑓) is a proposition because 𝑓 is weakly constant.

First note that im(𝑓) is a set by Exercise 2.17.13. Let (𝑦1 , 𝑧1), (𝑦2 , 𝑧2) : im(𝑓).
We have to prove (𝑦1 , 𝑧1) = (𝑦2 , 𝑧2), which is a proposition. Hence we

may hypothesize (by truncation induction on 𝑧𝑖) that we have 𝑥1 , 𝑥2 :𝐴
with 𝑦𝑖 = 𝑓 (𝑥𝑖) for 𝑖 = 1, 2. Hence we get 𝑦1 = 𝑓 (𝑥1) = 𝑓 (𝑥2) = 𝑦2 and

therefore (𝑦1 , 𝑧1) = (𝑦2 , 𝑧2).

an introduction to univalent mathematics 52

wealth 𝑤

debt 𝑑

85
Recall that an equivalence relation is

one that is (1) reflexive: 𝑅(𝑥, 𝑥), (2)

symmetric: 𝑅(𝑥, 𝑦) → 𝑅(𝑦, 𝑥), and

(3) transitive: 𝑅(𝑥, 𝑦) → 𝑅(𝑦, 𝑧) →
𝑅(𝑥, 𝑧).

86
We may wonder about the universe

level of 𝐴/𝑅, assuming 𝐴 :U and

𝑅 :𝐴→ 𝐴→ PropU . By the Replace-

ment Principle 2.19.4, 𝐴/𝑅 is essen-

tiallyU -small, since 𝐴 → PropU
is locallyU -small. Alternatively,

we could use Propositional Resiz-

ing Principle 2.18.6 to push the val-

ues of 𝑅 into a lower universe.

87
In set theory, 𝐴 would be a set and

the equivalence relation 𝑅 would be

a subset of 𝐴 × 𝐴, satisfying the con-

ditions in Footnote 85. Equivalence

classes would be subsets of 𝐴.

Our definition may look differ-

ent, but is actually a natural gen-

eralization of the definition in set

theory to type theory. First, we let

𝐴 be an arbitrary type. Note that

𝑅 ↦→ (𝑧 ↦→ 𝑅(fst(𝑧))(snd(𝑧)) is an

equivalence from 𝐴 → (𝐴 → Prop)
to (𝐴 × 𝐴) → Prop). So, indeed the

equivalence relation 𝑅 corresponds

to a subtype of 𝐴 × 𝐴.

Note further that fst([𝑎]) ≡ 𝑅(𝑎)
and that snd([𝑎]) certifies the (ob-

vious) fact that 𝑅(𝑎) is in the image

of 𝑅. For each 𝑎 :𝐴, the predicate

𝑅(𝑎) :𝐴 → Prop is a subtype of 𝐴.

Therefore we call [𝑎] the equivalence
predicate (instead of class) of 𝑎, which

is true for 𝑎 since 𝑅(𝑎)(𝑎), that is, by

reflexivity.

We will use [𝑎] and 𝑅(𝑎) inter-

changeably.

Thus, by the universal property of the truncation, we get 𝑔′ : ∥𝐴∥ →
im(𝑓) such that 𝑔′(|𝑥|) ≡ 𝑝(𝑥) ≡ (𝑓 (𝑥), |(𝑥, refl 𝑓 (𝑥))|). Composing with 𝑖

we get 𝑔 :≡ 𝑖 ◦ 𝑔′ : ∥𝐴∥ → 𝐵 with 𝑔(|𝑥|) :≡ 𝑓 (𝑥), as desired. □

2.22.9 Set quotients

As an example, we first present an abstraction of the possible economical

situations of a person as a quotient. Net worth can be defined as wealth

minus debt. Let’s assume wealth 𝑤 and debt 𝑑 are natural numbers.

The debt can be greater than the wealth, yielding a negative net worth,

but at this point in our book we do not have negative numbers at

our disposal. However, we do have the binary product, and the pair

(𝑤, 𝑑) : (ℕ × ℕ) also completely determines the net worth. However,

(𝑤, 𝑑) contains more information than necessary for the net worth:

(succ(𝑤), succ(𝑑)), for example, determines the same net worth as (𝑤, 𝑑),
and (succ(𝑤), succ(𝑑)) ≠ (𝑤, 𝑑). Put differently, the type ℕ × ℕ does not

capture the notion of net worth, since its identity types don’t capture

equality of net worth.

Clearly, we need a different type to capture the notion of net worth.

Of course, we want a type construction that works not only for the

special case of net worth, but also in similar situations. Common to

such situations is that we have a type 𝐴 and an equivalence relation
85

𝑅 :𝐴→ 𝐴→ Prop. In the example of net worth, we have 𝐴 :≡ (ℕ × ℕ),
and the equivalence relation is 𝑅((𝑤1 , 𝑑1), (𝑤2 , 𝑑2)) :≡ (𝑤1+𝑑2 = 𝑤2+𝑑1),
precisely capturing equality of net worth, 𝑤1 − 𝑑1 = 𝑤2 − 𝑑2, without

actually using subtraction and negative numbers.

What we need is a new type, which is like 𝐴, but with 𝑅 as equal-

ity. Note that the latter requires that the new type is a set. The

quotient set 𝐴/𝑅 that we will define and study in this section ful-

fills these requirements. In the special case of 𝐴 :≡ (ℕ × ℕ), and

𝑅((𝑤1 , 𝑑1), (𝑤2 , 𝑑2)) :≡ (𝑤1 + 𝑑2 = 𝑤2 + 𝑑1), the type 𝐴/𝑅 could in fact be

used as a type of integers, cf. Section 3.2 and see Exercise 2.22.14.

Definition 2.22.10. Given a type 𝐴 and an equivalence relation 𝑅 :𝐴→
𝐴 → Prop, we define the quotient set86 𝐴/𝑅 as the image of the map

𝑅 :𝐴 → (𝐴 → Prop). Indeed, 𝐴/𝑅 is a set, since Prop is a set, and so

are 𝐴→ Prop and the image ∑𝑃 :𝐴→Prop∃𝑎 :𝐴(𝑃 = 𝑅(𝑎)) of 𝑅. For 𝑎 :𝐴
we define [𝑎] :≡ (𝑅(𝑎), |(𝑎, refl𝑅(𝑎))|) in 𝐴/𝑅; [𝑎] is called the equivalence
predicate of 𝑎.87 ⌟

Any element of the image of 𝑅 is merely an equivalence predicate: a

predicate 𝑃 on 𝐴 for which there exists 𝑎 :𝐴 such that 𝑃(𝑥) holds if and

only if 𝑅(𝑎, 𝑥) holds.

In the following proofs we frequently use Exercise 2.17.14.

Lemma 2.22.11. For any equivalence predicate 𝑃 :𝐴/𝑅 and 𝑎 :𝐴, 𝑃 and [𝑎] are
equal if and only if 𝑃(𝑎) holds.

Proof. Assume 𝑃 and [𝑎] are equal. Then 𝑃(𝑥) iff 𝑅(𝑎, 𝑥) for all 𝑥 :𝐴.

Now take 𝑥 :≡ 𝑎 and use reflexivity 𝑅(𝑎, 𝑎) to conclude 𝑃(𝑎).
Conversely, assume 𝑃(𝑎), and let 𝑥 :𝐴 be given. To prove the propo-

sition 𝑃(𝑥) = 𝑅(𝑎, 𝑥) we may assume that 𝑃 ≡ [𝑏] for some 𝑏 :𝐴. Then

𝑃(𝑥) ≡ 𝑅(𝑏, 𝑥), and we need to show 𝑅(𝑏, 𝑥) = 𝑅(𝑎, 𝑥). This follows from

𝑃(𝑎) ≡ 𝑅(𝑏, 𝑎) using symmetry and transitivity. □

an introduction to univalent mathematics 53

88
In a diagram:

𝐴 𝐵

𝐴/𝑅

𝑓

[_]
𝑔

89
If 𝐴 is a finite set, we can picture this

relation as a complete symmetric

graph, i.e., with an edge between

every pair of nodes, like this:

Convince yourself that a general

equivalence relation on a finite set

looks like a union of such complete

graphs.

90The method of ’postulating’ what we
want has many advantages; they are
the same as the advantages of theft over
honest toil. Russell

91

91
Bertrand Russell. Introduction to math-
ematical philosophy. 2

nd
Ed. Dover

Publications, Inc., New York, 1993,

pp. viii+208.

The following theorem gives two important properties of the set

quotient, the second is commonly called the universal property.

Theorem 2.22.12. We have [𝑥] = [𝑥′] if and only if 𝑅(𝑥, 𝑥′) for all 𝑥, 𝑥′ :𝐴.
Also, let 𝐵 be a set and 𝑓 :𝐴 → 𝐵 a function such that 𝑓 (𝑥) = 𝑓 (𝑥′) for
all 𝑥, 𝑥′ :𝐴 such that 𝑅(𝑥, 𝑥′). Then the type ∑𝑔 :𝐴/𝑅→𝐵(𝑓 = 𝑔 ◦ [_]) is
contractible.88

We will construct the center of contraction 𝑓 :𝐴/𝑅 → 𝐵 such that

𝑓 ([𝑥]) ≡ 𝑓 (𝑥) for all 𝑥 :𝐴.

Proof. For the first part we use Lemma 2.22.11 applied to 𝑃𝑥 :≡ [𝑥] and

𝑥′.

Now let 𝐵 be a set and let 𝑓 :𝐴→ 𝐵 a function satisfying 𝑓 (𝑥) = 𝑓 (𝑥′)
for all 𝑥, 𝑥′ :𝐴 such that 𝑅(𝑥, 𝑥′). We first define the center of contraction

𝑓 :𝐴/𝑅→ 𝐵. Let 𝑧 ≡ (𝑃, 𝑝) :𝐴/𝑅. To define 𝑓 (𝑧) in 𝐵, we note that 𝑓 ◦ fst
is a weakly constant map of type ∑𝑥 :𝐴(𝑃 = [𝑥]) → 𝐵. By Theorem 2.22.8

we get a map 𝑔 : ∃𝑥 :𝐴(𝑃 = [𝑥]) → 𝐵 and we put 𝑓 (𝑧) :≡ 𝑔(𝑝).
We check the equality by definition: As an element of𝐴/𝑅, equivalence

predicate [𝑥] is accompanied by the witness 𝑝 ≡ |(𝑥, refl[𝑥])| : ∃𝑦 :𝐴([𝑥] =
[𝑦]). By Theorem 2.22.8, this is mapped by 𝑔, by definition, to (𝑓 ◦
fst)(𝑥, refl[𝑥]) ≡ 𝑓 (𝑥), as desired.

Now, if 𝑔, ℎ satisfy 𝑔 ◦ [_] = 𝑓 = ℎ ◦ [_], then for any 𝑧 :𝐴/𝑅, the type

𝑔(𝑧) = ℎ(𝑧) is a proposition since 𝐵 is a set, so we may assume 𝑧 ≡ [𝑥]
for some 𝑥 :𝐴. Then 𝑔([𝑥]) = 𝑓 (𝑥) = ℎ([𝑥]), as desired. □

Exercise 2.22.13. Give an equivalence 𝐴/𝑅→ ∥𝐴∥ when 𝑅(𝑥, 𝑦) :≡ True
for all 𝑥, 𝑦 :𝐴.

89 ⌟

Exercise 2.22.14. Let 𝐴 :≡ (ℕ × ℕ) and 𝑅 :𝐴 → 𝐴 → Prop defined by

𝑅((𝑤1 , 𝑑1), (𝑤2 , 𝑑2)) :≡ (𝑤1 + 𝑑2 = 𝑤2 + 𝑑1). Let 𝑍 :≡ {(𝑤, 𝑑) | (𝑑 =

0) ∨ (𝑤 = 0 ∧ 𝑑 ≠ 0)}. Construct an equivalence 𝑓 :𝐴/𝑅→ 𝑍 such that

for all (𝑤, 𝑑, 𝑝) :𝑍 we have 𝑓 ([(𝑤, 𝑑)]) = (𝑤, 𝑑). ⌟

It is also possible to postulate
90

the quotient set as a higher inductive

type.

Definition 2.22.15. Let 𝐴 be a type and 𝑅 :𝐴 → 𝐴 → Prop an equiva-

lence relation. Define the quotient 𝐴/𝑅 to be type with the following

constructors:

(1) a constructor 𝑠 of type isSet(𝐴/𝑅) ensuring that 𝐴/𝑅 is a set;

(2) an element constructor [𝑥] :𝐴/𝑅 for all 𝑥 :𝐴;

(3) a constructor providing a proof 𝑟(𝑥, 𝑦, 𝑝) of [𝑥] = [𝑦] for all 𝑥, 𝑦 :𝐴
and 𝑝 :𝑅(𝑥, 𝑦).

Let 𝐵(𝑧) be a set for every element 𝑧 :𝐴/𝑅. The induction principle for

𝐴/𝑅 states that, in order to define an element of 𝐵(𝑧) for every 𝑧 :𝐴/𝑅, it

suffices to give elements 𝑏𝑥 : 𝐵([𝑥]) for every 𝑥 :𝐴 together with a proof of

the proposition 𝑏𝑥
=−−−−−→

𝑟(𝑥,𝑦,𝑝)
𝑏𝑦 for all 𝑥, 𝑦 :𝐴 and 𝑝 :𝑅(𝑥, 𝑦). The function

𝑓 thus defined satisfies 𝑓 ([𝑥]) ≡ 𝑏𝑥 for all 𝑥 :𝐴. ⌟

Exercise 2.22.16. Give an equivalence between 𝐴/𝑅 as defined in Defini-

tion 2.22.10 and 𝐴/𝑅 as defined in Definition 2.22.15. ⌟

an introduction to univalent mathematics 54

92
Expanding the definitions, this

means that we can take the 0-

truncation ∥𝐴∥0 of 𝐴 :U to be the

U -small image of the (−1)-truncated

identity relation 𝐴 → (𝐴 → PropU).
Similarly, we can recursively con-

struct the (𝑛 + 1)-truncation

by taking theU -small image of

the 𝑛-truncated identity relation

𝐴→ (𝐴→ ∑𝑋 :U is𝑛Type).

93
If 𝑓 is injective, then ap 𝑓 is an equiv-

alence by Lemma 2.17.8, so that

𝐴/= 𝑓 is essentially given by Re-

mark 2.22.17.

Remark 2.22.17. We can use set quotients to give an alternative definition

of the set truncation ∥𝐴∥0 of a type 𝐴. Consider the relation 𝑅 :𝐴 →
𝐴 → Prop given by 𝑅(𝑥, 𝑦) :≡ ∥𝑥 =→ 𝑦∥. This is easily seen to be an

equivalence relation, using refl , symm and trans from Section 2.5. Hence

we get a quotient set 𝐴/𝑅 that satisfies (|𝑥|0 = |𝑦|0) ≃ ∥𝑥 =→ 𝑦∥, for all

elements 𝑥 and 𝑦 of 𝐴, where we write |_|0 for the equivalence predicates.

Furthermore, Theorem 2.22.12 implies that 𝐴/𝑅 satisfies the recursion

principle of Definition 2.22.4: If 𝑆 is a set, and 𝑔 :𝐴→ 𝑆 is any function,

then 𝑔(𝑥) = 𝑔(𝑦) holds whenever ∥𝑥 =→ 𝑦∥ by the induction principle of

the propositional truncation, and hence we get a function 𝑓 :𝐴/𝑅→ 𝑆

satisfying 𝑓 (|𝑥|0) ≡ 𝑔(𝑥) for all 𝑥 :𝐴, as desired.
92 ⌟

Exercise 2.22.18. Let𝐴 and 𝐵 be types and 𝑓 :𝐴→ 𝐵 a function. Consider

the equivalence relation on 𝐴 induced by 𝑓 given by
93

= 𝑓 :≡ (𝑎 ↦→ (𝑎′ ↦→ ∥ 𝑓 (𝑎) =→ 𝑓 (𝑎′)∥)) :𝐴→ (𝐴→ Prop).

Let the quotient set 𝐴/= 𝑓 be defined as in Definition 2.22.10. Show that

the map (|_|0 ◦ 𝑝) :𝐴→ ∥im(𝑓)∥0, with 𝑝 from Exercise 2.17.12, induces

a unique equivalence 𝑒 𝑓 :𝐴/= 𝑓 → ∥im(𝑓)∥0 with |_|0 ◦ 𝑝 = 𝑒 𝑓 ◦ [_]. ⌟

2.23 More on natural numbers

A useful function ℕ→ ℕ is the predecessor pred defined by pred(0) :≡ 0
and pred(succ(𝑛)) :≡ 𝑛. Elementary properties of addition, multiplica-

tion and predecessor can be proved in type theory in the usual way.

We freely use them, sometimes even in definitions, leaving most of the

proofs/constructions to the reader.

Definition 2.23.1. Let 𝑛, 𝑚 :ℕ. We say that 𝑚 is less than or equal to

𝑛, and write 𝑚 ≤ 𝑛, if there is a 𝑘 :ℕ such that 𝑘 + 𝑚 = 𝑛. Such a 𝑘 is

unique, and if it is not 0, we say that 𝑚 is less than 𝑛, denoted by 𝑚 < 𝑛.

Both 𝑚 ≤ 𝑛 and 𝑚 < 𝑛 are propositions for all 𝑛, 𝑚 :ℕ. ⌟

Exercise 2.23.2. Try your luck in type theory proving any of the following.

The successor function satisfies (succ(𝑛) = succ(𝑚)) ≃ (𝑛 = 𝑚). The

functions + and · are commutative and associative, · distributes over

+. The relations ≤ and < are transitive and preserved under +; ≤ also

under ·. We have (𝑚 ≤ 𝑛) ≃ ((𝑚 < 𝑛) ⨿ (𝑚 = 𝑛)) (so ≤ is reflexive).

Furthermore, ((𝑚 ≤ 𝑛) × (𝑛 ≤ 𝑚)) ≃ (𝑚 = 𝑛), and ¬((𝑚 < 𝑛) × (𝑛 < 𝑚))
(so < is irreflexive). ⌟

We can prove the following lemma by double induction.

Lemma 2.23.3. The relations =, ≤ and < on ℕ are decidable.
By Hedberg’s Theorem 2.20.15, we get an alternate proof that ℕ is a

set.

We will now prove an important property of ℕ, called the least number
principle for decidable, non-empty subsets of ℕ. We give some more details

of the proof, since they illustrate an aspect of type theory that has not

been very prominent up to now, namely the close connection between

proving and computing.

Construction 2.23.4. Let 𝑃(𝑛) be a proposition for all natural numbers 𝑛.
Define the type 𝑃min(𝑛) expressing that 𝑛 is the smallest natural number such

an introduction to univalent mathematics 55

that 𝑃(𝑛):
𝑃min(𝑛) :≡ 𝑃(𝑛) × ∏

𝑚 :ℕ
(𝑃(𝑚) → 𝑛 ≤ 𝑚)

Then we seek a function

(2.23.1) min(𝑃) : ∏
𝑛 :ℕ
(𝑃(𝑛) ⨿ ¬𝑃(𝑛)) → ∃

𝑛 :ℕ
𝑃(𝑛) → ∑

𝑛 :ℕ
𝑃min(𝑛),

computing a minimal witness for 𝑃 from evidence that 𝑃 is decidable and that a
witness exists.

Implementation of Construction 2.23.4. First note that 𝑃min(𝑛) is a propo-

sition, and that all 𝑛 such that 𝑃min(𝑛) are equal. Therefore the type

∑𝑛 :ℕ 𝑃min(𝑛) is also a proposition.

Given a function 𝑑(𝑛) :𝑃(𝑛) ⨿ ¬𝑃(𝑛) deciding 𝑃(𝑛) for each 𝑛 :ℕ, we

define a function 𝜇𝑃 :ℕ→ ℕ which, given input 𝑛, searches for a 𝑘 < 𝑛

such that 𝑃(𝑘). If such a 𝑘 exists, 𝜇𝑃 returns the least such 𝑘, otherwise

𝜇𝑃(𝑛) = 𝑛. This is a standard procedure that we will call bounded
search. The function 𝜇𝑃 is defined by induction, setting 𝜇𝑃(0) :≡ 0 and

𝜇𝑃(succ(𝑛)) :≡ 𝜇𝑃(𝑛) if 𝜇𝑃(𝑛) < 𝑛. Otherwise, we set 𝜇𝑃(succ(𝑛)) :≡ 𝑛 if

𝑃(𝑛), and 𝜇𝑃(succ(𝑛)) :≡ succ(𝑛) otherwise, using 𝑑(𝑛) to decide, that is,

by induction on 𝑑(𝑛) :𝑃(𝑛) ⨿ ¬𝑃(𝑛). By design, 𝜇𝑃 ‘remembers’ where

it has found the least 𝑘 (if so). We are now done with the computational

part and the rest is a correctness proof.

By induction on 𝑛 :ℕ and 𝑑(𝑛) :𝑃(𝑛) ⨿ ¬𝑃(𝑛)we show

𝜇𝑃(𝑛) ≤ 𝑛 and 𝜇𝑃(𝑛) < 𝑛 → 𝑃(𝜇𝑃(𝑛)).

The base case where 𝑛 :≡ 0 is easy. For the induction step, review the

computation of 𝜇𝑃(succ(𝑛)). If 𝜇𝑃(succ(𝑛)) = 𝜇𝑃(𝑛) since 𝜇𝑃(𝑛) < 𝑛,

then we are done by the induction hypothesis. Otherwise, either

𝜇𝑃(succ(𝑛)) = 𝑛 and 𝑃(𝑛), or 𝜇𝑃(succ(𝑛)) = succ(𝑛). In both cases

we are done.

Also by induction on 𝑛 :ℕ and 𝑑(𝑛) :𝑃(𝑛) ⨿ ¬𝑃(𝑛)we show

𝑃(𝑚) → 𝜇𝑃(𝑛) ≤ 𝑚, for all 𝑚 in ℕ.

The base case 𝑛 :≡ 0 holds since 𝜇𝑃(0) = 0. For the induction step,

assume 𝑃(𝑚) → 𝜇𝑃(𝑛) ≤ 𝑚 for all 𝑚 (IH). Let 𝑚 :ℕ and assume 𝑃(𝑚).
We have to prove 𝜇𝑃(succ(𝑛)) ≤ 𝑚. If 𝜇𝑃(succ(𝑛)) = 𝜇𝑃(𝑛)we are done

by IH. Otherwise we have 𝜇𝑃(𝑛) = 𝑛 and 𝜇𝑃(succ(𝑛)) = succ(𝑛) and

¬𝑃(𝑛). Then 𝜇𝑃(𝑛) ≤ 𝑚 by IH, and 𝑛 ≠ 𝑚, so 𝜇𝑃(succ(𝑛)) ≤ 𝑚.

By contraposition we get from the previous result

𝜇𝑃(𝑛) = 𝑛 → ¬𝑃(𝑚), for all 𝑚 < 𝑛.

Note that there may not be any 𝑛 such that 𝑃(𝑛); the best we can do is

to prove

𝑃(𝑛) → 𝑃min(𝜇𝑃(succ(𝑛)))
by combining previous results. Assume 𝑃(𝑛). Then 𝜇𝑃(succ(𝑛)) ≤ 𝑛 <

succ(𝑛), so that 𝑃(𝜇𝑃(succ(𝑛))). Moreover, 𝑃(𝑚) → 𝜇𝑃(succ(𝑛)) ≤ 𝑚 for

all 𝑚 in ℕ. Hence 𝑃min(𝜇𝑃(succ(𝑛))).
Since ∑𝑛 :ℕ 𝑃min(𝑛) is a proposition, we obtain the required function

by the induction principle for propositional truncation, Definition 2.16.1:

min(𝑃) : ∏
𝑛 :ℕ
(𝑃(𝑛) ⨿ ¬𝑃(𝑛)) →

∥∥∥∑
𝑛 :ℕ

𝑃(𝑛)
∥∥∥→ ∑

𝑛 :ℕ
𝑃min(𝑛). □

an introduction to univalent mathematics 56

Remark 2.23.5. In the interest of readability, we do not always make

the use of witnesses of decidability in computations explicit. A typical

example is the case distinction on 𝜇𝑃(𝑛) < 𝑛 in Construction 2.23.4 above.

This remark applies to all sets and decidable relations on them. We shall

immediately put this convention to good use in the proof of a form of

the so-called Pigeonhole Principle (PHP). ⌟

Lemma 2.23.6. For all 𝑁 :ℕ and 𝑓 :ℕ → ℕ such that 𝑓 (𝑛) < 𝑁 for all
𝑛 < 𝑁 + 1, there exist 𝑚 < 𝑛 < 𝑁 + 1 such that 𝑓 (𝑛) = 𝑓 (𝑚).

Proof. By induction on 𝑁 . In the base case 𝑁 = 0 there is nothing to

do. For the induction case 𝑁 + 1, assume the lemma proved for 𝑁

(induction hypothesis, IH, for all 𝑓). Let 𝑓 be such that 𝑓 (𝑛) < 𝑁 + 1 for

all 𝑛 < 𝑁 +2. The idea of the proof is to search for an 𝑛 < 𝑁 +1 such that

𝑃(𝑛) :≡ (𝑓 (𝑛) = 𝑁), by computing 𝜇𝑃(𝑁 + 1) as in Construction 2.23.4.

If 𝜇𝑃(𝑁 + 1) = 𝑁 + 1, that is, 𝑓 (𝑛) < 𝑁 for all 𝑛 < 𝑁 + 1, then we are

done by IH. Assume 𝜇𝑃(𝑁 + 1) < 𝑁 + 1, so 𝑓 (𝜇𝑃(𝑁 + 1)) = 𝑁 . If also

𝑓 (𝑁 + 1) = 𝑁 then we are done. If 𝑓 (𝑁 + 1) < 𝑁 , then we define 𝑔 by

𝑔(𝑛) = 𝑓 (𝑁 +1) if 𝑓 (𝑛) = 𝑁 , and 𝑔(𝑛) = 𝑓 (𝑛) otherwise. Then IH applies

to 𝑔, and we get 𝑚 < 𝑛 < 𝑁 + 1 with 𝑔(𝑛) = 𝑔(𝑚). If 𝑓 (𝑛) = 𝑓 (𝑚)we are

of course done. Otherwise, 𝑓 (𝑛), 𝑓 (𝑚) cannot both be smaller than 𝑁 , as

𝑔(𝑛) = 𝑔(𝑚). In both remaining cases, 𝑓 (𝑛) = 𝑔(𝑛) = 𝑔(𝑚) = 𝑓 (𝑁 + 1)
and 𝑓 (𝑁 + 1) = 𝑔(𝑛) = 𝑔(𝑚) = 𝑓 (𝑚), we are done. □

We can now rule out the existence of equivalences between finite sets

of different size.

Corollary 2.23.7. If 𝑚 < 𝑛, then (∑𝑘 :ℕ 𝑘 < 𝑚) ≠ (∑𝑘 :ℕ 𝑘 < 𝑛).
Another application of Construction 2.23.4 is a short proof of Euclidean

division.

Lemma 2.23.8. For all 𝑛, 𝑚 :ℕ with 𝑚 > 0 there exist unique 𝑞, 𝑟 :ℕ such that
𝑟 < 𝑚 and 𝑛 = 𝑞𝑚 + 𝑟.

Proof. Define 𝑃(𝑘) :≡ (𝑛 ≤ 𝑘𝑚). Since 𝑚 > 0 we have 𝑃(𝑛). Now set

𝑘 :≡ 𝜇𝑃(𝑛) as in Construction 2.23.4. If 𝑛 = 𝑘𝑚 and we set 𝑞 :≡ 𝑘 and

𝑟 :≡ 0. If 𝑛 < 𝑘𝑚, then 𝑘 > 0 and we set 𝑞 :≡ 𝑘 − 1. By minimality we

have 𝑞𝑚 < 𝑛 < 𝑘𝑚 and hence 𝑛 = 𝑞𝑚 + 𝑟 for some 𝑟 < 𝑚. □

2.24 The type of finite sets

Recall from Section 2.12.1 the types False, True and Bool containing zero,

one and two elements, respectively. We now define generally the type of

𝑛 elements for any 𝑛 :ℕ.

Definition 2.24.1. For any type 𝑋 define succ(𝑋) :≡ 𝑋 ⨿ True. Define

inductively the type family Fin(𝑛), for each 𝑛 :ℕ, by setting Fin(0) :≡ ∅
and Fin(succ(𝑛)) :≡ succ(Fin(𝑛)). The type Fin(𝑛) is called the type with

𝑛 elements, and we denote its elements by 0, 1, . . . , 𝑛 − 1 rather than by

the corresponding expressions using inl and inr.

We also define as abbreviation 𝕟 :≡ Fin(𝑛) for a natural number 𝑛, so

𝟘 :≡ Fin(0), 𝟙 :≡ Fin(1), 𝟚 :≡ Fin(2), etc. ⌟

Exercise 2.24.2.

(1) Denote in full the elements of 𝟘, 𝟙, and 𝟚.

an introduction to univalent mathematics 57

94
When moving beyond sets, there

are two different ways in which a

type can be finite: an additive way

and a multiplicative way, but it would

take us too far afield to define these

notions here.

95
In other words, an 𝑛 :ℕ such that

∥𝑋 =→ 𝕟∥ is unique if it exists.

96
Here it doesn’t matter whether we

take the sum over Set or overU ,

since any finite set is a set. Hence

we also have FinSet𝑛 ≡ Set(𝕟)
=→

FinSet(𝕟)
=→U (𝕟).

97#(𝑆) = 𝑛 is also phrased as: 𝑆 is in the
same component in Set as 𝕟, or 𝑆 has
cardinality 𝑛, or 𝑆 is an 𝑛-element set.

98
Any 2-element set is by definition

merely identified with 𝟚, but the prob-

lem is that we cannot ”name” the

elements, not even one of them. Hav-

ing a name for one of the elements

would be sufficient, since then the

”other” element is uniquely deter-

mined.

(2) Construct an equivalence in 𝟙 ≃→ True and one in 𝟚 ≃→ Bool.

(3) Construct equivalences in 𝕟 ≃→ ∑𝑘 :ℕ 𝑘 < 𝑛 for all 𝑛 :ℕ.

(4) Show that 𝑚 = 𝑛 if we are given an element of type 𝕞 =→ 𝕟. ⌟

Definition 2.24.3. Given a type 𝑋, we define the proposition

isFinSet(𝑋) :≡ ∃𝑛 :ℕ(𝑋 =→ 𝕟)

to express that 𝑋 is a finite set.94 ⌟

Lemma 2.24.4. For all types 𝑋 we have:

(1) ∑𝑛 :ℕ∥𝑋 =→ 𝕟∥ is a proposition;95

(2) ∑𝑛 :ℕ∥𝑋 =→ 𝕟∥ if and only if isFinSet(𝑋).

Proof.

(1) Assume (𝑛, 𝑝), (𝑚, 𝑞) : ∑𝑛 :ℕ∥𝑋 =→ 𝕟∥. Then 𝑞 ◦ 𝑝−1 :𝕟 =→ 𝕞, so

𝑛 = 𝑚 by Exercise 2.24.2. By Lemma 2.10.3, Definition 2.7.3 and the

fact that the type of 𝑞 is a proposition, it follows that (𝑛, 𝑝) = (𝑚, 𝑞).

(2) Functions in both directions are easily defined by using the recursion

principle of propositional truncation, see after Definition 2.16.1. □

Definition 2.24.5. The groupoid of finite sets is defined by
96

FinSet :≡ ∑
𝑆 : Set

isFinSet(𝑆).

For 𝑛 :ℕ, the groupoid of sets of cardinality 𝑛 is defined by

FinSet𝑛 :≡ ∑
𝑆 : Set
∥𝕟 =→ 𝑆∥.

Lemma 2.24.4 yields a function # : FinSet → ℕ such that #(𝑆) is the

cardinality of the finite set 𝑆.
97 ⌟

Observe that we have identifications in FinSet0
=→ FinSet1

=→ 𝟙, and

in FinSet =→ ∑𝑛 :ℕ FinSet𝑛 by Lemma 2.24.4. Also, FinSet is the image

of the map Fin :ℕ→U from Definition 2.24.1, and is hence essentially

U -small (for any universeU), by Principle 2.19.4, Item (P1) in Section 2.4,

and our assumption thatU0 is the smallest universe.

Exercise 2.24.6. Show that every finite set is a decidable set. ⌟

We have already seen several examples of 2-element sets: Bool, 𝟚, 𝟙⨿𝟙

that can easily be identified. Which one to use depends on the context

and is a matter of convenience. Later we will also use {±1}. In contrast

to these concrete examples, one cannot identify
98

an arbitrary 2-element

set with any of these. The following exercise makes this precise, and

gives a useful and surprising case of a 2-element set that actually can be

identified with 𝟚.

Exercise 2.24.7. Show that 𝑇 =→ 𝑇 is a 2-element set for every 2-element

set 𝑇. Using univalence, show that ¬∏𝑇 : FinSet2(𝑇
=→ 𝟚). In spite of the

above, give an element of ∏𝑇 : FinSet2((𝑇
=→ 𝑇) =→ 𝟚).

Finally, give an element of ∏𝑇 : FinSet2(𝑇
=→ (𝟚 =→ 𝑇)). ⌟

an introduction to univalent mathematics 58

99
We need 𝑛 ≥ 0, since for a con-

tractible (−2-type) 𝑋 we get an equiv-

alence 𝑋∗ ≃→ ℕ by Exercise 2.12.12,

and ℕ is not contractible.

Exercise 2.24.8. Recall the definition of lists of elements of a type 𝑋, 𝑋∗,

from Definition 2.12.11. Construct an equivalence

lookup :𝑋∗ → ∑
𝑛 :ℕ
(Fin 𝑛 → 𝑋)

that sends a list ℓ ≡ 𝑥1𝑥2 . . . 𝑥𝑛 to the pair (𝑛, 𝑥) of its length 𝑛 and the

function 𝑥 that maps an element 𝑖 of Fin(𝑛) to the element 𝑥𝑖 :𝑋. ⌟

Using this, we get a generalization of Theorem 2.22.2:

Corollary 2.24.9. For any 𝑛 ≥ 0, if 𝑋 is an 𝑛-type, then so is 𝑋∗.99

Proof. Combine Lemma 2.15.5 with the fact that ℕ is a set. □

Remark 2.24.10. A subset of a finite set is not necessarily finite itself:

Let 𝑝 be a proposition. Then 𝑝 is also a set. If 𝑝 is a finite set, then

we have #(𝑝) :ℕ, and we can prove that 𝑝 holds if and only if #(𝑝) = 1.

Since equality in ℕ is decidable, this would mean that we can decide 𝑝.

Conversely we have that 𝑝 is a finite set if 𝑝 is decidable: If 𝑝 ⨿ ¬𝑝, then

𝑝 = 𝟙 in case 𝑝 and 𝑝 = 𝟘 in case ¬𝑝.

It now follows from Exercise 2.24.12 below that every decidable

predicate on a finite set 𝑆 defines a finite subset of 𝑆. ⌟

Exercise 2.24.11. Let 𝑋 be a finite set and 𝑃 :𝑋 → Prop a decidable

predicate. Show that ∃𝑥 :𝑋 𝑃(𝑥) and ∏𝑥 :𝑋 𝑃(𝑥) are decidable. Hint:

since the goals are propositions, you may assume an identification of 𝑋

with a standard 𝑛-element set. Use induction on 𝑛, being careful about

the induction hypothesis. ⌟

Exercise 2.24.12. Let 𝑋 be a finite set and 𝐹 :𝑋 → FinSet a family of finite

sets. Show that the sum type ∑𝑥 :𝑋 𝐹(𝑥) is a finite set.

Let𝑌 be a finite set and assume we have an equivalence 𝑒(𝑥) : 𝐹(𝑥) ≃→ 𝑌

for every 𝑥 :𝑋. Then show that #(∑𝑥 :𝑋 𝐹(𝑥)) = #(𝑋) × #(𝑌).
For any map 𝑓 :𝑋 → ℕ, define the arithmetical sum (∑𝑥 :𝑋 𝑓 (𝑥)) :ℕ. ⌟

Exercise 2.24.13. Let 𝑋 be a finite set and 𝑅 :𝑋 → 𝑋 → Prop a decidable

equivalence relation. Show that the quotient 𝑋/𝑅 is a finite set. ⌟

2.25 Type families and maps

There is a natural equivalence between maps into a type 𝐴 and type

families parametrized by 𝐴. The key idea is that the fibers of a map form

a type family. We will elaborate this idea and some variations.

Lemma 2.25.1. Let 𝐴 :U and 𝐵 :𝐴 → U . Recall the projection function
fst : (∑𝑎 :𝐴 𝐵(𝑎)) → 𝐴. The function 𝑒𝑎 : 𝐵(𝑎) → fst−1(𝑎) defined by 𝑒𝑎(𝑏) :≡
((𝑎, 𝑏), refl𝑎) is an equivalence, for all 𝑎 :𝐴.

Proof. Note that fst(𝑥, 𝑏) ≡ 𝑥 and that 𝑎 =→ 𝑥 does not depend on

𝑏. Hence fst−1(𝑎) ≃→ ∑𝑥 :𝐴(𝐵(𝑥) × (𝑎 =→ 𝑥)) via rearranging brackets.

Applying Corollary 2.9.11 leads indeed to the equivalence 𝑒𝑎 . □

Lemma 2.25.2. Let 𝐴, 𝐵 :U and 𝑓 :𝐴 → 𝐵. Then 𝑒 :
(
∑𝑏 : 𝐵 𝑓

−1(𝑏)
)
→ 𝐴

defined by 𝑒(𝑏, 𝑎, 𝑝) :≡ 𝑎 is an equivalence.

Proof. The function 𝑒 is the composite of three equivalences(
∑
𝑏 : 𝐵

∑
𝑎 :𝐴
(𝑏 =→ 𝑓 (𝑎))

)
≃→
(

∑
𝑎 :𝐴

∑
𝑏 : 𝐵
(𝑏 =→ 𝑓 (𝑎))

)
≃→
(

∑
𝑎 :𝐴

True
)
≃→ 𝐴,

an introduction to univalent mathematics 59

100
Note that we need 𝐴 to be in the

same universe as the one we’re tak-

ing type families in.

where the first one interchanges the first two arguments, the second one

contracts away the inner sumtype (using Lemma 2.9.2), and the third

one is fst (using Exercise 2.9.20). □

If 𝑓 in Lemma 2.25.2 is an injection, then (∑𝑏 : 𝐵 𝑓
−1(𝑏), fst) corresponds

to a subtype of 𝐵, and hence 𝐴 is a 𝑛-type if 𝐵 is a 𝑛-type by Corol-

lary 2.20.12.

Lemma 2.25.3. Let 𝐴 :U be a type.100 Then

preim : ∑
𝐵 :U
(𝐵→ 𝐴) → (𝐴→U)

given by preim(𝐵, 𝑓)(𝑎) :≡ 𝑓 −1(𝑎) is an equivalence. The inverse equivalence
is given by sending 𝐶 :𝐴→U to (∑𝑎 :𝐴 𝐶(𝑎), fst).

Proof. We apply Construction 2.9.9, and verify the two conditions. Let

𝐶 :𝐴 → U . We have to identify 𝐶 with preim(∑𝑎 :𝐴 𝐶(𝑎), fst). As

preim(∑𝑎 :𝐴 𝐶(𝑎), fst)(𝑎) ≡ fst−1(𝑎), it suffices by function extensionality

to identify the latter fiber with 𝐶(𝑎), for all 𝑎 :𝐴. This follows directly

from Lemma 2.25.1 and the univalence axiom.

Let 𝑓 : 𝐵→ 𝐴. We have to identify (∑𝑎 :𝐴 𝑓
−1(𝑎), fst)with (𝐵, 𝑓). Using

the univalence axiom, we get an identification 𝑒 : ∑𝑎 :𝐴 𝑓
−1(𝑎) =→ 𝐵,

where 𝑒 is the equivalence from Lemma 2.25.2. Using Lemma 2.10.3, it

remains to give an element of the type fst
=−→̄
𝑒
𝑓 .

As an auxiliary step we note that for any 𝑝 :𝑋 =→ 𝑌 and 𝑔 :𝑋 → 𝐴,

ℎ :𝑌 → 𝐴, the type 𝑔
=−→
𝑝
ℎ of paths over 𝑝 can be identified with the

type 𝑔 =→ ℎ ◦ 𝑝̃, since the two types are equal by definition for 𝑝 ≡ refl𝑋 .

Applying this here means that we must give an identification of fst with

𝑓 ◦ ˜̄𝑒. Hence it suffices to identify fst and 𝑓 ◦ 𝑒, which follows by function

extensionality from the definition of 𝑒 in Lemma 2.25.2. □

The above result can be generalized to situations with more properties

and/or structure. Examples are to be found in Construction 2.25.6 below.

We prepare by the following exercises.

Exercise 2.25.4. Let 𝑋 and 𝑌 be types, 𝑝 :𝑌 =→ 𝑋 an identification, and

𝑇 :𝑋 →U a type family. Construct an equivalence of type ∑𝑥 :𝑋 𝑇(𝑥) ≃→
∑𝑦 :𝑌 𝑇(𝑝̃(𝑦)). ⌟

Exercise 2.25.5. Let 𝑆 :U → U and let 𝑋 be a type. Construct an

equivalence of type (𝑋 → ∑𝑌 :U 𝑆(𝑌)) ≃→ ∑𝐹 :𝑋→U ∏𝑥 :𝑋 𝑆(𝐹(𝑥)). ⌟

Construction 2.25.6. Let 𝐴 be a type and 𝑆 :U → U . Then we have
equivalences of the following types:

(1) (𝐴→ ∑𝐵 :U 𝑆(𝐵)) ≃→ ∑𝐵 :U ∑ 𝑓 : 𝐵→𝐴 ∏𝑎 :𝐴 𝑆(𝑓 −1(𝑎)).

(2) (𝐴→ PropU)
≃→ ∑𝐵 :U ∑ 𝑓 : 𝐵→𝐴 ∏𝑎 :𝐴 isProp(𝑓 −1(𝑎));

(3) (𝐴→ SetU) ≃→ ∑𝐵 :U ∑ 𝑓 : 𝐵→𝐴 ∏𝑎 :𝐴 isSet(𝑓 −1(𝑎));

(4) (𝐴→U ∗) ≃→ ∑𝐵 :U ∑ 𝑓 : 𝐵→𝐴 ∏𝑎 :𝐴 𝑓
−1(𝑎).

Implementation of Construction 2.25.6. (1) In view of Exercise 2.25.5, and

rearranging sums on the right, it suffices to construct an equivalence of

type (∑𝐹 :𝐴→U ∏𝑎 :𝐴 𝑆(𝐹(𝑎))) ≃→ ∑(𝐵, 𝑓) : ∑𝐵 :U (𝐵→𝐴)∏𝑎 :𝐴 𝑆(𝑓 −1(𝑎)). Now

we can apply the equivalence constructed in Exercise 2.25.4 with 𝑝 the

an introduction to univalent mathematics 60

path induced by the equivalence preim from Lemma 2.25.3. Indeed, for

𝑇(𝐹) :≡ ∏𝑎 :𝐴 𝑆(𝐹(𝑎))we have 𝑇(preim(𝐵, 𝑓)) ≡ ∏𝑎 :𝐴 𝑆(𝑓 −1(𝑎)).
For (2), use (1) with 𝑆 :≡ isProp.

For (3), use (1) with 𝑆 :≡ isSet.
For (4), use (1) with 𝑆 :≡ idU . □

Since Prop is a set, by Lemma 2.20.7, we obtain the following corollary

of Construction 2.25.6(2).

Corollary 2.25.7. Subtypes as in Definition 2.20.9 correspond to predicates
by taking fibers, and Inj(𝑇) is a set, for any type 𝑇.
Exercise 2.25.8. For any pair of nested universesU :U ′, let 𝑆 :U ′→U ′
be the predicate that determines the essentiallyU -small U ′-types,

𝑆(𝐴) :≡ ∑
𝑋 :U

𝐴 ≃→ 𝑋,

as in Definition 2.19.1. Show that projection to the U -type defines

an equivalence of type

(
∑𝐴 :U ′ 𝑆(𝐴)

) ≃→U , and whence construct an

equivalence of type

(𝐴→U) ≃→ ∑
𝐵 :U ′

∑
𝑓 : 𝐵→𝐴

∏
𝑎 :𝐴

𝑆(𝑓 −1(𝑎)),

between families of U -small types parametrized by 𝐴 and maps to 𝐴 in

U ′ with essentiallyU -small fibers, for any 𝐴 :U ′. ⌟

2.26 Higher truncations

We’ve seen the propositional truncation in Section 2.16 and the set

truncation in Section 2.22. As mentioned in Remark 2.22.17, it’s possible

to define the latter in terms of the former by considering the propositional

truncation of the identity types of a type 𝐴. In this section we want

to generalize this to higher truncation levels and show how we can

inductively define all the 𝑛-truncation operations using propositional

truncation combined with the replacement principle, Principle 2.19.4,

which is used to stay within a given universe.

Construction 2.26.1. For any integer 𝑛 ≥ −1 we have an 𝑛-truncation

operation ∥_∥𝑛 :U →U , along with unit maps |_|𝑛 :𝐴→ ∥𝐴∥𝑛 , satisfying
the following universal property.

For any 𝑛-type 𝐵, precomposition with |_|𝑛 induces an equivalence:(
∥𝐴∥𝑛 → 𝐵

) ≃→ (𝐴→ 𝐵).

Implementation of Construction 2.26.1. We proceed by induction. For

𝑛 ≡ −1, we have this from the higher inductive type definition, Defini-

tion 2.16.1, with element constructor |_| :𝐴→ ∥𝐴∥.
To go from 𝑛 to 𝑛 + 1, we fix a type 𝐴 :U and consider the 𝑛-truncated

identity type family

𝐼𝑛 :𝐴→
(
𝐴→ ∑

𝑋 :U
is𝑛Type(𝑋)

)
, 𝑥 ↦→ (𝑦 ↦→ ∥𝑥 =→ 𝑦∥𝑛).

Let ∥𝐴∥𝑛+1 :≡ im(𝐼𝑛) be the image of 𝐼𝑛 , Definition 2.17.11, and let

|_|𝑛+1 :𝐴 → ∥𝐴∥𝑛+1 be the map from the domain of 𝐼𝑛 to its image,

𝑥 ↦→ (𝐼𝑛(𝑥), |(𝑥, refl𝐼𝑛 (𝑥))|)with 𝐼𝑛(𝑥) ≡ ∥𝑥 =→ _∥𝑛 as defined above.

an introduction to univalent mathematics 61

101
Rĳke, The join construction.

102
Egbert Rĳke. Introduction to Homo-
topy Type Theory. Forthcoming book

with CUP. Version from 06/02/22.

2022.

The precise formalization of the

intuitive notions of “stuff”, “struc-

ture”, and “properties” was worked

out in terms of category theory in

UseNet discussions between John

Baez, Toby Bartels, and James Dolan

on sci.physics.research in 1998.

It was clear that the simplest de-

scription was in terms of homotopy

types, and hence it’s even simpler

in type theory. See also Baez and

Shulman
103

for further discussion.

103
John C. Baez and Michael Shulman.

“Lectures on 𝑛-categories and coho-

mology”. In: Towards higher categories.
Vol. 152. IMA Vol. Math. Appl.

Springer, New York, 2010, pp. 1–68.

doi: 10.1007/978-1-4419-1524-
5_1. arXiv: math/0608420.

Since the type of 𝑛-types is an (𝑛 + 1)-type, ∥𝐴∥𝑛+1 is an (𝑛 + 1)-type

by Lemma 2.15.5. We also note that the map

(2.26.1) ∥𝑥 =→ 𝑦∥𝑛 ≃→ (|𝑥|𝑛+1
=→ |𝑦|𝑛+1),

induced by the universal property of 𝑛-truncation, is an equivalence.

Indeed, the right-hand side is equivalent to

∏
𝑧 :𝐴

(
∥𝑥 =→ 𝑧∥𝑛 ≃→ ∥𝑦 =→ 𝑧∥𝑛

)
,

and we get an inverse by going backwards along this equivalence at

|refl𝑦|𝑛 : ∥𝑦 =→ 𝑦∥𝑛 .

To prove the universal property, let 𝐵 be any (𝑛+1)-type and 𝑔 :𝐴→ 𝐵

any map.

It suffices to show that for any 𝑧 : ∥𝐴∥𝑛+1, there is a contractible type

of extensions ∑𝑦 : 𝐵((_ ↦→ 𝑦) =→(|_|−1
𝑛+1(𝑧))→𝐵 (𝑔 ◦ fst)), visualized by

|_|−1
𝑛+1(𝑧)

𝟙 𝐵,

𝑔◦fst

since then there’s a contractible type of extensions of 𝑔 to all of ∥𝐴∥𝑛+1.

Since this is a proposition and |_|𝑛+1 is surjective, it suffices to prove this

for 𝑧 of the form |𝑥|𝑛+1 with 𝑥 :𝐴. We need to show that the type

∏
𝑥 :𝐴

∑
𝑦 : 𝐵

∏
𝑥′ :𝐴

(
(|𝑥|𝑛+1

=→ |𝑥′|𝑛+1) → (𝑦 =→ 𝑔(𝑥′))
)

is contractible. By the equivalence above, we can rewrite this, first as

∏
𝑥 :𝐴

∑
𝑦 : 𝐵

∏
𝑥′ :𝐴

(
∥𝑥 =→ 𝑥′∥𝑛 → (𝑦 =→ 𝑔(𝑥′))

)
,

and then, since 𝑦 =→ 𝑔(𝑥′) is an 𝑛-type, as

∏
𝑥 :𝐴

∑
𝑦 : 𝐵

∏
𝑥′ :𝐴

(
(𝑥 =→ 𝑥′) → (𝑦 =→ 𝑔(𝑥′))

)
.

Now we can contract away 𝑥′ and the identification 𝑥 =→ 𝑥′, so we’re left

with

∏
𝑥 :𝐴

∑
𝑦 : 𝐵
(𝑦 =→ 𝑔(𝑥′)),

which is indeed contractible.

Finally, we need to re-size ∥𝐴∥𝑛+1 to fit in the universe U that 𝐴 came

from. By (2.26.1), its identity types are essentiallyU -small by induction

hypothesis, so again since |_|𝑛+1 is a surjection from the U -small type

𝐴, the replacement principle, Principle 2.19.4, implies that ∥𝐴∥𝑛+1 is

essentiallyU -small. □

This construction is due to Rĳke
101

, see also the presentation in his

book
102

.

https://doi.org/10.1007/978-1-4419-1524-5_1
https://doi.org/10.1007/978-1-4419-1524-5_1
https://arxiv.org/abs/math/0608420

an introduction to univalent mathematics 62

104
We’re updating the terminology

slightly: In the above references, 𝑛-

structure is referred to as 𝑛-stuff, but

nowadays the term higher structure is

more common, so we have renamed

𝑛-stuff into 𝑛-structure.

105
Using the general 𝑛-truncation

from Section 2.26, we can define

the 𝑛-image in a similar way and

prove that the 𝑛-image factoriza-

tion is unique. See Section 3.9 for

the details. Since the unit type 𝟙

is the unique (−2)-type, we have

∥𝑋∥−2
=→ 𝟙 for any type 𝑋.

2.27 Higher structure: stuff, structure, and properties

Recall from Lemma 2.25.2 that any map 𝑓 : 𝐵→ 𝐴 can be described as

“projecting away” its fibers, by using the equivalence 𝑒:

(2.27.1)

𝐵 ∑𝑎 :𝐴 𝑓
−1(𝑎)

𝐴

𝑒
∼

𝑓 fst

We say that 𝑓 forgets these fibers. If 𝐴 and 𝐵 are groupoids, these

fibers are themselves groupoids, but it can happen that they are sets,

propositions, or even contractible. Accordingly, we say that:

• 𝑓 forgets at most structure if all the fibers are sets;

• 𝑓 forgets at most properties if all the fibers are propositions;

• 𝑓 forgets nothing if all the fibers are contractible.

Here, the structure and properties in question are on 𝑎 or of 𝑎, respectively,

as captured by the fibers at 𝑎, for each 𝑎 :𝐴. Of course, a map forgets

properties if and only if it’s an injection, and it forgets nothing if and

only if it’s an equivalence.

Going in the other direction, we say that:

• 𝑓 forgets at most 𝑛-structure if all the fibers are 𝑛-truncated. If 𝑛 ≥ 1,

this is therefore a kind of higher structure.104

Thus, an element of a groupoid is 1-structure (this is sometimes infor-

mally called stuff), while an element of a set is a structure, or 0-structure,

while an proof of a proposition is a property, or (−1)-structure.

Looking at (2.27.1) another way, we see that to give an element 𝑏 of

𝐵 lying over a given element 𝑎 :𝐴 amounts to specifying an element of

𝑓 −1(𝑎), so we say that the elements of 𝐵 are elements of 𝐴 with extra
𝑛-structure, if the fibers 𝑓 −1(𝑎) are 𝑛-truncated.

Refining the usual image and image factorization from Definition 2.17.11

and Exercise 2.17.12, using Lemma 2.25.2, we can factor 𝑓 : 𝐵 → 𝐴

through first its 0-image and then its usual (−1)-image as follows:
105

𝐵 =→ ∑
𝑎 :𝐴

𝑓 −1(𝑎) → ∑
𝑎 :𝐴
∥ 𝑓 −1(𝑎)∥0 → ∑

𝑎 :𝐴
∥ 𝑓 −1(𝑎)∥−1 → 𝐴

Here, the first map forgets pure higher structure, the second map forgets pure
structure, while the last forgets at most properties (this is the inclusion

of the usual image). Of course, each of these maps may happen to

forget nothing at all. Saying that the second map forgets pure structure

indicates that not only are the fibers sets, they are nonempty sets, so the

structure in question exists, at least. Note also that the fibers of the first

map are connected, which indicates that what is forgotten at this step, if

anything, is pure higher structure.

Example 2.27.1. Let us look at some examples:

• The first projection fst : FinSet × FinSet→ FinSet forgets 1-structure

(stuff), namely the second set in the pair.

an introduction to univalent mathematics 63

• The first projection fst : ∑𝐴 : FinSet 𝐴→ FinSet from the type of pointed

finite sets to the type of finite sets forgets structure, namely the

structure of a chosen point.

• The inclusion of the type of sets with cardinality 𝑛, FinSet𝑛 , into the

type of all finite sets, FinSet, forgets properties, namely the property

“having cardinality 𝑛”. ⌟

Exercise 2.27.2. Analyze more examples of maps between groupoids in

terms of “what is forgotten”. ⌟

Exercise 2.27.3. Let |_|′ : ∥ 𝑓 −1(𝑎)∥0 → ∥ 𝑓 −1(𝑎)∥ be the map defined by the

induction principle in Definition 2.22.4 from |_| : 𝑓 −1(𝑎) → ∥ 𝑓 −1(𝑎)∥. In

the refined image factorization above, the map for the second arrow maps

any pair (𝑎, 𝑥)with 𝑥 : ∥ 𝑓 −1(𝑎)∥0 to the pair (𝑎, |𝑥|′). For any 𝑝 : ∥ 𝑓 −1(𝑎)∥,
give an equivalence from the fiber of the latter map at (𝑎, 𝑝) to ∥ 𝑓 −1(𝑎)∥0.

What is forgotten by this map, and what is remembered? ⌟

1
Notice that these have arrows point-

ing in different directions: In (1)

we’re mapping out of 𝟙, while in (2)

we’re mapping in to Prop.

2
We call this type the “circle” be-

cause it has many properties which

are analogues, in our context, of

properties of the topological cir-

cle { (𝑥, 𝑦) ∈ ℝ2 | 𝑥2 + 𝑦2 = 1 }.
See Section B.3 for a discussion of

the relationship between topolog-

ical spaces and types. In the later

chapters on geometry we’ll return to

“real” geometrical circles.

𝐴

𝑎

𝑝
𝑝2

𝑝−1

3
The universal symmetry: the circle

An effective principle in mathematics is that when you want to study a

certain phenomenon you should search for a single type that captures

this phenomenon. Here are two examples:
1

(1) The contractible type 𝟙 has the property that given any type 𝐴 a

function 𝟙→ 𝐴 provides exactly the same information as picking an

element in 𝐴. For, an equivalence from 𝐴 to 𝟙→ 𝐴 is provided by

the function 𝑎 ↦→ (𝑥 ↦→ 𝑎), see Exercise 2.9.19.

(2) The type Prop of propositions has the property that given any type

𝐴 a function 𝐴 → Prop provides exactly the same information as

picking a subtype of 𝐴, see Definition 2.20.3 and Lemma 2.20.10.

We are interested in symmetries, and so we should search for a type 𝑋

which is so that given any type𝐴 the type of functions𝑋 → 𝐴 (or𝐴→ 𝑋,

but that’s not what we’re going to do) picks out exactly the symmetries

in 𝐴. We will soon see that there is such a type: the circle
2

which is

built exactly so that this “universality with respect to symmetries” holds.

It may be surprising to see how little it takes to define it; especially in

hindsight when we eventually discover some of the many uses of the

circle.

A symmetry in 𝐴 is an identification 𝑝 : 𝑎 =→ 𝑎 for some 𝑎 :𝐴. Now,

we can take any iteration of 𝑝 (composing 𝑝 with itself a number of

times), and we can consider the inverse 𝑝−1
and its iterations. So, by

giving one symmetry we give at the same time a lot of symmetries.

For a particular 𝑝 : 𝑎 =→ 𝑎 it may be that some of the iterations can be

identified (in their type 𝑎 =→ 𝑎). For instance, it may be that there is

an identification of type 𝑝2 =→ 𝑝0
(as in Exercise 2.13.3). Even more

dramatically: if there is an identification of type 𝑝 =→ refl𝑎 , then all the

iterations of 𝑝 can be identified with each other. However, in general

we must be prepared that all the iterations 𝑝𝑛 of 𝑝 (for 𝑛 positive, 0 and

negative) are distinct. Hence, the circle must have a distinct symmetry

for every integer. We would have enjoyed defining the integers this way,

but being that ideological would be somewhat inefficient. Hence we

give a more hands-on approach and define the circle and the integers

separately. Thereafter we prove that the type of symmetries in the circle

is equivalent to the set of integers.

3.1 The circle and its universal property

Propositional truncation from Section 2.16 was the first higher inductive
type, that is, an inductive type with constructors both for elements and for

64

the universal symmetry: the circle 65

3
Univalent Foundations Program,

Homotopy Type Theory: Univalent
Foundations of Mathematics.

∑𝑥 : S1 𝐴(𝑥)

S1

⟲

fst

𝐴(•)

𝑎
𝑙

Figure 3.1: The induction principle of

S1
.

identifications, we introduced. The circle is another example of a higher

inductive type, see Chapter 6 of the HoTT book
3

for more information.

Definition 3.1.1. The circle is a type S1 :U with an element (constructor)

• : S1
and an identification (constructor) ⟲ : •

=→ •. For convenience and

clarity the (higher) induction principle for S1
is explained by first stating

a recursion principle for S1
.

Let 𝐴 be a type. In order to define a function 𝑓 : S1 → 𝐴, it suffices to

give an element 𝑎 of 𝐴 together with an identification 𝑙 of type 𝑎 =→ 𝑎.

The function 𝑓 defined by this data satisfies 𝑓 (•) ≡ 𝑎 and the recursion

principle provides an identification of type ap 𝑓 (⟲) = 𝑙.

Let 𝐴(𝑥) be a family of types parametrized by the variable 𝑥 : S1
. The

induction principle of S1
states that, in order to define a family of elements

of 𝐴(𝑥) parametrized by the variable 𝑥 : S1
, it suffices to give an element

𝑎 of 𝐴(•) together with an identification 𝑙 of type 𝑎
=−→
⟲

𝑎, see Figure 3.1.

The function 𝑓 : ∏𝑥 : S1 𝐴(𝑥) defined by this data satisfies 𝑓 (•) ≡ 𝑎 and the

induction principle provides an identification of type apd 𝑓 (⟲)
=→ 𝑙. ⌟

Giving 𝑎 as above is referred to as ‘the base case’, and giving 𝑙 as ‘the

loop case’. Given this input data to define a function 𝑓 will often be

abbreviated by writing 𝑓 (•) :≡ 𝑎 and 𝑓 (⟲) B 𝑙. Notice the use of B

in the second definition, instead of :≡. That signifies that 𝑓 (⟲) and 𝑙

are not equal by definition, but rather, that an identification is given

between them, i.e., an element of type 𝑓 (⟲) =→ 𝑙 is given, or an element

of apd 𝑓 (⟲)
=→ 𝑙 is given, in the dependent case.

The following result states that any function from the circle exactly

picks out an element and a symmetry of that element. This is a “universal

property” of the circle.

Theorem 3.1.2. For all types 𝐴, the evaluation function

ev𝐴 : (S1 → 𝐴) → ∑
𝑎 :𝐴
(𝑎 =→ 𝑎) defined by ev𝐴(𝑔) :≡ (𝑔(•), 𝑔(⟲))

is an equivalence, with inverse ve𝐴 defined by the recursion principle of the
circle.

Proof. Fix 𝐴 :U . We apply Construction 2.9.9. For all 𝑎 :𝐴 and 𝑙 : 𝑎 =→ 𝑎

we may construct an identification of type ev(ve(𝑎, 𝑙)) =→ (𝑎, 𝑙) by the

recursion principle. It remains to construct identifications of type

ve(ev(𝑓)) =→ 𝑓 for all 𝑓 : S1 → 𝐴. Such constructions are provided by

the following more general result. Given 𝑓 , 𝑔 : S1 → 𝐴, 𝑝 : 𝑓 (•) =→ 𝑔(•),
and 𝑞 : 𝑓 (⟲) =→ 𝑝−1 · 𝑔(⟲) · 𝑝, we construct an identification of type

𝑓 =→ 𝑔, as follows. It suffices, by function extensionality, to construct

an element of type 𝑃(𝑥) :≡ (𝑓 (𝑥) =→ 𝑔(𝑥)) for a variable 𝑥 : S1
. This

we do by circle induction. For the base case we take 𝑝. The loop

case reduces to constructing an identification of type trp𝑃⟲(𝑝)
=→ 𝑝, by

Definition 2.7.3. By Construction 2.14.3 we have an identification of type

trp𝑃⟲(𝑝)
=→ 𝑔(⟲) · 𝑝 · 𝑓 (⟲)−1

. Using 𝑞 we construct an identification of

type 𝑔(⟲) =→ 𝑝 · 𝑓 (⟲) · 𝑝−1
. Hence we may construct an identification

of type trp𝑃⟲(𝑝)
=→ 𝑝, by an easy calculation. Now apply Lemma 2.10.3,

and we have constructed a function of type (ev(𝑓) =→ ev(𝑔)) → (𝑓 =→ 𝑔).
Now we get an identification of type ve(ev(𝑓)) =→ 𝑓 , for we have an

identification of type ev(ve(ev(𝑓))) =→ (𝑓 (•), 𝑓 (⟲)), and (𝑓 (•), 𝑓 (⟲)) ≡
ev(𝑓), with 𝑝 :≡ refl 𝑓 (•) and 𝑞 coming from the induction principle. □

the universal symmetry: the circle 66

4
This can also be done directly: The

inverse to ev𝑎𝐴 sends 𝑙 : 𝑎 =→ 𝑎 to

(ve𝐴(𝑎, 𝑙), refl𝑎). Try to verify this!

S1

𝑎

𝐴𝑓

5
This is of course how we have been

picturing loops the whole time.

6
Here we are using “the circle” to

mean the pointed type (S1 , •). But it

also turns out that the type •
=→ • is

equivalent to the type 𝑥 =→ 𝑥, for any

𝑥 : S1
.

Corollary 3.1.3. For any 𝑎 :𝐴, the function

ev𝑎𝐴 : ((S1 , •) →∗ (𝐴, 𝑎)) → (𝑎 =→ 𝑎)

sending (𝑔, 𝑝) to 𝑝−1 · 𝑔(⟲) · 𝑝 is an equivalence.

Proof.4 Consider the following diagram (see Remark 2.15.10):

(S1 → 𝐴) ∑𝑎 :𝐴
(
(S1 , •) →∗ (𝐴, 𝑎)

)
∑𝑎 :𝐴(𝑎 =→ 𝑎),

𝑔 ↦→(𝑔(•),𝑔,refl𝑔(•))

ev𝐴 tot(ev−𝐴)

where the top map is an equivalence by Corollary 2.9.11, and the left map

is an equivalence by Theorem 3.1.2. This diagram represents the identity

type ev𝐴
=→ (𝑔 ↦→ (𝑔(•), refl−1

𝑔(•) · 𝑔(⟲) · refl𝑔(•))). An identification of this

type is provided by function extensionality and Exercise 2.5.3. The result

now follows from Lemma 2.9.17. □

Remark 3.1.4. By almost the same argument as for Theorem 3.1.2 one

can obtain the dependent universal property of the circle. Given a type

family 𝐴 : S1 →U , the dependent evaluation function, which also maps

𝑔 to (𝑔(•), 𝑔(⟲)) but has type (∏𝑥 : S1 𝐴(𝑥)) → ∑𝑎 :𝐴(•)(𝑎
=−→
⟲

𝑎), is an

equivalence. (Compare the latter type to the type of ev𝐴 in Theorem 3.1.2

and see Figure 3.1.) ⌟

Remark 3.1.5. A function 𝑓 : S1 → 𝐴 is often called a loop in 𝐴, the picture

being that 𝑓 throws ⟲ : •
=→ • as a lasso in the type 𝐴.

Using the equivalence in Corollary 3.1.3 and univalence, 𝑎 =→ 𝑎 is

identified with the pointed functions from the circle, which allows for a

very graphic interpretation of the symmetries of 𝑎 in 𝐴: they are traced

out by a function 𝑓 from the circle and can be seen as loops in the type

𝐴 starting and ending at 𝑎!5 ⌟

Lemma 3.1.6. The circle is connected.

Proof. We show ∥•
=→ 𝑧∥ for all 𝑧 : S1

by circle induction as in Defini-

tion 3.1.1. For the base case we take |refl•| : ∥•
=→ •∥. The loop case is

immediate as ∥•
=→ •∥ is a proposition. □

In the proof above, the propositional truncation coming from the

definition of connectedness is essential. If this truncation were removed

we wouldn’t know what to do in the induction step (actually, having an

element of type ∏𝑧 : S1(• =→ 𝑧) contradicts the univalence axiom). This

said, the family 𝑅 : S1 →U with 𝑅(𝑧) :≡ (• =→ 𝑧) is extremely important

for other purposes. In Example 3.3.9, we will call 𝑅 the “universal set

bundle” of the circle, and it is the key tool in proving that the type of

symmetries in the circle is a set that can be identified with the set of

integers. Recall that we use the phrase “symmetries in the circle” to refer

to the elements of •
=→ •,

6
whereas we use the phrase “symmetries of the

circle” to refer to the elements of S1 =→U S1
. The latter type is equivalent

to S1 ⨿ S1
, as follows from Exercise 3.4.11 and Exercise 3.4.12.

In order to proceed, we should properly define the set of integers and

explore the concept of set bundles.

the universal symmetry: the circle 67

7
Here are some of these alternatives:

• As the copy of ℕ where 2𝑛 means

𝑛 and 2𝑛 + 1 means −𝑛 − 1, for

𝑛 :ℕ.

• As the sum ℕ ⨿ ℕ, where inl𝑛
means −𝑛 − 1 and inr𝑛 means 𝑛.

• As the sum ℕ⨿ 𝟙⨿ℕ, where from

the left copy of ℕ we get −𝑛 − 1,

from the center 0 :𝟙 we get 0, and

from the right copy of ℕ we get

𝑛 + 1, for 𝑛 :ℕ.

• As the quotient of ℕ × ℕ under

the equivalence relation (𝑛, 𝑚) ∼
(𝑛′, 𝑚′) defined by 𝑛 +𝑚′ = 𝑛′ +𝑚,

where (𝑛, 𝑚) represents 𝑛 − 𝑚.

• As the subset of ℕ × ℕ consisting

of those (𝑛, 𝑚)with 𝑛 = 0 ∨ 𝑚 = 0
(picking canonical representa-

tives for the above equivalence

relation).

• As the loops •
=→ • in the circle.

8
Of course, giving ℎ is the same as

giving ℎ′ : ∏𝑛 :ℕ 𝑇(−𝑛).

9
Here we included the constructor

symbols for clarity, but the defini-

tion allows us to use the negation

symbol unadorned, because the fol-

lowing diagram is commutative by

definition:

ℕ ℕ−

Z Z

−

𝜄+

−
𝜄−

−

−

10
In the same way, we can define the

iteration 𝑓 𝑧 :𝑋 → 𝑋 for any equiva-
lence 𝑓 :𝑋 → 𝑋.

3.2 The integers

We define the type of integers in one of the many possible ways.
7

Definition 3.2.1. Let Z be the higher inductive type with the following

three constructors:

(1) 𝜄+ :ℕ→ Z for the nonnegative numbers, 0, 1, . . .

(2) 𝜄− :ℕ− → Z for the nonpositive numbers, −0,−1, . . .

(3) zeq : 𝜄−(−0) = 𝜄+(0).

Because we used the copy ℕ− for the nonpositive numbers from Exam-

ple 2.12.9, we can leave out the constructor symbols 𝜄± when the type

is clear from context. Thus we have . . . ,−2,−1,−0, 0, 1, 2, . . . : Z and

zeq : − 0 =→Z 0.

The type Z comes with an induction principle: Let 𝑇(𝑧) be a family of

types parametrized by 𝑧 : Z. In order to construct an element 𝑓 (𝑧) of 𝑇(𝑧)
for all 𝑧 : Z, it suffices to give functions 𝑔 and ℎ such that 𝑔(𝑛) :𝑇(𝜄+(𝑛))
and ℎ(𝑛) :𝑇(𝜄−(𝑚)) for all 𝑛 :ℕ, 𝑚 :ℕ−, together with 𝑞 : ℎ(−0) =−−→

zeq
𝑔(0).

Here 𝑔 and ℎ can be defined by induction on 𝑛 :ℕ, 𝑚 :ℕ−.8

The resulting function 𝑓 : ∏𝑧 : Z 𝑇(𝑧) satisfies 𝑓 (𝑛) ≡ 𝑔(𝑛) and 𝑓 (−𝑛) ≡
ℎ(−𝑛) for 𝑛 :ℕ, and there is an (unnamed) element of apd 𝑓 (zeq) = 𝑞. ⌟

Like the typeℕ, the type Z is a set with decidable equality and ordering

relations.

One well known self-equivalence is negation, − : Z→ Z, inductively

defined by setting −𝜄+(𝑛) :≡ 𝜄−(−𝑛), −𝜄−(𝑚) :≡ 𝜄+(−𝑚), ap−(zeq) B
zeq−1

.
9

Negation is its own inverse.

The successor function s : Z→ Z is likewise defined inductively, setting

s(𝑛) :≡ succ(𝑛), s(−0) :≡ 1, s(− succ(𝑛)) :≡ −𝑛, and aps(zeq) B refl1.

The successor function s is an equivalence. It is instructive to depict

iterating s in both directions as a doubly infinite sequence containing all

integers:

−0

· · · −2 −1 1 2 · · ·

0

The inverse s−1
of s is called the predecessor function. We recall the

𝑛-fold iteration s𝑛 defined earlier; the 𝑛-fold iteration of s−1
will be

denoted by s−𝑛 . Since s0 ≡ id ≡ s−0
, this defines the iteration s𝑧 for all

𝑧 : Z.
10

Addition of integers is now defined by iteration: 𝑧 + 𝑦 :≡ s𝑦(𝑧). This

extends + on the 𝜄+-image of ℕ, see Exercise 3.2.2. From addition and

− : Z→ Z one can define a subtraction function setting 𝑧 − 𝑦 :≡ 𝑧 + (−𝑦).
Since addition and subtraction are mutually inverse, the function 𝑤 ↦→
𝑧 + 𝑤 is an equivalence, and we may iterate it to define multiplication:

𝑧𝑦 :≡ (𝑤 ↦→ 𝑧 + 𝑤)𝑦(0).
Exercise 3.2.2. Show that 𝜄+(𝑛 + 𝑚) = 𝜄+(𝑛) + 𝜄+(𝑚) and 𝜄+(𝑛𝑚) =

𝜄+(𝑛)𝜄+(𝑚) for all 𝑛, 𝑚 :ℕ. ⌟

The ordering relations < and ≤ on Z are easily defined and shown to

extend those on ℕ.

the universal symmetry: the circle 68

11
Given a pointed type (𝐴, 𝑎), a

type 𝐵 and a map 𝑓 :𝐴 → 𝐵,

(𝑓 , refl 𝑓 (𝑎)) : (𝐴, 𝑎) →∗ (𝐵, 𝑓 (𝑎)) is
a pointed map. Indeed, the forgetful

map

(
∑𝑏 : 𝐵((𝐴, 𝑎) →∗ (𝐵, 𝑏))

)
→

(𝐴 → 𝐵) is an equivalence by Corol-

lary 2.9.11.

Recall the induction principle for Z in Definition 3.2.1 above. Instead

of defining 𝑔 and ℎ explicitly, we will often give 𝑓 (0) directly, and define

𝑔′ and ℎ′ such that 𝑔′(𝑧) :𝑇(𝑧) → 𝑇(𝑧 + 1) for all 𝑧 : Z with 𝑧 ≥ 0, and

ℎ′(𝑧) :𝑇(𝑧) → 𝑇(𝑧 − 1) for all 𝑧 : Z with 𝑧 ≤ 0. The function 𝑓 thus

defined satisfies 𝑓 (−0) ≡ 𝑓 (0), 𝑓 (𝑧 + 1) ≡ 𝑔′(𝑧, 𝑓 (𝑧)) for all 𝑧 ≥ 0, and

𝑓 (𝑧 − 1) ≡ ℎ′(𝑧, 𝑓 (𝑧)) for all 𝑧 ≤ 0.

Exercise 3.2.3. Show that 𝑥 + 𝑦 = 𝑦 + 𝑥 and 𝑥𝑦 = 𝑦𝑥 for all 𝑥, 𝑦 : Z. ⌟

3.3 Set bundles

As mentioned earlier, it is possible to define the integers as the type

•
=→ • of symmetries in the circle. Our investigation of •

=→ • will use

the concept of set bundles. Since we are going to return to this concept

several times, we take the time for a fuller treatment before we continue

with proving the equivalence of •
=→ • and Z.

Definition 3.3.1. A set bundle over a type 𝐵 is a map 𝑓 :𝐴→ 𝐵 such that

for each 𝑏 : 𝐵 the preimage (fiber) 𝑓 −1(𝑏) is a set. We say that a set bundle

𝑓 :𝐴→ 𝐵 over 𝐵 is

• connected if 𝐴 is connected,

• finite if all preimages are finite sets,

• decidable if all preimages are decidable sets.

If 𝐴 and 𝐵 are pointed types, a pointed set bundle is a pointed map

𝑓 :𝐴 →∗ 𝐵 such that, when forgetting the points, 𝑓÷ :𝐴÷ → 𝐵÷ is a set

bundle. Here it suffices that 𝐴 is a pointed type.
11

We do not require the preimages of 𝑓÷ to be pointed types. ⌟

With a formula, given a type 𝐵, the type of set bundles over 𝐵 is

SetBundle(𝐵) :≡ ∑
𝐴 :U

∑
𝑓 :𝐴→𝐵

∏
𝑏 : 𝐵

isSet(𝑓 −1(𝑏)),

with variations according to the flavor.

Recall the equivalence in Construction 2.25.6(3) between the type

𝐵 → Set of families of sets parametrized by elements of 𝐵, and the

type of set bundles over 𝐵 given above. We shall frequently use this

equivalence, even without explicit mention.

Lemma 3.3.2. For any type 𝐵, SetBundle(𝐵) is a groupoid.

Proof. By Lemma 2.22.1 we have that Set is a groupoid, and hence

𝐵→ Set is a groupoid by Lemma 2.15.5(1). □

Moreover, by Corollary 2.20.12, all variations of set bundles in Defini-

tion 3.3.1 defined by a predicate are groupoids as well. This does not

apply pointed set bundles: a point is extra structure, not just a property.

We should notice that the notion of a set bundle is just one step up

from the notion of an injection (a map such that all the preimages are

propositions – following the logic, injections perhaps ought to be called

“proposition bundles”). The formulation we give is not the only one and

for some purposes a formulation based on 𝐵→ Set is more convenient.

Exercise 3.3.3. Let 𝐴, 𝐵 and 𝐶 be types. Show:

the universal symmetry: the circle 69

(1) The (unique) map of type 𝐴→ 𝟙 is a set bundle iff 𝐴 is a set;

(2) For any 𝑏 : 𝐵, the map 𝑥 ↦→ 𝑏 from 𝟙 to 𝐵 is a set bundle iff 𝑏 =→ 𝑏 is a

set;

(3) If 𝑓 :𝐴→ 𝐵 and 𝑔 : 𝐵→ 𝐶 are set bundles, then 𝑔 𝑓 is a set bundle.

(4) If 𝑓 :𝐴 → 𝐵 and 𝑔 : 𝐵 → 𝐶, and 𝑔 and 𝑔 𝑓 are set bundles, then 𝑓

is a set bundle. Hint: apply Corollary 2.17.9 to ap𝑔 : (𝑏 =→ 𝑓 (𝑎)) →
(𝑔(𝑏) =→ 𝑔(𝑓 (𝑎))).

(5) If 𝐴 is connected, 𝑎 =→𝐴 𝑎 is connected for some 𝑎 :𝐴, 𝐵 is a groupoid,

and 𝑓 :𝐴 → 𝐵 is a set bundle, then 𝐴 is contractible. Hint: use

Corollary 2.17.9 and Exercise 2.16.10.

(6) If 𝑓 :𝐴→ 𝐵 is a set bundle and 𝐵 is an 𝑛-type with 𝑛 ≥ 0, then 𝐴 is

also an 𝑛-type. ⌟

Figure 3.2 visualizes two examples of set bundles over the circle.

Consider the picture on the left first. If we let 𝑏 be the element on the

circle marked at the bottom left hand side, then the preimage 𝑓 −1(𝑏)
is marked by the the two dots in 𝐴 straight above 𝑏, so that in this

case each preimage contains two points (i.e., each preimage can be

merely identified with Bool). However, 𝐴 is not the constant family,

like 𝐴′ depicted on the right, since we have a string of identifications

𝐴′ :≡ ∑𝑧 : S1 Bool =→ (S1 × Bool) =→ (S1 + S1), and the latter type is not

connected. Obviously something way more fascinating is going on.

𝐴

S1

S1 + S1

S1

Figure 3.2: A visualization of two set

bundles over the circle

Exercise 3.3.4. In this exercise you are asked to elaborate the difference

between 𝐴 and 𝐴′ above. Let 𝑐Bool :≡ (𝑧 ↦→ Bool) : S1 → Set.

(1) This part is about 𝐴′. Show that ∑𝑧 : S1 Bool is not connected. Give

an element of the type 𝑐Bool
=→ veSet(Bool, reflBool).

(2) One can define 𝐴 by 𝐴 :≡ ∑𝑧 : S1 veSet(Bool, swap). Show that 𝐴 is

connected. Give an element of type (𝑐Bool
=→ veSet(Bool, swap)) →

False. Hint: use Exercise 2.13.3 and Theorem 3.1.2. ⌟

Remark 3.3.5. It is possible to misunderstand what a “connected set bun-

dle” is: the other interpretation “all the preimages are connected” would

simply give us an equivalence (since connected sets are contractible),

and this is not what is intended. (Equivalences are set bundles, but not

necessarily connected set bundles and connected set bundles are not

necessarily equivalences.)

Likewise for the other qualifications; for instance, in a “finite set

bundle” 𝑓 :𝐴→ 𝐵, all fibers are finite sets, but the type 𝐴 is usually not
a finite set.

the universal symmetry: the circle 70

12
To stress that a function is an injec-

tion we may decorate the→ in its

type with a hook: ↩→.

13
Consider 𝑖−1

2 (𝑓 (𝑖1(𝑠))) for all 𝑠 : 𝑆,

and then use Exercise 2.9.24.

We trust the reader to keep our definitions in mind and not the other

interpretations. ⌟

Remark 3.3.6. Set bundles are closely related to a concept from topology

called “covering spaces” (or any variant of this concept, including Galois

theory) and from algebra as locally constant sheaves (of sets). Either

way, the concept is useful because it singles out the (sub)symmetries. ⌟

In this chapter, we focus on set bundles over the circle. We start by

refining the notion of diagram introduced in Remark 2.15.10.

Remark 3.3.7. Consider the left diagram below, where 𝑖1 , 𝑖2 are injections

constituting 𝑆 as a subtype of 𝑋 and 𝑇 as a subtype of 𝑌, respectively, in

the sense of Definition 2.20.9.
12

This diagram represents the identity type

𝑓 ◦ 𝑖1 =→ 𝑖2 ◦ 𝑔. Since 𝑖2 is an injection, the type ∑𝑔 : 𝑆→𝑇(𝑓 ◦ 𝑖1 =→ 𝑖2 ◦ 𝑔)
is a proposition,

13
which may or may not be true. So, when is it true?

𝑋 𝑌 𝑋 𝑌

𝑆 𝑇 𝑋𝑃 𝑌𝑄

𝑓 𝑓

𝑔

𝑖1 𝑖2

𝑔

fst fst

In the right diagram we depict the case in which 𝑆 is given by a predicate

𝑃 :𝑋 → Prop and 𝑇 by a predicate 𝑄 :𝑌 → Prop, with the injections

being first projections. We can now apply the universal property of

subtypes Exercise 2.20.8 to 𝑌𝑄 with (𝑓 ◦ fst) :𝑋𝑃 → 𝑌 and get that the

three propositions ∏𝑧 :𝑋𝑃 𝑄(𝑓 (fst(𝑧))) and ∏𝑥 :𝑋(𝑃(𝑥) → 𝑄(𝑓 (𝑥))) and

∑𝑔 :𝑋𝑃→𝑌𝑄 (𝑓 ◦ fst =→ fst ◦𝑔) are logically equivalent. If these propositions

hold, we say that 𝑓 respects the subtypes and we may call the diagram a

subtype diagram.

If 𝑞 is a proof of ∏𝑥 :𝑋(𝑃(𝑥) → 𝑄(𝑓 (𝑥))), then we can uniquely define

the function 𝑔 :𝑋𝑃 → 𝑌𝑄 , the one labelling the dashed arrow in the right

diagram above, by (𝑥, 𝑝) ↦→ (𝑓 (𝑥), 𝑞(𝑥, 𝑝)). The functions 𝑓 ◦ fst and

fst ◦𝑔 are identified by reflexivity. We may call 𝑔 the function induced by
𝑓 on subtypes, and will also denote it by 𝑓 .

Now consider the special case in which 𝑓 :𝑋 → 𝑌 is an equivalence.

If the inverse of 𝑓 also respects the subtypes, that is, if ∏𝑦 :𝑌(𝑄(𝑦) →
𝑃(𝑓 −1(𝑦))), then the function that is induced by 𝑓 on the subtypes is also

an equivalence. Moreover, the functions induced by 𝑓 and 𝑓 −1
are then

each other’s inverses. ⌟

Theorem 3.3.8. In the diagram below, the equivalence 𝑓 in the second row
is preim from Lemma 2.25.3, and the equivalence 𝑔 in the same row is
defined by 𝑔(𝑆) :≡ (𝑆(•), trpidU

𝑆(⟲)) (Theorem 3.1.2 applied with 𝐴 :≡U , and
Definition 2.13.1). Along the vertical arrows we have maps that forget the
property that constitutes its domain as a subtype of the codomain, all modest
variations of the first projection.

The statement of the theorem is now that the diagram below is the composite
of subtype diagrams (see Remark 3.3.7) in which the induced functions 𝑓 and
𝑔 in the third row are equivalences as well.

the universal symmetry: the circle 71

∑𝑋 :U (𝑋 → 𝑋)

(
∑𝐴 :U (𝐴→ S1)

) (
S1 →U

)
∑𝑋 :U (𝑋 ≃→ 𝑋)

SetBundle(S1)
(
S1 → Set

)
∑𝑋 : Set(𝑋 ≃→ 𝑋)

𝑓 𝑔

𝑓 𝑔

Proof. We prove first that preim respects the subtypes. Let 𝐴 :U and

ℎ : S1 → 𝐴 such that (𝐴, ℎ) is a set bundle. This means that ℎ−1(𝑎) is a

set, for any 𝑎 :𝐴. Since preim(𝐴, ℎ)(𝑎) ≡ ℎ−1(𝑎), we immediately get that

preim(𝐴, ℎ) : S1 → Set. In order to prove that preim−1
also respects the

subtypes one simply reverses this argument.

Next we prove that 𝑔 respects the subtypes. Let 𝑆 : S1 →U be such

that 𝑆(𝑧) is a set for all 𝑧 : S1
. This means in particular that 𝑆(•) is a set.

Since 𝑔(𝑆) ≡ (𝑆(•), trp𝑆(⟲)), we are done. In order to prove that 𝑔−1
also

respects the subtypes we reason as follows. Let 𝑋 :U and ℎ :𝑋 ≃→ 𝑋

be given. Assume that 𝑋 is a set. We have 𝑔−1(𝑋, ℎ) ≡ veU (𝑋, ℎ̄), see

Theorem 3.1.2 and Principle 2.13.2. Now, since 𝑋 ≡ veU (𝑋, ℎ̄)(•) is a set

and S1
is connected, we have 𝑔−1(𝑋, ℎ) : S1 → Set and we are done.

Note that the left subtype diagram is fully general: it also holds when

we replace S1
by any type 𝐵. This is not true for the right subtype

diagram. □

In slogan form: A set bundle over the circle is a set with a permutation

of its elements. The fiber over • : S1
gives the set, and transporting along

⟲ gives the permutation.

Example 3.3.9. A simple yet important example of a set bundle over a

groupoid 𝐵 with an element 𝑏0 is given by the family of identity types

ℙ𝑏0(𝑏) :≡ (𝑏0
=→ 𝑏) parameterized by 𝑏 : 𝐵. These identity types are

indeed sets since 𝐵 is a groupoid. The alternative form of this (pointed)

set bundle is the map fst : ∑𝑏 : 𝐵(𝑏0
=→ 𝑏) → 𝐵, the domain canonically

pointed at (𝑏0 , refl𝑏0), and with refl𝑏0 as the pointing path of fst.
In the above example, the reader may have noticed that, by Lemma 2.9.2,

∑𝑏 : 𝐵(𝑏0
=→ 𝑏) is contractible. Hence yet another form of this set bundle

is the constant map cst𝑏0 :𝟙→ 𝐵, also with pointing path refl𝑏0 . What is

special about these examples is captured by the following definition and

ensuing lemma. ⌟

Definition 3.3.10. Let 𝐴 and 𝐵 be pointed types and 𝑓 :𝐴→∗ 𝐵 a pointed

set bundle. We call 𝑓 universal if for every pointed set bundle 𝑔 :𝐶 →∗ 𝐵
there is a unique ℎ :𝐴→∗ 𝐶 with 𝑓 =→ 𝑔ℎ, that is, if the following type

is contractible:

∑
ℎ :𝐴→∗𝐶

𝑓 =→𝐴→∗𝐵 𝑔ℎ. ⌟

In the above definition we get that ℎ :𝐴→∗ 𝐶 is a set bundle as well by

Exercise 3.3.3(4). The examples preceding Definition 3.3.10 are indeed

universal set bundles according to the following lemma.

Lemma 3.3.11. Let (𝐴, 𝑎0) be a pointed type, (𝐵, 𝑏0) a pointed groupoid, and
𝑓 : (𝐴, 𝑎0) →∗ (𝐵, 𝑏0) a pointed set bundle. Then 𝑓 is universal if and only if
𝐴 is contractible.

the universal symmetry: the circle 72

Draw the triangle!

S1

2

1

0

−1

−2

Tot(𝑅)Z ...

...

⟲

14homotopy types have to wait until

Appendix B.3

Proof. Let conditions be as above and assume 𝐴 is contractible. Let

(𝐶, 𝑐0) be a pointed type and 𝑔 : (𝐶, 𝑐0) →∗ (𝐵, 𝑏0) a set bundle. Let

𝑓0 : 𝑏0
=→ 𝑓 (𝑎0) and 𝑔0 : 𝑏0

=→ 𝑔(𝑐0) be the respective pointing paths.

Define ℎ : (𝐴, 𝑎0) →∗ (𝐶, 𝑐0) by 𝑎 ↦→ 𝑐0 with pointing path refl𝑐0 . Clearly

𝑔0 𝑓
−1

0 : 𝑓 (𝑎0) =→ 𝑔(ℎ(𝑎0)) ≡ 𝑔(𝑐0), which yields an identification of 𝑓 (𝑎)
and 𝑔(ℎ(𝑎)) for all 𝑎 :𝐴 as 𝐴 is contractible. Apply now function exten-

sionality Principle 2.9.18 to get an identification of type 𝑓 =→𝐴→𝐵 𝑔ℎ. The

pointing path of 𝑔ℎ is also 𝑔0 : 𝑏0
=→ 𝑔(𝑐0). We get an identification of type

(𝑓 , 𝑓0) =→𝐴→∗𝐵 (𝑔ℎ, 𝑔0) since 𝑔0 = (𝑔0 𝑓
−1

0) 𝑓0. The type (𝐴, 𝑎0) →∗ (𝐶, 𝑐0)
is contractible since 𝐴 is contractible, yielding that ℎ is unique.

For the other direction of the lemma we use a reasoning pattern that

is typical for universality. Assume that 𝑓 is universal. As shown above,

cst𝑏0 :𝟙→∗ (𝐵, 𝑏0) is also universal. Hence we have maps ℎ and ℎ′ and

identifications of all identity types represented in the following diagram,

simplified by ignoring the points:

𝟙 𝐴 𝟙 𝐴

𝐵

ℎ′

cst𝑏0

ℎ

𝑓

ℎ′

cst𝑏0
𝑓

Using the universality of 𝑓 , we can identify ℎ′ℎ with id𝐴. Using the

universality of cst𝑏0 , we can identify ℎℎ′with id𝟙. Now Construction 2.9.9

yields an equivalence between 𝟙 and 𝐴, implying that 𝐴 is contractible.

□

A particularly important example of a pointed set bundle is the

following.

Definition 3.3.12. Recall the set of integers Z from Definition 3.2.1, with

its successor function s : Z ≃→ Z being an equivalence. The set bundle

𝑅 : S1 → U is defined by the recursion principle of the circle from

Definition 3.1.1 by putting 𝑅(•) :≡ Z and 𝑅(⟲) B s̄. This is indeed a set

bundle since S1
is connected, so that 𝑅(𝑥) is a set for all 𝑥 : S1

. We also

write 𝑅 : S1 → Set. Recall Tot(𝑅) ≡ ∑𝑧 : S1 𝑅(𝑧) and point Tot(𝑅) at (•, 0).
Now define

exp :≡ fst : Tot(𝑅) → S1 , with pointing path refl•.

We call exp the exponential set bundle over the circle. ⌟

Remark 3.3.13. The reason for the name “exponential” comes from

the following visualization. If 𝑥 is a real number, then the complex

exponentiation e2𝜋i𝑥 = cos(2𝜋𝑥) + i sin(2𝜋𝑥) has absolute value 1 and so

defines a continuous function to the unit circle { (𝑥, 𝑦) :ℝ2 | 𝑥2 + 𝑦2 = 1 },
where we have identified ℝ2

with the complex numbers. Choosing

any point 𝑧 on the unit circle, we see that the preimage of 𝑧 under the

exponential function is a shifted copy of the integers inside the reals.
14

This connection between the integers and the unit circle is precisely

captured in a form that we can take further by studying the set bundle

exp : Tot(𝑅) → S1
. ⌟

In the next section we will see that the exponential set bundle of the

circle is in fact universal. We’ll continue the general study of set bundles

in Section 5.2 and indeed throughout the book. For now, we’ll focus our

attention on the circle and set bundles over it.

the universal symmetry: the circle 73

It follows directly that addition of

integers corresponds to composition
of loops.

S1

...

Tot(𝑅)Z

...

⟲

𝑅(⟲)

𝑅(⟲−1)

𝑅(⟲2)

𝑅(⟲−2)

Figure 3.3: Transport in the family 𝑅

3.4 The symmetries in the circle

With the set Z of integers defined as in Section 3.2, we will now construct

an equivalence between Z and the type •
=→S1 •, and that under this

equivalence 0 : Z corresponds to refl• : •
=→ •, and 1 to ⟲, and −1 to ⟲−1

.

More generally, the successor s : Z→ Z corresponds to composition with

⟲, while the predecessor s−1
corresponds to composition with ⟲−1

.

The first step is to identify the exponential set bundle Definition 3.3.12

with the universal set bundle in Example 3.3.9, i.e., identify the type

family

𝑅 : S1 →U , 𝑅(•) :≡ Z, 𝑅(⟲) B s̄

with the family

ℙ• : S1 →U , ℙ•(𝑧) :≡ (• =→ 𝑧).

What does it mean to identify the families ℙ• and 𝑅? Type families are a

special case of functions. Function extensionality reduces the question to

the pointwise identification of ℙ• and 𝑅 as functions. Using univalence,

it suffices to give an equivalence from ℙ•(𝑧) to 𝑅(𝑧) for every 𝑧 : S1
, that

is, recalling Definition 2.14.1, giving a (fiberwise) equivalence 𝑓 :ℙ• → 𝑅.

We will use Construction 2.9.9, so will also define 𝑔 :𝑅→ ℙ•.

Remark 3.4.1. We recall Construction 2.14.2 defining how transport

behaves in families of function types. Given a type 𝐴 and two type

families 𝑃, 𝑄 :𝐴 → U , transport along 𝑝 : 𝑎 =→ 𝑎′ of ℎ :𝑃(𝑎) → 𝑄(𝑎)
can be identified with the function trp𝑄𝑝 ◦ℎ ◦ trp𝑃

𝑝-1 of type 𝑃(𝑎′) →
𝑄(𝑎′). As a simplification we could use the notation _̃ introduced after

Principle 2.13.2 for the transport functions. However, we now take the

further step of allowing univalence to be completely transparent, that is,

leaving out both _̃ and _̄ when no confusion can occur. Here this means

that the picture for the transport of ℎ becomes:

𝑎 𝑃(𝑎) 𝑄(𝑎)

𝑎′ 𝑃(𝑎′) 𝑄(𝑎′).

𝑝

ℎ

𝑃(𝑝) 𝑄(𝑝)
𝑄(𝑝) ℎ 𝑃(𝑝)−1

In, for example, the definition of the exponential set bundle 𝑅 above,

this means that we may denote 𝑅(⟲) as s instead of s̄, and may write

𝑅(⟲)(0) = 1. ⌟

If 𝐴 is S1
, then the induction principle for the circle says that giving

an ℎ(𝑧) :𝑃(𝑧) → 𝑄(𝑧) for all 𝑧 : S1
is the same as specifying an element

ℎ(•) :𝑃(•) → 𝑄(•) and, using Definition 2.7.3 and Remark 3.4.1, an iden-

tification ℎ(⟲) :𝑄(⟲) ℎ(•)𝑃(⟲)−1 =→ ℎ(•), see the following diagram:

𝑃(•) 𝑄(•)

𝑃(•) 𝑄(•).

ℎ(•)

𝑃(⟲) 𝑄(⟲)
ℎ(•)

If 𝑃, 𝑄 are families of sets, then ℎ(⟲) is a proof that this diagram

commutes.

We now define 𝑓 :ℙ• → 𝑅 and 𝑔 :𝑅 → ℙ• that will turn out to give

inverse equivalences between ℙ•(𝑧) and 𝑅(𝑧), for each 𝑧 : S1
.

the universal symmetry: the circle 74

The type of 𝑔(⟲) can be expressed

by this diagram:

Z (• =→ •)

Z (• =→ •).

𝑛 ↦→⟲𝑛

s 𝑝 ↦→⟲ ·𝑝

𝑛 ↦→⟲𝑛

Definition 3.4.2. The function 𝑓 : ∏𝑧 : S1(ℙ•(𝑧) → 𝑅(𝑧)) is defined by

𝑓 (𝑧)(𝑝) :≡ 𝑅(𝑝)(0). ⌟

In Figure 3.3, the function 𝑓 (•)(𝑝) above has been visualised for 𝑝 ≡⟲𝑛
,

𝑛 ≡ −2,−1, 0, 1, 2.

Lemma 3.4.3. For 𝑓 as in Definition 3.4.2 we have 𝑓 (•)(⟲𝑛) = 𝑛 for all 𝑛 : Z.

Proof. First consider positive 𝑛 :ℕ and apply induction. In the base case

𝑛 = 0 we have 𝑓 (•)(⟲0) ≡ 𝑓 (refl•) ≡ trp𝑅refl•

(0) ≡ 0. For 𝑛 ≡ s(𝑚) with

𝑚 :ℕ we have

𝑓 (•)(
s(𝑚)
⟲) ≡ 𝑅(

s(𝑚)
⟲)(0)

= 𝑅(⟲
𝑚

⟲)(0)

= 𝑅(⟲)(𝑅(
𝑚

⟲)(0)) since ap preserves composition

≡ 𝑅(⟲)(𝑓 (•)(
𝑚

⟲))

= s(𝑓 (•)(
𝑚

⟲)) = s(𝑚) by the induction hypothesis.

This completes the induction step for positive 𝑛. For negative 𝑛 the proof

is similar. □

In the definition of the second map, take into account that 𝑅(•) ≡ Z
and ℙ•(•) ≡ (• =→ •).
Definition 3.4.4. The function 𝑔 : ∏𝑧 : S1(𝑅(𝑧) → ℙ•(𝑧)) is defined by circle

induction. We first define

𝑔(•) :≡
(
𝑛 ↦→

𝑛

⟲

)
: Z→ (• =→ •).

Then, using Remark 3.4.1, the type 𝑔(⟲) should be

ℙ•(⟲) 𝑔(•)𝑅(⟲)−1 =→ 𝑔(•).

By definition, 𝑅(⟲) is s. Using Exercise 2.14.4(2) we can identify ℙ•(⟲)
with composition with ⟲. The element 𝑔(⟲) is obtained by function

extensionality and a simple calculation, using the identification of

⟲ ⟲𝑛−1
and ⟲𝑛

for any 𝑛 : Z. ⌟

Theorem 3.4.5. For every 𝑧 : S1, the functions 𝑓 (𝑧) defined in Definition 3.4.2
and 𝑔(𝑧) in Definition 3.4.4 are inverse equivalences between ℙ•(𝑧) and 𝑅(𝑧).

Proof. We apply Construction 2.9.9 and verify the two conditions. First,

we need to give elements 𝐻(𝑧, 𝑝) : 𝑔(𝑧)(𝑓 (𝑧)(𝑝)) =→ 𝑝 for all 𝑧 : S1
and

𝑝 :ℙ•(𝑧) ≡ (• =→ 𝑧). By induction on 𝑝 : •
=→ 𝑧 it suffices to set𝐻(•, refl•) :≡

reflrefl•
since 𝑔(•)(𝑓 (•)(refl•)) ≡ 𝑔(•)(0) ≡ refl•.

Secondly, we need to give elements 𝐺(𝑧)(𝑛) : 𝑓 (𝑧)(𝑔(𝑧)(𝑛)) = 𝑛 for all

𝑧 : S1
and 𝑛 :𝑅(𝑧). By circle induction it suffices to define 𝐺(•) and 𝐺(⟲),

but the type of 𝐺(•) is a proposition (as Z is a set), so the information

for 𝐺(⟲) is redundant. Hence, it suffices to show that 𝑓 (•)(𝑔(•)(𝑛)) ≡
𝑓 (•)(⟲𝑛) = 𝑛 for all 𝑛 : Z. This follows from Lemma 3.4.3. □

Corollary 3.4.6. The circle S1 is a groupoid, and the function

⟲− : Z→ (• =→S1 •)

sending 𝑛 to ⟲𝑛 is an equivalence.

the universal symmetry: the circle 75

15
If we think of the circle as repre-

sented by the unit length complex

numbers, then 𝑓𝑥(𝑦) corresponds to

the usual product 𝑥𝑦. Alternatively,

if we think of points on the circle as

representing rotations of the unit

circle in ℝ2
, then 𝑓𝑥(𝑦) corresponds

to the composition of the rotations by

𝑥 and 𝑦.

Proof. For any 𝑧 : S1
, the type ℙ•(𝑧) ≡ (• =→S1 𝑧) is a set since 𝑅(𝑧) is a

set and 𝑓 (𝑧) :ℙ•(𝑧) → 𝑅(𝑧) an equivalence. Since the circle is connected

and being a set is a proposition, it follows that 𝑦 =→S1 𝑧 is a set, for any

𝑦, 𝑧 : S1
. Hence S1

is a groupoid. By Definition 3.4.4, ⟲− ≡ 𝑔(•) is an

equivalence. □

Recall the definition of universal set bundle from Definition 3.3.10.

Now that we know that the circle is a groupoid we can harvest the

following results.

Corollary 3.4.7. The set bundle ℙ• from Example 3.3.9 is universal. The
exponential set bundle exp from Definition 3.3.12 is universal.

Proof. By Lemma 3.3.11 and Theorem 3.4.5. □

Definition 3.4.8. The inverse equivalence 𝑓 (•) of 𝑔(•) ≡⟲− ≡ (𝑛 ↦→⟲𝑛)
is called the winding number function wdg : (• =→ •) ≃→ Z. ⌟

The following lemma is a simple example of a technique called deloop-
ing, which we will further elaborate in Section 7.5.

Lemma 3.4.9. Let 𝐴 be a connected type and 𝑎 :𝐴 an element. Assume we have
an equivalence 𝑒 : (• =→ •) → (𝑎 =→ 𝑎) of symmetries such that 𝑒(refl•) =→ refl𝑎
and 𝑒(𝑝 · 𝑞) =→ 𝑒(𝑝) · 𝑒(𝑞), for all 𝑝, 𝑞 : (• =→ •). Then 𝑒 : S1 → 𝐴 defined by
circle recursion by setting 𝑒(•) :≡ 𝑎 and 𝑒(⟲) B 𝑒(⟲) is an equivalence.

Proof. We have ap𝑒
=→ 𝑒 since they produce equal values when applied

to ⟲𝑛
, for all 𝑛 : Z. Now use that 𝐴 and S1

are connected and apply

Corollary 2.17.9(3). □

Exercise 3.4.10. Generalizing Definition 3.4.8, of winding numbers, use

circle induction to define, for any point 𝑥 : S1
of the circle an equivalence,

wdg𝑥 : (𝑥 =→ 𝑥) ≃→ Z. (You’ll need commutativity of addition in Z.)

Conclude from Lemma 3.4.9 that we have equivalences 𝑓𝑥 : S1 ≃→ S1
with

𝑓𝑥(•) ≡ 𝑥, for each 𝑥 : S1
.
15 ⌟

Exercise 3.4.11. Let −idS1 : S1 → S1
be defined by −idS1(•) :≡ • and

−idS1(⟲) B ⟲−1
. Show the−idS1 and idS1 are not in the same component

of S1 → S1
. Prove the following proposition:

∏
𝑡 : S1≃S1

∥idS1
=→ 𝑡∥ ⨿ ∥−idS1

=→ 𝑡∥. ⌟

Exercise 3.4.12. For any 𝑓 : S1 → S1
, give an equivalence from S1

to

(S1 → S1)(𝑓), that is, from S1
to the component of S1 → S1

at 𝑓 . Hint: use

Lemma 3.4.9. ⌟

We note in passing that combining the above two exercises yields an

equivalence from (S1 =→ S1) to (S1 ⨿ S1), that is, a characterization of the

symmetries of the circle (in constrast to the title of this Section 3.4).

3.5 A reinterpretation of the circle

In this section we return to the equivalences in Theorem 3.3.8. We’ll use

these to get a different perspective on the circle, which highlights it as a

type classifying very simple symmetries, namely sets with permutations.

We have already seen one example in Definition 3.3.12, namely the set Z of

integers together with the successor s : Z ≃→ Z, defining the exponential

the universal symmetry: the circle 76

16
The elements of this connected com-

ponent can be thought of as infinite
cycles: sets 𝑋 with a successor func-

tion 𝑡 :𝑋 → 𝑋 such that (𝑋, 𝑡) can

be merely identified with (Z, s). That

is, (𝑋, 𝑡) looks exactly like (Z, s), but

we don’t know which element of 𝑋 is

“zero”:

. . .

. . .

17
Given a set 𝑋 with a permutation

𝑡, we may coerce and view (𝑋, 𝑡) as

an element of ∑𝑋 :U (𝑋 → 𝑋). Then,

for any (𝑌, 𝑢) in the same connected

component of ∑𝑋 :U (𝑋 → 𝑋) as

(𝑋, 𝑡), we have that 𝑌 also is a set

and 𝑢 also a permutation of 𝑌.

𝑋 𝑋 𝑋

𝑌 𝑌 𝑌

𝑝

𝑡

𝑝̃ 𝑝̃

trp𝐷𝑝 (𝑡)

𝑋 𝑋 𝑋

𝑌 𝑌 𝑌

𝑒

𝑡

𝑒 𝑒

𝑢

......

...

... (𝑋, 𝑡)(Z, s)

0

Figure 3.4: An identification of

two infinite cycles. The equivalence

𝑒 : Z ≃→ 𝑋 is marked in blue.

set bundle exp. By Corollary 3.4.7, exp and its friends ℙ• : S1 → Set and

cst• :𝟙→ S1
are appearances of the universal set bundle over the circle.

The importance of exp will become apparent when we eventually

explain that the circle is equivalent to the connected component of (Z, s) in the
type ∑𝑋 :U (𝑋 → 𝑋).16

Recall from Theorem 3.3.8 the equivalence

𝑔 𝑓 : SetBundle(S1) ≃→ ∑
𝑋 : Set
(𝑋 ≃→ 𝑋).

When restricting to corresponding connected components, we get equiva-

lences between these. So to understand the components of SetBundle(S1)
it suffices to understand the components of ∑𝑋 : Set(𝑋 ≃→ 𝑋), which cor-

respond to components of ∑𝑋 :U (𝑋 → 𝑋) at pairs (𝑋, 𝑡), where 𝑋 is a

set with a permutation 𝑡.17

We are particularly interested in understanding the symmetries in

these components, so before we prove that the circle is equivalent to the

component containing (Z, s), let us investigate the equalities in the type

∑𝑋 :U (𝑋 → 𝑋) a bit further.

Define the type family 𝐷 by 𝐷(𝑋) :≡ (𝑋 → 𝑋) for all 𝑋 :U . Recall

that, given 𝑋,𝑌 :U and 𝑡 :𝑋 → 𝑋 and 𝑢 :𝑌 → 𝑌, Lemma 2.10.3 and

Definition 2.7.3 give an equivalence between the identity type (𝑋, 𝑡) =→
(𝑌, 𝑢) and type of pairs consisting of a 𝑝 :𝑋 =→ 𝑌 and an identification of

type trp𝐷𝑝 (𝑡)
=→ 𝑢. The transport on the left is precisely the special case

described after Construction 2.14.2 (see diagram in the margin), so that

the latter identity type type is equivalent to 𝑝̃ ◦ 𝑡 ◦ 𝑝̃−1 =→ 𝑢. If 𝑝 ≡ 𝑒 for

an equivalence 𝑒 :𝑋 ≃→ 𝑌, this is equivalent to 𝑒 ◦ 𝑡 =→ 𝑢 ◦ 𝑒, or 𝑒𝑡 =→ 𝑢𝑒

for short. In total, we have an equivalence between the identity type

(𝑋, 𝑡) =→ (𝑌, 𝑢) and the sum type (see diagram in the margin)

∑
𝑒 :𝑋 ≃→𝑌

𝑒𝑡 =→𝑋→𝑌 𝑢𝑒.

These types are sets whenever 𝑋 and 𝑌 are, and then we may write

𝑒𝑡 = 𝑢𝑒.

In particular, given a set 𝑋 with a permutation 𝑡, we have an equiv-

alence from (Z, s) =→ (𝑋, 𝑡) to ∑𝑒 : Z ≃→𝑋 𝑒 s = 𝑡𝑒. See Figure 3.4 for an

illustration. This equivalence is transparent in the sense that we never

denote it. For example, any power s𝑛 of s itself gives a symmetry

(s𝑛 , 𝑝) : (Z, s) =→ (Z, s), where 𝑝 is a proof of s𝑛 s = s s𝑛 .

Remark 3.5.1. The type s𝑛 s = s s𝑛 in the paragraph above is a proposition.

Since all elements of a proposition are equal, it is often not necessary

to name such elements explicitly. If the proposition in question is clear

from the context, we may use ! as a default name of its elements. Be

warned that different occurrences of ! may refer to elements of different

propositions. In cases where the element of a proposition is not of

interest (beyond its mere existence), we may even just ignore it. For

example, again in the paragraph above, we may ignore 𝑝 and consider

s𝑛 as a symmetry of (Z, s). (Note that we did already coerce the function
s𝑛 to the equivalence.) ⌟

The following property jumps out at us when we contemplate Fig-

ure 3.4: the equivalence 𝑒 is uniquely determined by the element 𝑒(0) :𝑋.

More precisely:

the universal symmetry: the circle 77

18
See also Definition 3.6.3 below for

general cycles.

S1

ℙ•(•)
...

...

⟲

Figure 3.5: For the fiber of the

universal set bundle, ℙ•(•) ≡ (• = •),
we increase the winding number

when we transport the endpoint (in

blue) along ⟲, and we decrease it

when we transport the starting point

(in red) in the same way.

Lemma 3.5.2. For every (𝑋, 𝑡) in the component of ∑𝑋 :U (𝑋 → 𝑋) containing
(Z, s), the function

ev0 :
(
(Z, s) =→ (𝑋, 𝑡)

)
→ 𝑋 defined by ev0(𝑒 , !) :≡ 𝑒(0)

is an equivalence.

Proof. We’ll prove that every fiber of ev0 is contractible. Given 𝑥0 :𝑋 we

must determine a unique equivalence 𝑒 : Z→ 𝑋 such that 𝑒𝑠 = 𝑡𝑒 and

𝑒(0) = 𝑥0. Induction on 𝑛 : Z (positive and negative 𝑛 separately) shows

that for such an 𝑒, we have 𝑒(𝑛) = 𝑡𝑛(𝑥0) for all 𝑛 : Z. It remains to prove

that 𝑛 ↦→ 𝑡𝑛(𝑥0) is an equivalence, for every 𝑥0 : Z. Since we are proving

a proposition, and we are assuming (𝑋, 𝑡) is in the component of (Z, s),
it suffices to prove it for (𝑋, 𝑡) ≡ (Z, s). Clearly, for any 𝑥0 , 𝑛 : Z, we have

s𝑛(𝑥0) = 𝑛 + 𝑥0, and the map 𝑛 ↦→ 𝑛 + 𝑥0 is an equivalence, with inverse

𝑛 ↦→ 𝑛 − 𝑥0. □

In particular, ev0 : ((Z, s) =→ (Z, s)) → Z is an equivalence, mapping

s𝑛 to 𝑛 for all 𝑛 : Z. Cf. wdg : (• =→ •) → Z from Definition 3.4.8.

Definition 3.5.3. Let InfCyc be the component of ∑𝑋 :U (𝑋 → 𝑋) contain-

ing (Z, s). Elements of InfCyc are called infinite cycles.18

Define by circle induction

𝑐 : S1 → InfCyc setting 𝑐(•) :≡ (Z, s)

and 𝑐(⟲) : 𝑐(•) =→ 𝑐(•) given by the predecessor equivalence s−1 : (Z→ Z)
and the trivial proof of the proposition s−1 s = s s−1

. ⌟

As explained in Remark 3.5.1, we often leave out the propositional

data pertaining to InfCyc (and other subtypes) from the notation.

The main result of this section is Theorem 3.5.6 below, stating that

the function 𝑐 from Definition 3.5.3 is an equivalence. Since it’s such a

crucial result, we are going to give two proofs. Each proof illuminates a

different aspect and gives methods that will be used later.

For the first, we return to the equivalences of Theorem 3.3.8. As said

above, these restrict to equivalences between corresponding compo-

nents. In particular, evU : (S1 →U) ≃→ ∑𝑋 :U (𝑋 ≃→ 𝑋) maps the type

family ℙ• to the pair (• =→ •,⟲·_), which can be identified with (Z, s)
through Corollary 3.4.6. Hence, evU restricts to an equivalence between

the connected component of ℙ• in S1 →U and the connected component

of (Z, s) in ∑𝑋 :U (𝑋 ≃→ 𝑋).
Recall the constant maps cst𝑧 : (𝟙 → S1) for 𝑧 : S1

. The equivalence

preim maps cst• to (𝑥 : S1) ↦→ ∑_ :𝟙(𝑥 =→ •)which can be identified with

ℙ•. Now consider the following diagram:

(3.5.1)

S1

SetBundle(S1)(𝟙,cst•) (S1 →U)(ℙ•) InfCyc

(𝟙,cst_)
ℙ_

𝑐

preim evU

Both the left and the right triangle represent identity types. We have

an identification for the left triangle because the fiber ∑_ :𝟙(𝑥 =→ 𝑧) of

cst𝑧 at 𝑥 : S1
can be identified with ℙ𝑧(𝑥) ≡ (𝑧 =→ 𝑥), for any 𝑧 : S1

. For

the right triangle we apply circle induction to construct an element of

the universal symmetry: the circle 78

19
Another option would have been

to choose the opposite equivalence

Z ≃→ ℙ•(•), sending 𝑛 to ⟲−𝑛 , in

the base case. The point is: You can

move the minus sign around, but it

has to pop up somewhere.

20
At this point we could conclude with

an appeal to Exercise 3.5.4, yielding

that ℙ_ is an equivalence.

21
Emily Riehl. Category Theory in Con-
text. Aurora: Modern Math Origi-

nals. Dover Publications, 2016. url:

https://math.jhu.edu/~eriehl/
context/.

∏𝑧 : S1 𝑐(𝑧) =→ evU (ℙ𝑧). The base case 𝑧 ≡ • is exactly the abovementioned

application of Corollary 3.4.6. For the loop case we observe that the

following diagram commutes:

Z (• =→ •)

Z (• =→ •).

⟲−

s−1
_·⟲−1

⟲−

Note that to transport in the family ℙ−(•) ≡ (_ =→ •), we use Exer-

cise 2.14.4(3), and that is why we picked the predecessor equivalence

in Definition 3.5.3. This is also illustrated in Figure 3.5.
19

With (3.5.1) in hand, we see that 𝑐 is an equivalence if and only if

either of the two other downward maps are.
20

We now show that the map (𝟙, cst_) on the left is an equivalence. Since

the codomain is connected, it suffices to show that the fiber at (𝟙, cst•) is
contractible. This fiber is the sum type ∑𝑧 : S1((𝟙, cst•) =→ (𝟙, cst𝑧)), where

the identity type is by Lemma 2.10.3 equivalent to pairs of an equivalence

𝑒 :𝟙→ 𝟙 and elements of the identity type represented by the triangle

𝟙 𝟙

S1.

𝑒

cst• cst𝑧

Since 𝟙 is contractible, this just amounts to the identity type •
=→ 𝑧, and

∑𝑧 : S1(• =→ 𝑧) is indeed contractible.

Exercise 3.5.4. This exercise is about results that go by the name “the

type-theoretic Yoneda Lemma.” See the book by Riehl
21

for the Yoneda

lemma in category theory.

Let 𝑋 be a type and 𝐹 :𝑋 →U a function. Use transport to give an

equivalence 𝑒𝑥 from the type 𝐹(𝑥) to the type ∏𝑦 :𝑋((𝑥 =→ 𝑦) → 𝐹(𝑦)),
for any 𝑥 :𝑋. The functions (𝑥 =→ 𝑦) → 𝐹(𝑦) thus obtained need not be

equivalences, but sometimes they are.

Next, for 𝑋 :U , show that the map sending 𝑥 :𝑋 to (𝑦 ↦→ (𝑥 =→
𝑦)) :𝑋 →U is an injection. Hint: use Lemma 2.17.8 and 𝑒𝑥 above, for

suitable 𝐹. In order to appreciate this hint, you can also directly prove

that all fibers of the map are propositions. ⌟

We now give the second, more direct, proof that 𝑐 is an equivalence.

For this we use the following lemma, which is of independent interest.

Lemma 3.5.5. Let 𝑋 and 𝑌 be connected types, 𝑥 an element of 𝑋, and 𝑓 a
function from 𝑋 to 𝑌. Then 𝑓 is an equivalence if and only if ap 𝑓 : (𝑥 =→ 𝑥) →
(𝑓 (𝑥) =→ 𝑓 (𝑥)) is an equivalence.

Proof. Using Corollary 2.17.9(3) it suffices to show that each map induced

by 𝑓 on identity types is an equivalence if and only if the specific map

ap 𝑓 : (𝑥 =→ 𝑥) → (𝑓 (𝑥) =→ 𝑓 (𝑥)) is an equivalence. Being an equivalence

is a proposition, so the result follows in two easy steps from 𝑋 being

connected, using Exercise 2.16.9. □

Theorem 3.5.6. The function 𝑐 : S1 → InfCyc from Definition 3.5.3 is an
equivalence.

https://math.jhu.edu/~eriehl/context/
https://math.jhu.edu/~eriehl/context/

the universal symmetry: the circle 79

By Exercise 3.3.3(6) 𝐴 is a groupoid.

Since 𝐴 is connected, the propo-

sition 𝑔−1
𝑓 (𝑛) does not depend on

the choice of 𝑎0, so the subset only

depends on 𝑓 .

For subgroups in general, in Chap-

ter 9, the setbundle 𝑓 is pointed, and

has a pointing path 𝑝 : pt𝐵
=→ 𝑓 (pt𝐴).

Then ap 𝑓 is composed with 𝑝−1
_ 𝑝,

conjugation. See also Defini-

tion 4.4.3.

Recall that the iteration 𝑡𝑛 makes

sense for all integers 𝑛 since 𝑡 is an

equivalence.

Proof. In view of Lemma 3.5.5 we only need to show that ap𝑐 : (• =→
•) → ((Z, s) =→ (Z, s)) is an equivalence. Note that both the domain

and the co-domain of ap𝑐 have been identified with Z. Consider the

following diagram in which we compose 𝑐 with the equivalences from

Corollary 3.4.6 and Lemma 3.5.2:

Z (• =→ •)
(
(Z, s) =→ (Z, s)

)
Z⟲− ap𝑐 ev0

For 𝑐 to be an equivalence, it suffices to show that the composition is an

equivalence from Z to itself. By definition, ap𝑐(⟲) is the identification

corresponding to s−1
, sending 0 to−1, and by induction on 𝑛 : Z it follows

that ev0(ap𝑐(⟲𝑛)) = s−𝑛(0) = −𝑛. And the map 𝑛 ↦→ −𝑛 is indeed an

equivalence. □

3.6 Connected set bundles over the circle

Let 𝐴 be a type and 𝑓 :𝐴→ S1
a function. By Corollary 2.17.9(1), 𝑓 is a

set bundle over S1
if and only if each map induced by 𝑓 on identity types

is injective. Assume that 𝑓 :𝐴 → S1
is a set bundle with 𝐴 connected.

Let 𝑎0 be an element of 𝐴. By Exercise 2.16.9 the condition that each ap 𝑓

is injective can be relaxed to ap 𝑓 : (𝑎0
=→ 𝑎0) → (𝑓 (𝑎0) =→ 𝑓 (𝑎0)) being

injective. Now look at the following diagram, with wdg the winding

number function from Exercise 3.4.10 and ⟲− from Corollary 3.4.6:

(3.6.1) (𝑎0
=→𝐴 𝑎0) (𝑓 (𝑎0) =→S1 𝑓 (𝑎0)) Z (• =→ •)ap 𝑓 wdg 𝑓 (𝑎0) ⟲−

Define the composite 𝑔 𝑓 :≡ wdg 𝑓 (𝑎0) ◦ ap 𝑓 , and consider its image, which

is a subset of the integers. Clearly, 𝑔 𝑓 is an injection, so that its fibers

are propositions, and the image is the subset ∑𝑛 : Z 𝑔
−1
𝑓 (𝑛). Obviously,

a classification of connected set bundles over the circle also classifies

certain subsets of Z, or, equivalently, certain subsets of symmetries of

•. Such subsets of Z are closed under addition and negation, and those

of (• =→ •) are closed under concatenation and inverses, since ap 𝑓 , wdg
and ⟲− are compatible with these operations. Using language to be

introduced in Chapter 9, we actually “classify the subgroups of the

integers”.

Recall that set bundles over the circle are equivalent to sets with permu-

tations. Which sets with permutations (𝑋, 𝑡) correspond to connected set

bundles? It is not so surprising that the answer has to do with whether

any two points 𝑥, 𝑥′ :𝑋 can be connected by applying 𝑡 some number of

times.

Definition 3.6.1. Let 𝑋 be a set with a permutation 𝑡. Elements 𝑥, 𝑥′ :𝑋
such that 𝑥′ = 𝑡𝑛(𝑥) for some 𝑛 : Z are said to be connected by 𝑡, denoted

𝑥 ∼ 𝑥′ whenever 𝑡 is clear from the context. The relation ∼ is an

equivalence relation. (Exercise: Check this.) ⌟

Recall Figure 3.2. We now have all the tools to analyze the difference

between the left and the right picture in full generality.

Construction 3.6.2. Let 𝑋 be a set with a permutation 𝑡, defining the equiv-
alence relation ∼ as in Definition 3.6.1. The set bundle over the circle cor-
responding to (𝑋, 𝑡) in Theorem 3.3.8 is the pair (∑𝑧 : S1 𝐸(𝑧), fst) where

the universal symmetry: the circle 80

S1

5

4

3

2

1

⟲

Figure 3.6: A set bundle with two

components.

22
Our cycles are a special case of what

is elsewhere called cyclically ordered
sets, and they are closely related to

the cyclic sets of Connes
23

.

23
Alain Connes. “Cohomologie cy-

clique et foncteurs Ext𝑛”. In: C. R.
Acad. Sci. Paris Sér. I Math. 296.23

(1983), pp. 953–958.

𝐸 :≡ veU (𝑋, 𝑡) : S1 →U , with ve defined by circle induction in Theorem 3.1.2.
Then we have a bĳection between ∥∑𝑧 : S1 𝐸(𝑧)∥0 and the quotient 𝑋/∼ as
defined in Definition 2.22.10.

Implementation of Construction 3.6.2. Abbreviate ∑𝑧 : S1 𝐸(𝑧) by 𝐴. We

define a map 𝑔 : ∥𝐴∥0 → 𝑋/∼, from the set of components of 𝐴 to

the quotient set of 𝑋 using the universal property of set truncation

(Definition 2.22.4), pair induction, and circle induction. To define

𝑔0 : ∏𝑧 : S1(𝐸(𝑧) → 𝑋/∼), we put 𝑔0(•) :≡ [_] :𝑋 → 𝑋/∼ and need

𝑔0(⟲) : 𝑔0(•)
=−→
⟲

𝑔0(•), equivalent to 𝑔0(•) =→𝑋→𝑋/∼ 𝑔0(•)𝑡. The lat-

ter we get by function extensionality and Theorem 2.22.12, since 𝑥 ∼ 𝑡(𝑥)
for any 𝑥 :𝑋.

The inverse of ℎ : (𝑋/∼) → ∥𝐴∥0 of 𝑔 is defined as the extension of

ℎ0 :𝑋 → ∥𝐴∥0 with ℎ0(𝑥) :≡ |(•, 𝑥)|0. We just need to check that ℎ0(𝑥) =
ℎ0(𝑥′), or equivalently, ∥(•, 𝑥) =→𝐴 (•, 𝑥′)∥, whenever 𝑥 ∼ 𝑥′. Since this is

a proposition, if 𝑥′ = 𝑡𝑛(𝑥)with 𝑛 : Z, we may use induction on 𝑛 (positive

and negative) together with the paths, (⟲, refl𝑡(𝑥)) : (•, 𝑥) =→𝐴 (•, 𝑡(𝑥)),
to conclude.

It’s easy to check that 𝑔 and ℎ are mutually inverse. □

In Figure 3.6 we see the set bundle corresponding to the set {1, 2, 3, 4, 5}
with the permutation 1 ↦→ 2 ↦→ 3 ↦→ 1, 4 ↦→ 5 ↦→ 4. There are two

components, showing that the permutation splits into two cycles.

Definition 3.6.3. Let Cyc be the subtype of ∑𝑋 :U (𝑋 → 𝑋) of those pairs

(𝑋, 𝑡) where 𝑋 is a nonempty set with an equivalence 𝑡 and any 𝑥, 𝑥′ :𝑋
are connected by 𝑡. Expressed in a formula:

Cyc :≡ ∑
𝑋 : Set

∑
𝑡 :𝑋 ≃→𝑋

(
∥𝑋∥ × ∏

𝑥,𝑥′ :𝑋
∃
𝑛 : Z
(𝑥′ = 𝑡𝑛(𝑥))

)
.

Elements of Cyc are called cycles.22 ⌟

Corollary 3.6.4. Under the equivalence described in Construction 3.6.2,
connected set bundles over the circle correspond to cycles.

Proof. We use the notations of the implementation of Construction 3.6.2.

If 𝐴 is connected, then ∥𝐴∥0 is contractible and hence also 𝑋/∼ is

contractible, so (𝑋, 𝑡) is a cycle.

Conversely, if (𝑋, 𝑡) is a cycle, then 𝑋/∼ is contractible and hence also

∥𝐴∥0 is contractible, so 𝐴 is connected. □

We already know some connected set bundles over the circle, namely

the universal set bundle, which is also represented by the constant map

cst• :𝟙 → S1
, and which we showed is equal to the exponential set

bundle, which in turn corresponds to the infinite cycle (Z, s) consisting of

the set of integers Z with the successor permutation. Another example

is the left one of the two examples given in Figure 3.2.

We now introduce the remaining set bundles over the circle, first as

functions to the circle, then as families of sets. Eventually we’ll show

– assuming a weak form of the Law of the Excluded Middle – that

these (with the universal set bundle) are all the decidable connected set

bundles over the circle.

the universal symmetry: the circle 81

Note that (_)0 : (• =→ •) → (• =→ •) is
constant and hence not injective.

As a subset of Z, this is simply all

multiples of 𝑚.

S1

4

3

2

1

0

Tot(𝑅𝑚)𝕞

⟲

Figure 3.7: The 𝑚th
power bundle for

𝑚 = 5.

Definition 3.6.5. For 𝑚 :ℕ positive, define the degree 𝑚 function by circle

induction

𝛿𝑚 : S1 → S1 , setting 𝛿𝑚(•) :≡ • and 𝛿𝑚(⟲) B ⟲𝑚 . ⌟

On loops, the degree 𝑚 function is the map (_)𝑚 : (• =→ •) → (• =→ •),
which is indeed an injection for positive 𝑚, so 𝛿𝑚 is a set bundle

corresponding to the subset of (• =→ •) consisting of ⟲𝑚𝑛 : •
=→ • for all

𝑛 : Z.

In Section 3.4 we gained a lot of insight into the universal set bundle,

cst• :𝟙→ S1
, by constructing an equivalence with the exponential set

bundle, see Theorem 3.4.5. In this section, we’ll learn more about the

degree𝑚map, 𝛿𝑚 : S1 → S1
, by constructing an equivalence with another

concrete family.

Fix a positive number 𝑚 :ℕ. Recall the finite set 𝕞 from Defini-

tion 2.24.1 with elements denoted 0, 1, . . . , 𝑚 − 1, as well as the equiv-

alence of type 𝕞 ≃→ ∑𝑘 :ℕ 𝑘 < 𝑚 from Exercise 2.24.2. Hence we may

define a successor map s :𝕞→ 𝕞 by

s(𝑘) :≡

𝑘 + 1 if 𝑘 < 𝑚 − 1,

0 if 𝑘 = 𝑚 − 1.

Exercise 3.6.6. Show that s :𝕞 → 𝕞 is an equivalence by defining an

explicit inverse. ⌟

Thus, (𝕞, s) is another key example of a cycle called the standard finite
𝑚-element cycle. As seen in Theorem 3.3.8, any cycle corresponds to a set

bundle over S1
. Just as the set bundle 𝑅 in Definition 3.3.12 corresponds

to the standard infinite cycle (Z, s), we will now define the set bundle

𝑅𝑚 corresponding to standard finite 𝑚-element cycle.

Definition 3.6.7. Fix 𝑚 :ℕ positive. Define the set bundle 𝑅𝑚 : S1 → Set
by 𝑅𝑚(•) :≡ 𝕞 and 𝑅𝑚(⟲) B s̄. Recall Tot(𝑅𝑚) ≡ ∑𝑧 : S1 𝑅𝑚(𝑧) and point

Tot(𝑅𝑚) at (•, 0). Now define

pow𝑚
:≡ fst : Tot(𝑅𝑚) → S1

with pointing path refl•.

We call pow𝑚 the 𝑚th power bundle of the circle.
⌟

Remark 3.6.8. The analogue of our degree 𝑚 function is the 𝑚th
power

of complex numbers restricted to the unit circle, mapping 𝑧 to 𝑧𝑚 if

|𝑧| = 1. If we parameterize the unit circle by the angle 𝜃 :ℝ (defined up

to multiples of 2𝜋), so 𝑧 = e𝜃i
, then 𝑧𝑚 = e𝑚𝜃i

. Figure 3.7 illustrates the

𝑚th
power bundle over the circle. Choosing any point 𝑧 on the unit circle,

we see that the preimage of 𝑧 under the 𝑚th
power map is a shifted copy

of the 𝑚 different 𝑚th
roots of unity inside the unit circle. ⌟

To identify 𝛿𝑚 and pow𝑚 as set bundles over S1
, it suffices to define an

equivalence 𝜓𝑚 : Tot(𝑅𝑚) → S1
and an identification 𝛼𝑚 of the identity

type 𝛿𝑚𝜓𝑚
=→ pow𝑚 represented by the triangle below.

Tot(𝑅𝑚) S1

S1

𝜓𝑚

pow𝑚
𝛿𝑚

the universal symmetry: the circle 82

0
⟲

1

⟲2

⟲

3 ⟲

4

⟲

refl•

refl•

refl•

refl•

⟲

Figure 3.8: Unrolling Tot(𝑅5) as a

“clock”. (Here we’re going around

in a counterclockwise fashion as

mathematicians are wont to do.)

• •

• •

...
...

• •

• •

𝛼𝑚 (•,0)

⟲ refl•

𝛼𝑚 (•,1)

⟲ refl•

⟲ refl•

𝛼𝑚 (•,𝑚−1)

⟲ ⟲𝑚

𝛼𝑚 (•,0)

Figure 3.9: The simplified types of the

squares 𝛼𝑚(⟲, 𝑘).

0
⟲−0

⟲1

⟲−1

⟲
2

⟲−2

⟲
3

⟲−3 ⟲ 4

⟲−4

⟲

refl•

refl•

refl•

refl•

⟲5

Figure 3.10: The proof for the case

𝑚 = 5 around the clock.

To see how to define𝜓𝑚 and 𝛼𝑚 , we draw in Figure 3.8 the type Tot(𝑅𝑚)
unrolled into a “clock”, with marks 0, 1, . . . , 𝑚 − 1 (the mark 𝑘 is the

element (•, 𝑘) : Tot(𝑅𝑚)), and arcs following the successor permutation

of 𝕞. We denote these arcs by 𝑎𝑘 :≡ (⟲, refls(𝑘)) : (•, 𝑘) =→ (•, s(𝑘)). The

𝑚th
power map (which is just the first projection) sends each mark to

• : S1
and each arc to ⟲.

This is indicated in blue on the inside of the clock. To define 𝜓𝑚 , we

must send all the marks to • : S1
and all arcs to refl•, except one, which

goes to ⟲. This is indicated in red on the outside of the clock.

Construction 3.6.9. For each positive integer 𝑚, there is an equivalence
𝜓𝑚 : Tot(𝑅𝑚) → S1 and an element 𝛼𝑚 : 𝛿𝑚𝜓𝑚

=→ pow𝑚 .

Implementation of Construction 3.6.9. Since Tot(𝑅𝑚) ≡ ∑𝑧 : S1 𝑅𝑚(𝑧), to de-

fine 𝜓𝑚 we first split the argument into a pair (𝑧, 𝑘). In order to

facilitate circle induction we consider 𝜓𝑚 as an element of the type

∏𝑧 : S1(𝑅𝑚(𝑧) → S1). We define 𝜓𝑚(𝑧) :𝑅𝑚(𝑧) → S1
by circle induction

on 𝑧. The base case is 𝜓𝑚(•) :≡ cst• :𝕞→ S1
, the constant function at •

(recall 𝑅𝑚(•) ≡ 𝕞). Since transport in a function type is by conjugation

(Construction 2.14.2), and the codomain type is constant, we need to

give an identification 𝜓𝑚(⟲) of type 𝜓𝑚(•) =→𝕞→S1 𝜓𝑚(•)𝑅𝑚(⟲). We

construct 𝜓𝑚(⟲) using function extensionality, by giving an element in

𝕞→ (• =→ •). Since 𝜓𝑚 needs to send all arcs, except the last, in Tot(𝑅𝑚)
to reflexivity, we map 𝑘 to refl• for 𝑘 < 𝑚 − 1, and we map 𝑚 − 1 to ⟲.

The inverse of 𝜓𝑚 maps • to (•, 0), i.e., the mark at 0, and ⟲ to

𝑎𝑚−1 · · · 𝑎0, i.e., the product of all the arcs around the circle. We leave it

as an exercise to prove that this really defines an inverse to 𝜓𝑚 .

We likewise use function extensionality and pair and circle induction

to define 𝛼, reducing the problem to giving (with a slight abuse of

notation) 𝛼𝑚(•, 𝑘) : pow𝑚(•, 𝑘)
=→ 𝛿𝑚(𝜓𝑚(•, 𝑘)) together with elements

𝛼𝑚(⟲, 𝑘)witnessing that the two composites agree in the square

pow𝑚(•, 𝑘) 𝛿𝑚(𝜓𝑚(•, 𝑘))

pow𝑚(•, s(𝑘)) 𝛿𝑚(𝜓𝑚(•, s(𝑘))).

𝛼𝑚 (•,𝑘)

pow𝑚 (𝑎𝑘) 𝛿𝑚 (𝜓𝑚 (𝑎𝑘))
𝛼𝑚 (•,s(𝑘))

In Figure 3.9 we show these 𝑚 squares with the left and right hand sides

simplified according to the definitions.

We see that we can pick 𝛼𝑚(•, 𝑘) :≡ ⟲−𝑘 , and then we can take for

𝛼𝑚(⟲, 𝑘) the trivial proofs that refl•⟲−𝑘 = ⟲−(𝑘+1)⟲, for 𝑘 < 𝑚 − 1, and

⟲𝑚⟲−(𝑚−1) = ⟲−0 ⟲, for 𝑘 = 𝑚 − 1. □

In Figure 3.10, which is an adaptation of Figure 3.8, we illustrate the

last part of the above construction in the case 𝑚 = 5.

The labels on the inner arcs show pow5(⟲, 𝑘), on the outer arcs

𝛿5𝜓5(⟲, 𝑘), and on the radiuses 𝛼𝑚(•, 𝑘). The proofs 𝛼𝑚(⟲, 𝑘) prove the

commutativity of the five squares in circular arrangement.

Corollary 3.6.10. The degree 𝑚 map 𝛿𝑚 : S1 → S1 is a connected set bundle
for each positive integer 𝑚, and all the preimages 𝛿−1

𝑚 (𝑧), 𝑧 : S1, are 𝑚-element
finite sets.

We get an explicit equivalence 𝕞 ≃ 𝛿−1
𝑚 (•) from 𝜓𝑚 and 𝛼𝑚 : send 𝑘 to

(•,⟲−𝑘), using the following exercise.

the universal symmetry: the circle 83

𝐴 𝐵

𝐶

𝑒

𝑓 𝑔

Exercise 3.6.11. Let 𝐴, 𝐵, 𝐶 be types and 𝑓 :𝐴 → 𝐶, 𝑔 : 𝐵 → 𝐶 func-

tions. Assume moreover we have an equivalence 𝑒 :𝐴 → 𝐵, an el-

ement ℎ : ∏𝑥 :𝐴 𝑓 (𝑥) =→ 𝑔(𝑒(𝑥)), and an element 𝑐 :𝐶. Show that

(𝑎, 𝑝) ↦→ (𝑒(𝑎), ℎ(𝑎)𝑝) defines an equivalence 𝑓 −1(𝑐) → 𝑔−1(𝑐). ⌟

Recall that our goal is to understand the type of connected set bundles

over the circle. Since the type of set bundles is equivalent to S1 → Set,
and Set is a groupoid (Lemma 2.22.1), Lemma 2.15.5(1) gives that the type

of set bundles over the circle is a groupoid. We will pin this groupoid

down by first analyzing the sets of identifications in it.

To do this, we generalize Lemma 3.5.2 to other kinds of cycles. However,

since we’re dealing with multiple components, it’ll be useful to have a

set labeling the components first.

Definition 3.6.12. For any cycle (𝑋, 𝑡), let 𝐻𝑡 :≡ { 𝑛 : Z | 𝑡𝑛 = id } : Sub(Z).
⌟

Thus, 𝐻𝑡 is the subset of Z determined by the predicate 𝑡𝑛 = id for

𝑛 : Z. Recall that Sub(Z) ≡ (Z→ Prop) is a set.

Lemma 3.6.13. Let (𝐴, 𝑓) be a connected set bundle over the circle with cor-
responding cycle (𝑋, 𝑡) according to Corollary 3.6.4. For any 𝑥 :𝑋 we have
𝐻𝑡 = { 𝑛 : Z | 𝑡𝑛(𝑥) = 𝑥 }, and for any 𝑎 :𝐴, we have that 𝐻𝑡 also equals the
image of the composite

(3.6.2) (𝑎 =→𝐴 𝑎)
ap 𝑓−−→ (𝑓 (𝑎) =→S1 𝑓 (𝑎)) ≃→ Z,

where the second map is the winding number function from Exercise 3.4.10.

Proof. We may suppose that the set bundle (𝐴, 𝑓) over the circle has

the form (∑𝑧 : S1 𝐸(𝑧), fst), where 𝐸 ≡ veU (𝑋, 𝑡) : S1 → U is the family

corresponding to the cycle (𝑋, 𝑡). To prove the proposition in the lemma

quantifying over 𝐴, i.e., over 𝑧 : S1
and 𝑥 :𝐸(𝑧), it suffices to consider the

case 𝑧 ≡ • and 𝑥 :𝑋, since the circle is connected.

For any point 𝑥 :𝑋, corresponding to the point 𝑎 :≡ (•, 𝑥) :𝐴, the type

(𝑎 =→𝐴 𝑎) is equivalent to ∑𝑛 : Z 𝑡
𝑛(𝑥) = 𝑥 in such a way that the composite

function (3.6.2) corresponds to the first projection. Hence the image

of (3.6.2) is precisely { 𝑛 : Z | 𝑡𝑛(𝑥) = 𝑥 }.
It remains to show that { 𝑛 : Z | 𝑡𝑛(𝑥) = 𝑥 } ⊆ 𝐻𝑡 (the other inclusion

being clear). So assume 𝑡𝑛(𝑥) = 𝑥. Then if 𝑥′ :𝑋 is any other point, to

prove the proposition 𝑡𝑛(𝑥′) = 𝑥′, we may assume we have 𝑘 : Z with

𝑥′ = 𝑡𝑘(𝑥). Then 𝑡𝑛(𝑥′) = 𝑡𝑛+𝑘(𝑥) = 𝑡𝑘(𝑥) = 𝑥′, as desired. □

Lemma 3.6.14. Let (𝑋, 𝑡) and (𝑌, 𝑢) be cycles. The following propositions are
equivalent:

(1) ∥(𝑋, 𝑡) =→ (𝑌, 𝑢)∥;

(2) 𝐻𝑡 =Sub(Z) 𝐻𝑢;

(3) For all 𝑥0 :𝑋, 𝑦0 :𝑌, the type ∑𝑒 : (𝑋,𝑡) =→(𝑌,𝑢) 𝑒(𝑥0) = 𝑦0 is contractible.

Proof. Proving (2) from (1) is easy, since (2) is a proposition.

Assume (2), i.e., for any 𝑥 :𝑋, 𝑦 :𝑌 and 𝑛 : Z, 𝑡𝑛(𝑥) = 𝑥 if and only if

𝑢𝑛(𝑦) = 𝑦. In order to prove (3), let 𝑥0 :𝑋 and 𝑦0 :𝑌. We must determine

a unique equivalence 𝑒 :𝑋 → 𝑌 such that 𝑒𝑡 = 𝑢𝑒 and 𝑒(𝑥0) = 𝑦0.

the universal symmetry: the circle 84

(𝕞, s) =→ (𝕞, s) 𝕞

(𝕞, s) =→ (𝕞, s) 𝕞

ev0

·(s,!)(s,!)· s
ev0

24
By 𝐻 ⊆ Z being closed under addi-

tion and negation, we simply mean

that if 𝑧, 𝑧′ are in 𝐻, then so are 𝑧 + 𝑧′
and −𝑧.

A necessary condition that 𝑒 has to fulfill is the following. For any

𝑥 :𝑋 and 𝑛 : Z with 𝑥 = 𝑡𝑛(𝑥0), we must have

𝑒(𝑥) = 𝑒(𝑡𝑛(𝑥0)) = 𝑢𝑛(𝑒(𝑥0)) = 𝑢𝑛(𝑦0).

This shows uniqueness of 𝑒 once its existence has been established. For

showing existence, we use that for any 𝑥 :𝑋 there exists an 𝑛 : Z with

𝑥 = 𝑡𝑛(𝑥0) and that 𝑢𝑛(𝑦0) is independent of such 𝑛. Technically, to

use the proposition ∃𝑛 : Z(𝑥 = 𝑡𝑛(𝑥0)) to construct 𝑒(𝑥) :𝑌, we prove

instead that the type 𝑃𝑥 :≡ ∑𝑦 :𝑌 ∏𝑛 : Z((𝑥 = 𝑡𝑛(𝑥0)) → (𝑦 = 𝑢𝑛(𝑦0))) is

contractible, and define 𝑒(𝑥) to be its center. Note that 𝑃𝑥 is a subtype of

𝑌 (the product part is a proposition since 𝑌 is a set).

Let 𝑥 :𝑋. Since being contractible is a proposition we may assume a

𝑚 : Z with 𝑥 = 𝑡𝑚(𝑥0). As center of 𝑃𝑥 we take 𝑦 = 𝑢𝑚(𝑦0). We need to

show, for any 𝑛 : Z, that 𝑥 = 𝑡𝑚(𝑥0) = 𝑡𝑛(𝑥0) implies 𝑢𝑚(𝑦0) = 𝑢𝑛(𝑦0). But

this follows from our starting assumption, since the former is equivalent

to 𝑡𝑚−𝑛(𝑥0) = 𝑥0 and the latter to 𝑢𝑚−𝑛(𝑦0) = 𝑦0. Note that we also get

𝑒(𝑥0) = 𝑦0 as the center of 𝑃𝑥0 . We still need to show that any two 𝑦, 𝑦′

in 𝑃𝑥 are equal. But this is clear, since 𝑥 = 𝑡𝑚(𝑥0), so 𝑦 = 𝑢𝑚(𝑦0) = 𝑦′.

It’s easy to prove the proposition that this 𝑒 is indeed an equivalence, so

this is left to the reader.

Finally, we prove that (1) follows from (3). This is almost immediate:

since (1) is a proposition we may assume 𝑥0 :𝑋 and 𝑦0 :𝑌 and use the

center of contraction. □

The following corollary of Lemma 3.6.14 (3) generalizes Lemma 3.5.2.

Corollary 3.6.15. Let (𝑋, 𝑡), (𝑌, 𝑢) : Cyc and let 𝑥0 :𝑋. If any of (1)–(3) in
Lemma 3.6.14 is true, then the function

ev0 :
(
(𝑋, 𝑡) =→ (𝑌, 𝑢)

)
→ 𝑌 defined by ev0(𝑒 , !) :≡ 𝑒(𝑥0)

is an equivalence.
As a second consequence, we get the following for the type of loops at

the standard 𝑚-cycle.

Corollary 3.6.16. For cycles (𝕞, s), evaluation at 0 :𝕞 gives an equivalence(
(𝕞, s) =→ (𝕞, s)

) ≃→ 𝕞 with ev0(refl(𝕞,s)) = 0, and composition with the
identification (s, !) : (𝕞, s) =→ (𝕞, s) corresponds to the operation s :𝕞→ 𝕞,
that is, the diagram in the margin commutes.
Remark 3.6.17. In Corollary 3.6.16, the equivalence s :𝕞 → 𝕞 is not.

uniquely determined by the stated property. Its inverse would give the

same result for any 𝕞 (even for Z). In fact there are as many as there are

positive integers less than 𝑚 that are relatively prime to 𝑚. This behavior

has number theoretic consequences and origins and will be investigated

further when we have the proper machinery to put it to good use. ⌟

And as a third consequence, we get a more concrete description of the

set of components of Cyc, and hence, by Corollary 3.6.4, of the type of

connected set bundles over the circle.

Corollary 3.6.18. Let 𝐻_ : Cyc→ Sub(Z) be the map sending (𝑋, 𝑡) to 𝐻𝑡 .
Then the image of 𝐻_ is equal to the the subset of Sub(Z) consisting of those
𝐻 ⊆ Z that contain 0 and are closed under addition and negation.24

the universal symmetry: the circle 85

Note that we’re still being cavalier

with universe levels. Really, we

should write SetBundle(S1)U , CycU ,

OrderU , etc., to indicate from which

universeU we draw the types in-

volved. We trust that the reader can

fill these in if desired.

25
This rules out certain patholog-

ical cycles, such as the subset

{ (e2𝜋𝛼i)𝑛 :ℂ | 𝑛 : Z }, with a suitable

equivalence, e.g., incrementing the

exponent. Here 𝛼 :ℝ is an unknown

real number, of which we don’t know

whether it is rational or not.

Proof. Recall im(𝐻_) ≡ ∑𝐻 : Sub(Z)∃(𝑋,𝑡) : Cyc(𝐻 = 𝐻𝑡). Let𝐻 : Sub(𝑍). We

have to prove that∃(𝑋,𝑡) : Cyc(𝐻 = 𝐻𝑡) if and only if 𝐻 ⊆ Z contains 0 and

is closed under addition and negation. Assume∃(𝑋,𝑡) : Cyc(𝐻 = 𝐻𝑡). Since

we have to prove a proposition, we may assume we have a cycle (𝑋, 𝑡)
with 𝐻 = 𝐻𝑡 . Now the required properties of 𝐻 follow immediately

from the definition of 𝐻𝑡 ≡ {𝑛 : Z | 𝑡𝑛 = id}.
Conversely, suppose 𝐻 ⊆ Z contains 0 and is closed under addition

and negation. Define the relation ∼𝐻 on Z by setting 𝑧 ∼𝐻 𝑧′ if and

only if the difference 𝑧 − 𝑧′ is in 𝐻. This is an equivalence relation: it is

reflexive since 𝐻 contains 0, transitive since 𝐻 is closed under addition,

and symmetric since 𝐻 is closed under negation. So let 𝑋 :≡ Z/∼𝐻 , and

define 𝑡([𝑧]) :≡ [s(𝑧)] for 𝑧 : Z. This is well defined, since 𝑧 ∼𝐻 𝑧′ holds if

and only if s(𝑧) ∼𝐻 s(𝑧′). It is clear that (𝑋, 𝑡) is a cycle with 𝐻𝑡 = 𝐻. □

Exercise 3.6.19. Let (𝑋, 𝑡) and (𝑌, 𝑢) be cycles, and 𝑓 :𝑋 → 𝑌 a map such

that 𝑢 𝑓 = 𝑓 𝑡. Show: (i) 𝐻𝑡 ⊆ 𝐻𝑢 ; (ii) 𝑓 is surjective; (iii) if 𝐻𝑢 ⊆ 𝐻𝑡 then

𝑓 is also injective. ⌟

The components of Cyc will pop up many times from now on, so we

make the following definitions to make it easier to talk about them.

Definition 3.6.20. The type of orders is defined to be Order :≡ ∥Cyc∥0.

We say that the infinite cycle (Z, s) has infinite order, and the standard

𝑚-cycle (𝕞, s) has finite order 𝑚, for positive 𝑚 :ℕ.

We write ord :≡ |_|0 : Cyc → Order for the map from cycles to their

orders, and we write ord(𝑡) :≡ ord(𝑋, 𝑡) for short.

We say that the order 𝑑 :≡ ord(𝑋, 𝑡) divides the order 𝑘 :≡ ord(𝑌, 𝑢),
written 𝑑|𝑘, for cycles (𝑋, 𝑡), (𝑌, 𝑢), if 𝐻𝑢 ⊆ 𝐻𝑡 . ⌟

We have a canonical injection ℕ ↩→ Order, mapping 0 to the infinite

order and each positive 𝑛 to the finite order 𝑛. The orders in the image are

called principal, and we don’t make any notational distinction between a

natural number 𝑑 and the corresponding principal order. As a subset of

Z according to Corollary 3.6.18, a principal order is simply 𝑑Z, so we see

that the divisibility relation on orders extends that on natural numbers.

From the proof of Corollary 3.6.18 we get a map Order → Cyc,

mapping the corresponding subset 𝐻 : Sub(Z), containing 0 and closed

under addition and negation, to the cycle (Z/∼𝐻 , s). This generalizes the

definition of the standard cycles from principal orders to all orders.

Definition 3.6.21. Given an order 𝑑 : Order, we call (Z/∼𝑑 , s) the standard
cycle of order 𝑑, where ∼𝑑 is the equivalence relation with 𝑧 ∼𝑑 𝑧′ if and

only if 𝑡𝑧−𝑧
′
= id for a cycle (𝑋, 𝑡) of order 𝑑, and s([𝑧]) :≡ [𝑧 + 1]. ⌟

Note that ∼𝑑 doesn’t depend on the chosen cycle.

The description in Corollary 3.6.18 is still not as concrete as we’d like.

Is it true that any order is principal, in other words, that every cycle

has either infinite order or finite order 𝑚 for some positive 𝑚 :ℕ? Most

other textbooks will tell you that the answer is yes, but the proof is

unfortunately not constructive. It makes sense first to restrict to decidable

set bundles/cycles.
25

Even so, we need one further non-constructive

assumption, namely:

Principle 3.6.22 (Limited Principle of Omniscience). For any given func-

tion𝑃 :ℕ→ 𝟚, either there is a smallest number 𝑛0 :ℕ such that𝑃(𝑛0) = 1,

or 𝑃 is a constant function with value 0. ⌟

the universal symmetry: the circle 86

26
It is also the case that the Limited

Principle of Omniscience does not

imply the Law of Excluded Middle,

because a model that satisfies the

Limited Principle of Omniscience

but not the Law of Excluded Middle

can be built using sheaves over the

real line ℝ.

Nevertheless, the Limited Princi-

ple of Omniscience is not construc-

tive, for otherwise we could simply

decide the truth of every open prob-

lem in mathematics that can (equiv-

alently) be expressed by a function

𝑃 :ℕ → 𝟚 being constant with value

0. This type of argument was first

given by Brouwer.

Here we give an example based

on the famous Goldbach conjecture,

which states that every even inte-

ger greater than 2 is the sum of two

primes. Using that the latter two

primes are necessarily smaller than

the even integer itself, it is possible

to (equivalently) express the truth of

the Goldbach conjecture by a func-

tion 𝑃 :ℕ → 𝟚 being constantly 0.

Now assume we have a proof 𝑡 of the

Limited Principle of Omniscience in

type theory, not using any axioms.

Then 𝑡(𝑃) is an element of the sum

type 𝐿 ⨿ 𝑅, where 𝑅 expresses that

the function 𝑃 is constantly 0, and

𝐿 implies the negation of 𝑅. By the

computational properties of type

theory one can compute the canoni-
cal form of 𝑡(𝑃), which is either inr𝑟
for some element 𝑟 :𝑅, or inl𝑙 for

some element 𝑙 : 𝐿. If 𝑡(𝑃) ≡ inr𝑟 the

Goldbach conjecture is true, and if

𝑡(𝑃) ≡ inl𝑙 the Goldbach conjecture

is false. Thus the Goldbach conjec-

ture would be solved, and therefore

it is unlikely that 𝑡 exists. In the ap-

pendix, B.2, we give a longer but

decisive argument against the con-

structivity of the Limited Principle of

Omniscience.

27
This is why it’s natural to associate to

0 :ℕ the infinite order.

28
As an operation on infinite cycles,

see Definition 3.5.3, 𝑐𝑟𝑐−1 : InfCyc→
InfCyc maps (𝑋, 𝑡) to (𝑋, 𝑡−1), flip-

ping the arrows.

The Limited Principle of Omniscience is weaker than the Law of

Excluded Middle Principle 2.18.2, as we prove in the following lemma.
26

Lemma 3.6.23. The Law of Excluded Middle implies the Limited Principle of
Omniscience.

Proof. Let 𝑃 :ℕ→ 𝟚. By the Law of Excluded Middle, either 𝑃 is constant

0, or there exists some 𝑛 :ℕ such that 𝑃(𝑛) = 1. But in that case we may

apply Construction 2.23.4 to conclude that there is a smallest 𝑛0 :ℕ such

that 𝑃(𝑛0) = 1. □

Exercise 3.6.24. Without using LEM or LPO, show that (𝑄(𝑃) → False) →
False holds for every function 𝑃 :ℕ→ 𝟚, where 𝑄(𝑃) is the proposition

obtained by applying the Limited Principle of Omniscience to the

function 𝑃. ⌟

As for the Law of Excluded Middle, we are free to assume the Limited

Principle of Omniscience or not, and we will be explicit about where we

will use it. The Limited Principle of Omniscience makes it possible to

prove that the canonical map ℕ → Orderdec
(the codomain being the

subtype of Order given by decidable cycles), is an equivalence. We will

elaborate this equivalence in the next paragraphs.

We already know from Corollary 3.6.18 that the map is an injection,

and a cycle (𝑋, 𝑡) has infinite order if and only if 𝐻𝑡 = {0},27
and it has

finite order 𝑚 if and only if 𝐻𝑡 = 𝑚Z, for positive 𝑚 :ℕ.

Fix now a decidable cycle (𝑋, 𝑡), and consider the corresponding subset

𝐻 :≡ 𝐻𝑡 ≡ { 𝑛 : Z | 𝑡𝑛 = id }. This is a decidable subset, since 𝑡𝑛 = id is

a proposition, and 𝑛 is in 𝐻 if and only if 𝑡𝑛(𝑥) = 𝑥 for some/all 𝑥 :𝑋
(recall that 𝑋 is non-empty).

Apply the Limited Principle of Omniscience (Principle 3.6.22) to the

function 𝑃 :ℕ → 𝟚 defined by 𝑃(𝑛) = 1 if 𝑛 + 1 is in 𝐻, and 𝑃(𝑛) = 0
otherwise. If 𝑃(𝑛) is constant 0, then 𝐻 = {0}, so (𝑋, 𝑡) has infinite order.

(As a set bundle, it is then equivalent to the universal set bundle.)

Otherwise, if 𝑛0 is the smallest natural number with 𝑚 :≡ 𝑛0 + 1 in 𝐻,

then we claim 𝐻 = 𝑚Z, from which it follows that (𝑋, 𝑡) has order 𝑚.

Clearly, 𝑚Z ⊆ 𝐻, since if 𝑡𝑚 = id, then also 𝑡𝑛𝑚 = id. And if 𝑡𝑞 = id,

then by Euclidean division of integers, cf. Lemma 2.23.8, there exist 𝑘 :ℤ
and 𝑟 :ℕ with 𝑟 < 𝑚 so that 𝑞 = 𝑘𝑚 + 𝑟. Now, the number 𝑟 is in 𝐻, since

𝑡𝑟 = 𝑡𝑞−𝑘𝑚 = id, and is less than the minimal positive value 𝑚 in 𝐻, and

so we must conclude that 𝑟 = 0. In other words, 𝑞 is a multiple 𝑘𝑚, as

desired.

We summarize these results in the following lemma.

Lemma 3.6.25. The Limited Principle of Omniscience (Principle 3.6.22) implies
that the type of connected decidable set bundles over the circle is the sum of the
component containing the universal set bundle and for each positive integer 𝑚,
the component containing the 𝑚-fold set bundle.
Remark 3.6.26. The reader may wonder how the “orientation reversing”

map 𝑟 : S1 → S1
given by 𝑟(•) :≡ • and 𝑟(⟲) B ⟲−1

fits into the picture.
28

As connected decidable set bundles, we have (S1 , 𝑟) =→ (S1 , id), since 𝑟 is

the universal symmetry: the circle 87

𝐴 𝐴′

𝐶

𝑒

𝑓 𝑒 𝑓

1

2

3

45

Figure 3.11: A permutation 𝜎 with

two cycles.

29
Thus, disjoint cycles commute, so

when we express a permutation on

a finite set as a product of disjoint

cycles, the order doesn’t matter.

an equivalence:

S1 S1

S1

𝑟

𝑟 id

This is a special case of the general case of an equivalence 𝑒 :𝐴 → 𝐴′

depicted in the diagram in the margin, implying (𝐴, 𝑓 𝑒 , !) =→ (𝐴′, 𝑓 , !).
The point is that the degree𝑚 and degree−𝑚 maps give the same bundles
(by composing with 𝑟), while as maps they are different. ⌟

3.7 Interlude: combinatorics of permutations

In this section, we take a break from analyzing set bundles in order to look

more closely at permutations themselves, in particular permutations of

finite sets. In Figure 3.11 we depict the same permutation as in Figure 3.6,

but “unfolded”.

It will be useful to have a more concise notation for permutations.

The permutation 𝜎 will be denoted (1 2 3)(4 5). The two groups of

parentheses indicate the two cycles, and the order within a group

indicates the cyclic order. Since the starting point in a cycle doesn’t

matter, we could also have written, e.g., (3 1 2)(5 4).
In general, if 𝑎1 , 𝑎2 , . . . , 𝑎𝑘 are pairwise distinct elements of a decidable

set 𝐴, then we write (𝑎1 𝑎2 · · · 𝑎𝑘) for the permutation of 𝐴 that maps

𝑎1 to 𝑎2, . . . , 𝑎𝑘 to 𝑎1, and leaves any other elements untouched. Such a

permutation is called a cyclic permutation or, somewhat confusingly, a

cycle. If we want to specify the length, we call it a 𝑘-cycle. A 2-cycle is

also called a transposition.

Remark 3.7.1. Any cycle (𝑋, 𝑡) in the sense of Definition 3.6.3 (i.e., a

cyclically ordered set) gives rise to a permutation 𝑡 of 𝑋 consisting of a

single cycle. If 𝑋 is an 𝑛-element set and 𝑥0 :𝑋, then we can write this

permutation in cycle notation as (𝑥0 𝑡(𝑥0) · · · 𝑡𝑛−1(𝑥0)).
Any permutation 𝑡 on a set 𝑋 corresponds via Theorem 3.3.8 to a

set bundle over S1
, 𝑝 :𝐴 → S1

. Writing 𝐴 as a sum of its connected

components, we express this set bundle as a sum of connected set

bundles, but these correspond to cycles by Corollary 3.6.4. Note that

cyclic permutations can move at most finitely many elements, and cannot

give, e.g., the infinite cycle (Z, s). Moreover, to define the cycle (𝑋, 𝑡)
from, e.g., the transposition (𝑥 𝑥′) requires that the set 𝑋 is decidable. ⌟

Definition 3.7.2. Let 𝐴 be a set with a permutation 𝜎. If 𝜎(𝑎) = 𝑎, we say

that 𝑎 is a fixed point of 𝜎. If 𝜎(𝑎) ≠ 𝑎, we say that 𝑎 is moved by 𝜎. The

support of 𝜎 is the subset of 𝐴 consisting of the elements that are moved

by 𝜎. ⌟

Note that if 𝐴 is decidable, then we can decide whether an element is

moved or is a fixed point.

Exercise 3.7.3. Let 𝐴 be a decidable set with two permutations 𝜎, 𝜏. Show

that if 𝜎, 𝜏 have disjoint supports, then they commute in the sense that

𝜎𝜏 = 𝜏𝜎.
29 ⌟

Exercise 3.7.4. Prove that a 𝑘-cycle permutation of a decidable set 𝐴

can be written as a composition of 𝑘 − 1 transpositions by verifying the

the universal symmetry: the circle 88

30
This representation is not unique, as

for example (1 2) = (2 3)(1 3)(2 3) as

permutations of {1, 2, 3}. However,

in Corollary 4.5.11 below, we’ll show

that the parity (odd/even) of the

number of transitions is invariant.

31
In fact, the bĳection (3.7.1) can be

constructed for any decidable set.

Escardó
32

constructed more gener-

ally, for any type 𝑋, an equivalence

Aut(𝑋 ⨿ 𝟙) ≃→ (𝑋 ⨿ 𝟙)′ × Aut(𝑋),
where

𝑌′ :≡ ∑
𝑦 :𝑌

∏
𝑧 :𝑌
((𝑦 =→ 𝑧)⨿((𝑦 =→ 𝑧) → ∅)).

By a local version of Hedberg’s Theo-

rem 2.20.15, 𝑌′ is a subtype of 𝑌.

32
Martín Escardó. UF-Factorial. Agda

formalization. 2019. url: https:
//www.cs.bham.ac.uk/~mhe/
TypeTopology/UF-Factorial.html.

33
Binomial coefficients are familiar

from Pascal’s triangle,

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1
.
.
.

where each number is the sum of the

two above, e.g.,

(4
2
)
= 6.

The forgetful map from Cyc0 to

InfCyc is an equivalence. Therefore

we consider Cyc0 and InfCyc as

definitionally equal.

34
In light of Lemma 3.5.2 we see that

the fiber of this universal set bundle

over (𝑋, 𝑡) : Cyc0 is (equivalent to) 𝑋

itself – that’s certainly a universal set

associated to the infinite cycle (𝑋, 𝑡)!

identity

(𝑎1 𝑎2 · · · 𝑎𝑘) = (𝑎1 𝑎𝑘)(𝑎1 𝑎𝑘−1) · · · (𝑎1 𝑎2). ⌟

Corollary 3.7.5. Any permutation of a finite set can be expressed as a compo-
sition of transpositions.

To show this, first write the permutation as a composition of cyclic

permutations, then apply Exercise 3.7.4 to each cycle.
30

Exercise 3.7.6. Show that there are 𝑛! permutations of a finite set of

cardinality 𝑛, where 𝑛! :≡ fact(𝑛) is the usual notation for the factorial

function.

Hint: One way (not the only one) is to construct bĳections Aut(𝟘) ≃→ 𝟙

and

(3.7.1) Aut(𝐴⨿ 𝟙) ≃→ (𝐴⨿ 𝟙) ×Aut(𝐴)

for all finite sets 𝐴.
31 ⌟

Exercise 3.7.7. Let 𝐴 be a finite set of cardinality 𝑛 and assume 0 ≤ 𝑘 ≤ 𝑛.

Show that the number of 𝑘-element subsets of 𝐴 is given by the binomial

coefficient
33 (

𝑛

𝑘

)
:≡ 𝑛!
𝑘!(𝑛 − 𝑘)! .

Find a formula for the number of 𝑘-cycle permutations of 𝐴 using

factorials and/or binomial coefficients. ⌟

3.8 The 𝑚th root: set bundles over the components of Cyc

Let’s first give names to some important components of Cyc that we have

met in previous sections, e.g., in Lemma 3.6.25.

Definition 3.8.1. Define Cyc0 :≡ Cyc(Z,s). For each positive 𝑚 :ℕ, define

Cyc𝑚 :≡ Cyc(𝕞,s). We call Cyc0 and Cyc𝑚 the type of infinite cycles and

type of 𝑚-cycles, respectively. ⌟

Recall the equivalence 𝑐 : S1 ≃→ Cyc0 of Definition 3.5.3 between the

circle and the type of infinite cycles. In this section, we reinterpret the

degree 𝑚 function 𝛿𝑚 as a map of infinite cycles. In fact 𝛿𝑚 makes sense

as a map on all cycles, and we’ll use it to begin the classification of the

connected set bundles over Cyc𝑛 , for positive integers 𝑛. That’s why it’s

instructive to rephrase connected set bundles over S1
in terms of cycles,

even though they could just be transported along the identification

𝑐 : S1 =→ Cyc0 corresponding to 𝑐.

Before we do the degree𝑚maps, let’s note that the universal set bundle

over Cyc0 is represented by the constant function cstpt0
:𝟙 → Cyc0,

sending the unique element of 𝟙 to pt0 :≡ (Z, s) : Cyc0, the standard

infinite cycle.
34

For the rest of this section, we fix some positive 𝑚 :ℕ. We now give a

description of the 𝑚-fold set bundle over the circle in terms of cycles.

We proceed as follows. First we present the answer, a set bundle

we call 𝜌𝑚 : Cyc0 → Cyc0, and then we prove that 𝛿𝑚 : S1 → S1
and

𝜌𝑚 : Cyc0 → Cyc0 correspond to each other (and to pow𝑚 : Tot(𝑅𝑚) →
S1

) under the equivalence 𝑐 : S1 ≃→ Cyc0.

What should we require of 𝜌𝑚(𝑋, 𝑡) for (𝑋, 𝑡) : Cyc0? Well, 𝛿𝑚 : S1 → S1

sends • to • and ⟲ to ⟲𝑚
; only the ⟲𝑘

where 𝑘 is a multiple of 𝑘 is in

https://www.cs.bham.ac.uk/~mhe/TypeTopology/UF-Factorial.html
https://www.cs.bham.ac.uk/~mhe/TypeTopology/UF-Factorial.html
https://www.cs.bham.ac.uk/~mhe/TypeTopology/UF-Factorial.html

the universal symmetry: the circle 89

𝑚√
𝑡 : (𝕞 × 𝑋) → (𝕞 × 𝑋)

.

.

.

.

.

.

𝑋

𝕞

Figure 3.12: The 𝑚th
root

𝑚√
𝑡 of a

function 𝑡 :𝑋 → 𝑋, here illustrated

in the case 𝑚 = 5.

Of course, it’s also quite easy to write

down an inverse of

𝑚√
𝑡 given an

inverse of 𝑡.

In terms of iterated addition, we

have 𝜑(𝑘, 𝑟) = (𝑧 ↦→ 𝑧 + 𝑚)𝑟 (𝑘).

the image of 𝛿𝑚 . So we have to find an infinite cycle (𝑌, 𝑢) with “𝑢𝑚

corresponding to 𝑡”. We achieve this by “stretching” 𝑋: Let 𝑌 be 𝑚

copies of 𝑋 and let 𝑢 jump idly from one copy to another except every

𝑚th
time when 𝑢 also is allowed to use 𝑡. This is illustrated in Figure 3.12

with the shift by 𝑡 being vertical and the movement from copy to copy

going around a circle.

Construction 3.8.2. For any type 𝑋 and 𝑡 :𝑋 → 𝑋, we define the 𝑚th
root

𝑚√
𝑡 : (𝕞 × 𝑋) → (𝕞 × 𝑋).

Implementation of Construction 3.8.2. We set

𝑚√
𝑡(𝑘, 𝑥) :≡

(𝑘 + 1, 𝑥) for 𝑘 < 𝑚 − 1 and

(0, 𝑡(𝑥)) for 𝑘 = 𝑚 − 1. □

Only one 𝑚th
of the time does

𝑚√
𝑡 use 𝑡 :𝑋 → 𝑋, the rest of the time it

applies the successor in 𝕞. Indeed, iterating

𝑚√
𝑡 we get an identification

of type (𝑚
√
𝑡)𝑚(𝑘, 𝑥) =→ (𝑘, 𝑡(𝑥)); hence the term “𝑚th

root” is apt.

Definition 3.8.3. The formal 𝑚th root function is defined by:

𝜌𝑚 : ∑
𝑋 :U
(𝑋 → 𝑋) → ∑

𝑋 :U
(𝑋 → 𝑋), 𝜌𝑚(𝑋, 𝑡) :≡ (𝕞 × 𝑋, 𝑚√

𝑡). ⌟

We use 𝜌 for “root” to denote this incarnation of the degree 𝑚 function.

Lemma 3.8.4. If 𝑡 :𝑋 → 𝑋 is an equivalence, then so is 𝑚√
𝑡 : (𝕞×𝑋) → (𝕞×𝑋).

Proof. Let 𝑡 :𝑋 → 𝑋 be an equivalence. We prove that the fibers of

𝑚√
𝑡

are contractible.

For the fiber at (0, 𝑥)we note, using Lemma 2.10.3, that identifications

in (0, 𝑥) =→ (𝑚
√
𝑡)(ℓ , 𝑦) consist of pairs of proofs of ℓ = 𝑚 − 1 and identi-

fications in 𝑥 =→ 𝑡(𝑦). Both ∑ℓ :𝕞 ℓ = 𝑚 − 1 and 𝑡−1(𝑥) are contractible,

and so (𝑚
√
𝑡)−1(0, 𝑥) is contractible.

For the fiber at (𝑘, 𝑥) with 𝑘 :𝕞 not 0, identifications in (𝑘, 𝑥) =→
(𝑚
√
𝑡)(ℓ , 𝑦) consist of pairs of proofs of ℓ + 1 = 𝑘 and identifications in

𝑥 =→ 𝑦, so (𝑚
√
𝑡)−1(𝑘, 𝑥) is contractible since both ∑ℓ :𝕞 ℓ + 1 = 𝑘 and

∑𝑦 :𝑋 𝑥
=→ 𝑦 are. □

Lemma 3.8.5. Let 𝑋 :U and 𝑡 :𝑋 → 𝑋. If (𝑋, 𝑡) is a cycle, then so is 𝜌𝑚(𝑋, 𝑡).

Proof. Clearly, 𝕞×𝑋 is a nonempty set if 𝑋 is. We already know

𝑚√
𝑡 is an

equivalence if 𝑡 is. For connectedness, let (𝑘, 𝑥), (𝑘′, 𝑥′) : (𝕞×𝑋). We need

to show the proposition that there exists 𝑛 : Z with (𝑘′, 𝑥′) =
(𝑚√

𝑡
)𝑛(𝑘, 𝑥).

Let 𝑛 : Z be such that 𝑥′ = 𝑡𝑛(𝑥). Then (𝑚
√
𝑡)𝑛𝑚(𝑘, 𝑥) = (𝑘, 𝑡𝑛(𝑥)) = (𝑘, 𝑥′),

so if 𝑘 = 𝑘′ we’re done. Assume 𝑘 < 𝑘′. Then (𝑚
√
𝑡)𝑘′−𝑘(𝑘, 𝑥′) = (𝑘′, 𝑥′),

so (𝑚
√
𝑡)𝑛𝑚+𝑘′−𝑘(𝑘, 𝑥) = (𝑘′, 𝑥′), as desired. The case 𝑘 > 𝑘′ is similar. □

The question now arises: how does 𝜌𝑚 act on the components of Cyc,

and what can we say about the preimages 𝜌−1
𝑚 (𝑋, 𝑡) for an arbitrary cycle

(𝑋, 𝑡)?
The first part is easy, since the product of 𝕞 with an 𝑛-element set is

an 𝑚𝑛-element set.

Lemma 3.8.6. The degree 𝑚 function restricts to give pointed maps

𝜌𝑚 : Cyc𝑛 →∗ Cyc𝑚𝑛 and 𝜌𝑚 : Cyc0 →∗ Cyc0.

the universal symmetry: the circle 90

35
Note that we formulate this in such

a way that we don’t need to talk

about the inverse of 𝜑. Of course,

the inverse of 𝜑 maps 𝑧 : Z to the

remainder and the integer quotient

of 𝑧 under Euclidean division by 𝑚,

cf. Lemma 2.23.8.

Proof. Recall Definition 3.8.1. The components Cyc𝑘 are pointed by

pt0 :≡ (Z, s) if 𝑘 = 0, and pt𝑘 :≡ (𝕜, s) else. Note that the function

𝜑 : (𝕞×Z) → Z given by 𝜑(𝑘, 𝑟) :≡ 𝑘+𝑚𝑟 is an equivalence, with inverse

given by Euclidean division by 𝑚. Moreover, we have 𝜑 𝑚√s = s 𝜑, since

𝜑
(
𝑚√s(𝑘, 𝑟)

)
= 𝑘 + 1 + 𝑚𝑟 = s(𝜑(𝑘, 𝑟)) for all (𝑘, 𝑟) :𝕞 × Z.

This shows that 𝜑 gives an identification of infinite cycles (𝕞×Z, 𝑚√s) =→
(Z, s), and hence the 𝑚th

root construction maps the component Cyc0 to

itself.

Analogously, we can restrict 𝜑 to an equivalence 𝕞 × 𝕟 ≃→ ∑𝑘 :ℕ(𝑘 <

𝑚𝑛), and get an identification of cycles 𝜌𝑚(pt𝑛)
=→ pt𝑚𝑛 , showing that

𝜌𝑚 maps the component Cyc𝑛 to the component Cyc𝑚𝑛 . □

We now analyze how 𝜌𝑚 acts on paths. Let (𝑒 , !) : (𝑋, 𝑡) =→ (𝑋′, 𝑡′).
Since 𝜌𝑚 maps first components 𝑋 to 𝕞 × 𝑋, we get that the first

projection of ap𝜌𝑚
(𝑒 , !) is id × 𝑒 : (𝕞×𝑋) =→ (𝕞×𝑋′). We are particularly

interested in the case of the loops, that is, (𝑒 , !) : (𝑋, 𝑡) =→ (𝑋, 𝑡). We

calculate (id × 𝑒)(𝑘, 𝑥) = (𝑘, 𝑒(𝑥)), which by the property of the 𝑚th
root

is equal to (𝑚√𝑒)𝑚(𝑘, 𝑥). In particular, if we take 𝑒 :≡ 𝑡−1
, then we get

(id × 𝑡−1) = (𝑚
√
𝑡−1)𝑚 , which means that ap𝜌𝑚

(𝑡−1 , !) is indeed the 𝑚th

power of a generating loop at the image cycle 𝜌𝑚(𝑋, 𝑡). In particular,

this holds for the standard infinite cycle (Z, s) : Cyc0 and the standard

𝑛-cycle (𝕟, s) : Cyc𝑛 .

Why does 𝜌𝑚 : Cyc0 → Cyc0 correspond to the 𝑚-fold set bundle we

defined in Definition 3.6.5? Recall the equivalence 𝑐 : S1 → 𝐶 from

Definition 3.5.3. For the two 𝑚-fold set bundles to correspond under

this equivalence we need an element in the identity type represented by

S1 Cyc0

S1 Cyc0.

𝑐

𝛿𝑚 𝜌𝑚

𝑐

That is, we need an element in𝜌𝑚𝑐
=→S1→Cyc0

𝑐 𝛿𝑚 . Under the equivalence

evCyc0
: (S1 → Cyc0)

≃→ ∑
(𝑋,𝑡) : Cyc0

(
(𝑋, 𝑡) = (𝑋, 𝑡)

)
of Theorem 3.1.2, the composite 𝑐 𝛿𝑚 is given by

(
(Z, s), s−𝑚

)
and the

composite 𝜌𝑚𝑐 is given by

(
(𝕞 × Z, 𝑚√s), id × s−1

)
: we must produce an

element in (
(𝕞 × Z, 𝑚√s), id × s−1

)
=→
(
(Z, s), s−𝑚

)
.

Consider the equivalence 𝜑 : (𝕞 × Z) ≃→ Z with 𝜑(𝑘, 𝑛) :≡ 𝑘 + 𝑚𝑛 also

used in Lemma 3.8.6. discussed above. Transport of
𝑚√s along 𝜑 is

exactly s, i.e., 𝜑 𝑚√s = s 𝜑.
35

Likewise, transport of id× s−1
along 𝜑 is s−𝑚 ,

so that 𝜑 lifts to an element in

(
(𝕞 × Z, 𝑚√s), id × s−1

) =→
(
(Z, s), s−𝑚

)
.

Exercise 3.8.7. Extend the above construction to an identification of type

𝜌𝑚𝑐
=→S1→∗Cyc0

𝑐 𝛿𝑚 in case all these maps are taken to be pointed. ⌟

So we know that the fiber of 𝜌𝑚 at an infinite cycle (𝑋, 𝑡) is an 𝑚-

element set. In fact, we will identify this set as 𝑋/𝑚 :≡ 𝑋/∼𝑚 where ∼𝑚
is the equivalence relation that identifies points that are a distance 𝑚𝑟

the universal symmetry: the circle 91

36
The map defined by 𝑒(𝑘, 𝑥) :≡ 𝑡𝑘 (𝑥) is
an equivalence from 𝕞 × 𝑌 to 𝑋 such

that 𝑡𝑒 = 𝑒
𝑚√
𝑡𝑚).

Here we take 𝑉 not as a set, but as an

element of the set 𝑋 → Prop. See the

discussion after Lemma 2.20.4 for the

distinction.

apart, for some 𝑟 : Z. Formally, let 𝑥 ∼𝑚 𝑥′ if and only if∃𝑟 : Z(𝑥′ = 𝑡𝑚𝑟(𝑥)).
(Such an 𝑟 is unique if it exists.) Indeed, the fiber is

∑
(𝑌,𝑢) : Cyc0

(
(𝑋, 𝑡) =→ (𝕞 × 𝑌, 𝑚√

𝑢)
)
.

We sketch an equivalence from 𝑋/𝑚 to 𝜌−1
𝑚 (𝑋, 𝑡). See Construction 3.8.11

below for a careful proof of a more general statement for arbitrary cycles,

not only infinite ones. Let𝑌 be an equivalence class of𝑋/𝑚, taken as a set.

One should think of 𝑌 as a set {. . . , 𝑡−2𝑚(𝑥), 𝑡−𝑚(𝑥), 𝑥, 𝑡𝑚(𝑥), 𝑡2𝑚(𝑥), . . .}
for some 𝑥 :𝑋. Then (𝑌, 𝑡𝑚) is an infinite cycle and we can construct a nat-

ural
36

identification 𝑖 : (𝑋, 𝑡) =→ (𝕞×𝑌, 𝑚√
𝑡𝑚), so that (𝑌, 𝑡𝑚 , 𝑖) : 𝜌−1

𝑚 (𝑋, 𝑡).
The map 𝑌 ↦→ (𝑌, 𝑡𝑚 , 𝑖) is the intended equivalence.

The reader will no doubt have noticed that 𝑋/𝑚 is a finite cycle. We’ll

return to the significance of this below in Section 3.9.

Our next step is to identify the fiber of 𝜌𝑚 over a general cycle (𝑋, 𝑡).
Classically, the remaining cases are those of finite 𝑛-cycles, but it’s

illuminating to be a bit more general. Note that the equivalence relation

∼𝑚 defined above for an infinite cycle makes sense for all cycles.

Lemma 3.8.8. For any order 𝑑 : Order, the type ∑(𝑋,𝑡) : Cyc𝑑
𝑋 is contractible,

where Cyc𝑑 denotes the component of Cyc consisting of cycles of order 𝑑.

Proof. First we note that the goal is a proposition. Clearly, for any cycle

(𝑌, 𝑢), the singleton type ∑(𝑋,𝑡) : Cyc(𝑌,𝑢)
((𝑋, 𝑡) =→ (𝑌, 𝑢)) is contractible.

Using Lemma 3.6.14 and Corollary 3.6.15, it follows that ∑(𝑋,𝑡) : Cyc(𝑌,𝑢)
𝑋

is contractible. Now the lemma follows by set truncation elimination. □

Lemma 3.8.9. For any cycle (𝑋, 𝑡), if (𝑚
√
𝑡)𝑛 = id𝕞×𝑋 , then 𝑚 divides 𝑛, i.e.,

𝑛 = 𝑚𝑞 for some 𝑞 : Z, and 𝑡𝑞 = id𝑋 . In other words, 𝑚 divides the order of
𝑚√
𝑡.
This follows simply by looking at the first component, where

𝑚√
𝑡 acts

as the successor operation on 𝕞. See Definition 3.6.20 for the order.

We’re almost ready to identify the fiber of 𝜌𝑚 at a cycle (𝑋, 𝑡). Let’s

explore first the problem of finding an identification of (𝑋, 𝑡) with

𝜌𝑚(𝑌, 𝑢) ≡ (𝕞 × 𝑌, 𝑚
√
𝑢) for a given cycle (𝑌, 𝑢). By Lemma 3.6.14,

a necessary condition for such an identification is 𝐻𝑡 =Sub(Z) 𝐻𝑚√
𝑢 .

Recall from Definition 3.6.12 that 𝐻𝑡 ≡ { 𝑛 : Z | 𝑡𝑛 = id𝑋 } and 𝐻𝑚√
𝑢 ≡

{ 𝑛 : Z | (𝑚√𝑢)𝑛 = id𝕞×𝑌 }. We know from Lemma 3.8.9 that 𝑚 divides the

order of
𝑚√
𝑢, so the fiber 𝜌−1

𝑚 (𝑋, 𝑡) is nonempty only if 𝑚 divides the

order of 𝑡.

A key ingredient for the converse is the following.

Lemma 3.8.10. Let (𝑋, 𝑡) : Cyc be a cycle with order divisible by 𝑚 and let
𝑥0 be an element of 𝑋. Then the map 𝑓 :𝕞 → 𝑋/𝑚, 𝑓 (𝑘) :≡ [𝑡𝑘(𝑥0)] is an
equivalence.

Proof. Fix an equivalence class 𝑉 :𝑋/𝑚 and consider its preimage under

𝑓 , 𝑓 −1(𝑉) ≡ ∑𝑘 :𝕞(𝑉 = [𝑡𝑘(𝑥0)]). The contractibility of this type is

a proposition, so we may choose 𝑥 :𝑋 with 𝑉 = [𝑥]. Then (𝑉 =

[𝑡𝑘(𝑥0)]) ≃ ([𝑥] = [𝑡𝑘(𝑥0)]) ≃ (𝑥 ∼𝑚 𝑡𝑘(𝑥0)). So we need to show that

∑𝑘 :𝕞(𝑥 ∼𝑚 𝑡𝑘(𝑥0)) is contractible. More simply, we need to show that

there is a unique 𝑘with 𝑥 ∼𝑚 𝑡𝑘(𝑥0). Since (𝑋, 𝑡) is a cycle, we may further

choose 𝑛 : Z with 𝑥 = 𝑡𝑛(𝑥0). By Euclidean division, write 𝑛 = 𝑞𝑚 + 𝑟

the universal symmetry: the circle 92

37
When 𝑋 is a decidable set then LPO

allows for a simpler formulation:

Then 𝑃 is either false, in which case

𝜌−1
𝑚 (𝑋, 𝑡) is empty, or true, in which

case the preimage is 𝑋/𝑚.

38
Note that this doesn’t depend on 𝑦,

so that Theorem 2.22.8 applies: (0, 𝑦)
and (0, 𝑦′) are a distance 𝑚𝑟 apart,

and 𝑒−1
preserves this distance.

39
Indeed 𝑡𝑚 is properly restricted to 𝑉 :

If 𝑥 lies in 𝑉 , then so does 𝑡𝑚(𝑥).

with 𝑞 : Z, 𝑟 :𝕞. Then 𝑥 = 𝑡𝑛(𝑥0) ∼𝑚 𝑡𝑟(𝑥0), so we have our center. Let

𝑘 :𝕞 also satisfy 𝑥 ∼𝑚 𝑡𝑘(𝑥0). We need to show the proposition 𝑘 = 𝑟.

But 𝑡𝑟−𝑘(𝑥0) ∼𝑚 𝑥0, so we may take 𝑞′ : Z with 𝑡𝑞
′𝑚+𝑟−𝑘(𝑥0) = 𝑥0. Since 𝑚

divides the order of 𝑡, this implies 𝑟 = 𝑘, as desired. □

Now we have all the pieces needed to prove the main result.

Construction 3.8.11. For any cycle (𝑋, 𝑡), we have an equivalence between
𝜌−1
𝑚 (𝑋, 𝑡) and 𝑃 × 𝑋/𝑚, where 𝑃 expresses that 𝑚 divides the order of 𝑡,

formally 𝑃 :≡ (𝐻𝑡 ⊆ 𝑚Z) (see Definition 3.6.20).37

Implementation of Construction 3.8.11. We’ll use Construction 2.9.9, and

we first define the function

𝑔 : 𝜌−1
𝑚 (𝑋, 𝑡) → 𝑃 × 𝑋/𝑚,

by mapping (𝑌, 𝑢) and an identification of cycles 𝑒 : (𝑋, 𝑡) =→ (𝕞×𝑌, 𝑚√
𝑢)

to the proof of 𝑃 from Lemma 3.8.9 and the class 𝑉𝑒 :≡ [𝑒−1(0, 𝑦)] :𝑋/𝑚,

for any 𝑦 :𝑌.
38

As a subset of 𝑋, 𝑉𝑒 = { 𝑥 :𝑋 | fst(𝑒(𝑥)) = 0 }.
In the other direction, to define the function

ℎ :𝑃 × 𝑋/𝑚 → 𝜌−1
𝑚 (𝑋, 𝑡),

fix an equivalence class 𝑉 of 𝑋/𝑚, and assume that 𝑚 divides the order

of 𝑡. As in the discussion after Exercise 3.8.7, we take 𝑉 as the set of

elements in 𝑋 that lie in the class 𝑉 . Then (𝑉, 𝑡𝑚) is a cycle.
39

We also

need an identification (𝑋, 𝑡) =→ 𝜌𝑚(𝑉, 𝑡𝑚) ≡ (𝕞 × 𝑉, 𝑚√
𝑡𝑚). This we

define via a map 𝑒′ :𝕞 ×𝑉 → 𝑋, 𝑒′(𝑘, 𝑣) :≡ 𝑡𝑘(𝑣), which preserves cycle

structure: 𝑡𝑒′ = 𝑒′
𝑚√
𝑡𝑚 . The map 𝑒′ is an equivalence if 𝐻𝑡 ⊆ 𝐻𝑚√

𝑡𝑚 , by

Exercise 3.6.19. So let 𝑛 : Z, and assume that 𝑡𝑛 = id𝑋 . Then 𝑃 implies

that we may write 𝑛 = 𝑞𝑚 for some 𝑞 : Z, so

(𝑚
√
𝑡𝑚)𝑛 = (𝑚

√
𝑡𝑚)𝑞𝑚 = (id𝕞 × 𝑡𝑚)𝑞 = (id𝕞 × 𝑡𝑚𝑞) = (id𝕞 × id𝑉) = id𝕞×𝑉 .

Straight from these definitions, we see that 𝑔 ◦ ℎ = id. We leave to the

reader to check that ℎ ◦ 𝑔 = id. □

3.9 Higher images

In this section we take a quick break from characterizing the connected

set bundles of Cyc𝑛 for finite orders 𝑛 in order to make good on our

earlier promise to say something about the fact that each fiber of 𝜌𝑚
carries a cycle structure. This involves the notion of 0-image of a map,

but we might as well introduce the general notion of 𝑛-image while

we’re at it.

Recall from Definition 2.17.11 the propositional image ∑𝑦 : 𝐵∥ 𝑓 −1(𝑦)∥
of a map 𝑓 :𝐴→ 𝐵. The propositional image can be generalized using

𝑛-truncation instead of propositional truncation.

Recall furthermore the image factorization from Exercise 2.17.12:

𝐴 𝐵

im(𝑓)

𝑓

𝑝 𝑖

the universal symmetry: the circle 93

Recall that 𝑖_ and _𝑝 are compact

denotations of the maps ℎ ↦→ 𝑖ℎ and

ℎ ↦→ ℎ𝑝, respectively.

If 𝐴 and 𝐵 are sets, then the fibers

of 𝑓 :𝐴 → 𝐵 are sets as well. Hence

im0(𝑓) amounts to the set of pairs

(𝑏, 𝑎) such that 𝑏 = 𝑓 (𝑎), that is,

the inverse of the relation that is

commonly known as the graph of 𝑓 .

It is instructive to explore the special

case of 𝑛 = −2. Every map 𝑓 :𝐴→ 𝐵

is trivially (−2)-connected. Moreover,

fst : im−2(𝑓) → 𝐵 is an equiva-

lence and (−2)-truncated maps are

precisely equivalences. Thus the fac-

torization of 𝑓 :𝐴 → 𝐵 through its

(−2)-image can go through 𝐵 and be

identified with 𝑓 =→ id𝐵 𝑓 .

Here 𝑝 is surjective and 𝑖 is injective, and any such factorization is

equivalent to this one. Both surjectivity (Definition 2.17.1) and injectivity

(Definition 2.17.2) rely on the notion of a proposition: all fibers of 𝑝 are

nonempty and all fibers of 𝑖 are propositions.

The uniqueness of the factorization 𝑓 =→ 𝑖𝑝 can be visualized in terms

of the two diagonals of the diamond below: for any surjection 𝑔 :𝐴→ 𝑋

and injection ℎ :𝑋 → 𝐵 with 𝑓 =→ ℎ𝑔, one can construct a (unique)

equivalence 𝑒 with 𝑔 =→ 𝑒𝑝 and 𝑖 =→ ℎ𝑒.

(3.9.1)

𝑋 𝑋

𝐴 𝐵 𝐴 𝐵

im(𝑓) im(𝑓)

ℎ ℎ

𝑓

𝑝

𝑔

𝑝

𝑔

𝑖 𝑖

𝑒

The existence of a unique equivalence 𝑒 as above is called the universal
property of the propositional image. Uniqueness of 𝑒 above also follows

from the following two exercises.

Exercise 3.9.1. Let 𝐴, 𝐵, 𝑋 be types and 𝑖 :𝐴 → 𝐵 an injection. Let

𝑖_ : (𝑋 → 𝐴) → (𝑋 → 𝐵) be postcomposition with 𝑖. Show that

ap𝑖_ : (𝑓 =→ 𝑔) → (𝑖 𝑓 =→ 𝑖 𝑔) is an equivalence, for any 𝑓 , 𝑔 :𝑋 → 𝐴. ⌟

Exercise 3.9.2. Let 𝐴, 𝐵, 𝑌 be types and 𝑝 :𝐴 → 𝐵 be a surjection.

Let _𝑝 : (𝐵 → 𝑌) → (𝐴 → 𝑌) be precomposition with 𝑝. Show that

ap
_𝑝 : (𝑓 =→ 𝑔) → (𝑓 𝑝 =→ 𝑔𝑝) is an equivalence, for any 𝑓 , 𝑔 : 𝐵→ 𝑌. ⌟

We will now define higher images and generalize the notions of

injection and surjection such that a similar universal property of higher

images can be proved.

Definition 3.9.3. Let 𝐴, 𝐵 be types and let 𝑓 :𝐴 → 𝐵. We define the

𝑛-image of 𝑓 as

im𝑛(𝑓) :≡ ∑
𝑏 : 𝐵
∥ 𝑓 −1(𝑏)∥𝑛 . ⌟

Observe that im−1(𝑓) ≡ im(𝑓).
Definition 3.9.4. A type 𝐴 is called 𝑛-connected if its truncation ∥𝐴∥𝑛 is

contractible. A function 𝑓 :𝐴→ 𝐵 is called 𝑛-connected if the fiber 𝑓 −1(𝑏)
is 𝑛-connected, for each 𝑏 : 𝐵. ⌟

Thus, any type is (−2)-connected, since its (−2)-truncation is con-

tractible. Moreover, the (−1)-connected types are precisely the nonempty

ones, and the 0-connected types are those we have called connected in

Definition 2.16.8.

Definition 3.9.5. A function 𝑓 :𝐴 → 𝐵 is called 𝑛-truncated if the fiber

𝑓 −1(𝑏) is an 𝑛-type, for each 𝑏 : 𝐵. ⌟

One may verify now that the (−1)-connected functions are the surjec-

tions, and the (−1)-truncated functions are the injections.

There is a factorization 𝑓 =→ 𝑖𝑝 of a map 𝑓 :𝐴→ 𝐵 through its 𝑛-image,

where 𝑝 is defined by setting 𝑝(𝑎) :≡ (𝑓 (𝑎), |(𝑎, refl 𝑓 (𝑎))|𝑛), and where 𝑖 is

defined by setting 𝑖 :≡ fst, as in the following diagram.

the universal symmetry: the circle 94

As a figure of speech we may speak

of "a factorization 𝑓 =→ ℎ ◦ 𝑔." Here

𝑍 is implicit in the types of 𝑔 and

ℎ. The particular identification of 𝑓

with ℎ ◦ 𝑔 follows from the context.

(3.9.2)

𝐴 𝐵

im𝑛(𝑓)

𝑓

𝑝 𝑖

The map 𝑖 is 𝑛-truncated, because, for any 𝑏 : 𝐵, the fiber 𝑖−1(𝑏)
is equivalent to ∥ 𝑓 −1(𝑏)∥𝑛 . Furthermore, by Lemma 2.25.2 and the

following lemma, 𝑝 is 𝑛-connected.

Lemma 3.9.6. For every type 𝐴, the constructor |_|𝑛 :𝐴 → ∥𝐴∥𝑛 is 𝑛-
connected.

Proof. We have to prove that the 𝑛-truncation of each fiber of |_|𝑛
is contractible. We start by defining a function 𝑐 : ∏𝑥 : ∥𝐴∥𝑛∥|𝑥|−1

𝑛 ∥𝑛
producing the centers. Since 𝑐 takes values in 𝑛-types, we can define 𝑐

by 𝑛-truncation elimination by setting 𝑐(|𝑎|𝑛) :≡ |(𝑎, refl|𝑎|𝑛)|𝑛 .

The next step is to construct an element of ∏𝑥 : ∥𝐴∥𝑛 ∏𝑦 : ∥|𝑥|−1
𝑛 ∥𝑛 (𝑐(𝑥)

=→
𝑦). Since the identity 𝑐(𝑥) =→ 𝑦 is an (𝑛 − 1)-type, it suffices to give an

element of ∏𝑥 : ∥𝐴∥𝑛 ∏𝑧 : |𝑥|−1
𝑛
(𝑐(𝑥) =→ |𝑧|𝑛). Since fibers are sum types, it

suffices to give an element of ∏𝑥 : ∥𝐴∥𝑛 ∏𝑎 :𝐴 ∏𝑝 : 𝑥 =→|𝑎|𝑛 (𝑐(𝑥)
=→ |(𝑎, 𝑝)|𝑛).

After swapping the first two products, the identity reduces by path

induction to 𝑐(|𝑎|𝑛) =→ |(𝑎, refl|𝑎|𝑛)|𝑛 , for which we can use the reflexivity

path. □

Construction 3.9.7. Let 𝑔 :𝐴 → 𝑋 and ℎ :𝑋 → 𝐵, and let 𝑔̃ :𝐴 →
∑𝑏 : 𝐵 ℎ

−1(𝑏) be the composition of 𝑔 with the canonical equivalence 𝑋 →
∑𝑏 : 𝐵 ℎ

−1(𝑏) from Lemma 2.25.2. Thus 𝑔̃(𝑎) ≡ (ℎ(𝑔(𝑎)), 𝑔(𝑎), reflℎ(𝑔(𝑎))) for
each 𝑎 :𝐴, and the situation is visualized in the following diagram:

𝐴 𝑋 𝐵

∑𝑏 : 𝐵 ℎ
−1(𝑏)

𝑔

𝑔̃

ℎ

fst

Then we have equivalences 𝑒(𝑏) : (ℎ𝑔)−1(𝑏) ≃→ ∑𝑦 : ℎ−1(𝑏) 𝑔̃
−1(𝑏, 𝑦) for all 𝑏 : 𝐵.

Implementation of Construction 3.9.7. Let, for each 𝑏 : 𝐵, 𝑒(𝑏)map any pair

(𝑎, 𝑝) : (ℎ𝑔)−1(𝑏) to ((𝑔(𝑎), 𝑝), (𝑎, 𝑞)). Here 𝑞 is of type (𝑏, 𝑔(𝑎), 𝑝) =→
(ℎ(𝑔(𝑎)), 𝑔(𝑎), reflℎ(𝑔(𝑎))) and is given componentwise by 𝑝 : 𝑏 =→ ℎ(𝑔(𝑎)),
refl𝑔(𝑎), and by the easy path over 𝑝 from 𝑝 to reflℎ(𝑔(𝑎)) in the identity

type family _
=→ ℎ(𝑔(𝑎)). This construction uses Definition 2.10.1,

Definition 2.7.3, and Exercise 2.14.4(3). □

Exercise 3.9.8. Complete the details of Construction 3.9.7. In particular,

prove that 𝑒 is a fiberwise equivalence. Alternatively, construct your

own 𝑒 by using Corollary 2.9.11 (twice!). ⌟

Exercise 3.9.9. Let𝑋 be a type and let𝑌(𝑥) be a type for all 𝑥 :𝑋. Construct

an equivalence between ∥∑𝑥 :𝑋 𝑌(𝑥)∥𝑛 and ∥∑𝑥 :𝑋∥𝑌(𝑥)∥𝑛∥𝑛 . ⌟

We shall show in Theorem 3.9.11 that the 𝑛-image factorization of

𝑓 :𝐴→ 𝐵 in Equation (3.9.2) is unique. This result is called the universal
property of the 𝑛-image. We start by defining a convenient abbreviation.

Definition 3.9.10. Let 𝑋 and 𝑌 be types. For any 𝑓 :𝑋 → 𝑌 we define

the type Fact(𝑓) of factorizations of 𝑓 as follows:

the universal symmetry: the circle 95

im𝑛(𝑓)

𝐴 𝐵

𝑋

𝑖

𝑒

𝑔

𝑝

ℎ

Figure 3.13: Visualization of task to

construct 𝑒.

∑
𝑏 : 𝐵
∥𝑅(𝑏)∥𝑛

∑
𝑏 : 𝐵

𝑅(𝑏) 𝐵

∑
𝑏 : 𝐵

𝑃(𝑏)

𝑒

fst

(𝑏,𝑦,𝑞)↦→(𝑏,𝑦)

(𝑏,𝑦,𝑞)↦→(𝑏,|(𝑦,𝑞)|𝑛)

fst

Figure 3.14: Visualization of task to

construct 𝑒, reinterpreted.

∥𝑅(𝑏)∥𝑛

𝑅(𝑏) 𝟙

𝑃(𝑏)

𝑒𝑏

fst

|_|𝑛

Figure 3.15: Taking summands for

𝑏 : 𝐵 in Figure 3.14.

Fact(𝑓) :≡ ∑
𝑍 :U

∑
𝑔 :𝑋→𝑍

∑
ℎ :𝑍→𝑌

𝑓 =→ ℎ ◦ 𝑔 ⌟

Theorem 3.9.11. Let 𝑓 :𝐴 → 𝐵 and 𝑛 ≥ −2. Then the following type of
factorizations of 𝑓 through its 𝑛-image is contractible:

∑
(𝐶,𝑔,ℎ,𝑟) : Fact(𝑓)

(isnConn(𝑔) × isnTrunc(ℎ)).

Proof. As the center of contraction we take (im𝑛(𝑓), 𝑝, 𝑖, refl 𝑓 , !, !), with

𝑝 and 𝑖 as in Equation (3.9.2). We can use refl 𝑓 : 𝑓 =→ 𝑖𝑝 since fst(𝑝(𝑎)) ≡
𝑓 (𝑎) for all 𝑎 :𝐴.

Let 𝑋 be a type and assume we are given an 𝑛-connected function

𝑔 :𝐴→ 𝑋 and an 𝑛-truncated function ℎ :𝑋 → 𝐵 and an identification

𝑦 : 𝑓 =→ ℎ𝑔. Our task is then to construct a equivalence 𝑒 : im𝑛(𝑓) → 𝑋

and to give identifications represented by the left and the right triangle in

Figure 3.13, that is, of types 𝑔 =→ 𝑒𝑝 and 𝑖 =→ ℎ𝑒. Then the factorization

(𝑋, 𝑔, ℎ, 𝑠, !, !) can be identified with the center of contraction by standard

transport lemmas.

To simplify these constructions, we are going to replace 𝑔 and ℎ by

projection maps. In view of Construction 3.9.7, we may assume without

loss of generality that 𝑋 ≡ ∑𝑏 : 𝐵 𝑃(𝑏) for some family of 𝑛-types 𝑃(𝑏),
and ℎ ≡ fst.

By Lemma 2.25.2 we may also assume without loss of generality that

𝐴 ≡ ∑𝑏 : 𝐵 ∑𝑦 :𝑃(𝑏)𝑄(𝑏, 𝑦), where 𝑄(𝑏, 𝑦) :≡ 𝑔−1(𝑏, 𝑦) are the fibers of 𝑔,

which are all 𝑛-connected by assumption. Define 𝑅(𝑏) :≡ ∑𝑦 :𝑃(𝑏)𝑄(𝑏, 𝑦)
for all 𝑏 : 𝐵. With 𝐴 ≡ ∑𝑏 : 𝐵 𝑅(𝑏), the function 𝑔 takes the form of

the projection map (𝑏, 𝑦, 𝑞) ↦→ (𝑏, 𝑦), as shown in Figure 3.14. Using

𝑠 : 𝑓 =→ ℎ𝑔 we get an identification of 𝑓 with the first projection, and an

equivalence between its 𝑛-image and ∑𝑏 : 𝐵∥𝑅(𝑏)∥𝑛 . The 𝑛-connected map

𝑝 then takes the form (𝑏, 𝑦, 𝑞) ↦→ (𝑏, |(𝑦, 𝑞)|𝑛) as shown in Figure 3.14.

Since (∑𝑏 : 𝐵 𝟙) =→ 𝐵 via fst, each type in Figure 3.14 can be considered

to be the sum of a type family parametrized by 𝑏 : 𝐵. For constructing the

equivalence 𝑒 that makes Figure 3.14 commute, it suffices to construct

for each 𝑏 : 𝐵 the equivalence 𝑒𝑏 such that Figure 3.15 commutes. Then

we obtain 𝑒 as desired by summing over 𝐵, that is, by putting 𝑒(𝑏, 𝑧) :≡
(𝑏, 𝑒𝑏(𝑧)) for all 𝑏 : 𝐵 and 𝑧 : ∥𝑅(𝑏)∥𝑛 .

Now let 𝑏 : 𝐵. We have ∥𝑅(𝑏)∥𝑛 ≡ ∥∑𝑦 :𝑃(𝑏)𝑄(𝑏, 𝑦)∥𝑛 . Since 𝑃(𝑏) is

an 𝑛-type by assumption, we have the canonical equivalence of type

∥∑𝑦 :𝑃(𝑏)𝑄(𝑏, 𝑦)∥𝑛 → ∑𝑦 :𝑃(𝑏)∥𝑄(𝑏, 𝑦)∥𝑛 defined by mapping |(𝑦, 𝑞)|𝑛 to

(𝑦, |𝑞|𝑛) (cf. Exercise 3.9.9). Since 𝑄(𝑦, 𝑏) is 𝑛-connected for each 𝑦 :𝑃(𝑏)
by assumption, so that ∥𝑄(𝑏, 𝑦)∥𝑛 is contractible, we also have the

canonical equivalence fst : ∑𝑦 :𝑃(𝑏)∥𝑄(𝑏, 𝑦)∥𝑛 → 𝑃(𝑏). The composite of

these two equivalences is 𝑒𝑏 .

Finally, the identifications of type 𝑔 =→ 𝑒𝑝 and 𝑖 =→ ℎ𝑒, represented by

the left and right triangle in Figure 3.14, can also be constructed pointwise

for every 𝑏 : 𝐵, that is, in Figure 3.15. Indeed, we have 𝑒𝑏|_|𝑛 ≡ fst for the

left triangle, and the right triangle commutes trivially. □

Exercise 3.9.12. Let 𝐴 be a coherent type, 𝐵 a type, and 𝑓 :𝐴 → 𝐵 a

function. Then all 𝑛-images of 𝑓 (𝑛 ≥ −2) are coherent. ⌟

For the rest of this section, fix some natural number 𝑚 > 0. As

for our promised application, we consider the fibers of the 𝑚th
root

the universal symmetry: the circle 96

40
To see that 𝑒 is well defined, keep

in mind that 𝕞 × 𝑋 is equipped

with permutation

𝑚√
𝑡 by 𝜌𝑚 . Also, 𝑒

preserves cycle structure.

41
Notice that this is a less general

result than Theorem 3.1.2, the uni-

versal property of the circle, where

we don’t need to assume that 𝐴 is a

groupoid. That’s why 𝑛 > 0 in this

section.

map 𝜌𝑚 . On infinite cycles, this is equivalent to the degree 𝑚 map

of the circle by Exercise 3.8.7, so we have a map _/𝑚 : Cyc0 → Set,
which we identify with the family 𝑅𝑚 : S1 → Set (Definition 3.6.7) by

precomposing with the equivalence 𝑐 : S1 → Cyc0 from Theorem 3.5.6.

For every infinite cycle (𝑋, 𝑡), the set 𝑋/𝑚 has 𝑚 elements, and the (−1)-
image is readily identified with FinSet𝑚 , the groupoid of 𝑚-element sets

(Definition 2.24.5). But what is the 0-image? The following theorem

identifies the 0-image of 𝑋/𝑚 with Cyc𝑚 .

Theorem 3.9.13. The 0-image factorization of the map _/𝑚 : Cyc0 → Set
consists of the type Cyc𝑚 and maps 𝑞 : Cyc0 → Cyc𝑚 and 𝑟 : Cyc𝑚 → Set.
The map 𝑞 sends any infinite cycle (𝑋, 𝑡) to the 𝑚-cycle (𝑋/𝑚, 𝑡), where
𝑡 :𝑋/𝑚 → 𝑋/𝑚 maps [𝑥] to [𝑡(𝑥)]. The map 𝑟 : Cyc𝑚 → Set sends any
𝑚-cycle to its underlying set, so that indeed _/𝑚 ≡ 𝑟𝑞.

Proof. We need to check that 𝑞 is 0-connected and that 𝑟 is 0-truncated.

The latter is direct, since the preimage of 𝑟 at any set 𝑆 can be identified

as a subset of the set of functions 𝑆→ 𝑆.

To show that 𝑞 is 0-connected, it suffices to consider the fiber at

the standard 𝑚-cycle (𝕞, s). We’ll show that this fiber is equivalent

to Cyc0 itself, which is indeed 0-connected. The mediating map is

induced by our old friend 𝜌𝑚 . Indeed, define 𝜑 : Cyc0 → 𝑞−1(𝕞, s) by

𝜑(𝑋, 𝑡) B (𝜌𝑚(𝑋, 𝑡), 𝑒−1), where 𝑒 : (𝕞×𝑋)/𝑚 ≃→ 𝕞 maps [(𝑘, 𝑥)] to 𝑘.40

As inverse of 𝜑, define 𝜓 by 𝜓((𝑌, 𝑢), 𝑒′) :≡ (𝑒′(0), 𝑢𝑚), for all (𝑌, 𝑢) : Cyc0
and 𝑒′ :𝕞 ≃→ 𝑌/𝑚. □

Exercise 3.9.14. Complete the details of the proof above. ⌟

The theorem and its proof in fact generalize to cycles of all orders.

Exercise 3.9.15. Let 𝑑 be any order and let 𝜌𝑚 : Cyc𝑑 → Cyc𝑚𝑑 be the

restriction of the 𝑚th
root map to Cyc𝑑. Define _/𝑚 : Cyc𝑚𝑑 → Set as

the family of fibers of 𝜌𝑚 . Show that the 0-image factorization of _/𝑚
goes via Cyc𝑚 by lifting _/𝑚 to 𝑞 : Cyc𝑚𝑑 → Cyc𝑚 . In particular, show

that the preimage of 𝑞 at the standard 𝑚-cycle can be identified with

Cyc𝑑. ⌟

3.10 Universal property of Cyc𝑛

Fix a natural number 𝑛 > 0 and recall the definition of Cyc𝑛 from

Definition 3.8.1. This section is devoted to showing that maps out of

Cyc𝑛 into a groupoid 𝐴 are given by the choice of a point together with

a symmetry of order 𝑛: any map Cyc𝑛 → 𝐴 is uniquely determined by a

point 𝑎 :𝐴 together with a symmetry 𝜎 : 𝑎 =→ 𝑎 such that refl𝑎 = 𝜎𝑛 .
41

Recall that Cyc𝑛 contains the point pt𝑛 :≡ (𝕟, s), i.e., the standard 𝑛-

cycle. This point has a symmetry 𝜎𝑛 :≡ (s−1 , !) whose second projection

is a proof that s s−1 = s−1 s. Recall also from Corollary 3.6.16 that all

symmetries of pt𝑛 are of the form 𝜎𝑖𝑛 for 𝑖 = 0, . . . , 𝑛 − 1.

Given a groupoid 𝐴, and a map 𝑓 : Cyc𝑛 → 𝐴, one can consider

𝑓 (pt𝑛) :𝐴 and ap 𝑓 (𝜎𝑛) : 𝑓 (pt𝑛)
=→ 𝑓 (pt𝑛). Proofs of the equation reflpt𝑛 =

𝜎𝑛𝑛 in the set pt𝑛
=→ pt𝑛 are mapped by ap 𝑓 to proofs of refl 𝑓 (pt𝑛) =

ap 𝑓 (𝜎𝑛)𝑛 . Hence, the following map is well defined:

ev𝑛,𝐴 : (Cyc𝑛 → 𝐴) → ∑
𝑎 :𝐴

∑
𝜎 : 𝑎 =→𝑎

refl𝑎 = 𝜎𝑛 , 𝑓 ↦→ (𝑓 (pt𝑛), ap 𝑓 (𝜎𝑛), !).

the universal symmetry: the circle 97

𝑎 𝑓 (pt𝑛)

𝑎 𝑓 (pt𝑛).

𝑝

𝜎 ap 𝑓 (𝜎𝑛)

𝑝

(pt𝑛
=→ 𝑥) (pt𝑛

=→ 𝑥)

(𝑎 =→ 𝑏) (𝑎 =→ 𝑏)

_𝜎𝑛

𝜋 𝜋

_𝜎

The construction of 𝑓 is really a

special case of the delooping of the

abstract group homomorphism

𝜎𝑖𝑛 ↦→ 𝜎𝑖 in Section 7.5.

Theorem 3.10.1. For any groupoid 𝐴, the map ev𝑛,𝐴 above is an equivalence.

Proof. Let 𝑎 :𝐴 and 𝜎 : 𝑎 =→ 𝑎 be such that refl𝑎 = 𝜎𝑛 holds. We want to

prove that the fiber

∑
𝑓 : Cyc𝑛→𝐴

(𝑎, 𝜎, !) =→ ev𝑛,𝐴(𝑓)

is contractible. Hence we first need to construct a function 𝑓 : Cyc𝑛 → 𝐴

together with an identification 𝑝 : 𝑎 =→ 𝑓 (pt𝑛) such that ap 𝑓 (𝜎𝑛)𝑝 = 𝑝𝜎,

see the diagram in the margin.

In order to do so, we will construct a function 𝑓 : Cyc𝑛 → 𝐴 together

with a family of functions 𝑝̂𝑥 : (pt𝑛
=→ 𝑥) → (𝑎 =→ 𝑓 (𝑥)), parametrized

by 𝑥 : Cyc𝑛 , satisfying 𝑝̂𝑥(𝜏𝜎𝑛) = 𝑝̂𝑥(𝜏)𝜎 for all 𝜏 : pt𝑛
=→ 𝑥. By setting

𝑝 ≡ 𝑝̂pt𝑛 (reflpt𝑛), we will then have succeeded.

Let’s explain why the above indeed suffices. First, a simple path

induction on 𝛼 : 𝑥 =→ 𝑥′ shows that ap 𝑓 (𝛼)𝑝̂𝑥(_) = 𝑝̂𝑥′(𝛼_). On the

other hand, instantiating the condition on 𝑝̂ with 𝑥 :≡ pt𝑛 proves that

𝑝̂pt𝑛 (𝜏𝜎𝑛) = 𝑝̂pt𝑛 (𝜏)𝜎 for all 𝜏 : pt𝑛
=→ pt𝑛 . This leads to the chain of

equations:

ap 𝑓 (𝜎𝑛)𝑝 ≡ ap 𝑓 (𝜎𝑛)𝑝̂pt𝑛 (reflpt𝑛) = 𝑝̂pt𝑛 (𝜎𝑛reflpt𝑛)

= 𝑝̂pt𝑛 (reflpt𝑛𝜎𝑛) = 𝑝̂pt𝑛 (reflpt𝑛)𝜎 ≡ 𝑝𝜎

This shows that 𝑝̂ suffices.

It remains to construct the promised 𝑓 and 𝑝̂. For each 𝑥 : Cyc𝑛 ,

consider the type (with the product part visualized in the margin)

𝑇(𝑥) :≡ ∑
𝑏 :𝐴

∑
𝜋 : (pt𝑛

=→𝑥)→(𝑎 =→𝑏)
∏

𝜏 : pt𝑛
=→𝑥

𝜋(𝜏𝜎𝑛) =(𝑎 =→𝑏) 𝜋(𝜏)𝜎.

We claim that 𝑇(𝑥) is contractible for each 𝑥 : Cyc𝑛 . We then get 𝑓 (𝑥),
𝑝̂𝑥 as well as the proof that 𝑝̂𝑥 has the desired property as the three

components of the center of contraction, respectively.

To prove that 𝑇(𝑥) is contractible for all 𝑥 in the connected type Cyc𝑛 ,

it is enough to prove it for 𝑥 ≡ pt𝑛 . First, the equivalence 𝑖 ↦→ 𝜎𝑖𝑛 of type

𝕟 ≃→ (pt𝑛 = pt𝑛) induces an equivalence of type

𝑇(pt𝑛)
≃→ ∑

𝑏 :𝐴
∑

𝜋 :𝕟→(𝑎 =→𝑏)
∏
𝑘 :𝕟

𝜋(𝑠(𝑘)) =(𝑎 =→𝑏) 𝜋(𝑘)𝜎.

Now, note that any 𝜋 :𝕟 → (𝑎 =→ 𝑏) such that 𝜋(𝑠(𝑘)) = 𝜋(𝑘)𝜎 for all

𝑘 :𝕟 is entirely determined by 𝜋(0), as then 𝜋(𝑖) = 𝜋(0)𝜎𝑖 for all 𝑖 :𝕟.

Moreover, any path 𝑞 in 𝑎 =→ 𝑏 defines a function 𝜋𝑞 : 𝑖 ↦→ 𝑞𝜎𝑖 which

satisfies 𝜋𝑞(0) = 𝑞 and 𝜋𝑞(𝑠(𝑘)) = 𝜋𝑞(𝑘)𝜎 for all 𝑘 :𝕟. Thus, evaluation at

0 is an equivalence

ev0 :

(
∑

𝜋 :𝕟→(𝑎 =→𝑏)
∏
𝑘 :𝕟

𝜋(𝑠(𝑘)) =(𝑎 =→𝑏) 𝜋(𝑘)𝜎
)
≃→ (𝑎 =→ 𝑏), ev0(𝜋, !) :≡ 𝜋(0).

The equivalence ev0 induces an equivalence of type

𝑇(pt𝑛)
≃→
(

∑
𝑏 :𝐴

𝑎 =→ 𝑏

)
and hence 𝑇(pt𝑛) is contractible. This completes the construction of the

center of contraction of the fiber ev−1
𝑛,𝐴(𝑎, 𝜎, !).

the universal symmetry: the circle 98

𝑎 𝑓 (pt𝑛)

𝑓 ′(pt𝑛)

𝑝

𝑝′

𝜒(pt𝑛)

Finally, we prove that the fiber ev−1
𝑛,𝐴(𝑎, 𝜎, !) is a proposition. Let

(𝑓 , 𝑝, !) and (𝑓 ′, 𝑝′, !) be two elements of the fiber. We want to identify

them. From the proofs in their third components we infer 𝑝𝜎𝑝−1 =

ap 𝑓 (𝜎𝑛) and 𝑝′𝜎𝑝′−1 = ap 𝑓 ′(𝜎𝑛), respectively. Define the family of sets

𝑈(𝑥) :≡ (𝑓 (𝑥) =→ 𝑓 ′(𝑥)) parametrized by 𝑥 : Cyc𝑛 . It suffices to find a

𝜒 : ∏𝑥 : Cyc𝑛
𝑈(𝑥) such that the diagram in the margin commutes.

The element 𝜏 :≡ 𝑝′𝑝−1 :𝑈(pt𝑛) is peculiar in that trp𝑈𝑞 (𝜏) = 𝜏 for all

𝑞 : pt𝑛
=→ pt𝑛 . Indeed, we use once again that symmetries of pt𝑛 in Cyc𝑛

are of the form 𝜎𝑖𝑛 and we calculate:

trp𝑈𝜎𝑖𝑛 (𝜏) = ap 𝑓 ′(𝜎𝑖𝑛) · 𝜏 · ap 𝑓 (𝜎𝑖𝑛)−1 = 𝑝′𝜎𝑖𝑝′−1𝜏𝑝𝜎−𝑖𝑝−1 = 𝑝′𝑝−1

Now it is easy to prove that the following type is contractible:

𝑉(𝑥) :≡ ∑
𝛼 :𝑈(𝑥)

∏
𝑟 : pt𝑛

=→𝑥

𝛼 = trp𝑈𝑟 (𝜏)

To do so, we use the connectedness of Cyc𝑛 and verify the contractibility

of 𝑉(pt𝑛). Clearly, (𝜏, !) is a center of contraction by the peculiarity of 𝜏.

Also, if 𝛼 and 𝛽 are elements of 𝑉(pt𝑛), then 𝛼 = 𝛽 by taking 𝑟 ≡ refl𝑝𝑡𝑛 .
Now 𝜒 is defined as the function mapping 𝑥 to the center of contraction

of 𝑉(𝑥), so that 𝜒(pt𝑛) = 𝜏 as we wanted. □

As a direct corollary, we can classify the connected set bundles over

Cyc𝑛 for finite orders 𝑛. Indeed, the corresponding families 𝑆 : Cyc𝑛 →
Set are precisely those cycles (𝑋, 𝑡) with 𝑡𝑛 = id, i.e., whose order

divides 𝑛. If we restrict to decidable connected set bundles, equivalently,

decidable cycles, these are the usual finite cycles with order dividing 𝑛.

1
Since the symmetries 𝑝 : 𝑎 =→𝐴 𝑎 are

paths that start and end at the point

𝑎 :𝐴, we also call them loops at 𝑎, or

automorphisms of 𝑎.

𝑎

𝐴

𝑝

4
Groups, concretely

An identity type is not just any type: in the previous sections we have seen

that the identity type 𝑎 =→𝐴 𝑎 reflects the “symmetries” of an element 𝑎

in a type 𝐴.
1

Symmetries have special properties. For instance, you can

rotate a square by 90°, and you can reverse that motion by rotating it by

−90°. Symmetries can also be composed, and this composition respects

certain rules that hold in all examples. One way to study the concept of

“symmetries” would be to isolate the common rules for all our examples,

and to show, conversely, that anything satisfying these rules actually is
an example.

With inspiration of geometric and algebraic origins, it became clear to

mathematicians at the end of the 19
th

century that the properties of such

symmetries could be codified by saying that they form an abstract group.

In Section 2.5 we saw that equality is “reflexive, symmetric and transitive”

– implemented by operations refl𝑎 , symm𝑎,𝑏 and trans𝑎,𝑏,𝑐 , and an abstract

group is just a set with such operations satisfying appropriate rules.

We attack the issue more concretely: instead of focusing on the abstract

properties, we bring the type exhibiting the symmetries to the fore. This

type is called the classifying type of the group. The axioms for an abstract

group follow from the rules for identity types, without us needing to

impose them. We will show in Chapter 7 that the two approaches give

the same end result.

In this chapter we lay the foundations and provide some basic examples

of groups.

4.1 Brief overview of the chapter

In Section 4.2 we give the formal definition of a group along with some

basic examples. In Section 4.3 we expand on the properties of a group

and compare these with those of an abstract group. In Section 4.4

we explain how groups map to each other through “homomorphisms”

(which to us are simply given by pointed maps), and what this entails for

the identity types: the preservation of the abstract group properties. As

an important example, we study the sign homomorphism in Section 4.5,

which also provides us with the alternating groups.

In most of our exposition we make the blanket assumption that the

identity type in question is a set, but in Section 4.7 we briefly discuss

∞-groups, where this assumption is dropped.

99

groups, concretely 100

2
Such groups give rise to∞-groups

by converting continuous (or

smooth) symmetries of 𝑎 in 𝐴

parametrized by the continuous

(or smooth) real interval, into iden-

tifications, as described already

in Footnote 14 in Chapter 2. Then

also smooth or continuous paths in

𝑎 =→𝐴 𝑎 turn into identifications of

symmetries. See also Section B.3.

3
The type 𝑎 =→𝐴 𝑎′ does have an

interesting ternary composition,

mapping 𝑝, 𝑞, 𝑟 to 𝑝𝑞−1𝑟. A set with

this kind of operation is called a heap,

and we’ll explore heaps further in

Section 7.7.

4.2 The type of groups

In order to motivate the formal definition of a group we revisit some

types that we have seen in earlier chapters, paying special attention to

the symmetries in these types.

Example 4.2.1. We defined the circle S1
in Definition 3.1.1 by declaring

that it has a point • and an identification (“symmetry”) ⟲ : •
=→ •. In

Corollary 3.4.6 we proved that •
=→ • is equivalent to the set Z (of

integers), where 𝑛 ∈ Z corresponds to the 𝑛-fold composition of ⟲ with

itself (which works for both positive and negative 𝑛). We can think of this

as describing the symmetries of • as follows. We have one “generating

symmetry” ⟲, and this symmetry can be composed with itself any

number of times, giving a symmetry for each integer. Composition of

symmetries here corresponds to addition of integers.

The circle is an efficient packaging of the “group” of integers, for the

declaration of • and ⟲ not only gives the set Z of integers, but also the

addition operation. ⌟

Example 4.2.2. Recall the finite set 𝟚 : FinSet2 from Definition 2.24.1,

containing two elements. According to Exercise 2.13.3, the identity type

𝟚 =→ 𝟚 has exactly two distinct elements, refl𝟚 and swap, and doing swap
twice yields refl𝟚. We see that these are all the symmetries of a two point

set you’d expect to have: you can let everything stay in place (refl𝟚); or

you can swap the two elements (swap). If you swap twice, the result

leaves everything in place. The pointed type FinSet2 (of “finite sets with

two elements”), with 𝟚 as the base point, is our embodiment of these

symmetries, i.e., they are the elements of 𝟚 =→ 𝟚.

Observe that, by the induction principle of S1
, there is an interesting

function S1 → FinSet2, sending • : S1
to 𝟚 : FinSet2 and ⟲ to swap. We

saw this already in Figure 3.2. ⌟

Note that the types S1
and FinSet2 in the examples above are groupoids.

For an arbitrary type 𝐴 and an element 𝑎 :𝐴, the symmetries of 𝑎 in 𝐴

form an∞-group, cf. Section 4.7 below. However, in elementary texts it is

customary to restrict the notion of a group to the case when 𝑎 =→𝐴 𝑎 is a

set, as we will do, starting in Section 4.3. This makes things considerably

easier: if are we given two elements 𝑔, ℎ : 𝑎 =→𝐴 𝑎, then the identity type

𝑔 =→ ℎ is a proposition (and we can simply write 𝑔 = ℎ). That is, 𝑔 can

be equal to ℎ in at most one way, and questions relating to uniqueness of

identification will never present a problem.

The examples of groups that Klein and Lie were interested in often had

more structure on the set 𝑎 =→𝐴 𝑎, for instance a topology or a smooth

structure. For such a group it makes sense to look at smooth maps from

the real numbers to 𝑎 =→𝐴 𝑎, or to talk about a convergent sequence of

symmetries of 𝑎. 2
See Appendix A for a brief summary of the history

of groups.

Remark 4.2.3. The reader may wonder about the status of the identity

type 𝑎 =→𝐴 𝑎
′
where 𝑎, 𝑎′ :𝐴 are different elements. One problem is of

course that if 𝑝, 𝑞 : 𝑎 =→𝐴 𝑎
′
, there is no obvious way of composing 𝑝 and

𝑞 to get another element in 𝑎 =→𝐴 𝑎
′
. Another problem is that 𝑎 =→𝐴 𝑎

′

does not have a distinguished element, such as refl𝑎 : 𝑎 =→𝐴 𝑎.
3

Given

an 𝑓 : 𝑎 =→𝐴 𝑎
′
we can use transport along 𝑓 to compare 𝑎 =→𝐴 𝑎

′
with

groups, concretely 101

𝑎 𝑏

· · ·

𝐴
𝐴(𝑎)

𝑝

The meaning of the superscript “= 1”

can be explained as follows: We also

define

U≤1 :≡ Groupoid

:≡ ∑
𝐴 :U

isGrpd(𝐴)

to emphasize that groupoids are 1-

types; the type of connected types is

defined as follows.

U >0 :≡ ∑
𝐴 :U

isConn(𝐴)

Similar notations with a subscript “∗”
indicate pointed types.

4
The reader may ask why we use Ω,

which only makes a wrapped copy

of each (𝐴, 𝑠, 𝑝, 𝑞) :U=1
∗ . The answer

is that flatly defining groups as their

classifying types would be confusing.

Using Ω we avoid awkward termi-

nology such as ‘ ‘the group of the

integers is the circle”. The symbol Ω

is inspired by Ω in Definition 4.2.10,

which in Section 4.3 will be used to

recover the traditional concept of a

group. Recall also the example of the

negated natural numbers ℕ− from

Section 2.12.8: Its elements are −𝑛
for 𝑛 :ℕ to remind us how to think

about them. And the same applies

to Group: Its elements are Ω𝑋 for

𝑋 :U=1
∗ to remind us how to think

about them.

5
As a notational convention we al-

ways write the “B” so that it sits

next to and matches the shape of its

operand. You see immediately the

typographical reason behind this

convention: The italic letters 𝐵, 𝐺

get along nicely, while the roman B
would clash with its italic friend 𝐺 if

we wrote B𝐺 instead.

𝑎 =→𝐴 𝑎 (much as affine planes can be compared with the standard plane

or a finite dimensional real vector space is isomorphic to some Euclidean

space), but absent the existence and choice of such an 𝑓 the identity

types 𝑎 =→𝐴 𝑎
′
and 𝑎 =→𝐴 𝑎 are different animals. We will return to this

example in Section 7.7. ⌟

Remark 4.2.4. As a consequence of Lemma 2.20.4, the inclusion of

the component 𝐴(𝑎) :≡ ∑𝑥 :𝐴∥𝑎 =→ 𝑥∥ into 𝐴 (i.e., the first projection)

induces an equivalence of identity types from (𝑎, !) =→𝐴(𝑎) (𝑎, !) to 𝑎
=→𝐴

𝑎. This means that, when considering the loop type 𝑎 =→𝐴 𝑎, “only

the elements 𝑥 :𝐴 with 𝑥 merely equal to 𝑎 are relevant”. To avoid

irrelevant extra components, we should consider only connected types 𝐴

(cf. Definition 2.16.8).

Also, our preference for 𝑎 =→𝐴 𝑎 to be a set indicates that we should

consider only the connected types 𝐴 that are groupoids. ⌟

Definition 4.2.5. The type of pointed, connected groupoids is the type

U =1
∗ :≡ ∑

𝐴 :U
(𝐴 × isConn(𝐴) × isGrpd(𝐴)). ⌟

Exercise 4.2.6. Given a type 𝐴 and an element 𝑎 :𝐴, show that 𝐴 is

connected if and only if the proposition ∏𝑥 :𝐴∥𝑎 =→𝐴 𝑥∥ holds. Show

furthermore that 𝐴 is a groupoid if and only if the type 𝑎 =→𝐴 𝑎 is a set.

Conclude by showing that the typeU =1
∗ is equivalent to the type

∑
𝐴 :U

∑
𝑎 :𝐴

((
∏
𝑥 :𝐴
∥𝑎 =→𝐴 𝑥∥

)
× isSet(𝑎 =→𝐴 𝑎)

)
. ⌟

Remark 4.2.7. We shall refer to a pointed connected groupoid (𝐴, 𝑎, 𝑝, 𝑞)
simply by the pointed type 𝑋 :≡ (𝐴, 𝑎). There is no essential ambi-

guity in this, for the types isConn(𝐴) and isGrpd(𝐴) are propositions

(Lemma 2.15.4 and Lemma 2.15.7), and so the witnesses 𝑝 and 𝑞 are

unique. ⌟

We are now ready to define the type of groups.

Definition 4.2.8. The type of groups is a wrapped copy (see Section 2.12.8)

of the type of pointed connected groupoidsU =1
∗ ,

Group :≡ Copy
Ω
(U =1
∗),

with constructorΩ :U =1
∗ → Group.

4
A group is an element of Group. ⌟

Definition 4.2.9. We write B : Group→U =1
∗ for the destructor associated

with Copy
Ω
(U =1
∗). For 𝐺 : Group, we call BG the classifying type of

𝐺.
5

Moreover, the elements of BG will be referred to as the shapes of
𝐺, and we define the designated shape of 𝐺 by setting sh𝐺 :≡ ptBG, i.e.,

the designated shape of 𝐺 is the base point of its classifying type, see

Definition 2.21.1. ⌟

Definition 4.2.10. Given a pointed type 𝑋 ≡ (𝐴, 𝑎), we define Ω𝑋 :≡
(𝑎 =→𝐴 𝑎), i.e., the type of the symmetries of 𝑎 :𝐴. The type Ω𝑋 is

pointed at refl𝑎 . ⌟

Definition 4.2.11. Let 𝐺 be a group. We regard every group as a group of

symmetries, and thus we refer to the elements of ΩBG as the symmetries
in 𝐺; they are the symmetries of the designated shape sh𝐺 of 𝐺. We

adopt the notation

UG :≡ ΩBG

groups, concretely 102

6
Taking the symmetries in a group

thus defines a map U : Group→ Set,
with Ω𝑋 ↦→ Ω𝑋. Just as with “B”,

we write the “U” so that it matches

the shape of its operand.

7
If you are bothered by the conven-

tion to write the classifying type of 𝐺

in italic like a variable, you can either

think of BG as a locally defined vari-

able denoting the classifying type

that is defined whenever a variable

𝐺 of type Group is introduced, or

you can imagine that whenever such

a 𝐺 is introduced (with the goal of

making a construction or proving

a proposition), we silently apply

the induction principle to reveal a

wrapped variable BG :U=1
∗ .

for the type of symmetries in 𝐺; it is a set.
6

(Notice the careful distinction

above between the phrases “symmetries in” and “symmetries of”.) ⌟

Definition 4.2.12. A group 𝐺 is a finite group if the set UG is finite.

For any finite group 𝐺 we denote the number of symmetries in 𝐺 by

#(𝐺) :≡ #(UG), also called the cardinality of 𝐺. ⌟

Remark 4.2.13. As noted in Section 2.12.8, the constructor and destructor

pair forms an equivalence Group ≃U =1
∗ . The typeU =1

∗ is a subtype of

U ∗, so once you know that a pointed type 𝑋 is a connected groupoid,

you also know that 𝑋 is the classifying type of a group, namely 𝐺 :≡ Ω𝑋.

Note that the equivalence also entails that identifications (of groups)

of type 𝐺 =→ 𝐻 are equivalent to identifications (of pointed types) of

type BG =→ BH. ⌟

Remark 4.2.14. Defining a function 𝑓 : ∏𝐺 : Group 𝑇(𝐺), where 𝑇(𝐺) is a

type parametrized by 𝐺 : Group, amounts to defining 𝑓 (𝐺) for 𝐺 ≡ Ω𝑋,

where 𝑋 is a pointed connected groupoid, namely the classifying type

BG.
7 ⌟

Frequently we want to consider the symmetries Ω(𝐴, 𝑎) of some

element 𝑎 in some groupoid 𝐴, so we introduce the following definition.

Definition 4.2.15. For a groupoid 𝐴 with a specified point 𝑎, we define

the automorphism group of 𝑎 :𝐴 by

Aut𝐴(𝑎) :≡ Ω(𝐴(𝑎) , (𝑎, !)),

i.e., Aut𝐴(𝑎) is the group with classifying type BAut𝐴(𝑎) ≡ (𝐴(𝑎) , (𝑎, !)),
the connected component of 𝐴 containing 𝑎, pointed at 𝑎. ⌟

Remark 4.2.16. If 𝐴 is connected, then fst :𝐴(𝑎) → 𝐴 is an equivalence

between the pointed types (𝐴(𝑎) , (𝑎, !)) and (𝐴, 𝑎), pointed by refl𝑎 . Con-

sequently, for any 𝐺 ≡ Ω(𝐴, 𝑎) : Group, we have an identification of type

𝐺 =→ Aut𝐴(𝑎).
In other words, for any 𝐺 ≡ ΩBG, we have an identification 𝐺 =→

AutBG(sh𝐺), of 𝐺 with the automorphism group of the designated shape

sh𝐺 : BG. ⌟

4.2.17 First examples

Example 4.2.18. The circle S1
, which we defined in Definition 3.1.1, is

a connected groupoid (Lemma 3.1.6, Corollary 3.4.6) and is pointed at

•. The identity type •
=→S1 • is equivalent to the set of integers Z and

composition corresponds to addition. This justifies our definition of the

group of integers as

ℤ :≡ Ω(S1 , •).

In other words, the classifying type of ℤ is Bℤ :≡ S1
, pointed at •. Recall

from Remark 4.2.16 that there is then a canonical identification of type

ℤ =→ AutS1(•). It is noteworthy that along the way we gave several

versions of the circle, each of which has its own merits. For example, the

type of infinite cycles in Definition 3.5.3 and Theorem 3.5.6,

InfCyc ≡ ∑
𝑋 :U

∑
𝑡 :𝑋→𝑋

∥(Z, s) =→ (𝑋, 𝑡)∥. ⌟

Exercise 4.2.19. Use various results from Chapter 3 to construct two

different identifications of type ℤ =→ AutCyc(Z, s). ⌟

groups, concretely 103

8
This note is for those who worry

about size issues – a theme we

usually ignore in our exposition.

Recall from Section 2.3 the chain

of universesU0 :U1 :U2 : . . .
such that for each 𝑖 all types inU 𝑖

are also inU 𝑗 for all 𝑗 > 𝑖. Let

Prop0 :≡ ∑𝑃 :U0 isProp(𝑃) be the

type of propositions inU0. Then

True : Prop0 and Prop0 :U1 (because

the sum is taken overU0). In order

to accommodate the trivial group

AutProp0
(True), the universe “U ” ap-

pearing as a subscript of the first

Σ-type in Definition 4.2.5, reap-

pearing later in Definition 4.2.8

of the type of groups, needs to be

at least as big asU1. IfU is taken

to beU1, then the type Group of

groups will not be inU1, but in the

bigger universeU2. Exercise 4.2.35

below asks you to verify that Group
is a (large) groupoid. If we then

choose some group 𝐺 : Group and

look at its group of automorphisms,

AutGroup(𝐺), this will be an element

of Group only if the universeU in

the definition of Group is at least as

big asU2. Clearly, this doesn’t stop

and so we also need an ascending

chain of types of groups:

Group𝑖 :≡ CopyΩ

(
(U 𝑖)=1

∗
)

:U 𝑖+1 .

Any group we encounter will be an

element of Group𝑖 for 𝑖 large enough.

As a matter of fact, the trivial group

AutTrue(triv) is an element of Group0.

The Replacement Principle 2.19.4

often allows us to conclude that a

group 𝐺 belongs to Group0. This is

the case for Σ𝑆 , for 𝑆 : Set0, and for

AutGroup(𝐺), for 𝐺 : Group0, as we

invite the reader to check. (Hint: use

Exercise 2.19.5.) However, even with

this principle there are groups that

only belong to Group𝑖 for 𝑖 > 0 large

enough.

Issues concerning universes are

nontrivial and important, but in this

text we have chosen to focus on other

matters.

9
Note that the cyclic group of order 1
is the trivial group, the cyclic group

of order 2 is equivalent to the sym-

metric group Σ2: there is exactly

one nontrivial symmetry 𝑓 and 𝑓 2
is

the identity. When 𝑚 > 2 the cyclic

group of order 𝑚 is a group that

does not appear elsewhere in our

current list. In particular, the cyclic

group of order 𝑚 has only 𝑚 differ-

ent symmetries, whereas we will see

that the group of permutations Σ𝑚
has 𝑚! = 1 · 2 · · · · · 𝑚 symmetries.

Example 4.2.20. Apart from the circle, there are some important groups

that come almost for free: namely the automorphisms of specific elements

in the groupoid Set, and even one in the groupoid Prop.

(1) Recall that True, and hence True =→ True, is contractible. Hence

AutProp(True) is a group called the trivial group, denoted by 𝟙. In

fact, for any proposition 𝑃 we can also identify the trivial group

with AutProp(𝑃), see Exercise 4.2.21. Unlike Prop, the type True is

connected, so we can also identify the trivial group withΩ(True, triv),
or with Ω(𝐶, 𝑐) for any contractible type 𝐶 and element 𝑐 :𝐶, or with

Aut𝑆(𝑥) for any set 𝑆 and element 𝑥 : 𝑆.
8

(2) If 𝑛 :ℕ, then the permutation group of 𝑛 letters (also known as the

symmetric group of degree 𝑛) is

Σ𝑛 :≡ AutSet(𝕟).

The classifying type is thus BΣ𝑛 ≡ (FinSet𝑛 , 𝕟), where FinSet𝑛 ≡
Set(𝕟) is the groupoid of sets of cardinality 𝑛 (cf. 2.24.5).

Again, we can also identify the group Σ𝑛 with AutFinSet(𝕟) (by

Exercise 4.2.21), with AutFinSet𝑛 (𝕟) (by Remark 4.2.16), or even with

AutU (𝕟) (by stretching the definition of Aut, using that U (𝕟) is a

connected groupoid, see Remark 4.7.5).

(3) More generally, if 𝑆 is a set, is there a pointed connected groupoid

(𝐴, 𝑎) so that 𝑎 =→𝐴 𝑎 models all the “permutations” 𝑆 =→Set 𝑆 of 𝑆?

Again, the only thing wrong with the groupoid Set of sets is that Set
is not connected. The group of permutations of 𝑆 is defined to be

Σ𝑆 :≡ AutSet(𝑆),

with classifying type BΣ𝑆 ≡ (Set(𝑆) , 𝑆). ⌟

Exercise 4.2.21. Show that AutProp(𝑃) is a trivial group for any proposition

𝑃. Verify that Σ0, Σ1, and ΣFalse are all trivial groups. Using Defini-

tion 2.24.1, give identifications of type AutFinSet(𝕟) =→ Σ𝕟 for 𝑛 :ℕ. Also,

give an identification of type AutSet(ℕ) =→ AutSet(Z). ⌟

Example 4.2.22. In Corollary 3.6.16 we studied the symmetries of the

standard 𝑚-cycle (𝕞, s) for 𝑚 a positive integer, and showed that there

were 𝑚 different such symmetries. Moreover, we showed that these

symmetries can be identified with the elements 0, 1, . . . , 𝑚 − 1 of 𝕞

(according to the image of 0), and under this correspondence composition

of symmetries correspond to addition modulo 𝑚, with 0 the identity.

Note that all of these can be obtained from 1 under addition. With

Cyc, Cyc𝑚 from Definition 3.6.3, 3.8.1, the cyclic group of order 𝑚 is thus

defined to be

C𝑚 :≡ AutCyc(𝕞, s),

with classifying type BC𝑚 ≡ (Cyc𝑚 , (𝕞, s)).9
By using univalence on the equivalences of Theorem 3.3.8, we get a

chain of identifications

C𝑚 Aut∑𝑋 : Set(𝑋→𝑋)(𝕞, s)

AutSetBundle(S1)(S1 , 𝛿𝑚) AutS1→Set(𝑅𝑚),

groups, concretely 104

𝜉0

𝜉1
𝜉2

𝜉𝑚−1

𝑥

𝑦

Figure 4.1: The 𝑚-cycle as the 𝑚th

roots of unity. (Here 𝜉 = e2𝜋i/𝑚
is a

primitive 𝑚th
root.)

10
In the terminology of Section 2.27,

this map forgets the cycle structure

on the underlying set.

Bℤ Cyc0

BC′𝑚 BC𝑚

BΣ𝑚

𝑐

𝑔

pr pr

𝑅𝑚 _/𝑚

11
More precisely, but using language

not yet established: C𝑚 is both iso-

morphic to ℤ/𝑚ℤ, the “quotient

group” (cf. Definition 9.5.8) of ℤ by

the “kernel” (cf. Definition 9.3.2) in-

duced by 𝑅𝑚 , and to C′𝑚 , which is

the corresponding “image” (cf. Sec-

tion 9.3.10). This pattern will later be

captured in Theorem 9.9.2.

12
We will later see that C2

=→Group Σ2
is contractible.

where 𝛿𝑚 : S1 → S1
is the degree 𝑚 map, and 𝑅𝑚 : S1 → Set is the 𝑚th

power bundle from Definition 3.6.7.

For reasons that will become clear later (Definition 9.5.8), we introduce

another name for the cyclic group of order 𝑚, corresponding to the last

step above, namely,

ℤ/𝑚ℤ :≡ AutS1→Set(𝑅𝑚). ⌟

Example 4.2.23. There are other (beside the symmetries of the 𝑚-cycle

and of the 𝑚-fold set bundle) ways of obtaining the cyclic group of

order 𝑚, which occasionally are more convenient. The prime other

interpretation comes from thinking about the symmetries of the 𝑚-cycle

in a slightly different way. We can picture the 𝑚-cycle as consisting of

𝑚 points on a circle, e.g., as the set of 𝑚th
roots of unity in the complex

plane, as shown in Figure 4.1.

Any cyclic permutation is in particular a permutation of the 𝑚-

element set underlying the cycle. This manifests itself as the pro-

jection map pr : Cyc𝑚 → FinSet𝑚 : ((𝑋, 𝑡), !) ↦→ (𝑋, !),10
equivalently,

using the notation introduced above, pr : BC𝑚 → BΣ𝑚 , where the group

Σ𝑚 ≡ AutSet(𝕞) is that of all permutations of the set 𝕞. This pro-

jection map, whose fiber at 𝑋 : BΣ𝑚 can be identified with the set

∑𝑡 :𝑋→𝑋∥(𝑋, 𝑡) =→ (𝕞, s)∥, captures C𝑚 as a “subgroup” of the permuta-

tions, namely the cyclic ones, corresponding to the fact that the shapes

of C𝑚 (i.e., the elements of BC𝑚) are those of Σ𝑚 together with the extra

structure of the “cyclic ordering” determined by 𝑡.

But how do we capture the other aspect of C𝑚 , mentioned in Exam-

ple 4.2.22, that all the cyclic permutations can be obtained by a single

generating one? When thinking of the 𝑚th
roots of unity as in Figure 4.1,

we can take complex multiplication by 𝜉 to be the generating symmetry.

The key insight is provided by the function 𝑅𝑚 : 𝑆1 → FinSet𝑚
from Definition 3.6.7, with 𝑅𝑚(•) :≡ 𝕞 and 𝑅𝑚(⟲) B s, picking out

exactly the cyclic permutation s :𝕞 =→ 𝕞 (and its iterates) among all

permutations. Using our new notation, we can also write this as

𝑅𝑚 : Bℤ→ BΣ𝑚 .

Set truncation (Definition 2.22.4) provides us with a tool for capturing

only the symmetries in FinSet𝑚 hit by 𝑅𝑚 : the (in language to come)

subgroup of the permutation group generated by the cyclic permutation

s is the group

C′𝑚 :≡ Ω(BC′𝑚 , shC′𝑚),

where BC′𝑚 :≡ ∑𝑋 : FinSet𝑚∥𝑅−1
𝑚 (𝑋)∥0 and shC′𝑚 :≡ (𝕞, |(•, refl𝕞)|0). That is,

BC′𝑚 is the 0-image of 𝑅𝑚 in the sense of Section 3.9, and is in particular

a pointed connected groupoid. Since we have a factorization of 𝑅𝑚 as

the equivalence 𝑐 : S1 ≃→ Cyc0 followed by the map _/𝑚 : Cyc0 → BΣ𝑚 ,

and since Cyc𝑚 is the 0-image of the latter by Theorem 3.9.13, we

get a uniquely induced pointed equivalence 𝑔 : BC′𝑚
≃→∗ BC𝑚 .

11
This

identifies the set ∥𝑅−1
𝑚 (𝑋)∥0 with the set of cycle structures on the 𝑚-

element set 𝑋. ⌟

Exercise 4.2.24. Show that the set truncation of 𝑅−1
2 (𝟚) is contractible.

This reflects that C2 and Σ2 can be identified.
12 ⌟

groups, concretely 105

13
Note that B(𝐺 × 𝐻) ≡ BG × BH is

pointed at sh𝐺×𝐻 ≡ (sh𝐺 , sh𝐻).

14
For infinite products, we can either

use the Axiom of Choice, Princi-

ple B.4.1, or take the connected com-

ponent of base point, 𝑠 ↦→ sh𝐺(𝑠).

𝑎 𝑎

𝑎 𝑎

𝑔

ℎ ℎ

𝑔

Exercise 4.2.25. Elaborate the symmetries of shC′𝑚 ≡ (𝕞, |(•, refl𝕞)|0) in
BC′𝑚 and show that they are indeed the permutations of 𝕞 than can be

generated by 𝑅𝑚(⟲), that is, by 𝑠. ⌟

Example 4.2.26. If you have two groups 𝐺 and 𝐻, their product 𝐺 × 𝐻 is

given by taking the product of their classifying types:
13

𝐺 × 𝐻 :≡ Ω(BG × BH)

For instance, Σ2 ×Σ2 is called the Klein four-group or Vierergruppe, because

it has four symmetries. In general, Lemma 2.11.1 gives an identification

U(𝐺 × 𝐻) =→ UG ×UH. ⌟

Exercise 4.2.27. Show that we cannot identify C4 and Σ2 ×Σ2, i.e., the

Klein four-group is not a cyclic group. ⌟

Example 4.2.28. If 𝑆 is an 𝑛-element finite set, 𝑛 :ℕ, and 𝐺 : 𝑆→ Group
is an 𝑆-indexed family of groups, then we can likewise form the product
of the family, by taking the product of the classifying types:

∏
𝑠 : 𝑆

𝐺(𝑠) :≡ Ω

(
∏
𝑠 : 𝑆

BG(𝑠), 𝑠 ↦→ sh𝐺(𝑠)

)
Function Extensionality, Principle 2.9.18, says that that the function ptw
of Definition 2.6.4 gives an equivalence:

ptw : U

(
∏
𝑠 : 𝑆

𝐺(𝑠)
)
≃→∏

𝑠 : 𝑆
UG(𝑠) ⌟

Exercise 4.2.29. (1) Show that a finite product of connected groupoids

is again connected, so that the above definition makes sense.
14

(2) Show that when 𝑆 is identified with a standard 2-element set such

as Bool, then the product of an 𝑆-indexed family of groups reduces

to the binary product of Example 4.2.26. ⌟

Remark 4.2.30. In Lemma 4.3.3 we will see that the identity type of a

group satisfies a list of laws justifying the name “group” and we will

later show in Lemma 7.4.7 that groups are uniquely characterized by

these laws. ⌟

Some groups have the property that the order you compose the

symmetries is immaterial. The prime example is the group of integers

ℤ ≡ Ω(S1 , •). Any symmetry is of the form ⟲𝑛
for some integer 𝑛, and

if ⟲𝑚
is also a symmetry, then ⟲𝑛⟲𝑚 = ⟲𝑛+𝑚 = ⟲𝑚+𝑛 = ⟲𝑚⟲𝑛

.

Such cases are important enough to have their own name:

Definition 4.2.31. A group 𝐺 is abelian if all symmetries commute, in the

sense that the proposition

isAb(𝐺) :≡ ∏
𝑔,ℎ : UG

𝑔ℎ = ℎ𝑔

is true. In other words, the type of abelian groups is

AbGroup :≡ ∑
𝐺 : Group

isAb(𝐺). ⌟

Exercise 4.2.32. Show that symmetric group Σ2 is abelian, but that Σ3 is

not. Show that if 𝐺 and 𝐻 are abelian groups, then so is their product

𝐺 × 𝐻. ⌟

groups, concretely 106

BG ∨ BG BG

BG × BG

fold

inclusion

We can visualize symmetries 𝑔 and ℎ commuting with each other in

a group 𝐴 ≡ Ω(𝐴, 𝑎) by the picture in the margin; going from (upper

left hand corner) 𝑎 to (lower right hand corner) 𝑎 by either composition

gives the same result.

Remark 4.2.33. Abelian groups have the amazing property that their

classifying types are themselves identity types (of certain 2-types). This

can be used to give a very important characterization of what it means

to be abelian. We will return to this point in Section 12.2.

Alternatively, the reference to underlying symmetries in the definition

of abelian groups is avoidable using the “one point union” of pointed

types 𝑋 ∨𝑌 of Definition 8.6.1. (It is the sum of 𝑋 and 𝑌 where the base

points are identified.). Exercise 8.6.6 offers the alternative definition

that a group 𝐺 is abelian if and only if the “fold” map BG ∨ BG→∗ BG
(where both summands are mapped by the identity) factors through the

inclusion BG ∨ BG→∗ BG × BG (where inl𝑥 is mapped to (𝑥, sh𝐺) and

inr𝑥 to (sh𝐺 , 𝑥)). The latter turns out to be a proposition equivalent to

isAb(𝐺). ⌟

Exercise 4.2.34. Let Ω(𝐴, 𝑎) : Group and let 𝑏 be an arbitrary element of

𝐴. Prove that the groups Ω(𝐴, 𝑎) and Ω(𝐴, 𝑏) are merely identical, in

the sense that the proposition ∥Ω(𝐴, 𝑎) =→ Ω(𝐴, 𝑏)∥ is true. Similarly for

∞-groups in Section 4.7 when you get that far. ⌟

Exercise 4.2.35. Given two groups 𝐺 and 𝐻. Prove that 𝐺 =→ 𝐻 is a set.

Prove that the type of groups is a groupoid. This means that, given a

group 𝐺, the component of Group, containing (and pointed at) 𝐺, is

again a group, AutGroup(𝐺), which we will call more simply the group
Aut(𝐺) of automorphisms of 𝐺, or the automorphism group of 𝐺. ⌟

We’ll see more examples of groups in Sections 4.5 and 4.6 and indeed

throughout the rest of the book.

4.3 Abstract groups

Studying the identity type leads one to the definition of what an abstract

group should be. We fix a type 𝐴 and an element 𝑎 :𝐴 for the rest of the

section, and we focus on the identity type 𝑎 =→ 𝑎. We make the following

observations about its elements and operations on them.

(1) There is an element refl𝑎 : 𝑎 =→ 𝑎. (See page 15, rule (E2).) We set

𝑒 :≡ refl𝑎 as notation for the time being.

(2) For 𝑔 : 𝑎 =→ 𝑎, the inverse 𝑔−1 : 𝑎 =→ 𝑎 was defined in Definition 2.5.1.

Because it was defined by path induction, this inverse operation

satisfies 𝑒−1 ≡ 𝑒.

(3) For 𝑔, ℎ : 𝑎 =→ 𝑎, the product ℎ · 𝑔 : 𝑎 =→ 𝑎 was defined in Defini-

tion 2.5.2. Because it was defined by path induction, this product

operation satisfies 𝑒 · 𝑔 ≡ 𝑔.

For any elements 𝑔, 𝑔1 , 𝑔2 , 𝑔3 : 𝑎 =→ 𝑎, we consider the following four

identity types:

(1) the right unit law: 𝑔 =→ 𝑔 · 𝑒,

(2) the left unit law: 𝑔 =→ 𝑒 · 𝑔,

groups, concretely 107

15
In Section 4.7 we will come back to 𝐴

and 𝑎 and consider the case in which

𝐴 is an arbitrary connected type and

𝑎 :𝐴. Then 𝑎 =→ 𝑎 need not be a set.

(3) the associativity law: 𝑔1 · (𝑔2 · 𝑔3) =→ (𝑔1 · 𝑔2) · 𝑔3,

(4) the law of inverses: 𝑔 · 𝑔−1 =→ 𝑒.

In Exercise 2.5.3, the reader has constructed explicit elements of these

identity types. If 𝑎 =→ 𝑎 is a set, then the identity types above are all

propositions. Then, in line with the convention adopted in Section 2.15,

we could simply say that Exercise 2.5.3 establishes that the equations

hold. That motivates the following definition, in which we introduce a

new set 𝑆 to play the role of 𝑎 =→ 𝑎. We introduce a new element 𝑒 : 𝑆 to

play the role of refl𝑎 , a new multiplication operation, and a new inverse

operation. The original type 𝐴 and its element 𝑎 play no further role.
15

Definition 4.3.1. An abstract group consists of the following data.

(1) A set 𝑆, called the underlying set.

(2) An element 𝑒 : 𝑆, called the unit or the neutral element.

(3) A function 𝑆 → 𝑆 → 𝑆, called multiplication, taking two elements

𝑔1 , 𝑔2 : 𝑆 to their product, denoted by 𝑔1 · 𝑔2 : 𝑆.

Moreover, the following equations should hold, for all 𝑔, 𝑔1 , 𝑔2 , 𝑔3 : 𝑆.

(a) 𝑔 · 𝑒 = 𝑔 and 𝑒 · 𝑔 = 𝑔 (the unit laws)

(b) 𝑔1 · (𝑔2 · 𝑔3) = (𝑔1 · 𝑔2) · 𝑔3 (the associativity law)

(4) A function 𝑆→ 𝑆, the inverse operation, taking an element 𝑔 : 𝑆 to its

inverse 𝑔−1
.

Moreover, the following equation should hold, for all 𝑔 : 𝑆.

(c) 𝑔 · 𝑔−1 = 𝑒 (the law of inverses) ⌟

Remark 4.3.2. Strictly speaking, the proofs of the various equations are

part of the data defining an abstract group, too. But, since the equations

are propositions, the proofs are unique, and by the convention introduced

in Remark 2.20.5, we can afford to omit them, when no confusion can

occur. Moreover, one need not worry whether one gets a different group

if the equations are given different proofs, because proofs of propositions

are unique. ⌟

Taking into account the introductory comments we have made above,

we may state the following lemma.

Lemma 4.3.3. If 𝐺 is a group, then the set UG ≡ (sh𝐺
=→ sh𝐺) of symmetries

in 𝐺 (see Definition 4.2.11), together with 𝑒 :≡ reflsh𝐺 , 𝑔−1 :≡ symmsh𝐺 ,sh𝐺 𝑔

and ℎ · 𝑔 :≡ transsh𝐺 ,sh𝐺 ,sh𝐺 (𝑔)(ℎ), define an abstract group.

Proof. The type UG is a set, because BG is a groupoid. Exercise 2.5.3

shows that all the relevant equations hold, as required. □

Definition 4.3.4. Given a group 𝐺, the abstract group of Lemma 4.3.3,

abs(𝐺), is called the abstract group associated to 𝐺. ⌟

Lemma 4.3.3 implies that all examples of groups, such as those in

Section 4.2.17, can easily be turned into examples of abstract groups.

The following exercise provides a different source of examples.

groups, concretely 108

16
When it is clear from context that a

homomorphism is intended, we may

write 𝑓 :𝐺→ 𝐻.

𝑌

pt𝑌

𝑘(pt𝑋)

ap𝑘÷(𝑝)

𝑘pt

17
Recall Definition 2.6.1 for ap, and

that we may abbreviate ap 𝑓 (𝑝) by

𝑓 (𝑝).

Exercise 4.3.5. Let G be an abstract group with underlying set 𝑆. Let 𝑋 be

a set. Show that the set 𝑋 → 𝑆 of functions from 𝑋 to 𝑆, together with

pointwise operations induced by G, forms and abstract group which is

abelian if and only if G is. ⌟

We leave the study of abstract groups for now; in Chapter 7 we’ll

show that the 𝐺 ↦→ abs(𝐺) construction furnishes an equivalence from

the type of groups to the type of abstract groups, and we’ll correlate

concepts and constructions on groups to corresponding ones for abstract

groups.

4.4 Homomorphisms

Remark 4.4.1. Let 𝐺 and 𝐻 be groups, and suppose we have a pointed

function 𝑘 : BG →∗ BH. Suppose also, for simplicity (and without

loss of generality), that ptBH ≡ 𝑘(ptBG) and 𝑘pt ≡ reflptBH
. Applying

Definition 2.6.1 yields a function 𝑓 :≡ ap𝑘 : UG→ UH, which satisfies

the following identities:

𝑓 (reflptBG
) = reflptBH

,

𝑓 (𝑔−1) = (𝑓 (𝑔))−1
for any 𝑔 : UG,

𝑓 (𝑔′ · 𝑔) = 𝑓 (𝑔′) · 𝑓 (𝑔) for any 𝑔, 𝑔′ : UG.

The first one is true by definition, the others follow from Construc-

tion 2.6.2. These three identities assert that the function ap𝑘 preserves,
in a certain sense, the operations provided by Lemma 4.3.3 that make

up the abstract groups abs(𝐺) and abs(𝐻). In the traditional study of

abstract groups, these three identities play an important role and entitle

one to call the function 𝑓 a homomorphism of abstract groups. ⌟

A slight generalization of the discussion above will be to suppose

that we have a general pointed map with an arbitrary pointing path

𝑘pt : ptBH
=→ 𝑘(ptBG), not necessarily given by reflexivity. Indeed, that

works out, thereby motivating the following definition.

Definition 4.4.2. The type of group homomorphisms from 𝐺 : Group to

𝐻 : Group is defined to be

Hom(𝐺, 𝐻) :≡ Copy
Ω
(BG→∗ BH),

i.e., it is a wrapped copy of the type of pointed maps of classifying

spaces with constructor Ω : (BG→∗ BH) → Hom(𝐺, 𝐻). We again write

B : Hom(𝐺, 𝐻) → (BG →∗ BH) for the destructor, and we call Bf the

classifying map of the homomorphism 𝑓 .16 ⌟

We would like to understand explicitly the effect of a general homo-

morphism 𝑓 from 𝐺 to 𝐻 on the underlying symmetries UG, UH, again

without assuming that pointing path of Bf is given by reflexivity. So we

should first study how pointed maps affect loops:

Definition 4.4.3. Given pointed types 𝑋 and 𝑌 and a pointed func-

tion 𝑘 :𝑋 →∗ 𝑌 (as defined in Definition 2.21.1), we define a function

Ω𝑘 :Ω𝑋 → Ω𝑌 by setting
17

Ω𝑘(𝑝) :≡ 𝑘−1
pt · ap𝑘÷(𝑝) · 𝑘pt, for all 𝑝 : pt𝑋

=→ pt𝑋 .

Later we will need that Ω𝑘 is a pointed map and define (Ω𝑘)pt : reflpt𝑌
=→

𝑘−1
pt · 𝑘pt by the inverse law of path algebra, Exercise 2.5.3. ⌟

groups, concretely 109

18
Both Iso(𝐺, 𝐻) and Hom(𝐺, 𝐻) are

sets, using Lemma 4.4.12 below.

19
We use the same notational conven-

tion regarding “B” applied to homo-

morphisms as we do for groups.

sh𝐻

Bf ÷(sh𝐺) 𝐵 𝑓 ′÷ (sh𝐺)

Bf pt Bf ′pt

ℎ(sh𝐺)

Remark 4.4.4. If 𝑘 :𝑋 →∗ 𝑌 has the reflexivity path reflpt𝑌 as its pointing

path, then we have an identification Ω𝑘 =→ ap𝑘÷ . ⌟

Definition 4.4.5. Given groups 𝐺 and 𝐻 and a homomorphism 𝑓 from

𝐺 to 𝐻, we define the function Uf : UG → UH by setting Uf :≡ ΩBf .
In other words, the homomorphism ΩBf induces ΩBf as the map on

underlying symmetries. ⌟

Lemma 4.4.6. Given groups 𝐺 and 𝐻 and a homomorphism 𝑓 : Hom(𝐺, 𝐻),
the function Uf : UG→ UH defined above satisfies the following identities:

(Uf)(reflptBG
) = reflptBH

,(4.4.1)

(Uf)(𝑔−1) = ((Uf)(𝑔))−1 for any 𝑔 : UG,(4.4.2)

(Uf)(𝑔′ · 𝑔) = (Uf)(𝑔′) · (Uf)(𝑔) for any 𝑔, 𝑔′ : UG.(4.4.3)

Proof. We write 𝑓 ≡ (𝑓÷ , 𝑝), where 𝑝 : ptBH
=→ 𝑓÷(ptBG). By induction on

𝑝, which is allowed since ptBH is arbitrary, we reduce to the case where

ptBH ≡ 𝑓÷(ptBG) and 𝑝 ≡ reflptBH
. We finish by applying Remark 4.4.1

and 4.4.4. □

Definition 4.4.7. A homomorphism 𝑓 :𝐺 → 𝐻 is an isomorphism if its

classifying map Bf is an equivalence. We let Iso(𝐺, 𝐻) be the subset of

isomorphisms in Hom(𝐺, 𝐻).18 ⌟

Definition 4.4.8. If 𝐺 is a group, then we use Definition 2.21.2 to define

the identity homomorphism id𝐺 :𝐺 → 𝐺 by setting id𝐺 :≡ Ω(idBG). The

identity homomorphism is an isomorphism. ⌟

Remark 4.4.9. From Exercise 2.21.7, we have an equivalence

(𝐺 =→Group 𝐻) ≃→ Iso(𝐺, 𝐻)

between the identity type of the groups 𝐺 and 𝐻 and the set of isomor-

phisms. We use the convention introduced in Remark 3.4.1 also here.

That is, we allow ourselves to also write 𝑝 : Iso(𝐺, 𝐻) for the isomorphism

corresponding to an identification 𝑝 :𝐺 =→ 𝐻, and Bp : BG ≃→∗ BH for

the corresponding pointed equivalence of classifying types. Conversely,

given an isomorphism 𝑓 : Iso(𝐺, 𝐻), we may denote the corresponding

path also as 𝑓 :𝐺 =→ 𝐻. ⌟

Definition 4.4.10. If 𝐺, 𝐺′, and 𝐺′′ are groups, and 𝑓 :𝐺 → 𝐺′ and

𝑓 ′ :𝐺′→ 𝐺′′ are homomorphisms, then we use the definition of compo-

sition of pointed functions in Definition 2.21.1 to define the composite
homomorphism 𝑓 ′ ◦ 𝑓 :𝐺→ 𝐺′′ by setting 𝑓 ′ ◦ 𝑓 :≡ Ω(Bf ′ ◦ Bf). ⌟

Recall from Section 2.21, that when there is little danger of confusion,

we may drop the subscript “÷” when talking about the unpointed

structure.

Remark 4.4.11. To construct a function 𝜑 : ∏ 𝑓 : Hom(𝐺,𝐻) 𝑇(𝑓), where 𝑇(𝑓)
is a family of types parametrized by 𝑓 : Hom(𝐺, 𝐻), it suffices to consider

the case 𝑓 ≡ ΩBf .
19 ⌟

Identifications of homomorphisms 𝑓 =→Hom(𝐺,𝐻) 𝑓 ′ are equivalent to

identifications of pointed maps Bf =→BG→∗BH Bf ′; the latter are (by Con-

struction 2.21.8 and the fact that BH is a groupoid) given by identifications

of (unpointed) maps ℎ : Bf ÷
=→ Bf ′÷ such that

ℎ(sh𝐺)Bf pt = Bf ′pt.

groups, concretely 110

20
The same argument shows that the

type 𝑋 →∗ 𝑌 is a set whenever 𝑋 is

connected and 𝑌 is a groupoid. A

more general fact is that 𝑋 →∗ 𝑌
is an 𝑛-type whenever 𝑋 is (𝑘 − 1)-
connected and 𝑌 is (𝑛 + 𝑘)-truncated,

for all 𝑘 ≥ 0 and 𝑛 ≥ −1.

21
The latter identification is somewhat

arbitrary, but let’s say it’s defined

using the lexicographic ordering on

the product.

We will later show that if 𝐺 and 𝐻 are groups, then Hom(𝐺, 𝐻) is

equivalent to the set of “abstract group homomorphisms” from abs(𝐺)
to abs(𝐻) (see Lemma 7.5.1), but it is instructive to give a direct proof of

the following.

Lemma 4.4.12. The type of homomorphisms Hom(𝐺, 𝐻) is a set for all groups
𝐺, 𝐻.

Proof. Given homomorphisms 𝑓 , 𝑓 ′ : Hom(𝐺, 𝐻), we use the equivalence

just described,

(𝑓 =→ 𝑓 ′) ≃→ ∑
ℎ : Bf ÷

=→Bf ′÷

ℎ(sh𝐺)Bf pt = Bf ′pt .

Thus our goal is to prove that any two elements (ℎ, !), (𝑗 , !) of the right-

hand side can be identified. By function extensionality, the type ℎ =→ 𝑗

is equivalent to the proposition ∏𝑡 : BG÷ ℎ(𝑡) = 𝑗(𝑡). So now we can use

connectedness of BG÷, and only check the equality on the point sh𝐺. By

assumption,

ℎ(sh𝐺) = Bf ′ptBf−1
pt = 𝑗(sh𝐺).

This concludes the proof that 𝑓 =→ 𝑓 ′ is a proposition, or in other words

that Hom(𝐺, 𝐻) is a set.
20 □

Example 4.4.13.

(1) Consider two sets 𝑆 and 𝑇. Recall from Example 4.2.20 that Set(𝑆) ≡
∑𝑋 : Set∥𝑆 =→ 𝑋∥ is the component of the groupoid Set containing 𝑆,

and when pointed at 𝑆 represents the permutation group Σ𝑆. The

map _⨿ 𝑇 : Set(𝑆) → Set(𝑆⨿𝑇) sending 𝑋 to 𝑋 ⨿ 𝑇 induces a group

homomorphism Σ𝑆 → Σ𝑆⨿𝑇 , pointed by the path refl𝑆⨿𝑇 : 𝑆 ⨿ 𝑇 =→
(_⨿ 𝑇)(𝑆). Thought of as symmetries, this says that if you have a

symmetry of 𝑆, then we get a symmetry of 𝑆 ⨿ 𝑇 (which doesn’t do

anything to 𝑇).

Likewise, we have a map _×𝑇 : Set(𝑆) → Set(𝑆×𝑇) sending 𝑋 to 𝑋 ×𝑇,

inducing a group homomorphism Σ𝑆 → Σ𝑆×𝑇 , pointed by the path

refl𝑆×𝑇 : 𝑆 × 𝑇 =→ (_×𝑇)(𝑆). Thought of as symmetries, this says that

if you have a symmetry of 𝑆, then we get a symmetry of 𝑆×𝑇 (which

doesn’t do anything to the second component of pairs in 𝑆 × 𝑇).

In particular, we get homomorphisms of symmetric groups Σ𝑚 →
Σ𝑚+𝑛 and Σ𝑚 → Σ𝑚𝑛 , induced by identifications Fin(𝑚 + 𝑛) =→
Fin(𝑚) ⨿ Fin(𝑛) and Fin(𝑚𝑛) =→ Fin(𝑚) × Fin(𝑛).21

(2) Let 𝐺 be a group. Since there is a unique map from BG to 𝟙 (uniquely

pointed by the reflexivity path of the unique element of 𝟙), we get

a unique homomorphism from 𝐺 to the trivial group. Likewise,

there is a unique morphism from the trivial group to 𝐺, sending the

unique element of 𝟙 to sh𝐺, and pointed by reflsh𝐺 ; the uniqueness

follows from Lemma 2.9.10, cf. Lemma 3.3.11.

(3) If 𝐺 and 𝐻 are groups, the projections BG← BG × BH → BH and

inclusions BG→ BG×BH← BH (e.g., the inclusion BG→ BG×BH is

given by 𝑧 ↦→ (𝑧, sh𝐻)) give rise to group homomorphisms between

𝐺 × 𝐻 and 𝐺 and 𝐻, namely projections 𝐺 ← 𝐺 × 𝐻 → 𝐻 and

inclusions 𝐺→ 𝐺 × 𝐻 ← 𝐻.

groups, concretely 111

22
Or more generally, whenever the

pointing path is clear from context.

23
Later, in Theorem 9.10.2, we’ll ex-

amine this phenomenon in more

detail.

24
Not all: BG is a groupoid and not an

arbitrary type, cf. Section 4.7.

(4) In Example 4.2.22 we gave an example of an isomorphism, namely

one from the cyclic group C𝑚 to ℤ/𝑚ℤ, and in Example 4.2.23

we looked at 𝑅𝑚 : Bℤ →∗ BΣ𝑚 , pointed by refl𝕞, which induces

a homomorphism (_ mod 𝑚) :ℤ → Σ𝑚 factoring through ℤ/𝑚ℤ

(and, equivalently, through C𝑚). ⌟

Remark 4.4.14. In the examples above, we insisted on writing the path

pointing a group homomorphism, even when this path was a reflexivity

path. We now adopt the convention that there is no need to specify the

path in this case.
22

Thus, given a map 𝑓 :𝐴 → 𝐵 between connected

groupoids and 𝑎 :𝐴, the group homomorphism Aut𝐴(𝑎) → Aut𝐵(𝑓 (𝑎))
defined by (𝑓 , refl 𝑓 (𝑎))will simply be referred to as 𝑓 .

However, it is important to understand that different homomorphisms

can have the same underlying unpointed function.
23

Consider, for

example, the group Σ3, whose classifying space is BΣ3 :≡ (FinSet3 , 𝟛),
and the symmetry 𝜏 : UΣ3 that is defined (through univalence) by

0 ↦→ 1, 1 ↦→ 0, 2 ↦→ 2, i.e., 𝜏 is the transposition (0 1).

Then the function id : FinSet3 → FinSet3 gives rise to two elements of

Hom(Σ3 ,Σ3): the first one is (id, refl𝟛), which is simply denoted idΣ3 ;

the second one is (id, 𝜏), which we will denote 𝜏̃ temporarily. Let us

prove idΣ3 ≠ 𝜏̃, that is, we suppose idΣ3 = 𝜏̃ and derive a contradiction.

By Definition 4.4.3 we get 𝜎 = Ω(idΣ3)(𝜎) = Ω(𝜏̃)(𝜎) = 𝜏−1𝜎𝜏 for all

𝜎 : UΣ3, so 𝜏 commutes with every other element of UΣ3. This fails for

the transposition 𝜎 :≡ (1 2), since 𝜎𝜏(0) = 2 while 𝜏𝜎(0) = 1. (See also

Exercise 4.2.32.) ⌟

Construction 4.4.15. For pointed types𝑋,𝑌, 𝑍 and pointed maps 𝑓 :𝑋 →∗ 𝑌
and 𝑔 :𝑌 →∗ 𝑍, we get an identification of type

Ω(𝑔 ◦ 𝑓) =→(Ω𝑋→Ω𝑍) Ω(𝑔) ◦Ω(𝑓).

Implementation of Construction 4.4.15. Let 𝑥 denote the base point of 𝑋.

By induction on 𝑓pt and on 𝑔pt, we reduce to the case where 𝑓pt ≡ refl 𝑓 (𝑥)
and 𝑔pt ≡ refl𝑔(𝑓 (𝑥)), and it suffices to identify ap𝑔◦ 𝑓 with ap𝑔 ◦ ap 𝑓 .

By Principle 2.9.18, it suffices to identify ap𝑔◦ 𝑓 (𝑝)with ap𝑔(ap 𝑓 (𝑝)) for

each 𝑝 :Ω𝑋. For that purpose, it suffices to even identify ap𝑔◦ 𝑓 (𝑝)with

ap𝑔(ap 𝑓 (𝑝)) for any 𝑥′ :𝑋 and any 𝑝 : 𝑥 =→ 𝑥′. Then by induction on 𝑝, it

suffices to give an identification ap𝑔◦ 𝑓 (refl𝑥) =→ ap𝑔(ap 𝑓 (refl𝑥)), and that

can be done by reflexivity, by observing that both sides are equal, by

definition, to refl𝑔(𝑓 (𝑥)). □

Corollary 4.4.16. For composable group homomorphisms 𝜑 : Hom(𝐺, 𝐻),
𝜓 : Hom(𝐻, 𝐾), we get an identification U(𝜓 ◦ 𝜑) = U𝜓 ◦U𝜑.

The following example expresses that ℤ is a “free group with one

generator”.

Example 4.4.17. Chapter 3 was all about the circle S1
and its role as a

“universal symmetry” and how it related to the integers. In our current

language, ℤ ≡ Ω(S1 , •) and much
24

of the universality of S1
is found in

the following observation. If 𝐺 is a group, then Corollary 3.1.3 yields an

equivalence of sets

evBG :
(
(S1 , •) →∗ BG

) ≃→ UG, evBG(𝑓÷ , 𝑓pt) :≡ Ω(𝑓÷ , 𝑓pt)(⟲).

groups, concretely 112

25
We’ll return to these in more detail

in Section 5.2.26.

26
One may wonder why 𝑝−1

in

(idBG , 𝑝
−1). The reason is our conven-

tion for the direction of the pointing

path of a pointed map.

27
Note that U(Ω(BG÷ , 𝑦)) ≡
Ω(𝐵𝐺÷ , 𝑦) ≡ (𝑦 =→ 𝑦).

28
We have seen similar maps, e.g., all

the way back in Exercise 2.14.4(4).

The domain of this equivalence is equivalent to Hom(ℤ, 𝐺). Hence,

evBG provides a way to identify Hom(ℤ, 𝐺) with the underlying set UG.

Like in Theorem 3.1.2, the inverse of evBG is denoted veBG and satisfies

veBG(𝑔)(•) ≡ sh𝐺 and veBG(𝑔)(⟲) = 𝑔. Moreover, veBG(𝑔) is pointed by

reflsh𝐺 . ⌟

The following lemma states the “naturality” of evBG in the previous

example.

Lemma 4.4.18. Let 𝐺 and𝐻 be groups and 𝑓 : Hom(𝐺, 𝐻). Then the following
diagram commutes,

Hom(ℤ, 𝐺) UG

Hom(ℤ, 𝐻) UH,

ev

𝑓 ◦_ Uf

ev

where the horizontal maps evaluate the map on underlying symmetries at the
loop ⟲ : Uℤ.

Proof. Let 𝑘 : Hom(ℤ, 𝐺), giving Uk : Uℤ→ UG. Going across horizon-

tally and then down, 𝑘 is mapped first to Uk(⟲), and then to Uf (Uk(⟲)).
Going the other way takes 𝑘 to U(𝑓 ◦ 𝑘)(⟲), which is equal to Uf (Uk(⟲))
by Corollary 4.4.16. □

Exercise 4.4.19. Let 𝐺 be a group and 𝐴 a groupoid. Use the definitions

and Exercise 2.21.5 to construct equivalences between the types:
25

(1) BG÷ → 𝐴

(2) ∑𝑎 :𝐴 ∑ 𝑓 : BG÷→𝐴 𝑎
=→ 𝑓 (sh𝐺)

(3) ∑𝑎 :𝐴(BG→∗ (𝐴, 𝑎))

(4) ∑𝑎 :𝐴 Hom(𝐺,Aut𝐴(𝑎)) ⌟

The definition of group homomorphism in Definition 4.4.2 should be

contrasted with the usual – and somewhat more cumbersome – notion

of a group homomorphism 𝑓 :G → H of abstract groups where we must

ask of a function of the underlying sets that it in addition preserves the

neutral element, multiplication, and inverse operation. In our setup this

is simply true, as we saw in Lemma 4.4.6. In terms of the abstract groups

determined by 𝐺 and 𝐻, we can write these equations as

Uf (𝑒𝐺) = 𝑒𝐻

Uf (𝑔 ·𝐺 𝑔′) = Uf (𝑔) ·𝐻 Uf (𝑔′) for all 𝑔, 𝑔′ : UG,

Uf (𝑔−1) = (Uf (𝑔))−1
for all 𝑔 : UG.

We come back to abstract homomorphisms in Section 7.3.

Example 4.4.20. In this example we analyse what happens when we move

the shape of a group along a path in the classifying type. This path can

in particular be a loop at the shape. More precisely, let 𝐺 be a group, 𝑦 an

element of BG, and 𝑝 a path of type sh𝐺
=→ 𝑦. Then (idBG , 𝑝

−1) is a pointed

equivalence of type BG ≃→∗ (BG÷ , 𝑦) and hence induces an isomorphism

from 𝐺 to Ω(BG÷ , 𝑦).26
By Remark 4.4.9 we then get an identification

of these groups. Moreover, by path induction on 𝑝, the equivalence

U(Ω(idBG , 𝑝
−1)) ≡ Ω(idBG , 𝑝

−1) of type (sh𝐺
=→ sh𝐺) ≃→ (𝑦 =→ 𝑦)27

can

groups, concretely 113

29
The approach we take here is similar

to that of Mangel and Rĳke
30

.

30
Éléonore Mangel and Egbert Rĳke.

Delooping the sign homomorphism in
univalent mathematics. 2023. arXiv:

2301.10011 [math.GR].

Figure 4.2: The two equivalence

classes of directions of the complete

graph on a 3-element set.

31
This makes sense because any 2-

element set is decidable, and a subset

of a finite set specified by a decidable

predicate is itself a finite set. We

may apply the usual set-theoretic

operators, such as union and set

difference, to these subsets. Note

also that the parity relation is itself

decidable.

𝐷

𝐸′13𝐸′12

𝐸′23

𝐸13𝐸12

𝐸23

be identified with the map 𝑔 ↦→ 𝑝𝑔𝑝−1
. This map is called conjugation.

28

In Exercise 7.2.10 we come back to the special case in which 𝑦 ≡ sh𝐺. ⌟

The above example motivates and justifies the following definition

of a homomorphism from a group to its inner automorphisms, that is,

automorphisms that come from conjugation. Such automorphisms will

further be discussed in Section 9.7. Recall that BAut(𝐺) is the connected

component of 𝐺 in the type Group, pointed at 𝐺.

Definition 4.4.21. Let𝐺 be a group. Define the homomorphism inn :𝐺→
Aut(𝐺) by setting

Binn : BG→∗ BAut(𝐺), 𝑦 ↦→ Ω(BG÷ , 𝑦),

where the path pointing Binn is 𝑝inn :≡ refl𝐺 :𝐺 =→ Binn(sh𝐺). Note that

𝑝inn is well defined since Binn(sh𝐺) ≡ 𝐺. Notice furthermore that the

codomain of Binn is correct: since BG is connected, the proposition ∥𝐺 =→
Ω(BG÷ , 𝑦)∥ holds for all 𝑦 : BG, by the argument in Example 4.4.20. ⌟

4.5 The sign homomorphism

In this section we’re going to define the very important sign homomorphism
sgn : Σ𝑛 → Σ2, defined for 𝑛 ≥ 2.

29
To do this, we need to assign to

every 𝑛-element set 𝐴 a 2-element set Bsgn(𝐴).
We get this 2-element set as a quotient of the set of all possible ways

of choosing an element from each 2-element subset of 𝐴, where two

different such choices are deemed the same if they differ in an even
number of pairs. Since choosing an element from a 2-element set is

equivalent to ordering it (e.g., chosen element first), we can also talk about

ways of ordering all possible 2-element subsets of 𝐴, or equivalently,

ways of directing the complete graph on 𝐴. Figure 4.2 shows all 8 ways

of directing the complete graph on a 3-element set divided into the 2
resulting equivalence classes.

To see that this really defines an equivalence relation, it helps to

generalize a bit. Thus, fix a finite set 𝐸, and let 𝑃 :𝐸→ BΣ2 be a family

of 2-element sets with parameter type 𝐸.

Definition 4.5.1. The parity relation ∼ on ∏𝑒 :𝐸 𝑃(𝑒) relates functions that

disagree in an even number of points. That is, 𝑓 ∼ 𝑔 holds if and only if

the subset { 𝑒 :𝐸 | 𝑓 (𝑒) ≠ 𝑔(𝑒) } has an even number of elements.
31 ⌟

Lemma 4.5.2. The parity relation ∼ is an equivalence relation on the set
∏𝑒 :𝐸 𝑃(𝑒), and the quotient is a 2-element set if 𝐸 is nonempty, otherwise it is
a 1-element set.

Proof. The ∼ relation is clearly symmetric, and it is reflexive, since the

empty set has an even number of elements. To show transitivity, let

𝑓1 , 𝑓2 , 𝑓3 : ∏𝑒 :𝐸 𝑃(𝑒). We can partition 𝐸 according to whether the 𝑓𝑖

agree or disagree:

𝐸𝑖 𝑗 :≡ { 𝑒 :𝐸 | 𝑓𝑖(𝑒) = 𝑓𝑗(𝑒) }, 𝐹𝑖 𝑗 :≡ { 𝑒 :𝐸 | 𝑓𝑖(𝑒) ≠ 𝑓𝑗(𝑒) }.

By transitivity of equality, 𝐸𝑖 𝑗 ∩ 𝐸 𝑗𝑘 ⊆ 𝐸𝑖𝑘 , for all 𝑖 , 𝑗 , 𝑘. Hence, the Venn

diagram of these sets has the simplified form shown in the margin,

where we set

𝐷 :≡ { 𝑒 :𝐸 | 𝑓1(𝑒) = 𝑓2(𝑒) = 𝑓3(𝑒) }, 𝐸′𝑖 𝑗 :≡ 𝐸𝑖 𝑗 \ 𝐷.

https://arxiv.org/abs/2301.10011

groups, concretely 114

32
See Exercise 4.2.29(1).

33
Note that this works even when 𝐸 is

empty, since the product of an empty

collection of numbers is +1.

34
This term is used in analogy with to-

tal and cyclic orderings, even though

it’s harder to visualize as an order-

ing. It seems to have first been used

by Kuperberg
35

.

35
Greg Kuperberg. “Noninvolutory

Hopf algebras and 3-manifold invari-

ants”. In: Duke Math. J. 84.1 (1996),

pp. 83–129. doi: 10.1215/S0012-
7094-96-08403-3.

36
We’ll study this construction more

generally later in Section 9.3: in these

terms A𝑛 is the kernel of the sign

homomorphism.

Here we also use that 𝐸12 ∪ 𝐸23 ∪ 𝐸13 = 𝐸 (as subsets of 𝐸), since of the

three function values at any 𝑒 in 𝐸, two must agree.

We now find 𝐹12 = 𝐸′13 ∪ 𝐸′23 (disjoint union), and similarly for 𝐹13 and

𝐹23. Taking cardinalities, we get

#(𝐹12) + #(𝐹13) + #(𝐹23) = 2
(
#(𝐸′12) + #(𝐸′13) + #(𝐸′23)

)
,

so if two of the 𝐹𝑖 𝑗 ’s have an even number of elements, then so does the

third. We also see that at least one of the 𝐹𝑖 𝑗 ’s has even cardinality, so

the quotient has at most 2 elements.

Clearly, if 𝐸 is empty, then ∏𝑒 :𝐸 𝑃(𝑒) is contractible, so the quotient is

contractible. Assume now that 𝐸 is nonempty. To show the proposition

that the quotient is a 2-element set, we may assume that 𝐸 is the 𝑛-

element set {1, . . . , 𝑛} (since 𝑛 > 0), and (by induction on 𝑛) that each

set 𝑃(𝑒) is {±1} (our favorite 2-element set for the moment). Then any

function is equivalent to either the all +1-function or the function that

is −1 at 1 and +1 otherwise, according to how many times it takes the

value −1. □

Recall from Example 4.2.28 that we can form the product of any (finite)

family of groups. In particular, if we take the constant family at 𝐺,

indexed by a finite set 𝑆, we get a power 𝐺𝑆, with classifying type BG𝑆

and underlying set of symmetries UG𝑆
.
32

Definition 4.5.3. Given a finite set 𝐸, we define a homomorphism

𝜇𝐸 : Hom(Σ𝐸2 ,Σ2) by deciding whether 𝐸 is nonempty, and proceed-

ing accordingly:

If 𝐸 is nonempty, we use the construction 𝑃 ↦→
(
∏𝑒 :𝐸 𝑃(𝑒)

)
/∼ from

above, pointed by the identification indicated in the proof of Lemma 4.5.2,

i.e., identifying the class of the all +1-function with +1 in {±1}.
If 𝐸 is empty, then BΣ𝐸2 is contractible, so Σ𝐸2 is the trivial group and

we take the corresponding unique definition of 𝜇𝐸. ⌟

Exercise 4.5.4. From Exercise 4.2.29(1) we know that Function Extension-

ality identifies the set of symmetries in Σ𝐸2 with {±1}𝐸. Show that under

this identification, U𝜇𝐸 maps a function 𝑠 :𝐸→ {±1} to the product of

its values.
33 ⌟

Definition 4.5.5. A local ordering of a finite set 𝐴 is an element of the

set ∏𝑒 :𝐸(𝐴) 𝑃(𝑒), where 𝐸(𝐴) is the set of 2-element subsets of 𝐴, and

𝑃 :𝐸(𝐴) → BΣ2 maps a 2-element subset to the underlying 2-element set.

A sign ordering34
of a finite set 𝐴 is an element of

(
∏𝑒 :𝐸(𝐴) 𝑃(𝑒)

)
/∼, i.e.,

the quotient of the set of local orderings modulo the parity relation. ⌟

Definition 4.5.6. The sign homomorphism sgn : Hom(Σ𝑛 ,Σ2) is defined

via the pointed map Bsgn : BΣ𝑛 →∗ BΣ2, where Bsgn(𝐴) :≡ B𝜇𝐸(𝐴)(𝑃),
with 𝑃 as in Definition 4.5.5 and 𝜇𝐸(𝐴) as in Definition 4.5.3. We make

Bsgn pointed using the total ordering 0 < 1 < · · · < 𝑛−1 on the standard

𝑛-element set, 𝕟 ≡ shΣ𝑛 , to identify each 2-element subset with the

standard 2-element set, and using the pointedness of B𝜇. ⌟

Not only does the notion of a sign ordering allow us to define the sign

homomorphism, we also get a new family of examples of groups:
36

https://doi.org/10.1215/S0012-7094-96-08403-3
https://doi.org/10.1215/S0012-7094-96-08403-3

groups, concretely 115

37
Why not? A construction

𝑝 : ∏𝐴 : BΣ𝑛 (Bsgn÷(𝐴) =→ shΣ2)would

amount to an identification of Bsgn
with the constant map.

38
See Exercise 2.24.7. In this section,

we identify UΣ2 with the set {±1},
which has a compatible abstract

group structure given by multiplica-

tion.

39
This is an instance of a more general

construction, called delooping (see

Section 7.5). The formula for Bsgn𝐴÷
here is very simple since Σ2 is a fairly

simple group.

1

1

2

2

3

3

4

4

5

5

Figure 4.3: A different representa-

tion of the permutation 𝜎 from Fig-

ure 3.11.

Definition 4.5.7. For any 𝑛 :ℕ, we define the alternating group of degree 𝑛
to be

A𝑛 :≡ Ω

(
∑

𝐴 : BΣ𝑛

Bsgn(𝐴),
(
𝕟, Bsgnpt(pt𝟚)

))
,

i.e., the shapes of A𝑛 are sign ordered 𝑛-element sets, and the designated

shape is 𝕟 with the sign ordering coming from the usual total ordering.

The symmetries in A𝑛 are called even permutations. ⌟

Exercise 4.5.8. Give two isomorphisms from A3 to C3. ⌟

Something interesting happens when we consider permutations on

other shapes in BΣ𝑛 , i.e., arbitrary 𝑛-element sets 𝐴. The same map,

Bsgn, can be considered as a map BAut(𝐴) → BΣ2, but we can cannot

make this pointed uniformly in 𝐴.
37

However, the self-identifications of

a 2-element set 𝑇, (𝑇 =→ 𝑇), can be identified with {±1},38
according to

whether it transposes the elements of 𝑇, or not. Hence, we can define

the sign of any permutation of a finite set:

Definition 4.5.9. Let 𝐴 be a finite set, and let 𝜎 be a permutation of 𝐴.

If the cardinality of 𝐴 is 0 or 1, then the sign of 𝜎 is +1. Otherwise, the

sign of 𝜎 is ±1 according to whether Bsgn÷(𝜎) swaps the elements of the

2-element set Bsgn÷(𝐴), or not. We write sgn(𝜎) : {±1} for the sign of 𝜎,

and call 𝜎 even if sgn(𝜎) = 1, and odd otherwise. ⌟

For permutations of the standard 𝑛-element set, this is the same as

the value Usgn(𝜎) : UΣ2. Note that sgn defines an abstract homomor-

phism from Aut(𝐴) to Σ2 for each 𝐴, since it does so for 𝐴 ≡ shΣ𝑛 .

Even better, this abstract homomorphism comes from a concrete one

sgn𝐴 : Hom(Aut(𝐴),Σ2) for each finite set 𝐴. Indeed, since 𝑇 =→ 𝑈 is

a 2-element set for any 2-element sets 𝑇 and 𝑈 , we can consider the

map Bsgn𝐴÷ : BAut(𝐴) → BΣ2 that maps 𝐵 : BAut(𝐴) to (Bsgn÷(𝐴) =→
Bsgn÷(𝐵)). The identification of Bsgn𝐴÷ (𝐴)with {±1}mentioned above

makes Bsgn𝐴÷ into a pointed map Bsgn𝐴 : BAut(𝐴) →∗ BΣ2, i.e., it defines

an homomorphism sgn𝐴 : Hom(Aut(𝐴),Σ2), as announced.
39

Lemma 4.5.10. (1) The sign of a transposition is −1.

(2) The sign of a 𝑘-cycle is (−1)𝑘−1.

(3) The identity permutation can only be expressed as a product of an even
number of transpositions.

Proof. For (1), it suffices to consider the transposition (1 2) of a standard

𝑛-element set {1, 2, . . . , 𝑛}. Relative to the standard local ordering

(1 < 2, 1 < 3, . . . , 1 < 𝑛, 2 < 3, . . . , 𝑛 − 1 < 𝑛), the transposition only

changes the ordering 1 < 2 to 2 < 1, thus differing at exactly one place.

Now (2) follows via Exercise 3.7.4.

For (3), assume id𝐴 = (𝑎1 𝑏1) · · · (𝑎𝑘 𝑏𝑘), and take the sign of both sides.

Since sgn is a homomorphism, we get +1 = (−1)𝑘 , so 𝑘 is even. □

Corollary 4.5.11. If a permutation 𝜎 is expressed as a product of transpositions
in two ways,

𝜎 = (𝑎1 𝑏1) · · · (𝑎𝑚 𝑏𝑚) = (𝑐1 𝑑1) · · · (𝑐𝑛 𝑑𝑛),

then the parity of 𝑚 equals that of 𝑛, and we have sgn(𝜎) = (−1)𝑚 = (−1)𝑛 .

groups, concretely 116

1

1

2

2

1

1

2

2

1

1

2

2

⇝ ⇝

Figure 4.4: The composition

(1 2)(1 2) = id𝟚 illustrated in the

style of Figure 4.3, with first two,

then no crossings.

...

...

...

...

Figure 4.5: The infinite dihedral

bicycle.

Figure 4.6: The quaternion bicycle.

Exercise 4.5.12. Here’s a different way of finding the sign of a permutation

of the standard 𝑛-element set 𝕟 (or of any totally ordered 𝑛-element set –

but these are all uniquely identified with 𝕟).

For 𝜎 :𝕟 ≃→ 𝕟, we call an ordered pair of elements 𝑖 , 𝑗 with 𝑖 < 𝑗 but

𝜎(𝑖) > 𝜎(𝑗) an inversion. If we represent 𝜎 graphically as in Figure 4.3,

then inversions are crossings of the edges (𝑖 , 𝜎(𝑖)) and (𝑗 , 𝜎(𝑗)). Show

that sgn(𝜎) = (−1)inv(𝜎)
, where inv(𝜎) is the number of inversions. ⌟

Remark 4.5.13. The two graphical representations Figures 3.11 and 4.3

each have their uses: In the former, the cycle decomposition is immedi-

ately visible, while permutations are easily composed using the latter

style. Note that the number of inversions depend on the linear ordering,

whereas the sign itself does not.

We also remark that when we compose permutations in the latter style,

we don’t immediately see the number of crossings/inversions, but we

can imagine “pulling the strings taut”, whereby the parity of the number

of crossings (and thus the sign) is preserved, as seen in Figure 4.4. ⌟

Exercise 4.5.14. Recall from Exercise 3.7.6 that there are 𝑛! permutations

in Σ𝑛 . Show that there are 𝑛!/2 even permutations for 𝑛 ≥ 2. ⌟

4.6 Bicycles

In Definition 3.6.3 we introduced the type of cycles: pairs (𝑋, 𝑡) of a

nonempty set 𝑋 and a bĳection 𝑡 :𝑋 ≃→ 𝑋 such that any two elements

𝑥, 𝑥′ :𝑋 can be connected in the sense that we have (under a propositional

truncation) a way to get from 𝑥 to 𝑥′ by repeated application of 𝑡 and its

inverse. These gave rise to the group of integers ℤ via the infinite cycle

(Z, s) in Example 4.2.18 and the cyclic groups of finite order C𝑚 via the

finite cycles (𝕞, s) in Example 4.2.22.

To give many more concrete examples of groups, we now focus on

sets with two bĳections, 𝑎 and 𝑏, such that any two elements 𝑥, 𝑥′ can be

connected by repeated application of 𝑎 and 𝑏 and their inverses, such

as the ones depicted in Figures 4.5 and 4.6, where we use the colors

amaranth and bluebell to indicate the actions of 𝑎 and 𝑏, respectively.

We call these bicycles the infinite dihedral and the quaternion bicycle,

respectively, for reasons that will become clear later.

To capture the idea of “connectedness” for bicycles, we note that it

may be necessary to alternate the application of the two equivalences

(and their inverses) an arbitrary number of times. One convenient way

of formalizing this is via lists of elements of Z⨿ Z, where the left/right

elements indicate a power of 𝑎/𝑏, respectively. Given a type 𝑋 with two

self-equivalences 𝑎, 𝑏 :𝑋 ≃→ 𝑋, we define the meaning ⟦ℓ⟧ :𝑋 ≃→ 𝑋 of

such a list ℓ by induction, cf. Section 2.12.10:

⟦𝜀⟧ :≡ id𝑋

⟦inl𝑛 ℓ⟧ :≡ 𝑎𝑛 ◦ ⟦ℓ⟧
⟦inr𝑛 ℓ⟧ :≡ 𝑏𝑛 ◦ ⟦ℓ⟧

For example, we have ⟦inl3 inr−2 inl−1 inr1⟧ = 𝑎3𝑏−2𝑎−1𝑏. With this in

place, we can define the type of bicycles as follows:

Definition 4.6.1. Let Bicyc be the subtype of ∑𝑋 :U (𝑋 → 𝑋)×(𝑋 → 𝑋) of

those pairs (𝑋, 𝑎, 𝑏) where 𝑋 is a nonempty set with two self-equivalences

groups, concretely 117

⟲1⟲2

Figure 4.7: The type S1 ∨ S1
is a point

with two loops attached.

40
Like “cycle”, our use of “bicycle” is

idiosyncratic. But just like cycles give

rise to cyclic groups, bicycles give

rise to a generalization of the notion

of bicyclic groups, see Douglas
41,42

.

41
Jesse Douglas. “On finite groups

with two independent generators.

I–IV”. in: Proc. Nat. Acad. Sci. U.S.A.
37 (1951), pp. 604–610, 677–691, 749–

760, 808–813. doi: 10.1073/pnas.37.
9.604. doi: 10.1073/pnas.37.10.
677.

doi: 10.1073/pnas.37.11.749.
doi: 10.1073/pnas.37.12.808.

42
Jesse Douglas. “On the supersolv-

ability of bicyclic groups”. In: Proc.
Nat. Acad. Sci. U.S.A. 47 (1961),

pp. 1493–1495. doi: 10.1073/pnas.
47.9.1493.

43
We’ll define more dihedral groups,

and gain a new perspective on D∞,

in Section 8.2.

Figure 4.8: An “abnormal” bicycle

with only the identity symmetry.

𝑎 and 𝑏, such that any 𝑥, 𝑥′ :𝑋 are connected by 𝑎 and 𝑏. Expressed in a

formula:

Bicyc :≡ ∑
𝑋 : Set

∑
𝑎 :𝑋 ≃→𝑋

∑
𝑏 :𝑋 ≃→𝑋

(
∥𝑋∥ × ∏

𝑥,𝑥′ :𝑋
∃

ℓ : (Z⨿Z)∗
(𝑥′ = ⟦ℓ⟧(𝑥))

)
.

Elements of Bicyc are called bicycles. ⌟

Remark 4.6.2. In Section 8.7 we shall see that just like cycles are equiva-

lently described as connected set bundles over the circle S1
, the bicycles

are the connected set bundles over the type S1 ∨ S1
: two circles with

their base points linked together. This type can also be constructed in

analogy with S1
as a higher inductive type with three constructors: a

base point, •, and two loops, ⟲1 and ⟲2, as depicted in Figure 4.7.

We shall also generalize to an arbitrary set 𝑆 of self-equivalences, and

the “𝑆-fold cycles” will be the connected set bundles over the classifying

type BF𝑆 of the “free group” on 𝑆 many generators. We postpone this,

since it requires some machinery to show that BF𝑆 is a groupoid. All in

good time; first we need to learn to ride our bicycles!
40 ⌟

With the definition of bicycles in place, we can define the infinite

dihedral and quaternion groups as automorphism groups:

Definition 4.6.3. Letting (Z⨿Z, 𝑎, 𝑏) be the standard infinite dihedral bicycle,
with

𝑎(inl𝑛) :≡ inl𝑛+1 , 𝑎(inr𝑛) :≡ inr𝑛−1 ,

𝑏(inl𝑛) :≡ inr𝑛 , 𝑏(inr𝑛) :≡ inl𝑛 ,

we define the infinite dihedral group to be D∞ :≡ AutBicyc(Z⨿ Z, 𝑎, 𝑏).43

Similarly, letting (𝟠, 𝑎, 𝑏) be the standard quaternion bicycle, with

𝑎(𝑘) :≡

𝑘 + 1, if 𝑘 is even,

𝑘 + 3, if 𝑘 is odd

𝑏(𝑘) :≡

𝑘 − 1, if 𝑘 is even,

𝑘 − 3, if 𝑘 is odd

(all operations modulo 8), we define the quaternion group to be Q8 :≡
AutBicyc(𝟠, 𝑎, 𝑏). ⌟

Now let us investigate the identifications of bicycles: If (𝑋, 𝑎, 𝑏) and

(𝑋′, 𝑎′, 𝑏′) are elements of ∑𝑋 :U (𝑋 → 𝑋) × (𝑋 → 𝑋), then univalence,

together with Definition 2.7.3, Lemma 2.10.3, and Construction 2.14.2,

gives an equivalence(
(𝑋, 𝑎, 𝑏) =→ (𝑋′, 𝑎′, 𝑏′)

) ≃→ ∑
𝑒 :𝑋 ≃→𝑋′

(𝑒𝑎 =→ 𝑎′𝑒) × (𝑒𝑏 =→ 𝑏′𝑒),

to a type whose three components we can visualize as:

𝑋 𝑋 𝑋 𝑋 𝑋

𝑋′ 𝑋′ 𝑋′ 𝑋′ 𝑋′

𝑒

𝑎

𝑒 𝑒

𝑏

𝑒 𝑒

𝑎′ 𝑏′

If 𝑋 and 𝑋′ are sets, then this is the subtype of 𝑋 → 𝑋′ consisting of

equivalences 𝑒 satisfying 𝑒𝑎 = 𝑎′𝑒 and 𝑒𝑏 = 𝑏′𝑒. This means that the

https://doi.org/10.1073/pnas.37.9.604
https://doi.org/10.1073/pnas.37.9.604
https://doi.org/10.1073/pnas.37.10.677
https://doi.org/10.1073/pnas.37.10.677
https://doi.org/10.1073/pnas.37.11.749
https://doi.org/10.1073/pnas.37.12.808
https://doi.org/10.1073/pnas.47.9.1493
https://doi.org/10.1073/pnas.47.9.1493

groups, concretely 118

Figure 4.9: Another “abnormal”

bicycle: It has four elements, but only

two symmetries.

44
What follows is a special case of a

more general story that resumes

in Definition 5.2.24 (for actions) and

will be the focus of Chapter 9 on

normal subgroups.

45
This is because all cycles (𝑋, 𝑡) are

normal in the general sense of Corol-

lary 3.6.15.

symmetries of a bicycle (𝑋, 𝑎, 𝑏) are given by those self-equivalences

𝑒 :𝑋 ≃→ 𝑋 that commute with both 𝑎 and 𝑏 in the sense that 𝑎𝑒 = 𝑎𝑒 and

𝑏𝑒 = 𝑒𝑏.

We now see the added complexity of going from cycles to bicycles:

For a (uni)cycle (𝑋, 𝑡), any power 𝑡𝑛 of 𝑡 will commute with 𝑡 itself, but

for a bicycle (𝑋, 𝑎, 𝑏), we need not have 𝑎𝑏 = 𝑏𝑎. Indeed, neither of the

bicycles in Figures 4.5 and 4.6 satisfies this. And there are many bicycles

whose only symmetry is the identity, e.g., the one in Figure 4.8, or has

fewer symmetries than desired, as in Figure 4.9.

However, all is not lost! Since all elements are connected by two self-

equivalences, we still have that any identification (𝑋, 𝑎, 𝑏) =→ (𝑋′, 𝑎′, 𝑏′) is
determined by the image of any given element 𝑥 :𝑋, giving a weakening

of Corollary 3.6.15 for cycles.

Lemma 4.6.4. Given bicycles (𝑋, 𝑎, 𝑏) and (𝑋′, 𝑎′, 𝑏′), for any 𝑥0 :𝑋, we have
that the evaluation map

ev𝑥0 :
(
(𝑋, 𝑎, 𝑏) =→ (𝑋′, 𝑎′, 𝑏′)

)
→ 𝑋′, ev𝑥0(𝑒) :≡ 𝑒(𝑥0)

is injective.

Proof. Fix 𝑥′ :𝑋′. It suffices to show that there is at most one equivalence

𝑒 :𝑋 ≃→ 𝑋′ satisfying 𝑒𝑎 = 𝑎′𝑒, 𝑒𝑏 = 𝑏′𝑒, and 𝑒(𝑥0) = 𝑥′. It follows by list

induction on ℓ : (Z⨿ Z)∗ that 𝑒⟦ℓ⟧ = ⟦ℓ⟧′𝑒, where ⟦_⟧ and ⟦_⟧′ use the

respective pairs of self-equivalences, (𝑎, 𝑏) and (𝑎′, 𝑏′).
Now by connectivity, for every 𝑥 :𝑋 there exists a list ℓ with 𝑥 = ⟦ℓ⟧(𝑥0).

Since we’re proving a proposition (the uniqueness of the value of 𝑒(𝑥)),
we may assume we have such a list. But then 𝑒(𝑥) = 𝑒(⟦ℓ⟧(𝑥0)) =
⟦ℓ⟧′𝑒(𝑥0) = ⟦ℓ⟧′𝑥′ is independent of 𝑒, as desired. □

This tells us what’s special about the infinite dihedral and the quater-

nion bicycles: they are normal.44

Definition 4.6.5. A bicycle (𝑋, 𝑎, 𝑏) is normal if the evaluation map

ev𝑥 :
(
(𝑋, 𝑎, 𝑏) =→ (𝑋, 𝑎, 𝑏)

)
→ 𝑋, ev𝑥(𝑒) :≡ 𝑒(𝑥)

is an equivalence for all 𝑥 :𝑋. ⌟

In other words, a normal bicycle has the maximum possible amount

of symmetry, in that any element is just like any other.

Exercise 4.6.6. Show that if the evaluation map is an equivalence for

some 𝑥 :𝑋, then its an equivalence for all 𝑥 :𝑋. ⌟

In other words, for a normal bicycle (𝑋, 𝑎, 𝑏) there is a unique symmetry

(i.e., permutation of 𝑋 commuting with 𝑎 and 𝑏) mapping any 𝑥 to 𝑥′

for any 𝑥, 𝑥′ :𝑋.

Definition 4.6.7. Given a normal bicycle (𝑋, 𝑎, 𝑏) with elements 𝑥, 𝑥′ :𝑋,

let 𝑥′□𝑥 : (𝑋, 𝑎, 𝑏) =→ (𝑋, 𝑎, 𝑏) be the symmetry that sends 𝑥 to 𝑥′. ⌟

It follows that 𝑥□𝑥 = id𝑋 and 𝑥′′□𝑥′ ◦ 𝑥′□𝑥 = 𝑥′′□𝑥 . We also have that

the inverse of ev𝑥 :
(
(𝑋, 𝑎, 𝑏) =→ (𝑋, 𝑎, 𝑏)

)
→ 𝑋 maps 𝑥′ to 𝑥′□𝑥 .

In Section 3.6 we used the subset 𝐻𝑡 ≡ { 𝑛 : Z | 𝑡𝑛 = id } of Z to study a

cycle (𝑋, 𝑡). There, we get the equal subsets { 𝑛 : Z | 𝑡𝑛(𝑥) = 𝑥 } no matter

which 𝑥 :𝑋 we pick.
45

For a bicycle (𝑋, 𝑎, 𝑏), however, the relationship

groups, concretely 119

46
For example, the Klein four-group

from Example 4.2.26 is equivalent

to the automorphism group of the

commuting bicycle:

...

...

...

...

Figure 4.10: A frieze pattern with

infinite dihedral symmetry.

𝑎−2𝑥0 𝑎2𝑏𝑥0

𝑎−1𝑥0 𝑎𝑏𝑥0

𝑥0 𝑏𝑥0

𝑎𝑥0 𝑎−1𝑏𝑥0

𝑎2𝑥0 𝑎−2𝑏𝑥0

𝑎3𝑥0 𝑎−3𝑏𝑥0

𝑇 𝑅

...

...

...

...

Figure 4.11: The frieze in Figure 4.10

with the infinite dihedral bicycle

of Figure 4.5 superimposed.

between the subsets

𝐻𝑥 :≡ { ℓ : (Z⨿ Z)∗ | ⟦ℓ⟧(𝑥) = 𝑥 }

for varying 𝑥 :𝑋 is exactly what determines normality. We leave this as

an exercise now, as we’ll return to normality in greater generality later,

especially in Chapter 9.

Exercise 4.6.8. Show that a bicycle (𝑋, 𝑎, 𝑏) is normal if and only if

𝐻𝑥 = 𝐻𝑦 for all 𝑥, 𝑦 :𝑋. ⌟

Exercise 4.6.9. Show that any commuting bicycle (𝑋, 𝑎, 𝑏), i.e., one satisfy-

ing 𝑎𝑏 = 𝑏𝑎, is normal. Then show that the map

Cyc × Cyc→ Bicyc, ((𝑋, 𝑡), (𝑌, 𝑢)) ↦→ (𝑋 × 𝑌, 𝑡 × id𝑌 , id𝑋 × 𝑢)

induces an equivalence onto the subtype of commuting bicycles.
46 ⌟

Assume now that we are given a normal bicycle (𝑋, 𝑎, 𝑏)with a chosen

element 𝑥0 :𝑋. We get a surjective map ⟦_⟧(𝑥0) : (Z⨿ Z)∗ → 𝑋, which

induces an equivalence relation on (Z⨿ Z)∗.
Exercise 4.6.10. Check that two lists ℓ , ℓ ′ : (Z⨿ Z)∗ are equivalent if and

only if ⟦ℓ⟧ = ⟦ℓ ′⟧. ⌟

Remark 4.6.11. Let us consider how list concatenation behaves with

respect to the induced symmetries of (𝑋, 𝑎, 𝑏). Note that if a symmetry

maps 𝑥 to 𝑥′, then it also maps ⟦ℓ⟧(𝑥) to ⟦ℓ⟧(𝑥′), since symmetries

commute with 𝑎, 𝑏, and hence with ⟦ℓ⟧. That is, 𝑥′□𝑥 = ⟦ℓ⟧(𝑥′)□⟦ℓ⟧(𝑥).
Then we can use ⟦ℓ ′⟧⟦ℓ⟧ = ⟦ℓ ′ℓ⟧ to calculate:

⟦ℓ⟧(𝑥0)□𝑥0 ◦ ⟦ℓ ′⟧(𝑥0)□𝑥0 = ⟦ℓ ′ℓ⟧(𝑥0)□⟦ℓ ′⟧(𝑥0) ◦ ⟦ℓ ′⟧(𝑥0)□𝑥0 = ⟦ℓ ′ℓ⟧(𝑥0)□𝑥0

𝑥0□⟦ℓ⟧(𝑥0) ◦ 𝑥0□⟦ℓ ′⟧(𝑥0) = 𝑥0□⟦ℓ⟧(𝑥0) ◦ ⟦ℓ⟧(𝑥0)□⟦ℓℓ ′⟧(𝑥0) = 𝑥0□⟦ℓℓ ′⟧(𝑥0)

This is the punchline: To get concatenation of lists to correspond to

composition of symmetries, we need to go backwards to the symmetry

that takes us to 𝑥0 from ⟦ℓ⟧(𝑥0), rather than the other way round. ⌟

Remark 4.6.12. The reader may have noticed that the symmetries of

the infinite dihedral bicycle in Figure 4.5 can be realized as geometric

symmetries of our picture of it, namely vertical translations and 180°

rotations. In fact, our figure has the same symmetries as the frieze pattern

of Figure 4.10. In Figure 4.11 we superimpose the bicycle on the frieze.

We also fix an element 𝑥0, which allows us to name all the elements via

applications of 𝑎 and 𝑏. Finally, we indicate two generating geometric

transformations: 𝑇, a downwards translation, and 𝑅, a 180° rotation

around the midpoint between 𝑥0 and 𝑏𝑥0 (the white circle). In other

words, 𝑇 = 𝑥0□𝑎𝑥0 = 𝑎−1𝑥0□𝑥0 and 𝑅 = 𝑥0□𝑏𝑥0 = 𝑏−1𝑥0□𝑥0 . Notice that 𝑅

can map elements quite far geometrically, for instance, 𝑅(𝑎𝑛𝑥0) = 𝑎𝑛𝑏𝑥0.

In general, we have

𝑇(⟦ℓ⟧(𝑥0)) = ⟦ℓ⟧(𝑎−1𝑥0)□⟦ℓ⟧(𝑥0)(⟦ℓ⟧(𝑥0)) = ⟦ℓ inl−1⟧(𝑥0),
𝑅(⟦ℓ⟧(𝑥0)) = ⟦ℓ⟧(𝑏−1𝑥0)□⟦ℓ⟧(𝑥0)(⟦ℓ⟧(𝑥0)) = ⟦ℓ inr−1⟧(𝑥0),

so 𝑇/𝑅 amounts to appending inl−1/inr−1 to the end of the list, respec-

tively, that names a given point. Conversely, if we named the points by

applying 𝑇 and 𝑅 (and inverses) to 𝑥0, then it would be the geometrically

local operations 𝑎 and 𝑏 that would correspond to inserting 𝑇−1
and

groups, concretely 120

𝑅−1
at the end. For example, 𝑎(𝑇−2𝑅(𝑥0)) = 𝑇−2𝑅𝑇−1(𝑥0). In fact, see

already saw one manifestation of this in Figure 3.5 back in Section 3.5,

and we’ll return to this phenomenon several times throughout the

book. We’ll discuss friezes and other geometrical objects in more detail

in Chapter 14. ⌟

Exercise 4.6.13. Construct an identification between the infinite dihedral

bicycle (𝑋, 𝑎, 𝑏) and its geometric cousin (𝑋, 𝑇, 𝑅), where 𝑇 and 𝑅 are as

in Figure 4.11. ⌟

Exercise 4.6.14. Two (normal) bicycles may represent the same group even

though they belong to two different components of Bicyc: Construct an

isomorphism between the automorphism groups of the bicycles below:

Then construct an isomorphism between either of these automorphism

groups and the symmetric group Σ3. ⌟

4.7 Infinity groups (∞-groups)

Disregarding the requirement that the classifying type of a group 𝐺 is a

groupoid (so that UG is a set) we get the simpler notion of∞-groups:

Definition 4.7.1. The type of∞-groups is

∞Group :≡ Copy(U >0
∗), where U >0

∗ :≡ ∑
𝐴 :U

𝐴 × isConn(𝐴)

is the type of pointed, connected types.

As for groups, we have the constructor Ω :U >0
∗ →∞Group and the

destructor B :∞Group→U >0
∗ . ⌟

Remark 4.7.2. Just as “group” is a synonym for “pointed, connected

groupoid” (wrapped with Ω), “∞-group” is a synonym for “pointed,

connected type” (wrapped withΩ). As for pointed, connected groupoids,

we suppress the propositional information from the notation, and write

(𝐴, 𝑎) instead of (𝐴, 𝑎, !) for an pointed, connected type. ⌟

Definition 4.7.3. Given 𝐺 :∞Group, the underlying pointed type BG :U ∗
is called the classifying type of 𝐺 and sh𝐺 :≡ ptBG is called the designated
shape. ⌟

Definition 4.7.4. For any type 𝐴 with a specified point 𝑎, we define the

automorphism∞-group of 𝑎 :𝐴 by

Aut𝐴(𝑎) :≡ Ω(𝐴(𝑎) , (𝑎, !)),

i.e., Aut𝐴(𝑎) is the∞-group with classifying type BAut𝐴(𝑎) ≡ (𝐴(𝑎) , (𝑎, !)),
the connected component of 𝐴 containing 𝑎, pointed at 𝑎. ⌟

Remark 4.7.5. It can certainly happen that the connected component

of 𝐴 containing 𝑎 is groupoid, even though 𝐴 itself is not a groupoid.

groups, concretely 121

For example, consider a type universe U and a set 𝑆 :U . Then U (𝑆) is

a groupoid, and the automorphism ∞-group AutU (𝑆) is an ordinary

group.

Because we have an inclusionU ∗=1 ↩→U ∗>0
, we get a corresponding

injection Group ↩→∞Group. ⌟

Definition 4.7.6. A homomorphism of∞-groups is a pointed function of

classifying types, i.e., given two∞-groups 𝐺 and 𝐻,we define

Hom(𝐺, 𝐻) :≡ Copy(BG→∗ BH).

Given 𝑓 ≡ ΩBf : Hom(𝐺, 𝐻), we call Bf : BG→∗ BH the classifying map
of 𝑓 . ⌟

5
Group actions and subgroups

Historically, groups have appeared because they can “act” on a set (or

more general objects), that is to say, they collect some of the symmetries

of the set. This is a point of view that we will return to many times and

we give the basic theory in Section 5.2. This section should remind the

reader of the material in Chapter 3, where we dealt with the special case

of the group of integers. More generally, connected set bundles now

reappear in the guise of “transitive 𝐺-sets”, and these are intimately

related to the set of subgroups of a group. These also generalize the

bicycles of Section 4.6, from which we lift the notion of “normality”.

Also discussed in Section 5.2 is the notion of “𝐺-torsor”. A𝐺-torsor is a

𝐺-set that is merely equal to the universal set bundle, see Examples 3.3.9

and 5.2.4. The type of 𝐺-torsors recovers the classifying type of the

group 𝐺, and this idea is used in Chapter 7 to build the equivalence

between our definition of a group and the abstract version taught in

most algebra classes.

5.1 Brief overview of the chapter

After setting things up in Section 5.2, and studying subgroups in Sec-

tion 5.3, we introduce the important operations of taking invariant maps
and orbits of an action in Section 5.4. The fundamental equivalence

between the classifying type BG of a group 𝐺 and the type of 𝐺-torsors

is constructed in Section 5.5. In Section 5.6 we apply 𝐺-torsors to prove

Cayley’s Theorem for our groups, and in Section 5.7 we begin the study of

the combinatorics of group actions. This allows us to count, for instance,

how many ways there are of “coloring” objects acted on by groups, and

it lays the groundwork for the combinatorics of finite groups we’ll be

looking at in Chapter 10.

5.2 Group actions (𝐺-sets)

One of the goals of Section 7.4 below is to prove that the types of

groups and abstract groups are equivalent. In doing that, we are invited

to explore how elements of abstract groups should be thought of as

symmetries and introduce the notion of a 𝐺-set. However, this takes

a pleasant detour where we have to explore a most important feature

of groups: they can act on things (giving rise to manifestations of

symmetries)!

Definition 5.2.1. For 𝐺 a group, a 𝐺-set is a function

𝑋 : BG→ Set,

122

group actions and subgroups 123

1
Note that in this case · : (𝑥 =→ 𝑦) →
𝑋(𝑥) → 𝑋(𝑦). See Example 5.2.4

for a special case where ·𝑋 is indeed

path composition.

Much of what follows will work

equally well for∞-groups; if 𝐺 is

(a group or) an infinity group, a

𝐺-type is a function 𝑋 : BG → U ,

with underlying type 𝑋(sh𝐺). This is

an action inU , and more generally,

an action of 𝐺 on an element of

type 𝐴 is a function 𝑋 : BG → 𝐴,

see Section 5.2.26 below.

2
The term “𝐺-torsor” will reappear

several times and will mean nothing

but a 𝐺-set in the component of ℙsh𝐺
– a “twisted” version of ℙsh𝐺 .

3
Note that Ad𝐺 also makes sense

for∞-groups. With the name “ad-

joint” we conform to usual termi-

nology. The action of Ad𝐺 works

as conjugation: if 𝑝 : 𝑦 =→ 𝑧, then

Ad𝐺(𝑝) : (𝑦 =→ 𝑦) ≃→ (𝑧 =→ 𝑧) is given

by:

Ad𝐺(𝑝)(𝑞) =→ 𝑝𝑞𝑝−1
in 𝑧 =→ 𝑧.

The picture

𝑦 𝑧

𝑦 𝑧

𝑝

𝑞 Ad𝐺 (𝑝)(𝑞)

𝑝

is a mnemonic device illustrating

that it couldn’t have been different,

and should be contrasted with the

picture for ℙsh𝐺 (𝑝) : (sh𝐺
=→ 𝑦) ≃→

(sh𝐺
=→ 𝑧):

sh𝐺 sh𝐺

𝑦 𝑧.

reflsh𝐺

𝑞 ℙsh𝐺
(𝑝)(𝑞)

𝑝

and 𝑋(sh𝐺) is referred to as the underlying set. If 𝑝 : 𝑥 =→ 𝑦 in BG, then the

transport function 𝑋(𝑥) → 𝑋(𝑦) induced by 𝑋(𝑝) :≡ trp𝑋(𝑝) :𝑋(𝑥)
=→

𝑋(𝑦) is also denoted by 𝑋(𝑝). We denote 𝑋(𝑝)(𝑎) by 𝑝 ·𝑋 𝑎. The operation

·𝑋 is called the group action of 𝑋. When 𝑋 is clear from the context we

may leave out the subscript 𝑋.
1

In particular, if 𝑔 : UG, then 𝑋(𝑔) is a

permutation of the underlying set 𝑋(sh𝐺) of 𝑋.

The type of 𝐺-sets is

𝐺-Set :≡ (BG→ Set). ⌟

Example 5.2.2. If 𝐺 is a group and 𝑋 is a set, then triv𝐺𝑋 defined by

triv𝐺𝑋(𝑧) :≡ 𝑋, for all 𝑧 : BG,

is a 𝐺-set. Examples of this sort (regardless of 𝑋) are called trivial
𝐺-sets. ⌟

Remark 5.2.3. The reader may have noticed that the type of 𝐺-sets is

equivalent to the type of set bundles over BG. The reason we have

allowed ourselves two names is that our focus is different: for a 𝐺-set

𝑋 : BG→ Set we focus on the sets 𝑋(𝑧), whereas when talking about set

bundles the first projection ∑𝑧 : BG 𝑋(𝑧) → BG takes center stage. Each

focus has its advantages. ⌟

Example 5.2.4. If 𝐺 is a group, then

ℙsh𝐺 : BG→ Set, ℙsh𝐺 (𝑧) :≡ (sh𝐺
=→ 𝑧)

is a 𝐺-set called the principal 𝐺-torsor.2 We’ve seen this family before in

the guise of (preimages of) the “universal set bundle” of Example 3.3.9.

There is nothing sacred about starting the identification sh𝐺
=→ 𝑧 at

sh𝐺. Define more generally

(5.2.1) ℙ_ : BG→ 𝐺-Set, ℙ𝑦 :≡ (𝑧 ↦→ (𝑦 =→ 𝑧)),

Applying ℙ_ to a path 𝑞 : 𝑦 =→ 𝑦′ induces an equivalence from ℙ𝑦 to ℙ𝑦′

that sends 𝑝 : 𝑦 =→ 𝑧 to 𝑝𝑞−1 : 𝑦′ =→ 𝑧. As a matter of fact, Theorem 5.5.7

will identify BG with the type of 𝐺-torsors via the map ℙ_, using the full

transport structure of the identity type ℙ𝑦(𝑧) ≡ (𝑦 =→ 𝑧). ⌟

Note that the underlying set of ℙsh𝐺 is

ℙsh𝐺 (sh𝐺) ≡ ℙsh𝐺 (sh𝐺) ≡ (sh𝐺
=→ sh𝐺) ≡ UG,

the underlying symmetries of 𝐺. If we vary both ends of the identifica-

tions simultaneously, we get another 𝐺-set:

Example 5.2.5. If 𝐺 is a group, then

Ad𝐺 : BG→U , Ad𝐺(𝑧) :≡ (𝑧 =→ 𝑧)

is a 𝐺-set (or 𝐺-type) called the adjoint 𝐺-set (or 𝐺-type).3 Notice that by

the induction principle for the circle,

∑
𝑧 : BG

Ad𝐺(𝑧) ≡ ∑
𝑧 : BG
(𝑧 =→ 𝑧)

is equivalent to the type of (unpointed!) maps S1 → BG, known in other

contexts as the free loop space of BG, an apt name given that it is the

type of “all symmetries in BG.” The first projection ∑𝑧 : BG Ad𝐺(𝑧) → BG
correspond to the function (S1 → BG) → BG given by evaluating at •. ⌟

group actions and subgroups 124

4
Hint: This is similar to Exam-

ple 4.4.17: identify Hom(ℤ, 𝐺)(𝑦)
with ∑𝑧 : BG ∑𝑝 : 𝑧 =→𝑧(𝑦 =→ 𝑧) and

use Lemma 2.9.10.

5
This definition generalizes to∞-

groups and 𝐺-types.

6
Recall Definition 2.20.3: Sub(𝑇) ≡
(𝑇 → Prop).

7
The type Sub𝐺(𝑋) can be uncurried

(Exercise 2.9.26) as Tot(𝑋) → Prop,

the type of subtypes of Tot(𝑋) ≡
∑𝑧 : BG 𝑋(𝑥) (Definition 2.20.3).

Example 5.2.6. Let 𝐺 and 𝐻 be groups. Recall the set Hom(𝐻, 𝐺) of

homomorphisms from 𝐻 to 𝐺 (Lemma 4.4.12). We will define group

actions on Hom(𝐻, 𝐺) by moving the shapes of 𝐺 and 𝐻 as in Exam-

ple 4.4.20: Reusing the notation Hom(𝐻, 𝐺), define for any 𝑥 : BH and

𝑦 : BG
Hom(𝐻, 𝐺)(𝑥, 𝑦) :≡ Hom(Ω(BH÷ , 𝑥),Ω(BG÷ , 𝑦)).

Alternatively, by Definition 2.21.1 and Definition 4.4.2, we have

Hom(𝐻, 𝐺)(𝑥, 𝑦) ≡ Copy
Ω

(
∑

𝑓 : BH÷→BG÷
(𝑦 =→ 𝑓 (𝑥))

)
.

The type Hom(𝐻, 𝐺)may be considered to be a (𝐻 × 𝐺)-set:

Hom(𝐻, 𝐺) : (BH × BG) → Set,

and we shall be particularly interested in the restriction to 𝐺, giving a

𝐺-set for which we again reuse the notation:

Hom(𝐻, 𝐺)(𝑦) :≡ Hom(𝐻, 𝐺)(sh𝐻 , 𝑦). ⌟

Exercise 5.2.7. Provide an identification between the 𝐺-sets Ad𝐺 and

Hom(ℤ, 𝐺) of Examples 5.2.5 and 5.2.6.
4 ⌟

Definition 5.2.8. If 𝐺 is a group and 𝑋,𝑌 are 𝐺-sets,
5

then a map from 𝑋

to 𝑌 is an element of the set

Hom𝐺(𝑋,𝑌) :≡ ∏
𝑧 : BG
(𝑋(𝑧) → 𝑌(𝑧)).

When 𝑓 is such a map, we may write 𝑓𝑧 for 𝑓 (𝑧). ⌟

Remark 5.2.9. Given 𝐺-sets 𝑋,𝑌 and a map 𝑓 from 𝑋 to 𝑌, we have

𝑓𝑤(𝑔 ·𝑋 𝑥) = 𝑔 ·𝑌 𝑓𝑧(𝑥) for all 𝑧, 𝑤 : BG, 𝑥 :𝑋(𝑧), 𝑔 : 𝑧 =→ 𝑤. In other words,

the diagram on the right commutes:

𝑧 𝑋(𝑧) 𝑌(𝑧)

𝑤 𝑋(𝑤) 𝑌(𝑤)

𝑔

𝑓𝑧

𝑔·𝑋 _ 𝑔·𝑌 _

𝑓𝑤

An important special case is when𝑌 is the𝐺-set triv𝐺Prop that is constant

Prop: Given a map 𝑃 from 𝑋 to triv𝐺Prop, we have 𝑃𝑤(𝑔 · 𝑥) if and only

if 𝑃𝑧(𝑥) for all 𝑧, 𝑤 : BG, 𝑥 :𝑋(𝑧), 𝑔 : 𝑧 =→ 𝑤. This applies to the following

definition. ⌟

Definition 5.2.10. A 𝐺-subset of a 𝐺-set 𝑋 is a map from 𝑋 to the 𝐺-set

triv𝐺Prop that is constant Prop. The type of all such maps is denoted
6

Sub𝐺(𝑋) :≡ Hom𝐺(𝑋, triv𝐺Prop) ≡ ∏
𝑧 : BG

Sub(𝑋(𝑧)).

Similarly to Corollary 2.20.12, Sub𝐺(𝑋) is a set.
7

If 𝑃 is a 𝐺-subset of 𝑋,

then the underlying 𝐺-set of 𝑃, denoted by 𝑋𝑃 , is defined by

𝑋𝑃(𝑧) :≡ ∑
𝑥 :𝑋(𝑧)

𝑃(𝑧, 𝑥), for all 𝑧 : BG. ⌟

group actions and subgroups 125

Exercise 5.2.11. Show that evaluation at sh𝐺 is an equivalence from

Sub𝐺(𝑋) to

∑
𝑄 : Sub(𝑋(sh𝐺))

∏
𝑥 :𝑋(sh𝐺)

(
𝑄(𝑥) → ∏

𝑔 : UG
𝑄(𝑔 · 𝑥)

)
.

The latter type is the type of all subsets of 𝑋(sh𝐺) that are closed under

the group action. ⌟

The following exercise wil be used in the subsequent remark.

Exercise 5.2.12. Let (𝐴, 𝑎) and (𝐵, 𝑏) be pointed types and let 𝐴 be

connected. Give an equivalence from (𝐴, 𝑎) →∗ (𝐵, 𝑏) to (𝐴, 𝑎) →∗
(𝐵(𝑏) , (𝑏, !)). ⌟

Remark 5.2.13. A𝐺-set𝑋 is often presented by focusing on the underlying

set 𝑋(sh𝐺) and providing it with a structure relating it to 𝐺 determining

the entire function 𝑋 : BG→ Set. More precisely, since BG is connected,

using Exercise 5.2.12, we have the following chain of easy equivalences:

𝐺-Set ≡ (BG÷ → Set)
≃→ ∑

𝑆 : Set
∑

𝑋 : (BG÷→Set)
(𝑆 =→ 𝑋(sh𝐺))

≡ ∑
𝑆 : Set
(BG→∗ (Set, 𝑆))

≃→ ∑
𝑆 : Set
(BG→∗ (Set(𝑆) , (𝑆, !)))

≃→ ∑
𝑆 : Set

Hom(𝐺,Σ𝑆)

Hence a 𝐺-set 𝑋 can, without loss of information, be considered as a

set 𝑋(sh𝐺) and a homomorphism from 𝐺 to the permutation group of

𝑋(sh𝐺). ⌟

Definition 5.2.14. If 𝐺 is a group and 𝑆 is a set, then an action of 𝐺 on 𝑆

is a homomorphism from 𝐺 to the permutation group of Σ𝑆 of 𝑆. ⌟

By the construction in Remark 5.2.13 we identify 𝐺-sets and sets with

an action of 𝐺 on a set.

Exercise 5.2.15. Prove that a group 𝐺 is abelian if and only if the 𝐺-sets

Ad𝐺 and triv𝐺(UG) are identical. ⌟

Exercise 5.2.16. Prove that a group 𝐺 is the trivial group if and only if

the 𝐺-sets Ad𝐺 and ℙsh𝐺 are identical. ⌟

Definition 5.2.17. Let 𝐺 be a group and 𝑋 : BG→ Set a 𝐺-set. We say 𝑋

is finite if the underlying set 𝑋(sh𝐺) is finite. (If 𝑋(sh𝐺) is an 𝑛-element

set, then so is 𝑋(𝑧), for any 𝑧 : BG.) For any finite 𝐺-set 𝑋 we denote the

number of elements in 𝑋(sh𝐺) by #(𝑋), also called the cardinality of 𝑋.

⌟

5.2.18 Transitive 𝐺-sets

We saw in Chapter 3 that connected set bundles play a special role: In the

case of the circle, classifying the group of integers ℤ, they correspond to

cycles (Corollary 3.6.4).

We hinted there that they are connected to subgroups, so we now

study them over a general group 𝐺. As 𝐺-sets they are called transitive

𝐺-sets. Classically, an abs(𝐺)-set (a notion we have yet not defined) X is

group actions and subgroups 126

𝑥

Figure 5.1: An Ω(S1 ∨ S1)-set 𝑋 for

which ev𝑥 is not surjective. At the

bottom the type S1 ∨ S1
is visualized

as two circles with a common base

point. Note that the underlying

set of 𝑋 with the red and the blue

permutation is a bicycle in the sense

of Definition 4.6.1.

𝑥

Figure 5.2: Alternative representation

of the Ω(S1 ∨ S1)-set 𝑋 from Fig-

ure 5.1, using colors and arrows

to represent which parts lies over

which circle in which orientation.

8
Recall that for type families

𝑋,𝑌 :𝑇 →U , and 𝑓 : ∏𝑧 :𝑇 (𝑋(𝑧) →
𝑌(𝑧)), we may write 𝑓𝑧 : (𝑋(𝑧) →
𝑌(𝑧)) (instead of the more correct

𝑓 (𝑧)) for its evaluation at 𝑧 :𝑇.

said to be transitive if there exists some 𝑥 :X such that for all 𝑦 :X there

exists a 𝑔 :X with 𝑥 = 𝑔 · 𝑦. In our world this translates to:

Definition 5.2.19. A 𝐺-set 𝑋 : BG→ Set is transitive if the proposition

isTrans(𝑋) :≡ ∃
𝑥 :𝑋(sh𝐺)

∏
𝑦 :𝑋(sh𝐺)
∃
𝑔 : UG
(𝑥 = 𝑔 · 𝑦)

holds. ⌟

Remark 5.2.20. In other words, 𝑋 is transitive if and only if there exists

some 𝑥 :𝑋(sh𝐺) such that the map _ · 𝑥 : UG→ 𝑋(sh𝐺) is surjective.

Note also that by connectedness (cf. Exercise 2.16.9) it is equivalent to

demand this over all 𝑧 : BG:

(5.2.2) ∏
𝑧 : BG
∃

𝑥 :𝑋(sh𝐺)
∏

𝑦 :𝑋(sh𝐺)
∃

𝑔 : 𝑧 =→𝑧

(𝑥 = 𝑔 · 𝑦).

Yet another equivalent way of expressing that 𝑋 is transitive is to

say that 𝑋(sh𝐺) is nonempty and for any 𝑥, 𝑦 :𝑋(sh𝐺) there exists some

𝑔 : UG with 𝑥 = 𝑔 · 𝑦. Note that the empty 𝐺-set is not transitive. ⌟

Lemma 5.2.21. A 𝐺-set is transitive if and only if the associated set bundle is
connected (see Definition 3.3.1).

Proof. Consider a 𝐺-set 𝑋 : BG → Set and the associated set bundle

𝑓 : 𝑋̃ → BG where 𝑋̃ :≡ ∑𝑦 : BG 𝑋(𝑦) and 𝑓 is the first projection. Now, 𝑋̃

is connected if and only if there exists a 𝑧 : BG and an 𝑥 :𝑋(𝑧) such that

for all 𝑤 : BG and 𝑦 :𝑋(𝑤) there exists some 𝑔 : 𝑧 =→ 𝑤 such that 𝑦 = 𝑔 · 𝑥.

Since BG is connected, this is equivalent to asserting that there exists

some 𝑥 :𝑋(sh𝐺) such that for all 𝑦 :𝑋(sh𝐺) there exists some 𝑔 : UG such

that 𝑥 = 𝑔 · 𝑦. □

The next lemma is an analog of Corollary 3.6.15 (for cycles), and a

generalization of Lemma 4.6.4 (for bicycles). The action in Figure 5.1

corresponds to the bicycle back in Figure 4.8 (and reproduced in Fig-

ure 5.2) illustrates what can go wrong. We’ll study exactly when we get

surjectivity in Section 9.5 on “normal” subgroups.

Lemma 5.2.22. Let 𝑋,𝑌 : BG→ Set be 𝐺-sets. Let 𝑧 : BG and 𝑥 :𝑋(𝑧). If 𝑋 is
transitive, then the evaluation map

ev𝑥 : Hom𝐺(𝑋,𝑌) → 𝑌(𝑧), ev𝑥(𝑓) :≡ 𝑓𝑧(𝑥)

is injective.8

Proof. We show that for any 𝑦 :𝑌(𝑧), there is at most one 𝑓 : Hom𝐺(𝑋,𝑌)
such that 𝑓𝑧(𝑥) = 𝑦. Let 𝑓 , 𝑓 ′ : Hom𝐺(𝑋,𝑌) such that 𝑓𝑧(𝑥) = 𝑦 = 𝑓 ′𝑧 (𝑥).
Let 𝑤 : BG and 𝑥′ :𝑋(𝑤). It suffices to show that 𝑓𝑤(𝑥′) = 𝑓 ′𝑤(𝑥′). Since

the latter is a proposition, we may assume (by the transitivity of 𝑋,

using Lemma 5.2.21) that we have a 𝑔 : 𝑧 =→ 𝑤 such that 𝑔 ·𝑋 𝑥 = 𝑥′.

Using Remark 5.2.9, we have

𝑓𝑤(𝑥′) = 𝑓𝑤(𝑔 ·𝑋 𝑥) = 𝑔 ·𝑌 𝑓𝑧(𝑥) = 𝑔 ·𝑌 𝑓 ′𝑧 (𝑥) = 𝑓 ′𝑤(𝑔 ·𝑋 𝑥) = 𝑓 ′𝑤(𝑥′). □

Via function extensionality, the identity type 𝑋 =→ 𝑌, for 𝐺-sets 𝑋,𝑌 is

a subtype of the type Hom𝐺(𝑋,𝑌). Hence we also have that evaluation

at some 𝑥 :𝑋(𝑧), for any given 𝑧 : BG, is an injection

ev𝑥 : (𝑋 =→𝐺-Set 𝑌) → 𝑌(𝑧).

group actions and subgroups 127

9
Even an∞-group in the sense of

Section 4.7.

Exercise 5.2.23. Reverse engineer the Ω(S1 ∨ S1)-set 𝑋 in Figures 5.1

and 5.2. Show that 𝑋 =→ 𝑋 is contractible. Conclude that ev𝑥 , while

injective, is not surjective. (Hint: the induction principle for S1 ∨ S1
is a

generalization of the induction principle for the circle to two loops.) ⌟

We can now generalize the definition of normal bicycle from Defini-

tion 4.6.5 to transitive 𝐺-sets:

Definition 5.2.24. A transitive 𝐺-set 𝑋 : BG→ Set is normal if the evalua-

tion map

ev𝑥 :
(
𝑋 =→𝐺-Set 𝑋) → 𝑋(𝑥), ev𝑥(𝑒) :≡ 𝑒(𝑥)

is an equivalence for all 𝑥 :𝑋. ⌟

Exercise 5.2.25. Show that if the evaluation map is an equivalence for

some 𝑥 :𝑋, then its an equivalence for all 𝑥 :𝑋. (This generalizes Exer-

cise 4.6.6.) ⌟

5.2.26 Actions in a type

Oftentimes it is interesting not to have an action on a set, but on an

element in any given type (not necessarily the type of sets). For instance,

a group can act on another, giving rise to the notion of the semidirect

product in Section 8.2. We will return these more general types of actions

many times.

Definition 5.2.27. If 𝐺 is any group
9

and 𝐴 is any type, then we define

an action of 𝐺 in 𝐴 as a function

𝑋 : BG→ 𝐴.

The particular “object of type 𝐴 being acted on” is 𝑋(sh𝐺) :𝐴,

Fixing 𝑎 :𝐴 as the underlying object, we define an action of 𝐺 on 𝑎 to

be a homomorphism from 𝐺 to Aut𝐴(𝑎). ⌟

This generalizes our earlier definition of 𝐺-sets 𝑋 : BG→ Set from Def-

inition 5.2.1, and harmonizes with Remark 5.2.13, relating 𝐺-sets and

actions of 𝐺 on a set. Indeed, we identify an action of 𝐺 in 𝐴 with a pair

of an underlying object 𝑎 :𝐴 and an action of 𝐺 on 𝑎:

(BG→ 𝐴) ≃→ ∑
𝑎 :𝐴

Hom(𝐺,Aut𝐴(𝑎))

This equivalence, hinted at in Exercise 4.4.19, maps an action 𝑋 : BG→ 𝐴

to the pair consisting of 𝑎 :≡ 𝑋(sh𝐺) and the homomorphism represented

by the pointed map from BG to the pointed component 𝐴(𝑎) given by 𝑋.

Definition 5.2.28. The standard action of 𝐺 on its designated shape sh𝐺 is

obtained by taking 𝐴 :≡ BG and 𝑋 :≡ idBG. ⌟

Example 5.2.29. The symmetric group Σ2 acts on the cyclic group C3 as

follows. Given a 2-element set 𝑆 consider the type ∑𝑋 : Set(𝑆→ (𝑋 → 𝑋))
of pairs (𝑋, 𝑓) of a set 𝑋 and a “pair” of functions 𝑓𝑠 :𝑋 → 𝑋 (one for

each 𝑠 : 𝑆). In this type we have the element (𝟙⨿ 𝑆, 𝑓), consisting of the

3-element set 𝟙⨿ 𝑆 and the function 𝑓 : 𝑆→ ((𝟙⨿ 𝑆) → (𝟙⨿ 𝑆)) defined

by

𝑓𝑠(inl0) :≡ inr𝑠 ,

𝑓𝑠(inr𝑠) :≡ inrswap(𝑠) ,

𝑓𝑠(inrswap(𝑠)) :≡ inl0.

group actions and subgroups 128

10
If 𝑆 is {𝑠, 𝑠′}, then we can picture the

designated shape as follows, where

the blue and red arrows denote 𝑓𝑠
and 𝑓𝑠′ , respectively:

𝟙

𝑆

0

𝑠

𝑠′

𝟙⨿ 𝑆

11
Check that this action is transitive for

𝑛 > 0.

12
To lighten the notation, we leave

out the proof that 𝑋 is transi-

tive. (Otherwise, we would write

(𝑋, 𝑥, !) : Sub(𝐺).) In Remark 5.3.22

below we’ll set out further notational

conveniences regarding subgroups.

Then𝐺(𝑆) :≡ Aut∑𝑋 : Set 𝑆→𝑋→𝑋(𝟙⨿𝑆, 𝑓)defines an action BΣ2 → Group.
10

Furthermore, we identify𝐺(Bool)with BC3 by mapping a shape (𝑋, 𝑓) in
BG(Bool) to the 3-cycle (𝑋, 𝑓yes) and identifying the 3-cycle (𝟙⨿Bool, 𝑓yes),
for the 𝑓 defined above, with the standard 3-cycle (𝟛, s), correlating inl0

with 0 :𝟛. ⌟

Exercise 5.2.30. Show that action of Σ2 on C3 from Example 5.2.29 gives

an identification Σ2
=→ Aut(C3). ⌟

Example 5.2.31. By composing constructions we can build new actions

starting from simple building blocks. For example, the standard action

of symmetric group Σ𝑛 is to permute the elements of the standard

𝑛-element set 𝕟. Composing with the projection BΣ𝑛 → Set, we get the

corresponding standard Σ𝑛-set.
11

Composing further with the operation

_→ Bool : Set→ Set, mapping any set 𝑆 to the set 𝑆→ Bool, we get the

action of Σ𝑛 on the set of decidable subsets of 𝕟. ⌟

5.3 Subgroups

In our discussion of the group ℤ :≡ AutS1(•) of integers in Chapter 3

we discovered that some of the symmetries of • were picked out by the

degree 𝑚 function 𝛿𝑚 : S1 → S1
(for some particular natural number

𝑚 > 0, see Definition 3.6.5). On the level of the set •
=→ •, the symmetries

picked out are all the iterates (positive or negative or even zero-fold)

of ⟲𝑚
. The important thing is that we can compose or invert any of

the iterates of ⟲𝑚
and get new symmetries of the same sort (because

of distributivity 𝑚𝑛1 + 𝑚𝑛2 = 𝑚(𝑛1 + 𝑛2)). So, while we do not get all

symmetries of • (unless 𝑚 = 1), we get what we’d like to call a subgroup

of the group of integers.

The case of 𝑚 = 0 is special. The iterates of ⟲0
, i.e., of refl•, can also be

composed and inverted, never to give something else than ⟲0
itself. This

is what we’d like to call the trivial subgroup of the group of integers. We

can pick out the single symmetry ⟲0
by the constant map cst• :𝟙→ S1

.

Both 𝛿𝑚 and cst• can trivially be pointed to make them into classifying

maps of homomorphisms that are injections on the respective sets of

symmetries. Using Corollary 3.6.10, each 𝛿𝑚 is a pointed connected

set bundle over the circle, and cst• is even the universal set bundle by

Lemma 3.3.11. Finally, Lemma 5.2.21 gives yet another equivalent view,

namely the of pointed transitive 𝐺-sets. This view will now be used for

our first formal definition of the notion of a subgroup of a group 𝐺.

5.3.1 Subgroups through 𝐺-sets

The idea of this approach is to take the total type of a transitive 𝐺-set

𝑋 and to choose a point 𝑥 :𝑋(sh𝐺) in the underlying set of 𝑋. Then the

symmetries of (sh𝐺 , 𝑥) are precisely the symmetries of sh𝐺 that keep the

chosen point 𝑥 in place.

Definition 5.3.2. For any group 𝐺, define the type of subgroups of 𝐺 as

Sub(𝐺) :≡ ∑
𝑋 : BG→Set

𝑋(sh𝐺) × isTrans(𝑋).

The underlying group of the subgroup (𝑋, 𝑥) : Sub(𝐺) is12

group actions and subgroups 129

13
Any element of 𝕞 would do.

14
Instance: 𝑧 ≡ sh𝐺 , 𝑌 ≡ 𝑋′ and 𝑦 ≡ 𝑥′.

15
The choice of the point does matter

for the symmetries that are picked

out.

16
This uses the alternative notation for

the group action of 𝑋 introduced in

Definition 5.2.1.

Figure 5.3: Geometrical shapes

illustrating C3 as subgroup of C6.

Ω

(
∑
𝑧 : 𝐵𝐺

𝑋(𝑧), (sh𝐺 , 𝑥)
)
. ⌟

Exercise 5.3.3. Show that ∑𝑧 : 𝐵𝐺 𝑋(𝑧) above is a connected groupoid.

Hint: use Lemma 5.2.21. ⌟

Example 5.3.4. Recall from Definition 3.6.7 the S1
-set 𝑅𝑚 : S1 → Set

defined by 𝑅𝑚(•) :≡ 𝕞 and 𝑅𝑚(⟲) B s̄. Here 𝑚 > 0 so that we can

point 𝑅𝑚 by 0 :𝑅𝑚(•).13
Transitivity of 𝑅𝑚 is obvious. Which symmetries

𝑝 : •
=→ • are picked out by 𝑅𝑚 , that keep the point 0 :𝑅𝑚(•) in place?

Those that satisfy 𝑅𝑚(𝑝)(0) = 0, i.e., 𝑝 = ⟲𝑚𝑘
for some integer 𝑘. Given

𝛼𝑚 in Construction 3.6.9, it should not come as a surprise that these are

precisely the symmetries picked out by 𝛿𝑚 .

The case of𝑚 = 0 connects to another old friend: the S1
-set𝑅 : S1 → Set

defined by 𝑅(•) :≡ Z and 𝑅(⟲) B s̄, see Definition 3.3.12. Again we

point by 0 :𝑅(•) and transitivity of 𝑅 is obvious. The only symmetry

that keeps 0 in place is refl•, since 𝑅(⟲𝑘)(0) = s𝑘(0) = 𝑘 = 0 if and only if

𝑘 = 0. Again, no surprise in view of the results in Section 3.4 identifying

𝑅 as the universal set bundle over S1
. ⌟

The following result is analogous to the fact that Sub(𝑇) is a set for

any type 𝑇, see Definition 2.20.3. It captures that the essence of picking

out symmetries (or picking out elements of a type), is a predicate, like

𝑅𝑚(𝑝)(0) = 0 in Example 5.3.4.

Lemma 5.3.5. For any group 𝐺, the type Sub(𝐺) of subgroups of 𝐺 is a set.

Proof. Let 𝐺 be a group, and let (𝑋, 𝑥, !) and (𝑋′, 𝑥′, !) be elements of

Sub(𝐺), i.e., subgroups of 𝐺. Any 𝑓 : (𝑋, 𝑥, !) =→ (𝑋′, 𝑥′, !), can be viewed

as a family of equivalences of type 𝑋(𝑧) ≃→ 𝑋′(𝑧), parameterized by

𝑧 : BG, with 𝑓sh𝐺 (𝑥) = 𝑥′. By the definition of Sub(𝐺), the 𝐺-set 𝑋 is

transitive, and 𝑥 :𝑋(sh𝐺). Now Lemma 5.2.22 applies.
14

It follows that

(𝑋, 𝑥, !) =→ (𝑋′, 𝑥′, !) is a proposition. □

Example 5.3.6. Consider the symmetric group Σ𝑛 from Example 4.2.20(2),

for some 𝑛 > 0. The Σ𝑛-set 𝑋 : BΣ𝑛 → Set given by 𝑋(𝐴, !) :≡ 𝐴 for

𝐴 : FinSet𝑛 is obviously transitive. For any 𝑘 :𝕟, we can point 𝑋 by

𝑘 :𝑋(shΣ𝑛) ≡ 𝕟.
15

Thus we have (𝑋, 𝑘) : Sub(Σ𝑛). The symmetries that

are picked out are those 𝜋 :𝕟 =→ 𝕟 that satisfy (𝜋 ·𝑋 𝑘) = 𝑘.16
In other

words, 𝜋 keeps 𝑘 in place and can be any permutation of the other

elements of 𝕟. From the next Exercise 5.3.7 we get that the underlying

group of each (𝑋, 𝑘) is isomorphic to Σ𝑛−1. ⌟

Exercise 5.3.7. Give an equivalence from the type of 𝑛-element sets to

the type of pointed (𝑛+1)-element sets. Hint: use Exercise 2.24.6. ⌟

Exercise 5.3.8. For any set 𝐴 with decidable equality, give an equivalence

from 𝐴 to ∑𝐵 :U (𝐴 =→ (𝐵 + 𝟙)). ⌟

Example 5.3.9. Recall from Example 4.2.22 the definition C6 :≡ AutCyc(𝟞, s)
of the cyclic group of order 6. This group can be visualized as the rota-

tional symmetries of a regular hexagon, i.e., the rotations by 2𝜋 · 𝑚/6,

where 𝑚 = 0, 1, 2, 3, 4, 5. The symmetries of the regular triangle (rota-

tions by 2𝜋 · 𝑚/3, where 𝑚 = 0, 1, 2) can also be viewed as symmetries

of the hexagon, see Figure 5.3. Thus there is a subgroup of C6 which, as

a group, is isomorphic to C3, and which we now construct.

group actions and subgroups 130

17
The function [𝑘] ↦→ [𝜋(𝑘)] is well-

defined since permutations that

commute with s preserve distance.

18
In view of Corollary 3.6.16, these

symmetries can be visualized by

the vertices of the regular triangle,

see Figure 5.3. The same is true

for the symmetries picked out by

𝐹(𝜋)([1]) = [1]. Both 𝐹(𝜋)([0]) = [1]
and 𝐹(𝜋)([1]) = [0] give the other

inscribed regular triangle.

19
The similarity of this type with

the type of subtypes Sub(𝑇) :≡
∑𝑆 :U ∑ 𝑓 : 𝑆→𝑇 isInj(𝑓) in Defini-

tion 2.20.3 is not coincidental, and

the remarks made there in Foot-

note 72 apply here as well.

In particular, the identity type

of Mono(𝐺) identifies precisely the

triples that define the same sub-

group, namely when their homomor-

phisms differ by precomposition by

an identification of their underlying

groups.

20
This amounts to 𝐵𝑖 being the univer-

sal set bundle over 𝐵𝐺, see Defini-

tion 3.3.10

That 𝑖 : Σ2 → Σ3 is a monomorphism

can visualized as follows: if Σ3 repre-

sent all symmetries of an equilateral

triangle in the plane (with vertices

1, 2, 3), then 𝑖 is represented by the

inclusion of the symmetries leaving 3
fixed; i.e., reflection through the line

marked with dots in the picture.

3

1 2

In order to obtain C3 as a subgroup we can define 𝐹 : C6 → Set defined

by 𝐹(𝑋, 𝑡) :≡ 𝑋/2 for all (𝑋, 𝑡) : BC6, where 𝑋/2 is defined in Section 3.8

as the quotient of 𝑋 modulo identifying elements that are an even power

of 𝑡 away from each other. Clearly, 𝐹 is a transitive 𝐺-set. On symme-

tries, 𝐹 maps 𝜋 : (𝟞, s) =→ (𝟞, s) to ([𝑘] ↦→ [𝜋(𝑘)]) : (𝟞, s)/2 =→ (𝟞, s)/2.
17

The symmetries 𝜋 satisfying 𝐹(𝜋)([0]) = [0] are the even powers of

s.
18

The subgroup that we have defined above is (𝐹, [0], !) : Sub(C6).
The underlying group of (𝐹, [0], !) is Ω(∑(𝑋,𝑡) : Cyc6

𝑋/2, ((𝟞, s), [0])). Us-

ing 𝜌2 : BC3 →∗ BC6 from Lemma 3.8.6, and the equivalence between

𝑋/2 and 𝜌−1
2 (𝑋, 𝑡) from Construction 3.8.11, and the equivalence from

Lemma 2.25.2, we get an equivalence between the underlying group of

(𝐹, [0], !) and C3. ⌟

There are other subgroups of C6, and in this example they are ac-

counted for simply by the various factorizations of the number 6.

5.3.10 Subgroups as monomorphisms

For many purposes it is useful to define “subgroups” slightly differently.

We now give a second, equivalent definition of a subgroup, generalizing

the examples 𝛿𝑚 and cst• from the introduction of this chapter. Recall that

both U𝛿𝑚 and U cst• are injective. Also recall Corollary 2.17.9(2), which

implies that Uf is injective iff Bf is a set bundle, for any homomorphism

𝑓 .

Definition 5.3.11. Let 𝐺 and 𝐻 be groups. We say that homomorphism

𝑖 : Hom(𝐻, 𝐺) is a monomorphism, denoted isMono(𝑖), if Ui : UH→ UG
is an injection (all preimages of Ui are propositions).

The type of monomorphisms into 𝐺19
is

Mono(𝐺) :≡ ∑
𝐻 : Group

∑
𝑖 : Hom(𝐻,𝐺)

isMono(𝑖).

We call 𝐻 the underlying group of (𝐻, 𝑖, !) : Mono(𝐺).
A monomorphism (𝐻, 𝑖, !) into 𝐺 is:

(1) trivial if 𝐻 is the trivial group;
20

(2) proper if 𝑖 is not an isomorphism. ⌟

Example 5.3.12. We will present the subgroups from Example 5.3.6 with

monomorphisms. For each 𝑛 :ℕ, consider the homomorphism 𝑖𝑛 :Σ𝑛 →
Σ𝑛+1 of permutation groups with Bi𝑛 sending 𝐴 : BΣ𝑛 :≡ FinSet𝑛 to

𝐴+True : BΣ𝑛+1. As pointing path we take the reflexivity path. This is a

monomorphism since Ui𝑛 : U Σ𝑛 → U Σ𝑛+1 is an injection, extending any

permutation 𝜋 of 𝕟 to a permutation of 𝕟 + 𝟙 by adding the last element

as a fixed point.

In the picture in the margin we have taken 𝑛 = 3 and {1, 2, 3} for 𝟛.

How can we obtain the other proper, non-trivial subgroups of Σ3? First of

all, one should not expect to find all subgroups through monomorphisms

𝑗 : Σ2 → Σ3, see Exercise 5.3.14. Using only Σ2, the two other subgroups

can be obtained by varying the pointing path of 𝑖3. These pointing paths

are induced by the permutations of 𝟛. In Exercise 5.3.13 you are asked

to elaborate each case. ⌟

Exercise 5.3.13. Calculate im(Ui3) for each pointing path 𝜋 :𝟛 =→ 𝟛. ⌟

group actions and subgroups 131

21
Recall that we may omit “!”s: propo-

sitional data never dies, it just fades

away!

Exercise 5.3.14. Define monomorphisms 𝑗 , 𝑗′ : C3 → Σ3 such that Uj ≠
Uj′ while (C3 , 𝑗 , !) and (C3 , 𝑗

′, !) can be identified. ⌟

Example 5.3.15. If 𝐺 and 𝐻 are groups, then 𝑖𝐺 :𝐺→ 𝐺 × 𝐻, classified

by Bi𝐺 : BG→∗ BG × BH with Bi𝐺(𝑧) :≡ (𝑧, sh𝐻), pointed by reflexivity,

is a monomorphism: Ui𝐺 maps 𝑔 : UG to (𝑔, reflsh𝐻) and is obviously

injective. We call 𝑖𝐺 the first inclusion and we have a similar second
inclusion 𝑖𝐻 :𝐻 → 𝐺 × 𝐻. ⌟

Lemma 5.3.16. Let 𝐺 be a group. The map sending (𝑋, pt, !) : Sub(𝐺) to the
monomorphism classified by fst :

(
∑𝑧 : BG 𝑋(𝑧), (sh𝐺 , pt)

)
→∗ BG, pointed by

reflexivity, yields an equivalence21

𝐹 : Sub(𝐺) →Mono(𝐺) : (𝑋, pt) ↦→
(
Ω

(
∑
𝑧 : BG

𝑋(𝑧), (sh𝐺 , pt)
)
,Ω fst

)
.

Proof. The inverse equivalence is 𝐸 defined as follows:

𝐸 : Mono(𝐺) → Sub(𝐺), (𝐻, 𝑖) ↦→ 𝐸(𝐻, 𝑖) :≡ (Bi−1
÷ , (sh𝐻 , Bipt)),

where the monomorphism 𝑖 : Hom(𝐻, 𝐺) is given by the pointed map

(Bi÷ , Bipt) : BH →∗ BG. The preimage function Bi−1
÷ : BG → Set is a

transitive 𝐺-set since 𝑖 is a monomorphism, and (sh𝐻 , Bipt) : Bi−1
÷ (sh𝐺) :≡

∑𝑥 : BH(sh𝐺
=→ Bi÷(𝑥)). Now do Exercise 5.3.18 below. □

Example 5.3.17. In this example we explain how the equivalence between

Mono(𝐺) and Sub(𝐺) works in the special case 𝐺 ≡ Σ3 and with two

versions of the same subgroup.

Recall (Σ2 , 𝑖3 , !) : MonoΣ3 with 𝑖3 : Σ2 →∗ Σ3 : 𝐵 ↦→ (𝐵 + True) from

Example 5.3.12. The preimage function Bi−1
3 maps any 𝐴 : BΣ3 to

∑𝐵 : BΣ2(𝐴
=→ (𝐵 + True)). In particular we have (𝟚, refl𝟛) : Bi−1

3 (𝟛) (re-

call that 𝑖3 is pointed by reflexivity).

We have𝐸(Σ2 , 𝑖3 , !) ≡ (Bi−1
3 , (𝟚, refl𝟛), !). Going back as in Lemma 5.3.16

we get (∑𝐴 : BΣ3 Bi−1
3 (𝐴), fst, !). Using Lemma 2.25.2 one sees that, indeed,

the latter monomorphism can be identified with (Σ2 , 𝑖3 , !).
Why do we say that (𝑋3 , 3, !) : Sub(Σ3) from Example 5.3.6 defines

the same subgroup as (Σ2 , 𝑖3 , !) : MonoΣ3 from Example 5.3.12? The

reason is that they pick out the same symmetries in Σ3, as argued in

these examples. Moreover, (𝑋3 , 3, !) and 𝐸(Σ2 , 𝑖3 , !) can be identified.

Note that 𝑋3(𝐴, !) ≡ 𝐴 and Bi−1
3 ≡ ∑𝐵 : BΣ2(𝐴

=→ (𝐵 + True)). Now apply

Exercise 5.3.8 and verify that the points correspond. Lemma 5.3.20 below

offers a general result of this kind. ⌟

Exercise 5.3.18. Complete the details of the proof of Lemma 5.3.16 above

using Corollary 2.17.9(2), Lemma 2.25.2, Lemma 5.2.21. ⌟

Since Sub(𝐺) is a set by Lemma 5.3.5, Lemma 5.3.16 allows us to

conclude:

Corollary 5.3.19. Let 𝐺 be a group. Then Mono(𝐺) is a set.
The following lemma states that the equivalences in Lemma 5.3.16

preserve the subsets of symmetries that are picked out.

Lemma 5.3.20. Let 𝐺 be a group and 𝑔 : UG a symmetry. Recall the equivalence
𝐹 from Lemma 5.3.16. For all (𝑋, pt, !) : Sub(𝐺) and (𝐻, 𝑖, !) : Mono(𝐺) such
that (𝐻, 𝑖, !) = 𝐹(𝑋, pt, !), we have 𝑋(𝑔)(pt) = pt in 𝑋sh𝐺 if and only if there
exists ℎ : UH such that 𝑔 = Ui(ℎ) in UG.

group actions and subgroups 132

22
This path 𝑝 is in fact equal to reflpt
since 𝑋sh𝐺 is a set.

Which of the equivalent sets

Mono(𝐺) and Sub(𝐺) is allowed to

be called “the set of subgroups of 𝐺”

is, of course, a choice. It could easily

have been the other way around and

we informally refer to elements in

either sets as “subgroups” and use

the given equivalence 𝐸 as needed.

An argument for our choice can

be as follows. In set-based math-

ematics one has two options for

defining "subgroup": either as a cer-

tain subset (uniquely given by its

characteristic function to Prop) or

as an equivalence class of injections

(taking care of size issues since the

class of monomorphisms will not

form a small set). The former is the

usual choice and is the one we model

here with Sub(𝐺), whereas the other

corresponds to Mono(𝐺).

23
Precomposition with the in-

verse gives an equivalence be-

tween (sh𝐺 , pt) =→ (sh𝐺 , 𝑥) and

(sh𝐺 , 𝑥) =→ (sh𝐺 , 𝑥), leading to

the equivalence 𝐿′𝐻 in Construc-

tion 5.3.26.

Proof. Let (𝑋, pt, !) : Sub(𝐺). It suffices to prove the lemma for (𝐻, 𝑖, !) ≡
𝐹(𝑋, pt, !) : Mono(𝐺). This means BH ≡ (∑𝑧 : BG 𝑋(𝑧), (sh𝐺 , pt)) and Bi ≡
fst. We have to prove: 𝑋(𝑔)(pt) = pt iff there exists an ℎ : (sh𝐺 , pt) =→
(sh𝐺 , pt) such that 𝑔 = Ui(ℎ) ≡ Ω fst(ℎ).

If 𝑋(𝑔)(pt) = pt, then we can simply take ℎ :≡ (𝑔, reflpt).
For the converse, assume there exists an ℎ : (sh𝐺 , pt) =→ (sh𝐺 , pt) such

that 𝑔 = Ui(ℎ). Then ℎ = (𝑔, 𝑝) for some 𝑝 :𝑋(𝑔)(pt) = pt.22 □

Through the equivalence 𝐸 we can translate the concepts in Defini-

tion 5.3.11 to subgroups in Sub(𝐺). First, observe that the underlying

groups of a subgroup in Mono(𝐺) and of its image under 𝐸 in Sub(𝐺)
can be identified.

Definition 5.3.21. We say that a subgroup (𝑋, pt, !) : Sub(𝐺) is:

(1) trivial if the underlying group (∑𝑧 : BG 𝑋(𝑧), (sh𝐺 , pt)) is trivial;

(2) proper if 𝑋(sh𝐺) is not contractible. ⌟

Remark 5.3.22. A note on classical notation is in order. If (𝑋, pt, !) is

a subgroup corresponding to a monomorphism (𝐻, 𝑖, !) into a group

𝐺, tradition would permit us to relax the burden of notation and we

could write “a subgroup 𝑖 :𝐻 ⊆ 𝐺”, or, if we didn’t need the name of

𝑖 : Hom(𝐻, 𝐺), simply “a subgroup 𝐻 ⊆ 𝐺” or “a subgroup 𝐻 of 𝐺”. ⌟

Example 5.3.23. We saw in Example 5.3.15 that the first inclusion 𝑖1 :𝐺→
𝐺×𝐺′ is a monomorphism. The corresponding𝐺×𝐺′-set is the composite

of the first projection proj1 : BG÷ × BG′÷ → BG÷ followed by the principal

𝐺-torsor ℙsh𝐺 : BG→ Set : 𝑧 ↦→ (sh𝐺
=→ 𝑧) of Example 5.2.4.

More generally, if 𝑖 : Hom(𝐻, 𝐺) and 𝑓 : Hom(𝐺, 𝐻), and 𝑓 𝑖 =→ id𝐻 ,

then (𝐻, 𝑖, !) : Mono(𝐺), corresponding to the subgroup with 𝐺-set given

by the composite of Bf with the principal 𝐻-torsor ℙsh𝐻 . ⌟

5.3.24 The Lagrange construction

In this section we give a general version of Lagrange’s Theorem. It serves

as a basis for more traditional versions, such as the counting version in

Exercise 5.3.27 below.

Construction 5.3.25. Let𝐺 be a group. For every subgroup (𝑋, pt, !) : Sub(𝐺)
of 𝐺, with underlying group called 𝐻, we have a function 𝐿𝐻 of type(

∏
𝑥 :𝑋(sh𝐺)

∑
𝑔 : UG

𝑔 ·𝑋 𝑥 = pt
)
→
(
UG =→ (𝑋(sh𝐺) ×UH)

)
.

Implementation of Construction 5.3.25. Define the map [_] : UG→ 𝑋(sh𝐺)
by [𝑔] :≡ 𝑔 ·𝑋 pt for all 𝑔 : UG. Then Lemma 2.25.2 yields an equivalence

from UG to the sum of fibers ∑𝑥 :𝑋(sh𝐺)[𝑥]−1
. For every 𝑥 :𝑋(sh𝐺), the

fiber [𝑥]−1
of [_] at 𝑥 is ∑𝑔 : UG(𝑥 = 𝑔 ·𝑋 pt), and the latter subset of UG is

equal to subset (sh𝐺 , pt) =→ (sh𝐺 , 𝑥). So we get an equivalence from UG
to ∑𝑥 :𝑋(sh𝐺)((sh𝐺 , pt) =→ (sh𝐺 , 𝑥)). We are done if we can replace this

irritating little last 𝑥 with pt, since UH :≡ ((sh𝐺 , pt) =→ (sh𝐺 , pt)). We use

the premiss ∏𝑥 :𝑋(sh𝐺)∑𝑔 : UG(𝑔 ·𝑋 𝑥 = pt). Applying Exercise 2.9.24 to this

premiss, we obtain a function 𝑔 :𝑋(sh𝐺) → UG such that 𝑔(𝑥) ·𝑋 𝑥 = pt
for all 𝑥 :𝑋(sh𝐺). In other words, (𝑔(𝑥), !) is a path of type (sh𝐺 , 𝑥) =→
(sh𝐺 , pt), and hence postcomposition

23
gives the desired equivalence

group actions and subgroups 133

24
This construction also works∞-

groups acting on types. However,

the premiss may be harder to fulfill

in such general cases.

25
In the sense that ∥(𝑧, 𝑥) =→ (𝑤, 𝑦)∥ if

and only if there exists a 𝑔 : 𝑧 =→ 𝑤

such that 𝑔 ·𝑋 𝑥 = 𝑦.

26
This definition can be generalized to

∞-groups 𝐺 and 𝐺-types 𝑋.

27
The superscripts and subscripts are

decorated with “ℎ𝐺”, following a

convention in homotopy theory. The

action type is sometimes denoted

𝑋 // 𝐺.

between (sh𝐺 , pt) =→ (sh𝐺 , 𝑥) and (sh𝐺 , pt) =→ (sh𝐺 , pt). Thus we get in

total an equivalence between UG and 𝑋(sh𝐺) ×UH, and we define 𝐿𝐻(𝑔)
to be that equivalence.

24 □

A minor modification of the above implementation, indicated in Foot-

note 23 gives Construction 5.3.26, which is sometimes more convenient,

e.g., in the proof of Lemma 5.7.2.

Construction 5.3.26. Let conditions be as in Construction 5.3.25. Then we
have an equivalence 𝐿′𝐻(𝑓) between UG and ∑𝑥 :𝑋(sh𝐺)((sh𝐺 , 𝑥) =→ (sh𝐺 , 𝑥)).
Exercise 5.3.27. The goal of this exercise is to state and prove the tra-

ditional formulation of Lagrange’s Theorem. Let 𝐺 be a finite group

and (𝑋, 𝑥, !) : Sub(𝐺) a subgroup, whose underlying group we call

𝐻. Assume that 𝑋 is a finite 𝐺-set. Show that 𝐻 is finite and that

#(𝐺) = #(𝑋) × #(𝐻). ⌟

Exercise 5.3.28. The goal of this exercise is to illustrate that Construc-

tion 5.3.25 also can be applied to infinite groups. Recall the group of

integers ℤ ≡ Ω(S1 , •) and the ℤ-set 𝑅𝑚 : S1 → Set from Definition 3.6.7,

defined by 𝑅𝑚(•) :≡ 𝕞 and 𝑅𝑚(⟲) B s, for 𝑚 > 0. Let 𝐻𝑚 be the

underlying group of (𝑅𝑚 , 0, !). Identify Uℤ with 𝕞 ×UH𝑚 . ⌟

Exercise 5.3.29. The goal of this exercise is to illustrate that Construc-

tion 5.3.25 also can be applied to infinite groups and a subgroup that is

"abnormal". Recall Figure 5.1 ... ⌟

5.4 Invariant maps and orbits

We now return to some important constructions involving 𝐺-sets for

a group 𝐺. Some of these make equally good sense for 𝐺-types for an

∞-group 𝐺, in which case we add a footnote to this effect.

We are particularly interested in what happens when a 𝐺-set is not

transitive, that is, does not satisfy the requirement of Definition 5.2.19. In

Chapter 3, under the name of set bundles over the circle, we have already

seen examples of transitive and non-transitive S1
-sets: In Figure 3.2

the left picture exhibits a transitive one, and the right picture a non-

transitive one. Also, Figure 3.6 shows a non-transitive S1
-set, whereas

the 𝑚th
power bundle over the circle in Figure 3.7 is a transitive S1

-

set. Lemma 5.2.21 gives a good explanation of these pictures: A 𝐺-set

is transitive if and only if the associated set bundle is connected. In

other words, if a 𝐺-set 𝑋 : BG → Set is transitive, then the group

action connects
25

any two elements in the total type ∑𝑥 : BG 𝑋(𝑧). If

𝑋 is not transitive, then the latter total type falls apart in different

components. Since these components are themselves connected, the

choice of an element of them gives rise to a subgroup of 𝐺 in the sense

of Definition 5.3.2.

Definition 5.4.1. Let 𝐺 be a group and 𝑋 : BG→ Set a 𝐺-set,
26

then the

action type of 𝑋, denoted
27

𝑋ℎ𝐺 :≡ ∑
𝑧 : BG

𝑋(𝑧),

group actions and subgroups 134

28
Invariant maps are dependent

functions 𝑓 and the reason for the

new name in this context is that

𝑓 (𝑧) = 𝑔 ·𝑋 𝑓 (𝑧) for any 𝑧 : BG and

𝑔 : 𝑧 =→ 𝑧. Cf. Lemma 5.4.19. Note

that there need not be any invariant

maps: ∏𝑧 : S1 •
=→ 𝑧 is empty. Using

Theorem 3.4.5, Figure 3.3 explains

why: the successor function has no

fixed point.

29
See Definition 5.2.19.

30
Sending • to 5 and ⟲ to refl5.

Bℤ

5

4

3

⟲

2

1

0

Figure 5.4: A ℤ-set with three orbits

and one invariant map.

31
This lemma can be generalized to

∞-groups 𝐺 and 𝐺-types 𝑋.

is the total type of 𝑋, see Section 2.8. By Definition 2.7.3 and Defini-

tion 2.10.1, we get an equivalence(
(𝑧, 𝑥) =→𝑋ℎ𝐺 (𝑤, 𝑦)

) ≃→ ∑
𝑔 : 𝑧 =→𝑤

𝑔 · 𝑥 = 𝑦,

which also goes for their (often used) propositional truncations.

The type of invariant maps28
is

𝑋 ℎ𝐺 :≡ ∏
𝑧 : BG

𝑋(𝑧).

The set of orbits (soon to be identified with the set truncation of 𝑋ℎ𝐺,

see Lemma 5.4.4) is the subset of Sub𝐺(𝑋) consisting of all 𝐺-subsets 𝑃

of 𝑋 such that the underlying 𝐺-subset 𝑋𝑃 is transitive:
29

𝑋/𝐺 :≡ ∑
𝑃 : Sub𝐺(𝑋)

isTrans(𝑋𝑃). ⌟

We have seen many instances of action types before: When 𝐺-sets are

considered as set bundles 𝑓 :𝐴→ BG, they are the domains 𝐴. Recall

for example Figure 3.6, showing an action of ℤ on {1, 2, 3, 4, 5}with no

invariant maps and an action type equivalent to a sum of two circles.

In Figure 5.4, we show a similarℤ-set, with underlying set {0, 1, 2, 3, 4, 5},
three orbits, and 5 corresponding to the only invariant map.

30

In Figure 5.4 we have highlighted one single component of the action

type in blue (i.e., corresponding to an element of the set of orbits), and

we see that it contains a subset of the underlying set, the three red

elements {0, 1, 2}. Such a set is what is traditionally called an orbit. This

connection is emphasized in Corollary 5.4.5.

Definition 5.4.2. Let 𝐺 be a group and 𝑋 : BG→ Set a 𝐺-set. We define

the map [_]0 from the action type 𝑋ℎ𝐺 of 𝑋 to Sub𝐺(𝑋), the set of 𝐺-

subsets of 𝑋, as follows. For any 𝑢 :𝑋ℎ𝐺, let [𝑢]0 be the 𝐺-subset of 𝑋

that sends 𝑧 : BG to

(𝑥 :𝑋(𝑧) ↦→ ∥𝑢 =→ (𝑧, 𝑥)∥) :𝑋(𝑧) → Prop. ⌟

Recall from Definition 5.4.1 the equivalence of ∥(𝑧, 𝑥) =→ (𝑤, 𝑦)∥ and

∃𝑔 : 𝑧 =→𝑤(𝑔 · 𝑥 = 𝑦). The next lemma follows easily from the properties of

∥𝑢 =→ (𝑧, 𝑥)∥.
Lemma 5.4.3. Let 𝐺 be a group and 𝑋 : BG → Set a 𝐺-set. For every
𝑢 :𝑋ℎ𝐺, the underlying 𝐺-set (𝑧 ↦→ ∑𝑥 :𝑋(𝑧)∥𝑢 =→ (𝑧, 𝑥)∥) of [𝑢]0, defined in
Definition 5.2.10, is transitive. Hence [_]0 is a map from 𝑋ℎ𝐺 to 𝑋/𝐺.

In view of the above lemma, we call [𝑢]0 the orbit through 𝑢. The

following lemma implies that the set of orbits can be identified with the

set truncation of the action type.

Lemma 5.4.4. Let 𝐺 be a group and 𝑋 : BG → Set a 𝐺-set.31 Then the map
[_]0 :𝑋ℎ𝐺 → 𝑋/𝐺 is surjective. Moreover, we have a (unique) identification
of (𝑋/𝐺, [_]0) and (∥𝑋ℎ𝐺∥0 , |_|0) in the type ∑𝑆 : Set(𝑋ℎ𝐺 → 𝑆).

Proof. Consider an orbit 𝑂 :𝑋/𝐺, i.e., 𝑂 is a 𝐺-subtype of 𝑋 such that

𝑋𝑂 is transitive. We have to show that there exists a 𝑢 :𝑋ℎ𝐺 such that𝑂 =

[𝑢]0. By the connectivity of BG it suffices to show 𝑂(sh𝐺) =𝑋(sh𝐺)→Prop

[𝑢]0(sh𝐺) for some 𝑢. Transitivity of 𝑋𝑂 means that there exists an

group actions and subgroups 135

32
This also justifies the notation 𝑋/𝐺.

We have a diagram of surjective

maps:

𝑋(sh𝐺) 𝑋ℎ𝐺

𝑋/𝐺

𝑥 ↦→(sh𝐺 ,𝑥)

[_] [_]0

𝑥 :𝑋(sh𝐺) such that 𝑂(sh𝐺 , 𝑥) and for all 𝑦 :𝑋(sh𝐺) such that 𝑂(sh𝐺 , 𝑦)
there exists a 𝑔 : UG such that 𝑔 · 𝑥 = 𝑦, i.e., [(sh𝐺 , 𝑥)]0(sh𝐺 , 𝑦). So we

take 𝑢 :≡ (sh𝐺 , 𝑥) and have to show 𝑂(sh𝐺 , 𝑦) if and only if [𝑢]0(sh𝐺 , 𝑦),
for all 𝑦 :𝑋(sh𝐺). But this follows directly from the observation made

just above the lemma (see also Remark 5.4.8 below).

The second part of the lemma follows from Remark 2.22.17. □

Another way to state the above lemma is that the map [_]0 :𝑋ℎ𝐺 →
𝑋/𝐺 factors as the composite of |_|0 followed by a unique equivalence:

𝑋ℎ𝐺 → ∥𝑋ℎ𝐺∥0
≃→ 𝑋/𝐺.

Corollary 5.4.5. Define the map [_] :𝑋(sh𝐺) → 𝑋/𝐺 by [𝑥] :≡ [(sh𝐺 , 𝑥)]0.
Then [𝑥] = [𝑦] is equivalent to ∃𝑔 : UG(𝑔 · 𝑥 = 𝑦). Moreover, [_] is surjective
and factors (uniquely) by an equivalence through the quotient set of 𝑋(sh𝐺)
modulo the equivalence relation ∃𝑔 : UG(𝑔 · 𝑥 = 𝑦), cf. Exercise 2.22.18.

In view of this corollary, we call [𝑥] the orbit through 𝑥.

Proof. In the proof of surjectivity in Lemma 5.4.4 we used 𝑢 :≡ (sh𝐺 , 𝑥)
to get 𝑂 = [𝑢]0, so [_] is surjective. The last statement follows since both

propositions are equivalent to ∥(sh𝐺 , 𝑥) =→ (sh𝐺 , 𝑦)∥. □

Remark 5.4.6. Let 𝐺 be a group and 𝑋 : BG→ Set a 𝐺-set. We have the

following chain of definitions and equivalences:

Sub𝐺(𝑋) ≡ ∏
𝑧 : BG
(𝑋(𝑧) → Prop)

≃→
(
𝑋ℎ𝐺 → Prop

)
(by Footnote 7 and Exercise 2.9.26)

≃→
(
∥𝑋ℎ𝐺∥0 → Prop

)
(since Prop is a set)

≃→
(
𝑋/𝐺→ Prop

)
(by Lemma 5.4.4)

≡ Sub(𝑋/𝐺). ⌟

Exercise 5.4.7. Show: 𝑋/𝐺 is contractible if and only if 𝑋 is transitive. ⌟

Remark 5.4.8. Given a group 𝐺, a 𝐺-set 𝑋 and 𝑥, 𝑦 :𝑋(sh𝐺), the following

propositions are all equivalent and we may pass from one to another

without mention:

• [𝑥] =𝑋/𝐺 [𝑦];

• [𝑥](sh𝐺) =𝑋(sh𝐺)→Prop [𝑦](sh𝐺);

• ∃𝑔 : UG(𝑔 · 𝑥 = 𝑦);

• ∥(sh𝐺 , 𝑥) =→ (sh𝐺 , 𝑦)∥;

• [𝑥](sh𝐺 , 𝑦);

• [𝑦](sh𝐺 , 𝑥).

As functions of 𝑥 and 𝑦, all of the above define the equivalence relation

on 𝑋(sh𝐺) induced by the surjection [_]. ⌟

Thus, both the underlying set 𝑋(sh𝐺) and the action type 𝑋ℎ𝐺 have

equivalence relations (induced by the surjections [_] and [_]0, respec-

tively) with quotient set 𝑋/𝐺.
32

We can write 𝑋(sh𝐺) and 𝑋ℎ𝐺 as sums

of the respective fibers, which we will elaborate in the next paragraphs.

Let 𝑂 :𝑋/𝐺 be an orbit and consider [𝑂]−1
0 ≡ ∑𝑢 :𝑋ℎ𝐺 (𝑂 = [𝑢]0).

Note that the underlying 𝐺-set 𝑋𝑂 ≡ (𝑧 : BG ↦→ ∑𝑦 :𝑋(𝑧) 𝑂(𝑧, 𝑦)) of 𝑂

group actions and subgroups 136

33
We use the first step of Remark 5.4.6.

If 𝑂(𝑢) and 𝑂(𝑣), then ∥𝑢 =→ 𝑣∥ by

the transitivity of 𝑋𝑂 . The rest is

obvious.

34
Along the horizontal arrow, (𝑂, 𝑥)
maps to (𝑂, (sh𝐺 , 𝑥)), for 𝑥 :𝑋𝑂 (sh𝐺).

∑
𝑂 :𝑋/𝐺

𝑋𝑂 (sh𝐺) ∑
𝑂 :𝑋/𝐺

(𝑋𝑂)ℎ𝐺

𝑋/𝐺
fst fst

35
This definition can be generalized to

∞-groups 𝐺 and 𝐺-types 𝑋.

36
This is short for the underlying set of

the underlying 𝐺-set of the orbit [𝑥]
of 𝑋.

([𝑥], 𝑦) ([(sh𝐺 , 𝑥)]0 , (sh𝑔 , 𝑦))

[𝑥]
fst fst

Figure 5.5: Along the horizontal

arrow, the second component 𝑦 :𝐺 · 𝑥
is mapped to (sh𝑔 , 𝑦) : BG𝑥 .

37
In fact, for every set 𝐴 and every

equivalence relation on 𝐴, the equiv-

alence classes sum up to 𝐴.

38
This definition can be generalized to

∞-groups 𝐺 and 𝐺-types 𝑋.

is transitive. It follows that 𝑂(𝑢) holds if and only if 𝑂 = [𝑢]0, for all

𝑢 :𝑋ℎ𝐺.
33

Therefore, the fiber [𝑂]−1
0 is equivalent to the action type

(𝑋𝑂)ℎ𝐺 ≡ ∑𝑧 : BG 𝑋𝑂(𝑧).
After the previous paragraph, the elaboration of [𝑂]−1 ≡ ∑𝑥 :𝑋(sh𝐺)(𝑂 =

[𝑥]) is easy. Recall that [𝑥] ≡ [(sh𝐺 , 𝑥)]0, so that the fiber [𝑂]−1
is equiva-

lent to the underlying set of 𝑋𝑂 , i.e., 𝑋𝑂(sh𝐺) ≡ ∑𝑥 :𝑋(sh𝐺) 𝑂(sh𝐺 , 𝑥) via

identity on first components. We depict the situation in the diagram
34

in

the margin. Note how the role of 𝑋 in Footnote 32 is taken over by 𝑋𝑂 .

Definition 5.4.9. Let 𝐺 be a group, 𝑋 : BG→ Set a 𝐺-set, and 𝑥 :𝑋(sh𝐺)
an element.

35

(1) Define the group 𝐺𝑥 :≡ Aut𝑋ℎ𝐺 (sh𝐺 , 𝑥). Clearly, fst : BG𝑥 → BG
is a set bundle: each fiber at 𝑧 : BG is a subset of 𝑋(𝑧). Hence

(𝐺𝑥 , fst, !) : Mono(𝐺) is monomorphism into 𝐺. We call the subgroup

𝐺𝑥 of 𝐺 the stabilizer (sub)group at 𝑥. The inclusion fst of BG𝑥 in BG
classifies a monomorphism denoted by 𝑖𝑥 : Hom(𝐺𝑥 , 𝐺).

(2) Define 𝐺 · 𝑥 :≡ { 𝑦 :𝑋(sh𝐺) | [𝑥] =𝑋/𝐺 [𝑦] } to be the underlying set of
the orbit through 𝑥.

36 ⌟

Remark 5.4.10. In the above definition, the underlying 𝐺-set 𝑋[𝑥] ≡
(𝑧 : BG) ↦→ ∑𝑦 :𝑋(sh𝐺)∥(sh𝐺 , 𝑥) =→ (𝑧, 𝑦)∥ of the orbit [𝑥] plays an impor-

tant double role: On one hand its action type (𝑋[𝑥])ℎ𝐺, pointed at (sh𝐺 , 𝑥),
is the classifying type BG𝑥 of the stabilizer group𝐺𝑥 . On the other hand it

is a transitive 𝐺-set whose underlying set ∑𝑦 :𝑋(sh𝐺)∥(sh𝐺 , 𝑥) =→ (sh𝐺 , 𝑦)∥
is the underlying set of the orbit [𝑥]. Thus, for 𝑂 ≡ [𝑥], we have easy

identifications of 𝐺 · 𝑥 and 𝑋𝑂(sh𝐺), as well as of BG𝑥 and (𝑋𝑂)ℎ𝐺, using

[𝑥] ≡ [(sh𝐺 , 𝑥)]0. Applying the maps in Footnote 34 in this particular

case, we obtain Figure 5.5.

Note furthermore that the base point of BG𝑥 depends on the choice of

𝑥, but the underlying type (BG𝑥)÷, being a connected component, only

depends on the orbit [𝑥] :𝑋/𝐺. ⌟

Exercise 5.4.11. Let 𝐺 be a group and 𝑋 : BG → Set a 𝐺-set. Show: if

[𝑥] = [𝑦], then ∥𝐺𝑥 =→ 𝐺𝑦∥, for any 𝑥, 𝑦 :𝑋(sh𝐺). ⌟

Remark 5.4.12. In fact, every subgroup of 𝐺 is a stabilizer subgroup.

We can equivalently define the stabilizer subgroup of 𝑥 by an element

of Sub(𝐺), namely the transitive 𝐺-set 𝑋[𝑥], pointed by 𝑥 as element

of the subset 𝑋[𝑥](sh𝐺) of 𝑋(sh𝐺). If 𝑋 is transitive, then all orbits are

equal (Exercise 5.4.7) and the stabilizer subgroup of 𝑥 simplifies to

(𝑋, 𝑥, !) : Sub(𝐺), a general form defining a subgroup of 𝐺. ⌟

The following lemma states that the orbits of a 𝐺-set 𝑋 sum up to its

underlying set, with the sum taken over the set of orbits 𝑋/𝐺.

Lemma 5.4.13. The inclusions of the orbits form an equivalence

(𝑂, 𝑥, !) ↦→ 𝑥 :
(

∑
𝑂 :𝑋/𝐺

[𝑂]−1) ≃→ 𝑋(sh𝐺).

Proof. Recall that [𝑂]−1 ≡ ∑𝑥 :𝑋(sh𝐺)(𝑂 = [𝑥]), and then abstract away

the 𝑂 using Lemma 2.9.10.
37 □

There are two possible extreme cases for 𝐺𝑥 that are important:

Definition 5.4.14. Let 𝐺 be a group, 𝑋 a 𝐺-set and 𝑥 :𝑋(sh𝐺) an element

of the underlying set.
38

We say that

group actions and subgroups 137

39
This lemma can be generalized to

∞-groups 𝐺 and 𝐺-types 𝑋.

40
A type 𝑇 is a set if and only if all

identity types 𝑡 =→𝑇 𝑡 are con-

tractible.

41
This lemma can be generalized to

∞-groups 𝐺 and 𝐺-types 𝑋. In that

case UG :≡ ΩBG is the underlying

type of 𝐺.

(1) 𝑥 is fixed if 𝑖𝑥 is an isomorphism (so 𝐺𝑥 is all of 𝐺), and

(2) 𝑥 is free if 𝐺𝑥 is trivial.

We say that 𝑋 itself is free if each 𝑥 :𝑋(sh𝐺) is free. ⌟

Example 5.4.15. Let 𝐺 be a group. For every set 𝑆, every element 𝑠 : 𝑆
is fixed under the trivial 𝐺-set triv𝐺𝑆, since the group action is the

identity function. In contrast, every element 𝑔 : UG is free under the

𝐺-set ℙsh𝐺 ≡ (sh𝐺
=→ _), as ∑𝑧 : BG ℙsh𝐺 (𝑧)) is contractible. For an example

with more variation, see Example 5.7.1 upto Table 5.1. Find the fixed

elements, the free elements and those that are neither fixed nor free. ⌟

Exercise 5.4.16. Make sure you understand Example 5.4.15 by elaborating:

• BG𝑠 in the case of triv𝐺𝑆,

• BG𝑔 in the case of ℙsh𝐺 ,

• BG 𝑓 for each 𝑓 :𝟜→ 𝟚 in the case of Example 5.7.1, see Table 5.1. ⌟

Lemma 5.4.17. Let 𝐺 be a group and 𝑋 a 𝐺-set. Then we have for all 𝑥 :𝑋(sh𝐺)
that 𝑥 is free if and only if the (surjective) map (_ · 𝑥) : UG→ (𝐺 · 𝑥) is injective
(and hence a bĳection).

Proof. Consider two elements of the orbit, say 𝑔 · 𝑥, 𝑔′ · 𝑥 for 𝑔, 𝑔′ : UG.

We have 𝑔 · 𝑥 = 𝑔′ · 𝑥 if and only if 𝑥 = 𝑔−1𝑔′ · 𝑥 if and only if 𝑔−1𝑔′ lies in

UG𝑥 . Hence the map (_ · 𝑥) is injective iff UG𝑥 is contractible. Now use

Exercise 2.16.11 yielding that that 𝐺𝑥 is trivial iff UG𝑥 is contractible. □

Lemma 5.4.18. Let 𝐺 be a group and 𝑋 : BG → Set a 𝐺-set.39 Then the
following propositions are equivalent:

(1) The action type 𝑋ℎ𝐺 is a set;

(2) The map [_]0 :𝑋ℎ𝐺 → 𝑋/𝐺 from Definition 5.4.2 is an equivalence;

(3) The 𝐺-set 𝑋 is free.

Proof. We prove the relevant implications in circular order.

(1) Assume 𝑋ℎ𝐺 is a set. The map [_]0 :𝑋ℎ𝐺 → 𝑋/𝐺 is surjective by

Lemma 5.4.4, so it suffices to show it is injective. Since 𝑋ℎ𝐺 is a set, it

suffices to show that [𝑢]0 = [𝑣]0 implies 𝑢 = 𝑣, for all 𝑢, 𝑣 :𝑋ℎ𝐺. This

follows immediately from the definition of [_]0, as the propositional

truncation plays no role.

(2) Assume [_]0 :𝑋ℎ𝐺 → 𝑋/𝐺 is an equivalence. Then 𝑋ℎ𝐺 is a set since

𝑋/𝐺 is a set, and hence all components of 𝑋ℎ𝐺 are contractible. It

follows that all stabilizer groups 𝐺𝑥 are trivial, and hence 𝑋 is free.

(3) Assume 𝑋 is free. Then all stabilizer groups 𝐺𝑥 are trivial, so

all identity types (sh𝐺 , 𝑥) =→ (sh𝐺 , 𝑥) are contractible. Since BG is

connected we get that 𝑢 =→ 𝑢 is contractible for all 𝑢 :𝑋ℎ𝐺. Hence

𝑋ℎ𝐺 is a set.
40 □

Lemma 5.4.19. Given a group 𝐺 and a 𝐺-set 𝑋, an element 𝑥 :𝑋(sh𝐺) is fixed
if and only if the orbit 𝐺 · 𝑥 is contractible, i.e., 𝑥 = 𝑔 · 𝑥 for all 𝑔 : UG.41

group actions and subgroups 138

Proof. The orbit 𝐺 · 𝑥 of 𝑥 is the fiber of Bi𝑥 : BG𝑥 →∗ BG at sh𝐺. Since

BG is connected, this is contractible if and only if all fibers of Bi𝑥 are

contractible, i.e., Bi𝑥 is an equivalence, which in turn is equivalent to 𝑖𝑥

being an isomorphism. □

When 𝑋 : BG→ Set is a 𝐺-set for an ordinary group 𝐺, the subset

{ 𝑥 :𝑋(sh𝐺) | 𝑥 is fixed }

is closely related to the type 𝑋 ℎ𝐺
of invariant maps. If we evalu-

ate an invariant map 𝑓 : ∏𝑧 : BG 𝑋(𝑧) at sh𝐺 we do indeed land in

this subset: Letting 𝑥 :≡ 𝑓 (sh𝐺), and taking the dependent action

on paths, apd 𝑓 (𝑔) : 𝑥
=−→
𝑔
𝑥, we can use Definition 2.7.3 to conclude

trp𝑋𝑔 (𝑥) ≡ 𝑔 · 𝑥 = 𝑥, for all 𝑔 : UG. The following lemma states that,

conversely, each fixed 𝑥 uniquely determines an invariant map.

Lemma 5.4.20. Let 𝐺 be a group and 𝑋 a 𝐺-set, with 𝑋 ℎ𝐺 ≡ ∏𝑧 : BG 𝑋(𝑧) the
set of invariant maps. Evaluation ev :≡ (𝑓 :𝑋 ℎ𝐺) ↦→ 𝑓 (sh𝐺) at sh𝐺 gives

(1) an injection of type
(
∏𝑧 : BG 𝑋(𝑧)

)
→ 𝑋(sh𝐺), which is

(2) an equivalence of type
(
∏𝑧 : BG 𝑋(𝑧)

) ≃→ { 𝑥 :𝑋(sh𝐺) | 𝑥 is fixed }.

Proof. Let 𝑥 :𝑋(sh𝐺). We prove that the fiber of ev at 𝑥,

ev−1(𝑥) :≡ ∑
𝑓 : ∏𝑧 : BG 𝑋(𝑧)

𝑥 = 𝑓 (sh𝐺),

is a proposition. Let (𝑓 , !), (𝑔, !) : ev−1(𝑥). Then it suffices to prove 𝑓 = 𝑔,

which follows by extensionality from 𝑓 (sh𝐺) = 𝑥 = 𝑔(sh𝐺) since BG is

connected. This proves (1).

For (2), assume that 𝑥 :𝑋(sh𝐺) is fixed, so 𝑖𝑥 ≡ fst : BG𝑥 → BG is

an equivalence. This means that fst−1(𝑧) is contractible for all 𝑧 : BG.

Spelling out fst−1(𝑧), using Lemma 2.9.10, identifies each fiber fst−1(𝑧)
with ∑𝑦 :𝑋(𝑧)∥(sh𝐺 , 𝑥) =→ (𝑧, 𝑦)∥. Projecting on the first component of

each center of contraction gives a invariant map 𝑓 such that ∥(sh𝐺 , 𝑥) =→
(sh𝐺 , 𝑓 (sh𝐺))∥, from which the proposition 𝑥 = 𝑓 (sh𝐺) follows. This

proves that ev is surjective, so an equivalence by (1). □

Exercise 5.4.21. Let 𝐺 be the group Σ2 ×Σ2 and 𝑋 the 𝐺-set mapping

any pair (𝐴, 𝐵) of 2-element sets to the set 𝐴→ 𝐵. Elaborate the action

of 𝐺 on 𝑋(sh𝐺) and determine the set of orbits and the set of invariant

maps. You can do the same exercise for the following easier cases first:

the 𝐺-set that is constant 𝟚 × 𝟚, and the Σ2-sets 𝑋(_, 𝟚) and 𝑋(𝟚, _). ⌟

5.4.22 The Orbit–Stabilizer theorem

Consider a group 𝐺, a 𝐺-set 𝑋 and an element 𝑥 :𝑋(sh𝐺), and recall

Definition 5.4.9. The classifying type of the stabilizer group 𝐺𝑥 is the

component of 𝑋ℎ𝐺 ≡ ∑𝑧 : BG 𝑋(𝑧) pointed by the shape (sh𝐺 , 𝑥). The

first projection of a symmetry of (sh𝐺 , 𝑥) is a symmetry of sh𝐺, and the

second projection is a proof of a proposition. This suggest the following

simple way for 𝐺𝑥 to act on the symmetries of sh𝐺, by just ignoring the

second projection:

group actions and subgroups 139

42
Spelled out: for all (𝑧, 𝑦) :𝑋ℎ𝐺 in

the same component as (sh𝐺 , 𝑥),
𝐺̃𝑥(𝑧, 𝑦) ≡ (sh𝐺

=→ 𝑧). In Defini-

tion 5.5.9 we will see that ℙsh𝐺 ◦ Bi𝑥
is a special case of the restriction

of a 𝐺-set by a homomorphism in

Hom(𝐻, 𝐺).

43
This construction can be generalized

to∞-groups 𝐺 and 𝐺-types 𝑋.

44
Note that Exercise 5.4.24 already

implies that (𝐺̃𝑥)ℎ𝐺𝑥 is a set: given

(sh𝐺 , 𝑥, !, 𝑔) and (𝑧, 𝑦, !, 𝑔′), there can

be at most one 𝑠 : sh𝐺
=→ 𝑧 such that

𝑠 ·𝐺̃𝑥 𝑔 = 𝑠𝑔 = 𝑔′.

Definition 5.4.23. Let 𝐺 be a group, 𝑋 a 𝐺-set and 𝑥 :𝑋(sh𝐺) an element

of the underlying set. Recall BG𝑥 ≡ ∑(𝑧,𝑦) :𝑋ℎ𝐺∥(sh𝐺 , 𝑥) =→ (𝑧, 𝑦)∥, the

classifying type of the stabilizer group 𝐺𝑥 . Define the 𝐺𝑥-set 𝐺̃𝑥 : BG𝑥 →
U by setting 𝐺̃𝑥 :≡ ℙsh𝐺 ◦ Bi𝑥 .42 ⌟

The underlying set of 𝐺̃𝑥 is UG. The group action of 𝐺̃𝑥 is explored in

the following exercise.

Exercise 5.4.24. Let 𝑠 : (sh𝐺 , 𝑥, !) =→ (𝑧, 𝑦, !) be a path in BG𝑥 with first

component 𝑠1, and let 𝑔 : UG. Show that 𝑠 ·𝐺̃𝑥 𝑔 = 𝑠1𝑔, i.e., the group

action of 𝐺̃𝑥 is path composition. ⌟

The following exercise prepares for the subsequent Orbit–Stabilizer

Theorem.

Exercise 5.4.25. Elaborate the action type of 𝐺̃𝑥 from Definition 5.4.23 in

each of the cases of Exercise 5.4.16, that is, elaborate

• (𝐺̃𝑠)ℎ𝐺𝑠 in the case of triv𝐺𝑆,

• (𝐺̃𝑔)ℎ𝐺𝑔 in the case of ℙsh𝐺 ,

• (𝐺̃ 𝑓)ℎ𝐺 𝑓
for each 𝑓 :𝟜→ 𝟚, in the case of Example 5.7.1, Table 5.1.

Compare your findings with 𝐺 · 𝑠, 𝐺 · 𝑔, and each 𝐺 · 𝑓 , respectively. ⌟

The action type of 𝐺̃𝑥 can be identified with the underlying set of the

orbit through 𝑥 under𝑋. This is achieved by a chain of easy equivalences,

spelled out in the following construction.

Construction 5.4.26 (Orbit–Stabilizer theorem). Let 𝐺 be a group, 𝑋 a
𝐺-set 𝑋, 𝑥 :𝑋(sh𝐺) an element of the underlying set of 𝑋.43 Recall the 𝐺𝑥-set
𝐺̃𝑥 from Definition 5.4.23. Then we have an equivalence from the action type
(𝐺̃𝑥)ℎ𝐺𝑥 to the underlying set (𝐺 ·𝑋 𝑥) of the orbit through 𝑥.

Implementation of Construction 5.4.26. The desired equivalence is the com-

position of elementary equivalences for sums and products, followed by

contracting away the variable 𝑧: 44

(𝐺̃𝑥)ℎ𝐺𝑥 ≡ ∑
𝑢 : BG𝑥

𝐺̃𝑥(𝑢)

≃→ ∑
𝑧 : BG

∑
𝑦 :𝑋(𝑧)

∥(sh𝐺 , 𝑥) =→ (𝑧, 𝑦)∥ × (sh𝐺
=→ 𝑧)

≃→ ∑
𝑦 :𝑋(sh𝐺)

[𝑥] =𝑋/𝐺 [𝑦] ≡ (𝐺 ·𝑋 𝑥). □

The above construction has some interesting consequences. One is

that (𝐺̃𝑥)ℎ𝐺𝑥 is a set, so that Lemma 5.4.18 applies:

Corollary 5.4.27. The 𝐺𝑥-set 𝐺̃𝑥 is free.
We further obtain that the underlying set of the orbit of 𝐺̃𝑥 through 𝑔

can be identified with the underlying set of 𝐺𝑥 .

Corollary 5.4.28. For any 𝑔 : UG, the map (_ ·𝐺̃𝑥 𝑔) is an equivalence from
UG𝑥 to (𝐺𝑥 ·𝐺̃𝑥 𝑔).

Proof. This follows directly from Lemma 5.4.17, applied to 𝐺𝑥 and 𝐺̃𝑥 ,

using that 𝐺̃𝑥 is free. □

In the case of a subgroup of 𝐺, we have the following result.

group actions and subgroups 140

45
This works equally well with∞-

groups: 𝐺-torsors are in that case

𝐺-types in the component of the

principal torsor ℙsh𝐺 : BG → U .

There is no conflict with the case

when the∞-group 𝐺 is actually a

group since then any 𝐺-type in the

component of the principal 𝐺-torsor

will be a 𝐺-set.

46
Admittedly in a higher universe, but

we can use the Replacement Princi-

ple 2.19.4 to see that Torsor𝐺 is equiv-

alent to a type in the same universe

as 𝐺 – even before we have Theo-

rem 5.5.7 showing we can take BG.

47
By the way, the name “torsor” is a

translation from the French torseur,
introduced by Giraud,

48
who related

them to “twisting” operations on

bundles. Since 𝐵𝐺 is equivalent

to the type of 𝐺-torsors, we can

also think of shapes 𝑡 : BG as giving

rise to “twists”. Indeed, for a 𝐺-

set 𝑋, we can think of 𝑋(𝑥) as a

“twisted” version of the underlying

set, 𝑋(sh𝐺).

48
Jean Giraud. Cohomologie non abéli-
enne. Die Grundlehren der mathe-

matischen Wissenschaften, Band 179.

Springer-Verlag, Berlin-New York,

1971, pp. ix+467.

49
That is, we have classified a homo-

morphism from 𝐺 to Aut𝐺-Set(ℙsh𝐺).
It’ll turn out to be an isomorphism.

Construction 5.4.29. Let𝐺 be a group and let (𝑋, 𝑥, !) : Sub(𝐺) be a subgroup
of 𝐺 as defined in Definition 5.3.2. Then we have an equivalence [_]𝑥 from the
underlying set 𝑋(sh𝐺) of 𝑋 to 𝐺̃𝑥/𝐺𝑥 , the set of orbits of 𝐺̃𝑥 .

Implementation of Construction 5.4.29. The function [_]𝑥 is the composi-

tion of three equivalences. Since 𝑋 is transitive, fst : (𝐺 ·𝑋 𝑥) → 𝑋(sh𝐺)
is an equivalence. The Orbit–Stabilizer Construction 5.4.26 gives us an

equivalence 𝑜 from (𝐺 ·𝑋 𝑥) to (𝐺̃𝑥)ℎ𝐺𝑥 . Since the latter type is a set, the

function [_]0 from Lemma 5.4.4 is an equivalence from (𝐺̃𝑥)ℎ𝐺𝑥 to 𝐺̃𝑥/𝐺𝑥 .
Now define [𝑥′]𝑥 :≡ [𝑜(fst−1(𝑥′))]0 for any 𝑥′ :𝑋(sh𝐺). □

The reader may notice that the last two results contain some of the

ingredients of the traditional formulation of Lagrange’s Theorem: the

group 𝐺, the subgroup 𝐺𝑥 , the orbits (cosets) (𝐺𝑥 ·𝐺̃𝑥 𝑔) and the set of

orbits 𝐺̃𝑥/𝐺𝑥 . It is in fact possible to obtain the counting version of

Lagrange’s Theorem, Exercise 5.3.27, from the above results:

Exercise 5.4.30. Let 𝐺 be a finite group and (𝑋, 𝑥, !) : Sub(𝐺) a subgroup,

whose underlying group we call 𝐻. Assume that 𝑋 is a finite 𝐺-set.

Show that #(𝐺) = #(𝑋) × #(𝐻) using Lemma 5.4.13, Corollary 5.4.28 and

Construction 5.4.29, instead of Construction 5.3.25. ⌟

5.5 The classifying type is the type of torsors

Recall the definition of the principal 𝐺-torsor ℙsh𝐺 ≡ (sh𝐺
=→ _) from

Example 5.2.4. In this section we elaborate the concept of torsor and

give one example of its use. In Section 7.4 we’ll use torsors to prove

that the type of groups and the type of abstract groups are equivalent

by classifying abstract groups via their pointed connected groupoid of

torsors. To see how this might work it is good to start with the case of

a (concrete) group 𝐺. In the end we want the torsors of abs(𝐺) to be

equivalent to BG, so to get the right definition we should first explore

what the torsors of 𝐺 look like and prove Theorem 5.5.7, showing that

BG is equivalent to the type of 𝐺-torsors.

Definition 5.5.1. Given a group 𝐺, the type of 𝐺-torsors45
is

Torsor𝐺 :≡ ∑
𝑋 :𝐺-Set

∥ℙsh𝐺
=→ 𝑋∥,

where ℙsh𝐺 ≡ (sh𝐺
=→ _) is the principal 𝐺-torsor of Example 5.2.4. ⌟

Exercise 5.5.2. Show that a 𝐺-set is a 𝐺-torsor if and only if it is free and

transitive. ⌟

Remark 5.5.3. For 𝐺 a group, the type of 𝐺-torsors is just another name

for the component of the type of set bundles over BG containing the

universal set bundle.

Observe that for a group 𝐺, Torsor𝐺 is a connected groupoid
46

and so

– by specifying the base point ℙsh𝐺 – it classifies a group. Guess which

one!
47

. ⌟

Definition 5.5.4. Recall from Example 5.2.4(5.2.1) the definition, for all

𝑦 : BG, of ℙ𝑦 : BG→ Set as the 𝐺-set with ℙ𝑦(𝑧) ≡ (𝑦 =→ 𝑧). Note that ℙ𝑦

is a 𝐺-torsor, so we can define

ℙ_ : BG→∗ (Torsor𝐺 ,ℙsh𝐺) : 𝑦 ↦→ 𝑃𝑦 ,

group actions and subgroups 141

50
In a commutative diagram,

𝑦 𝑧

𝑥.

𝑞

𝑝 ℙ𝑞 (𝑝)

51
It is also possible to prove the

lemma directly by an applica-

tion of Construction 2.9.9: Take

as inverse equivalence the map

𝑄 mapping any 𝑓 :ℙ𝑦
=→ ℙ𝑧 to

𝑄(𝑓) :≡ (𝑓𝑦(refl𝑦))−1 : (𝑦 =→ 𝑧).

52
A similar results holds for∞-groups.

53
Example: 𝐺̃𝑥 from Definition 5.4.23

can be written as 𝑖∗𝑥ℙsh𝐺 , i.e., as the

restriction of the principal 𝐺-torsor

to the stabilizer group 𝐺𝑥 using

𝑖𝑥 : Hom(𝐺𝑥 , 𝐺).

54
Note that the type 𝑓!𝑋(𝑤) can also

be identified as the orbit set of the

𝐺-set (𝑧 : BG) ↦→ (Bf (𝑧) =→ 𝑤) × 𝑋(𝑧),
whose underlying set is equivalent to

ℙsh𝐻 (𝑤) × 𝑋(sh𝐺).

55
This situation is common in algebra

and is often referred to by saying

that some construction, in this case

the untruncated definiens of 𝑓!𝑋, is

not “exact”. See also Exercise 5.5.10.

pointed by reflexivity.
49

If 𝐺 is not clear from the context, we may choose

to write ℙ𝐺
_

instead of ℙ_. ⌟

Remark 5.5.5. We will use several variants of ℙ_, in combination with

some of the conventions introduced back in Chapter 2. In this remark,

to avoid confusion, we explain these variants.

First, we also use ℙ_ to denote its induced action on paths: for 𝑦, 𝑧 : BG
we have

ℙ_ : (𝑦 =→ 𝑧) → (ℙ𝑦 =→ ℙ𝑧),

defined by path induction as in Definition 2.6.1.

Then, as ℙ𝑦
=→ ℙ𝑧 is an identity between families of types, function

extensionality (Principle 2.9.18) applies. For 𝑞 : 𝑦 =→ 𝑧, we may also use

ℙ𝑞 to denote the corresponding function of type ∏𝑥 : BG(ℙ𝑦(𝑥) =→ ℙ𝑧(𝑥)).
Finally, as ℙ𝑦(𝑥) and ℙ𝑧(𝑥) are types, univalence (Principle 2.13.2)

applies. Therefore we may use ℙ𝑞(𝑥) to denote the corresponding

equivalence, i.e., transport in the type family ℙ_(𝑥), sending 𝑝 :ℙ𝑦(𝑥) ≡
(𝑦 =→ 𝑥) to 𝑝𝑞−1 :ℙ𝑧(𝑥) ≡ (𝑧 =→ 𝑥).50 ⌟

For connoisseurs of category theory, the following lemma is a corollary

of a type-theoretic Yoneda lemma, and the proof is Exercise 3.5.4.
51

Lemma 5.5.6. Let 𝐺 be a group. For all 𝑦, 𝑧 : BG the induced map of identity
types

ℙ_ : (𝑦 =→ 𝑧) → (ℙ𝑦 =→ ℙ𝑧)

is an equivalence.
The following theorem justifies the title of this section, stating that the

classifying type of a group is the type of its torsors.

Theorem 5.5.7. Let 𝐺 be a group. Then the function ℙ𝐺_ : BG → Torsor𝐺
from Definition 5.5.4 is an equivalence.52

Proof. Since both Torsor𝐺 and BG are pointed and connected, it suffices

by Corollary 2.17.9(4) to show that ℙ𝐺
_

: (sh𝐺
=→ sh𝐺) → (ℙsh𝐺

=→ ℙsh𝐺) is
an equivalence. This follows directly from Lemma 5.5.6. □

5.5.8 Homomorphisms and torsors

In view of the equivalence ℙ𝐺
_

between BG and (Torsor𝐺 ,ℙsh𝐺) of Theo-

rem 5.5.7 one might ask what a group homomorphism 𝑓 : Hom(𝐺, 𝐻)
translates to on the level of torsors. Off-hand, the answer is the round-trip

(ℙ𝐻
_
)Bf (ℙ𝐺

_
)−1

, but we can be more concrete than that. We do know that

for 𝑧 : BG the 𝐺-torsor ℙ𝐺𝑧 should be sent to ℙ𝐻Bf (𝑧), but how do we express

this for an arbitrary 𝐺-torsor?

Definition 5.5.9. Let 𝑓 : Hom(𝐺, 𝐻) be a group homomorphism. If

𝑌 : BH → Set is an 𝐻-set, then the restriction 𝑓 ∗𝑌 of 𝑌 to 𝐺 is the 𝐺-set

given by precomposition
53

𝑓 ∗𝑌 :≡ (𝑌 ◦ Bf) : BG→ Set.

If 𝑋 : BG→ Set is a 𝐺-set, we define the induced 𝐻-set 𝑓!𝑋 : BH →U
by setting, for 𝑤 : BH,

54

𝑓∗𝑋(𝑤) :≡
∥∥∥∥ ∑
𝑧 : BG

(
(Bf (𝑧) =→ 𝑤) × 𝑋(𝑧)

)∥∥∥∥
0
. ⌟

group actions and subgroups 142

56
The type 𝑓∗𝑋(𝑤) can also be iden-

tified as the set of invariant maps

of the 𝐺-set ℙBf (𝑤) → 𝑋, where

(ℙBf (𝑤) → 𝑋)(𝑧) :≡ (Bf (𝑧) =→ 𝑤) →
𝑋(𝑧) for 𝑧 : BG.

The following exercise shows that the set-truncation in the definition

of 𝑓! above really makes a difference.
55

Exercise 5.5.10. Find groups 𝐺, 𝐻, a homomorphism 𝑓 : Hom(𝐺, 𝐻) and

a 𝐺-set 𝑋 such that (𝑤 : BH) ↦→ ∑𝑧 : BG
(
(Bf (𝑧) =→ 𝑤) ×𝑋(𝑧)

)
is an 𝐻-type

that is not an 𝐻-set. ⌟

Exercise 5.5.11. Give an equivalence from 𝑓!𝑋 to𝑋◦Bf−1
(i.e., (𝑓 −1)∗ 𝑋) if 𝑓

is an isomorphism. Give an equivalence between the types Hom𝐻(𝑓!𝑋,𝑌)
and Hom𝐺(𝑋, 𝑓 ∗𝑌), for all 𝐺-sets 𝑋 and 𝐻-sets 𝑌. ⌟

Remark 5.5.12. The purpose of this remark is to explain how 𝑓!𝑋 and 𝑓 ∗𝑌

may be viewed as a certain kind of image and preimage, respectively.

In Definition 2.17.11 we defined the (propositional) image of a function

𝑓 :𝐴 → 𝐵, and in Section 3.9 the higher images. In these definitions

we used the whole domain 𝐴 of 𝑓 . In Definition 2.9.3 we defined the

preimage, or fiber, of 𝑓 , for any element 𝑏 of the codomain 𝐵.

It is natural to generalize both image and preimage of a function to

subtypes of the domain and codomain. Let 𝐴 and 𝐵 be types, 𝑓 :𝐴→ 𝐵

a function, and consider the types of subtypes Sub(𝐴) ≡ (𝐴 → Prop)
and Sub(𝐵) ≡ (𝐵 → Prop). Given a subtype 𝑌 : Sub(𝐵) of 𝐵, consider

𝑓 ∗𝑌 ≡ 𝑌 ◦ 𝑓 . Then 𝑓 ∗𝑌 is subtype of 𝐴 consisting of precisely those 𝑎 :𝐴
for which 𝑓 (𝑎) is in 𝑌, in other words, the premimage of 𝑌 under 𝑓 .

Now let 𝑋 : Sub(𝐴) be a subtype of 𝐴 and consider the subtype of 𝐵

defined by the predicate (𝑏 : 𝐵) ↦→ ∥∑𝑎 :𝐴((𝑓 (𝑎) =→ 𝑏) × 𝑋(𝑎))∥. This is

𝑓!𝑋 with propositional truncation instead of set truncation, and it holds

precisely for all 𝑏 : 𝐵 for which there exists an 𝑎 in 𝑋 with 𝑓 (𝑎) =→ 𝑏, in

other words, the image of 𝑋 under 𝑓 .

Note that the above makes little sense for 𝐴 ≡ BG and 𝐵 ≡ BH, since

predicates on connected types are constant. However, the intuition

carries over to Set valued functions 𝑋 and 𝑌 and a set truncated 𝑓!𝑋,

analogously to higher images defined in Section 3.9. ⌟

Remark 5.5.13. Dually to 𝑓!𝑋(𝑤) in Definition 5.5.9, there is also a coin-
duced 𝐻-set 𝑓∗ : BH→ Set given by

𝑓∗𝑋(𝑤) :≡ ∏
𝑧 : BG

(
(Bf (𝑧) =→ 𝑤) → 𝑋(𝑧)

)
.

Note that this always lands in sets since 𝑋 does.
56 ⌟

Exercise 5.5.14. Give an equivalence between the types Hom𝐺(𝑓 ∗𝑌, 𝑋)
and Hom𝐻(𝑌, 𝑓∗𝑋), for all 𝐺-sets 𝑋 and 𝐻-sets 𝑌. ⌟

When 𝑋 is the 𝐺-torsor ℙ𝐺𝑥 , for some 𝑥 : BG, the contraction (recall

Lemma 2.9.10) of ∑𝑧 : BG(𝑥 =→ 𝑧) induces an equivalence 𝜂𝑤 of type

𝑓!ℙ
𝐺
𝑥 (𝑤) ≡

∥∥∥∥ ∑
𝑧 : BG

(
(Bf (𝑧) =→ 𝑤) × (𝑥 =→ 𝑧)

)∥∥∥∥
0

≃→ (Bf (𝑥) =→ 𝑤) ≡ ℙ𝐻Bf (𝑥)(𝑤).

Taking 𝑥 ≡ sh𝐺, we get a path 𝜂 : 𝑓! ℙsh𝐺
=→ ℙ𝐻Bf (sh𝐺). We also have the

path Bf pt : sh𝐻
=→ Bf (sh𝐺), so that the action of ℙ𝐻

_
gives us a path

𝜋 :ℙsh𝐻 ≡ ℙ𝐻sh𝐻
=→ ℙ𝐻Bf (sh𝐺). Combining we get 𝜂−1𝜋 :ℙsh𝐻

=→ 𝑓! ℙsh𝐺 .

If 𝑋 is a 𝐺-set such that ∥ℙsh𝐺
=→ 𝑋∥, then 𝑓!𝑋 is an 𝐻-set such that

∥ℙsh𝐻
=→ 𝑓!𝑋∥, so that 𝑓! : Torsor𝐺 →∗ Torsor𝐻 , pointed by 𝜂−1𝜋.

Summing up, we have implemented the following:

group actions and subgroups 143

57
The letter 𝜌 commemorates the word

“regular”

58
By Definition 5.3.11, 𝜌𝐺 is a

monomorphism means that the

induced map U𝜌𝐺 from the symme-

tries of sh𝐺 in BG÷ to the symmetries

of UG in Set is an injection, i.e., “any

symmetry is a symmetry in Set”.

Construction 5.5.15. Let 𝑓 : Hom(𝐺, 𝐻) be a group homomorphism. Then
𝑓 induces a pointed map 𝑓! : Torsor𝐺 →∗ Torsor𝐻 , and we have a path of type
𝑓! ℙ

𝐺
_

=→ ℙ𝐻_ Bf ≡ 𝑓 ∗ ℙ𝐻_ , all represented by the following diagram:

sh𝐺 Bf (sh𝐺) sh𝐻

BG BH

Torsor𝐺 Torsor𝐻

ℙsh𝐺 𝑓! ℙsh𝐺 ℙsh𝐻 .

Bf pt

Bf

ℙ𝐺_ ℙ𝐻_

𝑓!

𝜂−1𝜋

5.6 Any symmetry is a symmetry in Set

For abstract groups there is a result, attributed to Cayley, which is often

stated as “any group is a permutation group”. In our parlance this

translates to “any symmetry is a symmetry in Set”. The aim of this

section is to give a precise formulation of the latter and prove it, using

what we learned in Section 5.5.

Let 𝐺 be a group. Recall from Example 5.2.4 the principal torsor

ℙsh𝐺 : BG→ Set : 𝑧 ↦→ (sh𝐺
=→ 𝑧). Since ℙsh𝐺 (sh𝐺) :≡ UG, ℙsh𝐺 restricts to

a pointed function BG→∗ BΣUG, i.e., classifies a homomorphism from

𝐺 to the permutation group ΣUG ≡ AutSet(UG), denoted by
57

𝜌𝐺 : Hom(𝐺,ΣUG).

Theorem 5.6.1 (Cayley). For any group 𝐺, 𝜌𝐺 is a monomorphism.58

Proof. In view of Definition 5.3.11 we need to show that B𝜌𝐺 ≡ ℙsh𝐺 : BG→
BΣUG is a set bundle. Note first that ℙsh𝐺 factors as:

BG (Torsor𝐺 ,ℙsh𝐺) ≡
(
(BG→ Set)(ℙsh𝐺) ,ℙsh𝐺

)

BΣUG ≡ (Set(UG) ,UG)

ℙ_

ℙsh𝐺
evsh𝐺

In this diagram, ℙ_ : BG→∗ (Torsor𝐺 ,ℙsh𝐺) is the equivalence of Theo-

rem 5.5.7, and evsh𝐺 : (BG→ Set)(ℙsh𝐺) →∗ Set(UG) is the evaluation map

defined by evsh𝐺 (𝐸) :≡ 𝐸(sh𝐺) and pointed by reflexivity. In Exercise 5.6.2

you are asked to justify this factorization.

We must show that for 𝑋 : Set(UG) the fiber ev−1
sh𝐺 (𝑋) is a set. This

fiber is by definition ∑𝐸 : (BG→Set)(ℙsh𝐺
)(𝑋

=→ 𝐸(sh𝐺)), which is a subtype

of ∑𝐸 : BG→Set(𝑋 =→ 𝐸(sh𝐺)). The latter is the type of pointed maps from

BG to (Set, 𝑋) and hence a set by Lemma 4.4.12, in particular Footnote 20.

Therefore the fiber ev−1
sh𝐺 (𝑋) is also a set. □

Note that the above theorem yields that (𝐺, 𝜌𝐺 , !) is a monomorphism

into ΣUG. In other words, 𝐺 is a subgroup of ΣUG.

Exercise 5.6.2. Show thatℙsh𝐺 and evsh𝐺◦ℙ_ are equal as pointed maps. ⌟

group actions and subgroups 144

59
This is an alternative way to under-

stand that evsh𝐺 , and hence ℙsh𝐺 ,

classifies a monomorphism.

60
Use Corollary 3.6.16, univalence, and

Construction 2.14.2.

Remark 5.6.3. In many cases, the set UG used in Theorem 5.6.1 is larger

than necessary for obtaining the symmetries in 𝐺 as symmetries of a

set. A case in point is the group Σ3, where the symmetries are already

symmetries of a set, namely of the set 𝟛. However, UΣ3 ≡ (𝟛 =→ 𝟛) is a

6-element set. Let’s take a closer look at where and how this happens in

the proof.

As stated in Exercise 5.6.2, the map ℙsh𝐺 : BG →∗ Set(UG) classifying

the monomorphism 𝜌𝐺 is decomposed as an equivalence ℙ_ followed

by the evaluation map evsh𝐺 . This is depicted in the following diagram,

where the second line shows the induced maps on the symmetries.

BG (Torsor𝐺 ,ℙsh𝐺) Set(UG)

UG (ℙsh𝐺
=→ ℙsh𝐺) (UG =→ UG)

ℙ_
evsh𝐺

ℙ_
evsh𝐺

Let PP be the 𝐺-set given by PP(𝑧) :≡ (ℙsh𝐺 (𝑧) =→ ℙsh𝐺 (𝑧)) for all 𝑧 : BG.

By function extensionality, ℙsh𝐺
=→ ℙsh𝐺 is equivalent to ∏𝑧 : BG PP(𝑧),

the type of invariant maps of PP. By Lemma 5.4.20(1), such invariant

maps, and hence the corresponding symmetries of ℙsh𝐺 , are uniquely

determined by their value at sh𝐺.
59

Note that the underlying set of PP is PP(sh𝐺) ≡ (UG =→ UG). Lemma 5.4.20(2)

characterizes exactly the invariant maps of PP as corresponding via evsh𝐺

with fixed elements of UG =→ UG. In other words, evsh𝐺 forgets about

the extra structure of PP and sends invariant maps of PP to fixed per-

mutations of UG. For example, in the case of Σ3, we go in total from

permutations of 𝟛 to fixed permutations of the 6-element set 𝟛 =→ 𝟛.

In Exercise 5.6.4 you are asked to explore the abstract group of fixed

permutations of UG. ⌟

Exercise 5.6.4. Let conditions be as in Remark 5.6.3. By analyzing

transport in the type family ℙsh𝐺 (_), show that a permutation 𝜋 of UG is

fixed if and only if 𝜋(𝑔𝑔′) = 𝑔𝜋(𝑔′) for all 𝑔, 𝑔′ : UG. Show that the fixed

permutations of UG form an abstract group and that evaluation of such

a permutation at reflsh𝐺 yields an abstract isomorphism from this group

to abs(𝐺). ⌟

5.7 The lemma that is not Burnside’s

Example 5.7.1. Since the lemma to come is about counting orbits and

elements of orbits, we start by elaborating an example. Recall from

Example 4.2.22 the cyclic group C4 ≡ AutCyc(𝟜, 𝑠), where Cyc is defined

in Definition 3.6.3 as the type of cycles, i.e., pairs (𝑋, 𝑡) of a set 𝑋 and a

permutation 𝑡 :𝑋 ≃→ 𝑋 such that any two points of 𝑋 are some 𝑡-steps

apart. Let 𝑋 : BC4 → Set be the C4-set mapping any (𝐴, 𝑓) : BC4 to

𝐴 → 𝟚. Then the underlying set of 𝑋 is 𝟜→ 𝟚, i.e., binary sequences

of length 4. The group action induced by 𝑋 cyclically rotates such

sequences, by 0, 1, 2 or 3 positions.
60

By Corollary 5.4.5, the set of orbits 𝑋/C4 is equivalent to the quotient

of 𝟜→ 𝟚 induced by [_] : (𝟜→ 𝟚) → 𝑋/C4 from Lemma 5.4.4. As also

stated by that lemma, the equivalence class of any 𝑥 :𝟜 → 𝟚 consists

precisely of all cyclic rotations of 𝑥. Clearly, 0000 and 1111 have singleton

group actions and subgroups 145

orbit stabilizers

0000 0, 1, 2, 3
1111 0, 1, 2, 3

0001, 0010, 0100, 1000 0
0111, 1011, 1101, 1110 0

0101, 1010 0, 2
1100, 0110, 0011, 1001 0

Table 5.1: Underlying sets of orbits

and the stabilizers of their elements.

61
Here it matters even less since C4 is

abelian.

equivalence classes. The equivalence class of 0001 (resp. 0111) consists

of all four binary sequences with exactly one 1 (resp. 0). Before you

start thinking that swapping 0’s and 1’s gives a new equivalence class,

consider 0101 that forms an equivalence class together with 1010. Finally,

0011 forms an equivalence class together with 1001, 1100 and 0110. Thus

we have distributed all 16 sequences over six orbits, as in the left column

of Table 5.1.

In the right column of Table 5.1, we have given in each row the

respective stabilizing symmetries in BC4. Exercise 5.4.11 tells us that

it doesn’t matter too much which element in the orbit one chooses.
61

For the cardinality #((C4)𝑥) of the finite stabilizer groups, the particular

𝑥 one chooses within in each orbit is irrelevant, but may vary from

orbit to orbit. Now we can observe something interesting: the product

#(C4 · 𝑥) × #((C4)𝑥) (i.e., in each row, the number of elements on the

left times that on the right) is equal to #(C4) = 4, for each 𝑥 in the

underlying set of 𝑋. This follows from Lagrange’s Theorem, in particular

Exercise 5.3.27, applied with 𝐺 ≡ C4 and taking for 𝑋 the underlying

C4-set of [𝑥], which is transitive.

Another observation in Table 5.1 is that, since there are six orbits and

the orbits induce a disjoint partition of 𝟜→ 𝟚, there are in total 24 pairs

(𝑔, 𝑥)with 𝑔 · 𝑥 = 𝑥. This insight leads to the following lemma. ⌟

Lemma 5.7.2. Let 𝐺 be a finite group and let 𝑋 : BG→ Set be a finite 𝐺-set.
For any 𝑔 : UG, define the set 𝑋 𝑔 :≡ { 𝑥 :𝑋(sh𝐺) | 𝑔 · 𝑥 = 𝑥 } of points fixed by
𝑔. Then each 𝑋 𝑔 , the sum type ∑𝑔 : UG 𝑋

𝑔 , and the set of orbits 𝑋/𝐺 are finite
sets, and we have

#
(

∑
𝑔 : UG

𝑋 𝑔
)
= #(𝑋/𝐺) × #(𝐺).(5.7.1)

Proof. We first need to make sure that the sets involved are finite. Finite

sets are decidable sets, see Exercise 2.24.6. Hence each 𝑋 𝑔
is a finite set,

as it is a decidable subset of 𝑋(sh𝐺), see Remark 2.24.10.

Finiteness of ∑𝑔 : UG 𝑋
𝑔

follows from Exercise 2.24.12. Regarding the

set of orbits, note that Corollary 5.4.5 yield that 𝑋/𝐺 is equivalent to

the quotient of 𝑋(sh𝐺)modulo the equivalence relation ∃𝑔 : UG 𝑥 = 𝑔 · 𝑦.

The latter proposition is decidable by Exercise 2.24.11. Now apply

Exercise 2.24.13.

Since the main statement Equation (5.7.1) of the lemma is a proposition,

we may assume that, for both 𝑋(sh𝐺) and UG, we have an equivalence

to a standard finite set. Rearranging sums and writing 𝑋(sh𝐺) as the

sum of fibers of [_] :𝑋(sh𝐺) → 𝑋/𝐺 gives equivalences:

∑
𝑔 : UG

𝑋 𝑔 ≡ ∑
𝑔 : UG

∑
𝑥 :𝑋(sh𝐺)

(𝑔 · 𝑥 = 𝑥) ≃→ ∑
𝑥 :𝑋(sh𝐺)

∑
𝑔 : UG
(𝑔 · 𝑥 = 𝑥) ≃→

∑
𝑥 :𝑋(sh𝐺)

UG𝑥
≃→ ∑

𝑂 :𝑋/𝐺
∑

𝑥 :𝑋(sh𝐺)

(
(𝑂 = [𝑥]) ×UG𝑥

) ≃→ ∑
𝑂 :𝑋/𝐺

∑
𝑥 :𝑋𝑂 (sh𝐺)

UG𝑥

In the last step we have used that 𝑂 = [𝑥] is equivalent to 𝑂(sh𝐺 , 𝑥),
which means that 𝑥 is in the underlying set 𝑋𝑂(sh𝐺) of the orbit 𝑂, see

Definition 5.4.1 and Definition 5.2.10.

Note that the last type in the chain above reflects how we counted in

Table 5.1: for every orbit, and every element in the underlying set of that

orbit, we counted the stabilizers of that element.

group actions and subgroups 146

We aim to apply the Lagrange construction with subgroups defined

by 𝑋𝑂 and 𝑥𝑂 :𝑋𝑂(sh𝐺), for any orbit 𝑂 :𝑋/𝐺. These points 𝑥𝑂 can

be obtained as the ‘least’ 𝑥 :𝑋(sh𝐺) such that 𝑂 = [𝑥], where ‘least’

means: corresponding to the smallest number under the equivalence

of 𝑋(sh𝐺) with a standard finite set. We also have to give functions

𝑓𝑂 : ∏𝑦 :𝑋𝑂 (sh𝐺)∑𝑔 : UG 𝑔 ·𝑋𝑂 𝑦 = 𝑥𝑂 , for every 𝑂 :𝑋/𝐺. Such functions

are obtained by using the transitivity of 𝑋𝑂 in combination with the

equivalence between UG and a standard finite set: we can simply take

the ‘least’ 𝑔 : UG such that 𝑔 ·𝑋𝑂 𝑦 = 𝑥𝑂 . Applying Construction 5.3.26,

we get an equivalence between UG and ∑𝑥 :𝑋𝑂 (sh𝐺)UG𝑥 . We conclude

that #(∑𝑔 : UG 𝑋
𝑔) = #(𝑋/𝐺) × #(𝐺), using Exercise 2.24.12. □

As a first application of Burnside’s Lemma, we note the following

number-theoretic consequence, which falls out when we consider the

analog of Example 5.7.1 for the case of C𝑝 acting on base-𝑛 sequences of

length 𝑝.

Theorem 5.7.3 (Fermat’s Little Theorem). For any prime 𝑝 and natural
number 𝑛, we have 𝑝 | 𝑛𝑝 − 𝑛.

Proof. Consider the action 𝑋 : BC𝑝 → Set of the cyclic group C𝑝 on a set

of size 𝑛𝑝 given by

𝑋(𝑆, 𝑡) :≡ (𝑆→ 𝕟),

for any 𝑝-cycle (𝑆, 𝑡). The underlying set is the type of functions 𝕡→ 𝕟,

which is finite of cardinality 𝑛𝑝 .

Now apply Burnside’s Lemma 5.7.2. The stabilizer subgroup of a

function 𝑓 :𝕡→ 𝕟 is either trivial or all of C𝑝 . In the former case, 𝑓 is one

of the 𝑛 constant functions, and all the other 𝑛𝑝 − 𝑛 possible functions

are free. We get:

#
(

∑
𝑔 : UC𝑝

𝑋 𝑔
)
= 𝑛𝑝 + (𝑛𝑝 − 𝑛) = #(𝑋/C𝑝) × #(C𝑝),

and since #(C𝑝) = 𝑝, we conclude that 𝑝 divides 𝑛𝑝 − 𝑛. □

This chapter introduces some useful

terminology that we’ll use in the

rest of the book. It can probably be

skipped at a first reading, and only

consulted as needed.

1
The topic is of course too vast to

cover in detail here, so we refer to

the literature for more details. Cat-

egory theory in univalent founda-

tions is also treated in Chapter 10 of

the HoTT book
2

(based on Ahrens,

Kapulkin, and Shulman
3
), while

Awodey
4

and Riehl
5

give traditional

expositions, and Mac Lane
6

gives a

comprehensive treatment.

3
Univalent Foundations Program,

Homotopy Type Theory: Univalent
Foundations of Mathematics.

4
Benedikt Ahrens, Krzysztof Ka-

pulkin, and Michael Shulman. “Uni-

valent categories and the Rezk com-

pletion”. In: Math. Structures Com-
put. Sci. 25.5 (2015), pp. 1010–1039.

issn: 0960-1295. doi: 10 . 1017 /
S0960129514000486.

5
Steve Awodey. Category theory. Sec-

ond. Vol. 52. Oxford Logic Guides.

Oxford University Press, Oxford,

2010, pp. xvi+311. isbn: 978-0-19-

923718-0.

6
Riehl, Category Theory in Context.

7
Saunders Mac Lane. Categories for the
working mathematician. Second. Vol. 5.

Graduate Texts in Mathematics.

Springer-Verlag, New York, 1998,

pp. xii+314. isbn: 0-387-98403-8.

6
A categorical interlude

We have seen that many types carry a notion of morphism between its

elements:

• We have functions 𝑓 :𝐴→ 𝐵 between types 𝐴 and 𝐵 in a universe U
(Section 2.2),

• We have identifications 𝑝 : 𝑥 =→ 𝑦 between elements 𝑥, 𝑦 of any type 𝐴

(Section 2.5),

• We have pointed functions 𝑓 :𝐴→∗ 𝐵 between pointed types 𝐴 and 𝐵

inU ∗ (Definition 2.21.1),

• We have fiberwise maps 𝑓 : ∏𝑥 :𝑋(𝐴(𝑥) → 𝐵(𝑥)) between families

𝐴, 𝐵 :𝑋 →U (Definition 2.9.14),

• We have homomorphisms 𝑓 : Hom(𝐺, 𝐻)between groups𝐺, 𝐻 : Group
(Definition 4.4.2),

• We have maps of 𝐺-sets 𝑓 : Hom𝐺(𝑋,𝑌) for 𝑋,𝑌 : BG→ Set (Defini-

tion 5.2.8; a special case of fiberwise maps).

In all those cases, we have notions of identity morphism and composition

of morphisms. We have also seen that some maps between types

are paired with maps on morphisms, for example, taking underlying

symmetries in groups, U : Group→ Set (Definition 4.2.11), comes with

a corresponding operation of taking the underlying map of symmetries

of a group homomorphism,

U : Hom(𝐺, 𝐻) → (UG→ UH)

(Definition 4.4.5) satisfying U(id𝐺) = idUG and U(𝜓 ◦ 𝜑) = U𝜓 ◦ U𝜑

(Corollary 4.4.16).

It’s very useful to develop some abstractions for types equipped with

a notion of morphism and maps equipped with maps of morphisms like

this. These give the notions of (wild) categories and functors, respectively,

and category theory is the study of these structures.

Here we give a brief primer
1
on category in order to systematize what

we’ve done so far, and prepare for the main result of the next chapter,

which is to give an equivalence of categories between the categories of

concrete and abstract groups.

6.1 Brief overview of the chapter

In Section 6.2 we define the kinds of categories we need, along with many

examples (including the above). Then we discuss various abstract notions

147

https://doi.org/10.1017/S0960129514000486
https://doi.org/10.1017/S0960129514000486

a categorical interlude 148

8
See below for remarks on the termi-

nology. Adding further properties

to the data given here eventually

recovers the notion of a category

simpliciter, see Definition 6.2.6.

9
To be fully explicit, the composition

operation has type

∏
𝐴,𝐵,𝐶 : Ob

(𝐵→ 𝐶) → (𝐴→ 𝐵) → (𝐴→ 𝐶),

and we might denote it 𝑔 ◦𝐴,𝐵,𝐶 𝑓 .

Since the objects 𝐴, 𝐵, and 𝐶 can

often be inferred, we leave them out,

lest the notation becomes too heavy.

A similar remark goes for the other

operations.

in categories (terminal and initial objects, products and coproducts) and

remark on the importance of duality in Section 6.3. In Section 6.4 we

cover functors and natural transformations, and in Section 6.5 we treat

adjunctions; we have already seen some examples of adjunctions, for

example in Exercises 5.5.11 and 5.5.14.

We have also seen an incarnation of the Yoneda lemma in Exercise 3.5.4;

in Section 6.7 we treat the O.G. version. We end with a brief introduction

to monoidal categories in Section 6.8, as we’ll see in Chapter 12 that

abelian groups form an example.

6.2 Categories

As mentioned above, many types come equipped with notion of morphism
or arrow between its elements which is more general than identification or

isomorphism. For instance we have type of functions 𝐴→ 𝐵 for 𝐴, 𝐵 :U
and the type of pointed functions 𝐴 →∗ 𝐵 for 𝐴, 𝐵 :U ∗. There are

identity morphisms and composition of morphisms, and this motivates

the following definition:

Definition 6.2.1. A wild precategory8
consists of the following data:

(1) A type Ob, called the type of objects.

(2) For each pair of objects 𝐴, 𝐵 : Ob, a type of morphisms hom(𝐴, 𝐵).
These are also known as arrows, and written 𝐴→ 𝐵 when there’s no

danger of confusion. If 𝑓 :𝐴→ 𝐵 is such an arrow, then we say that

the domain of 𝑓 is 𝐴 and the codomain of 𝑓 is 𝐵.

(3) For each object 𝐴 : Ob, an identity arrow id𝐴 :𝐴→ 𝐴.

(4) For each pair of arrows 𝑓 :𝐴→ 𝐵 and 𝑔 : 𝐵→ 𝐶, a composite arrow
𝑔 ◦ 𝑓 :𝐴→ 𝐶.

9

(5) For each arrow 𝑓 :𝐴→ 𝐵, a pair of identifications

𝜆 : id𝐵 ◦ 𝑓 =→ 𝑓 , 𝜌 : 𝑓 ◦ id𝐴
=→ 𝑓 .

(6) For each triple of arrows 𝑓 :𝐴 → 𝐵, 𝑔 : 𝐵 → 𝐶, and ℎ :𝐶 → 𝐷, an

identification

𝛼 : ℎ ◦ (𝑔 ◦ 𝑓) =→ (ℎ ◦ 𝑔) ◦ 𝑓 .

If C ≡ (Ob, hom, id,𝜆, 𝜌, 𝛼) is a wild precategory, then we write 𝐴, 𝐵 : C
instead of 𝐴, 𝐵 : Ob to indicate that 𝐴, 𝐵 are elements of the underlying

type of objects of C. We also write Ob(C) for this type. We may write

𝑓 , 𝑔 :𝐴 →C 𝐵 to emphasize where the arrows 𝑓 and 𝑔 live, if needed,

and sometimes homC(𝐴, 𝐵) or C(𝐴, 𝐵), instead of hom(𝐴, 𝐵). ⌟

Remark 6.2.2 (On the adjective “wild”). With this definition, we readily

equip the universes of types U and of pointed types U ∗ with a structure

of wild precategories. In the former case, we can use reflexivities for 𝜆,

𝜌, and 𝛼. In the latter, we leave their definition as an exercise.

We use the adjective “wild” to highlight a deficiency of this definition

as it stands: We haven’t specified any further laws for the identifications

𝜆, 𝜌, and 𝛼. For example, it would be sensible to require an identification

a categorical interlude 149

10
There is a hierarchy of notions, 𝐴𝑛-

precategories, for 𝑛 ≥ 2, with coher-

ence conditions involving up to 𝑛

composable arrows. The wild precat-

egories lie between 𝐴2 and 𝐴3 in this

hierarchy. Besides the mentioned

identification of 𝜆 and 𝜌 for two iden-

tities, we’d also require fillers for

diagrams like

𝑓 ◦ 𝑔

𝑓 ◦ (id ◦ 𝑔) (𝑓 ◦ id) ◦ 𝑔𝛼

ap 𝑓 ◦_(𝜆) ap
_◦𝑔 (𝜌)

as well as coherences when one or

both of 𝑓 and 𝑔 are identities.

11
This follows just as for functions: If 𝑓

is an isomorphism, then each factor

in the product is contractible, as, e.g.,

∑𝑔 : 𝐵→𝐴 𝑓 ◦ 𝑔 =→ id𝐵 is the fiber of

𝑓 ◦ _ : (𝐵 → 𝐴) → (𝐵 → 𝐵) at id𝐵 ,

and all functions 𝑓 ◦ _ and _ ◦ 𝑓 are

equivalences of types using the data

that makes 𝑓 an isomorphism along

with 𝜆, 𝜌, and 𝛼.

of 𝜆 and 𝜌 at an identity: id𝐴 ◦ id𝐴
=→ id𝐴, as well as a filler for the

pentagonal diagram of 𝛼’s coming from four composable arrows:

(6.2.1)

𝑘 ◦ (ℎ ◦ (𝑔 ◦ 𝑓))

𝑘 ◦ ((ℎ ◦ 𝑔) ◦ 𝑓)

(𝑘 ◦ (ℎ ◦ 𝑔)) ◦ 𝑓 ((𝑘 ◦ ℎ) ◦ 𝑔) ◦ 𝑓

(𝑘 ◦ ℎ) ◦ (𝑔 ◦ 𝑓)

ap𝑘◦_(𝛼)

𝛼

ap
_◦ 𝑓 (𝛼)

𝛼

𝛼

Of course, we would on occasion then need a filler for a three dimensional

diagram of pentagons for five composable arrows, etc., etc., ad infinitum.
10

The corresponding structure is known to connoisseurs as an (∞, 1)-
precategory. It is an open problem as we write this whether this notion

can be defined in our type theory. We would certainly hope that types

and pointed types would furnish examples. ⌟

However, when the types of morphisms hom(𝐴, 𝐵) are sets, then the

types of 𝜆, 𝜌, and 𝛼 are propositions, so any coherence conditions are

automatically fulfilled. This motivates the following definition.

Definition 6.2.3. A precategory is a wild precategory C in which the types

𝐴→C 𝐵 are sets, for all objects 𝐴, 𝐵 : C. ⌟

Most (wild) precategories we shall meet satisfy a further condition that

makes them better behaved than arbitrary precategories: a univalence
condition. In fact, for the wild precategory of types and functions, this

condition is exactly the Univalence Axiom (Principle 2.13.2)!

In order to define this, we need the notion corresponding to equivalence

in an general wild precategory.

Definition 6.2.4. A morphism 𝑓 :𝐴 → 𝐵 in a wild precategory C is an

isomorphism if have 𝑔, ℎ : 𝐵→ 𝐴 and identifications 𝜎 : id𝐵
=→ 𝑓 ◦ 𝑔 and

𝜌 : id𝐴
=→ ℎ ◦ 𝑓 . This condition is encoded by the type

isIso(𝑓) :≡
(

∑
𝑔 : 𝐵→𝐴

𝑓 ◦ 𝑔 =→ id𝐵

)
×
(

∑
ℎ : 𝐵→𝐴

ℎ ◦ 𝑓 =→ id𝐴

)
If 𝑓 is an isomorphism, we also say that 𝑓 is invertible.

We define the type 𝐴 �→ 𝐵 of isomorphisms from 𝐴 to 𝐵 in C (𝐴 �→C 𝐵

if needed) by the following definition.

(𝐴 �→ 𝐵) :≡ ∑
𝑓 :𝐴→𝐵

isIso(𝑓). ⌟

The type isIso(𝑓) is indeed a proposition,
11

and every identity arrow

is an isomorphism. We write 𝑓 −1
for the inverse of an isomorphism 𝑓 .

Definition 6.2.5. A wild precategory C is univalent if for all objects

𝐴, 𝐵 : Ob(C), the function

idtoiso𝐴,𝐵 : (𝐴 =→Ob(C) 𝐵) → (𝐴 �→C 𝐵)

defined by path induction sending refl𝐴 to id𝐴, is an equivalence. ⌟

a categorical interlude 150

Definition 6.2.6. A wild category is a univalent wild precategory, and a

category is a univalent precategory. ⌟

Now we are ready to restate the examples mentioned in the introduc-

tion to the chapter. In each case we leave it to the reader to supply most

of the data.

• The wild category of types (in universeU) hasU as its type of objects,

and the function type 𝐴→ 𝐵 as its type of arrows for 𝐴, 𝐵 :U . It is

univalent by the Univalence Axiom.

• The wild category of pointed types (in a universeU) hasU ∗ as its type of

objects, and the type of pointed maps 𝐴→∗ 𝐵 as its type of arrows.

• The wild category of families over a given type 𝑋 has 𝑋 →U as its type

of objects, and the type of fiberwise maps (𝑋 →𝐵 𝑌) :≡ ∏𝑏 : 𝐵 𝑋(𝑏) →
𝑌(𝑏) as its type of arrows.

• The category of sets has Set as its type of objects, and the function type

𝐴→ 𝐵 as its type of arrows. It’s a category since each type 𝐴→ 𝐵 is

a set, and it’s univalent.

• The category of groups has Group as its type of objects, and the homo-

morphism type (𝐺→ 𝐻) :≡ Hom(𝐺, 𝐻) as its type of arrows.

• The category of 𝐺-sets, for a group 𝐺, has 𝐺-Set as its type of objects,

and the type of morphisms of 𝐺-sets Hom𝐺(𝑋,𝑌) (Definition 5.2.8)

as its type of arrows.

By the univalence condition, in a category each identity type 𝐴 =→ 𝐵

is equivalent to the set 𝐴 �→ 𝐵, and is hence a set. Thus we get the

following.

Lemma 6.2.7. The type of objects of a category form a groupoid.
And important special case is when each arrow type 𝐴 → 𝐵 is a

proposition.

Example 6.2.8. A preorder is precategory in which every arrow type is a

proposition. In this case, the types of 𝜆, 𝜌, and 𝛼 are contractible, so the

data of a preorder reduces to just a type 𝑃 and a binary relation, typically

written ≤ :𝑃 → 𝑃 → Prop, that is reflexive, 𝑥 ≤ 𝑥 (via the identities)

and transitive, i.e., if 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧 implies 𝑥 ≤ 𝑧 (via composition).

A partial order, also known as a poset, is a univalent preorder. In this

case, the type of objects is a set. This happens if and only if the relation

is symmetric, i.e., if 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥 implies 𝑥 = 𝑦.

Typical examples are (ℕ,≤), (ℤ,≤), (Prop,→), and (Sub(𝑆),⊆) for a

set 𝑆. A preorder that fails to be a poset is the two-element type 𝟚 with

the always true relation. This is hence also an example of a precategory

that fails to be univalent. ⌟

Another important special case is when every morphism is an isomor-

phism.

Definition 6.2.9. A (wild) pregroupoid is a (wild) precategory in which

every arrow is invertible. A (wild) groupoid is a univalent (wild) pre-

groupoid. ⌟

a categorical interlude 151

wild precategory

wild category wild pregroupoid

wild groupoid

precategory

category pregroupoid

groupoid

hom-sets

only

isomorphisms
univalence

Figure 6.1: The various notions

of categories arranged in a cube:

on the bottom face we loose the

adjective “wild” by requiring arrows

to form sets; on the front left face we

loose the prefix “pre” by requiring

univalence; and on the front right face

we restrict to groupoids by requiring

all arrows be invertible.

12
They all work at the level of (∞, 1)-
categories. We refer to Lurie

13
and

Land
14

for details.

13
Jacob Lurie. Higher topos theory.

Vol. 170. Annals of Mathematics

Studies. Princeton, NJ: Princeton

University Press, 2009, pp. xviii+925.

isbn: 9781400830558. doi: 10.1515/
9781400830558.

14
Markus Land. Introduction to infinity-
categories. Compact Textbooks in

Mathematics. Birkhäuser/Springer,

Cham, 2021, pp. ix+296. isbn: 978-3-

030-61523-9; 978-3-030-61524-6. doi:

10.1007/978-3-030-61524-6.

15
This is a proposition since C is a

precategory. We illustrate the arrow

as a commuting triangle:

𝐴 𝐴′

𝐶
𝑓

𝑔

𝑓 ′

16
This will be the case when C should

be an (∞, 1)-category, carrying the

whole hierarchy of coherences,

which then carry over to C/𝐶.

Example 6.2.10. Every type 𝑋 gives rise to a wild groupoid, its (wild)

path groupoid, having 𝑋 as its type of objects and 𝑥 =→ 𝑦 as its type of

arrows. The arrows are invertible, since paths are always invertible.

If 𝑋 is a 1-type, then this structure is a groupoid. ⌟

There’s no conflict with the terminology introduced in Section 2.15,

because this construction gives an equivalence from the type of 1-types

(inU) to the type of groupoids (in U), as we shall see below.

Definitions 6.2.1, 6.2.3, 6.2.6 and 6.2.9 are summarized as a diagram of

inclusions in Figure 6.1.

Remark 6.2.11. This is a good moment to remark on the size issues we

have so far swept under the rug. The definition of a wild precategory

C can be parametrized by two universe levels: The type of objects

belong to one, Ob :U ′, while the family of arrows belong to another,

hom : Ob→ Ob→U .

If they coincide, then we call C a U -small category. For instance, a path

groupoid for a type 𝑋 :U isU -small.

The other common case is where U :U ′, in which case we call C
locally U -small. For example, the (wild) categories of types, sets, pointed

types, groups, etc., built from types in U are all locally U -small. This

generalizes Definition 2.19.1 for the case of path groupoids. ⌟

Many notions in category theory work already at the level of wild

categories,
12

but a notable exception is the construction of slice categories,

(also known as over categories).
Example 6.2.12. The slice precategory of a precategory C over an object

𝐶 : C, denoted C/𝐶, has as objects the type ∑𝐴 :C 𝐴→ 𝐶 of pairs (𝐴, 𝑓)
of an object 𝐴 and an arrow 𝑓 :𝐴 → 𝐶 with codomain 𝐶. An arrow

from (𝐴, 𝑓) to (𝐴′, 𝑓 ′) is an arrow 𝑔 :𝐴→ 𝐴′ such that 𝑓 ′ ◦ 𝑔 = 𝑓 .15
The

identities and compositions are inherited from C. If C is univalent (and

hence a category), then so is C/𝐶.

If we try to define the slice C/𝐶 for an arbitrary wild precategory C,

using identifications 𝑓 ′ ◦ 𝑔 =→ 𝑓 , we find that we need the pentagon

coherence for 𝛼 for C in order to define the 𝛼 for C/𝐶.

Of course, for particular wild categories, it may very well happen that

C/𝐶 is again a wild categories.
16 ⌟

https://doi.org/10.1515/9781400830558
https://doi.org/10.1515/9781400830558
https://doi.org/10.1007/978-3-030-61524-6

a categorical interlude 152

17
For short: a mono

18
For short: an epi

19
We can illustrate these in diagrams

as saying that 𝑓 is a mono if a map

into the codomain of 𝑓 factors in at

most one way through the domain of

𝑓 ,

𝐴

𝐶 𝐵

𝑓

and dually, 𝑓 is an epi if a map out

of the domain of 𝑓 factors in at most

one way through the codomain of 𝑓 :

𝐴 𝐶

𝐵

𝑓

Exercise 6.2.13. Construct a wild precategory structure on the slice of the
universeU /𝐵 over a fixed type 𝐵 :U . ⌟

6.3 Abstract notions and duality

Many concepts that we introduced in Chapter 2 for the wild category of

types make sense in arbitrary wild precategories.

Definition 6.3.1. A terminal object in a wild precategory C is an object 1
such that for any object 𝐴 : C, the arrow type 𝐴→ 1 is contractible. ⌟

Exercise 6.3.2. Show that if C is univalent, then the type of terminal

objects is a proposition. ⌟

The unit type 𝟙 is a terminal object in the wild category of types, and

in the category of sets, while the trivial group 𝟙 is a terminal object in

the category groups.

The is a “dual” notion as well.

Definition 6.3.3. An initial object in a wild precategory C is an object 0
such that for any object 𝐴 : C, the arrow type 0→ 𝐴 is contractible. ⌟

For example, the empty type 𝟘 is initial in the wild category of types,

while the trivial group 𝟙 is initial in the category of groups.

The relationship between terminal and initial objects reflects a deep

aspect of category theory: Every concept comes with a dual version

obtained by “reversing all the arrows”. More formally, can introduce for

every wild precategory its opposite category that has its arrows reversed.

Definition 6.3.4. For any wild precategory C ≡ (Ob, hom, id,𝜆, 𝜌, 𝛼),
define the opposite Cop

to have the same type of objects, morphisms

homCop(𝐴, 𝐵) :≡ homC(𝐵, 𝐴), identities the same, and composition re-

versed: If 𝑓 :𝐴→C 𝐵 and 𝑔 : 𝐵→C 𝐶, then 𝑔 ◦ 𝑓 :𝐴→C 𝐶 works as the

composite 𝑓 ◦Cop 𝑔 of 𝑔 :𝐶 →Cop 𝐵 and 𝑓 : 𝐵→Cop 𝐴. We then swap the

roles of 𝜆 and 𝜌, and 𝛼−1
plays the role of 𝛼 in Cop

. ⌟

Lemma 6.3.5. The operation of taking opposites defines an equivalence from
the type of wild precategories to itself, with a trivially defined identification
(Cop)op =→ 𝐶.

It follows that any construction or theorem about wild precategories

has a dual version, obtained by precomposition with (_)op
.

For example, the dual of the slice category construction is the coslice
category 𝐶/C (also known as the under category).

As a further example of a pair dual notions, we consider that of

monomorphisms and epimorphisms.

Definition 6.3.6. An arrow 𝑓 :𝐴→ 𝐵 in a wild precategory C is called a

monomorphism17
if post-composition with 𝑓 is an injection

𝑓 ◦ _ : (𝐶 →C 𝐴) → (𝐶 →C 𝐵)

for all objects 𝐶 : C.

Dually, 𝑓 is called an epimorphism18
if pre-composition with 𝑓 is an

injection

_ ◦ 𝑓 : (𝐵→C 𝐶) → (𝐴→C 𝐶)

for all objects 𝐶 : C.
19

If 𝐶 is a precategory, then these conditions reduce

a categorical interlude 153

20
Ulrik Buchholtz, Tom de Jong, and

Egbert Rĳke. “On epimorphisms and

acyclic types in univalent mathemat-

ics”. In: The Journal of Symbolic Logic
(2025), pp. 1–36. doi: 10.1017/jsl.
2024.76. arXiv: 2401.14106.

21
In practice, the functions on objects

and arrows are named the same

as the functor, but they could be

disambiguated with subscripts, say,

𝐹0 and 𝐹1, if needed.

to the implications

𝑓 ◦ 𝑔 = 𝑓 ◦ ℎ → 𝑔 = ℎ, and 𝑔 ◦ 𝑓 = ℎ ◦ 𝑓 → 𝑔 = ℎ,

respectively. ⌟

We already met the monomorphisms in the category of groups in Def-

inition 5.3.11 using a different definition.

Exercise 6.3.7. Show that the monomorphisms in the category of groups

are the same as those of Definition 5.3.11. ⌟

Exercise 6.3.8. Show that the monomorphisms in the wild category of

types are just the injections, and the epimorphisms in the category of

sets are just the surjections. ⌟

The epimorphisms in the wild category of types are always surjections,

but are much more restricted. See Buchholtz, de Jong, and Rĳke
20

for

details.

Exercise 6.3.9. Show that every morphism in a preorder is both a mono

and an epi. ⌟

6.4 Functors and natural transformations

Not only do have arrows in (wild pre-)categories, there’s also a notion of

arrow between them. These are called functors.

Definition 6.4.1. A wild functor 𝐹 : C → D between wild precategories

C and D consists of a function 𝐹 : Ob(C) → Ob(C), mapping objects to

objects, and a family of functions
21

𝐹 : ∏
𝐴,𝐵 :C
(𝐴→C 𝐵) → (𝐹(𝐴) →D 𝐹(𝐵))

together with identifications

𝐹id : 𝐹(id𝐴) =→ id𝐴 , and 𝐹◦ : 𝐹(𝑔 ◦ 𝑓) =→ 𝐹(𝑔) ◦ 𝐹(𝑓),

for all objects 𝐴 and composable arrows 𝑓 and 𝑔 in C.

If D is a precategory, then the types of 𝐹id and 𝐹◦ are propositions,

and in this case we just call 𝐹 a functor. ⌟

Exercise 6.4.2. Show that every wild functor maps isomorphisms to

isomorphisms. ⌟

Example 6.4.3. A functor between preorders (𝑃,≤) and (𝑄,≤) amounts

to a monotone map 𝐹 :𝑃 → 𝑄, i.e., 𝑝 ≤ 𝑝′ implies 𝐹(𝑝) ≤ 𝐹(𝑝′) for

𝑝, 𝑝′ :𝑃. ⌟

Example 6.4.4. Taking the underlying set of symmetries U gives a functor

U : Group→ Set. It’s easy to check that U(id𝐺) = idUG, and we verified

the preservation of composition in Corollary 4.4.16. ⌟

Example 6.4.5. Given a group homomorphism 𝑓 :𝐺→ 𝐻, we have three

functors

𝐺-Set 𝐻-Set

𝑓!

𝑓∗

𝑓 ∗

with actions on objects described in Definition 5.5.9 and Remark 5.5.13.

The action on arrows of restriction is again given by restriction: If 𝑔 :𝑋 →

https://doi.org/10.1017/jsl.2024.76
https://doi.org/10.1017/jsl.2024.76
https://arxiv.org/abs/2401.14106

a categorical interlude 154

22
Freyd

23
observed that “categories

are what one must define in order

to define functors, and that functors

are what one must define in order to

define natural transformations.” In

this sense, natural transformations

are at the heart of category theory.

23
Peter Freyd. Abelian categories. An
introduction to the theory of functors.
Harper’s Series in Modern Mathe-

matics. Harper & Row, Publishers,

New York, 1964, pp. xi+164.

𝑌 is a map of 𝐻-sets with 𝑋,𝑌 : BH→ Set, then 𝑓 ∗(𝑔) : 𝑓 ∗𝑋 → 𝑓 ∗𝑌 maps

𝑧 : BG to 𝑔Bf (𝑧) :𝑋(Bf (𝑧)) → 𝑌(Bf (𝑧)).
The action on arrows of induction along 𝑓 takes a map of 𝐺-sets

𝑔 :𝑋 → 𝑌, for 𝑋,𝑌 : BG→ Set, to the functorial action of set truncation,

for 𝑤 : BH: ⌟

Example 6.4.6. Taking 𝑛-truncation gives a wild functor ∥_∥𝑛 :U →U≤𝑛 .

For 𝑛 = 0, this is a functor fromU to SetU . ⌟

Example 6.4.7. We can extend the operation of adding a default element

from Definition 2.21.1 to a wild functor (_)+ :U →U ∗. It takes a function

𝑓 :𝐴→ 𝐵 to the function 𝑓+ :𝐴+ → 𝐵+ with

𝑓+(inl𝑎) :≡ inl 𝑓 (𝑎) , and 𝑓+(pt𝐴+) :≡ pt𝐵+ .

The operation of taking underlying types of pointed types likewise

extends to a wild functor (_)÷ :U ∗ →U . ⌟

Example 6.4.8. Taking loop types extends to a wild functor Ω :U ∗ →U ∗.
We defined the action on maps in Definition 4.4.3, except we didn’t equip

Ω𝑘 with a pointing path, for 𝑘 :𝑋 →∗ 𝑌. However, that’s easily remedied

using the path groupoids laws from back in Exercise 2.5.3:

pt
Ω𝑌 ≡ reflpt𝑌

=→ 𝑘−1
pt · refl𝑘(pt𝑋) · 𝑘pt ≡ 𝑘−1

pt · ap𝑘÷(pt
Ω𝑋) · 𝑘pt ≡ Ω𝑘(pt

Ω𝑋)

We leave it to the reader to fill in the remaining data. ⌟

Example 6.4.9. For an object 𝐶 of a precategory C, recall the slice pre-

category C/𝐶 of Example 6.2.12. Taking the domain of an object

(𝐴, 𝑓 :𝐴→ 𝐶) of the slice extends to a functor fst : C/𝐶 → C. ⌟

Example 6.4.10. Similar to the slice and coslice constructions, we have

the formation of the arrow precategory C→ of a precategory C. It has as

objects triples (𝐴, 𝐵, 𝑓) of two objects 𝐴, 𝐵 : C and an arrow 𝑓 :𝐴 → 𝐵.

The arrows from (𝐴, 𝐵, 𝑓) to (𝐴′, 𝐵′, 𝑓 ′) are pairs of arrows 𝑔 :𝐴 → 𝐴′

and ℎ : 𝐵→ 𝐵′ making a commutative square:

𝐴 𝐴′

𝐵 𝐵′

𝑓

𝑔

𝑓 ′

ℎ

Projecting out the domain and the codomain gives two functors

C C→ Cdom cod

Note that C→ is a category if C is. ⌟

Exercise 6.4.11. Define identity wild functors and composition of wild

functors, along with identifications 𝜆 : idD ◦ 𝐹 =→ 𝐹, 𝜌 : 𝐹 ◦ idC
=→ 𝐹,

and 𝛼 :𝐻 ◦ (𝐺 ◦ 𝐹) =→ (𝐻 ◦ 𝐺) ◦ 𝐹. Define the fillers for the pentagon

diagram (6.2.1) for four composable functors

C0
𝐹−→ C1

𝐺−→ C2
𝐻−→ C3

𝐾−→ C4

in the case where C4 is a (non-wild) precategory. ⌟

There’s also a notion of arrow between functors. These are called natural

transformations.
22

a categorical interlude 155

24
These squares are called the “natural-

ity squares” for 𝛼.

25
This is Thm. 9.2.5 in the HoTT

book
26

.

26
Univalent Foundations Program,

Homotopy Type Theory: Univalent
Foundations of Mathematics.

Definition 6.4.12. A wild natural transformation 𝛼 : 𝐹 → 𝐺 between two

wild functors 𝐹, 𝐺 : C → D between wild precategories C and D consists

of a family of arrows

𝛼𝐴 : 𝐹(𝐴) →D 𝐺(𝐴)

indexed by objects 𝐴 : C, and a family of fillers for the squares

𝐹(𝐴) 𝐺(𝐴)

𝐹(𝐵) 𝐺(𝐵)

𝛼𝐴

𝐹(𝑓) 𝐺(𝑓)
𝛼𝐵

in D for each arrow 𝑓 :𝐴→C 𝐵.
24

If D is a precategory, then the types of the naturality square fillers are

propositions. In this case, we just call 𝛼 a natural transformation. ⌟

Example 6.4.13. There is a wild natural transformation 𝜂 : idU → ((_)+)÷
from the identity wild functor on the universeU to the composition

U
(_)+−−→U ∗

(_)÷−−→U

of the wild functors from Example 6.4.7. Its action on objects is inl :𝐴→
(𝐴+)÷, where (𝐴+)÷ ≡ 𝐴 ⨿ 𝟙. The naturality squares commute by

reflexivity. ⌟

Example 6.4.14. Every function 𝑓 :𝐴→ 𝐵 between types in U becomes a

wild functor between the corresponding wild path groupoids using the

action on paths, ap 𝑓 from Definition 2.6.1.

Likewise, given two functions 𝑓 , 𝑔 :𝐴 → 𝐵, we get for every family

of identifications ℎ : ∏𝑥 :𝐴 𝑓 (𝑥) =→ 𝑔(𝑥) a wild natural transformation

between the corresponding wild functors, using the naturality squares

of Definition 2.6.5. ⌟

With natural transformations as arrows we can elevate the type of

functors to a precategory.

Definition 6.4.15. For a wild precategory C and a precategory D we have

the functor precategory C → D, also written [C ,D] or DC
, has functors

from C to D as objects and natural transformations as arrows. The

identity arrow at 𝐹 is the identity natural transformation id𝐹 : 𝐹→ 𝐹 that

assigns to each object 𝐴 : C the identity arrow id𝐹(𝐴). The composition

likewise forms compositions objectwise. ⌟

Exercise 6.4.16. Show that a natural transformation 𝛼 : 𝐹 → 𝐺 in a

functor precategory C → D is invertible if and only if each component

𝛼𝐴 : 𝐹(𝐴) →D 𝐺(𝐴) is. ⌟

Exercise 6.4.17. Show that the functor precategory C → D is univalent if

D is.
25

In this case we call it the functor category. ⌟

Exercise 6.4.18. Let 𝐴 be a type and C category. Show that restricting to

the action on objects induces an equivalence

(𝐴→ C) → (𝐴→ Ob(C))

from the functor category whose domain is the wild path category of 𝐴

to the type of functions from 𝐴 to the objects of C. ⌟

A functor 𝐹 : Cop → D whose domain is an opposite category is called

contravariant, because it reverses the directions of arrows: 𝑓 :𝐶 →C 𝐶
′
in

a categorical interlude 156

𝐹𝐺𝐹(𝐶) 𝐹(𝐶)

𝐹(𝐶)

𝐺(𝐷)

𝐺(𝐷) 𝐺𝐹𝐺(𝐷)

𝜀𝐹(𝐶)

𝐹(𝜂𝐶)
id𝐹(𝐶)

id𝐺(𝐷)

𝜂𝐺(𝐷)

𝐺(𝜀𝐷)

Figure 6.2: Triangle laws for an

adjunction 𝐹 ⊣ 𝐺.

C maps to 𝐹(𝑓) : 𝐹(𝐶′) →D 𝐹(𝐶) in D. If needed for emphasis, we may

say that a functor 𝐹 : C → D is covariant by contrast.

Example 6.4.19. For an object 𝐶 of a locally U -small wild precategory C,

we can form the co- and contravariant wild functors

HomC(𝐶, _) : C →U ,

HomC(_, 𝐶) : Cop →U ,

whose actions on morphisms are by post- and precomposition, respec-

tively. These are called representable functors. ⌟

6.5 Adjunctions

We have already seen two examples of an adjunctions in Exercises 5.5.11

and 5.5.14. Given a group homomorphism 𝑓 :𝐺→ 𝐻, there are families

of bĳections

𝛼 : Hom𝐻(𝑓! 𝑋,𝑌) �→ Hom𝐺(𝑋, 𝑓 ∗𝑌),
𝛽 : Hom𝐺(𝑓 ∗𝑌, 𝑋) �→ Hom𝐻(𝑌, 𝑓∗ 𝑋),

for 𝐺-sets 𝑋 and 𝐻-sets 𝑌 that are furthermore natural. This just means

that if we fix either 𝑋 or 𝑌, then we get natural transformations of

corresponding functors. For example, fixing 𝑋, we can regard 𝛼 as a

natural transformation

𝛼 : Hom𝐻(𝑓! 𝑋, _) → Hom𝐺(𝑋, 𝑓 ∗ _)

from the representable functor for 𝐻-Set at 𝑓! 𝑋 to the composition of 𝑓 ∗

and the representable functor for 𝐺-Set at 𝑋.

Definition 6.5.1. A (wild) adjunction between two (wild) precategories C
and D consists of:

• a (wild) functor 𝐹 : C → D (the left adjoint),

• a (wild) functor 𝐺 :D→ C (the right adjoint),

• a (wild) natural isomorphism 𝛼 : HomD(𝐹_, _) �→ HomC(_, 𝐺_).

We write 𝐹 ⊣ 𝐺 to denote this situation. ⌟

The essence of an adjunction is thus the ability to transpose between

arrows 𝐹(𝐶) →D 𝐷 and 𝐶 →C 𝐺(𝐷). There is however another way

of packaging this information. We can transpose the identity id𝐹(𝐶)
to get an arrow 𝜂𝐶 :𝐶 →C 𝐺𝐹(𝐶), and the identity id𝐺(𝐷) to get an

arrow 𝜀𝐷 : 𝐹𝐺(𝐷) →D 𝐷. Naturality of 𝛼 makes these into natural

transformations

𝜂 : idC → 𝐺𝐹, and 𝜀 : 𝐹𝐺→ idD

called the unit and counit of the adjunction.

Exercise 6.5.2. Use naturality of 𝛼, along with unit laws to fill the triangle

laws in Figure 6.2. ⌟

Conversely, given 𝐹, 𝐺, 𝜂, and 𝜀, along with fillers for the triangle laws,

we can recover 𝛼 by sending 𝑓 : 𝐹(𝐶) →D 𝐷 to the composite

𝐶
𝜂𝐶−−→ 𝐺𝐹(𝐶)

𝐺(𝑓)
−−−→ 𝐺(𝐷).

a categorical interlude 157

Exercise 6.5.3. Use the functor and triangle laws to check that 𝛼 thus

defined is a natural isomorphism. ⌟

Example 6.5.4. We have a wild adjunction ∥_∥𝑛 ⊣ 𝜄𝑛 with ∥_∥𝑛 :U →U≤𝑛
(cf. Example 6.4.6) as the left adjoint and the inclusion 𝜄𝑛 :U≤𝑛 →U as the

right adjoint. Indeed, the constructor |_|𝑛 acts as the unit, precomposition

with which gives the equivalence

(∥𝑋∥𝑛 → 𝑌) ≃→ (𝑋 → 𝑌)

for 𝑋 :U and 𝑌 :U≤𝑛 . ⌟

Example 6.5.5. Also the add/forget base points functors from Exam-

ple 6.4.7 can be arranged into a wild adjunction (_)+ ⊣ (_)÷. For 𝐴 :U ∗
and 𝑋 :U we have

𝛼 : (𝐴+ →∗ 𝑋) ≃→ (𝐴→ 𝑋÷)

given by precomposition with inl :𝐴→ 𝐴+. ⌟

6.6 Limits and Colimits

6.7 The Yoneda Lemma

6.8 Monoidal categories

1
Of course this is not a reason to stop

here, but to continue finding out

which parts of group theory benefit

from the concrete approach. Just

to mention a few we have seen al-

ready: the conceptual simplicity

of homomorphisms being pointed

maps, actions being maps from the

classifying type to Set, and the gener-

alizations to∞-groups indicated in

Chapter 5.

2
One could advocate for the name

‘abstract monoid’ here, were it not

the case that we have no concrete

analogue for monoids in our setting.

The reason is the symmetry of the

identity types.

7
Groups, abstractly

7.1 Brief overview of the chapter

Recall from Section 4.3 the definition of an abstract group and how to

obtain an abstract group from a concrete one. In this chapter we will

implement an inverse construction, how to obtain a (concrete) group

from an abstract one, in Section 7.4. Likewise, in Section 7.5, we show

how to obtain a (concrete) homomorphism from an abstract one. Thus

we will have shown that, in principle,
1

it doesn’t matter whether one

develops group theory on the concrete or on the abstract level. More

precisely, we give an equivalence of categories between the categories of

concrete and abstract groups.

Before we implement the above constructions, we first introduce

in Section 7.2 a simpler structure, called monoid, of which abstract

groups are a special case.
2

We then define in Section 7.3 the notion of

homomorphism for abstract groups.

After groups and homomorphism, it is natural to continue to group

actions, in Section 7.6, and again relate the abstract to the concrete.

In the optional Section 7.7 we look at how general identities types

𝑎 =→𝐴 𝑎
′
relate to groups.

7.2 Monoids and abstract groups

A monoid is a collection of data consisting only of (1), (2), and (3) from

the list in Definition 4.3.1. In other words, the existence of inverses is not

assumed. For convenience we reproduce the shortened list here.

Definition 7.2.1. A monoid consists of the following data.

(1) A set 𝑆, called the underlying set.

(2) An element 𝑒 : 𝑆, called the unit or the neutral element.

(3) A function 𝑆 → 𝑆 → 𝑆, called multiplication, taking two elements

𝑔1 , 𝑔2 : 𝑆 to their product, denoted by 𝑔1 · 𝑔2 : 𝑆.

Moreover, the following equations should hold, for all 𝑔, 𝑔1 , 𝑔2 , 𝑔3 : 𝑆.

(a) 𝑔 · 𝑒 = 𝑔 and 𝑒 · 𝑔 = 𝑔 (the unit laws)

(b) 𝑔1 · (𝑔2 · 𝑔3) = (𝑔1 · 𝑔2) · 𝑔3 (the associativity law)

The property that 𝑆 is a set, the unit laws, and the associativity law, are

together known as the monoid laws. ⌟

158

groups, abstractly 159

Example 7.2.2. Let 𝑆 be a set, and consider the type 𝑆∗ of lists of elements

of 𝑆 as defined in Definition 2.12.11. Then 𝑆∗ is a set according to

Theorem 2.22.2. We can give 𝑆∗ the structure of a monoid with the empty

list 𝜀 as unit, and concatenation from Exercise 2.12.13 as multiplication,

denoted ∗. Then the monoid laws can easily be proven to hold and hence

(𝑆∗ , 𝜀, ∗) is a monoid. ⌟

Building on the definition of a monoid, we may encode the type of

abstract groups as follows. We let 𝑆 denote the underlying set, 𝑒 : 𝑆
denote the unit, 𝜇 : 𝑆 → 𝑆 → 𝑆 denote the multiplication operation

𝑔 ↦→ (ℎ ↦→ 𝑔 · ℎ), and 𝜄 : 𝑆 → 𝑆 denote the inverse operation 𝑔 ↦→ 𝑔−1
.

Using that notation, we introduce names for the relevant propositions.

UnitLaws(𝑆, 𝑒 , 𝜇) :≡∏
𝑔 : 𝑆

(
(𝜇(𝑔)(𝑒) = 𝑔) × (𝜇(𝑒)(𝑔) = 𝑔)

)
AssocLaw(𝑆, 𝜇) :≡ ∏

𝑔1 ,𝑔2 ,𝑔3 : 𝑆

(
𝜇(𝑔1)(𝜇(𝑔2)(𝑔3)) = 𝜇(𝜇(𝑔1)(𝑔2))(𝑔3)

)
MonoidLaws(𝑆, 𝑒 , 𝜇) :≡ isSet (𝑆) ×UnitLaws(𝑆, 𝑒 , 𝜇) ×AssocLaw(𝑆, 𝜇)
InverseLaw(𝑆, 𝑒 , 𝜇, 𝜄) :≡∏

𝑔 : 𝑆

(
𝜇(𝑔)(𝜄(𝑔)) = 𝑒

)
GroupLaws(𝑆, 𝑒 , 𝜇, 𝜄) :≡MonoidLaws(𝑆, 𝑒 , 𝜇) × InverseLaw(𝑆, 𝑒 , 𝜇, 𝜄)

Definition 7.2.3. Recall the definition of abstract group in Definition 4.3.1.

The type of abstract groups is

Groupabs :≡ ∑
𝑆 :U

∑
𝑒 : 𝑆

∑
𝜇 : 𝑆→𝑆→𝑆

∑
𝜄 : 𝑆→𝑆

GroupLaws(𝑆, 𝑒 , 𝜇, 𝜄). ⌟

Thus, following the convention introduced in Remark 2.8.2, an abstract

group G will be a quintuple of the form G ≡ (𝑆, 𝑒 , 𝜇, 𝜄, !). For brevity,

we will usually omit the proof of the properties from the display, since

it’s unique, and write an abstract group as though it were a quadruple

G ≡ (𝑆, 𝑒 , 𝜇, 𝜄).
Remark 7.2.4. Instead of including the inverse operation as part (4) of

the structure (including the property (4) (c)), some authors assume the

existence of inverses by positing the property (4) (c) below.

(4) A function (_)−1 : 𝑆→ 𝑆, the inverse operation, satisfying:

(c) 𝑔 · 𝑔−1 = 𝑒 for all 𝑔 : 𝑆 (the law of inverses).

(5) For all 𝑔 : 𝑆 there exists an element ℎ : 𝑆 such that 𝑒 = 𝑔 · ℎ.

We will now compare (5) to (4). Property (5) contains the phrase

“there exists”, and thus its translation into type theory uses the quantifier

∃, as defined in Section 2.16. Under this translation, property (5) does

not immediately allow us to speak of “the inverse of 𝑔”. However, the

following lemma shows that we can define an inverse operation as in

(4) from a witness of (5) – its proof goes by using the unit laws (3) (a)

and the associativity law (3) (b) to prove that inverses are unique. As a

consequence, we can speak of “the inverse of 𝑔”. ⌟

Lemma 7.2.5. Given a set 𝑆 together with 𝑒 and · as in Definition 7.2.1 satisfying
the unit laws, the associativity law, and property (5), we have a unique “inverse”
function 𝑆→ 𝑆 having property (4) (c) of Definition 4.3.1.

groups, abstractly 160

3
Note that this proof also shows that

(𝑔−1)−1 = 𝑔 and hence 𝑔−1 · 𝑔 = 𝑒, for

any 𝑔 : 𝑆.

4
Even though we are able to give

a concise definition of∞-groups

in Section 4.7, we don’t know how

to define the type of “abstract∞-

groups” in a way similar to Defini-

tion 4.3.1: such a definition would

require infinitely many levels of op-

erations producing identifications

of instances of operations of lower

levels. And an identification would

similarly require infinitely many op-

erations identifying the operations at

all levels. See also Remark 7.2.11.

5
Hint: in down-to-earth terms this

boils down to the equations 𝑒−1 = 𝑒

and (𝑎 · 𝑏)−1 = 𝑏−1 · 𝑎−1
.

Proof. Consider the function 𝜇 : 𝑆→ (𝑆→ 𝑆) defined as 𝑔 ↦→ (ℎ ↦→ 𝑔 · ℎ).
Let 𝑔 : 𝑆. We claim that the fiber 𝜇(𝑔)−1(𝑒) is contractible. Contractibility

is a proposition, hence to prove it from (5), one can as well assume the

actual existence of ℎ such that 𝑔 · ℎ = 𝑒. Then (ℎ, !) is an element of

the fiber 𝜇(𝑔)−1(𝑒). We will now prove that it is a center of contraction.

For any other element (ℎ′, !), we want to prove (ℎ, !) = (ℎ′, !), which is

equivalent to the equation ℎ = ℎ′. In order to prove the latter, we show

that ℎ is also an inverse on the left of 𝑔, meaning that ℎ · 𝑔 = 𝑒. This

equation is also a proposition, so we can assume from (5) that we have

an element 𝑘 : 𝑆 such that ℎ · 𝑘 = 𝑒. Multiplying that equation by 𝑔 on

the left, one obtains

𝑘 = 𝑒 · 𝑘 = (𝑔 · ℎ) · 𝑘 = 𝑔 · (ℎ · 𝑘) = 𝑔 · 𝑒 = 𝑔,

from which we see that ℎ · 𝑔 = 𝑒. Now it follows that

ℎ = ℎ · 𝑒 = ℎ · (𝑔 · ℎ′) = (ℎ · 𝑔) · ℎ′ = 𝑒 · ℎ′ = ℎ′,

as required. Hence 𝜇(𝑔)−1(𝑒) is contractible, and we may define 𝑔−1
to be

the center of the contraction, for any 𝑔 : 𝑆. The function 𝑔 ↦→ 𝑔−1
satisfies

the law of inverses (4) (c), as required.
3

Since the inverse of each 𝑔 : 𝑆 is

unique, it follows by function extensionality that this ‘inverse’ function

is unique. □

Remark 7.2.6. That the concept of an abstract group synthesizes the

idea of symmetries will be justified in Section 7.4 where we prove

that the function abs : Group → Groupabs
from Definition 4.3.4 is an

equivalence. ⌟

Remark 7.2.7. If G ≡ (𝑆, 𝑒 , 𝜇, 𝜄) and G′ ≡ (𝑆′, 𝑒′, 𝜇′, 𝜄′) are abstract groups,

an element of the identity type G =→ G′ consists of quite a lot of informa-

tion, provided we interpret it by repeated application of Lemma 2.10.3.

First and foremost, we need an identification 𝑝 : 𝑆 =→ 𝑆′ of sets, but from

there on the information is a proof of a conjunction of propositions.
4

An

analysis shows that this conjunction can be shortened to the equations

𝑒′ = 𝑝(𝑒) and 𝜇′(𝑝(𝑠), 𝑝(𝑡)) = 𝑝(𝜇(𝑠, 𝑡)). A convenient way of obtaining

an identity 𝑝 that preserves these equations is to apply univalence to an

equivalence 𝑓 : 𝑆 ≃→ 𝑆′ that preserves them. We call such a function 𝑓 an

isomorphism of abstract groups. ⌟

Exercise 7.2.8. Perform the abovementioned analysis. ⌟

Exercise 7.2.9. Let G ≡ (𝑆, 𝑒 , 𝜇, 𝜄) be an abstract group. Define another

structure Gop :≡ (𝑆, 𝑒 , 𝜇op , 𝜄), where 𝜇op : 𝑆 → 𝑆 → 𝑆 sends 𝑎, 𝑏 : 𝑆 to

𝜇(𝑏, 𝑎), i.e., 𝜇op
swaps the order of the arguments as compared to 𝜇.

Show that 𝜄 : 𝑆→ 𝑆 defines an isomorphism G ≃→ Gop
.
5 ⌟

Exercise 7.2.10. Let G ≡ (𝑆, 𝑒 , 𝜇, 𝜄) be an abstract group and let 𝑔 : 𝑆. For

any 𝑠 : 𝑆, let conj𝑔(𝑠) :≡ 𝑔 · 𝑠 · 𝑔−1
. Show that the resulting function

conj𝑔 : 𝑆 → 𝑆 preserves the group structure (e.g., 𝑔 · (𝑠 · 𝑠′) · 𝑔−1 =

(𝑔 · 𝑠 · 𝑔−1) · (𝑔 · 𝑠 · 𝑔−1)) and is an equivalence. The resulting identification

conj𝑔 :G =→ G is called conjugation by 𝑔. ⌟

Remark 7.2.11. Without the requirement that the underlying type of an

abstract group or monoid is a set, life would be more complicated. For

instance, for the case when 𝑔 is 𝑒, the unit laws (3) (a) of Definition 7.2.1

groups, abstractly 161

6
Hint: setting 𝑎 · 𝑏 :≡ 𝑏 ∗ 𝑎 gives you

an abstract group from a sheargroup

and conversely, letting 𝑎 ∗ 𝑏 = 𝑏 · 𝑎−1

takes you back. On your way you

may need at some point to show that

𝑎̄ = 𝑎: setting 𝑐 = 𝑎̄ and 𝑏 = 𝑎 in the

third formula will do the trick (after

you have established that 𝑒 = 𝑒). This

exercise may be good to look back

to in the many instances where the

inverse inserted when “multiplying

from the right by 𝑎” is forced by

transport considerations.

7
Named after Hillel Furstenberg who

at the age of 20 published a paper

doing this exercise.
8

8
Harry Furstenberg. “The inverse

operation in groups”. In: Proc. Amer.
Math. Soc. 6 (1955), pp. 991–997. doi:

10.2307/2033124.

9
Hint: show that the function 𝑎 ↦→ 𝑎◦𝑎
is constant, with value, say, 𝑒. Then

show that 𝑆 together with the “unit”

𝑒, “multiplication” 𝑎 · 𝑏 :≡ 𝑎 ◦ (𝑒 ◦ 𝑏)
and “inverse” 𝑏−1 :≡ 𝑒 ◦ 𝑏 is an

abstract group.

10
For monoids this is not true: Let 𝑀

be the monoid with two elements, 1
and 0, with ordinary multiplication,

so the unit is 1. Consider 𝟙 as the

trivial monoid. Now define ℎ :𝟙 →
𝑀 by ℎ(0) = 0. Then ℎ preserves

multiplication, but not the unit. Note

that 𝑀 cannot be extended to an

abstract group, since giving 0 an

inverse would make 0 equal to 1.

11
Recall from Definition 4.3.1 that the

components comprise the underlying

set, the unit element, the multiplica-

tion, and the inverse operation. We

also need the laws to hold, but this

notation elides the corresponding

witnesses.

In the display, 𝑓 (𝑠 ·G 𝑠′) =𝑇

𝑓 (𝑠) ·H 𝑓 (𝑠′) is a proposition; hence a

homomorphism of abstract groups is

uniquely determined by its underly-

ing function of sets, and unless there

is danger of confusion we write 𝑓

instead of (𝑓 , !).

would provide two (potentially different) identifications 𝑒 · 𝑒 =→ 𝑒, and we

would have to separately assume that they agree. This problem vanishes

in the setup we adopted for∞-groups in Section 4.7. ⌟

Exercise 7.2.12. Given an element 𝑔 in an abstract group, prove that

𝑒 = 𝑔−1 · 𝑔 and 𝑔 = (𝑔−1)−1
. (Hint: study the proof of Lemma 7.2.5.) ⌟

Exercise 7.2.13. Prove that the types of monoids and abstract groups are

groupoids. ⌟

Exercise 7.2.14. There is a leaner way of characterizing what an abstract

group is: define a sheargroup to be a set 𝑆 together with an element 𝑒 : 𝑆,

a function _ ∗ _ : 𝑆→ 𝑆→ 𝑆, sending 𝑎, 𝑏 : 𝑆 to 𝑎 ∗ 𝑏 : 𝑆, and the following

propositions, where we use the shorthand 𝑎̄ :≡ 𝑎 ∗ 𝑒:

(1) 𝑒 ∗ 𝑎 = 𝑎,

(2) 𝑎 ∗ 𝑎 = 𝑒, and

(3) 𝑐 ∗ (𝑏 ∗ 𝑎) = (𝑐 ∗ 𝑏) ∗𝑎,

for all 𝑎, 𝑏, 𝑐 : 𝑆. Construct an equivalence from the type of abstract

groups to the type of sheargroups.
6 ⌟

Exercise 7.2.15. Another and even leaner way to define abstract groups,

highlighting how we can do away with both the inverse and the unit: a

Furstenberg group7
is a nonempty set 𝑆 together with a function _◦_ : 𝑆→

𝑆→ 𝑆, sending 𝑎, 𝑏 : 𝑆 to 𝑎 ◦ 𝑏 : 𝑆, with the property that

(1) for all 𝑎, 𝑏, 𝑐 : 𝑆 we have that (𝑎 ◦ 𝑐) ◦ (𝑏 ◦ 𝑐) = 𝑎 ◦ 𝑏, and

(2) for all 𝑎, 𝑐 : 𝑆 there is a 𝑏 : 𝑆 such that 𝑎 ◦ 𝑏 = 𝑐.

Construct an equivalence from the type of Furstenberg groups to the

type of abstract groups.
9 ⌟

7.3 Abstract homomorphisms

In this section we define the notion of homomorphism for abstract groups,

which we touched upon just above Example 4.4.20. We start by an exercise

that simplifies the requirements for abstract group homomorphisms.

Exercise 7.3.1. Let G :≡ (𝑆, 𝑒G , ·G , 𝜄G) and H :≡ (𝑇, 𝑒H , ·H , 𝜄H) be abstract

groups, and 𝑓 : 𝑆→ 𝑇 a function satisfying 𝑓 (𝑠 ·G 𝑠′) =𝑇 𝑓 (𝑠) ·H 𝑓 (𝑠′) for

all 𝑠, 𝑠′ : 𝑆. Show that 𝑓 (𝑒G) = 𝑒H and 𝑓 (𝜄G(𝑠)) = 𝜄H(𝑓 (𝑠)) for all 𝑠 : 𝑆. ⌟

Thus we see that, due to the properties of the abstract groups, if 𝑓

preserves multiplication, then 𝑓 also preserves unit and inverses.
10

Definition 7.3.2. Let G :≡ (𝑆, 𝑒G , ·G , 𝜄G) and H :≡ (𝑇, 𝑒H , ·H , 𝜄H) be two

abstract groups,
11

then the set of homomorphisms from G to H is

Homabs(G ,H) :≡ ∑
𝑓 : 𝑆→𝑇

∏
𝑠,𝑠′ : 𝑆

(
𝑓 (𝑠 ·G 𝑠′) =𝑇 𝑓 (𝑠) ·H 𝑓 (𝑠′)

)
.

For groups 𝐺 and 𝐻, the function

abs : Hom(𝐺, 𝐻) → Homabs(abs(𝐺), abs(𝐻))

is defined as the function 𝑓 ↦→ abs(𝑓) :≡ (Uf , !)made explicit in Defini-

tion 4.4.5 and satisfying the properties by Lemma 4.4.6. ⌟

https://doi.org/10.2307/2033124

groups, abstractly 162

12
Composition here means composi-

tion of the functions on the underly-

ing sets, and composable means that

these functions have types such that

they indeed can be composed. The

latter is sometimes tacitly assumed.

13
In other words, for composable

homomorphisms 𝑓0 , 𝑓1.

Recall Footnote 4, explaining why

we do not consider an “abstract”

counterpart of the concept of∞-

group. Consequently, all we do in

this section is set-based.

Remark 7.3.3. With our definition it is immediate that a homomorphism

of abstract groups also defines a homomorphism of the underlying

monoids, preserving multiplication and thereby unit. However, for

monoids as defined in Definition 7.2.1, it is possible to preserve multipli-

cation but not the unit, as shown in Footnote 10. Hence, for monoids we

define the set of homomorphisms from𝑀 ≡ (𝑆, 𝑒𝑀 , ·𝑀) to𝑁 ≡ (𝑇, 𝑒𝑁 , ·𝑁)
by

∑
𝑓 : 𝑆→𝑇

((
𝑓 (𝑒𝑀) =𝑇 𝑒𝑁

)
× ∏
𝑠,𝑠′ : 𝑆

(
𝑓 (𝑠 ·𝑀 𝑠′) =𝑇 𝑓 (𝑠) ·𝑁 𝑓 (𝑠′)

))
. ⌟

Exercise 7.3.4. Prove that the composition of two composable abstract

homomorphisms
12

is again an abstract homomorphism. Prove also that

abs(id𝐺) = idabs(𝐺) and abs(𝑓1 𝑓0) = abs(𝑓1) abs(𝑓0)

for all 𝑓0 : Hom(𝐺0 , 𝐺1) and 𝑓1 : Hom(𝐺1 , 𝐺2).13
Show that Hom(𝐺, 𝐺)

and Homabs(G , G) are monoids. ⌟

Example 7.3.5. Let G = (𝑆, 𝑒 , 𝜇, 𝜄) be an abstract group and let 𝑔 : 𝑆. In

Exercise 7.2.10 we defined conj𝑔 : 𝑆→ 𝑆 by setting conj𝑔(𝑠) :≡ 𝑔 · 𝑠 · 𝑔−1

for all 𝑠 : 𝑆, and asked you to show that it “preserves the group structure”,

i.e., it is a homomorphism

conj𝑔 : Homabs(G , G)

called conjugation by 𝑔. Actually, we asked for more: namely that conju-

gation by 𝑔 is an isomorphism, and hence determines an identification

(for which we used the same symbol) conj𝑔 :G =→ G.

If H is some other abstract group, transport along conj𝑔 gives an

identification conj𝑔∗ : Hom(H, G) =→ Hom(H, G)which should be viewed

as “postcomposing with conjugation by 𝑔”. Similarly for elements in H,

giving rise to “precomposition with conjugation by ℎ”.

The connection with inner automorphisms of a given group 𝐺 is as

follows. Recalling Example 4.4.20 and Definition 4.4.21, we have that

abs(Binn)(𝑔) = Ω(idBG , 𝑔
−1) = conj𝑔 , for every 𝑔 : UG. ⌟

Exercise 7.3.6. Let G :≡ (𝑆, 𝑒G , ·G , 𝜄G) and H :≡ (𝑇, 𝑒H , ·H , 𝜄H) be abstract

groups and consider the set Homabs(H, G) of homomorphisms from H
to G. For any 𝑓 , 𝑔 : Homabs(H, G), define the function (𝑓 ·G 𝑔) :𝑇 → 𝑆 by

(𝑓 ·G 𝑔)(𝑡) :≡ 𝑓 (𝑡) ·G 𝑔(𝑡) for 𝑡 :𝑇. Show that G is abelian if and only if any

(𝑓 ·G 𝑔) is a homomorphism. ⌟

7.4 Groups: from abstract to concrete and back

For constructing a group from an abstract group, we draw our inspiration

from Definition 5.5.4 and Theorem 5.5.7, which identify each group 𝐺

with the group classified by the type of its torsors, pointed by its principal

torsor. That is, in total analogy, we define the torsors for an abstract

group, and it will then be relatively simple to show that the constructions

of

(1) forming the abstract group of a group and

(2) taking the group classified by the torsors of an abstract group

groups, abstractly 163

14
A (free) choice has been made to

define ℙsh𝐺 using (sh𝐺
=→ 𝑧) and

not (𝑧 =→ sh𝐺). In the latter case

the abstract homomorphism would

map 𝑔 to (_ · 𝑔−1), i.e., precomposi-

tion with the inverse of 𝑔. See also

Exercise 7.4.2.

15
Every abstract group (𝑆, 𝑒 , 𝜇, 𝜄)
has an isomorphic opposite group

(𝑆, 𝑒 , 𝜇′, 𝜄), where 𝜇′(𝑔, 𝑔′) = 𝜇(𝑔′, 𝑔)
for all 𝑔, 𝑔′ : 𝑆. The canonical isomor-

phism is 𝜄.

16
We recognize preinv from

Lemma 5.5.6 as the induced map

of identity types ℙ_ : (𝑦 =→ 𝑥) →
(ℙ𝑦 =→ ℙ𝑥), followed by evaluation

at 𝑧. Post-composition post is trans-

port in the family ℙ𝑥 , while preinv is

precomposition by the inverse of its

argument. We will sometimes write

preinv𝑧 to stress the variable 𝑧 in the

type of preinv, and likewise write

post𝑥 .

are inverse to each other.

Let 𝐺 be a group and 𝑋 : BG→ Set a 𝐺-set. Using the underlying set

𝑋(sh𝐺), we can restrict the codomain of 𝑋 to Set(𝑋(sh𝐺)), the classifying

type of Σ𝑋(sh𝐺). Then we can view 𝑋 as the classifying function of a

group homomorphism from 𝐺 to Σ𝑋(sh𝐺). We already know the abstract

versions of all three ingredients, the two groups and the homomorphism.

Thus, the abstract version of𝑋 can be expected to consist of the set𝑋(sh𝐺)
and abs(𝑋), the abstract homomorphism from abs(𝐺) to abs(Σ𝑋(sh𝐺)).

A case in point is the principal 𝐺-torsor ℙsh𝐺 ≡ (𝑧 ↦→ (sh𝐺
=→ 𝑧)).

Its underlying set is UG. The abstract version of the corresponding

homomorphism, defined by transport, is the function UG→ (UG =→ UG)
mapping 𝑔 to (𝑔·_), i.e., postcomposition with 𝑔.

14
A small generalization

now leads to the following definition.

Definition 7.4.1. Given an abstract group G ≡ (𝑆, 𝑒 , 𝜇, 𝜄), a G-set is a set

𝑇 together with a homomorphism G → abs(Σ𝑇) from G to the abstract

permutation group of 𝑇. Then the type of G-sets is defined as

G-Setabs :≡ ∑
𝑇 : Set

Homabs(G , abs(Σ𝑇)).

The principal G-torsor ℙabs
G is the G-set consisting of the underlying

set 𝑆 together with the homomorphism G → abs(Σ𝑆) with underlying

function 𝑆→ (𝑆 =→ 𝑆) given by sending 𝑔 : 𝑆 to (𝑠 ↦→ 𝜇(𝑔, 𝑠)).
The type of G-torsors is

Torsorabs
G :≡ ∑

X :G-Setabs

∥ℙabs
G

=→ X∥. ⌟

Exercise 7.4.2. In the setting of the above definition, give an identification

of (𝑆, (𝑠 ↦→ 𝜇(𝑔, 𝑠)))with (𝑆, (𝑠 ↦→ 𝜇(𝑠, 𝜄(𝑔)))) in the type G-Setabs
.
15 ⌟

Example 7.4.3. Given a group 𝐺, recall from Lemma 4.3.3 that the

abstract group is abs(𝐺) ≡ (UG, 𝑒𝐺 , ·, (_)−1) with UG ≡ (sh𝐺
=→ sh𝐺)

and 𝑒𝐺 ≡ reflsh𝐺 , and · and (_)−1) as usual for paths. Unravelling the

definition, and Definition 7.3.2, we see that an abs(𝐺)-set consists of

(1) a set 𝑆, and

(2) a function 𝑓 : UG→ (𝑆 =→ 𝑆) such that

(3) for all 𝑝, 𝑞 : UG we have that 𝑓 (𝑝 𝑞) = 𝑓 (𝑝) 𝑓 (𝑞). ⌟

Clearly, the types G-Setabs
and Torsorabs

G are groupoids, and the latter

is by definition connected. Thus we define:

Definition 7.4.4. For any abstract group G, the (concrete) group concr(G)
associated withG is the group classified by the pointed connected groupoid

(Torsorabs
G ,ℙabs

G). ⌟

To help reading the coming proofs we introduce some notation that is

redundant, but may aid the memory in cluttered situations. Let 𝑥, 𝑦, 𝑧

be elements in some type, then define:
16

preinv : (𝑦 =→ 𝑥) → ((𝑦 =→ 𝑧) =→ (𝑥 =→ 𝑧)), preinv(𝑞)(𝑝) :≡ ℙ𝑞𝑝 :≡ 𝑝𝑞−1

post : (𝑦 =→ 𝑧) → ((𝑥 =→ 𝑦) =→ (𝑥 =→ 𝑧)), post(𝑝)(𝑞) :≡ post𝑝𝑞 :≡ 𝑝𝑞

groups, abstractly 164

17
For any 𝑟 : sh𝐺

=→ 𝑧 we have that

preinv𝑧(𝑝 𝑞)(𝑟) = 𝑟 (𝑝 𝑞)−1 =

𝑟 𝑞−1𝑝−1 = preinv𝑧(𝑝)(preinv𝑧(𝑞)(𝑟)).
Without the inverse, this would have

gone badly wrong. Moreover, refer-

ring to Exercise 7.4.2, preinv is here

more natural than post: UG consists

of the symmetries of sh𝐺 , and the 𝑧

is fixed.

18
No need to invert 𝑔 here.

Example 7.4.5. Given a group𝐺 and 𝑧 : BG, the principal𝐺-torsor evaluated
at 𝑧, i.e., the set ℙsh𝐺 (𝑧) ≡ (sh𝐺

=→ 𝑧), has a natural structure of an abs(𝐺)-
set by means of

preinv𝑧 : UG→ ((sh𝐺
=→ 𝑧) =→ (sh𝐺

=→ 𝑧)).

Indeed, preinv𝑧 is an abstract homomorphism since, for all 𝑝, 𝑞 : UG, we

have that preinv𝑧(𝑝 𝑞) = preinv𝑧(𝑝)preinv𝑧(𝑞).17

Furthermore, for any 𝑧 : BG, the abs(𝐺)-set (sh𝐺
=→ 𝑧, preinv, !) is an

abs(𝐺)-torsor. Since this is a proposition and BG is connected, it suffices

to verify this for 𝑧 ≡ sh𝐺, for which it follows from Exercise 7.4.2. We

give this construction a short name by defining, for all 𝑧 : BG, the map

Bq𝐺 : BG→∗ (Torsorabs
abs(𝐺) ,ℙ

abs
abs(𝐺)), Bq𝐺(𝑧) :≡ (ℙsh𝐺 (𝑧), preinv𝑧 , !),

pointed by Exercise 7.4.2. The name Bq𝐺 anticipates its use as classifier

of a homomorphism. ⌟

Definition 7.4.6. Let 𝐺 be a group. The group homomorphism

𝑞𝐺 : Hom(𝐺, concr(abs(𝐺)))

is classified by the function Bq𝐺 defined in Example 7.4.5. ⌟

Lemma 7.4.7. For all groups 𝐺, the homomorphism 𝑞𝐺 is an isomorphism.

Proof. To prove that Bq𝐺 is an equivalence it is, by Corollary 2.17.9(3),

enough to show that for 𝑥, 𝑦 : BG the induced map

Bq𝐺 : (𝑥 =→BG 𝑦) → (Bq𝐺(𝑥)
=→ Bq𝐺(𝑦))

is an equivalence. Now, Bq𝐺(𝑥)
=→ Bq𝐺(𝑦) can be unfolded to

((sh𝐺
=→ 𝑥), preinv𝑥)

=→abs(𝐺)-Setabs ((sh𝐺
=→ 𝑦), preinv𝑦)

which, by Definition 2.7.3 and Lemma 2.10.3, is equivalent to

∑
𝑓 : (sh𝐺

=→𝑥) ≃→(sh𝐺
=→𝑦)

∏
𝑔 : UG

𝑓 ◦ (preinv𝑥(𝑔)) = (preinv𝑦(𝑔)) ◦ 𝑓 .

Under these identities, and using function extensionality, Bq𝐺 is given

by (with the type of 𝑓 as above)

postsh𝐺 : (𝑥 =→ 𝑦) →∑
𝑓

∏
𝑔 : UG

∏
𝑝 : sh𝐺

=→𝑥

(
𝑓 (𝑝𝑔−1) = 𝑓 (𝑝)𝑔−1).

Given a function 𝑓 such that ∏𝑔 : UG ∏𝑝 : sh𝐺
=→𝑥

(
𝑓 (𝑝𝑔) = 𝑓 (𝑝)𝑔

)
,
18

the

preimage post−1
sh𝐺 (𝑓) unfolds to ∑𝑟 : 𝑥 =→𝑦(𝑓 = postsh𝐺 (𝑟)). For proving that

postsh𝐺 , and hence Bq𝐺, is an equivalence, we have to show that the latter

preimage is contractible. This goal is a proposition and BG is connected,

so we may assume that we have a path 𝑝0 : sh𝐺
=→ 𝑥. Then any 𝑟, 𝑠 : 𝑥 =→ 𝑦

such that postsh𝐺 (𝑟) = 𝑓 = postsh𝐺 (𝑠) satisfy 𝑟 𝑝0 = 𝑓 (𝑝0) = 𝑠 𝑝0, so that

𝑟 = 𝑠. Thus the preimage is a proposition. It remains to find an 𝑟 such

that 𝑓 = postsh𝐺 (𝑟). We take 𝑟 = 𝑓 (𝑝0)𝑝−1
0 and verify, using the property

of 𝑓 , for any 𝑝 : sh𝐺
=→ 𝑥, that

𝑓 (𝑝) = 𝑓 (𝑝0(𝑝−1
0 𝑝)) = 𝑓 (𝑝0)(𝑝−1

0 𝑝) = (𝑓 (𝑝0)𝑝−1
0)𝑝 = postsh𝐺 (𝑟)(𝑝). □

We are now ready to prove the main result of this section.

groups, abstractly 165

19
Indeed, conversely, 𝜇(_, 𝑢−1) satisfies

the condition for 𝜋. Prove this! The

reason for using 𝑢−1
here, and not 𝑢,

becomes clear in the next paragraph.

20
This amounts to Cayley’s Theorem

for abstract groups, stating that every

abstract group G is isomorphic to

an abstract subgroup of the abstract

permutation group of the underlying

set 𝑆 of G. The abstract subgroup is

the codomain of 𝑟G with id𝑆 , ◦ and

(_)−1
.

Theorem 7.4.8. The map abs : Group→ Groupabs is an equivalence.

Proof. Applying Construction 2.9.9 with Definition 7.4.4 as candidate

inverse, one half of the the work has been done in Lemma 7.4.7. It

remains to give, for any G, an isomorphism of type

G ≃→Groupabs abs(concr(G)).

Let G = (𝑆, 𝑒 , 𝜇, 𝜄) be an abstract group. Then the underlying set of

abs(concr(G)) is ℙabs
G

=→Torsorabs
G

ℙabs
G . Unraveling the definitions and

using Definition 2.7.3, we see that this set is equivalent to

∑
𝜋 : 𝑆 ≃→𝑆

∏
𝑠,𝑡 : 𝑆

(
𝜋(𝜇(𝑠, 𝑡)) = 𝜇(𝑠,𝜋(𝑡)

)
.

Setting 𝑡 :≡ 𝑒 in the last equation, we see that 𝜋(𝑠) = 𝜇(𝑠,𝜋(𝑒)), that is, 𝜋

is simply right multiplication with an element 𝜋(𝑒) : 𝑆. In other words,

the function

𝑟G : 𝑆→ ∑
𝜋 : 𝑆 ≃→𝑆

∏
𝑠,𝑡 : 𝑆

(
𝜋(𝜇(𝑠, 𝑡)) = 𝜇(𝑠,𝜋(𝑡)

)
, 𝑟G(𝑢) :≡ (𝜇(_, 𝑢−1), !)

is an equivalence of sets.
19

We have to promote 𝑟G from an equivalence of sets to an isomorphism

of abstract groups, with G as domain. The codomain of 𝑟G has its abstract

group structure induced by the equivalence with abs(concr(G)). The

abstract group structure of abs(concr(G)) is given by the symmetries of

ℙabs
G ; translated to the codomain ∑𝜋 : 𝑆 ≃→𝑆 ∏𝑠,𝑡 : 𝑆

(
𝜋(𝜇(𝑠, 𝑡)) = 𝜇(𝑠,𝜋(𝑡)

)
this corresponds via the first projection to a subset of permutations of

𝑆, with the abstract group structure given by composition ◦. In view of

Definition 7.3.2, for 𝑟G to be an isomorphism, it suffices that 𝑟G preserves

multiplication: 𝑟G(𝜇(𝑢, 𝑣)) = 𝑟G(𝑢) ◦ 𝑟G(𝑣). This follows directly from

function extensionality, associativity of 𝜇, and the equation 𝜇(𝑢, 𝑣)−1 =

𝜇(𝑣−1 , 𝑢−1). Hence the equivalence 𝑟G is indeed an isomorphism of

abstract groups.
20 □

7.5 Homomorphisms, from abstract to concrete and back

Now that we know how to identify the type of groups with the type of

abstract groups, it is natural to ask if the respective notions of group

homomorphism also coincide.

They do, and we provide two independent and somewhat different

arguments. Translating from group homomorphisms to abstract group

homomorphisms is easy: if 𝐺 and 𝐻 are groups, then we defined

abs : Hom(𝐺, 𝐻) → Homabs(abs(𝐺), abs(𝐻))

in Definition 4.4.5 and Definition 7.3.2 as the function which takes a

homomorphism, classified by a pointed map Bf : BG →∗ BH, to the

induced map of identity types

Uf ≡ ΩBf : UG→ UH

together with the proof that this is an abstract group homomorphism

from abs(𝐺) to abs(𝐻).

groups, abstractly 166

21
We will thus have displayed a map

deloop : Homabs(abs(𝐺), abs(𝐻)) →
Hom(𝐺, 𝐻)with (abs ◦ deloop) = id.

We leave it to the reader to prove that

deloop ◦abs = id.

Going back is somewhat more involved, and it is here we consider

two approaches. The first is a compact argument showing directly how

to reconstruct a pointed map Bf : BG →∗ BH from an abstract group

homomorphism from abs(𝐺) to abs(𝐻). The second translates back and

forth via our equivalence between abstract and concrete groups.

The next subsections offer two proofs of the statement we are after:

Lemma 7.5.1. If 𝐺 and 𝐻 are groups, then

abs : Hom(𝐺, 𝐻) → Homabs(abs(𝐺), abs(𝐻))

is an equivalence.

“Delooping” a group homomorphism

We now explore the first approach. It might be helpful to review

Lemma 3.4.9 for a simple example of delooping in the special case of the

circle. Here we elaborate the general case.

Proof. Suppose we are given an abstract group homomorphism

𝑓 : Homabs(abs(𝐺), abs(𝐻))

and we explain how to build a map Bg : BG→ BH with a path 𝑝 : sh𝐻
=→

Bg(sh𝐺) such that 𝑝 𝑓 (𝜔) = Bg(𝜔)𝑝 for all 𝜔 : sh𝐺
=→ sh𝐺 (so that

𝑔 : Hom(𝐺, 𝐻) is a “delooping” of 𝑓 , that is, 𝑓 = abs(𝑔)).21

To get an idea of our strategy, let us assume the problem solved.

The map Bg : BG → BH will then send any path 𝛼 : sh𝐺
=→ 𝑥 to a path

Bg(𝛼) : Bg(sh𝐺) =→ Bg(𝑥) and so we get a family of paths 𝑝(𝛼) :≡ Bg(𝛼)𝑝
in sh𝐻

=→ Bg(𝑥) such that

𝑝(𝛼𝜔) = Bg(𝛼)Bg(𝜔)𝑝 = Bg(𝛼)𝑝 𝑓 (𝜔) = 𝑝(𝛼) 𝑓 (𝜔)

for all 𝜔 : sh𝐺
=→ sh𝐺 and 𝛼 : sh𝐺

=→ 𝑥.

This suggests to introduce the following family

𝐶(𝑥) B ∑
𝑦 : BH

∑
𝑝 : (sh𝐺

=→𝑥)→(sh𝐻
=→𝑦)

∏
𝜔 : sh𝐺

=→sh𝐺
∏

𝛼 : sh𝐺
=→𝑥

𝑝(𝛼𝜔) = 𝑝(𝛼) 𝑓 (𝜔)

An element of 𝐶(𝑥) has three components, the last component being a

proposition since BH is a groupoid.

The type 𝐶(sh𝐺) has a simpler description. An element of 𝐶(sh𝐺) is a

pair 𝑦, 𝑝 such that 𝑝(𝛼𝜔) = 𝑝(𝛼) 𝑓 (𝜔) for any 𝛼 and𝜔 in sh𝐺
=→ sh𝐺. Since

𝑓 is an abstract group homomorphism, this condition can be simplified

to 𝑝(𝜔) = 𝑝(reflsh𝐺) 𝑓 (𝜔), and the map 𝑝 is completely determined by

𝑝(reflsh𝐺). Thus 𝐶(sh𝐺) is equal to ∑𝑦 : BH sh𝐻
=→ 𝑦 and is contractible.

Since BG is connected, we have ∏𝑥 : BG isContr 𝐶(𝑥) and so, in particular,

we have an element of ∏𝑥 : BG 𝐶(𝑥).
By projecting out the centers we get a map Bg : BG → BH together

with a map 𝑝 : (sh𝐺
=→ 𝑥) → (sh𝐻

=→ Bg(𝑥)) such that 𝑝(𝛼𝜔) = 𝑝(𝛼) 𝑓 (𝜔)
for all 𝛼 in sh𝐺

=→ 𝑥 and 𝜔 in sh𝐺
=→ sh𝐺. We have, for 𝛼 : sh𝐺

=→ 𝑥

∏
𝑥′ : BG

∏
𝜆 : 𝑥 =→𝑥′

𝑝(𝜆𝛼) = Bg(𝜆)𝑝(𝛼)

since this holds for 𝜆 = refl𝑥 . In particular, 𝑝(𝜔) = Bg(𝜔)𝑝(reflsh𝐺).
We also have 𝑝(𝜔) = 𝑝(reflsh𝐺) 𝑓 (𝜔), hence 𝑝(reflsh𝐺)Bg(𝛼) = 𝑓 (𝛼)𝑝(reflsh𝐺)

for all 𝛼 : sh𝐺
=→ sh𝐺 and we have found a delooping of 𝑓 . □

groups, abstractly 167

22

23
The outer square is the bottom face,

the middle square is the top. The

edges labelled with Ω connect the

back face with the front face.

From concrete to abstract homomorphisms via torsors.

For the second approach to Lemma 7.5.1 we need some preparation. We

first give the analogue of Definition 5.5.9 for inducing 𝐻-sets from 𝐺-sets

by an abstract homomorphism. There we defined, for all 𝑋 : BG→ Set,
𝑓 : Hom(𝐺, 𝐻) and𝑤 : BH, 𝑓!𝑋(𝑤) :≡ ∥∑𝑧 : BG

(
(Bf (𝑧) =→ 𝑤)×𝑋(𝑧)

)
∥0. As

explained in Remark 2.22.17, the set truncation can be defined by taking

the quotient with truncated identity on ∑𝑧 : BG((Bf (𝑧) =→ 𝑤) × 𝑋(𝑧)).
Recall the 𝐺-set (𝑧 : BG) ↦→ ((Bf (𝑧) =→ 𝑤) × 𝑋(𝑧)) from Footnote 54.

Using Corollary 5.4.5, we can equivalently quotient its underlying set

ℙsh𝐻 (𝑤)×𝑋(sh𝐺)with the induced equivalence relation ∥(𝑝, 𝑥) =→ (𝑞, 𝑦)∥,
which is equivalent to ∃𝑔 : UG((𝑝 = (𝑞 · Uf (𝑔))) × (𝑔 ·𝑋 𝑥 = 𝑦)). This

motivates the following:

Definition 7.5.2. Given groups 𝐺, 𝐻 and an abstract homomorphism

𝜙 : Homabs(abs(𝐺), abs(𝐻)), we define the map 𝜙! from 𝐺-sets to 𝐻-sets

as follows. For any 𝐺-set 𝑋 : BG→ Set and 𝑤 : BH, define

𝜙!𝑋(𝑤) :≡
(
(sh𝐻

=→ 𝑤) ×𝜙 𝑋(sh𝐺)
)

to be the set quotient of (sh𝐻
=→ 𝑤) × 𝑋(sh𝐺) modulo the equivalence

relation (𝑝, 𝑥) ∼ (𝑞, 𝑦) if there exists a 𝑔 : UG such that 𝑝 = 𝑞𝜙(𝑔) and

𝑔 ·𝑋 𝑥 = 𝑦. ⌟

Lemma 7.5.3. With 𝜙! as in Definition 7.5.2, the map 𝜂𝜙 : 𝜙!ℙsh𝐺
≃→ ℙsh𝐻

sending, for all 𝑤 : BH, [(𝑝, 𝑥)] : (sh𝐻
=→ 𝑤) ×𝜙 UG to 𝑝𝜙(𝑥) : (sh𝐻

=→ 𝑤), is
a well defined (fiberwise) equivalence. Consequently, (𝜙! , 𝜂−1

𝜙) is a pointed map
from (Torsor𝐺 ,ℙsh𝐺) to (Torsor𝐻 ,ℙsh𝐻).

Proof. First we show that 𝜂𝜙 respects the equivalence relation. Let

(𝑝, 𝑥) ∼ (𝑞, 𝑦) with 𝑝, 𝑞 : (sh𝐻
=→ 𝑤) and 𝑥, 𝑦 : UG. Then there exists a

𝑔 : UG such that 𝑝 = 𝑞𝜙(𝑔) and 𝑔 ·𝑋 𝑥 = 𝑦. Now, 𝑝𝜙(𝑥) = 𝑞𝜙(𝑔𝑥) = 𝑞𝜙(𝑦),
so 𝜂𝜙 is indeed well defined. It is also clearly a surjection. So it

remains to prove that 𝜂𝜙 is injective. Assume (𝑝, 𝑥) and (𝑞, 𝑦) are such

that 𝑝𝜙(𝑥) = 𝑞𝜙(𝑦). Then 𝑝 = 𝑞𝜙(𝑦𝑥−1) and 𝑦𝑥−1 ·𝑋 𝑥 = 𝑦. Hence

(𝑝, 𝑥) ∼ (𝑞, 𝑦), so their classes are equal. This shows that 𝜂𝜙 is injective,

and completes the proof. □

Now comes the second proof of Lemma 7.5.1.

Proof. The family of equivalences ℙ𝐺
_

: BG ≃→ (Torsor𝐺 ,ℙsh𝐺), for any

𝐺 : Group, from Definition 5.5.4 and Theorem 5.5.7 induces an equiva-

lence

ℙ : Hom(𝐺, 𝐻) ≃→
(
(Torsor𝐺 ,ℙsh𝐺) →∗ (Torsor𝐻 ,ℙsh𝐻)

)
by mapping, for any 𝑓 : Hom(𝐺, 𝐻), Bf to ℙ𝐻

_
◦ Bf ◦ (ℙ𝐺

_
)−1

. Now define

𝐴 :≡ (abs ◦ ℙ−1) ≡ (𝑔 ↦→ Uℙ−1(𝑔)). Then 𝐴 is a map
22

𝐴 :
(
(Torsor𝐺 ,ℙsh𝐺) →∗ (Torsor𝐻 ,ℙsh𝐻)

)
→ Homabs(abs(𝐺), abs(𝐻)).

In order to show that abs : Hom(𝐺, 𝐻) → Homabs(abs(𝐺), abs(𝐻)) is an

equivalence, we factor abs as 𝐴 ◦ ℙ. It then suffices to prove that 𝐴 is an

equivalence, since we already know that ℙ.

For all ℎ in the domain of 𝐴, we have Ωℎ ◦Ωℙ𝐺
_

= Ωℙ𝐻
_
◦ 𝐴(ℎ). The

situation is visualized by the following “flattened cube”:
23

groups, abstractly 168

24
This is the instance ℎ ≡ 𝐶(𝜙) of

the front face of the “flattened cube”

above.

25
Note that ℙ𝐺

_
is pointed by reflexiv-

ity.

26

(Torsor𝐺 ,ℙsh𝐺) (Torsor𝐻 ,ℙsh𝐻)

BG BH

UG UH

(ℙsh𝐺
=→ ℙsh𝐺) (ℙsh𝐻

=→ ℙsh𝐻)

ℎ

Ω Ω

Bℙ−1(ℎ)
ℙ𝐺

_

Ω

ℙ𝐻
_

Ω

≡𝐴(ℎ)
Uℙ−1(ℎ)

Ωℙ𝐺
_

Ωℙ𝐻
_

Ωℎ

It follows that 𝐴(ℎ) is an abstract group homomorphism. We are done if

we show that 𝐴 is an equivalence.

For any 𝜙 : Homabs(abs(𝐺), abs(𝐻)), recall the pointed map

(𝜙! , 𝜂
−1
𝜙) :

(
(Torsor𝐺 ,ℙsh𝐺) →∗ (Torsor𝐻 ,ℙsh𝐻)

)
from Definition 7.5.2 and Lemma 7.5.3. Let

𝐶 : Homabs(abs(𝐺), abs(𝐻)) → ((Torsor𝐺 ,ℙsh𝐺) →∗ (Torsor𝐻 ,ℙsh𝐻)

be given by 𝐶(𝜙) :≡ (𝜙! , 𝜂−1
𝜙)

We show that 𝐴 and 𝐶 are inverse equivalences. Given an abstract

group homomorphism 𝜙 : Homabs(abs(𝐺), abs(𝐻)), we have the follow-

ing commutative diagram
24

for 𝐴(𝐶(𝜙)):

UG UH

(ℙsh𝐺
=→ ℙsh𝐺) (ℙsh𝐻

=→ ℙsh𝐻)

𝐴(𝐶(𝜙))

Ωℙ𝐺
_

Ωℙ𝐻
_

Ω𝐶(𝜙)

We have to prove 𝐴(𝐶(𝜙)) = 𝜙. When we start with a 𝑔 : UG, then Ωℙ𝐺
_

sends 𝑔 to
25

ℙ𝐺𝑔 :≡ preinv
_
(𝑔) ≡ ((𝑧 : BG) ↦→ preinv𝑧(𝑔)) : (ℙsh𝐺

=→ ℙsh𝐺).

We have Ω𝐶(𝜙) ≡ Ω(𝜙! , 𝜂−1
𝜙). It follows from Exercise 7.5.4 that the

latter sends preinv
_
(𝑔) to preinv

_
(𝜙(𝑔)) ≡ ((𝑤 : BH) ↦→ preinv𝑤(𝜙(𝑔)))

in ℙsh𝐻 = ℙsh𝐻 , which corresponds to 𝜙(𝑔) : UH under Ωℙ𝐻
_

. In other

words, 𝐴(𝐶(𝜙)) = 𝜙.

The composite 𝐶𝐴 is similar.
26 □

Exercise 7.5.4. Recall Definition 7.5.2 and show that 𝜙!𝜋(𝑤)maps [(𝑝, 𝑥)]
in 𝜙!𝑋(𝑤) to [(𝑝,𝜋sh𝐺 (𝑥))] in 𝜙!𝑋

′(𝑤), for any path 𝜋 :𝑋 =→ 𝑋′ and

𝑤 : BH. Then prove that Ω(𝜙! , 𝜂−1
𝜙) sends preinv

_
(𝑔) to preinv

_
(𝜙(𝑔)).

Hint: recall Definition 4.4.3 and start by making 𝜂−1
𝜙 explicit. ⌟

Exercise 7.5.5. Show that Iso(Σ2 ,Σ2) is contractible. ⌟

7.6 Actions, from abstract to concrete and back

Given a group 𝐺 it should by now come as no surprise that the type

of 𝐺-sets is equivalent to the type of abs(𝐺)-sets. As explained in

the introduction to Section 7.4, just above Definition 7.4.1, 𝐺-sets are

closely connected to homomorphisms from 𝐺 to a permutation group.

According to Lemma 7.5.1

abs : Hom(𝐺,Σ𝑆) → Homabs(abs(𝐺), abs(Σ𝑆))

groups, abstractly 169

27
In Lemma 9.2.4 we will call such an

𝑓 an epimorphism, just as we called in

Definition 5.3.11 𝑓 an monomorphism
when Uf is injective.

is an equivalence, where the group Σ𝑆 is classified by the component of

the groupoid Set, pointed at 𝑆. The component information is moot by

Exercise 5.2.12.

Using Remark 5.2.13, we have the following chain of known equiva-

lences and definitions:

𝐺-Set ≃→ ∑
𝑆 : Set

Hom(𝐺,Σ𝑆)

≃→ ∑
𝑆 : Set

Homabs(abs(𝐺), abs(Σ𝑆))

≡ abs(𝐺)-Setabs.

Backtracking these equivalences we see that we have established

Lemma 7.6.1. Let 𝐺 be a group. Then the map

evsh𝐺 :𝐺-Set→ abs(𝐺)-Setabs , evsh𝐺 (𝑋) :≡ (𝑋(sh𝐺), 𝑎𝑋)

is an equivalence, where the abstract homomorphism 𝑎𝑋 from abs(𝐺) ≡ UG
to abs(Σ𝑋(sh𝐺))) ≡ (𝑋(sh𝐺) =→ 𝑋(sh𝐺)) is given by the group action of 𝑋:
𝑎𝑋(𝑔) :≡ 𝑋(𝑔) ≡ (𝑔 ·𝑋 _), for all 𝑔 : UG.
Example 7.6.2. Let 𝐻 and 𝐺 be groups. Recall from Example 5.2.6 that

the set of homomorphisms from 𝐻 to 𝐺 is a 𝐺-set in a natural way:

Hom(𝐻, 𝐺) : BG→ Set, Hom(𝐻, 𝐺)(𝑧) :≡ Hom(𝐻,Ω(𝐵𝐺÷ , 𝑧))

What abstract abs(𝐺)-set does this correspond to? In particular, under

the equivalence abs : Hom(𝐻, 𝐺) → Homabs(abs(𝐻) abs(𝐺)), what is the

corresponding action of abs(𝐺) on the abstract homomorphisms? The

answer is that 𝑔 : UG acts on Homabs(abs(𝐻), abs(𝐺)) by postcomposing

with conjugation conj𝑔 by 𝑔 as defined in Example 7.3.5.

Let us spell this out in some detail. Consider a path 𝑝 : sh𝐺
=→ 𝑧. Trans-

port along 𝑝 in the family Hom(𝐻, 𝐺)(𝑧) is postcomposing a homomor-

phism in Hom(𝐻, 𝐺)with the isomorphismΩ(idBG , 𝑝
−1) : Hom(𝐺,Ω(BG÷ , 𝑧)),

see Example 4.4.20. Indeed, postcomposition with Ω(idBG , 𝑔
−1) is an

abstract homomorphism from UG to the abstract permutation group of

the set Hom(𝐻, 𝐺). This answers the first question above. As to the sec-

ond question, recall from Example 4.4.20 that abs(Ω(idBG , 𝑔
−1)) = conj𝑔 .

Therefore the action of 𝑔 on Homabs(abs(𝐻), abs(𝐺)) is postcomposition

with conj𝑔 . ⌟

For reference we list the conclusion of this example as a lemma:

Lemma 7.6.3. If 𝐻 and 𝐺 are groups, then the equivalence of Lemma 7.6.1 sends
the 𝐺-set Hom(𝐻, 𝐺) to the abs(𝐺)-set Homabs(abs(𝐻), abs(𝐺)) with action
given by postcomposing with conjugation by elements of abs(𝐺).

Let 𝐺 and 𝐺′ be groups and 𝑓 : Hom(𝐺, 𝐺′) a homomorphism. Recall

from Definition 5.5.9 the restriction map

𝑓 ∗ :𝐺′-Set→ 𝐺-Set, 𝑓 ∗(𝑋) :≡ 𝑋 ◦ Bf .

We will have the occasion to use the following result which essentially

says that if 𝑓 : Hom(𝐺, 𝐺′) is such that Uf is surjective,
27

then 𝑓 ∗ embeds

the type of 𝐺′-sets as some of the components of the type of 𝐺-sets.

Lemma 7.6.4. Let 𝐺 and 𝐺′ be groups and let 𝑓 : Hom(𝐺, 𝐺′) be such that Uf
is surjective. Then the map 𝑓 ∗ from Definition 5.5.9 is an injection.

groups, abstractly 170

28

This section has no implications for

the rest of the book, and can thus

safely be skipped on a first reading.

29
The concept of heap (in the abelian

case) was first introduced by

Prüfer
30

under the German name

Schar (swarm/flock). In Anton

Sushkevich’s book Теория Обоб-
щенных Групп (Theory of Generalized
Groups, 1937), the Russian term груда
(heap) is used in contrast to группа
(group). For this reason, a heap is

sometimes known as a “groud” in

English.

30
Heinz Prüfer. “Theorie der Abel-

schen Gruppen”. In: Math. Z. 20.1

(1924), pp. 165–187. doi: 10.1007/
BF01188079.

Proof. We prove that, for all 𝐺-sets 𝑋 and 𝑌, the induced map 𝑓 ∗ : (𝑋 =→
𝑌) → (𝑓 ∗𝑋 =→ 𝑓 ∗𝑌) is an equivalence.

Since BG is connected, evaluation at sh𝐺 yields an injection

evsh𝐺 : (𝑓 ∗𝑋 =→ 𝑓 ∗𝑌) → (𝑋(Bf (sh𝐺) =→ 𝑌(Bf (sh𝐺))),

For the same reason the composite

evsh𝐺 𝑓
∗ ≡ ev 𝑓 (sh𝐺) : (𝑋 =→ 𝑌) → (𝑋(𝑓 (sh𝐺) =→ 𝑌(𝑓 (sh𝐺)))

is likewise injective. Since all indentity types involved are sets, we can

conclude that the induced 𝑓 ∗ : (𝑋 =→ 𝑌) → (𝑓 ∗𝑋 =→ 𝑓 ∗𝑌) is injective.

For surjectivity, let 𝐹′ : 𝑓 ∗𝑋 =→ 𝑓 ∗𝑌 and write, for typographical conve-

nience, 𝑎 :𝑋(Bf (sh𝐺) =→ 𝑌(Bf (sh𝐺)) for evsh𝐺 𝐹
′ :≡ 𝐹′sh𝐺 . By the equiva-

lence between 𝐺-sets and abs(𝐺)-sets,
28 𝐹′ is uniquely pinned down by

𝑎 and the requirement that for all 𝑔′ = Bf (𝑔)with 𝑔 : UG the diagram

𝑋(Bf (sh𝐺))
𝑋(𝑔′)

𝑎

𝑋(Bf (sh𝐺))

𝑎

𝑌(Bf (sh𝐺))
𝑌(𝑔′)

𝑌(Bf (sh𝐺))

commutes. Likewise, (using transport along the identification 𝑓pt : sh𝐺′
=→

𝑓 (sh𝐺)) an 𝐹 :𝑋 =→ 𝑌 in the preimage of 𝑎 is pinned down by the commu-

tativity of the same diagram, but with 𝑔′ : Bf (sh𝐺) =→ Bf (sh𝐺) arbitrary

(an a priori more severe requirement, again reflecting injectivity). How-

ever, when 𝑓 : UG → UG′ is surjective these requirements coincide,

showing that the induced 𝑓 ∗ is an equivalence. □

7.7 Heaps (†)

Recall that we in Remark 4.2.3 wondered about the status of general

identity types 𝑎 =→𝐴 𝑎
′
, for 𝑎 and 𝑎′ elements of a groupoid𝐴, as opposed

to the more special loop types 𝑎 =→𝐴 𝑎. Here we describe the resulting

algebraic structure and how it relates to groups.

We proceed in a fashion entirely analogous to that of Section 4.2, but

instead of looking a pointed types, we look at bipointed types.
Definition 7.7.1. The type of bipointed, connected groupoids is the type

U =1
∗∗ :≡ ∑

𝐴 :U=1

(𝐴 × 𝐴). ⌟

Recall thatU =1
is the type of connected groupoids 𝐴, and that we also

write 𝐴 :U for the underlying type. We write (𝐴, 𝑎, 𝑎′) :U =1
∗∗ to indicate

the two endpoints.

Analogous to the loop type of a pointed type, we have a designated

identity type of a bipointed type, where we use the two points as the

endpoints of the identifications: We set I(𝐴, 𝑎, 𝑎′) :≡ (𝑎 =→𝐴 𝑎
′).

https://doi.org/10.1007/BF01188079
https://doi.org/10.1007/BF01188079

groups, abstractly 171

31
But be aware that are two such de-

scriptions, according to which end-

point is the designated shape, and

which is the “twisted” torsor.

Definition 7.7.2. The type of heaps29
is a wrapped copy (cf. Section 2.12.8)

of the type of bipointed, connected groupoidsU =1
∗∗ ,

Heap :≡ CopyI(U =1
∗∗),

with constructor I :U =1
∗∗ → Heap. ⌟

We call the destructor B : Heap→U =1
∗∗ , and call BH the classifying type

of the heap 𝐻 ≡ IBH, just as for groups, and we call the first point in 𝐵𝐻

is start shape of 𝐻, and the second point the end shape of 𝐻.

The identity type construction I :U =1
∗∗ → Set induces a map U : Heap→

Set, mapping I𝑋 to I𝑋. These are the underlying identifications of the

heaps.

These is an obvious map (indeed a functor) from groups to heaps,

given by doubling the point. That is, we keep the classifying type and

use the designated shape as both start and end shape of the heap. In

fact, this map lifts to the type of heaps with a chosen identification.

Exercise 7.7.3. Define two equivalences 𝑙 , 𝑟 : Heap ≃→ ∑𝐺 : Group BG, and

one 𝑐 : Group ≃→ ∑𝐻 : Heap UH. ⌟

Recalling the equivalence between BG and the type of 𝐺-torsors

from Theorem 5.5.7, we can also say that a heap is the same as a group

𝐺 together with a 𝐺-torsor.
31

It also follows that the type of heaps is a

(large) groupoid.

In the other direction, there are two obvious maps (functors) from

heaps to groups, taking either the start or the end shape to be the

designated shape.

Here’s an a priori different map from heaps to groups: For a heap 𝐻,

consider all the symmetries of the underlying set of identifications UH
that arise as 𝑟 ↦→ 𝑝𝑞−1𝑟 for 𝑝, 𝑞 ∈ UH.

Note that (𝑝, 𝑞) and (𝑝′, 𝑞′) determine the same symmetry if and only

if 𝑝𝑞−1 = 𝑝′𝑞′−1
, and if and only if 𝑝′−1𝑝 = 𝑞′−1𝑞.

For the composition, we have (𝑝, 𝑞)(𝑝′, 𝑞′) = (𝑝𝑞−1𝑝′, 𝑞′) = (𝑝, 𝑞′𝑝′−1𝑞).
Exercise 7.7.4. Complete the argument that this defines a map from heaps

to groups. Can you identify the resulting group with the symmetry

group of the start or end shape? How would you change the construction

to get the other endpoint? ⌟

Exercise 7.7.5. Show that the symmetry groups of the two endpoints of a

heap are merely isomorphic.

Define the notion of an abelian heap, and show that for abelian heaps,

the symmetry groups of the endpoints are (purely) isomorphic. ⌟

Now we come to the question of describing the algebraic structure of

a heap. Whereas for groups we can define the abstract structure in terms

of the reflexivity path and the binary operation of path composition, for

heaps, we can define the abstract structure in terms of a ternary operation,

as envisioned by the following exercise.

Exercise 7.7.6. Fix a set 𝑆. Show that the fiber U−1(𝑆) ≡ ∑𝐻 : Heap(𝑆 =→
UH) is a set.

Now fix in addition a ternary operation 𝑡 : 𝑆 × 𝑆 × 𝑆→ 𝑆 on 𝑆. Show

that the fiber of the map Heap → ∑𝑆 : Set(𝑆 × 𝑆 × 𝑆 → 𝑆), mapping 𝐻

to (UH, (𝑝, 𝑞, 𝑟) ↦→ 𝑝𝑞−1𝑟), at (𝑆, 𝑡) is a proposition, and describe this

proposition in terms of equations. ⌟

1
We deduce from Lemma 2.15.5(4),

that ∑𝑡 : BG BH(𝑡) is a groupoid. See

Exercise 2.16.12 for a proof that

∑𝑡 : BG BH(𝑡) is connected.

2
Recall also Definition 3.6.20. If 𝑛 is

principal, then either 𝑛 is infinite and

(Z, s) → (Z/∼𝑛 , s) is an equivalence,

or 𝑛 is finite, then this map factors

through 𝕟 to give an equivalence

(𝕟, s) → (Z/∼𝑛 , s). If LPO (Princi-

ple 3.6.22) holds, then every order

is principal and these are the only

possibilities by Lemma 3.6.25.

3
Check that ∼ defines an equivalence

relation.

8
Constructing groups

8.1 Brief overview of the chapter

8.2 Semidirect products

In this section we describe a generalization of the product of two groups,

recall Example 4.2.26, called the semidirect product, which gives us a new

way of building new groups. Like the product, both its classifying type

and its set of symmetries consist of pairs. It takes as input the action of a

group on a group.

Recall from Definition 5.2.27 that an action of a group 𝐺 in groups is a

function 𝐻 : BG→ Group. This acts on the group 𝐻(sh𝐺). If the group

being acted on is fixed, say 𝐻 : Group, then an action of 𝐺 on 𝐻 is given

by a homomorphism from 𝐺 to Aut(𝐻).
Definition 8.2.1. Given a group 𝐺 and an action 𝐻 : BG → Group, we

define a group called the semidirect product as follows:

𝐺 ⋉ 𝐻 :≡ Ω ∑
𝑡 : BG

BH(𝑡)

Here the basepoint of the sum is taken to be the point (sh𝐺 , sh𝐻).1 ⌟

Observe that if the action of 𝐺 is trivial, then 𝐻(𝑡) ≡ 𝐻(sh𝐺) for all 𝑡,

so 𝐺 ⋉ 𝐻 ≡ 𝐺 × 𝐻(sh𝐺), reproducing the ordinary product of groups.

Before we study the underlying symmetries in 𝐺 ⋉ 𝐻, let us pause to

look at some examples. In Example 5.2.29 we saw an action of Σ2 on C3.

Let us generalize this by giving an action of Σ2 on the cyclic group C𝑛

for any 𝑛 : Order. Recall from Definition 3.6.21 that we may represent

C𝑛 as the automorphism group of the standard 𝑛-cycle (Z/∼𝑛 , s), where

𝑧 ∼𝑛 𝑧′ if and only for 𝑡𝑧 = 𝑡𝑧
′
for any/all cycles (𝑇, 𝑡) of order 𝑛.

2

The idea is that a cycle has two “directions” and Σ2 can act by swapping

them. To implement this, let 𝑆 be a 2-element set, and consider, as

in Example 5.2.29, the type ∑𝑋 : Set(𝑆→ (𝑋 → 𝑋)). Let 𝑋 :≡ 𝑆 × Z/∼ be

the set quotient of 𝑆×Z where (𝑠, 𝑧) ∼ (𝑠, 𝑧′) if 𝑧 ∼𝑛 𝑧′ and (𝑠, 𝑧) ∼ (𝑠′, 𝑧′)
if 𝑠 ≠ 𝑠′ and 𝑧 ∼𝑛 −𝑧′,3 Now we can define 𝑓 : 𝑆→ 𝑋 → 𝑋 by setting:

𝑓𝑠([(𝑠, 𝑧)]) :≡ [(𝑠, 𝑧 + 1)], and 𝑓𝑠([(𝑠′, 𝑧)]) :≡ [(𝑠′, 𝑧 − 1)] for 𝑠′ ≠ 𝑠.

Note that we can construct the element 𝑥0 :≡ [(𝑠, 0)] of 𝑋 unambiguously,

as we always have 0 ∼𝑛 −0.

Exercise 8.2.2. Check that 𝑓 is well defined, using the universal property

of the set quotient, Theorem 2.22.12.

Give an identification of our (𝑋, 𝑓)with that of Example 5.2.29 when

𝑛 is 3. ⌟

172

constructing groups 173

4
Since “order” is often used to denote

the cardinality of a group, it would

be confusing to call D𝑛 the dihedral

group of order 𝑛, although it would

match our notion of “order”.

Figure 8.1: How a bidirectional

5-cycle corresponds to a dihedral

bicycle of degree 5. The doubled

bluebell lines indicate that 𝑏 swaps

the two endpoints.

For any 𝑠 : 𝑆, we can let 𝑠 be the “forwards” direction, and get an

identification (𝑋, 𝑓𝑠) =→ (Z/∼𝑛 , s) by sending [(𝑠, 𝑧)] to [𝑧] (and [(𝑠′, 𝑧)]
to [−𝑧] for 𝑠′ ≠ 𝑠). Thus, we’ve constructed an action of Σ2 on C𝑛 .

Definition 8.2.3. Given any order 𝑛 : Order, we define the corresponding

dihedral group of degree 𝑛 by D𝑛 :≡ Σ2 ⋉C̃𝑛 , where C̃𝑛 : BΣ2 → Group is

the above action of Σ2 on C𝑛 . ⌟

We shall later see that if 𝑛 is finite, then D𝑛 is a finite group of

cardinality 2𝑛.
4

But first we need to remedy the potential clash with

our previous definition of D∞ from Definition 4.6.3. Rather than just

construct a comparison for the infinite order, we’ll do it for all orders,

thus also constructing bicycles realizing all dihedral groups.

Construction 8.2.4. For each order 𝑛 : Order, there is a pointed equivalence

𝜑 : BD𝑛
≃→∗ Bicyc((Z/∼𝑛⨿Z/∼𝑛 ,𝑎,𝑏)) ,

from the classifying type of the dihedral group of degree 𝑛 to the connected
component of Bicyc at the standard dihedral bicycle of degree 𝑛, where:

𝑎(inl[𝑧]) :≡ inl[𝑧+1] 𝑏(inl[𝑧]) :≡ inr[𝑧]
𝑎(inr[𝑧]) :≡ inr[𝑧−1] 𝑏(inr[𝑧]) :≡ inl[𝑧]

Implementation of Construction 8.2.4. The idea is to think of an element

of BD𝑛 , which is a subtype of ∑𝑆 : BΣ2 ∑𝑋 : Set(𝑆 → 𝑋 → 𝑋), as a “bidi-

rectional cycle”, from which we can construct a bicycle on two copies

of 𝑋, more precisely on 𝑆 × 𝑋, as depicted in Figure 8.1. That is, we let

𝜑(𝑆, 𝑋, 𝑓) :≡ (𝑆 × 𝑋, 𝑎, 𝑏), where

𝑎(𝑠, 𝑥) :≡ (𝑠, 𝑓𝑠(𝑥)), 𝑏(𝑠, 𝑥) :≡ (swap(𝑠), 𝑥).

We identify the image of the base point of BD𝑛 , ({±1},Z/∼𝑛 , 𝑓), where

𝑓𝑠([𝑧]) = [𝑧+ 𝑠], with the standard dihedral bicycle of degree 𝑛 by letting

(+1, 𝑥) ↦→ inl𝑥 and (−1, 𝑥) ↦→ inr𝑥 .
To define the inverse, suppose we have a bicycle (𝑌, 𝑎, 𝑏) in the compo-

nent of the standard dihedral bicycle of degree 𝑛. Then we set 𝑆 :≡ 𝑌/𝑎,
the set quotient of𝑌 where we equate 𝑦 and 𝑦′ if 𝑦′ = 𝑎𝑧(𝑦) for some 𝑧 : Z,

i.e., if 𝑦 and 𝑦′ are connected by the 𝑎 equivalence. Then 𝑆 is a 2-element

set, because it is so in the standard case. Similarly, we set 𝑋 :≡ 𝑌/𝑏,
which is merely equivalent to the underlying set of the standard 𝑛-cycle,

Z/∼𝑛 .

The key observation is now that any equivalence classes [𝑦]𝑎 :𝑌/𝑎 and

[𝑦′]𝑏 :𝑌/𝑏, thought of a subsets of 𝑌, intersect in unique element 𝑦′′ :𝑌.

In the bottom of Figure 8.1, the two classes in 𝑌/𝑎 are the inner and

outer 5-cycles, and the 5 classes in 𝑌/𝑏 are the 5 pairs linked by doubled

bluebell lines. Thus, we can define the corresponding bidirectional cycle

to be (𝑆, 𝑋, 𝑓), where 𝑓[𝑦]𝑎 ([𝑦′]𝑏) :≡ [𝑎(𝑦′′)]. We leave it to the reader to

verify that these two constructions are indeed inverse. □

Exercise 8.2.5. Complete the verification that two maps in the implemen-

tation of Construction 8.2.4 are inverse. ⌟

Thus, since we easily verify that the standard dihedral bicycles are

normal (Definition 4.6.5), we see that if 𝑛 is finite, then D𝑛 has the same

cardinality as 𝕟⨿ 𝕟, i.e., 2𝑛.

constructing groups 174

5
Hint: Count elements of order 2.

Exercise 8.2.6. Prove that the two 8-element groups, the quaternion

group Q8 (Definition 4.6.3) and the dihedral group of degree 4, D4, are

not isomorphic.
5 ⌟

To better understand the underlying symmetries of a general semidirect

product 𝐺 ⋉ 𝐻, we note that Lemma 2.10.3 (on paths in Σ-types) takes a

simpler form when 𝑦 and 𝑦′ are values of a family 𝑥 ↦→ 𝑓 (𝑥) of elements

of the family 𝑥 ↦→ 𝑌(𝑥), as the following lemma shows.

Lemma 8.2.7. Suppose we are given a type 𝑋 and a family of types 𝑌(𝑥)
parametrized by the elements 𝑥 of 𝑋. Suppose we are also given a function
𝑓 : ∏𝑥 :𝑋 𝑌(𝑥). For any elements 𝑥 and 𝑥′ of 𝑋, there is an equivalence of type(

(𝑥, 𝑓 (𝑥)) = (𝑥′, 𝑓 (𝑥′))
)
≃ (𝑥 = 𝑥′) × (𝑓 (𝑥) = 𝑓 (𝑥)),

where the identity type on the left side is between elements of ∑𝑥 :𝑋 𝑌(𝑥).

Proof. By Lemma 2.10.3 and by composition of equivalences, it suffices

to establish an equivalence of type(
∑

𝑝 : 𝑥=𝑥′
𝑓 (𝑥) =−→

𝑝
𝑓 (𝑥′)

)
≃ (𝑥 = 𝑥′) × (𝑓 (𝑥) = 𝑓 (𝑥)).

Rewriting the right hand side as a sum over a constant family, it suffices

to find an equivalence of type(
∑

𝑝 : 𝑥=𝑥′
𝑓 (𝑥) =−→

𝑝
𝑓 (𝑥′)

)
≃ ∑
𝑝 : 𝑥=𝑥′

(𝑓 (𝑥) = 𝑓 (𝑥)).

By Lemma 2.9.15 it suffices to establish an equivalence of type(
𝑓 (𝑥) =−→

𝑝
𝑓 (𝑥′)

)
≃ (𝑓 (𝑥) = 𝑓 (𝑥))

for each 𝑝 : 𝑥 = 𝑥′. By induction on 𝑥′ and 𝑝 we reduce to the case where

𝑥′ is 𝑥 and 𝑝 is refl𝑥 , and it suffices to establish an equivalence of type(
𝑓 (𝑥) =−−−→

refl𝑥
𝑓 (𝑥)

)
≃ (𝑓 (𝑥) = 𝑓 (𝑥)).

Now the two sides are equal by definition, so the identity equivalence

provides what we need. □

The lemma above shows how to rewrite certain paths between pairs

as pairs of paths. Now we wish to establish the formula for composition

of paths, rewritten in terms of pairs of paths, but first we introduce a

convenient definition for the transport of loops in 𝑌(𝑥) along paths in 𝑋.

Definition 8.2.8. Suppose we are given a type 𝑋 and a family of types

𝑌(𝑥) parametrized by the elements 𝑥 of 𝑋. Suppose we are also given

a function 𝑓 : ∏𝑥 :𝑋 𝑌(𝑥). For any elements 𝑥 and 𝑥′ of 𝑋 and for any

identity 𝑝 : 𝑥 = 𝑥′, define a function (𝑓 (𝑥′) = 𝑓 (𝑥′)) → (𝑓 (𝑥) = 𝑓 (𝑥)), to

be denoted by 𝑞′ ↦→ 𝑞′𝑝 , by induction on 𝑝 and 𝑥′, reducing to the case

where 𝑥′ is 𝑥 and 𝑝 is refl𝑥 , allowing us to set 𝑞′refl𝑥 :≡ 𝑞′. ⌟

We turn now to associativity for the operation just defined.

Lemma 8.2.9. Suppose we are given a type 𝑋 and a family of types 𝑌(𝑥)
parametrized by the elements 𝑥 of 𝑋. Suppose we are also given a function
𝑓 : ∏𝑥 :𝑋 𝑌(𝑥). For any elements 𝑥, 𝑥′, and 𝑥′′ of𝑋, for any identities 𝑝 : 𝑥 = 𝑥′

and 𝑝′ : 𝑥′ = 𝑥′′, and for any 𝑞 : 𝑓 𝑥′′ = 𝑓 𝑥′′, there is an identification of type
(𝑞𝑝′)𝑝 = 𝑞(𝑝

′·𝑝).

constructing groups 175

6
MUST BE MOVED TO THE SUB-

GROUP CHAPTER

Proof. By induction on 𝑝 and 𝑝′, it suffices to show that (𝑞refl𝑦)refl𝑦 =

𝑞(refl𝑦 ·refl𝑦)
, in which both sides are equal to 𝑞 by definition. □

Observe that the operation depends on 𝑓 , but 𝑓 is not included as part

of the notation.

The next lemma contains the formula we are seeking.

Lemma 8.2.10. Suppose we are given a type 𝑋 and a family of types 𝑌(𝑥)
parametrized by the elements 𝑥 of 𝑋. Suppose we are also given a function
𝑓 : ∏𝑥 :𝑋 𝑌(𝑥). For any elements 𝑥, 𝑥′, and 𝑥′′ of 𝑋, and for any two identities
𝑒 : (𝑥, 𝑓 (𝑥)) = (𝑥′, 𝑓 (𝑥′)) and 𝑒′ : (𝑥′, 𝑓 (𝑥′)) = (𝑥′′, 𝑓 (𝑥′′)), if 𝑒 corresponds
to the pair (𝑝, 𝑞) with 𝑝 : 𝑥 = 𝑥′ and 𝑞 : 𝑓 𝑥 = 𝑓 𝑥 under the equivalence of
Lemma 8.2.7, and 𝑒′ corresponds to the pair (𝑝′, 𝑞′) with 𝑝′ : 𝑥′ = 𝑥′′ and
𝑞′ : 𝑓 𝑥′ = 𝑓 𝑥′, then 𝑒′ · 𝑒 corresponds to the pair (𝑝′ · 𝑝, (𝑞′𝑝) · 𝑞).

Proof. By induction on 𝑝 and 𝑝′ we reduce to the case where 𝑥′ and 𝑥′′

are 𝑥 and 𝑝 and 𝑝′ are refl𝑥 . It now suffices to show that 𝑒′ · 𝑒 corresponds

to the pair (refl𝑥 , 𝑞′ · 𝑞). Applying the definition of the map Φ in the proof

of Lemma 2.10.3 to our three pairs, we see that it suffices to show that(
apap𝑔(refl𝑥)(𝑞’)

)
·
(

apap𝑔(refl𝑥)(𝑞)
)
= apap𝑔(refl𝑥)(𝑞’ · 𝑞), with 𝑔, as

there, being the function 𝑔(𝑥)(𝑦) :≡ (𝑥, 𝑦). By Definition 2.7.8 it suffices

to show that

(
ap𝑔(𝑥) 𝑞

′
)
·
(

ap𝑔(𝑥) 𝑞
)
= ap𝑔(𝑥) (𝑞′ · 𝑞), which follows from

compatibility of ap𝑔(𝑥) with composition, as in Construction 2.6.2. □

The lemma above will be applied mostly in the case where 𝑥′ and 𝑥′′

are 𝑥, but if it had been stated only for that case, we would not have been

able to argue by induction on 𝑝 and 𝑝′.

Projection onto the first factor gives a homomorphism 𝑝 :≡ Ω fst :𝐺 ⋉
𝐻̃ → 𝐺. Moreover, there is a homomorphism 𝑠 :𝐺→ 𝐺 ⋉ 𝐻̃ defined by

𝑠 :≡ Ω

(
𝑡 ↦→ (𝑡 , sh𝐻̃(𝑡))

)
, for 𝑡 : B𝐺. The two maps are homomorphisms

because they are made from basepoint-preserving maps. The map 𝑠 is a

section of 𝑝 in the sense the 𝑝 ◦ 𝑠 = id𝐺. There is also a homomorphism

𝑗 :𝐻 → 𝐺 ⋉ 𝐻̃ defined by 𝑗 :≡ Ω(𝑢 ↦→ (sh𝐺 , 𝑢)), for 𝑢 : B𝐻.

Lemma 8.2.11. The homomorphism 𝑗 above is a monomorphism, and it gives
the same (normal) subgroup of 𝐺 ⋉ 𝐻̃ as the kernel ker 𝑝 of 𝑝.

6

Proof. See 9.3.2 for the definition of kernel. According to Lemma 2.25.1,

the map B𝐻 → (B𝑝)−1(sh𝐺) defined by 𝑢 ↦→ ((sh𝐺 , 𝑢), reflsh𝐺) is an

equivalence. This establishes that the fiber (B𝑝)−1(sh𝐺) is connected

and thus serves as the classifying type of ker 𝑝. Pointing out that the

composite map𝐻
�−→ ker 𝑝 → 𝐺⋉𝐻̃ is 𝑗 and using univalence to promote

the equivalence to an identity gives the result. □

Our next goal is to present the explicit formula for the multiplication

operation in U𝐺 ⋉ 𝐻̃. First we apply Lemma 8.2.7 to get a bĳection

U𝐺 ⋉ 𝐻̃ ≃ UG × UH. Now use that to transport the multiplication

operation of the group U𝐺 ⋉ 𝐻̃ to the set UG ×UH. Now Lemma 8.2.10

tells us the formula for that transported operation is given as follows.

(𝑝′, 𝑞′) · (𝑝, 𝑞) = (𝑝′ · 𝑝, (𝑞′𝑝) · 𝑞)

In a traditional algebra course dealing with abstract groups, this formula

is used as the definition of the multiplication operation on the set UG×UH,

constructing groups 176

but then one must prove that the operation satisfies the properties of

Definition 4.3.1. The advantage of our approach is that the formula

emerges from the underlying logic that governs how composition of

paths works.

8.3 Wreath products

A special class of semidirect products are prominent enough to be given

special attention: These are the wreath products.
Let 𝐺 and 𝐻 be groups, and 𝑋 : BG → Set a 𝐺-set. Then 𝐺 acts

on the power 𝐻𝑋(sh𝐺)
, i.e., the symmetries of the constant function

_ ↦→ sh𝐻 in the function type 𝑋(sh𝐺) → BH. Indeed, consider the map

𝐻𝑋 : BG→ Group with

𝐻𝑋(𝑧) :≡ Aut𝑋(𝑧)→BH(_ ↦→ sh𝐻).

Recall that if the underlying set of 𝑋 is finite, then the classifying space

of 𝐻𝑋(𝑧) can be identified with the whole function type 𝑋(𝑧) → BH,

see Exercise 4.2.29(1).

Definition 8.3.1. With 𝐺, 𝐻, and 𝑋 as above, we define the wreath product
of 𝐻 by 𝐺 via 𝑋 as the semidirect product

𝐻 ≀𝑋 𝐺 :≡ 𝐺 ⋉ 𝐻𝑋 . ⌟

Note that when 𝑋(sh𝐺) is finite, then the classifying type of 𝐻 ≀𝑋 𝐺 is

the type

B(𝐻 ≀𝑋 𝐺) ≃→ ∑
𝑧 : BG

𝑋(𝑧) → BH.

Example 8.3.2 (The symmetry group of a hypercubes). ⌟

Example 8.3.3 (Sudoku). ⌟

Example 8.3.4 (Symmetry groups of trees). ⌟

8.4 The pullback

Given two functions 𝑓 : 𝐵 → 𝐷 and 𝑔 :𝐶 → 𝐷 with common target,

the “pullback” which we will now define should be thought about as

the type of all pairs of elements (𝑏, 𝑐) : 𝐵 × 𝐶 so that 𝑓 (𝑏) =→ 𝑔(𝑐). This

construction is important in many situations also beyond group theory.

Definition 8.4.1. Let 𝐵, 𝐶, 𝐷 be types and let 𝑓 : 𝐵→ 𝐷 and 𝑔 :𝐶 → 𝐷

be two maps. The pullback of 𝑓 and 𝑔 is the type

∏(𝑓 , 𝑔) :≡ ∑
(𝑏,𝑐) : 𝐵×𝐶

(𝑓 (𝑏) =→𝐷 𝑔(𝑐))

together with the two projections pr𝐵 : ∏(𝑓 , 𝑔) → 𝐵 and pr𝐶 : ∏(𝑓 , 𝑔) →
𝐶 sending (𝑏, 𝑐, 𝑝) : ∏(𝑓 , 𝑔) to 𝑏 : 𝐵 or 𝑐 :𝐶. If 𝑓 and 𝑔 are clear from the

context, we may write 𝐵 ×𝐷 𝐶 instead of ∏(𝑓 , 𝑔) and summarize the

situation by the diagram

𝐵 ×𝐷 𝐶 𝐶

𝐵 𝐷. ⌟

pr𝐶

𝑝𝑟 𝑗𝐵 𝑔

𝑓

constructing groups 177

7
This verifies that our defined pull-

back is the pullback in the cate-

gorical sense: if the solid diagram

commutes there is a unique dashed

arrow making the resulting diagram

commute:

𝐴

𝐵 ×𝐷 𝐶 𝐶

𝐵 𝐷

8
I.e., the preimage is a pullback:

𝑔−1(𝑑) 𝐶

𝟙 𝐷

⌟
𝑔

𝑑

𝑥

0 1
6

2
6

3
6

4
6

5
6

1
𝑎
· · · 𝑑

𝑎
· · ·

1

𝑦

0
1/9
2/9
3/9
4/9
5/9
6/9
7/9
8/9
1

Figure 8.2: The pullback in the case

𝑎 = 6 and 𝑏 = 9 (so 𝑑 = 3). The

square represents the unit square

and we’ve drawn the solution to

𝑎𝑥 = 𝑏𝑦 (mod 1), corresponding

to 𝑧𝑎 = 𝑤𝑏 when 𝑧 = e2𝜋i𝑥
and

𝑤 = e2𝜋i𝑦
. On the torus S1 × S1

, the

solution consists of three circles.

Exercise 8.4.2. Let 𝑓 : 𝐵→ 𝐷 and 𝑔 :𝐶 → 𝐷 be two maps with common

target. If 𝐴 is a type show that

(𝐴→ 𝐵) ×(𝐴→𝐷) (𝐴→ 𝐶) →(𝐴→ 𝐵 ×𝐷 𝐶)
(𝛽, 𝛾, 𝑝 : 𝑓 𝛽 =→ 𝑔𝛾) ↦→ (𝑎 ↦→ (𝑓 (𝑎), 𝑔(𝑎), 𝑝(𝑎) : 𝑓 𝛽(𝑎) =→ 𝑔𝛾(𝑎)))

is an equivalence.
7 ⌟

In view of Exercise 8.4.2 we will say that we have a pullback diagram

𝐴 𝐶

𝐵 𝐷

𝑔′

𝑓 ′

⌟
𝑔

𝑓

to indicate that we have an element in (𝐴→ 𝐵)×(𝐴→𝐷) (𝐴→ 𝐶) such that

the resulting map 𝐴→ 𝐵 ×𝐷 𝐶 is an equivalence. This is emphasized

with the little ⌟ symbol in the upper left corner.

Example 8.4.3. If 𝑑 :𝟙 → 𝐷 denotes the constant function at 𝑑 :𝐷 and

𝑔 :𝐶 → 𝐷 is any map, then 𝟙 ×𝐷 𝐶 is equivalent to the preimage

𝑔−1(𝑑) ≡ ∑𝑏 : 𝐵 𝑑
=→ 𝑔(𝑏).8 ⌟

Example 8.4.4. Much group theory is hidden in the pullback. For instance,

the greatest common divisor 𝑑 :≡ gcd(𝑎, 𝑏) of 𝑎, 𝑏 :ℕ is another name for

the number of components you get if you pull back the 𝑎-fold and the

𝑏-fold set bundles of the circle: for 𝑎, 𝑏 > 0, have a pullback

S1 ×UCgcd(𝑎,𝑏) S1

S1 S1

⌟ (−)𝑏

(−)𝑎

(where C𝑛 is the cyclic group of order 𝑛).

To get a geometric idea, think of the circle as the unit circle in the

complex numbers so that the 𝑎-fold set bundle is simply taking the 𝑎-fold

power. With this setup, the pullback should consist of pairs (𝑧, 𝑤) of unit

length complex numbers with the property that 𝑧𝑎 = 𝑤𝑏
. Let 𝑎 = 𝑑𝑎′

and 𝑏 = 𝑑𝑏′. Taking an arbitrary unit length complex number 𝑧, then

the pair (𝑧𝑏′ , 𝑧𝑎′) is in the pullback (since 𝑎′𝑏 = 𝑎𝑏′). If (𝑧, 𝑤) is in the

pullback, then so is (𝜁𝑧, 𝑤), where 𝜁 is any 𝑎th
root of unity. Taking

𝜁 = e2𝜋i/𝑎
, we have that (𝜁𝑘𝑧, 𝑤) lies in the same component as (𝑧, 𝑤) if

and only if 𝑑|𝑘, see Figure 8.2.

In more detail: the left vertical map sends (𝑧, 𝑘) to the product 𝜁𝑘𝑧𝑏
′

and the top horizontal map S11 ×UC𝑑 → S1
sends (𝑧, 𝑘) to 𝑧𝑎′ .

Also, the least common multiple lcm(𝑎, 𝑏) = 𝑎′𝑏 = 𝑑𝑎′𝑏′ = 𝑎𝑏′ is

hidden in the pullback; in the present example it is demonstrated that

composite diagram map in the diagram makes each component of the

pullback a copy of the lcm(𝑎, 𝑏)-fold set bundle. ⌟

Definition 8.4.5. Let 𝑆 be a set and consider two subsets 𝐴 and 𝐵 of

𝑆 given by two families of propositions (for 𝑠 : 𝑆) 𝑃(𝑠) and 𝑄(𝑠). The

intersection 𝐴∩𝐵 of the two subsets is given by the family of propositions

𝑃(𝑠) ×𝑄(𝑠). The union 𝐴 ∪ 𝐵 is given by the set family of propositions

𝐴(𝑠) ∨ 𝐵(𝑠). ⌟

constructing groups 178

9
Hint: set 𝐴 :≡ S1

, 𝐵 :≡ BH, 𝐶 :≡ BH′

and 𝐷 :≡ BG.

Exercise 8.4.6. Given two subsets 𝐴, 𝐵 of a set 𝑆, prove that

(1) The pullback 𝐴×𝑆 𝐵maps by an equivalence to the intersection 𝐴∩𝐵,

(2) If 𝑆 is finite, then the sum of the cardinalities of 𝐴 and 𝐵 is equal to

the sum of the cardinalities of 𝐴 ∪ 𝐵 and 𝐴 ∩ 𝐵. ⌟

Definition 8.4.7. Let 𝑓 : Hom(𝐻, 𝐺) and 𝑓 ′ : Hom(𝐻′, 𝐺) be two homo-

morphisms with common target. The pullback 𝐻 ×𝐺 𝐻′ is the group

obtained as the (pointed) component of

pt𝐻×𝐺𝐻′ :≡ (sh𝐻 , pt𝐻′ , 𝑝 𝑓 ′𝑝
−1
𝑓)

of the pullback BH ×BG BH′ (where 𝑝 𝑓 : sh𝐺
=→ 𝑓 (sh𝐻) is the pointing

path of 𝑓 , so that 𝑝 𝑓 ′𝑝
−1
𝑓 : 𝑓 (sh𝐻) =→ 𝑓 ′(pt𝐻′)).

If (𝐻, 𝑓 , !) and (𝐻′, 𝑓 ′, !) are monomorphisms into 𝐺, then the pullback

is called the intersection and if the context is clear denoted simply

𝐻 ∩ 𝐻′. ⌟

Example 8.4.8. If 𝑎, 𝑏 :ℕ are natural numbers with least common multiple

𝐿, then 𝐿ℤ is the intersection 𝑎ℤ ∩ 𝑏ℤ of the subgroups 𝑎ℤ and 𝑏ℤ of

ℤ. ⌟

Exercise 8.4.9. Prove that if 𝑓 : Hom(𝐻, 𝐺) and 𝑓 ′ : Hom(𝐻′, 𝐺) are ho-

momorphisms, then the pointed version of Exercise 8.4.2 induces an

equivalence

Hom(𝐾, 𝐻) ×Hom(𝐾,𝐺) Hom(𝐾, 𝐻′) ≃ Hom(𝐾, 𝐻 ×𝐺 𝐻′)

for all groups 𝐾 and an equivalence

UH ×UG UH′ ≃ (sh𝐻×𝐺𝐻′ = sh𝐻×𝐺𝐻′). 9

Elevate the last equivalence to a statement about abstract groups. ⌟

Remark 8.4.10. The pullback is an example of when a construction of

types not preserving connectivity can be used profitably also for groups.

We get the pullback of groups by restricting to a pointed component, but

also the other components have group theoretic importance. We will

return to this when discussing subgroups. ⌟

8.5 Pushouts of types

(TBW)

8.6 Sums of groups

We have seen how the group of integersℤ = (𝑆1 , •) synthesizes the notion

of one symmetry with no relations: every symmetry in the circle is of

the form ⟲𝑛
for some unique 𝑛. Also, given any group 𝐺 = Aut𝐴(𝑎), the

set 𝑎 = 𝑎 of symmetries of 𝑎 corresponds to the set of homomorphisms

ℤ → 𝐺, i.e., to pointed functions (𝑆1 , •) →∗ (𝐴, 𝑎) by evaluation at ⟲.

What happens if we want to study more than one symmetry at the time?

For instance, is there a group ℤ∨ℤ so that for any group 𝐺 = Aut𝐴(𝑎)
a homomorphism ℤ ∨ℤ→ 𝐺 corresponds to two symmetries of 𝑎? At

the very least, ℤ∨ℤ itself would have to have two symmetries and these

two can’t have any relation, since in a general group 𝐺 = Aut𝐴(𝑎) there is

constructing groups 179

𝑆1 ∨ 𝑆1
if formed from 𝑆1 + 𝑆1

by

inserting an identity

•⟲ ::
identify! //

• ⟲dd

𝑖1𝐴1

>

𝑔−1

𝑔

𝑖2𝑝

𝑖2𝐴2

𝑖2𝑎2

••
𝑎12

The idea is that an identity in 𝑎12 = 𝑥

can be factored into a string of iden-

tities, each lying solely in 𝐴1 or

in 𝐴2. We define a family of sets

consisting of exactly such strings

of identities – it is a set since 𝐴1
and 𝐴2 are groupoids – and prove

that it is equivalent to the family

𝑃(𝑥) :≡ (𝑎12 =𝐴1∨𝐴2 𝑥)which conse-

quently must be a family of sets. We

need to be able to determine whether

a symmetry is reflexivity or not, but

once we know that, the symmetries

of the base point in the wedge are

then given by “words 𝑝0𝑝1 . . . 𝑝𝑛”

where the 𝑝 𝑗 alternate between being

symmetries in the first or the second

group, and none of the 𝑝 𝑗 for pos-

itive 𝑗 are allowed to be reflexivity.

Note that there order of the 𝑝 𝑗s is not

negotiable: if I shuffle them I get a

new symmetry.

a priori no telling what the relation between the symmetries of 𝑎 might

be. Now, one symmetry is given by a pointed function (𝑆1 , •) →∗ (𝐴, 𝑎)
and so a pair of symmetries is given by a function 𝑓 : 𝑆1 + 𝑆1 → 𝐴 with

the property that 𝑓 sends each of the base points of the circles to 𝑎. But

𝑆1 + 𝑆1
is not connected, and so not a group. To fix this we take the

clue from the requirement that both the base points were to be sent to a

common base point and define 𝑆1 ∨ 𝑆1
to be what we get from 𝑆1 + 𝑆1

when we insert an identity between the two basepoints.

The amazing thing is that this works – an enormous simplification of

the classical construction of the “free products” or “amalgamated sum”

of groups. We need to show that the “wedge” 𝑆1 ∨ 𝑆1
is indeed a group,

and this proof simultaneously unpacks the classical description.

We start by giving a definition of the wedge construction which is

important for pointed types in general and then prove that the wedge of

two groups is a group whose symmetries are arbitrary “words” in the

original symmetries.

Definition 8.6.1. Let (𝐴1 , 𝑎1) and (𝐴2 , 𝑎2) be pointed types. The wedge is

the pointed type (𝐴1 ∨ 𝐴2 , 𝑎12) given as a higher inductive type by

(1) functions 𝑖1 :𝐴1 → 𝐴1 ∨ 𝐴2 and 𝑖2 :𝐴2 → 𝐴1 ∨ 𝐴2

(2) an identity 𝑔 : 𝑖1𝑎1 = 𝑖2𝑎2.

We point this type at 𝑎12 :≡ 𝑖1𝑎1. The function

𝑖
𝑔
2 : (𝑎2 =𝐴2 𝑎2) → (𝑎12 =𝐴1∨𝐴2 𝑎12)

is defined by 𝑖
𝑔
2 (𝑝) :≡ 𝑔−1𝑖2(𝑝)𝑔, whereas (for notational consistency only)

we set 𝑖
𝑔
1 :≡ 𝑖1 : (𝑎1 =𝐴1 𝑎1) → (𝑎12 =𝐴1∨𝐴2 𝑎12). Simplifying by writing

𝑖 :𝐴1 +𝐴2 → 𝐴1∨𝐴2 for the function given by 𝑖1 and 𝑖2 (with basepoints

systematically left out of the notation), the induction principle is

∏
𝐶 : (𝐴1∨𝐴2)→U

∑
𝑠 : ∏𝑎 :𝐴1+𝐴2 𝐶𝑖(𝑎)

((𝑠(𝑎1) = 𝐶(𝑔−1)𝑠(𝑎2)) → ∏
𝑥 : (𝐴1∨𝐴2)

𝐶(𝑥)).

⌟

Unraveling the induction principle we see that if 𝐵 is a pointed type,

then a pointed function 𝑓 :𝐴1 ∨ 𝐴2 →∗ 𝐵 is given by providing pointed

functions 𝑓1 :𝐴1 →∗ 𝐵 and 𝑓2 :𝐴2 →∗ 𝐵 – the identity 𝑓1(𝑎1) = 𝑓2(𝑎2)
which seems to be missing is provided by the requirement of the functions

being pointed. For the record

Lemma 8.6.2. If 𝐵 is a pointed type, then the function

𝑖∗ : (𝐴1 ∨ 𝐴2 →∗ 𝐵) → (𝐴1 →∗ 𝐵) × (𝐴2 →∗ 𝐵), 𝑖∗(𝑓) = (𝑓 𝑖1 , 𝑓 𝑖2)

is an equivalence.
To the right you see a picture of 𝑖

𝑔
2 (𝑝): it is the symmetry of the base

point 𝑎12 :≡ 𝑖1𝑎1 you get by first moving to 𝑖2𝑎2 with 𝑔, then travel around

with 𝑝 (𝑖2𝑝, really) and finally go home to the basepoint with the inverse

of 𝑔.

Definition 8.6.3. If 𝐺1 = Aut𝐴1(𝑎1) and 𝐺2 = Aut𝐴2(𝑎2) are groups, then

their sum is defined as

𝐺1 ∨ 𝐺2 :≡ Aut𝐴1∨𝐴2(𝑎12).

constructing groups 180

BG ∨ BG BG

BG × BG

fold

inclusion

The homomorphisms 𝑖1 :𝐺1 → 𝐺1 ∨ 𝐺2 and 𝑖2 :𝐺2 → 𝐺1 ∨ 𝐺2 induced

from the structure maps 𝑖1 :𝐴1 → 𝐴1 ∨𝐴2 and 𝑖2 :𝐴2 → 𝐴1 ∨𝐴2 are also

referred to as structure maps. ⌟

Lemma 8.6.4. If 𝐺1, 𝐺2 and 𝐺 are groups, then the function

Hom(𝐺1 ∨ 𝐺2 , 𝐺) → Hom(𝐺1 , 𝐺) ×Hom(𝐺2 , 𝐺)

given by restriction along the structure maps is an equivalence.

Proof. This is a special case of Lemma 8.6.2. □

Specializing further, we return to our initial motivation and see that

mapping out of a wedge of two circles exactly captures the information

of two independent symmetries:

Corollary 8.6.5. If 𝐺 is a group, then the functions

Hom(ℤ ∨ℤ, 𝐺) → Hom(ℤ, 𝐺) ×Hom(ℤ, 𝐺) ≃ UG ×UG

is an equivalence.
Exercise 8.6.6. This leads to the following characterization of abelian

groups formulated purely in terms of pointed connected groupoids

(with no direct reference to identity types). A group 𝐺 is abelian if and

only if the canonical map

fold : BG ∨ BG→∗ BG

(given via Lemma 8.6.4 by id𝐺 :𝐺→ 𝐺) extends over the inclusion

𝑖 : BG ∨ BG→∗ BG × BG

(given by the inclusions in1 , in2 :𝐺→ 𝐺 × 𝐺).

As a cute aside, one can see that the required map BG × BG→∗ BG
actually doesn’t need to be pointed: factoring fold : BG ∨ BG → BG
over 𝑖 : BG ∨ BG → BG × BG – even in an unpointed way – kills all

“commutators” 𝑔ℎ𝑔−1ℎ−1 : U(𝐺 ∨ 𝐺). () ⌟

We end the section by proving that wedges of decidable groups are

decidable groups and that they can be given the classical description in

terms of words.

Lemma 8.6.7. Let 𝐺1 :≡ Aut𝐴1(𝑎1) and 𝐺2 :≡ Aut𝐴2(𝑎2) be decidable groups,
then the wedge sum 𝐺1 ∨ 𝐺2 :≡ Aut𝐴1∨𝐴2(𝑎12) is a decidable group.

Let 𝐶1 be the set of strings (𝑝0 , 𝑛, 𝑝1 , . . . , 𝑝𝑛) with 𝑛 :ℕ and, for 0 ≤ 𝑗 ≤ 𝑛

• 𝑝 𝑗 : UG1 for even 𝑗

• 𝑝 𝑗 : UG2 for odd 𝑗 and

• 𝑝 𝑗 is not reflexivity for 𝑗 positive

(the last requirement makes sense and is a proposition since our groups are
decidable).

Then the function given by composition in UG12 :≡ (𝑎12 = 𝑎12)

𝛽 :𝐶1 → UG12 , 𝛽(𝑝0 , 𝑛, 𝑝1 , . . . 𝑝𝑛) :≡ 𝑖𝑔1 𝑝0𝑖
𝑔
2 𝑝1𝑖

𝑔
1 𝑝2 . . . 𝑖

𝑔
? 𝑝𝑛

(where 𝑖𝑔? 𝑝𝑛 is 𝑖𝑔1 𝑝𝑛 or 𝑖𝑔2 𝑝𝑛 according to whether 𝑛 is even or odd) is an
equivalence.

constructing groups 181

Proof. That the wedge is connected follows by transitivity of identifica-

tions, if necessary passing through the identification 𝑔 : 𝑖1𝑎1 = 𝑖2𝑎2 in

the wedge.

We must prove that the wedge is a groupoid, i.e., that all identity types

are sets, which we do by giving an explicit description of the universal

set bundle.

We use the notation of Definition 8.6.1 freely, and for ease of notation,

let 𝑎2𝑘+𝑖 :≡ 𝑎𝑖 and 𝑖
𝑔

2𝑘+𝑖 :≡ 𝑖𝑔𝑖 for 𝑖 = 1, 2, 𝑘 :ℕ. Define families of sets

𝐶𝑖 :𝐴𝑖 → Set, 𝑖 = 1, 2

by

𝐶𝑖(𝑥) :≡ (𝑎𝑖 =𝐴𝑖 𝑥) × ∑
𝑛 :ℕ

∏
1≤𝑘≤𝑛

∑
𝑝𝑘 : 𝑎𝑖+𝑘=𝑎𝑖+𝑘

(𝑝𝑘 ≠ refl𝑎𝑖+𝑘)

when 𝑥 :𝐴𝑖 . Note that 𝑝𝑘 ≠ refl𝑎𝑖+𝑘 is a proposition; we leave it out when

naming elements. Hence, an element in 𝐶1(𝑎) is a tuple (𝑝0 , 𝑛, 𝑝1 , . . . , 𝑝𝑛)
where 𝑝0 : 𝑎1 =𝐴1 𝑎, 𝑝1 : 𝑎2 =𝐴2 𝑎2, 𝑝2 : 𝑎1 =𝐴1 𝑎1, and so on – alternating

between symmetries of 𝑎1 and 𝑎2, and where 𝑝0 is the only identity

allowed to be refl. Define 𝐶12 :𝐶1(𝑎1) → 𝐶2(𝑎2) by

𝐶12(𝑝0 , 𝑛, 𝑝1 . . . , 𝑝𝑛) =


(refl𝑎2 0,) if 𝑝0 = refl𝑎1 , 𝑛 = 0,

(𝑝1 , 𝑛 − 1, 𝑝2 . . . , 𝑝𝑛) if 𝑝0 = refl𝑎1 , 𝑛 ≠ 0,

(refl𝑎2 , 𝑛 + 1, 𝑝0 , . . . , 𝑝𝑛) if 𝑝0 ≠ refl𝑎1 .

It is perhaps instructive to see a table of the values 𝐶12(𝑝0 , 𝑛, 𝑝1 , . . . , 𝑝𝑛)
for 𝑛 < 3:

(𝑝0 , 0) (𝑝0 , 1, 𝑝1) (𝑝0 , 2, 𝑝1 , 𝑝2)
𝑝0 = refl𝑎1 (refl𝑎2 , 0) (𝑝1 , 0) (𝑝1 , 1, 𝑝2)
𝑝0 ≠ refl𝑎1 (refl𝑎2 , 1, 𝑝0) (refl𝑎2 , 2, 𝑝0 , 𝑝1) (refl𝑎2 , 3, 𝑝0 , 𝑝1 , 𝑝2)

Since 𝐶12 is an equivalence, the triple (𝐶1 , 𝐶2 , 𝐶12) defines a family

𝐶 :𝐴1 ∨ 𝐴2 → Set.

In particular, 𝐶(𝑎12) :≡ 𝐶1(𝑎1). For 𝑥 :𝐴1 we let 𝑖𝐶1 :𝐶1(𝑥) → 𝐶(𝑖1(𝑥)) be

the induced equivalence, and likewise for 𝑖𝐶2 . We will show that 𝐶 is

equivalent to 𝑃 :≡ ℙ𝑎12 , where 𝑃(𝑥) :≡ (𝑎12 = 𝑥), and so that the identity

types in the wedge are equal to the sets provided by 𝐶.

One direction is by transport in 𝐶; more precisely,

𝛼 : ∏
𝑥 :𝐴1∨𝐴2

(𝑃(𝑥) → 𝐶(𝑥))

is given by transport with 𝛼(𝑎12)(refl𝑎12) :≡ (refl𝑎1 , 0) :𝐶(𝑎12). The other

way,

𝛽 : ∏
𝑥 :𝐴1∨𝐴2

(𝐶(𝑥) → 𝑃(𝑥))

is given by composing identities, using the glue 𝑔 to make their ends

meet:

𝛽(𝑖1𝑎)(𝑝0 , 𝑛, 𝑝1 , . . . , 𝑝𝑛) :≡ 𝑖1(𝑝0)𝑖𝑔2 (𝑝1)𝑖𝑔3 (𝑝2) . . . 𝑖𝑔𝑛+1(𝑝𝑛)

(here the definition . . . 𝑖
𝑔
3 :≡ 𝑖𝑔1 :≡ 𝑖1 proves handy since we don’t need to

distinguish the odd and even cases) and likewise

𝛽(𝑖2𝑎)(𝑝0 , 𝑛, 𝑝1 , . . . , 𝑝𝑛) :≡ 𝑖2(𝑝0)𝑔 𝑖𝑔1 (𝑝1)𝑖𝑔2 (𝑝2) . . . 𝑖𝑔𝑛(𝑝𝑛)

constructing groups 182

and compatibility with the glue 𝐶12 is clear since the composite refl𝑥𝑝 is

equal to 𝑝.

For notational convenience, we hide the 𝑥 in 𝛼(𝑥)(𝑝) and 𝛽(𝑥)(𝑝) from

now on.

That 𝛽𝛼(𝑝) = 𝑝 follows by path induction: it is enough to prove it for

𝑥 = 𝑎12 and 𝑝 :≡ refl𝑎12 :

𝛽𝛼(refl𝑎12) = 𝛽(refl𝑎1 , 0) = 𝑖
𝑔
1 refl𝑎1 = refl𝑎12 .

That 𝛼𝛽(𝑝0 , 𝑛, 𝑝1 . . . , 𝑝𝑛) = (𝑝0 , 𝑛, 𝑝1 , . . . , 𝑝𝑛) follows by induction on

𝑛 and 𝑝0. For 𝑛 = 0 it is enough to consider 𝑥 = 𝑎12 and 𝑝0 = refl𝑎1 , and

then 𝛼𝛽(refl𝑎1 , 0) :≡ 𝛼(refl𝑎12) :≡ (refl𝑎1 , 0). In general, (for 𝑛 > 0)

𝛼𝛽(𝑝0 , 𝑛, 𝑝1 . . . , 𝑝𝑛) = trp𝐶
𝑖1(𝑝0)𝑖𝑔2 (𝑝1)𝑖𝑔1 (𝑝2)...𝑖𝑔𝑛+1(𝑝𝑛)

(refl𝑎1 ,0)

= trp𝐶𝑖1(𝑝0) . . . trp𝐶
𝑖
𝑔
𝑛+1(𝑝𝑛)

(refl𝑎1 ,0).

The induction step is as follows: let 0 < 𝑘 ≤ 𝑛, then

trp𝐶
𝑖
𝑔

𝑘 𝑝𝑘-1
𝑖𝐶𝑘−1(𝑝𝑘 , 𝑛 − 𝑘 − 1, 𝑝𝑘+1 , . . . , 𝑝𝑛)

= trp𝐶
𝑖
𝑔

𝑘 𝑝𝑘-1
𝑖𝐶𝑘 (refl𝑎𝑘−1 , 𝑛 − 𝑘, 𝑝𝑘 , . . . , 𝑝𝑛)

=𝑖𝐶𝑘 trp𝐶𝑘𝑝𝑘-1
(refl𝑎𝑘−1 , 𝑛 − 𝑘, 𝑝𝑘 , . . . , 𝑝𝑛)

=(𝑝𝑘−1 , 𝑛 − 𝑘, 𝑝𝑘 , . . . , 𝑝𝑛).

□

8.7 Free groups

We have seen in Example 4.4.17 that the group of integers ℤ is the free

group on one generator in the sense that the set of homomorphisms

from ℤ to any group 𝐺 is equivalent (by evaluation at the loop) to the

underlying set of symmetries in 𝐺, UG. This set is of course equivalent

(by evaluation at the unique element) to the set of maps (𝟙→ UG).
Likewise, we have seen in Corollary 8.6.5 that the binary sum ℤ ∨ℤ

is the free group on two generators, corresponding to the left and right

summands.

In general, a free group on a set of generators 𝑆 is a group F𝑆 with

specified elements 𝜄𝑠 : UF𝑆 labeled by 𝑠 : 𝑆, such that evaluation gives an

equivalence Hom(F𝑆 , 𝐺) ≃→ (𝑆→ UG) for each group 𝐺.

We now give a definition of the classifying type of a free group as a

higher inductive type that is very much like that of the circle, except

that instead of having a single generating loop, it has a loop ⟲𝑠 for each

element 𝑠 : 𝑆.

Definition 8.7.1. Fix a set 𝑆. The classifying type of the free group on 𝑆,

BF𝑆, is a type with a point • : BF𝑆 and a constructor ⟲_ : 𝑆→ •
=→ •.

Let 𝐴(𝑥) be a type for every element 𝑥 : BF𝑆. The induction principle

for BF𝑆 states that, in order to define an element of 𝐴(𝑥) for every 𝑥 : BF𝑆,

it suffices to give an element 𝑎 of 𝐴(•) together with an identification

𝑙𝑠 : 𝑎
=−−→
⟲𝑠

𝑎 for every 𝑠 : 𝑆. The function 𝑓 thus defined satisfies 𝑓 (•) ≡ 𝑎
and we are provided identifications apd 𝑓 (⟲𝑠) =→ 𝑙𝑠 for each 𝑠 : 𝑆.

We define the free group on 𝑆 as F𝑆 :≡ Ω(BF𝑆 , •). ⌟

constructing groups 183

10
David Wärn. Path spaces of pushouts.
Preprint. 2023. url: https://dwarn.
se/po-paths.pdf.

11
Hint: This is precisely the point

where we need 𝑆 to have decidable

equality.

12
Considered as a set of words, D𝑆

is called the 2-sided Dyck language.
Perhaps the 1-sided Dyck language is

more familiar in language theory:

Here, 𝑆 is considered as a set of

‘opening parentheses’, while the

complementary elements are ‘closing

parentheses’. For example, the 1-

sided Dyck language for 𝑆̃ = {(,)}
consists of all balanced words of

opening and closing parentheses,

e.g., (), (()), ()(), etc., while our D𝑆 in

this case also has words like)(and

))(()(.

A priori, F𝑆 is only an ∞-group. Nevertheless, we get immediately

from the induction principle that evaluation at the elements of 𝑆 gives

an equivalence Hom(F𝑆 , 𝐺) ≃→ (𝑆→ UG) for each∞-group 𝐺.

In order to see that F𝑆 is a group, we need to know that BF𝑆 is a

groupoid. This follows from a general theorem on identifications in

pushouts due to Wärn.
10

Here we restrict our discussion to decidable

sets 𝑆, where we can give a more concrete proof.

We can follow that same strategy as in Theorem 3.4.5 and Lemma 8.6.7

and show this by giving a description of F𝑆 as an abstract group. To see

what this should be, think about what symmetries of • we can write

using the constructors ⟲𝑠 for 𝑠 : 𝑆. We can compose these out of ⟲𝑠 and

⟲−1
𝑠 with various generators 𝑠. However, if we at any point have ⟲𝑠 ⟲−1

𝑠

or ⟲−1
𝑠 ⟲𝑠 , then these cancel. This motivates the following definitions.

Definition 8.7.2. Fix a decidable set 𝑆. Let 𝑆̃ :≡ 𝑆+𝑆 be the (decidable) set

of signed letters from 𝑆. Also, let _̄ : 𝑆̃→ 𝑆̃ be the equivalence that swaps

the two copies of 𝑆. This map is an involution called complementation. ⌟

If 𝑎 : 𝑆, we’ll also write 𝑎 : 𝑆̃ for the left inclusion, and we’ll write

𝐴 :≡ 𝑎̄ : 𝑆̃ for the right inclusion, so that 𝑎̄ ≡ 𝐴 and 𝐴̄ ≡ 𝑎, i.e., 𝑎 and 𝐴

are complementary.

Recall the definition of lists 𝑇∗ over a set 𝑇, Definition 2.12.11, induc-

tively generated by the empty list 𝜀 and the recursive constructor that

concatenates an element 𝑡 :𝑇 to a list ℓ , forming a new list 𝑡ℓ with head 𝑡

and tail ℓ . Instead of “lists” we shall often speak about “words” formed

from “letters” taken from the set 𝑇, which is thus a kind of “alphabet”.

If we take 𝑇 :≡ 𝑆̃ we get the set of words in the signed letters from 𝑆.

If we have 𝑎, 𝑏 : 𝑆, we find among the elements of 𝑆̃∗ the following:

𝜀, 𝑎, 𝑏, 𝐴, 𝐵, 𝑎𝑎, 𝑎𝑏, 𝑎𝐴, 𝑎𝐵, 𝑏𝑎, 𝑏𝑏, 𝑏𝐴, 𝑏𝐵, 𝐴𝑎, 𝐴𝑏, 𝐴𝐴, 𝐴𝐵, . . .

When we interpret these as symmetries in BF𝑆, i.e., as elements in UF𝑆,

the words 𝑎𝐴 and 𝐵𝑏, etc., become trivial.

Definition 8.7.3. A word 𝑤 : 𝑆̃∗ is called reduced if it doesn’t contain

any consecutive pairs of complementary letters. The map 𝜌𝑆 : 𝑆̃∗ → 𝑆̃∗

maps a word to its reduction, which is obtained by repeatedly deleting

consecutive pairs of complementary letters until none remain. ⌟

Exercise 8.7.4. Complete the definition of 𝜌𝑆 by nested induction on

words.
11 ⌟

Definition 8.7.5. We defineR𝑆 to be the image of 𝜌𝑆 in 𝑆̃∗, whose elements

are the reduced words. We define D𝑆 to be the fiber of 𝜌𝑆 at the empty

word, 𝜌−1
𝑆 (𝜀), whose elements are called Dyck words.12 ⌟

Remark 8.7.6. Like any map, 𝜌𝑆 induces an equivalence relation ∼ on the

set 𝑆̃∗ where two words 𝑢, 𝑣 are related if and only if they map to the

same reduced word, in other words, 𝑢 ∼ 𝑣 if and only if 𝜌𝑆(𝑢) = 𝜌𝑆(𝑣).
Thus, 𝜌𝑆 induces an equivalence 𝑆̃∗/∼ ≃→ R𝑆. ⌟

We are now ready to prove that set R𝑆 of reduced words is equivalent

to UF𝑆. We’ll do this be defining an interpretation function from words

to elements of the free group.

Definition 8.7.7. We define ⟦_⟧ : 𝑆̃∗ → UF𝑆 by induction on words by

https://dwarn.se/po-paths.pdf
https://dwarn.se/po-paths.pdf

constructing groups 184

13
The set R𝑆 is very much like Z, but

instead of having only one successor

equivalence s, it has one for each

element of 𝑆.

14
In a picture, the case for ⟲𝑎 should

prove that it does not matter what

path you take around the square

R𝑆 (• =→ •)

R𝑆 (• =→ •).

⟦_⟧

s𝑎 ⟲𝑎 ·_

⟦_⟧

setting

⟦𝜀⟧ :≡ refl•

⟦𝑎𝑤⟧ :≡⟲
𝑎
·⟦𝑤⟧, for 𝑎 : 𝑆,

⟦ 𝑎̄𝑤⟧ ≡ ⟦𝐴𝑤⟧ :≡
−1
⟲
𝑎
·⟦𝑤⟧, for 𝑎 : 𝑆. ⌟

Theorem 8.7.8. Fix a decidable set 𝑆. The interpretation map ⟦_⟧ restricts to
an equivalence, denoted the same way, ⟦_⟧ :R𝑆 → UF𝑆.

Proof. We extend R𝑆 to an F𝑆-set, R𝑆 : BF𝑆 → Set, where we define

R𝑆(𝑥) by induction on 𝑥 : BF𝑆, with

R𝑆(•) :≡ R𝑆 , and R𝑆(⟲
𝑎
) B s𝑎 , for 𝑎 : 𝑆.

Here s𝑎 :R𝑆
≃→ R𝑆 is the equivalence sending a word 𝑤 to 𝜌𝑆(𝑎𝑤),

whose inverse sends 𝑤 to 𝜌𝑆(𝐴𝑤). These operations are indeed mutual

inverses, since 𝑎𝐴𝑤 ∼ 𝑤 ∼ 𝐴𝑎𝑤.
13

Our goal now is to extend the definition of ⟦_⟧ to ⟦_⟧𝑥 :R𝑆(𝑥) → ℙ•,

where ℙ•(𝑥) ≡ (• =→ 𝑥), for 𝑥 : BF𝑆, so that this is an inverse to the map

given by transport of 𝜀, 𝜏𝑥 : (• =→ 𝑥) → R𝑆(𝑥), with 𝜏𝑥(𝑝) :≡ trpR𝑆
𝑝 (𝜀).

Thinking back to Definition 3.4.4, we define ⟦_⟧𝑥 by induction on 𝑥 with

⟦_⟧•
:≡ ⟦_⟧ and using ⟦𝑎𝑤⟧ ≡⟲𝑎 ·⟦𝑤⟧.14

We get an identification ⟦_⟧𝑥 ◦ 𝜏𝑥 =→ id by path induction, since

⟦𝜀⟧ ≡ refl•.

To prove the proposition 𝜏𝑥(⟦𝑤⟧𝑥) = 𝑤 for all 𝑥 : BF𝑆 and 𝑤 :R𝑆(𝑥), it

suffices to consider the case 𝑥 ≡ •, since BF𝑆 is connected. We prove that

𝜏•(⟦𝑤⟧) ∼ 𝑤 holds for all words 𝑤 : 𝑆̃∗ by induction on 𝑤, because then it

follows that 𝜏•(⟦𝑤⟧) = 𝑤 for reduced words 𝑤. The case 𝑤 ≡ 𝜀 is trivial.

In the step case for adding 𝑎 : 𝑆, we calculate,

𝜏•(⟦𝑎𝑤⟧) ≡ trpR𝑆

⟲𝑎 ·⟦𝑤⟧(𝜀) = trpR𝑆

⟲𝑎
(𝜏•(⟦𝑤⟧)) = s𝑎(𝑤) = 𝜌𝑆(𝑎𝑤) ∼ 𝑎𝑤,

as desired, the complementary case being similar. □

Exercise 8.7.9. Construct an equivalence R𝟙
≃→ Z sending 𝜀 to 0 such

that s∗ corresponds to s, where ∗ :𝟙 is the unique element. This gives us

two more options to add to the list in Footnote 7 on Page 67: 𝟙̃∗/∼ and

R𝟙! ⌟

Exercise 8.7.10. Construct an equivalence F𝕟⨿True
≃→ F𝕟 ∨ℤ for each 𝑛 :ℕ

using the universal properties. As a result, give identifications

F𝕟
=→
(
(ℤ ∨ℤ) ∨ · · ·

)
∨ℤ,

for 𝑛 :ℕ, where there are 𝑛 copies of ℤ on the right-hand side. ⌟

9
Normal subgroups and quotients

9.1 Brief overview of the chapter

TBW (and stolen from the below)

9.2 Epimorphisms

In set theory we say that a function 𝑓 : 𝐵 → 𝐶 of sets is an injection

if for all 𝑏, 𝑏′ : 𝐵 we have that 𝑓 (𝑏) = 𝑓 (𝑏′) implies that 𝑏 = 𝑏′. This

conforms with our definitions. Furthermore, since giving a term 𝑏 : 𝐵
is equivalent to giving a (necessarily constant) function 𝑐𝑏 :𝟙→ 𝐵, we

could alternatively say that a function 𝑓 : 𝐵 → 𝐶 is an injection if and

only if for any two 𝑔, ℎ :𝟙→ 𝐵 such that 𝑓 𝑔 = 𝑓 ℎ we have that 𝑔 = ℎ.

In fact, by function extensionality we can replace 𝟙 by any set 𝐴 (two

functions are identical if and only if they have identical values at every

point).

Similarly, a function 𝑓 : 𝐵→ 𝐶 is surjective if for all 𝑐 :𝐶 the preimage

𝑓 −1(𝑐) = ∑𝑏 : 𝐵 𝑐 = 𝑓 (𝑏) is non-empty. A smart way to say this is to say

that the first projection from ∑𝑐 :𝐶∥ 𝑓 −1(𝑐)∥ to 𝐶 is an equivalence. Since 𝐵

is always equivalent to ∑𝑐 :𝐶 𝑓
−1(𝑐), we see that for a surjection 𝑓 : 𝐵→ 𝐶

and family of propositions 𝑃 :𝐶 → Prop, the propositions ∏𝑐 :𝐶 𝑃(𝑐)
and ∏𝑏 : 𝐵 𝑃 𝑓 (𝑏) are equivalent. In particular, if 𝑔, ℎ :𝐶 → 𝐷 are two

functions into a set 𝐷 the proposition ∏𝑐 :𝐶(𝑔(𝑐) = ℎ(𝑐)) is equivalent to

∏𝑏 : 𝐵(𝑔 𝑓 (𝑏) = ℎ 𝑓 (𝑐)).
From this we condense the following characterizations of injections

and surjections of sets which will prove to generalize nicely to other

contexts.

Lemma 9.2.1. Let 𝑓 : 𝐵→ 𝐶 be a function between sets.

(1) the function is an injection of and only if for any set 𝐴 and functions
𝑔, ℎ :𝐴→ 𝐵,

𝐴

𝑔 //

ℎ
// 𝐵

𝑓 // 𝐶 ,

then 𝑓 𝑔 = 𝑓 ℎ :𝐴→ 𝐶 implies 𝑔 = ℎ

(2) the function is an injection of and only if for any set 𝐷 and functions
𝑔, ℎ :𝐶 → 𝐷,

𝐵
𝑓 // 𝐶

𝑔 //

ℎ
// 𝐷 ,

then 𝑔 𝑓 = ℎ 𝑓 :𝐴→ 𝐶 implies 𝑔 = ℎ.

185

normal subgroups and quotients 186

1
Raw from old 5.3.21. Good example:

For groups 𝐺1 and 𝐺2, then the

first projection from 𝐺1 × 𝐺2 is an

epimorphism.

UG

≃
��

U 𝑓 // UH

≃
��

Hom(ℤ, 𝐺)
𝑓∗ //

≃abs
��

Hom(ℤ, 𝐻)

≃abs
��

Homabs(ℤ, abs(𝐺))
abs 𝑓∗ // Homabs(ℤ, abs(𝐻))

commutes (we’ve written ℤ also for

abs(ℤ) since otherwise it wouldn’t

fit.

By Lemma 9.2.1 there is a pleasing reformulation which highlights

that injections/surjections of sets are characterized by injections of sets

of functions: a function of sets 𝑓 : 𝐵→ 𝐶 is

(1) an injection if and only if for any set 𝐴 postcomposition by 𝑓 given

an injection from 𝐴→ 𝐵 to 𝐴→ 𝐶

(2) a surjection if and only if for any set 𝐷 precomposition by 𝑓 gives an

injection from 𝐵→ 𝐷 to 𝐵→ 𝐷.

This observation about sets translates fruitfully to other contexts and

in particular to groups. To make it clear that we talk about group

homomorphisms (and not about the underlying unpointed functions of

connected groupoids) we resort to standard categorical notation.

Definition 9.2.2. Given groups 𝐺, 𝐻, a homomorphism 𝑓 : Hom(𝐺, 𝐻)
is called a

(1) monomorphism if for any group 𝐹, postcomposition by 𝑓 is an injection

from Hom(𝐹, 𝐺) to Hom(𝐹, 𝐻), and an

(2) epimorphism if for any group 𝐼, precomposition by 𝑓 is an injection

from Hom(𝐻, 𝐼) to Hom(𝐺, 𝐼).

The type of epimorphisms from 𝐺 is
1

Epi𝐺 :≡ ∑
𝐻 : Group

∑
𝑓 : Hom(𝐺,𝐺′)

isEpi(𝑓).

The corresponding families of propositions are called

isMono, isEpi : Hom(𝐺, 𝐻) → Prop. ⌟

Exercise 9.2.3. (1) Show that 𝑖 : Hom(𝐻, 𝐺) is a monomorphism if and

only if Ui is an injection of sets and that 𝑖 is proper if and only𝑈𝑖 is

not a bĳection.

(2) Show that 𝑓 : Hom(𝐺, 𝐺′) is an epimorphism if and only if Uf is an

surjection of sets.

(3) Consider a composite 𝑓 = 𝑓0 𝑓2 of homomorphisms. Show that 𝑓0 is

an epimorphism if 𝑓 is and 𝑓2 is a monomorphism if 𝑓 is. ⌟

We’ve seen that for any group 𝐺, the underlying set UG :≡ (sh𝐺 =

sh𝐺) of abs(𝐺) is equivalent to the set of homomorphisms Hom(ℤ, 𝐺)
which in turn is equivalent to the set of abstract homomorphisms

Homabs(abs(ℤ), abs(𝐺)) and that abstraction preserves composition.

Hence, if 𝑓 : Hom(𝐺, 𝐻) is a group homomorphism, then saying that

U 𝑓 is an injection is equivalent to saying that postcomposition by 𝑓 is an

injection Hom(ℤ, 𝐺) → Hom(ℤ, 𝐻). In this observation, the integers ℤ

plays no more of a rôle than 𝟙 does in Lemma 9.2.1; we can let the source

vary over any group 𝐹:

Lemma 9.2.4. Let 𝐺 and 𝐻 be groups and 𝑓 : Hom(𝐺, 𝐻) a homomorphism.
The following propositions are equivalent:

(1) 𝑓 is a monomorphism;

(2) U 𝑓 : UG→ UH is an injection;

normal subgroups and quotients 187

2
Alternatively: and 𝑔, ℎ : Hom(𝐹, 𝐺).
Then 𝑓 𝑔 = 𝑓 ℎ implies that for

all 𝑝 : Hom(ℤ, 𝐹)we have by as-

sociativity that 𝑓 (𝑔𝑝) = (𝑓 𝑔)𝑝 =

(𝑓 ℎ)𝑝 = 𝑓 (ℎ𝑝), and so, by assump-

tion, that 𝑔𝑝 = ℎ𝑝. Again, by func-

tion extensionality (of functions

Hom(ℤ, 𝐹) → Hom(ℤ, 𝐺)), this is

exactly saying that U𝑔 is identical to

Uℎ.

3
This proof follows an idea by Trim-

ble
4
.

4
Todd Trimble. Monomorphisms in the
category of groups. https://ncatlab.
org/toddtrimble/published/
monomorphisms+in+the+category+
of+groups. Jan. 2020.

(3) Bf ÷ : BG÷ → BH÷ is a set bundle.

Proof. We have already seen that condition (1) implies condition (2) (let

𝐹 be ℤ). Conversely, suppose that (2) holds and 𝐹 is a group. Consider

the commutative diagram

Hom(𝐹, 𝐺) //

��

Hom(𝐹, 𝐻)

��
(Hom(ℤ, 𝐹) → Hom(ℤ, 𝐺)) // (Hom(ℤ, 𝐹) → Hom(ℤ, 𝐻)),

where the vertical maps are the injections from the sets of (abstract)

homomorphism to the sets of functions of underlying sets and the

horizontal maps are postcomposition with 𝑓 . Since the bottom function

is by assumption is an injection, so is the upper one.
2

The equivalence of (3) and (2) follows immediately from Corol-

lary 2.17.9(1), using that BG is connected and 𝑓 is pointed and the

equivalence between Hom(𝐺, 𝐻) and BG→∗ BH. □

Similarly, we have:

Lemma 9.2.5. The following propositions are equivalent:

(1’) 𝑓 is an epimorphism;

(2’) U 𝑓 : UG→ UH is a surjection.

(3’) Bf ÷ : BG÷ → BH÷ has connected fibers.

Proof. The equivalence of (2’) and (3’) is immediate.

For the rest, the easy direction is that (2’) implies (1’): (TODO)

The harder direction, that (1’) implies (2’), is a corollary of the following

lemma, which states that monos are equalizers. Indeed, we can factor

any 𝑓 : Hom(𝐺, 𝐻) via the image as a surjection followed by a mono:

𝐺 im(𝑓) 𝐻
𝑞 𝑖

If 𝑓 is an epi, then so is 𝑖. But 𝑖 is an equalizer,

im(𝑓) 𝐻 𝐿,
𝑖

𝜑

𝜓

so as an epi, 𝜑𝑖 = 𝜓𝑖 implies 𝜑 = 𝜓, so 𝑖 is an equalizer of already

equal homomorphisms, so 𝑖 is an isomorphism, which implies that 𝑓 is

surjective. □

Lemma 9.2.6. Every monomorphism 𝑖 :𝐻 → 𝐺 is an equalizer.3

Proof draft. Consider the projection 𝜋 :𝐺→ 𝐺/𝐻 to the set of cosets. Let

𝑗 :𝐺/𝐻 → 𝐴 be an injection into a group 𝐴. (We could for instance

let 𝐴 be the free (abelian) group on 𝐺/𝐻. [Add xref to statement that

inclusion of generators in an injection.])

Consider the group𝑊 :≡ Aut𝐸(sh𝐺 , cstsh𝐴), where

𝐸 :≡ ∑
𝑡 : BG

(
(sh𝐺

=→ 𝑡) → BA
)
.

https://ncatlab.org/toddtrimble/published/monomorphisms+in+the+category+of+groups
https://ncatlab.org/toddtrimble/published/monomorphisms+in+the+category+of+groups
https://ncatlab.org/toddtrimble/published/monomorphisms+in+the+category+of+groups
https://ncatlab.org/toddtrimble/published/monomorphisms+in+the+category+of+groups

normal subgroups and quotients 188

For those familiar with the classical

notion, the following summary may

guide the intuition.

If 𝜙 : Homabs(G ,G′) is an abstract

group homomorphism, the preimage

𝜙−1(𝑒𝐺) is an abstract subgroup

which is classically called the kernel

of 𝜙.

On the other hand, the cokernel

is the quotient set of G′ by the

equivalence relation generated by

𝑔′ ∼ 𝑔′ · 𝜙(𝑔)whenever 𝑔 :G and

𝑔′ :G′.

Even though the cokernel is in gen-

eral just a 𝐺′-set, we will see in Defi-

nition 9.5.8 that in certain situations

it gives rise to a group called the

quotient group.

5
There is an inherent abiguity in our

notation: is the kernel of 𝑓 a group

or a monomorphism into 𝐺? This is

common usage and is only resolved

by a type check.

We have two homomorphisms 𝜑,𝜓 :𝐺→𝑊 with the same underlying

map, 𝑡 ↦→ (𝑡 , cstsh𝐴), but with different pointing paths:

𝜑pt :≡ reflsh𝐺 ,cstsh𝐴
, 𝜓pt :≡ (reflsh𝐺 , 𝑗𝜋).

The equalizer of 𝜑 and 𝜓 thus consists of all 𝑔 : UG such that 𝑗𝜋(𝑔𝑔′) =
𝑗𝜋(𝑔′) for all 𝑔′ : UG. Since 𝑗 is injective, this is equivalent to 𝜋(𝑔𝑔′) =
𝜋(𝑔′) for all 𝑔′ : UG, and this holds if and only if 𝑔 belongs to 𝐻. □

9.3 Images, kernels and cokernels

The set of subgroups of a group 𝐺 encodes much information about 𝐺,

partially because homomorphisms between 𝐺 and other groups give

rise to subgroups.

In Example 4.2.23 we studied a homomorphism from ℤ to Σ𝑚 defined

via the pointed map 𝑅𝑚 : 𝑆1 →∗ BΣ𝑚 given by sending • to 𝕞 and ⟲ to

the cyclic permutation 𝑠𝑚 : UΣ𝑚 ≡ (𝕞 =→ 𝕞), singling out the iterates of

𝑠𝑚 among all permutations. From this we defined the group 𝐶𝑚 through

a quite general process which we define in this section, namely by taking

the image of 𝑅𝑚 .

We also noted that the resulting pointed map from 𝑆1
to B𝐶𝑚 was

intimately tied up with the𝑚-fold set bundle −𝑚 : 𝑆1 →∗ 𝑆1
– picking out

exactly the iterates of ⟲𝑚
– which in our current language corresponds

to a monomorphism 𝑖𝑚 : Hom(ℤ,ℤ). This process is also a special case

of something, namely the kernel.
The relations between the cyclic groups in the forms ℤ/𝑚, 𝐶𝑚 and 𝐶′𝑚

as in Example 4.2.22 are also special cases of what we do in this section.

In our setup with a group homomorphism 𝑓 : Hom(𝐺, 𝐺′) being given

by a pointed function Bf : BG →∗ BG′, the above mentioned kernel,

cokernel and image are just different aspects of the preimages

(Bf)−1(𝑧) :≡ ∑
𝑥 : BG
(𝑧 =→ Bf (𝑥))

for 𝑧 : BG′. Note that all these preimages are groupoids.

The kernel will correspond to a preferred component of the preimage

of sh𝐺′ , the cokernel will be the (𝐺′-)set of components and for the image

we will choose the monomorphism into𝐺′ corresponding to the cokernel.

This point of view makes it clear that the image will be a subgroup of 𝐺′,

the kernel will be a subgroup of 𝐺, whereas there is no particular reason

for the cokernel to be more than a (𝐺′-) set.

9.3.1 Kernels and cokernels

The kernel of 𝑓 : Hom(𝐺, 𝐺′) is a component of the fiber of Bf , whereas

the cokernel is the set of components of the fiber. We spell out the details.

Definition 9.3.2. We define a function

ker : Hom(𝐺, 𝐺′) →Mono𝐺

which we call the kernel. If 𝑓 : Hom(𝐺, 𝐺′) is a homomorphism we

must specify the ingredients in ker 𝑓 :≡ (Ker 𝑓 , inker 𝑓 , !) : Mono𝐺. The

classifying type BKer 𝑓 of the kernel group5
(or most often just the “kernel”)

normal subgroups and quotients 189

6
That is:

Ker 𝑓 :≡ Aut(Bf)−1(sh𝐺′)(sh𝐺 , 𝑝 𝑓)

The associated abs(𝐺′)-set

coker 𝑓 (sh𝐺′) is (also) referred to

as the (abstract) cokernel of 𝑓 .

The subgroup of 𝐺′ associated with

the cokernel is the “image” of the

next section.

Hint: consider the corresponding

property of the preimage of Bf .

𝐿

ℎ

((

𝑘

!!

��

Ker 𝑓
inker 𝑓

//

��

𝐺

𝑓

��
1 // 𝐺′.

7

𝐹−1
2 (𝑥1 , 𝑝2)

𝐻

≃
//

fst

��

𝑓 −1
1 (𝑥1)

fst

��

𝐹1

yy
(𝑓2 𝑓1)−1(𝑥2)

fst //

𝐹2

��

𝑋0
𝑓2 𝑓1 //

𝑓1

��

𝑋2

𝑓 −1
2 (𝑥2)

fst // 𝑋1
𝑓2 // 𝑋2 .

is the component of the fiber of 𝐵 𝑓 pointed by

shKer 𝑓 :≡ (sh𝐺 , 𝑝 𝑓) : (Bf)−1(sh𝐺′),

where 𝑝 𝑓 : sh𝐺′
=→ Bf (sh𝐺) is the part of Bf claiming it is a pointed map.

6

The first projection BKer 𝑓 → BG is a set bundle, since by Corollary 2.9.11

the preimages are equivalent to the sets ∑𝑝 : sh𝐺′
=→Bf (𝑧)∥shKer 𝑓

=→ (𝑧, 𝑝)∥,
giving a monomorphism inker 𝑓 of Ker 𝑓 into𝐺; together defining ker 𝑓 :≡
(Ker 𝑓 , inker 𝑓 , !) : Mono𝐺. ⌟

Written out, the classifying type of the kernel, BKer 𝑓÷, is

∑
𝑧 : BG

∑
𝑝 : sh𝐺′

=→ 𝑓 (𝑧)
∥(sh𝐺 , 𝑝 𝑓) =→ (𝑧, 𝑝)∥

and inker 𝑓 : Hom(Ker 𝑓 , 𝐺) is given by the first projection.

Definition 9.3.3. Let 𝑓 : Hom(𝐺, 𝐺′) be a homomorphism. The cokernel
of 𝑓 is the 𝐺′-set

coker 𝑓 : BG′→ Set, coker 𝑓 (𝑧) :≡ ∥(Bf)−1(𝑧)∥0;

defining a function of sets

coker : Hom(𝐺, 𝐺′) → 𝐺′-Set. ⌟

If a monomorphism 𝑖 from 𝐺 to 𝐺′ is clear from the context (“𝐺 ⊆ 𝐺′”),

we may write 𝐺′/𝐺 for the cokernel of 𝑖.

Lemma 9.3.4. The cokernel coker 𝑓 is a transitive 𝐺′-set.

Proof. It is enough to show that for all |𝑥, 𝑝| ∈ coker(sh𝐺′) there is a 𝑔 : U
s.t. 𝑔 · |sh𝐺 , 𝑝 𝑓 | =→ |𝑥, 𝑝|. It suffices to do this for 𝑥 being sh𝐺, and then

𝑔 :≡ 𝑝−1
𝑓 𝑝 will do. □

Remark 9.3.5. Since the cokernel is a transitive 𝐺′-set, we need just

to provide coker 𝑓 (sh𝐺′) :≡ ∥Bf−1(sh𝐺′)∥0 with a point to say that the

cokernel defines a subgroup of 𝐺′. The obvious point to choose is

|sh𝐺 , 𝑝 𝑓 |. In the next section we will consider this subgroup in more

detail and call it the image of 𝑓 .

Another proof of coker 𝑓 being a transitive 𝐺′-set would be to say

that since 𝐵𝐺 is connected and equivalent to ∑𝑧 : B𝐺′ Bf−1(𝑧) which maps

surjectively onto ∑𝑧 : BG′∥Bf−1(𝑧)∥0 the latter is connected – and, when

pointed at (sh𝐺′ , |sh𝐺 , 𝑝 𝑓 |), just another name for𝐸(coker 𝑓) : Mono𝐺′ . ⌟

Exercise 9.3.6. Given a homomorphism 𝑓 : Hom(𝐺, 𝐺′), prove that

(1) 𝑓 is a monomorphism if and only if the kernel is trivial

(2) 𝑓 is an epimorphims if and only if the cokernel is contractible.

(3) if ℎ : Hom(𝐿, 𝐺) is a homomorphism such that 𝑓 ℎ : Hom(𝐿, 𝐺′) is

the trivial homomorphism (equivalently, 𝑓 ℎ factors through the

trivial group 1), then there is a unique 𝑘 : Hom(𝐿,Ker 𝑓) such that

ℎ =→ inker 𝑓 𝑘. ⌟

The kernel, cokernel and image constructions satisfy a lot of important

relations which we will review in a moment, but in our setup many of

them are just complicated ways of interpreting the following fact about

preimages (see the illustration
7

in the margin for an overview)

normal subgroups and quotients 190

(here the function

((𝑥1 , 𝑝2) =→ (𝑓1𝑥, 𝑞))
(𝑝, 𝑟)↦→𝑝// (𝑥1

=→ 𝑓1(𝑥))
is the “first projection” explained in

the discussion of the interpretation

of pairs following Definition 2.10.1)

Ker 𝑓1

𝐹1

��

Ker 𝑓1

inker 𝑓1

��
Ker 𝑓2 𝑓1

𝐹2

��

inker 𝑓2 𝑓1 // 𝐺0

𝑓1

��

𝑓2 𝑓1 // 𝐺2

Ker 𝑓2
inker 𝑓2 // 𝐺1

𝑓2 // 𝐺2

If 𝑓 , 𝑔 :𝐴→ Set are two 𝐴-sets, then

𝑓 → 𝑔 is defined to be the set

∏
𝑎 :𝐴
(𝑓 (𝑎) → 𝑔(𝑎))

and we say that 𝜙 : 𝑓 → 𝑔 is an

equivalence if ∏𝑎 :𝐴 isEquiv 𝜙(𝑎); see

Lemma 2.9.15.

Lemma 9.3.7. Consider pointed functions (𝑓1 , 𝑝1) : (𝑋0 , 𝑥0) →∗ (𝑋1 , 𝑥1) and
(𝑓2 , 𝑝2) : (𝑋1 , 𝑥1) →∗ (𝑋2 , 𝑥2) and the resulting functions

𝐹1 : 𝑓 −1
1 (𝑥1) → (𝑓2 𝑓1)−1(𝑥2), 𝐹1(𝑥, 𝑝) :≡ (𝑥, 𝑝2 𝑓2𝑝),

𝐹2 : (𝑓2 𝑓1)−1(𝑥2) → 𝑓 −1
2 (𝑥2), 𝐹2(𝑥, 𝑞) :≡ (𝑓1𝑥, 𝑞)

𝐻 : 𝐹−1
2 (𝑥1 , 𝑝2) → 𝑓 −1

1 (𝑥1), 𝐻(𝑥, 𝑞, (𝑝, 𝑟)) :≡ (𝑥, 𝑝))

Then

(1) 𝐻 is an equivalence with inverse

𝐻−1(𝑥, 𝑞) :≡ ((𝑥, 𝑝2 𝑓2(𝑞)), (𝑞, refl𝑝2 𝑓2(𝑞))),

(2) the composite 𝐹1𝐻 is identical to the first projection

fst : 𝐹−1
2 (𝑥1 , 𝑝2) → (𝑓2 𝑓1)−1(𝑥2),

more precisely, if (𝑥, 𝑞, (𝑝, 𝑟)) : 𝐹−1
2 (𝑥, 𝑝2), then fst(𝑥, 𝑞, (𝑝, 𝑟)) is (𝑥, 𝑞),

whereas 𝐹1𝐻(𝑥, 𝑞, (𝑝, 𝑟)) is (𝑥, 𝑝2 𝑓2𝑝) and 𝑟 : 𝑝2 𝑓2𝑝
=→ 𝑞 provides the

desired element in 𝐹1𝐻
=→ fst.

Proof. That𝐻 is an equivalence is seen by noting that 𝐹−1
2 (𝑥1 , 𝑝2) is equiv-

alent to ∑𝑥 :𝑋0 ∑𝑞 : 𝑥2
=→ 𝑓2 𝑓1𝑥 ∑𝑝 : 𝑥1

=→ 𝑓1𝑥 𝑞
=→ 𝑝2 𝑓2𝑝 and that ∑𝑞 : 𝑥2

=→ 𝑓2 𝑓1𝑥 𝑞
=→

𝑝2 𝑓2𝑝 is contractible. □

Hence, through univalence, 𝐻 provides an identification

𝐻̄ : (𝐹−1
2 (𝑥1 , 𝑝2), fst) =→ (𝑓 −1

1 (𝑥1), 𝐹1)

in the type ∑𝑋 :U (𝑋 → (𝑓2 𝑓1)−1(𝑥2))of function with codomain (𝑓2 𝑓1)−1(𝑥2).
From the universal property of the preimage it furthermore follows

that 𝐹 is the unique map such that fst 𝐹 =→ 𝑓 −1
1 (𝑥1)→𝑋0

fst and 𝐻−1
is

similarly unique with respect to fst𝐻−1 =→ 𝐹.

Corollary 9.3.8. Consider two composable homomorphisms 𝑓1 : Hom(𝐺0 , 𝐺1)
and 𝑓2 : Hom(𝐺1 , 𝐺2). There is a unique monomorphisms 𝐹1 from Ker 𝑓1 to
Ker(𝑓2 𝑓1) and a unique homomorphism 𝐹2 from Ker(𝑓2 𝑓1) to Ker 𝑓2 such that
inker 𝑓1

=→ inker 𝑓2 𝑓1𝐹1 and 𝑓1inker 𝑓2 𝑓1
=→ inker 𝑓2𝐹2. Furthermore,

𝐹1
=→ Mono𝐺1

inker 𝐹2

and
(coker 𝑓1)Binker 𝑓2

=→ B Ker 𝑓2→Set coker(𝐹2).

Consequequently,

(1) if 𝑓2 is a monomorphism then 𝐹1 : Ker 𝑓1 → Ker 𝑓2 𝑓1 is an isomorphism
and

(2) if 𝑓1 is a monomorphism then 𝐹2 : Ker 𝑓2 𝑓1 → Ker 𝑓2 is an isomorphism.

Likewise, the set truncation of the maps 𝐹1 and 𝐹2 constructed in Lemma 9.3.7
give maps of families

𝐹′1 : coker 𝑓1 →BG1→Set coker(𝑓2 𝑓1) 𝐵 𝑓2 , 𝐹′2 : coker(𝑓2 𝑓1) →BG2→Set coker 𝑓2

such that

normal subgroups and quotients 191

The formula for the image in group

theory is the same as the one for sets,

except that the propositional trunca-

tion we have for the set factorization

is replaced by the set truncation

present in our formulation of the

cokernel coker(𝑓) :≡ ∥(Bf)−1(𝑧)∥0.

(1) if 𝑓2 is an epimorphism then 𝐹′1 : coker 𝑓1 →BG2→Set coker(𝑓2 𝑓1) 𝐵 𝑓2 is
an equivalence and

(2) if 𝑓1 is an epimorphism then 𝐹′2 : coker(𝑓2 𝑓1) →BG2→Set coker 𝑓2 is an
equivalence.

Exercise 9.3.9. Let 𝑓 : Hom(𝐺, 𝐺′). Then the subgroup 𝐸(ker 𝑓) : Sub𝐺
associated with the kernel is given by a 𝐺-set equivalent to the one

sending 𝑥 : BG to

∑
𝑝 : sh𝐺′

=→Bf (𝑥)
∥ ∑
𝛽 : sh𝐺

=→𝑥

𝑝 =→ Uf (𝛽)𝑝 𝑓 ∥.

If 𝑓 is an epimorphism this is furthermore equivalent to

𝑥 ↦→ (sh𝐺′
=→ Bf (𝑥)).

⌟

9.3.10 The image

For a function 𝑓 :𝐴→ 𝐵 of sets (or, more generally, of types) the notion

of the “image” gives us a factorization through a surjection followed

by an injection: noting that 𝑎 ↦→ (𝑓 (𝑎), !) is a surjection from 𝐴 to the

“image” ∑𝑏 : 𝐵∥ 𝑓 −1(𝑏)∥, from which we have an injection (first projection)

to 𝐵. This factorization

𝐴→ ∑
𝑏 : 𝐵
∥ 𝑓 −1(𝑏)∥ → 𝐵

is unique (Exercise 2.17.12).

For a homomorphism 𝑓 : Hom(𝐺, 𝐺′) of groups we similarly have a

unique factorization

𝐺→ Im 𝑓 → 𝐺′

through an epimorphism followed by a monomorphism which, on the

level of connected groupoids, is given by

BG÷
𝑥 ↦→(Bf (𝑥),|(𝑥,reflBf (𝑥))|0) // ∑𝑧 : 𝐵𝐺′÷∥(Bf)−1(𝑧)∥0

fst // 𝐵𝐺′÷ ,

together with base point information. In particular, we choose the base

point (sh𝐺′ , |(sh𝐺 , 𝑝 𝑓)|0), so that the image group is

Im 𝑓 :≡ Aut∑𝑧 : BG′∥(Bf)−1(𝑧)∥0((sh𝐺′ , |(sh𝐺 , 𝑝 𝑓)|0)).

In other words, the image is nothing but the subgroup of 𝐺′ associated

with the cokernel as discussed in Remark 9.3.5.

Exercise 9.3.11. With the choice of point of Im 𝑓 above, give paths for

𝑥 ↦→ (Bf (𝑥), |(𝑥, reflBf (𝑥))|0) and fst so that these maps become pointed

maps whose composition is indeed equal to the pointed map Bf . Show

that these pointed maps indeed give an epimorphism and a monomor-

phism, respectively. Hint: for the epimorphism, use Lemma 3.9.6. ⌟

That the image gives a unique factorization is elegantly expressed by

saying that it is the unique inverse of composition. We use the pullback

construction from Definition 8.4.1 to express the type of epi/mono

factorizations of homomorphisms from 𝐺 to 𝐺′ as Epi𝐺 ×Group Mono𝐺′
where the maps to Group are understood to be the first projections (so

that the epimorphisms and monomorphisms in question can, indeed, be

composed).

normal subgroups and quotients 192

8
here 𝑝 is an epimorphism from 𝐺

to the group 𝑍, 𝑗 a monomorphims

from the group 𝑍′ to 𝐺′, 𝛼 :𝑍 =→ 𝑍

and 𝛼̃ is the isomorphism corre-

sponding to the identification

𝛼 :𝑍 =→ 𝑍′, as in Definition 2.13.1,

so that the composite looks like

𝐺
𝑝 // 𝑍 𝛼̃

∼
// 𝑍′

𝑗 // 𝐺′

9
To see that the function is an equiva-

lence notice that it can be obtained as

follows: rewrite 𝑓 −1(𝑧) first as

∑
𝑥 :𝑋

∑
𝑦 :𝑌
(𝑧 =→ 𝑓 (𝑥)) × (𝑦 =→ 𝑞(𝑥)),

then as

∑
𝑦 :𝑌

∑
𝑥 :𝑋
(𝑧 =→ 𝑗(𝑦)) × (𝑦 =→ 𝑞(𝑥))

and finally use that the 𝑛-truncation

of ∑𝑥 :𝑋 𝑦
=→ 𝑞(𝑥) is contractible

𝑋
𝑞 //

��

𝑌

𝑗

��
∑𝑧 :𝑍∥ 𝑓 −1(𝑧)∥𝑛

fst
//

(𝑗 ,𝑞)
≃

99

𝑍

𝐺
𝑓 //

prIm 𝑓 !! !!

𝐺′

Im 𝑓 .
<< inIm 𝑓

<<

Construction 9.3.12. For all groups 𝐺, and 𝐺′ the map

◦ : Epi𝐺 ×Group Mono𝐺′ → Hom(𝐺, 𝐺′)

given by composition,8

◦((𝑍, 𝑝, !), (𝑍′, 𝑗 , !), 𝛼) :≡ 𝑗𝛼̃𝑝

is an equivalence with inverse given by the image factorization.

Implementation of Construction 9.3.12. For any integer 𝑛 ≥ −1 – and in

our case for 𝑛 = 0 – on the level of types the factorization of a function

𝑓 :𝑋 → 𝑍 as

𝑋
𝑥 ↦→(𝑓 (𝑥),|(𝑥,refl 𝑓 (𝑥))|𝑛) // ∑𝑧 :𝑍∥ 𝑓 −1(𝑧)∥𝑛 fst // 𝑍

is unique in the sense that

if 𝑝 : 𝑓 =→ 𝑗𝑞 where 𝑞 :𝑋 → 𝑌 is so that for all 𝑦 :𝑌 the 𝑛-

truncation of 𝑞−1(𝑦) is contractible and 𝑗 :𝑌 → 𝑍 is so that

for all 𝑧 :𝑍 the fiber 𝑗−1(𝑧) is 𝑛-truncated, then for each 𝑧 :𝑍
the function 𝑓 −1(𝑧) → 𝑗−1(𝑧) induced by (𝑝 and) 𝑞 gives an

equivalence
9

(𝑗 , 𝑞) : ∥ 𝑓 −1(𝑧)∥𝑛 ≃ 𝑗−1(𝑧)

identifying (under univalence) the two factorizations of 𝑓 .

If 𝑋 and 𝑍 are connected groupoids, then so is ∑𝑧 :𝑍∥ 𝑓 −1(𝑧)∥𝑛 , and

so when applying the factorization to groups (when 𝑛 = 0), the only

thing we need to worry about is the base point. If if the point-data

is given by 𝑥0 :𝑋, 𝑦0 :𝑌, 𝑧0 :𝑍, 𝑝𝑞 : 𝑦0
=→ 𝑞(𝑥0), 𝑝 𝑗 : 𝑧0

=→ 𝑗(𝑦0) and

𝑝 𝑓 : 𝑧0
=→ 𝑓 (𝑥0)with 𝑏 : 𝑝 𝑓

=→ 𝑎−1
𝑥0
𝑗(𝑝𝑞)𝑝 𝑗 , where 𝑎 : ∏𝑥 :𝑋 𝑓 (𝑥) =→ 𝑗(𝑞(𝑥))

witnesses that we have a factorization, then we point ∑𝑧 :𝑍∥ 𝑓 −1(𝑧)∥𝑛
in (𝑧0 , |(𝑥0 , 𝑝 𝑓)|𝑛) and note that the equivalence ∑𝑧 :𝑍∥ 𝑓 −1(𝑧)∥𝑛 ≃→ 𝑌 is

pointed via 𝑝𝑞 : 𝑦0
=→ 𝑞(𝑥0) and

𝑏 : 𝑧0 →
𝑝 𝑗

refl𝑧0

𝑗(𝑦0)
𝑗𝑝𝑞 ↑

𝑧0
𝑝 𝑓

→ 𝑓 (𝑥0) →
𝑎𝑥0

𝑗(𝑞(𝑥0)).

□

Definition 9.3.13. Explicitly, the image factorization for groups is the

function

◦−1 : Hom(𝐺, 𝐺′) → Epi𝐺 ×Group Mono𝐺′

◦−1(𝑓) :≡ ((Im 𝑓 , prim 𝑓 , !), (Im 𝑓 , inim 𝑓 , !), reflIm 𝑓),

where as before the image group is the group

Im 𝑓 :≡ Aut∑𝑧 : BG′ coker 𝑓 (𝑧)(sh𝐺′ , |(sh𝐺 , 𝑝 𝑓)|0),

the monomorphism inim 𝑓 is obtained from the wrapping of the first

projection

Binim 𝑓 :≡ fst : 𝐵 Im 𝑓 → BG′

normal subgroups and quotients 193

𝐺0
prim 𝑓1

ww
prim 𝑓2 𝑓1

��

Im 𝑓1
inim 𝑓1

yy

prim(prim 𝑓2
inim 𝑓1

)

��
𝐺1

prim 𝑓2 %%

Im(prim 𝑓2
inim 𝑓1)

inim(prim 𝑓2
inim 𝑓1

)

��

Im(𝑓2 𝑓1)

inim 𝑓2 𝑓1

��

Im 𝑓2

inim 𝑓2 ''
𝐺2

and the epimorphism prim 𝑓 is given on the level of classifying types by

sending 𝑥 : BG to

𝐵prIm 𝑓 𝑓 (𝑥) :≡ (Bf (𝑥), |(𝑥, reflBf (𝑥))|0) : B Im 𝑓 .

Occasionally we may refer to the two projections of the image factor-

ization

im : Hom(𝐺, 𝐺′) →Mono𝐺′ , im(𝑓) :≡ (Im 𝑓 , inim 𝑓 , !)
prim : Hom(𝐺, 𝐺′) → Epi𝐺 , prim 𝑓 :≡ (Im 𝑓 , prim 𝑓 , !)

as the image and the projection to the image. ⌟

In view of Exercise 9.3.14 below, the families

isepi, ismono : Hom(𝐺, 𝐺′) → Prop

of propositions that a given homomorphism is an epimorphism or

monomorphism have several useful interpretations (parts of the exercise

have already been done).

Exercise 9.3.14. Let 𝑓 : Hom(𝐺, 𝐺′) Prove that

(1) the following are equivalent

a) 𝑓 is an epimorphism,

b) Uf is a surjection

c) the cokernel of 𝑓 is contractible,

d) the inclusion of the image inim 𝑓 : Hom(Im 𝑓 , 𝐺′) is an isomor-

phism,

(2) the following are equivalent

a) 𝑓 is a monomorphism,

b) Uf is an injection

c) the kernel of 𝑓 is trivial

d) Bf : BG→ BG′ is a set bundle.

e) the projection onto the image prim 𝑓 : Hom(𝐺, Im 𝑓) is an iso-

morphism.

⌟

We need to understand how the image factorization handles composi-

tion of homomorphisms. This is forced by the uniqueness as follows.

Lemma 9.3.15. Given composable homomorphisms 𝑓1 : Hom(𝐺0 , 𝐺1) and
𝑓2 : Hom(𝐺1 , 𝐺2), unique factorization induces identifications

im(𝑓2 𝑓1) =→ Mono𝐺2
(Im(prim 𝑓2

inim 𝑓1), inim 𝑓2 inim(prim 𝑓2
inim 𝑓1) , !)

prim(𝑓2 𝑓1) =→ Epi𝐺0
(Im(prim 𝑓2

inim 𝑓1), prim(prim 𝑓2
inim 𝑓1)

prim 𝑓1
, !)

Proof. Since composition preserves monomorphisms and epimorphisms –

in particular inim 𝑓2 inim(prim 𝑓2
inim 𝑓1) : Hom(Im(prim 𝑓2

inim 𝑓1), 𝐺2) is a monomor-

phism and prim(prim 𝑓2
inim 𝑓1)

prim 𝑓1
: Hom(𝐺0 , Im(prim 𝑓2

inim 𝑓1)) is an epi-

morphism – this is just uniqueness of the image factorization of the

composite 𝑓2 𝑓1. □

normal subgroups and quotients 194

10
See also counting results for finite

groups.

The type of monomorphisms into 𝐺

is Mono(sh𝐺), and as 𝑦 : BG varies,

the only thing that changes in

Mono𝐺(𝑦) is that BG =→ (BG÷ , sh𝐺) is
replaced by (BG÷ , 𝑦).

11
The same phenomenon appeared

in Exercise 5.2.7 where we gave an

equivalence between the 𝐺-sets

Hom(ℤ, 𝐺) and Ad𝐺 (where the

action is very visibly by conjugation).

Lemma 9.3.16. Let 𝑓 : Hom(𝐺, 𝐺′) be a group homomorphism. The induced
map (𝐵prim 𝑓)−1(shIm 𝑓) → (Bf)−1(sh𝐺′) gives an identification

ker prim 𝑓
=→ Mono𝐺 ker 𝑓 .

Proof. Using univalence, this is a special case of Corollary 9.3.8 with

𝑓2 :≡ inim 𝑓 and 𝑓1 :≡ prim 𝑓 .
10 □

Exercise 9.3.17. (1) If 𝑓 : Mono𝐺′ , then ua(prim 𝑓) : 𝑓
=→ Mono𝐺′ inim 𝑓 .

(2) If 𝑓 : Epi𝐺, then ua(inim 𝑓) : 𝑓 =→ Epi𝐺prim 𝑓 .

(True propositions suppressed). ⌟

Example 9.3.18. An example from linear algebra: let𝐴 be any 𝑛×𝑛-matrix

with nonzero determinant and with integer entries, considered as a ho-

momorphism 𝐴 : Hom(ℤ𝑛 ,ℤ𝑛). “Nonzero determinant” corresponds to

“monomorphism”. Then the cokernel of 𝐴 is a finite set with cardinality

the absolute value of the determinant of 𝐴. You should picture 𝐴 as a

|det(𝐴)|-fold set bundle of the 𝑛-fold torus (𝑆1)×𝑛 by itself.

In general, for an 𝑚 × 𝑛-matrix 𝐴, then the “nullspace” is given by the

kernel and the “rowspace” is given by the image. ⌟

9.4 The action on the set of subgroups

Not only is the type of subgroups of 𝐺 a set, it is in a natural way

(equivalent to the value at sh𝐺 of) a 𝐺-set which we denote by the same

name. We first do the monomorphism interpretation

Definition 9.4.1. If 𝐺 is the group, the 𝐺-set of monomorphisms into 𝐺
Mono𝐺 : BG→ Set is given by

Mono𝐺(𝑦) :≡ ∑
𝐻 : Group

∑
𝑓 : Hom(𝐻,𝐺)(𝑦)

isSet(Bf−1(sh𝐺))

for 𝑦 : BG, where – as in Example 5.2.6 –

Hom(𝐻, 𝐺)(𝑦) :≡ ∑
𝐹 : BH÷→BG÷

(𝑦 =→ 𝐹(sh𝐻))

is the 𝐺-set of homomorphisms from 𝐻 to 𝐺. ⌟

Definition 9.4.2. If 𝐺 is a group, then the action of 𝐺 on the set of

monomorphisms into 𝐺 is called conjugation.

If (𝐻, 𝐹, 𝑝, !) : Mono𝐺(sh𝐺) is a monomorphism into𝐺 and 𝑔 : UG, then

the monomorphisms (𝐻, 𝐹, 𝑝, !), (𝐻, 𝐹, 𝑝 𝑔−1 , !) : Mono𝐺(sh𝐺) are said to

be conjugate. ⌟

Remark 9.4.3. The term “conjugation” may seem confusing as the ac-

tion of 𝑔 : UG on a monomorphism (𝐻, 𝐹, 𝑝, !) : Mono𝐺(sh𝐺) (where

𝑝 : 𝑥 =→ 𝐹(sh𝐻)) is simply (𝐻, 𝐹, 𝑝 𝑔−1 , !), which does not seem much like

conjugation. However, as we saw in Example 7.6.2, under the equiva-

lence abs : Hom(𝐻, 𝐺) ≃→ Homabs(abs(𝐻), abs(𝐺)), the corresponding

action on Homabs(abs(𝐻), abs(𝐺)) is exactly (postcomposition with) con-

jugation 𝑐𝑔 : abs(𝐺) =→ abs(𝐺). 11 ⌟

Summing up the remark:

normal subgroups and quotients 195

Lemma 9.4.4. Under the equivalence of Lemma 7.6.1 between 𝐺-sets and
abs(𝐺)-sets, the 𝐺-set Mono𝐺 corresponds to the abs(𝐺)-set

∑
𝐻 : Group

∑
𝜙 : Homabs(abs(𝐻),abs(𝐺))

isProp(𝜙−1(𝑒𝐺))

of abstract monomorphisms of abs(𝐺), with action 𝑔·(𝐻, 𝜙, !) :≡ (𝐻, 𝑐𝑔 𝜙, !)
for 𝑔 : abs(𝐺), where 𝑐𝑔 : abs(𝐺) =→ abs(𝐺) is conjugation as defined in Ex-
ample 7.3.5.
Remark 9.4.5. We know that a group𝐺 is abelian if and only if conjugation

is trivial: for all 𝑔 : UG we have 𝑐𝑔 =→ id, and so we get that Mono𝐺 is a

trivial 𝐺-set if and only if 𝐺 is abelian. ⌟

The subgroup analog of 𝑦 ↦→Mono𝐺(𝑦) is
Definition 9.4.6. Let 𝐺 be a group and 𝑦 : BG, then the 𝐺-set of subgroups
of 𝐺 is

Sub𝐺 : BG→ Set, Sub𝐺(𝑦) :≡ ∑
𝑋 : BG→Set

𝑋(𝑦) × isTrans(𝑋).

⌟

The only thing depending on 𝑦 in Sub𝐺(𝑦) is where the “base” point

is residing (in 𝑋(𝑦) rather than in 𝑋(sh𝐺)).
Definition 9.4.7. Extending the equivalence of sets we get an equivalence

of 𝐺-sets 𝐸 : Mono𝐺 → Sub𝐺 via

𝐸(𝑦) : Mono𝐺(𝑦) → Sub𝐺(𝑦), 𝐸(𝐻, 𝐹, 𝑝𝐹 , !) :≡ (𝐹−1 , (sh𝐻 , 𝑝𝐹), !)

for 𝑦 : BG (where 𝐻 is a group, 𝐹 : BH÷ → BG÷ is a map and 𝑝𝐹 : 𝑦 =→
𝐹(sh𝐻) an identity in BG; and 𝐹−1 : BG → Set is 𝐺-set given by the

preimages of 𝐹 and (sh𝐻 , 𝑝𝐹) : 𝐹−1(𝑦) :≡ ∑𝑥 : BH 𝑦
=→ 𝐹(𝑥) is the base

point). If 𝑦 is sh𝐺 we follow our earlier convention of dropping it from

the notation. ⌟

Since the families are equivalent (via 𝐸) we use Mono𝐺 or Sub𝐺
interchangeably.

9.5 Normal subgroups

In the study of groups, the notion of a “normal subgroup” is of vital

importance and, as for any important concept, it comes in many guises

revealing different aspects. For now we just state the definition in the

form that it is a subgroup “fixed under the action of 𝐺” on the 𝐺-set of

subgroups.

Definition 9.5.1. The set of normal subgroups is

Nor𝐺 :≡ ∏
𝑦 : BG

Sub𝐺(𝑦)

considered as a subset of Sub𝐺 via the injection

𝑖 : Nor𝐺 → Sub𝐺 , 𝑖(𝑁) :≡ 𝑁(sh𝐺).

⌟

Remark 9.5.2. The function 𝑖 taking a fixed point of the action Sub𝐺 to its

actual subgroups is indeed an injection. Given two normal subgroups

normal subgroups and quotients 196

Restricting the equivalence

𝐸 : Mono𝐺 → Sub𝐺 to the fixed

sets, we get an equivalence from

∏𝑦 : BG Mono𝐺(𝑦) to Nor𝐺

We will achieve these goals by defin-

ing a function nor : Epi𝐺 → Nor𝐺
which we show is an equivalence

and, furthermore, that the two func-

tions 𝑖nor, 𝐸𝑖 ker : Epi𝐺 → Sub𝐺 are

identical. Since 𝑖nor is an injection,

this forces the surjection ker to be

injective too and we are done.

𝑁, 𝑁 ′ : ∏𝑦 : BG Sub𝐺(𝑦) and a shape 𝑦 : BG, the identity type 𝑁(𝑦) =→
𝑁 ′(𝑦) is a proposition as Sub𝐺(𝑦) is a set. Hence, by connectedness

of BG, we construct an element 𝑁 =→ 𝑁 ′ as soon as we have one of

𝑁(sh𝐺) =→ 𝑁 ′(sh𝐺). This is exactly the statement of 𝑖 being an injection.

In particular, Nor𝐺 being a subset of Sub𝐺 allows us to make the same

abuse as we did for other subtype: a subgroup 𝐻 of 𝐺 is said to be

normal whenever the fiber 𝑖−1(𝐻) has an (necessarily propositionally

unique) element. ⌟

The corresponding set of fixed point in the 𝐺-set of monomorphisms

∏
𝑦 : BG

Mono𝐺(𝑦)

will not figure as prominently, since the focus shifts naturally to an

equivalent set which we have already defined, namely the kernels.

Definition 9.5.3. If 𝐺 is a group, let

Epi𝐺
ker // // Ker𝐺 //

𝑖 // Mono𝐺

be the surjection/injection factorization of the kernel function restricted

to the epimorphisms from𝐺. We call the subset Ker𝐺 the set of kernels. ⌟

Our aim is twofold:

(1) we want to show that ker : Epi𝐺 → Ker𝐺 is an equivalence, so that

knowing that a monomorphism is a kernel is equivalent to knowing

an epimorphism it is the kernel of.

(2) we want to show that the kernels correspond via the equivalence 𝐸

to the fixed points under the 𝐺 action on the 𝐺-set of subgroups.

For 𝑥′, 𝑦′ : BG′, recall the notation ℙ𝑦′(𝑥′) :≡ (𝑦′ =→ 𝑥′).
Definition 9.5.4. Define

nor : Epi𝐺 → Nor𝐺

by nor(𝐺′, 𝑓 , !)(𝑦) :≡ (ℙ𝑓 (𝑦) 𝑓 , refl 𝑓 (𝑦) , !) for 𝑦 : BG. ⌟

Remark 9.5.5. The 𝐺-set ℙ𝑓 (𝑦) 𝑓 is not a 𝐺-torsor (except if 𝑓 is an isomor-

phism). ⌟

Lemma 9.5.6. The diagram

Ker𝐺 //
𝑖 // Mono𝐺

≃ 𝐸

��

Epi𝐺

ker
;; ;;

nor
##

Nor𝐺 //
𝑖 // Sub𝐺

commutes, where the top composite is the image factorization of the kernel and
the bottom inclusion is the inclusion of fixed points.

Proof. Following (𝐺′, 𝑓 , !) : Epi𝐺 around the top to Sub𝐺 yields the tran-

sitive 𝐺-set sending 𝑦 : BG to the set sh𝐺′
=→ 𝑓 (𝑦) together with the

point 𝑝 𝑓 : sh𝐺′
=→ 𝑓 (sh𝐺)while around the bottom we get the transitive

normal subgroups and quotients 197

𝐺-set sending 𝑦 : BG to the set 𝑓 (sh𝐺) =→ 𝑓 (𝑦) together with the point

refl 𝑓 (sh𝐺) : 𝑓 (sh𝐺) =→ 𝑓 (sh𝐺). Hence, precomposition by 𝑝 𝑓 gives the

identity proving that the diagram commutes. □

We will prove that both ker and nor in the diagram of Lemma 9.5.6

are equivalences, leading to the desired conclusion that the equivalence

𝐸 : Mono𝐺
≃→ Sub𝐺 takes the subset Ker𝐺 identically to Nor𝐺. Actually,

since ker : Epi𝐺 → Ker𝐺 is a surjection, we only need to know it is an

injection, and for this it is enough to show that nor is an equivalence;

we’ll spell out the details.

Since it has independent interest, we take a detour via a quotient

group construction of Definition 9.5.8 which gives us the desired inverse

of nor.
We start with a small, but crucial observation.

Lemma 9.5.7. Let 𝑁 : Nor𝐺 be a normal subgroup with 𝑁(𝑦) ≡ (𝑋𝑦 , pt𝑦 , !) for
𝑦 : BG. Then for any 𝑦, 𝑧 : BG

(1) the evaluation map

ev𝑦𝑧 : (𝑋𝑦 =→ 𝑋𝑧) → 𝑋𝑧(𝑦), ev𝑦𝑧(𝑓) =→ 𝑓𝑦(pt𝑦)

is an equivalence and

(2) the map 𝑋 : (𝑦 =→ 𝑧) → (𝑋𝑦 =→ 𝑋𝑧) (given by induction via 𝑋refl𝑦 :≡
refl𝑋𝑦) is surjective.

Proof. To establish the first fact we need to do induction independently

on 𝑦 : BG and 𝑧 : BG in 𝑋𝑦(𝑧) at the same time as we observe that it

suffices (since BG is connected) to show that ev𝑦𝑦 is an equivalence.

The composite

ev𝑦𝑦𝑋 : (𝑦 =→ 𝑦) → 𝑋𝑦𝑦

is determined by ev𝑦𝑦𝑋(refl𝑦) ≡ pt𝑦 . By transitivity of 𝑋𝑦 this composite

is surjective, hence ev𝑦𝑦 is surjective too.

On the other hand, in Lemma 5.2.22 we used the transitivity of 𝑋𝑦

to deduce that ev𝑦𝑦 was injective. Consequently ev𝑦𝑦 is an equivalence.

But since ev𝑦𝑦 is an equivalence and ev𝑦𝑦𝑋 is surjective we conclude

that 𝑋 is surjective □

Definition 9.5.8. Let 𝑁 : Nor𝐺 be a normal subgroup with 𝑁(𝑦) ≡
(𝑋𝑦 , pt𝑦 , !) for 𝑦 : BG. The quotient group is

𝐺/𝑁 :≡ Aut𝐺-Set(𝑋sh𝐺).

The quotient homomorphism is the homomorphism 𝑞𝑁 : Hom(𝐺, 𝐺/𝑁)
defined by 𝐵𝑞𝑁 (𝑧) =→ 𝑋𝑧 (strictly pointed). By Lemma 9.5.7, 𝑞𝑁 is an

epimorphism and we have defined a map

𝑞 : Nor𝐺 → Epi𝐺 , 𝑞(𝑁) :≡ (𝐺/𝑁, 𝑞𝑁 , !).

⌟

Remark 9.5.9. It is instructive to see how the quotient homomorphism

𝐵𝑞𝑁 : BG → BG/𝑁 is defined in the torsor interpretation of BG. If

𝑌 : BG→U is a 𝐺-type we can define the quotient as

𝑌/𝑁 : BG→U , 𝑌/𝑁(𝑦) :≡ ∑
𝑧 : BG

𝑌(𝑧) × 𝑋𝑧(𝑦).

normal subgroups and quotients 198

12
fix so that it adhers to dogmatic

language and naturality in 𝑁 is clear

the diagram in Lemma 9.5.6

Ker𝐺 //
𝑖 // Mono𝐺

≃ 𝐸

��

Epi𝐺

ker
;; ;;

nor
≃

##
Nor𝐺 //

𝑖 // Sub𝐺

We note that in the case ℙsh𝐺 (𝑦) :≡ (sh𝐺
=→ 𝑦) we get that ℙsh𝐺/𝑁(𝑦) :≡

∑𝑧 : BG(sh𝐺
=→ 𝑧) × 𝑋𝑧(𝑦) is equivalent to 𝑋sh𝐺 . Consequently, if 𝑌 is a

𝐺-torsor, then 𝑌/𝑁 is in the component of 𝑋sh𝐺 and we have

−/𝑁 : Torsor𝐺 :≡ (𝐺-set)(ℙsh𝐺) → (𝐺-set)(𝑋sh𝐺).

Our quotient homomorphism 𝑞𝑁 : Hom(𝐺, 𝐺/𝑁) is the composite of the

equivalence ℙ𝐺 : BG ≃→ Torsor𝐺 of Theorem 5.5.7 and the quotient map

−/𝑁 . ⌟

Lemma 9.5.10. The map nor : Epi𝐺 → Nor𝐺 is an equivalence with inverse
𝑞 : Nor𝐺 → Epi𝐺.

Proof. Assume 𝑁 : Nor𝐺 with 𝑁(𝑦) :≡ (𝑋𝑦 , pt𝑦 , !) for 𝑦 : BG. Then

nor 𝑞(𝑁) : BG→ Set takes 𝑦 : BG to (nor 𝑞(𝑁))(𝑦) ≡ (𝑌𝑦 , refl𝑋𝑦 , !), where

𝑌𝑦(𝑧) :≡ (𝑋𝑦 =→ 𝑋𝑧). Noting that the equivalence ev𝑦𝑧 : (𝑋𝑦 =→ 𝑋𝑧) ≃→
𝑋𝑧(𝑦) of Lemma 9.5.7 has ev𝑦𝑦(refl𝑋𝑦) :≡ pt𝑦 we see that univalence gives

us the desired identity nor 𝑞(𝑁) =→ 𝑁 .
12

Conversely, let 𝑓 : Hom(𝐺, 𝐺′) be an epimorphism. Recall that the

quotient group is 𝐺/nor(𝑓) :≡ Aut𝐺-Set(ℙ𝑓 (sh𝐺) 𝑓) and the quotient ho-

momorphism 𝑞nor 𝑓 : Hom(𝐺, 𝐺/nor 𝑓) is given by sending 𝑦 : BG to

ℙ𝑓 (𝑦) 𝑓 : BG → Set (strictly pointed – i.e., by reflℙ𝑓 (sh𝐺) 𝑓
). We define a

homomorphism 𝑄 : Hom(𝐺′, 𝐺/nor 𝑓) by sending 𝑧 : BG′ to ℙ𝑧 𝑓 and us-

ing the identification ℙsh𝐺′ 𝑓
=→ ℙ𝑓 (sh𝐺) 𝑓 induced by 𝑝 𝑓 : sh𝐺′

=→ 𝑓 (sh𝐺)
and notice the equality by definition:

𝑄 𝑓 ≡ 𝑞nor 𝑓 : Hom(𝐺, 𝐺/nor 𝑓).

We are done if we can show that 𝑄 is an isomorphism. The preimage

of the base point ℙ𝑓 (sh𝐺) 𝑓 is

∑
𝑧 : BG′

∏
𝑦 : BG
(𝑧 =→ 𝑓 (𝑦)) =→ (𝑓 (sh𝐺) =→ 𝑓 (𝑦))

which by Lemma 7.6.4 is equivalent to

∑
𝑧 : BG′

∏
𝑣 : BG′
(𝑧 =→ 𝑣) =→ (𝑓 (sh𝐺) =→ 𝑣)

which by Lemma 5.5.6 is equivalent to the contractible type ∑𝑧 : BG′ 𝑧
=→

𝑓 (sh𝐺). □

Corollary 9.5.11. The kernel ker : Epi𝐺 → Ker𝐺 is an equivalence of sets.

Proof. Since nor : Epi𝐺 → Nor𝐺 and 𝐸 : Mono𝐺 → Sub𝐺 are equiva-

lences, the inclusion of fixed points 𝑖 : Nor→ Sub is an injection and the

diagram in Lemma 9.5.6 commutes, the surjection ker : Epi𝐺 → Ker𝐺 is

also an injection. □

Summing up, using the various interpretations of subgroups, we

get the following list of equivalent sets all interpreting what a normal

subgroup is.

Lemma 9.5.12. Let 𝐺 be a group, then the following sets are equivalent

(1) The set Epi𝐺 of epimorphisms from 𝐺,

(2) the set Ker𝐺 of kernels of epimorphisms from 𝐺,

normal subgroups and quotients 199

Remark 9.5.15. In forming the kernel

associated to 𝑁 , where did we use

that 𝑁 was a fixed point of the 𝐺-set

Sub𝐺? If 𝑌 : BG → Set is a transitive

𝐺-set and pt :𝑌(sh𝐺), then surely we

could consider the group

𝑊 :≡ Aut𝑋 : BG→Set(𝑌)

as a substitute for the quotient group

(see Section 9.8). One problem is

that we wouldn’t know how to con-

struct a homomorphism from 𝐺 to

𝑊 which we then could consider

the kernel of. And even if we tried

our hand inventing formulas for the

outcomes, ignoring all subscripts,

we’d be stuck at the very end where

we used Lemma 9.5.7 to show that

the evaluation map is an equivalence;

if we only had transitivity we could

try to use a variant of Lemma 5.2.22

to pin down injectivity, but surjec-

tivity needs the extra induction

freedom. ⌟

(3) the set Nor𝐺 of fixed points of the 𝐺-set Sub𝐺 (aka. normal subgroups),

(4) the set of fixed points of the 𝐺-set Mono𝐺,

(5) the set of fixed points of the 𝐺-set of abstract subgroups of abs(𝐺) of
Lemma 9.4.4.

9.5.13 The associated kernel

With this much effort in proving that different perspectives on the

concept of “normal subgroups” (in particular, kernels and fixed points)

are the same, it can be worthwhile to make the composite equivalence

ker 𝑞 : Nor𝐺
≃→ Ker𝐺

explicit – where the quotient group function 𝑞 : Nor𝐺 → Epi𝐺 is the

inverse of nor constructed in Definition 9.5.8 – and even write out a

simplification.

Let 𝑁 : Nor𝐺 be a normal subgroup with 𝑁(𝑦) ≡ (𝑋𝑦 , pt𝑦 , !) for 𝑦 : BG
with 𝑋𝑦 : BG→ Set, pt𝑦 :𝑋𝑦(𝑦) and ! : isTrans(𝑋𝑦). Then

Ker 𝑞(𝑁) :≡ Aut∑𝑥 : BG(𝑋𝑥 =→𝑋sh𝐺)(sh𝐺 , refl𝑋sh𝐺
)

and with the monomorphism inker 𝑞(𝑁) : Hom(Ker 𝑞(𝑁), 𝐺) given by the

first projection from ∑𝑥 : BG(𝑋𝑥 =→ 𝑋sh𝐺) to BG.

However, going the other way around the pentagon of Lemma 9.5.6,

we see that ass(𝑁) :≡ 𝐸−1𝑖(𝑁) : Mono𝐺 consists of the group

Ass(𝑁) :≡ Aut∑𝑥 : BG 𝑋sh𝐺 (𝑥)(sh𝐺 , ptsh𝐺)

and the monomorphism into 𝐺 given by the first projection (monomor-

phism because 𝑋sh𝐺 has values in sets). Since the pentagon commutes

we know that ass(𝑁) is the kernel of 𝑞(𝑁) : Epi𝐺, and the identification

ev : 𝑖 ker 𝑞(𝑁) =→ Mono𝐺ass(𝑁) is given via Lemma 9.5.7 and univalence

by the equivalence

ev𝑥 sh𝐺 : (𝑋𝑥 =→ 𝑋sh𝐺) → 𝑋sh𝐺 (𝑥).

Letting the proposition that ass(𝑁) is a kernel be invisible in the

notation we may summarize the above as follows:

Definition 9.5.14. If 𝑁 : Nor𝐺 is a normal subgroup we call the kernel

ass(𝑁) : Ker𝐺 the kernel assocaited to 𝑁 . ⌟

Lemma 9.5.16. The diagram of equivalences

Ker𝐺 //
𝑖 // Mono𝐺

𝐸≃

��

Epi𝐺

ker
≃

::

nor
≃

##
Nor′𝐺

ass ≃

OO

// 𝑖 // Sub𝐺

commutes.

normal subgroups and quotients 200

Is the below misplaced?

9.6 Intersecting with normal subgroups

In Section 8.4 we defined the intersection of two monomorphisms and

by extension, of two subgroups. This is particularly interesting when

one of them is represented by a normal subgroup.

Exercise 9.6.1. If G is an abstract group and H and K are abstract sub-

groups. Give a definition of the intersection H ∩ K is the abstract

subgroup of G agreeing with our definition for monomorphisms as in

Definition 8.4.7. ⌟

Lemma 9.6.2. Let (𝐺′, 𝑓 , !) : Epi𝐺 be an epimorphism, let 𝑁 be the kernel of 𝑓
and let (𝐻, 𝑖, !) : Mono𝐺. Then 𝑁 ∩ 𝐻 is the kernel of 𝑓 𝑖 : Hom(𝐻, 𝐺′). and
the induced homomorphism in Hom(𝐻/(𝑁 ∩ 𝐻), 𝐺′) is a monomorphism.

Proof. Now, 𝑁 is the kernel of the epimorphism 𝑓 , giving an equivalence

between BN÷ and the preimage

(Bf)−1(sh𝐺′) :≡ ∑
𝑦 : BG
(sh𝐺′

=→ Bf (𝑦)).

Writing out the definition of the pullback (and using that for each 𝑥 : BH
the type ∑𝑦 : BG 𝑦

=→ Bi(𝑥) is contractible), we get an equivalence between

BN ×BG BH and

𝐵(𝑓 𝑖)−1(sh𝐺′) :≡ ∑
𝑥 : BH

sh𝐺′
=→ 𝐵(𝑓 𝑖)𝑥,

the preimage of sh𝐺′ of the composite 𝐵(𝑓 𝑖) : BH→ BG′. By definition,

the intersection 𝐵(𝑁 ∩ 𝐻) is the pointed component of the pullback

containing (pt𝑁 , sh𝐻). Under the equivalence with 𝐵(𝑓 𝑖)−1(sh𝐺′) the

intersection corresponds to the component of (sh𝐻 , Bf (𝑝𝑖) 𝑝 𝑓). Since (by

definition of the composite of pointed maps) 𝑝 𝑓 𝑖 :≡ Bf (𝑝𝑖) 𝑝 𝑓 we get that

the intersection 𝑁 ∩ 𝐻 is identified with the kernel of the composite

𝑓 𝑖 : Hom(𝐻, 𝐺′).
Finally, since 𝑁 ∩ 𝐻 is the kernel of the composite 𝑓 𝑖 : Hom(𝐻, 𝐺′),

under the equivalence of Lemma 9.3.16, 𝑁 ∩ 𝐻 is equivalent to the

kernel of the epimorphism prim(𝑓 𝑖) : Hom(𝐻, Im(𝑓 𝑖)). Otherwise said,

the quotient group 𝐻/(𝑁 ∩ 𝐻) is another name for the image Im(𝑓 𝑖),
and inim(𝑓 𝑖) is indeed a monomorphism into 𝐺′. □

Exercise 9.6.3. Write out all the above in terms of the set Sub𝐺 of sub-

groups of 𝐺 instead of in terms of the set Mono𝐺 of monomorphism into

𝐺. ⌟

Recall that if 𝑋 : BG→ Set is a 𝐺-set, then the set of fixed points is the

set ∏𝑣 : BG 𝑋(𝑣), which is a subset of 𝑋(sh𝐺) via the evaluation map. If

a homomorphism from a group 𝐻 to 𝐺 is given by 𝐹 : BH÷ → BG÷ and

𝑝𝐹 : sh𝐺
=→ 𝐹(sh𝐻), then precomposition (“restriction of scalars”) by 𝐹

gives an 𝐻-set

𝐹∗𝑋 :≡ 𝑋 𝐹 : BH→ Set.

In the case of inclusions of subgroups (or other situations where the ho-

momorphism is clear from the context) it is not uncommon to talk about

“the 𝐻-set 𝑋” rather than “𝐹∗𝑋”. This can be somewhat confusing when

it comes to fixed points: the fixed points of 𝐹∗𝑋 are given by ∏𝑣 : BH 𝑋𝐹(𝑣)

normal subgroups and quotients 201

which evaluates nicely to 𝑋𝐹(sh𝐻), but in order to considered these as

elements in 𝑋(sh𝐺)we need to apply 𝑋(𝑝−1
𝐹) :𝑋(𝐹(sh𝐻)) =→ 𝑋(sh𝐺).

Consequently, we’ll say that 𝑥 :𝑋(sh𝐺) is an 𝐻-fixed point if there is an

𝑓 : ∏𝑣 : BH 𝑋𝐹(𝑣) such that 𝑥 =→ 𝑋(𝑝−1
𝐹) 𝑓 (sh𝐻).

Lemma 9.6.4. Let 𝐺 be a group, 𝑋 : BG → 𝑆𝑒𝑡 a 𝐺-set, 𝑥 :𝑋(sh𝐺), 𝑔 : UG
and 𝐻 =→ (𝐻, 𝐹, 𝑝, !) : Sub𝐺 a subgroup of 𝐺 (𝐹 : BH÷ → BG÷ and 𝑝 : sh𝐺

=→
𝐹(sh𝐻)).

Then 𝑔 𝑥 is a fixed point for the 𝐻-action on 𝑋 if and only if 𝑥 is a fixed point
for the action of the conjugate subgroup 𝑔 𝐻 :≡ (𝐻, 𝐹, 𝑔−1𝑝𝐹 , !) on 𝑋.

Proof. Consider an 𝑓 : ∏𝑣 : BH 𝑋𝐹(𝑣). Then 𝑔 · 𝑥 =→ 𝑋(𝑝−1
𝐹)(𝑓 (sh𝐻)) if and

only if 𝑥 =→ 𝑔−1 · 𝑋(𝑝−1
𝐹)(𝑓 (sh𝐻)) ≡ 𝑋((𝑔−1𝑝𝐹)−1(𝑓 (sh𝐻)). □

9.7 Automorphisms of groups

This section explores the relation between the symmetries in a group

𝐺, and the symmetry of the group 𝐺. More formally, recall that Group
is a groupoid, hence AutGroup(𝐺) is defining a group, that we will

simply denote Aut(𝐺) in the rest of this section. Recall in particular that

BAut(𝐺) is the connected component of 𝐺 in type of groups (pointed at

𝐺), which is equivalent to the connected component of BG inU ∗ (pointed

at BG). Let us now use this equivalence to define an homomorphism

inn :𝐺→ Aut(𝐺) by setting

Binn : BG→∗ BAut(𝐺), 𝑦 ↦→ Ω(BG÷ , 𝑦)

where the path pointing Binn is Notice that for this map Binn to be

defined properly, we need to show that, for all 𝑦 : BG, the proposition

∥𝐺 =→ Ω((BG÷ , 𝑦))∥ holds. We are targeting a family of propositions

from the connected type BG, so it is enough to prove the proposition

at 𝑦 ≡ sh𝐺, for which it is obvious: take |refl𝐺| as an element of

∥𝐺 =→ Ω(BG÷ , sh𝐺)∥.
Remark 9.7.1. For pedagogical purposes, we will now make explicit the

map

U inn : UG→ U(Aut(𝐺)).

More precisely, for each symmetry 𝑔 : UG, the element U inn(𝑔) is a

symmetry of Aut(𝐺), that is, through univalence, a isomorphism of

groups from 𝐺 to itself. We want to describe the automorphism U inn(𝑔).
By definition, U inn ≡ refl−1

𝐺 · apBinn(_) · refl𝐺. So it remains to determine

apBinn. We proceed by induction on 𝑝 : sh𝐺
=→ 𝑦 to prove that B(apBinn(𝑝))

is equal to the path in BG =→ (BG÷ , 𝑦)given by the pair of paths (reflBG÷ , 𝑝):
indeed, this is trivial for 𝑝 ≡ reflsh𝐺 . Then, through univalence,

B(
Binn(𝑝)) is

the equivalence idBG÷ pointed by the path 𝑝. In particular, when 𝑝 : UG
is a symmetry in 𝐺, then B(U inn(𝑔)) is the equivalence in BG ≃→ BG
given by idBG÷ pointed by 𝑔. Or in terms of abstract groups:

U(U inn(𝑔)) : UG �→ UG, ℎ ↦→ 𝑔−1ℎ𝑔

In that form, it is easier for the reader that is used to group theory in

set-theoretic foundations to see that the homomorphism inn is taking

each elements of the group to the inner automorphism associated to

it. ⌟

normal subgroups and quotients 202

After the interlude in the remark, it should come as no surprise that

we can identify the kernel of inn with the center of 𝐺. Indeed, there is a

composition of identifications from the fiber at 𝐺′ : BAut(𝐺) of Binn as

follows:

(Binn)−1(𝐺′) ≡
(

∑
𝑦 : BG

𝐺′ =→ Ω((BG÷ , 𝑦))
)

≃→

 ∑
𝑦 : BG

∑
𝑝 : BG′÷

=→BG÷

𝑦 =→ trp𝑝(sh𝐺′)


≃→ (BG′÷

=→ BG÷)

In particular, we can consider the equivalence from the fiber at shAut(𝐺) ≡
𝐺 to BG÷ =→ BG÷. Through this equivalence, the point (sh𝐺 , Binn∗) is

transported to reflBG÷ . Hence, we have an identification in

Ker(inn) :≡ Aut(Binn)−1(𝐺)(sh𝐺 , reflBG) ≃→ Aut(BG÷ =→BG÷)(reflBG÷) ≃→ Z(𝐺).

Under this equivalence, the associated map inker(inn) becomes the homo-

morphism z𝐺 described in Section 12.2.

Definition 9.7.2. The Aut(𝐺)-set of outer automorphism, denoted out(𝐺),
is the cokernel of inn. ⌟

Lemma 9.7.3. The Aut(𝐺)-set out(𝐺) can be identified with

Aut(𝐺) → Set, 𝐺′ ↦→ ∥BG′÷
=→ BG÷∥0

Proof. Simply recall the computation of the fibers of Binn above. Then,

for each 𝐺′ : BAut(𝐺), we have an element of

out(𝐺)(𝐺′) ≡ ∥(Binn)−1(𝐺′)∥0
=→ ∥BG′÷

=→ BG÷∥0

□

Definition 9.7.4. The group Inn(𝐺) of inner morphisms of 𝐺 is the image

Im(inn) of inn. ⌟

Notice that, the classifying type B Im(inn) being the total type of the

cokernel of inn, the above identification of out(𝐺) provides us with an

equivalence in

B Inn(𝐺) ≃→
(

∑
𝐺′ : Group

∥BG′÷
=→ BG÷∥0

)

Lemma 9.7.5. The group Inn(𝐺) is normal when seen as a subgroup of Aut(𝐺).

Proof. The precise meaning of the statement is that there exists a depen-

dent function 𝑁 : ∏𝐺′ : Aut(𝐺) SubAut(𝐺)(𝐺′) and a path in 𝑁(shAut(𝐺)) =→
𝐸(im(inn)). Expanding the definition of SubAut(𝐺), our task in defining

𝑁 is to find for every 𝐺′ a transitive Aut(𝐺)-set 𝑋 together with a point

of 𝑋(𝐺′). We suggest to define 𝑁(𝐺′) to be the transitive Aut(𝐺)-set

𝑋 : Aut(𝐺) → Set, 𝐻 ↦→ ∥BG′÷
=→ BH÷∥0

together with the point |reflBG′|0 :𝑋(𝐺′).
Let us prove that 𝑁(shAut(𝐺)) can be identified with the subgroup

𝐸(im(inn)). First notice that shAut(𝐺) ≡ 𝐺 and that𝐸(im(inn)) ≡ (out(𝐺), |(𝐺, reflBG)|0).

normal subgroups and quotients 203

Here, |𝑤|0 is not the element repre-

sented by 𝑤 in ∥BG÷ =→ 𝑋∥0, but in

fact the equivalence ∥BG÷∥0
≃→ ∥𝑋∥0

induced by 𝑤.

For simplicity, write 𝑋𝐺 for the first component 𝑁(𝐺) and 𝑥𝐺 :𝑋𝐺(𝐺)
for its second component. Lemma 9.7.3 provides us with a path

𝑝 : out(𝐺) =→ 𝑋𝐺. Checking that trp𝑝(|(𝐺, reflBG)|0) can be identified

with |reflBG|0 is just a matter of looking at the equivalence exhibited in

Lemma 9.7.3.

To be thorough, we actually need to prove that the first component

of each 𝑁(𝐺′) (denoted 𝑋 above) is transitive: being transitive is a

proposition and by connectedness of Aut(𝐺), it suffices to prove it when

𝐺′ ≡ 𝐺, for which the first component of 𝑁(𝐺′) has been identified with

out(𝐺); however, out(𝐺), as a cokernel, is known to be transitive. □

We make the abuse of denoting Inn(𝐺) for the normal subgroup of

Aut(𝐺) defined by Inn(𝐺) as specified above.

Definition 9.7.6. The group of outer automorphisms of 𝐺, denoted Out(𝐺),
is the group

Out(𝐺) :≡ Aut(𝐺)/Inn(𝐺) ≡ AutAut(𝐺)-Set(out(𝐺))

⌟

Construction 9.7.7. There is an identification of groups

Φ : Aut∥U∥1(|BG÷|1) =→ Out(𝐺)

Before going through the construction of Φ, let us describe its domain

in more details. The goal of this construction is to have a alternative

version of Out(𝐺)with a more tractable classifying type. Because out(𝐺)
is a transitive Aut(𝐺)-set, and because the associated subgroup is normal,

then its type of symmetries should be equivalent to out(𝐺)(𝐺), which

we know can be identified with ∥BG÷ =→ BG÷∥0. The idea is then to find

a pointed groupoid for which the loop space is readily ∥BG÷ =→ BG÷∥0.

However, ∥𝑎 =→𝐴 𝑏∥0 is equivalent to |𝑎|1 =→∥𝐴∥1 |𝑏|1 for any element

𝑎 and 𝑏 of type 𝐴. Hence it becomes natural to try to establish an

equivalence between Out(𝐺) and the group of symmetries of |BG÷|1 in

the groupoid ∥U∥1.

Implementation of Construction 9.7.7. Notice that the function |_|1 :U →
∥U∥1 induces an isomorphism on connected components: indeed, |𝑋|1 =
|𝑌|1 if and only if ∥∥𝑋 =→ 𝑌∥0∥ if and only if 𝑋 = 𝑌. In other words,

BAut∥U∥1(|BG÷|1) identifies with the 1-truncation ofU (BG÷).

As BOut(𝐺) is a groupoid, every map BAut∥U∥1(|BG÷|1) →∗ BOut(𝐺)
is indud by a mapU (BG÷) →∗ BOut(𝐺). Thus we define Φ by setting the

pointed map BΦ to be the map induced by:

𝜑 :

(
∑
𝑋 :U

BG÷ = 𝑋

)
→∗ BOut(𝐺)

(𝑋, 𝜔) ↦→ {BAut(𝐺) → Set, 𝐺′ ↦→ ∥BG′÷
=→ 𝑋∥0}

This map is well defined: given (𝑋, 𝜔) is the domain, we are trying to

prove the proposition out(𝐺) =→ 𝜑(𝑋, 𝜔), so we can lift the propositional

truncation of 𝜔 and assume that we have 𝑤 : BG÷ =→ 𝑋. Then, we craft

an identification of type out(𝐺) =→ 𝜙(𝑋, 𝜔) by noticing that we have for

every 𝐺′ : BAut(𝐺) an identification

normal subgroups and quotients 204

|𝑤|0 ◦ _ : ∥BG′÷
=→ BG÷∥0

=→ ∥BG′÷
=→ 𝑋∥0

We no proceed to prove that BΦ is an equivalence, to conclude that Φ

is an isomorphism of groups. As both the domain and codomain of BΦ
are connected, to prove that it is an equivalence, it is enough to show

that apBΦ : (𝑎 =→ 𝑎) → (BΦ𝑎 =→ BΦ𝑎) for a chosen 𝑎 in the domain. We

consider of course 𝑎 ≡ (|BG÷|1 , refl|BG÷|1). Then,

BΦ(𝑎) ≡ 𝜙(BG÷ , reflBG÷) ≡ (𝐺′ ↦→ ∥BG′÷
=→ BG÷∥0)

By path induction, one can show that for each 𝑝 : |BG÷|1 =→ |BG÷|1, we

get paths of type

apBΦ(𝑝)
=→
{
𝐺′ ↦→ 𝑝̂ ◦ _

}
where _̂ is the equivalence (|𝑥|1 =→ |𝑦|1) ≃→ ∥𝑥 =→ 𝑦∥0.

Because the subgroup associated with out(𝐺) is normal, Lemma 9.5.7

povides us with an equivalence ev : (out(𝐺) =→ out(𝐺)) → out(𝐺)(𝐺).
Write 𝜓 for the path out(𝐺) =→ 𝐺′ ↦→ ∥BG′÷

=→ BG÷∥0 of Lemma 9.7.3.

Then, for every 𝑝 : |BG÷|1 =→ |BG÷|1, one get an identification

𝜓𝐺
(
ev
(
𝜓−1 · apBΦ(𝑝) · 𝜓

)) =→ 𝑝̂

Hence, composition of apBΦ with equivalences is an equivalence, proving

that ap𝐵Φ itself is an equivalence. □

9.8 The Weyl group

In Definition 9.5.8 defined the quotient group of a normal subgroup.

As commented in Definition 9.5.14, the definition itself never used that

the subgroup was normal (but the quotient homomorphism did) and is

important in this more general context.

Recall the equivalence 𝐸 between the set Mono𝐺 of monomorphisms

and the set Sub𝐺 of of subgroups of 𝐺 (pointed transitive 𝐺-sets): The

subgroup (𝑋, pt𝑋 , !) : Sub𝐺 where 𝑋 : BG→ Set is a transitive 𝐺-set and

pt𝑋 :𝑋(sh𝐺) corresponds to (𝐻, 𝑖𝐻 , !) : Mono𝐺 defined by

𝐻 :≡ Aut∑𝑦 : BG 𝑋(𝑦)(sh𝐺 , pt𝑋)

together with the first projection from ∑𝑦 : BG 𝑋(𝑦) to BG. Conversely,

if (𝐻, 𝑖𝐻 , !) : Mono𝐺, then the corresponding transitive 𝐺-set is 𝐺/𝐻 :≡
coker 𝑖𝐻 pointed at |sh𝐻 , 𝑝𝑖𝐻 | : coker 𝑖𝐻(sh𝐺) :≡ ∥∑𝑥 : BH sh𝐺

=→ Bi𝐻(𝑥)∥0.

For the remainder of the section we’ll consider a fixed group 𝐺,

monomorphism 𝑖𝐻 : Hom(𝐻, 𝐺) and (𝑋, pt𝑋 , !) will be the associated

pointed transitive 𝐺-set.

Definition 9.8.1. The Weyl group

𝑊𝐺𝐻 :≡ Aut𝐺-set(𝑋)

is defined by the component BW𝐺𝐻 of the groupoid of 𝐺-sets pointed

at 𝑋.

The normalizer subgroup

𝑁𝐺𝐻 :≡ Aut∑𝑦 : BG Sub𝐺(𝑦)(sh𝐺 , 𝑋, pt𝑋)

is defined by the component BN𝐺𝐻 of the groupoid ∑𝑦 : BG Sub𝐺(𝑦)
pointed at (sh𝐺 , 𝑋, pt𝑋). ⌟

normal subgroups and quotients 205

Unpacking, we find that

BN𝐺𝐻÷ ≡ ∑
𝑦 : BG

∑
𝑌 : BG→Set

∑
pt𝑦𝑌 :𝑌(𝑦)

∥(sh𝐺 , 𝑋, pt𝑋)
=→ (𝑦, 𝑌, pt𝑦𝑌)∥.

While the projection ((sh𝐺 , 𝑋, pt𝑋)
=→ (𝑦, 𝑌, pt𝑦𝑌)) → (𝑋

=→ 𝑌)may not

be an equivalence, the transitivity of𝑋 tells us that for any 𝛽 :𝑋 =→ 𝑌 there

is a 𝑔 : sh𝐺
=→ 𝑦 such that 𝑋(𝑔) 𝑝𝑦𝑌

=→ 𝛽−1
𝑦 pt𝑋 , and so the propositional

truncation ∥(sh𝐺 , 𝑋, pt𝑋)
=→ (𝑦, 𝑌, pt𝑦𝑌)∥ → ∥𝑋

=→ 𝑌∥ is an equivalence.

Consequently, the projection

BN𝐺𝐻÷ → ∑
𝑦 : BG

∑
𝑌 : BG→Set

𝑌(𝑦) × ∥𝑋 =→ 𝑌∥

is an equivalence. With an innocent rewriting, we see that we have

provided an equivalence

𝑒 : BN𝐺𝐻÷
≃→ ∑
(𝑦×𝑌) : BG×BW𝐺𝐻

𝑌(𝑦) 𝑒(𝑦, 𝑌, pt𝑦𝑌 , !) :≡ (𝑦, 𝑌, pt𝑦𝑌 , !).

This formulation has the benefit of simplifying the analysis of the

monomorphism

𝑖𝑁𝐺𝐻 : Hom(𝑁𝐺𝐻, 𝐺)

given by Bi𝑁𝐺𝐻(𝑦, 𝑌, pt𝑦𝑌 , !) :≡ 𝑦, the “projection”

𝑝𝐻𝐺 : Hom(𝑁𝐺𝐻,𝑊𝐺𝐻)

Bp𝐻𝐺 (𝑦, 𝑌, pt𝑦𝑌 , !) :≡ (𝑌, !) and the monomorphism

𝑗𝐻 : Hom(𝐻, 𝑁𝐺𝐻)

given by Bj𝐻(𝑦, 𝑣) :≡ (𝑦, 𝑋, 𝑣, !)).
Lemma 9.8.2. The monomorphism 𝑖𝐻𝐺 : Hom(𝑁𝐺𝐻, 𝐺) displays the normal-
izer as a subgroup of 𝐺 and the projection 𝑝𝐻𝐺 : Hom(𝑁𝐺𝐻,𝑊𝐺𝐻) is an
epimorphism.

The homomorphism 𝑗𝐻 : Hom(𝐻, 𝑁𝐺𝐻) defines 𝐻 as a normal subgroup of
the normalizer,

ker 𝑝𝐻𝐺
=→ Mono𝑁𝐺𝐻 𝑓 𝑜𝑟

(𝐻, 𝑖𝐻 , !)

and 𝑖𝐻 =→ Hom(𝐻,𝐺)𝑖
𝐻
𝐺 𝑗𝐻 .

Proof. Immediate from (our rewriting of) the definitions. □

The Weyl group𝑊𝐺𝐻 has an important interpretation. It is defined as

symmetries of the transitive 𝐺-set 𝑋, and so pt𝑊𝐺𝐻
=→ pt𝑊𝐺𝐻

is nothing

but (𝑋 =→ 𝐺-set𝑋) =→ ∏𝑦 : BG(𝑋(𝑦) =→ 𝑋(𝑦)). On the other hand, BH÷ is

equivalent to ∑𝑦 : BG 𝑋(𝑦) and

∏
𝑦 : BG
(𝑋(𝑦) =→ 𝑋(𝑦)) ≃ ∏

∑𝑦 : BG 𝑋(𝑦)
𝑋(𝑦),

so pt𝑊𝐺𝐻
=→ pt𝑊𝐺𝐻

is equivalent to the set ∏𝑥 : BH 𝑋 Bi𝐻𝑥 of fixed points

of 𝑋 =→ 𝐺/𝐻 (regarded as an 𝐻-set through 𝑖𝐻).

Summing up

Lemma 9.8.3. The map 𝑒 : (𝑋 =→ 𝑋) → ∏𝑥 : BH 𝑋 Bi𝐻𝑥 with 𝑒(𝑓)(𝑦, 𝑣) =→
𝑓 (𝑦) defines an equivalence

𝑒 : (pt𝑊𝐺𝐻
=→ pt𝑊𝐺𝐻

) ≃→ (𝐺/𝐻)𝐻 .

normal subgroups and quotients 206

13
TODO: Fix and move to Ch. 5

9.9 The isomorphism theorems

Cf. Section 2.27

Group homomorphisms provide examples of forgetting stuff and

structure. For example, the map from cyclically ordered sets with

cardinality 𝑛 to the type of sets with cardinality 𝑛 forgets structure, and

represents an injective group homomorphism from the cyclic group of

order 𝑛 to the symmetric group Σ𝑛 .

And the map from pairs of 𝑛-element sets to 𝑛-element sets that

projects onto the first factor clearly forgets stuff, namely, the other

component. It represents a surjective group homomorphism.

More formally, fix two groups𝐺 and𝐻, and consider a homomorphism

𝜑 from 𝐺 to 𝐻, considered as a pointed map B𝜑 : BG→pt BH. Then B𝜑
factors as

BG = ∑
𝑤 : BH

∑
𝑧 : BG
(B𝜑(𝑧) = 𝑤)

→pt ∑
𝑤 : BH

∥∥∥ ∑
𝑧 : BG
(B𝜑(𝑧) = 𝑤)

∥∥∥
0

→pt ∑
𝑤 : BH

∥∥∥ ∑
𝑧 : BG
(B𝜑(𝑧) = 𝑤)

∥∥∥
−1

= BH.

The pointed, connected type in the middle represents a group that is

called the image of 𝜑, Im(𝜑).
(FIXME: Quotient groups as automorphism groups, normal sub-

groups/normalizer, subgroup lattice)

Lemma 9.9.1. The automorphism group of the 𝐺-set 𝐺/𝐻 is isomorphic to
N𝐺(𝐻)/𝐻.
Theorem 9.9.2 (Fundamental Theorem of Homomorphisms). For any
homomorphism 𝑓 : Hom(𝐺, 𝐺′) the map TODO defines an isomorphism
𝐺/ker 𝑓 ≃ im 𝑓 .13

9.10 More about automorphisms

For every group 𝐺 (which for the purposes of the discussion in this

section we allow to be a higher group) we have the automorphism group

Aut(𝐺). This is of course the group of self-identifications 𝐺 = 𝐺 in the

type of groups, Group. If we represent 𝐺 by the pointed connected

classifying type BG, then Aut(𝐺) is the type of pointed self-equivalences

of BG.

We have a natural forgetful map from groups to the type of connected

groupoids. Define the type Bunch to be the type of all connected

groupoid. If 𝑋 : Bunch, then all the elements of 𝑋 are merely isomorphic,

that is, they all look alike, so it makes sense to say that 𝑋 consists of a

bunch of alike objects.

For every group 𝐺 we have a corresponding bunch, BG÷, i.e., the

collection of 𝐺-torsors, and if we remember the basepoint sh𝐺 : BG÷, then

we recover the group 𝐺. Thus, the type of groups equivalent to the type

∑𝑋 : Bunch 𝑋 of pairs of a bunch together with a chosen element. (This is

essentially our definition of the type Group.)

Sometimes we want to emphasize that we BG÷ is a bunch, so we define

bunch(𝐺) :≡ BG÷ : Bunch.

normal subgroups and quotients 207

Definition 9.10.1 (The center as an abelian group). Let

𝑍(𝐺) :≡ ∏
𝑧 : BG
(𝑧 = 𝑧)

denote the type of fixed points of the adjoint action of 𝐺 on itself.

This type is equivalent to the automorphism group of the identity on

bunch(𝐺), and hence the loop type of

B𝑍(𝐺) :≡ ∑
𝑓 : BG→BG

∥ 𝑓 ∼ id∥−1.

This type is itself the loop type of the pointed, connected type

B2𝑍(𝐺) :≡ ∑
𝑋 : Bunch

∥bunch(𝐺) = 𝑋∥0 ,

and we use this to give 𝑍(𝐺) the structure of an abelian group, called the

center of 𝐺. ⌟

There is a canonical homomorphism from 𝑍(𝐺) to 𝐺 given by the

pointed map from B𝑍(𝐺) to BG that evaluates at the point sh𝐺. The fiber

of the evaluation map 𝑒 : B𝑍(𝐺) →pt BG is

fiber𝑒(sh𝐺) ≡ ∑
𝑓 : BG→BG

∥ 𝑓 ∼ id∥−1 × (𝑓 sh𝐺 = sh𝐺)

≃ ∑
𝑓 : BG→ptBG

∥ 𝑓 ∼ id∥−1 ,

and this type is the loop type of the pointed, connected type

B Inn(𝐺) :≡ ∑
𝐻 : Group

∥bunch(𝐺) = bunch(𝐻)∥0 ,

thus giving the homomorphism 𝑍(𝐺) to 𝐺 a normal structure with

quotient group Inn(𝐺), called the inner automorphism group.

Note that there is a canonical homomorphism from Inn(𝐺) to Aut(𝐺)
given by the pointed map 𝑖 : B Inn(𝐺) → B Aut(𝐺) that forgets the com-

ponent. On loops, 𝑖 gives the inclusion into Aut(𝐺) of the subtype of

automorphisms of 𝐺 that become merely equal to the identity automor-

phism of bunch(𝐺). The fiber of 𝑖 is

fiber𝑖(sh𝐺) ≡ ∑
𝐻 : Group

∥bunch(𝐺) = bunch(𝐻)∥0 × (𝐻 = 𝐺)

≃ ∥bunch(𝐺) = bunch(𝐺)∥0.

This is evidently the type of loops in the pointed, connected groupoid

B Out(𝐺) :≡
∥∥∥∥∥ ∑
𝑋 : Bunch

∥bunch(𝐺) = 𝑋∥−1

∥∥∥∥∥
1

,

thus giving the homomorphism Inn(𝐺) to Aut(𝐺) a normal structure

with quotient group Out(𝐺), called the outer automorphism group. Note

that Out(𝐺) is always a 1-group, and that it is the decategorification of

Aut(bunch(𝐺)).
Theorem 9.10.2. Let two groups 𝐺 and 𝐻 be given. There is a canonical action
of Inn(𝐻) on the set of homomorphisms from 𝐺 to 𝐻, ∥BG→pt BH∥0. This
gives rise to an equivalence

∥BG÷ → BH÷∥0 ≃
∥∥∥(∥BG→pt BH∥0

)
ℎ Inn(𝐻)

∥∥∥
0

between the set of maps from bunch(𝐺) to bunch(𝐻) and the set of components
of the orbit type of this action.

normal subgroups and quotients 208

Proof. We give the action by defining a type family 𝑋 : B Inn(𝐻) →U as

follows

𝑋 ⟨𝐾, 𝜙⟩ :≡ ∥Hom(𝐺, 𝐾)∥0 ≡ ∥BG→pt BK∥0 ,

for ⟨𝐾, 𝜙⟩ : B Inn(𝐻) ≡ ∑𝐾 : Group∥bunch(𝐻) = bunch(𝐾)∥0. Now we can

calculate

∥𝑋Inn(𝐻)∥0 ≡
∥∥∥∥∥ ∑
𝐾 : Group

∥bunch(𝐻) = bunch(𝐾)∥0 × ∥Hom(𝐺, 𝐾)∥
∥∥∥∥∥

0

≃
∥∥∥∥∥ ∑
𝐾 : Group

(bunch(𝐻) = bunch(𝐾)) ×Hom(𝐺, 𝐾)
∥∥∥∥∥

0

≃
∥∥∥∥∥ ∑
𝐾 : Bunch

∑
𝑘 :𝐾
(bunch(𝐻) = 𝐾) × ∑

𝑓 : bunch(𝐺)→𝐾)
𝑓 pt = 𝑘

∥∥∥∥∥
0

≃
∥∥∥∥∥ ∑
𝐾 : Bunch

(bunch(𝐻) = 𝐾) × (bunch(𝐺) → 𝐾)
∥∥∥∥∥

0

≃ ∥bunch(𝐺) → bunch(𝐻)∥0 ≡ ∥BG÷ → BH÷∥0. □

10
Finite groups

Objects having only a finite number of symmetries can be analyzed

through counting arguments. The strength of this approach is stunning.

The orbit-stabilizer theorem Construction 5.4.26 is at the basis of this

analysis: if 𝐺 is a group and 𝑋 : BG→ Set is a 𝐺-set, then

𝑋(sh𝐺) ≃ ⨿𝑥 :𝑋/𝐺O𝑥

and each orbit setO𝑥 is equivalent to the cokernel of the inclusion𝐺𝑥 ⊆ 𝐺
of the stabilizer subgroup of 𝑥. Consequently, if 𝑋(sh𝐺) is a finite set,

then its cardinality is the sum of the cardinality of these cokernels. If

also the set UG is finite much more can be said and simple arithmetical

considerations often allow us to deduce deep statements like the size of

a certain subset of 𝑋(sh𝐺) and in particular whether or not there are any

fixed points.

Example 10.0.1. A typical application could go like this. If 𝑋(sh𝐺) is a

finite set with 13 elements and for some reason we know that all the

orbits have cardinalities dividing 8 – which we’ll see happens if UG has

8 elements – then we must have that some orbits are singletons (for a

sum of positive integers dividing 8 to add up to 13, some of them must

be 1). That is, 𝑋 has fixed points. ⌟

The classical theory of finite groups is all about symmetries coupled

with simple counting arguments. Lagrange’s Exercise 5.3.27 gives the

first example: if 𝐻 is a subgroup of 𝐺, then the cardinality “|𝐺|” of UG
is divisible by |𝐻|, putting severe restrictions on the possible subgroups.

For instance, if |𝐺| is a prime number, then 𝐺 has no nontrivial proper

subgroups! (actually, 𝐺 is necessarily a cyclic group). To prove this

result we interpret 𝐺 as an 𝐻-set.

Further examples come from considering the 𝐺-set Sub𝐺 of subgroups

of 𝐺 from Section 5.3. Knowledge about the 𝐺-set of subgroups is of vital

importance for many applications and Sylow’s theorems in Section 10.4

give the first restriction on what subgroups are possible and how they

can interact. The first step is Cauchy’s Theorem 10.3.2 which says that if

|𝐺| is divisible by a prime 𝑝, then 𝐺 contains a cyclic subgroup of order 𝑝.

Sylow’s theorems goes further, analyzing subgroups that have cardinality

powers of 𝑝, culminating in very detailed and useful information about

the structure of the subgroups with cardinality the maximal possible

power of 𝑝.

Example 10.0.2. For instance, for the permutation group Σ3, Sylow’s

theorems will deduce from the simple fact |Σ3| = 6 that Σ3 contains

a unique subgroup |𝐻| with |𝐻| = 3. Since it is unique, 𝐻 must be a

normal subgroup.

209

finite groups 210

On the other hand, for Σ4 the information |Σ4| = 24 only suffices to

tell us that there are either 1 or 4 subgroups 𝐾 with |𝐾| = 3, but that all

of them are conjugate. However, the inclusion of Σ3 in Σ4 shows that

the 𝐻 ⊆ Σ3 above (which is given by the cyclic permutations of three

letters) can be viewed as a subgroup of Σ4, and elementary inspection

gives that this subgroup is not normal. Hence there must be more than

one subgroup 𝐾 with |𝐾| = 3, pinning the number of such subgroups

down to 4.

Indeed, Σ𝑛 has 𝑛(𝑛 − 1)(𝑛 − 2)/6 subgroups of order 3 (for 𝑛 > 2),

but when 𝑛 > 5 something like a phase transformation happens: the

subgroups of order 3 are no longer all conjugate. This can either be

seen as a manifestation of the fact that 32 = 9 divides 𝑛! = |Σ𝑛| for

𝑛 > 5 or more concretely by observing that there is room for “disjoint”

cyclic permutations. For instance the subgroup of cyclic permutations of

{1, 2, 3} will not be conjugate to the subgroup of cyclic permutations of

{4, 5, 6}. Together these two cyclic subgroups give a subgroup 𝐾 with

|𝐾| = 9 and there are 10 of these (one for each subset of {1, 2, 3, 4, 5, 6}
of cardinality 3). ⌟

Remark 10.0.3. One should observe that the number of subgroups is

often very large and the structure is often quite involved, even for

groups with a fairly manageable size and transparent structure (for

instance, the number of subgroups of the group you get by taking the

product of the cyclic group 𝐶2 with itself 𝑛 times grows approximately

as 7 · 2𝑛2/4
– e.g., 𝐶×18

2 has 17741753171749626840952685 subgroups, see

https://oeis.org/A006116). ⌟

10.1 Brief overview of the chapter

We start by giving the above-mentioned counting version Lemma 10.2.3

of Lagrange’s theorem Exercise 5.3.27. We then moves on to prove

Cauchy’s Theorem 10.3.2 stating that any finite group whose cardinality

is divisible by a prime 𝑝 has a cyclic subgroup of cardinality 𝑝. Cauchchy’s

theorem has many applications, and we use it already in Section 10.4 in

the proof of Sylow’s Theorems which give detailed information about

the subgroups of a given finite group 𝐺. Sylow’s theorems is basically a

study of the 𝐺-set of subgroups of 𝐺 from a counting perspective. In

particular, if 𝑝𝑛 divides the cardinality of 𝐺, but 𝑝𝑛+1
does not, then

Sylow’s Third Theorem 10.4.5 gives valuable information about the

cardinality of the 𝐺-set of subgroups of 𝐺 of cardinality 𝑝𝑛 .

10.2 Lagrange’s theorem, counting version

We start our investigation by giving the version of Lagrange’s theorem

which has to do with counting, but first we pin down some language.

Definition 10.2.1. A finite group is a group such that the set UG is finite.

If 𝐺 is a finite group, then the cardinality |𝐺| is the cardinality of the finite

set UG (i.e., UG : FinSet(|𝐺|)). ⌟

Example 10.2.2. The trivial group has cardinality 1, the cyclic group 𝐶𝑛 of

order 𝑛 has cardinality 𝑛 and the permutation group Σ𝑛 has cardinality

𝑛!. ⌟

https://oeis.org/A006116

finite groups 211

1
Exercise 5.3.27 doesn’t say this at

present: fix it

2
somewhere: prove that if 𝐴 is a

finite set and 𝐵(𝑎) is a family of fi-

nite sets indexed over 𝑎 :𝐴, then

∑𝑎 :𝐴 𝐵(𝑎) is a finite set of cardinal-

ity ∑𝑖 :𝕟 |𝐵(𝑓 (𝑖))| for any 𝑓 :𝕟 = 𝐴,

hence if 𝑚 = |𝐵(𝑎)| for all 𝑎 then

|∑𝐴 𝐵(𝑎)| = 𝑛 · 𝑚.

In the literature, “order” and “cardinality” are used interchangeably

for groups.

For finite groups, Lagrange’s Exercise 5.3.27 takes on the form of a

counting argument

Lemma 10.2.3 (Lagrange’s theorem: counting version). Let 𝑖 : Hom(𝐻, 𝐺)
be a subgroup of a finite group 𝐺. Then

|𝐺| = |𝐺/𝐻| · |𝐻|.

If |𝐻| = |𝐺|, then 𝐻 = 𝐺 (as subgroups of 𝐺).

Proof. Consider the 𝐻 action of 𝐻 on 𝐺, i.e., the 𝐻-set 𝑖∗𝐺 : BH → Set
with 𝑖∗𝐺(𝑥) :≡ (sh𝐺 = Bi(𝑥)), so that 𝐺/𝐻 is just another name for the

orbits 𝑖∗𝐺/𝐻 :≡ ∑𝑥 : BH 𝑖
∗𝐺(𝑥). Note that composing with the structure

identity 𝑝𝑖 : sh𝐺 = Bi(sh𝐻) gives an equivalence 𝑖∗𝐺(sh𝐻) ≃ UG, so that

|𝑖∗𝐺(sh𝐻)| = |𝐺|.
Lagrange’s Exercise 5.3.27 says that 𝑖∗𝐺 is a free 𝐻-set

1
and so all

orbits O𝑥 are equivalent to the 𝐻-set 𝐻̃(𝑥) = (sh𝐻 = 𝑥). Consequently,

the equivalence

𝑖∗𝐺(sh𝐻) ≃ ∑
𝑥 : 𝑖∗𝐺/𝐻

O𝑥

of Section 5.4.22 gives that 𝐺/𝐻 and 𝐻 are finite and that |𝐺| = |𝐺/𝐻| ·
|𝐻|.2

Finally, since we are considering a subgroup, the preimage Bi−1(pt) is
equivalent to the set 𝐺/𝐻. If |𝐻| = |𝐺|, then |𝐺/𝐻| = 1 and so the set

𝐺/𝐻 is contractible. □

Corollary 10.2.4. If 𝑝 is a prime, then the cyclic group 𝐶𝑝 has no non-trivial
proper subgroups.

Proof. By Lagrange’s counting Lemma 10.2.3 a subgroup of 𝐶𝑝 has

cardinality dividing 𝑝 = |𝐶𝑝|, i.e., either 1 or 𝑝. □

Corollary 10.2.5. Let 𝑓 : Hom(𝐺, 𝐺′) be a surjective homomorphism with
kernel 𝑁 and let 𝐻 be a subgroup of 𝐺. If 𝐻 and 𝐺′ are finite with coprime
cardinalities, then 𝐻 is a subgroup of 𝑁 .

Proof. Let 𝑖 : Hom(𝐻, 𝐺) be the inclusion. By Lemma 9.6.2 the intersec-

tion 𝑁 ∩ 𝐻 is the kernel of the composite 𝑓 𝑖 : Hom(𝐻, 𝐺′). Let 𝐻′ be

the image of 𝑓 𝑖. Now, Lagrange’s counting Lemma 10.2.3 gives that

|𝐻| = |𝐻′| · |𝑁∩𝐻| and |𝐺′| = |𝐺′/𝐻′| · |𝐻′|. This means that |𝐻′| divides

both |𝐻| and |𝐺′|, but since these numbers are coprime we must have

that |𝐻′| = 1, and finally that |𝐻| = |𝑁∩𝐻|. This implies that𝑁∩𝐻 = 𝐻,

or in other words, that 𝐻 is a subgroup of 𝑁 ((elaborate)). □

Corollary 10.2.6. If 𝐺 and 𝐺′ are finite groups, then the cardinality |𝐺 × 𝐺′|
of the product is the product |𝐺| · |𝐺′| of the cardinalities.
Remark 10.2.7. Hence the cardinality of the 𝑛-fold product of Remark 10.0.3

of 𝐶2 with itself is (2𝑛 and so grows quickly, but is still) dwarfed by the

number of subgroups as 𝑛 grows. ⌟

finite groups 212

3
or of 𝑋? Reference for identification

of orbits with quotients by stabilizers

10.3 Cauchy’s theorem

Lemma 10.3.1. Let 𝑝 be a prime and 𝐺 a group of cardinality 𝑝𝑛 for some
positive 𝑛 :ℕ. If 𝑋 : BG → Set is a non-empty finite 𝐺-set such that the
cardinality of 𝑋(sh𝐺) is divisible by 𝑝, then the cardinality of the set of fixed
points 𝑋𝐺 :≡ ∏𝑧 : BG 𝑋(𝑧) is divisible by 𝑝.

Proof. Recall that the evaluation at sh𝐺 gives an injection of sets 𝑋𝐺 →
𝑋(sh𝐺) through which we identify 𝑋𝐺

with the subset “𝑋(sh𝐺)𝐺” of all

trivial orbits of 𝑋(sh𝐺). The orbits of 𝑋(sh𝐺)3 all have cardinalities that

divide the cardinality 𝑝𝑛 of 𝐺. This means that all the the cardinalities of

the non-trivial orbits (as well as of 𝑋(sh𝐺)) are positive integers divisible

by 𝑝.

Burnside’s Lemma Section 5.7 states that 𝑋(sh𝐺) is the sum of its

orbits. Hence the cardinality of the set of all trivial orbits, i.e., of 𝑋𝐺
, is

the difference of two numbers both divisible by 𝑝. □

Theorem 10.3.2. Let 𝑝 be a prime and let 𝐺 be a finite group of cardinality
divisible by 𝑝. Then 𝐺 has a subgroup which is cyclic of cardinality 𝑝.

Proof. Recall the cyclic group C𝑝 :≡ AutCyc Z/𝑝 of cardinality 𝑝 where

Z/𝑝 :≡ (𝕡, 𝑠) is the standard 𝑝-cycle. In other words, there is an identifi-

cation of pointed groupoids

B C𝑝
=→ (∑

𝑆 : Set
∑

𝑗 : 𝑆 =→𝑆
||(𝑆, 𝑗) = Z/𝑝||, (Z/𝑝, !)).

Informally, B C𝑝 consists of pairs (𝑆, 𝑗), where 𝑆 is a set of cardinality

𝑝 and 𝑗 : 𝑆 =→ 𝑆 is a cyclic permutation in the sense that for 0 < 𝑘 < 𝑝

we have that 𝑗𝑘 is not refl while 𝑗𝑝 = refl. Given a set 𝐴, a function

𝑎 :𝕡→ 𝐴 is an ordered 𝑝-tuple of elements of 𝐴: it suffices to write 𝑎𝑖 for

𝑎(𝑖) to retrieve the usual notations for tuples. Given (𝑆, 𝑗) : B C𝑝 however,

functions 𝑆 → 𝐴 cannot really be thought the same because 𝑆 is not

explicitely enumerated. But as soon as we are given 𝑞 : Z/𝑝 =→ (𝑆, 𝑗), then

functions 𝑆→ 𝐴 are just as good to model ordered 𝑝-tuples of 𝐴 (just by

precomposing with the first projection of 𝑞). With this in mind, define

𝜇𝑝 : (𝕡→ UG) → UG to be the 𝑝-ary multiplication, meaning 𝜇𝑝(𝑔) :≡
𝑔0𝑔1 . . . 𝑔𝑝−1. Then, one can define 𝜇 : ∏(𝑆,𝑗) : B C𝑝

(Z/𝑝 =→ (𝑆, 𝑗)) → (𝑆→
UG) → UG by 𝜇(𝑆,𝑗)(𝑞)(𝑔) :≡ (𝑔𝑞)0 · · · · · (𝑔𝑞)𝑝−1 (where we use 𝑔𝑞

abusively to denote the composition of 𝑔 with the equivalence given by

applying the first projection to the identification 𝑞). We can now define

the C𝑝-set 𝑋 : B C𝑝 → Set as:

𝑋(𝑆, 𝑗) :≡ ∑
𝑔 : 𝑆→UG

∏
𝑞 : Z/𝑝 =→(𝑆,𝑗)

𝜇(𝑆,𝑗)(𝑞)(𝑔) = 𝑒𝐺 .

In particular, an element of 𝑋(Z/𝑝) is a tuple (𝑔0 , . . . , 𝑔𝑝−1) satisfying

that 𝑔𝜎0 . . . 𝑔𝜎(𝑝−1) = 𝑒𝐺 for every 𝜎 : U C𝑝 . Note that this is equiva-

lent to the set of tuples (𝑔0 , . . . , 𝑔𝑝−1) satisfying that 𝑔0 . . . 𝑔(𝑝−1) = 𝑒𝐺.

So, the map 𝑋(Z/𝑝) → UG𝑝−1
that send an element (𝑔0 , . . . , 𝑔𝑝−1) to

(𝑔1 , . . . , 𝑔𝑝−1) is an equivalence (the condition 𝑔0 . . . 𝑔(𝑝−1) = 𝑒𝐺 says

exactly that we can reconstruct 𝑔0 from (𝑔1 , . . . , 𝑔𝑝−1)). In particular, 𝑝

divides the cardinality of 𝑋(Z/𝑝).
Now, a C𝑝-fixed point of 𝑋, that is an element 𝑓 : ∏(𝑆,𝑗) : B C𝑝

𝑋(𝑆, 𝑗),
will have 𝑓Z/𝑝 being an element (𝑔0 , . . . , 𝑔𝑝−1) of 𝑋(Z/𝑝) that satisfies (in

finite groups 213

4
Two slight variations commented

away. Have to choose one. The first

needs some background essentially

boiling down to 𝐵𝐶𝑛 being the trun-

cation of the 𝑛th Moore space.

5
((To be continued: the classical proof

involves choosing nontrivial ele-

ments – see what can be done about

that. At present this corollary is not

used anywhere))

particular) (𝑔0 , . . . , 𝑔𝑝−1) = (𝑔1 , . . . , 𝑔𝑝−1 , 𝑔0), i.e., such that 𝑔0 = 𝑔1 =

𝑔2 = · · · = 𝑔𝑝−1. In other words, a fixed point 𝑓 is such that 𝑓Z/𝑝 :𝑋(Z/𝑝)
is of the form (𝑔, . . . , 𝑔) where 𝑔 satisfies 𝑔𝑝 = 𝑒𝐺. So, there is a map

ev :𝑋C𝑝 → ∑𝑔 : UG 𝑔
𝑝 = 𝑒𝐺 simply given by evaluation at Z/𝑝. This map

is an equivalence. Indeed, each fiber of ev is already a proposition, and

we only need to show that each is inhabited. Given any 𝑔 : UG such that

𝑔𝑝 = 𝑒𝐺, and given (𝑆, 𝑗) : B C𝑝 , one can consider the constant function

𝑔̂ : 𝑆 → UG given by 𝑔̂(𝑠) = 𝑔 for all 𝑠 : 𝑆. Then, for all 𝑞 : Z/𝑝 =→ (𝑆, 𝑗),
𝑔̂𝑞 is the tuple (𝑔, . . . , 𝑔), so that we have (𝑔̂ , !) :𝑋(𝑆, 𝑗). In other words,

we just constructed a fixed point of 𝑋 whose image through ev is 𝑔, that

is an element of the fiber of ev at 𝑔. In particular, 𝑋C𝑝
is not empty as it

is equivalent to ∑𝑔 : UG 𝑔
𝑝 = 𝑒𝐺, which contains at least 𝑒𝐺.

Now, Lemma 10.3.1 claims that 𝑝 divides the cardinality of 𝑋C𝑝
, and

since there are fixed points, there must be at least 𝑝 fixed points. One

of them is the trivial one (given by 𝑔 :≡ 𝑒𝐺 above), but the others are

nontrivial.

4 □

Lemma 10.3.3. Let be 𝐺 be a finite subgroup of cardinality 𝑝𝑛 , where 𝑝 is prime
and 𝑛 a positive integer. Then the center 𝑍(𝐺) of 𝐺 is nontrivial. (point to
center in the symmetry chapter)

Proof. Recall the 𝐺-set Ad𝐺 : BG→ Set given by Ad𝐺(𝑧) = (𝑧 = 𝑧). Then

the map

evsh𝐺 : ∏
𝑧 : BG
(𝑧 = 𝑧) → UG, ev𝐺(𝑓) = 𝑓 (sh𝐺)

has the structure of a (n abstract) inclusion of a subgroup; namely the

inclusion of the center 𝑍(𝐺) in 𝐺. The center thus represents the fixed

points of the𝐺-set Ad𝐺. Since𝐺 has cardinality a power of 𝑝, all orbits but

the fixed points have cardinality divisible by 𝑝. Consequently, Burnside’s

lemma states that the number of fixed points, i.e., the cardinality of 𝑍(𝐺),
must be divisible by 𝑝. □

Corollary 10.3.4. If 𝐺 is a noncyclic group of cardinality 𝑝2, then 𝐺 of the
form 𝐶𝑝 × 𝐶𝑝 .

Proof. The center 𝑍(𝐺) is by Lemma 10.3.3 of cardinality 𝑝 or 𝑝2
. Since

𝐺 is not cyclic we have that 𝑔𝑝 = 𝑒𝐺 for all 𝑔 : UG.
5 □

10.4 Sylow’s Theorems

Theorem 10.4.1. If 𝑝 is a prime, 𝑛 :ℕ and 𝐺 a finite group whose cardinality is
divisible by 𝑝𝑛 , then 𝐺 has a subgroup of cardinality 𝑝𝑛 .

Proof. We prove the result by induction on 𝑛. If 𝑛 = 0 we need to have a

subgroup of cardinality 1, which is witnessed by the trivial subgroup. If

𝑛 > 0, assume by induction that 𝐺 contains a subgroup 𝐾 of cardinality

𝑝𝑛−1
. Now, 𝐾 acts on the set 𝐺/𝐾. The cardinality of 𝐺/𝐾 is divisible

by 𝑝 (since 𝑝𝑛 divides the cardinality of 𝐺), and so by Lemma 10.3.1 the

fixed point set (𝐺/𝐾)𝐾 has cardinality divisible by 𝑝.

Recall the Weyl group𝑊𝐺𝐾. By Lemma 9.8.3,

|𝑊𝐺𝐾| = |(𝐺/𝐾)𝐾|,

finite groups 214

6
((the approach below is on the ab-

stract G-sets which may be ok given

that this is what we’re counting, but

consider whether there is a more

typie approach))

7
the end of the sentence appears to be

missing

and so𝑊𝐺𝐾 has cardinality divisible by 𝑝.

Recall the normalizer subgroup 𝑁𝐺(𝐾) of 𝐺 from Definition 9.8.1 and

Section 9.9 and the surjective homomorphism 𝑝𝐻𝐺 from 𝑁𝐺𝐻 to 𝑊𝐺𝐻,

whose kernel may be identified with 𝐻 so that |𝑁𝐺𝐻| = |𝑊𝐺𝐻| · |𝐻| by

Lagrange’s theorem.

By Cauchy’s Theorem 10.3.2 there is a subgroup 𝐿 of𝑊𝐺𝐾 of cardinality

𝑝. Taking the preimage of 𝐿 under the projection 𝑝𝐻𝐺 : Hom(𝑁𝐺𝐻,𝑊𝐺𝐻),
or, equivalently, the pullback

BH :≡ BL ×BW𝐺𝐾 BN𝐺𝐾,

we obtain a subgroup 𝐻 of 𝑁𝐺(𝐾) of cardinality 𝑝𝑛 (𝐻 is a free 𝐾-set

with 𝑝 orbits). The theorem is proven by considering 𝐻 as a subgroup

of 𝐺. □

Definition 10.4.2. Let 𝑝𝑛 be the largest power of 𝑝 which divides the

cardinality of 𝐺. A subgroup of 𝐺 of cardinality 𝑝𝑛 is called a 𝑝-Sylow
subgroup of 𝐺 and Syl𝑝𝐺 is the 𝐺-subset of Sub𝐺 of 𝑝-Sylow subgroups of

𝐺. ⌟

Lemma 10.4.3. Let 𝐺 be a finite group and 𝑃 a 𝑝-Sylow subgroup. Then the
number of conjugates of 𝑃 is not divisible by 𝑝.

Proof. Let 𝑋 be the 𝐺-set of conjugates of 𝑃. Being a 𝐺-orbit, 𝑋 is

equivalent 𝐺/Stab𝑃 , where 𝑃 is the stabilizer subgroup of 𝑃. Now, 𝑃

is contained in the stabilizer so the highest power of 𝑝 dividing the

cardinality of 𝐺 also divides the cardinality of Stab𝑃 . □

Theorem 10.4.4.
6 Let 𝐺 be a finite group. Then any two 𝑝-Sylow subgroups

are conjugate, or in other words, the 𝐺-set Syl𝑝𝐺 is transitive.
Furthermore, if 𝐻 a subgroup of 𝐺 of cardinality 𝑝𝑠 and 𝑃 a 𝑝-Sylow

subgroup of 𝐺. Then 𝐻 is conjugate to a subgroup of 𝑃.

Proof. We prove the last claim first. Consider the set O𝑃 of conjugates of

𝑃 as an 𝐻-set. Since the cardinality of O𝑃 ≃ 𝐺/𝑆𝑡𝑎𝑏𝑃 is prime to 𝑝 there

must be an𝐻-fixed point𝑄. In other words,𝐻 ⊆ 𝑆𝑡𝑎𝑏𝑄 . By Lemma 9.6.4

there is a conjugate 𝐻′ of 𝐻 with 𝐻′ ⊆ 𝑆𝑡𝑎𝑏𝑃 . Now, 𝑃 ⊆ 𝑆𝑡𝑎𝑏𝑃 (ref) is a

normal subgroup and so by.
7

The first claim now follows, since if both𝐻 and𝑃 are 𝑝-Sylow subgroup,

then a conjugate of 𝐻 is a subgroup of 𝑃, but since these have the same

cardinalities they must be equal. □

Theorem 10.4.5. Let 𝐺 be a finite group and let 𝑃 be a 𝑝-Sylow subgroup of 𝐺.
Then the cardinality of Syl𝑝𝐺

(1) divides |𝐺|/|𝑃| and

(2) is 1 modulo 𝑝.

Proof. Theorem 10.4.4 claims that Syl𝑝𝐺 is transitive, so as a 𝐺-set it is

equivalent to 𝐺/𝑁𝐺𝑃 (𝑁𝐺𝑃 is the stabilizer of 𝑃 in Sub𝐺. Since 𝑃 is a

subgroup of 𝑁𝐺𝑃 we get that |𝑃| divides 𝑁𝐺𝑃 and so |Syl𝑝𝐺| = |𝐺|/|𝑁𝐺𝑃|
divides |𝐺|/|𝑃|.

Let 𝑖 be the inclusion of 𝑃 in 𝐺 and consider the 𝑃-set 𝑖∗Syl𝑝𝐺 obtained

by restricting to 𝑃. Since the cardinality only depends on the underlying

finite groups 215

set we have that |𝑖∗Syl𝑝𝐺| = |Syl𝑝𝐺| and we analyze the decomposition into

𝑃-orbits to arrive at our conclusion.

Let 𝑄 : 𝑖∗Syl𝑝𝐺 be a fixed point, i.e., 𝑃 ⊆ 𝑁𝐺𝑄. Now, since 𝑁𝐺𝑄 is a

subgroup of 𝐺, we get that |𝑁𝐺𝑄| divides |𝐺, so this proves that 𝑃 is

a 𝑝-Sylow subgroup of 𝑁𝐺𝑄. However, the facts that 𝑄 is normal in

𝑁𝐺𝑄 and that all Sylow subgroups being conjugates together conspire

to show that 𝑃 = 𝑄. That is, the number of fixed points in 𝑖∗Syl𝑝𝐺 is one.

Since 𝑃 is a 𝑝-group, all the other orbits have cardinalities divisible by 𝑝,

and so

|Syl𝑝𝐺| = |𝑖∗Syl𝑝𝐺| ≡ 1 mod 𝑝.

□

((Should we include standard examples, or is this not really wanted in

this book?))

1
These names come from Sylvester.

Figure 11.1: Icosahedron with an

inscribed true cross

11
Group presentations

11.1 Brief overview of the chapter

TODO:

• Make a separate chapter on combinatorics? Actions and Burnside and

counting colorings?

• Cayley actions: 𝐺 acts on Γ(𝐺, 𝑆): Action on vertices is the left action

of 𝐺 on itself: 𝑡 ↦→ (𝑡 =BG pt), on vertices, for 𝑠 : 𝑆, have edge 𝑡 = pt to

𝑡 = pt

• Recall universal property of free groups: If we have a map 𝜑 : 𝑆 →
𝐻, then we get a homomorphism 𝜑̄ : 𝐹(𝑆) → 𝐻, represented by

𝐵𝐹(𝑆) →pt BH defined by induction, sending pt to pt and 𝑠 to 𝜑(𝑠).

• define different types of graphs (𝑆-digraphs, 𝑆̃-graphs, (partial) func-

tional graphs, graph homomorphisms, quotients of graphs)

• define (left/right) Cayley graphs of f.g. groups – Aut(Γ𝐺) = 𝐺 (include

𝛼 : 𝐹(𝑆) → 𝐺 in notation?) – Cayley graphs are vertex transitive

• Cayley graphs and products, semi-direct products, homomorphisms

• Some isomorphisms involving semi-direct products – Exceptional

automorphism of Σ6: – Exotic map Σ5 → Σ6. (Conjugation action of

Σ5 on 6 5-Sylow subgroups.) A set bundle 𝑋 : BΣ6 → BΣ6.

• https://math.ucr.edu/home/baez/six.htmlRelating Σ6 to the icosa-

hedron. The icosahedron has 6 axes. Two axes determines a golden

rectangle (also known as a duad,
1

so there are 15 such. A symmetry of

the icosahedron can be described by knowing where a fixed rectangle

goes, and a symmetry of that rectangle. Picking three rectangles not

sharing a diagonal gives a syntheme: three golden rectangles whose

vertices make up the icosahedron. Some synthemes (known as true
crosses have the rectangles orthogonal to each other, as in Figure 11.1.

Fact: The symmetries of the icosahedron form the alternating sym-

metries of the 5 true crosses. Of course, we get an action on the 6
axes, thus a homomorphism A5 → Σ6. Every golden rectangle lies

in one true cross and two skew crosses. The combinatorics of duads,

synthemes, and synthematic totals are illustrated in the Cremona-

Richardson configuration and the resulting Tutte-Coxeter graph. The

automorphism group of the latter is in fact Aut(Σ6). If we color the

vertices according to duad/syntheme, we get Σ6 itself.

• define (left/right) presentation complex of group presentation

216

https://math.ucr.edu/home/baez/six.html

group presentations 217

• define Stallings folding

• deduce Nielsen–Schreier and Nielsen basis

• deduce algorithms for generalized word problem, conjugation, etc.

• deduce Howson’s theorem

• think about 2-cell replacement for folding; better proofs in HoTT?

• move decidability results to main flow

• include undecidability of word problem in general – doesn’t depend

on presentation (for classes closed under inverse images of monoid

homomorphisms)

• describe 𝐹(𝑆)/𝐻 in the case where 𝐻 has infinite index

• describe normal closure of 𝑅 in 𝐹(𝑆) – still f.g.? – get Cayley graph of

𝐹(𝑆)/⟨𝑅⟩. – Todd-Coxeter algorithm?

• in good cases we can recognize S(𝑅) as a “fundamental domain” in

Cayley graph of ⟨𝑆 | 𝑅⟩.

Remark 11.1.1. In this chapter, we use letters from the beginning of the

alphabet 𝑎, 𝑏, 𝑐, . . . to denote generators, and we use the corresponding

capital letters 𝐴, 𝐵, 𝐶 to denote their inverses, so, e.g., 𝑎𝐴 = 𝐴𝑎 = 1. This

cleans up the notational clutter significantly. ⌟

Do we fix 𝑆, a finite set 𝑆 = {𝑎, 𝑏, . . .}? Mostly 𝐹 will denote the free

group on 𝑆. And for almost all examples, we take 𝑆 = {𝑎, 𝑏}.

11.2 Graphs and Cayley graphs

We have seen in the previous chapter how cyclic groups (those generated

by a single generator) have neatly described types of torsors. Indeed,

BC𝑛 ≡ Cyc𝑛 , where Cyc𝑛 is the type of 𝑛-cycles, and the classifying type

of the integers, Bℤ ≡ S1
, i.e., the circle, is equivalent to the type of infinite

cycles, Cyc0. In Chapter 3, we defined the types of (finite or infinite)

cycles as certain components of ∑𝑋 :U (𝑋 =→ 𝑋), but we can equivalently

consider components of ∑𝑋 :U (𝑋 → 𝑋), since the former is a subtype of

the latter. By thinking of functions in terms of their graphs, we might as

well look at components of ∑𝑋 :U (𝑋 → 𝑋 →U).
In this section we shall generalize this story to groups 𝐺 generated by

a (finite or just decidable) set of generators 𝑆.

First recall from Cayley’s Theorem 5.6.1 that any group 𝐺 can be

realized as a subgroup of the permutation group on the underlying set of

symmetries in 𝐺, UG. In this description, a 𝐺-shape is a set 𝑋 equipped

a 𝐺-action that defines a 𝐺-torsor, which in turn can be expressed as the

structure of a map 𝛼 : UG→ 𝑋 → 𝑋 satisfying certain properties.

It may happen that already 𝛼 restricted to a subset 𝑆 of UG suffices to

specify the action. In that case we say that 𝑆 generates 𝐺, though we’ll

take the following as the official definition.

Definition 11.2.1. Let 𝐺 be a group and 𝑆 be a subset of UG, given

by an inclusion 𝜄 : 𝑆 → UG. We say that 𝑆 generates 𝐺 if the induced

homomorphism from the free group on 𝑆,

F𝑆 → 𝐺,

group presentations 218

(1 3)

(1 3 2)

(1 2)

𝑒

(2 3)

(1 2 3)

Figure 11.2: Cayley graph for Σ3 with

respect to 𝑆 = {(1 2), (2 3)}.

2
We use 𝑡 =→ sh𝐺 rather than the

equivalent sh𝐺
=→ 𝑡 in order to

conform to the representation from

Cayley’s theorem.

is an epimorphism. ⌟

Lemma 11.2.2. Let 𝐺 be a group and 𝜄 : 𝑆→ UG an inclusion of a subset of the
elements of 𝐺. Then 𝑆 generates 𝐺 if and only if the map

𝜌𝑆 : BG→ ∑
𝑋 :U
(𝑆→ 𝑋 → 𝑋), 𝜌𝑆(𝑡) :≡

(
𝑡 =→ sh𝐺 , 𝑠 ↦→ 𝜄(𝑠) · _

)
is an embedding.2

In this case, then, 𝐺 can be identified with the automorphism group

of 𝜌𝑆(sh𝐺) in the type ∑𝑋 :U (𝑆→ 𝑋 → 𝑋), or even in the larger type (of

which it’s a subtype), ∑𝑋 :U (𝑆→ 𝑋 → 𝑋 →U).
Also note that 𝑆 generates 𝐺 if and only if the map on elements

UF𝑆 → UG is surjective, meaning every element of 𝐺 can be expressed

as a product of the letters in a (reduced) word from R𝑆, interpreted

according to the inclusion of 𝑆 into UG. This is the case for example

for 𝑆 consisting of the transpositions (1 2), (2 3) in Σ3, as illustrated

in Figure 11.2, where the blue color represents (1 2) and the red color

represents (2 3).
Before we give the proof of Lemma 11.2.2, let us study these types

more closely.

Definition 11.2.3. An 𝑆-labeled graph is an element (𝑉, 𝐸) of the type

∑𝑉 :U (𝑆 → 𝑉 → 𝑉 →U). The first component 𝑉 is called the type of

vertices of the graph, and the type 𝐸(𝑠, 𝑥, 𝑦) is called the type of 𝑠-colored

edges from 𝑥 (the source) to 𝑦 (the target). ⌟

If for every vertex 𝑥 :𝑉 and every color 𝑠 : 𝑆 there is unique 𝑠-colored

edge out of 𝑥, i.e., the type ∑𝑦 :𝑉 𝐸(𝑠, 𝑥, 𝑦) is contractible, then we say that

the graph is functional. This means that the graph lives in the subtype

∑𝑉 :U (𝑆→ 𝑉 → 𝑉), as is the case for the graph 𝜌𝑆(sh𝐺) for a group 𝐺.

This graph is called the Cayley graph of 𝐺 with respect to the set 𝑆:

Definition 11.2.4. The Cayley graph of a group 𝐺 with respect to a

generating subset 𝑆 is the graph Cay(𝐺; 𝑆) is the 𝑆-colored graph with

vertices UG and edges 𝑆 ×UG where the edge (𝑠, 𝑔) has source 𝑔, target

𝑠𝑔, and color 𝑠. ⌟

Convince yourself that this is really an equivalent description of

𝜌𝑆(sh𝐺) considered as an 𝑆-colored graph.

If 𝑆 is contractible (so there’s only one color), then we just say graph,

and then we simplify the type of edges to 𝑉 → 𝑉 → U . Of course,

every 𝑆-labeled graph (𝑉, 𝐸) gives rise to such an unlabeled label by

group presentations 219

3
If the graph is represented by source

and target maps 𝑠, 𝑡 :𝐸 ⇒ 𝑉 , then

the graph quotient is also called the

coequalizer of 𝑠 and 𝑡.

4
This is often called the flattening
construction (or flattening lemma),

as it “flattens” a sum over a graph

quotient into a single graph quotient.

𝑋([𝑣]) 𝑋([𝑤])

𝑉 ′/𝐸′

trp𝑋↷𝑒

≃

𝜓([𝑣]) 𝜓([𝑤])

summing over the colors, i.e., the type of edges from 𝑥 to 𝑦 in this graph

is ∑𝑠 : 𝑆 𝐸(𝑠, 𝑥, 𝑦).
Another way to represent a graph is to sum over all the sources and

targets (and colors), via Lemma 2.25.3, i.e., as a tuple (𝑉, 𝐸, 𝑠, 𝑡 , 𝑐), where

𝑉 :U is the type of vertices, 𝐸 is the (total) type of edges, 𝑠, 𝑡 :𝐸 → 𝑉

give the source and target of an edge, while 𝑐 :𝐸 → 𝑆 gives the color

(if we’re talking about 𝑆-colored graphs). In this description, to get the

unlabeled graph we simply drop the last component.

Every graph (𝑉, 𝐸) (and thus every labeled graph) gives rise to a type

by “gluing the edges to the vertices” defined as follows.

Definition 11.2.5. Fix an unlabeled graph (𝑉, 𝐸). The graph quotient3 𝑉/𝐸
is the higher inductive type with constructors:

(1) For every vertex 𝑥 :𝑉 a point [𝑥] :𝑉/𝐸.

(2) For every edge 𝑒 :𝐸(𝑥, 𝑦) an identification ↷𝑒 : [𝑥] =→ [𝑦].

Let 𝐴(𝑧) be a type for every element 𝑧 :𝑉/𝐸. The induction principle

for𝑉/𝐸 states that, in order to define an element of 𝐴(𝑧) for every 𝑧 :𝑉/𝐸,

it suffices to give elements 𝑎𝑥 :𝐴([𝑥]) for every vertex 𝑥 :𝑉 together with

identifications 𝑞𝑒 : 𝑎𝑥
=−−→
↷𝑒

𝑎𝑦 for every 𝑒 :𝐸(𝑥, 𝑦). The function 𝑓 thus

defined satisfies 𝑓 ([𝑥]) ≡ 𝑎𝑥 for 𝑥 :𝑉 and we are provided identifications

apd 𝑓 (↷𝑒) =→ 𝑞𝑒 for each 𝑒 :𝐸(𝑥, 𝑦). ⌟

Remark 11.2.6. Note the similarity with the classifying type of a free

group, cf. Definition 8.7.1. Indeed, if we form the (unlabeled!) graph

(𝟙, 𝑆) on one vertex with 𝑆 edges, then 𝟙/𝑆 is essentially the same as

BF𝑆. ⌟

Exercise 11.2.7. An equivalence relation 𝑅 :𝐴→ 𝐴→ Prop on a set 𝐴

can be regarded as a graph (𝐴, 𝑅). Construct an equivalence between

set truncation of the graph quotient ∥𝐴/𝑅∥0 and the set quotient 𝐴/𝑅
from Definition 2.22.10 in this case. (So in the world of sets, the two

notations agree.) ⌟

While we’re building up to the proof of Lemma 11.2.2 we need a

description of a sum type over a graph quotient. By the above remark,

this applies also to sum types over BF𝑆.

Construction 11.2.8. Given a graph (𝑉, 𝐸) and a family of types 𝑋 :𝑉/𝐸→
U . Define 𝑉 ′ :≡ ∑𝑣 :𝑉 𝑋([𝑣]) and 𝐸′((𝑣, 𝑥), (𝑤, 𝑦)) :≡ ∑𝑒 :𝐸(𝑣,𝑤) 𝑥

=−−→
↷𝑒

𝑦.
Then we have an equivalence4

flt :
(

∑
𝑧 :𝑉/𝐸

𝑋(𝑧)
)
≃→ 𝑉 ′/𝐸′

Implementation of Construction 11.2.8. We define functions 𝜑 :𝑉 ′/𝐸′ →
∑𝑧 :𝑉/𝐸 𝑋(𝑧) and 𝜓 : ∏𝑧 :𝑉/𝐸

(
𝑋(𝑧) → 𝑉 ′/𝐸′

)
using the induction princi-

ples:

𝜑([(𝑣, 𝑥)]) :≡ ([𝑣], 𝑥) 𝜓̃([𝑣]) :≡ (𝑥 ↦→ [(𝑣, 𝑥)])
ap𝜑(↷(𝑒 ,𝑞)) B (↷𝑒 , 𝑞) apd𝜓̃(↷𝑒) B ℎ,

where we need to construct ℎ : (𝑥 ↦→ [(𝑣, 𝑥)]) =−−→
↷𝑒

(𝑦 ↦→ [(𝑤, 𝑦)]) for all

𝑒 :𝐸(𝑣, 𝑤). By transporting in families of functions, it suffices to give an

group presentations 220

Figure 11.3: Cayley graph for 𝐴5
with respect to 𝑆 = {𝑎, 𝑏}, where 𝑎 is

a 1/5-rotation about a vertex and 𝑏

is a 1/2-rotation about an edge in an

icosahedron.

5
This equivalence can be visualized as

follows, where 𝑋 “grows a whisker”

along the single edge.

𝑋

𝟙

𝑥

Our discussion follows the work of

Swan
6
.

6
Andrew W. Swan. “On the Nielsen–

Schreier Theorem in Homotopy Type

Theory”. In: Log. Methods Comput.
Sci. 18.1 (2022). doi: 10.46298/lmcs-
18(1:18)2022.

identification [(𝑣, 𝑥)] =→ [(𝑤, trp𝑋↷𝑒
(𝑥))] for all 𝑥 :𝑋([𝑣]). We get this as

the identification constructor↷(𝑒 ,𝑞) for𝑉 ′/𝐸′, where 𝑞 : 𝑥
=−−→
↷𝑒

trp𝑋↷𝑒
(𝑥) is

the identification over ↷𝑒 corresponding to the reflexivity identification

at trp𝑋↷𝑒
(𝑥) via Definition 2.7.3. □

Exercise 11.2.9. Complete the implementation by giving identifications

𝜓 ◦𝜙 =→ id and 𝜙 ◦𝜓 =→ id, where 𝜓 :
(
∑𝑧 :𝑉/𝐸 𝑋(𝑧)

)
→ 𝑉 ′/𝐸′ is defined

by 𝜓((𝑧, 𝑥)) :≡ 𝜓̃(𝑧)(𝑥). ⌟

Later on we’ll need also need the following results about graph

quotients.

Exercise 11.2.10. Suppose the edges 𝐸 of a graph (𝑉, 𝐸) are expressed as

a binary sum 𝐸0 ⨿ 𝐸1. (Here, it doesn’t matter whether 𝐸 is expressed

as a type family 𝐸 :𝑉 → 𝑉 → U , in which case we have a family of

equivalences 𝐸(𝑣, 𝑤) ≃→ 𝐸0(𝑣, 𝑤) ⨿ 𝐸1(𝑣, 𝑤), or 𝐸 is the total type of

edges.)

Then we can obtain the graph quotient 𝑉/𝐸 by first gluing in the

edges from 𝐸0, and then gluing in the edges from 𝐸1 to the resulting

type 𝑉/𝐸0. Using the description of graphs with a total type of edges

𝐸 ≃→ 𝐸0 ⨿ 𝐸1, we have corresponding source and target maps expressed

as compositions:

𝐸1 ↩→ 𝐸0 ⨿ 𝐸1
≃→ 𝐸 ⇒ 𝑉 → 𝑉/𝐸0.

Construct an equivalence 𝑉/𝐸 ≃→ 𝑉/(𝐸0 ⨿ 𝐸1) ≃→ (𝑉/𝐸0)/𝐸1. ⌟

Exercise 11.2.11. Suppose we have any type 𝑋 with an element 𝑥 :𝑋. We

can form a graph (𝑋 ⨿ 𝟙, 𝟙) with vertex type 𝑋 ⨿ 𝟙 and a single edge

from inl𝑥 to inr0. Construct an equivalence 𝑋 ≃→ (𝑋 ⨿ 𝟙)/𝟙.
5 ⌟

11.3 Examples

Proof of Lemma 11.2.2. TBD (perhaps put in graph quotients first) □

11.4 Subgroups of free groups

We now study subgroups of free groups. We’ll eventually prove the

https://doi.org/10.46298/lmcs-18(1:18)2022
https://doi.org/10.46298/lmcs-18(1:18)2022

group presentations 221

𝑉0 𝑉1

𝑣0

𝑣1

𝑢0 𝑢1

𝑒

𝑉0 ⨿𝑉1

Figure 11.4: A connected graph with

a crossing edge

Nielsen–Schreier theorem, which states that a finite index subgroup 𝐻

of a free group F𝑆 is itself a free group. Furthermore, when 𝑆 is finite,

the set of free generators of 𝐻 is itself finite.

Recall from Definition 5.3.2 that a subgroup is (or can be represented

by) a transitive 𝐺-set 𝑋 : BG→ Set along with an element of 𝑋(sh𝐺).
Definition 11.4.1. A subgroup of a group 𝐺 has finite index 𝑚 if the

underlying transitive 𝐺-set, 𝑋 : BG → Set is a family of finite sets of

cardinality 𝑚. ⌟

The is the case, of course, if and only if the set acted on, 𝑋(sh𝐺), is

finite of cardinality 𝑚. Notice that the definition doesn’t depend on the

chosen element of 𝑋(sh𝐺), so applies equally to all conjugacy classes of

the subgroup.

Recall also that the classifying type of the subgroup is the total type

∑𝑡 : BG 𝑋(𝑡) (which is pointed via the chosen point of 𝑋(sh𝐺)). We’ll use

the Flattening Construction 11.2.8 to analyze this in case where 𝐺 is the

free group on a set 𝑆, F𝑆, so we need to show that the quotient of the

resulting graph is equivalent to 𝟙/𝑇 for some set 𝑇.

We do this by finding a “spanning tree” in the graph.

Definition 11.4.2. A graph (𝑉, 𝐸) is connected if 𝑉/𝐸 is a connected type

and it’s a tree if 𝑉/𝐸 is contractible. ⌟

Definition 11.4.3. A subgraph of a graph (𝑉, 𝐸) consists of a subtype

ℎ :𝑈 ↩→ 𝑉 of the vertices along with, for every pair of vertices 𝑣, 𝑤 in𝑈 ,

a subtype 𝐷(𝑣, 𝑤) of the edges 𝐸(𝑣, 𝑤). ⌟

If we represent graphs by source and target maps, then this amounts

to embeddings ℎ :𝑈 ↩→ 𝑉 and 𝑘 :𝐷 ↩→ 𝐸 along with witnesses that the

following squares commute:

𝐷 𝐸

𝑈 𝑉

𝑘

𝑠 𝑠

ℎ

𝐷 𝐸

𝑈 𝑉

𝑘

𝑡 𝑡

ℎ

Definition 11.4.4. A spanning tree in a graph (𝑉, 𝐸) is a subgraph (𝑈, 𝐷)
such that (𝑈, 𝐷) is a tree, and the embedding of the vertices𝑈 ↩→ 𝑉 is

an equivalence. ⌟

Equivalently, it’s given by subtypes of the edges (leaving the vertices

alone) such that the underlying graph is a tree. Very often we’ll require

that the edge embeddings are decidable, i.e., we can decide whether a

given edge 𝑒 :𝐸(𝑣, 𝑤) is part of the tree.

Lemma 11.4.5. Suppose we have a connected graph (𝑉, 𝐸)whose type of vertices
decomposes as a binary sum 𝑉 ≃→ 𝑉0 ⨿ 𝑉1 and we have 𝑣0 :𝑉0 and 𝑣1 :𝑉1.
Then there merely exists an edge 𝑒 either with source in 𝑉0 and target in 𝑉1 or
the other way round.

The situation is illustrated in Figure 11.4, where we assume there is

an edge relation on the binary sum that gives a connected graph, and

hence there must be a “crossing edge” 𝑒, going either from 𝑉0 to 𝑉1 or

the other way.

Proof. We may assume 𝑉 ≡ 𝑉0 ⨿𝑉1 by path induction. The idea is then

to define a family of propositions 𝑃 :𝑉/𝐸→ Prop that, on one hand is

group presentations 222

7
Keep in mind that subgraphs consist

not only of the vertices and edges,

but also of the corresponding embed-

dings into the supergraph. It’s for

the sake of these that we only prove

mere existence.

𝐷 𝐷 ⨿ 𝟙 𝐸

𝑈 𝑈 ⨿ 𝟙 𝑉

𝑈/𝐷 (𝑈 ⨿ 𝟙)/(𝐷 ⨿ 𝟙) 𝑉/𝐸≃

Figure 11.5: A connected graph

on 6 vertices with a spanning tree

indicated in red.

8
Assuming the Axiom of Choice, we

can show the mere existence of a

spanning tree in any graph (𝑉, 𝐸)
with a sets of vertices and edges. See

the above work by Swan.

trivially true over 𝑉0, and on the other hand expresses our desired goal,

the existence of a “crossing edge”, over 𝑉1.

We now define 𝑃(𝑧), for 𝑧 :𝑉/𝐸, by the induction principle for the

graph quotient 𝑉/𝐸. We set 𝑃([inl𝑣]) :≡ True for 𝑣 :𝑉0 and

𝑃([inr𝑣]) :≡
∥∥∥∥∥ ∑
𝑢0 :𝑉0

∑
𝑢1 :𝑉1

(
𝐸(𝑢0 , 𝑢1) ⨿ 𝐸(𝑢1 , 𝑢0)

)∥∥∥∥∥
for 𝑣 :𝑉1. We must then prove that the propositions 𝑃([𝑣]) and 𝑃([𝑣′])
are equivalent whenever there’s an edge from 𝑣 to 𝑣′. This is the case

by definition when 𝑣, 𝑣′ lie in the same summand, and it’s also the case

when they lie in different summands, since then we get a witness for the

truth over 𝑉1.

Since 𝑉/𝐸 is connected, 𝑃 must have a constant truth value, and since

𝑃([inl𝑣0]) ≡ True, every 𝑃(𝑧) is true. Hence also 𝑃([inr𝑣1]) is true, which

is exactly what we wanted. □

Lemma 11.4.6. Fix a connected graph (𝑉, 𝐸)where𝑉 has decidable equality and
𝐸 is a family of sets. For any subgraph (𝑈, 𝐷), where the embedding𝑈 ↩→ 𝑉 is
decidable, and with vertices 𝑢 ∈ 𝑈 and 𝑣 ∈ 𝑉 \𝑈 , there merely exists7 a larger
subgraph with exactly one more vertex and one more edge, (𝑈 ⨿ 𝟙, 𝐷 ⨿ 𝟙)
such that the induced map on graph quotients𝑈/𝐷 → (𝑈 ⨿ 𝟙)/(𝐷 ⨿ 𝟙) is an
equivalence.

Proof. Since the embedding𝑈 ↩→ 𝑉 is decidable, we can write 𝑉 as the

binary sum𝑈 ⨿ (𝑉 \𝑈). Apply Lemma 11.4.5 to find a “crossing edge”

𝑒, and form the new subgraph (𝑈 ⨿ 𝟙, 𝐷 ⨿ 𝟙) by adding the incident

vertex not in𝑈 as well as the edge 𝑒 itself. The embedding𝑈 ⨿ 𝟙→ 𝑉

is still decidable, since 𝑉 has decidable equality. Finally, we have

(𝑈 ⨿ 𝟙)/(𝐷 ⨿ 𝟙) ≃→
(
(𝑈 ⨿ 𝟙)/𝟙

)
/𝐷 ≃→ 𝑈/𝐷,

using Exercises 11.2.10 and 11.2.11, as desired. □

Lemma 11.4.7. Let (𝑉, 𝐸) be a connected graph where 𝑉 is an 𝑛-element set,
and 𝐸 is a family of decidable sets. Then the graph merely has a spanning tree
with exactly 𝑛 − 1 edges.

Proof. We show by induction on 𝑘, with 1 ≤ 𝑘 ≤ 𝑛, that there merely

exists a subgraph (𝑈, 𝐷)with 𝑘 vertices, 𝑘−1 edges, and𝑈/𝐷 contractible,

i.e., the graph (𝑈, 𝐷) is a tree.

For 𝑘 ≡ 1, we use that 𝑉/𝐸 is connected to get that 𝑉 merely has a

vertex 𝑣. This then defines the desired subgraph on one vertex with no

edges, and this is clearly a tree.

Suppose we have such a desired subgraph (𝑈, 𝐷) with 𝑘 vertices and

𝑘 − 1 edges and 𝑘 < 𝑛. Since 𝑉 is finite, there exists vertices 𝑢 ∈ 𝑈 and

𝑣 ∈ 𝑉 \𝑈 . Now apply Lemma 11.4.6 to get the next subgraph.

Finally, the subgraph (𝑈, 𝐷) with 𝑛 vertices and 𝑛 − 1 edges gives

the desired spanning tree, and any embedding of an 𝑛-element set in

another 𝑛-element set is an equivalence.
8 □

Theorem 11.4.8 (Nielsen–Schreier Theorem). Suppose that 𝑆 is a set with
decidable equality and 𝑋 : BF𝑆 → Set defines a (conjugacy class of a) finite

group presentations 223

9
John R. Stallings. “Foldings of 𝐺-

trees”. In: Arboreal group theory
(Berkeley, CA, 1988). Vol. 19. Math.

Sci. Res. Inst. Publ. Springer, New

York, 1991, pp. 355–368. doi: 10.
1007/978-1-4612-3142-4_14.

The qualitative part of Theo-

rem 11.5.4 is known as Howson’s theo-
rem, while the inequality is known as

Hanna Neumann’s inequality. Hanna’s

son, Walter Neumann, conjectured

that the 2 could be removed, and this

was later proved independently by

Joel Friedman and Igor Mineyev.

index subgroup of F𝑆. Then ∑𝑧 : BF𝑆 𝑋(𝑧) is merely equivalent to BF𝑇 for some
set 𝑇.

Moreover, if 𝑆 is a finite set of cardinality 𝑛 and the subgroup has index 𝑚,
then 𝑇 can be taken to be a finite set of cardinality 𝑚(𝑛 − 1) + 1.

Proof. By the Flattening Construction 11.2.8, we have an equivalence

flt :
(
∑𝑧 : BF𝑆 𝑋(𝑧)

) ≃→ 𝑉/𝐸, with 𝑉 :≡ 𝑋(•) and 𝐸(𝑥, 𝑦) :≡ ∑𝑠 : 𝑆(𝑥
=−−→
⟲𝑠

𝑦).
By the finite index assumption, 𝑉 is a finite set, say, of cardinality 𝑚 > 0,

and since both 𝑆 and 𝑋(•) are decidable, so is 𝐸.

By Lemma 11.4.7, the graph (𝑉, 𝐸) merely contains a spanning tree

with 𝑚 − 1 edges 𝐸0, and complementary edge set 𝐸1. Hence, using

Exercise 11.2.10, we have a chain of equivalences:

𝑉/𝐸 ≃→ (𝑉/𝐸0)/𝐸1
≃→ 𝟙/𝐸1

≃→ BF𝐸1

This establishes the first claim with 𝑇 :≡ 𝐸1.

If, furthermore, 𝑆 has cardinality 𝑛, then the graph (𝑉, 𝐸) has 𝑚𝑛

edges, as there are precisely 𝑛 outgoing edges from each vertex. Since

𝐸0 has 𝑚 − 1 edges, that leaves 𝑚𝑛 − (𝑚 − 1) = 𝑚𝑛 −𝑚 + 1 = 𝑚(𝑛 − 1) + 1
edges in 𝐸1, as desired. □

(This also has an automata theoretic proof, see below.)

11.5 Intersecting subgroups

Stallings folding
9
.

Theorem 11.5.1. Let 𝐻 be a finitely generated subgroup of 𝐹(𝑆) and let 𝑢 ∈ 𝑆̃∗
be a reduced word. Then 𝑢 represents an element of 𝐻 if and only if 𝑢 is
recognized by the Stallings automaton S(𝐻).
Theorem 11.5.2. Let 𝐻 be a finitely generated subgroup of 𝐹(𝑆). Then 𝐻 has
finite index if and only if S(𝐻) is total.

Furthermore, in this case the index equals the number of vertices of S(𝐻).
Corollary 11.5.3. If 𝐻 has index 𝑛 in 𝐹(𝑆), then rk𝐻 = 1 + 𝑛(card 𝑆 − 1).
Theorem 11.5.4. Suppose 𝐻1 , 𝐻2 are two subgroups of 𝐹 with finite indices
ℎ1 , ℎ2. Then the intersection 𝐻1 ∩ 𝐻2 has finite index at most ℎ1ℎ2.

11.6 Connections with automata (*)

(𝑆 is still a fixed finite set.)

Let 𝜄 : 𝐹(𝑆) → 𝑆̃∗map an element of the free group to the corresponding

reduced word. The kernel of 𝜄 is the 2-sided Dyck language D𝑆.

The following theorem is due to Benois.

Theorem 11.6.1. A subset 𝑋 of 𝐹(𝑆) is rational if and only if 𝜄(𝑋) ⊆ 𝑆̃∗ is a
regular language.
Lemma 11.6.2. Let 𝜌 : 𝑆̃∗ → 𝑆̃∗ map a word to its reduction. Then 𝜌 maps
regular languages to regular languages.

The following is due to Sénizergues:

Theorem 11.6.3. A rational subset of 𝐹(𝑆) is either disjunctive or recognizable.
Given a surjective monoid homomorphism 𝛼 : 𝑆∗ → 𝐺, we define the

corresponding matched homomorphism 𝛼̃ : 𝑆̃∗ → 𝐺 by (𝛼̃(𝑎−1) :≡ 𝛼(𝑎)−1
.

https://doi.org/10.1007/978-1-4612-3142-4_14
https://doi.org/10.1007/978-1-4612-3142-4_14

group presentations 224

10
References TODO. The theorem

is also true if we replace 𝐷𝑆 by its

one-sided variant, but in this case it

reduces to the well-known equiva-

lence between context-free languages

and languages recognizable by push-

down automata.

The Stallings automaton for 𝐻 can

be constructed in time 𝑂(𝑛 log∗ 𝑛),
where 𝑛 is the sum of the lengths of

the generators for 𝐻. [Cite: Touikan:

A fast algorithm for Stallings’ folding

process.] Once this has been con-

structed, we can solve membership

in 𝐻 in linear time.

Theorem 11.6.4 (?). Consider a f.g. group 𝐺 with a surjective homomorphism
𝛼 : 𝐹(𝑆) → 𝐺. A subset 𝑋 of 𝐺 is recognisable by a finite 𝐺-action if and only
if 𝛼̃−1(𝑋) ⊆ 𝑆̃∗ is rational (i.e., regular).
Theorem 11.6.5 (Chomsky–Schützenberger). A language 𝐿 ⊆ 𝑇∗ is context-
free if and only if 𝐿 = ℎ(𝑅 ∩ 𝐷𝑆) for some finite 𝑆, where ℎ :𝑇∗ → 𝑆̃∗ is a
homomorphism, 𝑅 ⊆ 𝑆̃∗ is a regular language, and 𝐷𝑆 is the Dyck language for
𝑆.10

Theorem 11.6.6 (Muller–Schupp, ?). Suppose 𝛼̃ : 𝑆̃∗ → 𝐺 is a surjective
matched homomorphism onto a group 𝐺. Then 𝐺 is virtually free (i.e., 𝐺 has
a normal free subgroup of finite index) if and only if ker(𝛼̃) is a context-free
language.
Theorem 11.6.7.

The Stallings automaton is an inverse automaton: it’s deterministic, and

there’s an edge (𝑝, 𝑎, 𝑞) if and only if there’s one (𝑞, 𝐴, 𝑝). We can always

think of the latter as the reverse edge. (It’s then also deterministic in the

reverse direction.)

Two vertices 𝑝, 𝑞 get identified in the Stallings graph/automaton if

and only if there is a run from 𝑝 to 𝑞 with a word 𝑤 whose reduction is

1. (So a word like 𝑎𝐴𝐴𝑎𝐵𝐵𝑏𝑏.)

Theorem 11.6.8. Let 𝑋 ⊆ 𝐹(𝑆). Then 𝑌 is a coset 𝐻𝑤 with 𝐻 a finitely
generated subgroup, if and only if there is a finite state inverse automaton whose
language (after reduction) is 𝑌.
Corollary 11.6.9. The generalized word problem in 𝐹(𝑆) is solvable: Given
a finitely generated subgroup 𝐻, and a word 𝑢 : 𝑆̃∗, we can decide whether 𝑢
represents an element of 𝐻.

As above, we get a basis for 𝐻 as a free group from a spanning tree in

S(𝐻).
Theorem 11.6.10. We can decide whether two f.g. subgroups of 𝐹(𝑆) are
conjugate. Moreover, a f.g. subgroup 𝐻 is normal if and only if S(𝐻) is
vertex-transitive.

Proof. 𝐺, 𝐻 are conjugate of and only if their cores are equal. □

There are other connections between group theory and language

theory:

Theorem 11.6.11 (Anisimov and Seifert). A subgroup 𝐻 of 𝐺 is rational if
and only if 𝐻 is finitely generated.
Theorem 11.6.12. A subgroup 𝐻 of 𝐺 is recognizable if and only if it has finite
index.

We work transparently through the

equivalence

(BG÷ = BG÷) ≃ (BG ≃ BG)

so that idBG÷ is freely used in place of

reflBG÷ when convenient.

sh𝐺 sh𝐺

𝜑(sh𝐺) 𝜑(sh𝐺).

𝑞

𝑝(sh𝐺) 𝑝(sh𝐺)

ap𝜑(𝑞)

Figure 12.1:

12
Abelian Groups

12.1 Brief overview of the chapter

12.2 Abelian groups

Recall that given a pointed type 𝑋, we coerce it silently to its underlying

unpointed type 𝑋÷ whenever this coercion can be inferred from context.

For example, given a group 𝐺, the type BG ≃ BG can not possibly mean

anything but BG÷ ≃ BG÷ as the operator “≃” acts on bare types. To

refer to the type of pointed equivalences (that is the pointed functions

whose underlying functions are equivalences), we shall use the notation

BG ≃→∗ BG.

12.2.1 Center of a group

Definition 12.2.2. Let 𝐺 be a group. The center of 𝐺, denoted Z(𝐺), is the

group Aut(BG÷ =→BG÷)(reflBG÷). ⌟

There is a natural map evsh𝐺 : (BG÷ =→ BG÷) → BG÷ defined by

evsh𝐺 (𝜑) :≡ 𝜑(sh𝐺), where the path 𝜑 is coerced to a function through

univalence. In particular, evsh𝐺 (reflBG÷) ≡ sh𝐺. It makes the restriction

of this map to the connected component of reflBG÷ a pointed map. In

other words, it defines a group homomorphism

z𝐺 : Hom(Z(𝐺), 𝐺).

such that Bz𝐺 :≡ evsh𝐺 . We will now justify the name center for Z(𝐺),
and connect it to the notion of center for abstract groups in ordinary

mathematics. The homomorphism z𝐺 induces a homomorphism of

abstract groups from abs(Z(𝐺)) to abs(𝐺). By induction on 𝑝 : reflBG÷
=→

𝜑 for 𝜑 : BG÷ =→ BG÷, one proves that apBz𝐺 (𝑝) = 𝑝(sh𝐺): indeed, this is

true when 𝑝 ≡ reflreflBG÷ . One proves furthermore, again by induction

on 𝑝 : reflBG÷
=→ 𝜑, that ap𝜑 = (𝑞 ↦→ 𝑝(sh𝐺)−1𝑞𝑝(sh𝐺)).

In particular, when 𝜑 ≡ reflBG÷ , it shows that for every 𝑝 : reflBG÷
=→

reflBG÷ , the following proposition holds:

∏
𝑔 : UG

𝑝(sh𝐺)𝑔 = 𝑔𝑝(sh𝐺)

In other words, abs (z𝐺) maps elements of abs(𝑍(𝐺)) to elements of

abs(𝐺) that commute with every other elements. (The set of these

elements is usually called the center of the group abs(𝐺) in ordinary

group theory.)

Lemma 12.2.3. The map Bz𝐺 is a set bundle over BG.

225

abelian groups 226

Proof. One wants to prove the proposition isSet((Bz𝐺)−1(𝑥)) for each

𝑥 : BG. By connectedness of BG, it reduces to showing the proposition

only at 𝑥 ≡ sh𝐺. However,

(Bz𝐺)−1(sh𝐺) :≡ ∑
𝜑 : B Z(𝐺)

sh𝐺
=→ 𝜑(sh𝐺)

Recall that B Z(𝐺) is the connected component of reflBG÷ in BG÷ =→ BG÷.
In particular, if (𝜑, 𝑝) and (𝜓, 𝑞) are two elements of the type on the right

hand-side above, the characterization of identity types in sum types

gives an equivalence:

((𝜑, 𝑝) =→ (𝜓, 𝑞)) ≃→ ∑
𝜋 : 𝜑 =→𝜓

𝜋(sh𝐺)𝑝 = 𝑞.

We shall prove that the type on the right is a proposition, and it goes as

follows:

(1) for 𝜋 : 𝜑 =→ 𝜓, the type 𝜋(sh𝐺)𝑝 = 𝑞 is a proposition; hence

∑𝜋 : 𝜑 =→𝜓 𝜋(sh𝐺)𝑝 = 𝑞 is a subset of the set 𝜑 =→ 𝜓, so for elements

(𝜋, !) and (𝜋′, !) of the subset, we have to prove 𝜋 = 𝜋′,

(2) because 𝜋 = 𝜋′ is a proposition, by connectedness of BG, it is enough

to prove 𝜋(sh𝐺) = 𝜋′(sh𝐺),

(3) finally the propositional condition on 𝜋 and 𝜋′ allows us to conclude

that 𝜋(sh𝐺) = 𝑞𝑝−1 = 𝜋′(sh𝐺).

□

Corollary 12.2.4. The induced map abs (z𝐺) : abs(Z(𝐺)) → abs(𝐺) is injec-
tive.

The following result explains how every element of the “abstract

center” of 𝐺 is picked out by abs (z𝐺).
Lemma 12.2.5. Let 𝑔 : UG and suppose that 𝑔ℎ = ℎ𝑔 for every ℎ : UG. The
fiber (apBz𝐺)

−1(𝑔) contains an element.

Proof. One must construct an element 𝑔̂ : reflBG÷ = reflBG÷ such that

𝑔 = 𝑔̂(sh𝐺). We shall use function extensionality and produce an

element 𝑔̂(𝑥) : 𝑥 =→ 𝑥 for all 𝑥 : BG instead. Note that 𝑥 =→ 𝑥 is a set, and

that connectedness of BG is not directly applicable here. We will use a

technique that has already proven useful in many situations in the book,

along the lines of the following sketch:

(1) for a given 𝑥 : BG, if such a 𝑔̂(𝑥) : 𝑥 =→ 𝑥 existed, it would produce an

element of the type 𝑇(𝑔̂(𝑥)) for a carefully chosen type family 𝑇,

(2) aim to prove isContr(∑𝑢 : 𝑥 =→𝑥 𝑇(𝑢)) for any 𝑥 : BG,

(3) this is a proposition, so connectedness of BG can be applied and only

isContr(∑𝑢 : UG 𝑇(𝑢)) needs to be proven,

(4) hopefully, ∑𝑢 : UG 𝑇(𝑢) reduces to an obvious singleton type.

Here, for any 𝑥 : BG, we define the type family 𝑇 : (𝑥 =→ 𝑥) →U by

𝑇(𝑞) :≡ ∏
𝑝 : sh𝐺

=→𝑥

(𝑝𝑔 = 𝑞𝑝).

abelian groups 227

The definition of the universal set

bundle is reminiscent of the notion

of connected component: instead of

selecting elements that are merely

equal to a fixed element 𝑎, the uni-

versal set bundle selects elements

together with mere witnesses of the

equality with 𝑎.

And we claim that ∑𝑞 : 𝑥 =→𝑥 𝑇(𝑞) is contractible for any 𝑥 : BG. Because this

is a proposition, one only need to check that it holds on one point of the

connected type BG, say 𝑥 ≡ sh𝐺. We consider the following composition

of equivalences:

∑
𝑞 : UG

𝑇(𝑞) ≡ ∑
𝑞 : UG

∏
𝑝 : UG
(𝑝𝑔 = 𝑞𝑝)

≃→ ∑
𝑞 : UG

∏
𝑝 : UG
(𝑔 = 𝑞)

≃→ ∑
𝑞 : UG

UG→ (𝑔 = 𝑞)

≃→ ∑
𝑞 : UG
∥UG∥ → (𝑔 = 𝑞)

≃→ ∑
𝑞 : UG
(𝑔 = 𝑞)

≃→ 1

In that composition, the first equivalence is using that 𝑔 commutes with

every other element 𝑝 : UG, so that 𝑝𝑔𝑝−1 = 𝑔. The second equivalence

acknowledges the fact that the codomain (𝑔 = 𝑞) does not depend on

𝑝 anymore, so that the dependent function type inside the sum is a

simple function type. The third equivalence uses the universal property

of propositional truncation under the sum. The fourth equivalence is

the evaluation at |reflsh𝐺 | under the sum. The last equivalence is the

contractibility of singleton types.

We have just shown that for all 𝑥 : BG, the type ∑𝑞 : 𝑥 =→𝑥 𝑇(𝑞) is con-

tractible. We define now 𝑔̂(𝑥) : 𝑥 =→ 𝑥 as the chosen center of contraction

of that type. More precisely, by connectedness of BG, the inverse 𝜑−1

of the exhibited equivalence 𝜑 : ∑𝑞 : UG 𝑇(𝑞) ≃→ 1 produces a dependent

function of type ∏𝑥 : BG 1 ≃→ ∑𝑞 : 𝑥 =→𝑥 𝑇(𝑞), and 𝑔̂ is the pointwise evalua-

tion at the unique element triv of 1. In particular, 𝑔̂(sh𝐺) = 𝜑−1(triv) = 𝑔

as wanted. □

Together, Corollary 12.2.4 and Lemma 12.2.5 show that abs (z𝐺) estab-

lishes an equivalence

(12.2.1) U Z(𝐺) ≃→ ∑
𝑔 : UG

∏
ℎ : UG

𝑔ℎ = ℎ𝑔

In yet other words, B Z(𝐺) :≡ (BG÷ =→ BG÷)(reflBG÷) is (equivalent to) the

classifying type of a group whose abstract group is the “abstract center”

of abs(𝐺).
The following lemma is then immediate:

Lemma 12.2.6. A group 𝐺 is abelian if and only if z𝐺 is an isomorphism of
groups.
Remark 12.2.7. In the style of this book, we could have used Lemma 12.2.6

directly as the definition of abelian groups. However, the definition of z𝐺
would have been too intricate to give properly as early as Definition 4.2.31.

⌟

12.2.8 Universal set bundle and simple connectedness

Let us say that a pointed type (𝐴, 𝑎) is simply connected when both 𝐴 and

𝑎 =→ 𝑎 are connected types.

abelian groups 228

1
The number 1 indicates that 𝐴(𝑎)⟨1⟩
is the universal 1-connected cover of

𝐴.

Definition 12.2.9. Let 𝐴 be a type and 𝑎 :𝐴 an element. The universal set
bundle of 𝐴 at 𝑎 is the type

𝐴(𝑎)⟨1⟩ :≡ ∑
𝑥 :𝐴
∥𝑎 =→ 𝑥∥0

together with the first projection 𝐴(𝑎)⟨1⟩ → 𝐴.
1 ⌟

When needed, we will consider 𝐴(𝑎)⟨1⟩ as a pointed type, with distin-

guished point (𝑎, |refl𝑎|0). Note that when 𝐴 is a groupoid, then the set

truncation is redundant and the universal set bundle of 𝐴 at 𝑎 is then

the singleton at 𝑎. In particular, groupoids have contractible universal

set bundles.

The identity types in 𝐴(𝑎)⟨1⟩ can be understood easily once we intro-

duce the following function for elements 𝑥, 𝑦, 𝑧 :𝐴:

_ · _ : ∥𝑦 =→ 𝑧∥0 × ∥𝑥 =→ 𝑦∥0 → ∥𝑥 =→ 𝑧∥0.

It is defined as follows: given 𝜒 : ∥𝑦 =→ 𝑧∥0, we want to define 𝜒 · _ in

the set ∥𝑥 =→ 𝑦∥0 → ∥𝑥 =→ 𝑧∥0, hence we can suppose 𝜒 ≡ |𝑞|0 for some

𝑞 : 𝑦 =→ 𝑧; now given 𝜋 : ∥𝑥 =→ 𝑦∥0, one want to define |𝑞|0 · 𝜋 in the set

∥𝑥 =→ 𝑧∥0, hence one can suppose 𝜋 ≡ |𝑝|0 for some 𝑝 : 𝑥 =→ 𝑦; finally,

we define

|𝑞|0 · |𝑝|0 :≡ |𝑞 · 𝑝|0.
Then one proves, by induction on 𝑝 : 𝑥 =→ 𝑦, that trp∥𝑎

=→_∥0
𝑝 is equal to

the function 𝛼 ↦→ |𝑝|0 · 𝛼. In particular, there exists an equivalence from

the type of path between two points (𝑥, 𝛼) and (𝑦, 𝛽) of the universal set

bundle 𝐴(𝑎)⟨1⟩ to sum type, analagous to the identification of paths in

sum types:

(12.2.2)

(
(𝑥, 𝛼) =→ (𝑦, 𝛽)

) ≃→ ∑
𝑝 : 𝑥 =→𝑦

|𝑝|0 · 𝛼 = 𝛽.

This description allows us to prove the following lemma.

Lemma 12.2.10. Let 𝐴 be a type and 𝑎 :𝐴 an element. The universal set bundle
𝐴(𝑎)⟨1⟩ is simply connected.

Proof. First, we prove that 𝐴(𝑎)⟨1⟩ is connected. It has a point (𝑎, |refl𝑎|0)
and, for every (𝑥, 𝛼) :𝐴(𝑎)⟨1⟩, one wants ∥(𝑎, |refl𝑎|0) =→ (𝑥, 𝛼)∥. This is

proposition, hence a set, so that one can suppose 𝛼 ≡ |𝑝|0 for a path

𝑝 : 𝑎 =→ 𝑥. Now, the proposition |𝑝|0 · |refl𝑎|0 = |𝑝|0 holds. So one can

use the inverse of the equivalence of Equation (12.2.2) to produce a path

(𝑎, |refl𝑎|0) → (𝑥, 𝛼).
Next, we prove that (𝑎, |refl𝑎|0) =→ (𝑎, |refl𝑎|0) is connected. One uses

again the equivalence of Equation (12.2.2) to produce a composition of

equivalences:

((𝑎, |refl𝑎|0) =→ (𝑎, |refl𝑎|0)) ≃→ ∑
𝑝 : 𝑎=𝑎

(
|𝑝|0 = |refl𝑎|0

)
≃→ ∑

𝑝 : 𝑎=𝑎

(
∥𝑝 =→ refl𝑎∥

)
In other words, (𝑎, |refl𝑎|0) =→ (𝑎, |refl𝑎|0) is equivalent to the connected

component of refl𝑎 in 𝑎 =→ 𝑎. In particular, it is connected. □

Lemma 12.2.11. Let𝐴 be a type pointed at 𝑎 :𝐴. The projection fst :𝐴(𝑎)⟨1⟩ →∗
𝐴 is a universal set bundle in the sense of Definition 3.3.10.

abelian groups 229

2
This is slightly misleading: If 𝐺 is an

abelian group in universeU , then

this definition makes B2𝐺 a pointed

type in a successor universe, which

is not what we want. The solution is

to note that B2𝐺 is a locallyU -small

type, which as a connected type is

the image of the base point map

pt :𝟙→ B2𝐺, so it’s an essentiallyU -

small type by the Replacement Prin-

ciple 2.19.4. So really, B2𝐺 should

be theU -small type equivalent to

U (BG÷)⟨1⟩.

Proof. Let 𝑓 : 𝐵→∗ 𝐴 be a pointed set bundle. We need to show that the

type of pointed functions 𝜑 :𝐴(𝑎)⟨1⟩ →∗ 𝐵 together with an identification

𝑞 : fst =→ 𝑓 𝜑 is contractible. However, such a 𝜑 is uniquely determined

by the family of functions 𝜑𝑥 : ∥𝑎 =→ 𝑥∥0 → 𝑓 −1(𝑥) for 𝑥 :𝐴. For each 𝑥 :𝐴,

𝑓 −1(𝑥) is a set, so 𝜑𝑥 is uniquely determined by 𝜑𝑥◦|_|0 : 𝑎 =→ 𝑥 → 𝑓 −1(𝑥).
By induction on 𝑝 : 𝑎 =→ 𝑥, we prove that 𝜑𝑥(|𝑝|0) = trp 𝑓 -1

𝑝 (𝑏, 𝑓0) where

𝑏 is the element pointing 𝐵 and 𝑓0 the path pointing 𝑓 . Indeed, for

𝑝 ≡ refl𝑎 , we get 𝜑𝑎(|refl𝑎|0) ≡ (𝜑(|refl𝑎|0), 𝑞|refl𝑎 |0) = (𝑏, 𝑓0) because 𝑞 is

an indentification fst =→ 𝑓 𝜑 of pointed functions. □

12.2.12 Abelian groups and simply connected 2-types

We will now give an alternative characterization of the type of abelian

groups, more in line with the geometrical intuition we are trying to build

in this chapter. Recall that a type 𝐴 is called a 2-truncated type, or 2-type
for short, when the identity type 𝑥 =→ 𝑦 is a groupoid for every 𝑥, 𝑦 :𝐴.

Theorem 12.2.13. The type AbGroup of abelian groups is equivalent to the
type of pointed simply connected 2-types.

Proof. Define the map B2 : AbGroup→U ∗ by B2𝐺 :≡U (BG÷)⟨1⟩.2 Prov-

ing that B2𝐺 is a 2-type is equivalent to proving the proposition

isSet(𝑝 =→ 𝑞) for all 𝑝, 𝑞 : 𝑥 =→ 𝑦 and all 𝑥, 𝑦 : B2𝐺. One can then use

connectedness of B2𝐺 and restrict to only show that 𝑝 =→ 𝑞 is a set

for all path 𝑝, 𝑞 : (BG÷ , |idBG÷ |0) =→ (B𝐺÷ , |idBG÷ |0). Recall that there is a

canonical equivalence of type:

(12.2.3)

((BG÷ , |idBG÷ |0) =→ (BG÷ , |idBG÷ |0)) ≃→ ∑
𝑟 : BG÷ =→BG÷

trp𝑟(|idBG÷ |0) =→ |idBG÷ |0

Under that equivalence, 𝑝 and 𝑞 can be rewritten as (𝑝0 , !) and (𝑞0 , !)
with 𝑝0 , 𝑞0 : BG÷ =→ BG÷ and the elements ! are proofs of the proposition

trp𝑝0
(|idBG÷ |0) = |idBG÷ |0 and trp𝑞0

(|idBG÷ |0) = |idBG÷ |0 respectively. As

a consequence, the proposition isSet(𝑝 =→ 𝑞) is equivalent to the propo-

sition isSet(𝑝0
=→ 𝑞0). As part of the definition of the group 𝐺, the type

BG÷ is a 1-type, hence BG÷ =→ BG÷ is also a 1-type through univalence.

This means that isSet(𝑝0
=→ 𝑞0) holds.

So one gets a map, denoted again B2
abusively,

B2 : AbGroup→U =2
∗

where the codomainU =2
∗ is the type of pointed simply connected 2-types,

that is

U =2
∗ :≡ ∑

(𝐴,𝑎) :U ∗

(
isConn(𝐴) × isConn(𝑎 =→ 𝑎) × isGrpd(𝑎 =→ 𝑎)

)
We shall now provide an inverse for this map. Given a pointed simply

connected 2-type (𝐴, 𝑎), one can construct a group, denoted Aut2(𝐴, 𝑎),
with classifying type:

BAut2(𝐴, 𝑎) :≡ (𝑎 =→ 𝑎, refl𝑎).

Indeed, this pointed type is connected because (𝐴, 𝑎) is simply connected,

and it is a 1-type because 𝐴 is a 2-type. Moreover, Aut2(𝐴, 𝑎) is abelian.

abelian groups 230

If 𝑋 ≃→∗ 𝑌 denote the type of pointed

equivalences between pointed types

𝑋,𝑌 :U∗, then the univalence axiom

implies that there is an equivalence

(𝑋 = 𝑌) ≃ (𝑋 ≃→∗ 𝑌).

To see it, let us use the bare definition of abelian groups (cf. Defini-

tion 4.2.31). We shall then prove that for all elements 𝑔, ℎ : refl𝑎
=→ refl𝑎 ,

the proposition 𝑔ℎ = ℎ𝑔 holds. This property holds in even more

generality and is usually called “Eckmann-Hilton’s argument”. It goes as

follows: for 𝑥, 𝑦, 𝑧 :𝐴, for 𝑝, 𝑞 : 𝑥 =→ 𝑦 and 𝑟, 𝑠 : 𝑦 =→ 𝑧 and for 𝑔 : 𝑝 =→ 𝑞

and ℎ : 𝑟 =→ 𝑠, one prove

(12.2.4) ap
·𝑞(ℎ) · ap𝑟·(𝑔) = ap𝑠·_(𝑔) · ap

_·𝑝(ℎ).

This equality takes place in 𝑟 · 𝑝 =→ 𝑠 · 𝑞 and is better represented by

the diagram in Figure 12.2. One prove such a result by induction on

𝑥 𝑦 𝑧

𝑥 𝑦 𝑧

𝑝

𝑞

𝑟

𝑟

𝑠𝑞

𝑔

ℎ

=

𝑥 𝑦 𝑧

𝑥 𝑦 𝑧

𝑝

𝑞

𝑠

𝑟

𝑠

𝑝

𝑔

ℎ

Figure 12.2: Visual representation

of Equation (12.2.4). The vertical

dotted lines denotes composition.

ℎ. Indeed, when ℎ ≡ refl𝑟 , then both sides of the equation reduces

through path algebra to ap𝑟·_(𝑔). Now we are interested in this result

when 𝑥, 𝑦, 𝑧 are all equal to 𝑎 by definition, and 𝑝, 𝑞, 𝑟, 𝑠 are all equal to

refl𝑎 by definition. In that case, one has that aprefl𝑎 ·_ and ap
_·refl𝑎 both act

trivially, and the equation becomes: ℎ · 𝑔 = 𝑔 · ℎ.

One still has to prove that the function Aut2
is an inverse for B2

. Given

an abelian group 𝐺, the proof of Lemma 12.2.10 gives an equivalence

between BAut2(B2𝐺) and the connected component of reflBG÷ in BG÷ =→
BG÷. By definition, this is the classifying type of Z(𝐺). Being abelian, 𝐺

is isomorphic to its center (Lemma 12.2.6), and so it yields an element

of Aut2(B2𝐺) =→Group 𝐺. Conversely, take a pointed simply connected

2-type (𝐴, 𝑎). We want to produce a pointed equivalence Φ : (𝐴, 𝑎) ≃→
B2(Aut2(𝐴, 𝑎)). One should first notice that the function

(12.2.5) ev𝑎refl𝑎 BAut2 (B2(Aut2(𝐴, 𝑎))
)
≡ ((𝑎 =→ 𝑎) =→ (𝑎 =→ 𝑎))(refl𝑎 =→𝑎) → (𝑎

=→ 𝑎, refl𝑎).

that maps a path

(𝑝, !) : (𝑎 =→ 𝑎, |refl𝑎 =→𝑎|0) =→ (𝑎 =→ 𝑎, |refl𝑎 =→𝑎|0)

to the evaluation 𝑝(refl𝑎) : 𝑎 =→ 𝑎 is an equivalence, because Aut2(𝐴, 𝑎) is
an abelian group.

We will now define a pointed map Φ : (𝐴, 𝑎) →∗ B2(Aut2(𝐴, 𝑎)), and

prove subsequently that this is an equivalence. Let 𝑇 :𝐴 →U be the

type family (of sets) define by

𝑇(𝑎′) :≡ ∑
𝛼 : ∥(𝑎 =→𝑎)≃(𝑎 =→𝑎′)∥0

∏
𝑝 : 𝑎 =→𝑎′

𝛼 = |𝑝 · _|0

We claim that 𝑇(𝑎′) is contractible for all 𝑎′ :𝐴. By connectedness of 𝐴, it

abelian groups 231

3
David Wärn. Eilenberg-MacLane
spaces and stabilisation in homotopy
type theory. 2023. arXiv: 2301.03685
[math.AT].

is equivalent to show that 𝑇(𝑎) is contractible. However,

𝑇(𝑎) ≡ ∑
𝛼 : ∥(𝑎 =→𝑎) ≃→(𝑎 =→𝑎)∥0

∏
𝑝 : 𝑎 =→𝑎

𝛼 = |𝑝 · _|0

≃ ∑
𝛼 : ∥(𝑎 =→𝑎) ≃→(𝑎 =→𝑎)∥0

𝛼 = |id𝑎=𝑎|0

≃ 1

Then, we define Φ(𝑎′) to be the element (𝑎 =→ 𝑎′, 𝜅𝑎′) :U (𝑎 =→𝑎)⟨1⟩ where

𝜅𝑎′ is the first projection of the center of contraction of 𝑇(𝑎′). In par-

ticular, following the chain of equivalences above, Φ(𝑎) is defined as

(𝑎 =→ 𝑎, |refl𝑎 =→𝑎|0), hence Φ(𝑎) is trivially pointed by a reflexivity path.

To verify that Φ, thus defined, is an equivalence, one can use connect-

edness of B2(Aut2(𝐴, 𝑎)) and only check that Φ−1(𝑎 =→ 𝑎, |refl𝑎 =→𝑎|0) is

contractible. However, there is a canonical equivalence of type:

Φ−1(𝑎 =→ 𝑎, |refl𝑎 =→𝑎|0) ≃→ ∑
𝑎′ :𝐴

∑
𝜑 : (𝑎 =→𝑎)≃(𝑎 =→𝑎′)

|𝜑|0 = 𝜅𝑎′ .

So we will show that the type on the right hand-side is contractible.

For an element 𝑎′ :𝐴 together with 𝜑 : (𝑎 =→ 𝑎) ≃ (𝑎 =→ 𝑎′) such that the

proposition |𝜑|0 = 𝜅𝑎′ holds, a path between (𝑎, id𝑎 =→𝑎 , !) and (𝑎′, 𝜑, !)
consists of a path 𝑝 : 𝑎 =→ 𝑎′ and a path 𝑞 : (𝑥 ↦→ 𝑝𝑥) =→ 𝜑. We have a

good candidate for 𝑝, namely 𝑝 :≡ 𝜑(refl𝑎) : 𝑎 =→ 𝑎′. However we don’t

have quite 𝑞 yet. Consider, for any 𝑎′ :𝐴, the function

ev𝑎
′

refl𝑎 : ((𝑎 =→ 𝑎, |refl𝑎 =→𝑎|0) = (𝑎 =→ 𝑎′, 𝜅𝑎′)) → (𝑎 =→ 𝑎′)

defined as (𝜓, !) ↦→ 𝜓(refl𝑎). Note that ev𝑎refl𝑎 is precisely the equivalence

BAut2(B2Aut2(𝐴, 𝑎))÷ ≃ (𝑎 = 𝑎) described in Equation (12.2.5). Hence,

by connectedness of 𝐴, one gets that the proposition isEquiv(ev𝑎
′

refl𝑎)
holds for all 𝑎′ :𝐴. In particular, because the propositions |𝜑|0 = 𝜅𝑎′

and |𝑝 · _|0 = 𝜅𝑎′ holds, one gets elements (𝜑, !) and (𝑥 ↦→ 𝑝𝑥, !) in the

domain of ev𝑎
′

refl𝑎 . Their images ev𝑎
′

refl𝑎 (𝜑, !) and ev𝑎
′

refl𝑎 (𝑥 ↦→ 𝑝𝑥, !) are both

identifiable with 𝑝. By composition, we obtain a path (𝑥 ↦→ 𝑝𝑥, !) =→ (𝜑, !)
in the domain. The first component provide the path 𝑞 : (𝑥 ↦→ 𝑝𝑥) =→ 𝜑

that we wanted. □

12.2.14 Higher deloopings

The function B2
defined in the proof of Theorem 12.2.13 provides a

delooping of BG whenever 𝐺 is abelian. That is, there is an identification

ΩB2𝐺 =→ BG. A systematic way of obtaining such deloopings has been

developed by David Wärn
3
, that can be applied here to give an alternative

definition of B2𝐺, and to obtain further deloopings of it.

Definition 12.2.15 (Wärn). Given a pointed type 𝑋, the type of 𝑋-torsors
is

𝑇𝑋 :≡ ∑
𝑌 :U
∥𝑌∥ ×

(
∏
𝑦 :𝑌
(𝑌, 𝑦) ≃→∗ 𝑋

)
.

The type of pointed 𝑋-torsors is 𝑇𝑋∗ :≡ ∑𝑡 :𝑇𝑋 fst 𝑡. ⌟

The usefulness of these definitions in the context of deloopings comes

from the following proposition.

https://arxiv.org/abs/2301.03685
https://arxiv.org/abs/2301.03685

abelian groups 232

4
Notice that the construction of an

equivalence 𝑇𝑋 ≃→U (𝑋÷)⟨1⟩ that we

carried for 𝑋 ≡ BG relies only on 𝑋÷
being connected and ev𝑋÷ ,𝑋÷ ↾refl𝑋÷
being an equivalence. Such types 𝑋

are called central and are studied in

details by Buchholtz et al.
5
.

5
Ulrik Buchholtz et al. “Central H-

spaces and banded types”. 2023.

arXiv: 2301.02636.

Lemma 12.2.16 (Wärn). Let 𝑋 be a pointed type. If 𝑇𝑋∗ is contractible, then
for any pointed 𝑋-torsors (𝑡 , 𝑦), the pointed type (𝑇𝑋, 𝑡) is a delooping of 𝑋.

Proof. Suppose (𝑡 , 𝑦) is a center of contraction for 𝑇𝑋∗. By contracting

away (Lemma 2.9.10) in two different ways, we obtained a composition

of equivalences:

(𝑡 =→ 𝑡) ≃→ ∑
𝑢 :𝑇𝑋

fst 𝑢 × (𝑡 =→ 𝑢) ≃→ fst 𝑡

that maps refl𝑡 to 𝑦. In other words, this equivalence, trivially pointed,

presents (𝑇𝑋, 𝑡) as a delooping of (fst 𝑡 , 𝑦). Moreover, the 𝑋-torsor 𝑡

comes by definition with an identification (fst 𝑡 , 𝑦) ≃→∗ 𝑋. So in the end,

we have an equivalence (𝑇𝑋, 𝑡) ≃→∗ 𝑋. □

Exercise 12.2.17. Recall that a section (see Definition 2.17.1 and its ac-

companying footnote) of a function 𝑓 :𝐴 → 𝐵 is a function 𝑠 : 𝐵 → 𝐴

together with an identification 𝑓 ◦ 𝑠 =→ id𝐵. Construct an equivalence

from the type sec 𝑓 of sections of 𝑓 to the type ∏𝑏 : 𝐵 ∑𝑎 :𝐴 𝑏
=→ 𝑓 (𝑎). ⌟

Consider the evaluation function ev𝑋÷ ,𝑌 : (𝑋÷ =→ 𝑌) → 𝑌 (defined

by path-induction, sending refl𝑋 to the distinguished point of 𝑋). In

other words, the function ev𝑋÷ ,𝑌 takes an identification of 𝑋÷ with 𝑌 and

returns the point in 𝑌 corresponding to the distinguished point of 𝑋

under this identification. Applying Exercise 12.2.17 to ev𝑋÷ ,𝑌 we get an

equivalence of type

𝑇𝑋 ≃→ ∑
𝑌 :U
∥𝑌∥ × sec(ev𝑋÷ ,𝑌).

This alternative description of the type of 𝑋-torsors is the key ingredient

to compare Wärn’s delooping of the classifying type of an abelian group

with our.

Lemma 12.2.18. For any abelian group 𝐺, the type 𝑇(BG) can be identified with
B2𝐺.

Proof. Let 𝐺 be an abelian group. We first construct, for each type 𝑌, a

function 𝑓𝑌 : ∥𝑌∥ × sec(evBG÷ ,𝑌) → ∥BG÷ =→ 𝑌∥0, and then prove that 𝑓𝑌

is an equivalence. Given a type𝑌 and an element (!, 𝑠) : ∥𝑌∥×sec(ev𝑋÷ ,𝑌),
we can easily prove that𝑌 is connected: being connected is a proposition,

so we can assume that we have an actual 𝑦 :𝑌 and then 𝑠(𝑦) : BG÷ =→ 𝑌

proves that 𝑌 is as connected as BG÷ is. Consequently 𝑠 must send 𝑌

into one of the connected component of BG÷ =→ 𝑌, that we choose to be

𝑓𝑌(!, 𝑠). With this definition, the fiber of 𝑓𝑌 at any given 𝑐 : ∥BG÷ =→ 𝑌∥0

can be identified with the type of sections 𝑠 of evBG÷ ,𝑌 with values in

𝑐. However, for any 𝑍 and 𝑝 : BG÷ =→ 𝑍 the restriction of the evaluation

evBG÷ ,𝑍 ↾𝑝 : (BG÷ =→ 𝑍)(𝑝) → 𝑍 is an equivalence: indeed, by induction,

we only have to show it for 𝑝 ≡ reflBG÷ , in which case evBG÷ ,BG÷ ↾reflBG÷ is

exactly the map Bz𝐺 defined in Section 12.2.1, which is an equivalence

since 𝐺 is abelian by Lemma 12.2.6. Thus, given any 𝑝, the fiber of 𝑓𝑌 at

|𝑝|0 is contractible. Being contractible is a proposition, hence a set, so

it follows that the fiber of 𝑓𝑌 at any 𝑐 : ∥BG÷ =→ 𝑌∥0 is contractible. In

other words, 𝑓𝑌 is an equivalence, as announced. We have thus a chain

of equivalences:
4
.

https://arxiv.org/abs/2301.02636

abelian groups 233

𝑇(BG) ≃→ ∑
𝑌 :U
∥𝑌∥ × sec(ev𝑋÷ ,𝑌) ≃→ ∑

𝑌 :U
∥BG÷ =→ 𝑌∥0 ≡ B2𝐺

□

Notice that where Wärn’s method shines, compared to our, is in

producing further delooping B𝑛𝐺 for 𝑛 ≥ 3.

12.3 Direct sums and reduced wreath products

Sketch: We saw in Section 8.6 how to produce sums of groups, and

noticed that a sum of abelian groups is rarely abelian. Indeed, the free

group on two generators F2 is the sum of two copies of ℤ.

But a very similar construction works to produce sums of abelian
groups.
Example 12.3.1 (Lamplighter group). C2 ≀ℤ ⌟

12.4 Stabilization

1
In contrast, in Exercise 13.1.4 you

are asked to prove that the group

of a ring is always abelian, as a con-

sequence of the extra structure and

properties.

2
See Section 7.2 for the monoid laws.

13
Rings, fields and vector spaces

In this chapter we will extend the hierarchy of algebraic structures

from monoids (Definition 7.2.1) and groups (Definition 4.2.8) to rings

(Definition 13.1.2), fields (??), and vector spaces (??). Of all these

structures there are several varieties, satisfying additional properties,

such as abelian groups (Section 12.2), non-trivial rings (??), commutative

rings (??),

Quotients; subspaces (= ?). Bases and so. Dual space; orthogonality.

(all of this depends on good implementations of subobjects). Eigen-stuff.

Characteristic polynomials; Hamilton-Cayley.

13.1 Rings, abstract and concrete

A ring is an algebraic structure that consists of a group and a monoid that

share the same underlying set. The interaction between the respective

operations is governed by laws that are called the distributivity laws. The

standard example of a (commutative) ring is the ring with set of integers

as underlying set, with addition as group operation and multiplication

as monoid operation. Note that multiplication in a ring need not be

commutative.
1

We start by defining rings abstractly.

13.1.1 Abstract rings

We follow the convention that the group data of an abstract group are

denoted by 0, +, − and the monoid data by 1, · .
Definition 13.1.2. An abstract ring R consists of an abstract group

(𝑅, 0,+,−) and a monoid (𝑅, 1, ·) with the same underlying set 𝑅. More-

over, the following equations should hold for all 𝑎, 𝑏, 𝑐 :𝑅:

(1) 𝑎 · (𝑏 + 𝑐) = 𝑎 · 𝑏 + 𝑎 · 𝑐 (the left distributive law)

(2) (𝑎 + 𝑏) · 𝑐 = 𝑎 · 𝑐 + 𝑏 · 𝑐 (the right distributive law)

The latter two properties are together denoted by DistrLaws(𝑅, ·,+).
The abstract ring R is called non-trivial if 0 ≠ 1 and commutative if its

multiplication · is commutative, that is, if 𝑎 · 𝑏 = 𝑏 · 𝑎 for all 𝑎, 𝑏 :𝑅. ⌟

The abstract group (𝑅, 0,+,−) is called the (additive) group of R , and

the monoid (𝑅, 1, ·) the (multiplicative) monoid of R .

Definition 13.1.3. The type of abstract rings is defined as
2

Ring :≡ ∑
(𝑅,0,+,−) : Groupabs

∑
𝑒 :𝑅

∑
𝜇 :𝑅→𝑅→𝑅

MonoidLaws(𝑅, 𝑒, 𝜇) ×DistrLaws(𝑅, 𝜇,+).

234

rings, fields and vector spaces 235

3
These functions provide two ways

to write the product 𝑎 · 𝑏, see the

coherence law in Definition 13.1.8(2).

4
It will follow as in Exercise 13.1.4

that the group 𝑅 is abelian.

5
We call these rings “mixed” since

they are based on a concrete group 𝑅

and data referring to abs(𝑅).

6
The reader may recognize the degree

𝑚 map from Definition 3.6.5 as a

special case.

The type CRing of commutative rings is similar to the type of rings with

the additional property ∏𝑎,𝑏 :𝑅 𝜇(𝑎, 𝑏) = 𝜇(𝑏, 𝑎). ⌟

Exercise 13.1.4. Let R be an abstract ring. Show that the additive group

of R is abelian. Hint: elaborate (𝑎 + 1) · (𝑏 + 1). ⌟

Definition 13.1.5. Let R , S : Ring be abstract rings, with R consisting of

an abstract group R with underlying set 𝑅 and a monoid (𝑅, 1𝑅 , ·𝑅), and

S consisting of an abstract group S with underlying set 𝑆 and a monoid

(𝑆, 1𝑆 , ·𝑆). An abstract ring homomorphism from R to S is an abstract

homomorphism 𝑓 : Homabs(R, S) that is a monoid homomorphism from

(𝑅, 1𝑅 , ·𝑅) to (𝑆, 1𝑆 , ·𝑆). ⌟

Example 13.1.6. We elaborate the abstract ring of polynomials with

integer coefficients. ⌟

13.1.7 Mixed rings

Here we explore a definition of a ring that is based on a concrete group

𝐺 and left and right multiplications that are still half abstract.

We first note that, for any abstract ring R and elements 𝑎, 𝑏 :𝑅, the

left multiplication function (𝑎 · _) and the right multiplication function

(_ · 𝑏) are abstract homomorphisms of the additive group (𝑅, 0,+,−)
of R to itself.

3
There are two ways to compose them: (𝑎 · (_ · 𝑏))

and ((𝑎 · _) · 𝑏). Equality of the latter two functions is an elegant way

of expressing associativity. These observations lead to the following

alternative definition of a ring.

Definition 13.1.8. An mixed ring 𝑅 consists of a group
4

also denoted 𝑅

together with a symmetry 1𝑅 : UR and two maps ℓ , 𝑟 : UR→ Hom(𝑅, 𝑅)
from the set of symmetries in 𝑅 to the set of homomorphisms from 𝑅

to 𝑅.
5

Given 𝑔 : UR, we write ℓ𝑔 for the homomorphism ℓ (𝑔) and 𝑟𝑔 for

𝑟(𝑔). Moreover, the following equations should hold.

(1) ℓ1𝑅 = id𝐺 = 𝑟1𝑅 (the multiplicative unit laws)

(2) (Uℓ𝑔)(ℎ) = (Urℎ)(𝑔), for all 𝑔, ℎ : UR (the coherence law)

(3) ℓ ◦ 𝑟 = 𝑟 ◦ ℓ (the associativity law)

The ring 𝑅 is called commutative if ℓ = 𝑟, and non-trivial if 1𝑅 ≠ refl𝑅. ⌟

The coherence law (2) allows us to abbreviate both (Uℓ𝑔)(ℎ) and

(Urℎ)(𝑔) by 𝑔 · ℎ. We will do this when no confusion can occur. Then,

ℓ = 𝑟 amounts to 𝑔 · ℎ = ℎ · 𝑔, for all 𝑔, ℎ : UG, as could be expected from

the abstract case.

We proceed by giving the standard example of the integers as a ring

in the sense of Definition 13.1.8.

Example 13.1.9. Consider the group ℤ classified by the circle. Using

the same notation ℤ also for the ring, take 1ℤ :≡ ⟲ and ℓ : (• =→ •) →
Hom(ℤ,ℤ) defined as follows. For every 𝑔 : •

=→ •, let ℓ𝑔 be the homo-

morphism classified by the map Bℓ𝑔(•) :≡ •, Bℓ𝑔(⟲) B 𝑔, and pointed

by reflexivity.
6

Take 𝑟 :≡ ℓ . Now the unit laws, the coherence law and

the associativity law can easily be verified. It follows that (ℤ, 1ℤ , ℓ , !) is a

non-trivial commutative ring. ⌟

rings, fields and vector spaces 236

pt𝑌 𝑓 (pt𝑋)

pt𝑌 𝑔(pt𝑋)

ℎ(pt𝑋)

𝑓pt

𝑔pt
𝑘(pt𝑋)≡

𝑔pt

ℎpt
𝑘′(pt𝑋)

Figure 13.1: Path for (𝑘′ ·ptw 𝑘).

7
We use 𝑘÷ to denote the first com-

ponent of 𝑘, as we do for non-

dependent pointed maps, but we

will often drop this subscript “÷”.

We use the notation “·ptw” for point-

wise composition of 𝑘 and 𝑘′, as well

as of 𝑘÷ and 𝑘′÷.

8
Here cst𝐴𝑏 is from Definition 2.2.1.

We may omit superscripts 𝐴 if 𝐴 is

clear from the context.

9
Of course, ∑𝑥 : 𝐵(pt𝐵

=→ 𝑥) is con-

tractible. In Definition 13.1.21 we

will see why cst𝐴∗ is useful.

10
By laws of symmetry and right unit.

Definition 13.1.10. The type of rings is defined as

Ring :≡ ∑
𝑅 : Group

∑
1𝑅 : UR

∑
ℓ ,𝑟 : UR→Hom(𝑅,𝑅)

RingProperties(𝑅, 1𝑅 , ℓ , 𝑟).

The type CRing of commutative rings is similar to the type of rings but

with RingProperties(𝑅, 1𝑅 , ℓ , 𝑟) × (ℓ = 𝑟). ⌟

Exercise 13.1.11. Let (𝑅, 1𝑟 , ℓ , 𝑟) be an mixed ring. Show that UR is an

abstract ring with additive group abs(𝑅) and multiplicative monoid

(UR, 1𝑅 , ·). ⌟

13.1.12 Move to a better place (Ch. 11 or 2)

Definition 13.1.13. Let 𝑋 and 𝑌 be pointed types and 𝑓 , 𝑔 :𝑋 →∗ 𝑌
pointed maps from 𝑋 to 𝑌. Recall from Construction 2.21.8 the equiva-

lence ptw∗ of type (𝑓 =→ 𝑔) ≃→ 𝐻(𝑓 , 𝑔), where

𝐻(𝑓 , 𝑔) :≡ ∑
𝑘 : ∏𝑥 :𝑋 (𝑓÷(𝑥) =→𝑔÷(𝑥))

((𝑘(pt𝑋) · 𝑓pt) =→ 𝑔pt).

Assume also ℎ :𝑋 →∗ 𝑌 and let 𝑘 :𝐻(𝑓 , 𝑔) and 𝑘′ :𝐻(𝑔, ℎ). In line

with the notation for pointed maps, we denote the pair 𝑘 by (𝑘÷ , 𝑘pt), an

likewise for 𝑘′. Define the pointwise composition (𝑘′ ·ptw 𝑘) of 𝑘′ and 𝑘 by
7

(
𝑘′ ·ptw 𝑘

)
:≡
(
𝑘′÷ ·ptw 𝑘÷ , 𝑘

′
pt · ap(𝑘′÷(pt𝑋)·_)(𝑘pt)

)
, where

(𝑘′÷ ·ptw 𝑘÷) :≡ (𝑥 ↦→ 𝑘′÷(𝑥) · 𝑘÷(𝑥)).

In Figure 13.1, the upper-right triangle represents the type of 𝑘pt, the

upper-left triangle is a reflexivity triangle, the lower triangle represents

the type of 𝑘′pt, and the outer diagram represents the type 𝑘′(pt𝑋) ·
𝑘(pt𝑋) · 𝑓pt

=→ ℎpt of 𝑘′pt · ap(𝑘′÷(pt𝑋)·_)(𝑘pt). Thus we see that (𝑘′ ·ptw 𝑘) is
an element of 𝐻(𝑓 , ℎ). ⌟

Construction 13.1.14. Let conditions be as in Definition 13.1.13. Let
𝑝 : (𝑓 =→ 𝑔) and 𝑞 : (𝑔 =→ ℎ). Then we have an identification of ptw∗(𝑞𝑝) with
ptw∗(𝑞) ·ptw ptw∗(𝑝).

Implementation of Construction 13.1.14. By path induction on 𝑞, it suffices

to construct an identification of ptw∗(𝑝) and ptw∗(refl𝑔) ·ptw ptw∗(𝑝).
Using Construction 2.21.8 and Principle 2.9.18 we can identify ptw∗(refl𝑔)
with the pair ((𝑥 ↦→ refl𝑔÷(𝑥)), refl𝑔pt). For use in Figure 13.1 we write the

latter pair as (𝑘′÷ , 𝑘′pt), noting that ℎ ≡ 𝑔 in this case. Writing also (𝑘÷ , 𝑘pt)
for ptw∗(𝑝), the goal is to identify (𝑘′ ·ptw 𝑘)with 𝑘. This identification is

easily obtained by using that refl𝑔(𝑥) · 𝑟 is definitionally equal to 𝑟, for all

𝑥 :𝑋 and 𝑟 : 𝑓 (𝑥) =→ 𝑔(𝑥). □

Definition 13.1.15. Let 𝐴 and 𝐵 be pointed types. For any 𝑏 : 𝐵 and

𝑝 : pt𝐵
=→ 𝑏, define the pointed constant map cst𝐴∗ (𝑏, 𝑝) :𝐴→∗ 𝐵 at (𝑏, 𝑝) by

setting cst𝐴∗ (𝑏, 𝑝) :≡ (cst𝐴𝑏 , 𝑝).8 Thus cst𝐴∗ is a function from ∑𝑥 : 𝐵(pt𝐵
=→

𝑥) to 𝐴→∗ 𝐵.
9 ⌟

Remark 13.1.16. In case 𝑓 and 𝑔 in Construction 2.21.8 are both the point

of 𝑋 →∗ 𝑌, i.e., 𝑓 ≡ 𝑔 ≡ pt𝑋→∗𝑌 ≡ (cstpt𝑌 , reflpt𝑌), it is convenient to

work with a minor variant of ptw∗ of type Ω(𝑋 →∗ 𝑌) ≃→ (𝑋 →∗ Ω𝑌).
The latter type is obtained by definitional simplifications and replacing

rings, fields and vector spaces 237

11
Henceforth we simply write 𝑓 for 𝑓÷.

12
In a picture:

refl (refl · 𝑝) ≡ 𝑝

refl (refl · 𝑝) ≡ 𝑝

_·𝑝

𝛼 ap
_·𝑝 (𝛼)

_·𝑝

13
As obvious as this may seem, it

requires a generalization of the type

of 𝛼 to enable path induction, and

we delegate this to Exercise 13.1.19.

(ℎ(pt𝑋) · reflpt𝑌)
=→ reflpt𝑌 in 𝐻(pt𝑋→∗𝑌 , pt𝑋→∗𝑌) from Definition 13.1.13

by an equivalent type:
10

𝐻(pt𝑋→∗𝑌 , pt𝑋→∗𝑌)
≃→
(

∑
ℎ :𝑋→Ω𝑌

(reflpt𝑌
=→ ℎ(pt𝑋))

)
≡ (𝑋 →∗ Ω𝑌).

Abusing notations, we denote this variant also by ptw∗. ⌟

The following construction is useful since it will allow us to simplify

identifying two pointed maps to identifying their underlying unpointed

maps in some important cases. The construction is based on BCFR which

in turn uses a result by Cavallo.

Construction 13.1.17. Let 𝐴 be a pointed type and let ev : (id𝐴 =→ id𝐴) →
(pt𝐴

=→ pt𝐴) be the evaluation map that sends identifications 𝑖 : (id𝐴 =→ id𝐴)
to paths ptw(𝑖)(pt𝐴) : (pt𝐴

=→ pt𝐴). Furthermore, let 𝑠 : (pt𝐴
=→ pt𝐴) →

(id𝐴 =→ id𝐴) be a section of ev, that is, we are given identifications ev(𝑠(𝑝)) =→
𝑝 for all 𝑝 : (pt𝐴

=→ pt𝐴). Let also 𝐵 be a pointed type and consider pointed
maps 𝑓 , 𝑓 ′ : 𝐵→∗ 𝐴 with underlying unpointed maps 𝑓÷ , 𝑓 ′÷ : 𝐵→ 𝐴.

Then we have a map (𝑓÷ =→ 𝑓 ′÷) → (𝑓 =→ 𝑓 ′).

Implementation of Construction 13.1.17. By path induction on 𝑓÷
=→ 𝑓 ′÷ we

may take 𝑓÷ ≡ 𝑓 ′÷ , so that the goal is to identify
11 (𝑓 , 𝑓pt) with (𝑓 , 𝑓 ′pt), for

two paths 𝑓pt , 𝑓
′

pt : (pt𝐴
=→ 𝑓 (pt𝐵)).

Define 𝑟 :≡ (𝑓 ′pt · 𝑓 −1
pt) : (𝑓 (pt𝐵)

=→ 𝑓 (pt𝐵)). By Construction 2.21.8, it

suffices to give an element ℎ : ∏𝑏 : 𝐵(𝑓 (𝑏) =→ 𝑓 (𝑏)) and an identification

of ℎ(pt𝐵)with 𝑟. By path induction on 𝑓pt we may take pt𝐴 ≡ 𝑓 (pt𝐵), so

that the domain of 𝑠 is 𝑓 (pt𝐵)
=→ 𝑓 (pt𝐵), and so 𝑟 is an element of this

domain. Now take ℎ(𝑏) :≡ ptw(𝑠(𝑟))(𝑓 (𝑏)) for any 𝑏 : 𝐵. Then indeed

ℎ(𝑏) : (𝑓 (𝑏) =→ 𝑓 (𝑏)), and we can identify ℎ(pt𝐵) ≡ ptw(𝑠(𝑟))(𝑓 (pt𝐵)) ≡
ev(𝑠(𝑟))with 𝑟 since 𝑠 is a section of ev. □

Construction 13.1.18. Let 𝐴 be a pointed type and Ω𝐴 its pointed loop type.
We use pt for pt𝐴 and refl for reflpt𝐴 . Let ev : (idΩ𝐴

=→ idΩ𝐴) → (refl =→
refl) be the evaluation map that sends 𝑖 : (idΩ𝐴

=→ idΩ𝐴) to ptw(𝑖)(refl). Then
ev has a section, that is, a map 𝑠 : (refl =→ refl) → (idΩ𝐴

=→ idΩ𝐴) with
identifications ev(𝑠(𝛼)) =→ 𝛼 for all 𝛼 : (refl =→ refl).

Implementation of Construction 13.1.18. Recall from Principle 2.9.18 the

equivalence ptw identifying idΩ𝐴
=→ idΩ𝐴 with ∏𝑝 :Ω𝐴(𝑝 =→ 𝑝). Since

(refl · 𝑝) and 𝑝 are definitionally equal for any 𝑝 :Ω𝐴, any 𝛼 : (refl =→ refl)
gives a path ap

_·𝑝(𝛼) : (𝑝
=→ 𝑝).12

Taking refl for 𝑝, ap
_·refl(𝛼) can be

identified with 𝛼.
13

For any 𝛼 : (refl =→ refl) and 𝑝 :Ω𝐴, define 𝑠𝛼 by

𝑠𝛼(𝑝) :≡ ap
_·𝑝(𝛼). Then ptw−1(𝑠𝛼) : (idΩ𝐴

=→ idΩ𝐴). Hence

𝑠 :≡ (𝛼 ↦→ ptw−1(𝑠𝛼)) : (refl =→ refl) → (idΩ𝐴
=→ idΩ𝐴),

and we have ev(𝑠(𝛼)) ≡ ptw(ptw−1(𝑠𝛼))(refl) =→ 𝛼 by Principle 2.9.18

and Exercise 13.1.19. □

Exercise 13.1.19. Given a type 𝐴with elements 𝑎, 𝑥 :𝐴 and a path 𝑞 : 𝑎 =→
𝑥, define 𝜌𝑞 : (𝑞 · refl𝑎) =→ 𝑞 by induction on 𝑞. For any 𝑝 : 𝑎 =→ 𝑎 and

𝛽 : (𝑝 =→ refl𝑎), define 𝑖(𝛽) : ap
_·refl𝑎 (𝛽)

=→ 𝛽 · 𝜌𝑝 by induction on 𝛽. Now,

give an identification of ap
_·refl𝑎 (𝛼) and 𝛼 for any 𝛼 : (refl𝑎

=→ refl𝑎). ⌟

rings, fields and vector spaces 238

14
Here we mean composition as

pointed maps, so that the pointing

path O(𝑓)(𝑔)pt is defined in Defini-

tion 2.21.1 as 𝑓 (𝑔pt) · 𝑓pt.

15
Here 𝜌 𝑓pt : 𝑓pt · reflpt𝐵

=→ 𝑓pt is

defined by induction on 𝑓pt, setting

𝜌reflpt𝐵
:≡ reflreflpt𝐵

.

16
When 𝐴 is clear from the context we

may simply write ev. Similarly for

𝜀𝐴 defined next.

17
Recall that reflexivity paths cancel

definitionally on the left.

18
Note that cstpt𝐴 (𝑝) :Ω𝐴 for any 𝑝.

19

O𝐴 O 𝐵

Ω𝐴 Ω𝐵

O(𝑓)

ev𝐴 ev𝐵

Ω(𝑓)

Figure 13.2: Ω(𝑓) and O(𝑓) corre-

spond.

20
We often leave out the “ap

_
’s”.

Corollary 13.1.20. The combination of Construction 13.1.17 and Construc-
tion 13.1.18 yields a function from (𝑓÷ =→ 𝑓 ′÷) to (𝑓 =→ 𝑓 ′) for all pointed maps
𝑓 , 𝑓 ′ : 𝐵→∗ Ω𝐴.

Recall Ω from Definition 4.2.10 and Definition 4.4.3, which together

form a wild functor U ∗ →U ∗, cf. Section 6.4. In the following we will

define a closely related wild functor that is sometimes easier to use.

Definition 13.1.21. For any pointed type 𝐴, define O𝐴 :≡ (S1 →∗ 𝐴).
Let 𝐴 and 𝐵 be pointed types and let 𝑓 :𝐴 →∗ 𝐵 be a pointed map.

Define O(𝑓) : O𝐴→∗ O 𝐵 to be composition with 𝑓 , that is, for 𝑔 : (S1 →∗
𝐴), O(𝑓)(𝑔) :≡ (𝑓 ◦ 𝑔) : (S1 →∗ 𝐵).14

We point O(𝑓) as follows. First,

observe that ptO 𝐵 ≡ ptS1→∗𝐵 ≡ (cstpt𝐵 , reflpt𝐵) and O(ptO𝐴) ≡ 𝑓 ◦ ptO𝐴 ≡
(cst 𝑓 (pt𝐴) , 𝑓pt). So both ptO 𝐵 and O(ptO𝐴) are images of cstS1

∗ , and we

can obtain a path between them by applying cstS1

∗ to the unique path

(𝑓pt , 𝜌 𝑓pt) between (pt𝐵 , reflpt𝐵) and (𝑓 (pt𝐴), 𝑓pt) in the contractible type

∑𝑥 : 𝐵(pt𝐵
=→ 𝑥).15

The situation is illustrated in the diagram below and

we define O(𝑓)pt :≡ apcst∗(𝑓pt , 𝜌 𝑓pt). ⌟

(pt𝐵 , reflpt𝐵) (cstpt𝐵 , reflpt𝐵) ≡ ptO 𝐵

(𝑓 (pt𝐴), 𝑓pt) (cst 𝑓 (pt𝐴) , 𝑓pt) ≡ O(ptO𝐴)

cst∗

(𝑓pt ,𝜌 𝑓pt) apcst∗ (𝑓pt ,𝜌 𝑓pt)
cst∗

Note that O(𝑓)pt is a reflexivity path if 𝑓pt ≡ reflpt𝐵 .

Exercise 13.1.22. Complete the structure of O as a wild functor, cf. Sec-

tion 6.4. Identify O(𝑓)pt with ptw−1
∗ (cst 𝑓pt , 𝜌 𝑓pt). ⌟

Remark 13.1.23. Given a pointed type 𝐴, recall from Corollary 3.1.3 the

equivalence ev𝐴 from S1 →∗ 𝐴 toΩ𝐴. This equivalence sends 𝑓 : S1 →∗ 𝐴
to Ω(𝑓)(⟲) ≡ 𝑓 −1

pt · 𝑓 (⟲) · 𝑓pt, and the inverse ev−1
𝐴 sends 𝑝 :Ω𝐴 to the

pointed map 𝑓 : S1 →∗ 𝐴 defined by 𝑓 (•) :≡ pt𝐴 and 𝑓 (⟲) B 𝑝, pointed

by reflexivity.
16

The equivalence ev𝐴 can itself be pointed as follows. The point of

S1 →∗ 𝐴 is the constant map cstpt𝐴 , pointed by reflexivity, which is sent

by ev𝐴 to cstpt𝐴 (⟲) · reflpt𝐴 .
17

Define 𝜀𝐴(𝑝) : reflpt𝐴
=→ (cstpt𝐴 (𝑝) · reflpt𝐴),

for any 𝑧 : S1
, 𝑝 : •

=→ 𝑧, by path induction, setting 𝜀𝐴(refl•) :≡ reflreflpt𝐴
.
18

Now we define (ev𝐴)pt :≡ 𝜀𝐴(⟲). ⌟

The following construction shows that Ω corresponds to O from Defi-

nition 13.1.21 under the equivalences ev, as illustrated in Figure 13.2.
19

Construction 13.1.24. Let 𝐴 and 𝐵 be pointed types and let 𝑓 :𝐴→∗ 𝐵 be a
pointed map. Then we have an identification of Ω(𝑓) ◦ ev𝐴 and ev𝐵 ◦O(𝑓), as
represented by Figure 13.2. Consequently, we have that 𝑒 :≡ (ev−1

𝐵 ◦_ ◦ ev𝐴) is
an equivalence of type (Ω𝐴→∗ Ω𝐵) ≃→ (O𝐴→∗ O 𝐵), and O =→ (𝑒 ◦Ω).

Implementation of Construction 13.1.24. We will apply Construction 2.21.8.

Elaborating the situation in Figure 13.3, we have to identify (1) ≡
𝑓 −1
pt · 𝑓 (𝑝−1

pt ·𝑝(⟲) ·𝑝pt) · 𝑓pt and (2) ≡ (𝑓 (𝑝pt) · 𝑓pt)−1 · (𝑓 ◦𝑝)(⟲) · (𝑓 (𝑝pt) · 𝑓pt)
by a path 𝑖(𝑓 , 𝑓pt)(𝑝, 𝑝pt), for all (𝑝, 𝑝pt).20

Moreover, we must fill the

rings, fields and vector spaces 239

(S1 →∗ 𝐴) Ω𝐴 Ω𝐵

(𝑝, 𝑝pt) 𝑝−1
pt · 𝑝(⟲) · 𝑝pt 𝑓 −1

pt · 𝑓 (𝑝−1
pt · 𝑝(⟲) · 𝑝pt) · 𝑓pt (1)

(S1 →∗ 𝐴) (S1 →∗ 𝐵) Ω𝐵

(𝑝, 𝑝pt) (𝑓 ◦ 𝑝, 𝑓 (𝑝pt) · 𝑓pt) (𝑓 (𝑝pt) · 𝑓pt)−1 · (𝑓 ◦ 𝑝)(⟲) · (𝑓 (𝑝pt) · 𝑓pt) (2)

ev𝐴 Ω(𝑓)

O(𝑓) ev𝐵

Figure 13.3: Elaborating the two composites (S1 →∗ 𝐴) → Ω𝐵.

following triangle:

𝑓 −1
pt · 𝑓 (cstpt𝐴 (⟲) · reflpt𝐴) · 𝑓pt

𝑓 −1
pt · 𝑓pt

reflpt𝐵

cstpt𝐵 (⟲) · reflpt𝐵

𝑓 −1
pt · cst 𝑓 (pt𝐴)(⟲) · 𝑓pt

𝑖(𝑓 , 𝑓pt)(cstpt𝐴 ,reflpt𝐴)

Ω(𝑓)((ev𝐴)pt)

(ev𝐵)pt

Ω(𝑓)pt

ev𝐵(O(𝑓)pt)

For defining 𝑖(𝑓)(𝑝, 𝑝pt) we apply path induction on 𝑝pt and on 𝑓pt,

setting pt𝐴 ≡ 𝑝(•) and 𝑝pt ≡ refl𝑝(•), as well as pt𝐵 ≡ 𝑓 (pt𝐴) ≡ 𝑓 (𝑝(•))
and 𝑓pt ≡ refl 𝑓 (𝑝(•)). Then identifying (1) and (2) reduces to the task of

identifying 𝑓 (𝑝(⟲) · refl𝑝(•)) · refl 𝑓 (𝑝(•)) and (𝑓 ◦ 𝑝)(⟲) · refl 𝑓 (𝑝(•)).

The latter identity type stays well typed when we replace ⟲ by an

arbitrary 𝑔 : •
=→ 𝑧, 𝑧 : S1

. By induction on 𝑔, we define an element

𝜄(𝑓 , 𝑝, 𝑔) :
(
(𝑓 (𝑝(𝑔) · refl𝑝(•)) · refl 𝑓 (𝑝(•))) =→ ((𝑓 ◦ 𝑝)(𝑔) · refl 𝑓 (𝑝(•)))

)
,

setting 𝜄(𝑓 , 𝑝, refl•) :≡ reflrefl 𝑓 (𝑝(•)) . We complete the definition of 𝑖(𝑓 , 𝑓pt)(𝑝, 𝑝pt)
by setting 𝑖(𝑓 , refl 𝑓 (𝑝(•)))(𝑝, refl𝑝(•)) :≡ 𝜄(𝑓 , 𝑝,⟲).

Again applying path induction on 𝑓pt, assuming that pt𝐵 ≡ 𝑓 (pt𝐴) and

𝑓pt ≡ reflpt𝐵 , the triangle above reduces to the following triangle:

𝑓 (cstpt𝐴 (⟲) · reflpt𝐴) · reflpt𝐵

reflpt𝐵

reflpt𝐵

cstpt𝐵 (⟲) · reflpt𝐵

cstpt𝐵 (⟲) · reflpt𝐵

𝑖(𝑓 ,refl 𝑓 (pt𝐴))(cstpt𝐴 ,reflpt𝐴)

Ω(𝑓)((ev𝐴)pt)

(ev𝐵)pt

reflreflpt𝐵

ev𝐵(O(𝑓)pt)

Note that 𝑖(𝑓 , refl 𝑓 (pt𝐴))(cstpt𝐴 , reflpt𝐴) ≡ 𝜄(𝑓 , cstpt𝐴 ,⟲). By Definition 13.1.21,

as 𝑓pt is a reflexivity path, we get that O(𝑓)pt and ev𝐵(O(𝑓)pt) are also

reflexivity paths. Hence, recalling Remark 13.1.23 for the pointing paths

rings, fields and vector spaces 240

21𝜀𝐴(𝑔) : reflpt𝐴
=→ cstpt𝐴 (𝑔) · reflpt𝐴 ,

so Ω(𝑓)(𝜀𝐴(𝑔)) is a path from

Ω(𝑓)(reflpt𝐴) ≡ reflpt𝐵 to

Ω(𝑓)(cstpt𝐴 (𝑔) ·reflpt𝐴) ≡ 𝑓 (cstpt𝐴 (𝑔) ·
reflpt𝐴) · reflpt𝐵 , by the induction on

𝑓pt. Also, 𝜄(𝑓 , cstpt𝐴 , 𝑔) has the right

type.

22
This map corresponds to a map of

type Ω(𝑋 →∗ 𝑌) → Ω(Ω𝑋 →∗ Ω𝑌).

Ω(𝑋 →∗ 𝑌) 𝑋 →∗ Ω𝑌

Ω(Ω𝑋 →∗ Ω𝑌) Ω𝑋 →∗ ΩΩ𝑌

Ω𝑋 →∗ ΩΩ𝑌

ptw∗

Ω(Ω) Ω

ptw∗ (𝑖◦_)

Figure 13.4: Complete and fill!

23
Recall that Ω(𝑓) is pointed by path

algebra identifying reflpt𝑌 with 𝑓 −1
pt ·

reflpt𝑌 · 𝑓pt, by induction on 𝑓pt.

24
Then 𝑝 =Ω𝑋 𝑝′ and 𝑞 =

Ω2𝑌 𝑞′ are

proof-irrelevant.

(ev𝐴)pt, (ev𝐵)pt, we have to fill the following triangle:

𝑓 (cstpt𝐴 (⟲) · reflpt𝐴) · reflpt𝐵

reflpt𝐵

cstpt𝐵 (⟲) · reflpt𝐵

𝜄(𝑓 ,cstpt𝐴 ,⟲)

Ω(𝑓)(𝜀𝐴(⟲))

𝜀𝐵(⟲)

This last triangle stays well typed when we replace ⟲ by an arbitrary

𝑔 : •
=→ 𝑧, 𝑧 : S1

.
21

Then apply induction on 𝑔, setting 𝑔 ≡ refl•, which

boils down to the same triangle with ⟲ replaced by refl•. The whole

diagram has now become a reflexivity diagram, as also 𝜄(𝑓 , cstpt𝐴 , refl•)
is reflexivity by definition, and we are done. □

Composition with O, i.e., (O ◦_) :≡ (𝑞 ↦→ O ◦𝑞), gives the map
22

(O ◦_) : (S1 →∗ (𝐴→∗ 𝐵)) → (S1 → ((S1 →∗ 𝐴) →∗ (S1 →∗ 𝐵)).

Construction 13.1.25. Let 𝑋, 𝑌 and 𝑍 be pointed types. We use 𝑇÷ to denote
the underlying type of a pointed type 𝑇. Then we have a pointed equivalence

swap : (𝑋 →∗ (𝑌 →∗ 𝑍)) →∗ (𝑌 →∗ (𝑋 →∗ 𝑍))

such that the totally unpointed map swap÷÷, defined by

swap÷÷ :≡ (𝑓 ↦→ (𝑦 ↦→ (𝑥 ↦→ 𝑓 (𝑥)(𝑦))))
: (𝑋÷ → (𝑌÷ → 𝑍÷)) → (𝑌÷ → (𝑋÷ → 𝑍÷))

can be identified with the map swapping the two arguments of any input map.

Implementation of Construction 13.1.25. (Do first the equivalence of (𝑋 →∗
(𝑌 →∗ 𝑍)) with the sum type of totally unpointed maps with additional

structure, including coherence.) □

Remark 13.1.26. In Figure 13.4, 𝑋 and 𝑌 are pointed types, and ptw∗ is

from Remark 13.1.16. The three occurrences of Ω in the labels of the

downward arrows are all instances of Definition 4.4.3. In Figure 13.4, we

have colored occurrences of Ω that come from the Ω in the left upper

corner. Note that Ω shifts position from first to second along the arrow

labelled (𝑖 ◦ _), where 𝑖 :≡ (𝑞 :Ω2𝑌 ↦→ 𝑞−1).
In order to formally define Ω(Ω), we need to define the pointing path

Ωpt of Ω. Note that pt𝑋→∗𝑌 ≡ (cstpt𝑌 , reflpt𝑌), i.e., the point of 𝑋 →∗ 𝑌 is

the constant map 𝑥 ↦→ pt𝑌 pointed by reflexivity. Likewise, the point of

Ω𝑋 →∗ Ω𝑌 is the pointed constant map (cstreflpt𝑌
, reflreflpt𝑌

). We want a

path Ωpt of type (cstreflpt𝑌
, reflreflpt𝑌

) =→ Ω(cstpt𝑌 , reflpt𝑌), where
23

Ω(cstpt𝑌 , reflpt𝑌) ≡ (𝑝 ↦→ apcstpt𝑌
(𝑝) · reflpt𝑌 , reflreflpt𝑌

).

By induction on 𝑝 : (pt𝑋
=→ 𝑥), define ℎ(𝑝) : reflpt𝑌

=→ (apcstpt𝑌
(𝑝) · reflpt𝑌)

setting ℎ(reflpt𝑋) :≡ reflreflpt𝑌
. Applying ptw∗ we can now define

Ωpt :≡ ptw−1
∗ (ℎ, reflreflreflpt𝑌

) :
(
(cstreflpt𝑌

, reflreflpt𝑌
) =→ Ω(cstpt𝑌 , reflpt𝑌)

)
.

Now we can state the definition of Ω(Ω):

Ω(Ω)(𝑞) ≡ Ω−1
pt · ap

Ω
(𝑞) ·Ωpt for all 𝑞 :Ω(𝑋 →∗ 𝑌).

rings, fields and vector spaces 241

25
Again, we often write 𝑂′ for 𝑂′𝐴,𝐵 .

O(𝑋 →∗ 𝑌) 𝑋 →∗ O𝑌

Ω(𝑋 →∗ 𝑌) 𝑋 →∗ Ω𝑌

swap

ev ev◦_

ptw∗

Figure 13.5: swap and ptw∗ corre-

spond.

26
Here 𝑓 (⟲)(𝑥) is short for

ap𝑧 ↦→fst(𝑓÷(𝑧))(𝑥)(⟲).

27
Here ptw(fst(𝑓 (⟲)))(𝑥) is in fact

ptw(fst(ap 𝑓÷ (⟲)))(𝑥).

28
Itself pointed by reflexivity.

We want to fill the diagram in Figure 13.4 in full generality, even

though we will only need it for 𝑋 a pointed 1-type and 𝑌 a pointed

2-type.
24 ⌟

Definition 13.1.27. Let 𝐴 and 𝐵 be pointed types. Define the map

map 𝑂′𝐴,𝐵 : ((𝐴 →∗ 𝐵) →∗ ((S1 →∗ 𝐴) →∗ (S1 →∗ 𝐵)) by 𝑂′𝐴,𝐵 :≡
(O𝐴,𝐵 ◦swap−1 ◦ _).25 ⌟

Construction 13.1.28. Let 𝑋 and 𝑌 be pointed types and consider the equiv-
alences ptw∗ :Ω(𝑋 →∗ 𝑌) → (𝑋 →∗ Ω𝑌) from Remark 13.1.16, swap
from Construction 13.1.25, and ev from Remark 13.1.23. Then we have an
identification of ev ◦swap(_) and (ptw∗ ◦ ev), as represented by Figure 13.5.

Implementation of Construction 13.1.28. Using function extensionality, it

suffices to identify ev ◦ swap(𝑓) and (ptw∗ ◦ ev)(𝑓) for every 𝑓 : S1 →∗
(𝑋 →∗ 𝑌). The latter identifications are in the type 𝑋 →∗ Ω𝑌, which

means that we only have to identify the underlying functions, due to

Corollary 13.1.20. This greatly simplifies our task: given 𝑓 : S1 →∗ (𝑋 →∗
𝑌), the pointing path of swap(𝑓) plays no role in the underlying function

of ev ◦swap(𝑓). In contrast, the pointing path 𝑓pt : pt𝑋→∗𝑌
=→ 𝑓 (•) is

important, but only in so far it applies to the underlying functions of

pt𝑋→∗𝑌 and 𝑓 (•). Therefore we abbreviate 𝑓 ′pt :≡ ptw(fst(𝑓pt)), so that

𝑓 ′pt(𝑥) : (pt𝑌
=→ 𝑓 (•)(𝑥)) for 𝑥 :𝑋.

The underlying function of swap(𝑓) maps any 𝑥 :𝑋 to the function

(𝑧 : S1) ↦→ 𝑓 (𝑧)(𝑥), pointed by 𝑓 ′pt(𝑥). Evaluating the latter pointed map

at ⟲ gives (ev ◦ swap(𝑓))(𝑥) ≡ 𝑓 ′pt(𝑥)−1 · 𝑓 (⟲)(𝑥) · 𝑓 ′pt(𝑥).26
This is the

result of going first right and then down in Figure 13.5, applied to 𝑥 :𝑋.

Now we go first down and then right in Figure 13.5. Evaluating 𝑓

as above at ⟲ gives ev(𝑓) ≡ 𝑓 −1
pt · 𝑓 (⟲) · 𝑓pt. Applying ptw∗ and taking

the underlying function gives ptw(fst(𝑓 −1
pt · 𝑓 (⟲) · 𝑓pt)). Applying the

latter function to 𝑥 :𝑋 gives a result that is easily identified with 𝑓 ′pt(𝑥)−1 ·
ptw(fst(𝑓 (⟲)))(𝑥) · 𝑓 ′pt(𝑥), as both fst and ptw preserve composition.

27

Finally, we complete the construction by identifying the results of the

last two paragraphs, for which it suffices to identify the elements as given

in the footnotes. We generalize them from ⟲ to an arbitrary 𝑝 : •
=→ 𝑧,

𝑧 : S1
, and note that both ap𝑧 ↦→fst(𝑓÷(𝑧))(𝑥)(𝑝) and ptw(fst(ap 𝑓÷

(𝑝)))(𝑥) have

type fst(𝑓÷(•))(𝑥) =→ fst(𝑓÷(𝑧))(𝑥). They are readily identified by induction

on 𝑝. □

Recall from Theorem 12.2.13 the equivalence B2
from the type of

abelian groups to the type of pointed simply connected 2-types. Let

𝐻 : Group be a group and let 𝐺 : AbGroup be an abelian group. Then

B2𝐺 and hence also BH→∗ B2𝐺 is a 2-type, pointed at the constant map

that sends any 𝑤 : BH to the point ptB2𝐺
:≡ (BG÷ , |idBG÷ |0) of B2𝐺.

28
In

fact, the type BG→∗ B2𝐺 is a 1-type, since the maps are pointed.

Definition 13.1.29. Let 𝐻 : Group be a group and let 𝐺 : AbGroup be an

abelian group. Define the group Hom(𝐻, 𝐺) of homomorphisms from

𝐻 to 𝐺 by

Hom(𝐻, 𝐺) :≡ AutBH→∗B2𝐺((𝑤 ↦→ ptB2𝐺), reflptB2𝐺
). ⌟

rings, fields and vector spaces 242

UHom(𝐻, 𝐺)

S1(𝑋 →∗ 𝑌) 𝑋 →∗ S1𝑌

∑ 𝑓 : S1𝑋→∗S1(S1𝑌) 𝑃(𝑓) Homabs(abs(𝐻), abs(𝐺))

S1(S1𝑋 →∗ S1𝑌) S1𝑋 →∗ S1(S1𝑌) S1𝑋 →∗ S1(S1𝑌)

ev−1

swapS1 ,𝑋

O ◦_ 𝑂′

O

fst

swapS1 ,S1𝑋 (swap◦_)

Figure 13.6: Legenda: 𝑋 :≡ BH; 𝑌 :≡ B2𝐺; ev is from Corollary 3.1.3;

swap is from Construction 13.1.28; O is from Definition 13.1.21; 𝑂′

is from Definition 13.1.27; 𝑃(𝑓) expresses that ev ◦ 𝑓 ◦ ev−1
classifies a

homomorphism. Moreover, the colors track related occurrences of S1
.

29Homabs
ptw(𝑅, 𝑅) is an abelian abstract

group by Exercise 7.3.6 and Exer-

cise 4.3.5.

30
This notation presupposes that 𝐺

is abelian and distinguishes the

set of homomorphisms from 𝐺 to

𝐺 from the group with this set of

homomorphisms as underlying set.

31 U(𝜇 ◦ 1𝑅) is an abstract homomor-

phism from Uℤ to U Hom(𝑅, 𝑅)
and the latter type is equivalent to

(BR →∗ ΩB2𝑅). Finally by postcom-

position with ev, we get equivalence

with (BR→∗ BR). The other unit law

is probably worse.

13.1.30 Concrete rings

We will now elaborate an approach to rings that is even more concrete

than mixed rings. For the latter rings we took the obvious first step

to replace the abstract additive group by a (concrete) group. Since

monoids have no concrete counterpart in our set up, we replaced

in Definition 13.1.8 the multiplicative monoid by the half abstract

ℓ , 𝑟 : UR→ Hom(𝑅, 𝑅).
The use of ℓ , 𝑟 was based on the observation that, for any abstract

ring R , left and right multiplication by a fixed but arbitrary element

of 𝑅 are abstract homomorphisms from the additive group (𝑅, 0,+,−)
of R to itself. Even more so, the map 𝑎 ↦→ (𝑎 · _) is an abstract

homomorphism from (𝑅, 0,+,−) to the abstract group Homabs
ptw(𝑅, 𝑅)

of abstract homomorphisms from (𝑅, 0,+,−) to itself, with pointwise

operations induced by (𝑅, 0,+,−).29

Given that we have replaced (𝑅, 0,+,−) by an abelian group 𝐺 : Group,

the plan is to deloop Homabs
ptw(abs(𝐺), abs(𝐺)). Denoting the result of the

delooping by Hom(𝐺, 𝐺),30
we can then define the multiplication as a

homomorphism 𝜇 : Hom(𝐺,Hom(𝐺, 𝐺)).
One way of delooping Homabs

ptw(abs(𝐺), abs(𝐺)) would be to use the

inverse of abs in Lemma 7.5.1 which involves torsors. We prefer to use

Hom(𝐺, 𝐺) from Definition 13.1.29, making direct use of the assumption

that 𝐺 is abelian.

Definition 13.1.31. A ring 𝑅 consists of the following data:

(1) An abelian group also denoted 𝑅;

(2) A homomorphism 1𝑅 : Hom(ℤ, 𝑅);

(3) A homomorphism 𝜇 : Hom(𝑅,Hom(𝑅, 𝑅)), with Hom(𝑅, 𝑅) the

group defined in Definition 13.1.29.

Moreover, the following equations should hold:

(1) ev ◦(U(𝜇 ◦ 1𝑅)(⟲)) = Bid𝑅 ≈ (the multiplicative unit laws)31

(2) (the associative law).

rings, fields and vector spaces 243

32
A homomorphism is trivial if it

classified by the constant function

at the shape to the target group. Or,

equivalently, if it factors through the

trivial group.

33
Define 𝑠 : idS1

=→ idS1 by function

extensionality, setting 𝑠(•) :≡ ⟲,

𝑠(⟲) B !. Now define 𝑒𝑧 : S1 =→ S1

by 𝑒𝑧(•) :≡ 𝑧, 𝑒𝑧(⟲) B 𝑠(𝑧) : (𝑧 =→ 𝑧).
Indeed, 𝑒• = idS1 and, by path

induction 𝑒𝑝(•) = 𝑝 for all 𝑝 : •
=→ 𝑧,

so 𝑒⟲ = 𝑠.

The properties (1)-(2) are together denoted by RingProperties(𝑅, 1𝑅 , 𝜇).
The ring 𝑅 is called commutative if , and non-trivial if 1𝑅 is not trivial.

32 ⌟

We proceed by giving the standard example of the integers as a ring

in the sense of Definition 13.1.31.

Example 13.1.32. We take the group ℤ of the integers classified by

the circle as the abelian group for the ring of the integers. We take

1ℤ :≡ idℤ, the identity homomorphism. For defining 𝜇 we first elaborate

Hom(ℤ,ℤ) as a group. Unfolding the definition we get (leaving the

points implicit) B Hom(ℤ,ℤ) ≡ (S1 →∗ ∑𝑋 :U ∥S1 =→ 𝑋∥0). The shape

of Hom(ℤ,ℤ) is the constant map that sends any 𝑧 : S1
to (S1 , |idS1 |0),

pointed by reflexivity.

Recall that B2ℤ ≡ ∑𝑋 :U ∥S1 =→ 𝑋∥0), pointed at shB2ℤ ≡ (S1 , |idS1 |0).
For 𝜇 : Hom(ℤ,Hom(ℤ,ℤ))we take,

33
with ve from Theorem 3.1.2,

B𝜇 :≡ (𝑧 : S1) ↦→ veB2ℤ(shB2ℤ , (𝑒𝑧 , !)).

In this succint definition, veB2ℤ(shB2ℤ , |𝑒𝑧|0) can be identified as the

function from S1
to B2ℤ that sends • to S1

and⟲ to (𝑒𝑧 , !)where 𝑒𝑧 : (S1 =→
S1), ! : ∥𝑒𝑧 =→ idS1∥. In the following we focus on first components, that

is, on S1
and 𝑒𝑧 , analyzing how B𝜇 applies to paths.

For any 𝑧 : S1
and 𝑘 : Z we have that B𝜇(𝑧,⟲𝑘) = 𝑒 𝑘𝑧 : (S1 =→ S1). Hence

for any 𝑗 : Z we have that B𝜇(⟲𝑗 ,⟲𝑘) = 𝑒 𝑘
⟲𝑗 = 𝑠 𝑗𝑘 : (idS1

=→ idS1).
It follows that (ℤ, 1ℤ , 𝜇) is a non-trivial commutative ring. ⌟

Exercise 13.1.33. Let (𝑅, 1𝑟 , 𝜇) be a ring. Show that UR is an abstract ring

with additive group abs(𝑅) and multiplicative monoid (UR,U1𝑅(⟲),U𝜇.

⌟

Definition 13.1.34. Given a commutative ring 𝑅, an element 𝑒 :𝑅 is

invertible if there exists an element 𝑎 :𝑅 such that 𝑒 · 𝑎 = 1 and 𝑎 · 𝑒 = 1:

isInvertible(𝑒) B
∥∥∥∥∥∑
𝑎 :𝑅
(𝑒 · 𝑎 = 1) × (𝑎 · 𝑒 = 1)

∥∥∥∥∥
⌟

Theorem 13.1.35. In any nontrivial commutative ring 𝑅, 0 is always a non-
invertible element.

isNonTrivialCRing(𝑅) → ¬isInvertible(0)

Proof. Suppose that 0 is invertible. Then there exists an element 𝑎 :𝑅
such that 𝑎 · 0 = 1. However, due to the absorption properties of 0
and the fact that 𝑅 is a set, 𝑎 · 0 = 0. This implies that 0 = 1, which

contradicts the fact that 0 ≠ 1 in a nontrivial commutative ring. Thus, 0
is a non-invertible element in any nontrivial commutative ring 𝑅. □

Definition 13.1.36. A nontrivial commutative ring 𝑅 is a field if and only

if the type of all non-invertible elements in 𝑅 is contractible:

isField(𝑅) B isNonTrivialCRing(𝑅) × isContr

(
∑
𝑥 :𝑅
¬isInvertible(𝑥)

)

Equivalently, 𝑅 is a field if and only if every non-invertible element is

equal to zero. ⌟

rings, fields and vector spaces 244

Remark 13.1.37. In other parts of the constructive mathematics literature,

such as in Peter Johnstone’s Rings, Fields, and Spectra, this is called a

"residue field". However, in this book we shall refrain from using the

term "residue field" for our definition, since that contradicts the usage

of "residue field" in other parts of mathematics, such as in algebraic

geometry. ⌟

Definition 13.1.38. A field is discrete if every element is either invertible

or equal to zero.

isDiscreteField(𝑅) B isField(𝑅) ×∏
𝑎 :𝑅
∥(𝑎 = 0) ⨿ isInvertible(𝑎)∥

⌟

Definition 13.1.39. A nontrivial commutative ring 𝑅 is a local ring if for

every element 𝑎 :𝑅 and 𝑏 :𝑅, if the sum 𝑎 + 𝑏 is invertible, then either 𝑎

is invertible or 𝑏 is invertible.

isLocalRing(𝑅) B isNonTrivialCRing(𝑅)×∏
𝑎 :𝑅

∏
𝑏 :𝑅

isInvertible(𝑎+𝑏) → ∥isInvertible(𝑎)⨿isInvertible(𝑏)∥

⌟

Definition 13.1.40. A field 𝑅 is Heyting if it is also a local ring.

isHeytingField(𝑅) B isField(𝑅) × isLocalRing(𝑅)

⌟

References used in this section:

• Emmy Noether, Ideal Theory in Rings, Mathematische Annalen 83

(1921)

• Henri Lombardi, Claude Quitté, Commutative algebra: Constructive
methods (Finite projective modules)

• Peter Johnstone, Rings, Fields, and Spectra, Journal of Algebra 49 (1977)

238-260

13.2 vector spaces

Definition 13.2.1. Given a field 𝐾, a 𝐾-vector space is an abelian group𝑉

with a bilinear function (−)(−) :𝐾 ×𝑉 → 𝑉 called scalar multiplication
such that 1𝑣 = 𝑣 and for all elements 𝑎 :𝐾, 𝑏 :𝐾, and 𝑣 :𝑉 , (𝑎 · 𝑏)𝑣 =

𝑎(𝑏𝑣). ⌟

Definition 13.2.2. A 𝐾-linear map between two 𝐾-vector spaces 𝑉 and

𝑊 is a group homomorphism ℎ :𝑉 → 𝑊 which also preserves scalar

multiplication: for all elements 𝑎 :𝐾 and 𝑣 :𝑉 , 𝑓 (𝑎𝑣) = 𝑎 𝑓 (𝑣). ⌟

Definition 13.2.3. Given a field 𝐾 and a set 𝑆, the free 𝐾-vector space
on 𝑆 is the homotopy initial 𝐾-vector space 𝑉 with a function 𝑖 : 𝑆→ 𝑉 :

for every other 𝐾-vector space𝑊 with a function 𝑗 : 𝑆→𝑊 , the type of

linear maps ℎ :𝑉 → 𝑊 such that for all elements 𝑠 : 𝑆, ℎ(𝑖(𝑠)) = 𝑗(𝑠) is
contractible. ⌟

Definition 13.2.4. Given a field 𝐾 and a natural number 𝑛, an 𝑛-
dimensional 𝐾-vector space is a free 𝐾-vector space on the finite type

Fin(𝑛). ⌟

rings, fields and vector spaces 245

13.3 the general linear group as automorphism group

13.4 determinants (†)

13.5 examples: rationals, polynomials, adding a root, field exten-
sions

13.6 ordered fields, real-closed fields, pythagorean fields, eu-
clidean fields

13.7 complex fields, quadratically closed fields, algebraically
closed fields

14
Geometry and groups

In this chapter we study Euclidean geometry. We assume some standard

linear algebra over real numbers, including the notion of finite dimen-

sional vector space over the real numbers and the notion of inner product.

In our context, the field of real numbers, ℝ, is a set, and so are vector

spaces over it. Moreover, a vector space 𝑉 has an underlying additive

abstract group, and we will feel free to pass from it to the corresponding

group.

14.1 Inner product spaces

Definition 14.1.1. An inner product space 𝑉 is a real vector space of finite

dimension equipped with an inner product 𝐻 :𝑉 ×𝑉 → ℝ. ⌟

Let 𝕍̃ denote the type of inner product spaces. It is a type of pairs

whose elements are of the form (𝑉, 𝐻). For 𝑛 :ℕ, let 𝕍̃𝑛 denote the type

of inner product spaces of dimension 𝑛.

For each natural number 𝑛, we may construct the standard inner

product space 𝕍 𝑛 :≡ (𝑉, 𝐻) of dimension 𝑛 as follows. For𝑉 we take the

vector space ℝ𝑛
, and we equip it with the standard inner product given

by the dot product

𝐻(𝑥, 𝑦) :≡ 𝑥 · 𝑦,

where the dot product is defined as usual as

𝑥 · 𝑦 :≡∑
𝑖

𝑥𝑖𝑦𝑖 .

Theorem 14.1.2. Any inner product space 𝑉 is merely equal to 𝕍 𝑛 , where 𝑛 is
dim𝑉 .

For the definition of the adverb “merely”, refer to Definition 2.16.13.

Proof. Since any finite dimensional vector space merely has a basis, we

may assume we have a basis for 𝑉 . Now use Gram-Schmidt orthonor-

malization to show that 𝑉 = 𝕍 𝑛 . □

Lemma 14.1.3. The type 𝕍̃ is a 1-type.

Proof. Given two inner product spaces 𝑉 and 𝑉 ′, we must show that the

type 𝑉 = 𝑉 ′ is a set. By univalence, its elements correspond to the linear

isomorphisms 𝑓 :𝑉
≃−→ 𝑉 ′ that are compatible with the inner products.

Those form a set. □

246

geometry and groups 247

Definition 14.1.4. Given a natural number 𝑛, we define the orthogonal
group O(𝑛) as follows.

O(𝑛) :≡ Ω𝕍̃𝑛

Here 𝕍̃𝑛 is equipped with the basepoint provided by shO(𝑛) :≡ 𝕍 𝑛 , and

with the proof that it is a connected groupoid provided by Theorem 14.1.2

and Lemma 14.1.3. ⌟

The standard action (in the sense of Definition 5.2.28) of O(𝑛) is an

action of it on its designated shape 𝕍 𝑛 . Letting Vectℝ denote the type

of finite dimensional real vector spaces, we may compose the standard

action with the projection map BO(𝑛) → Vectℝ that forgets the inner

product to get an action of O(𝑛) on the vector space ℝ𝑛
.

14.2 Euclidean spaces

In high school geometry courses, one encounters the Euclidean plane

(of dimension 2) and the Euclidean space of dimension 3. The vectors

and the points of Euclidean geometry are the basic ingredients, from

which the other concepts are derived. Those concepts include such

things as lines, line segments, triangles, tetrahedra, spheres, and so on.

Symmetries of those objects are also studied: for example, an isosceles

non-equilateral triangle has a total of 2 symmetries: the identity and the

reflection through the midline.

So, a Euclidean space will come with two sets: a set of points and a set

of vectors. The structure on the two sets includes the following items.

(1) If 𝑣 and 𝑤 are vectors, then there is a vector 𝑣 + 𝑤 called its sum.

(2) If 𝑣 is a vector and 𝑟 is a real number, then there is a vector 𝑟𝑣 called

the scalar multiple of 𝑣 by 𝑟.

(3) If 𝑣 is a vector, then there is a real nonnegative number called its

length.

(4) If 𝑃 and 𝑄 are points, then there is a unique vector 𝑣 which can be

“positioned” so its tail is “at” 𝑃 and its head is “at” 𝑄. It is called the

vector from 𝑃 to 𝑄. The distance from 𝑃 to 𝑄 is the length of 𝑣.

(5) If 𝑃 is a point and 𝑣 is a vector, then there is a unique point 𝑄 so that

𝑣 which can be positioned so its tail is at 𝑃 and its head is at 𝑄. It is

called the point obtained from 𝑃 by translation along 𝑣.

We introduce the (new) notation 𝑣 + 𝑃 for the point 𝑄 obtained from

𝑃 by translation along 𝑣. Another fact from high school geometry is that

if 𝑤 is a vector, too, then the associative rule 𝑣 + (𝑤 + 𝑃) = (𝑣 + 𝑤) + 𝑃
holds. This suggests that the essential features of high school geometry

can be captured by describing the set of points as a torsor for the group

of vectors.

We use that idea now to give a precise definition of Euclidean space
of dimension 𝑛, together with its points and vectors. More complicated

geometric objects will be introduced in subsequent sections.

Definition 14.2.1. A Euclidean space 𝐸 is an torsor𝐴 for the additive group

underlying an inner product space 𝑉 . (For the definition of torsor, see

Definition 7.4.1.) ⌟

geometry and groups 248

1
We are careful not to refer to the

group as an Abelian group at this

point, even though it is one, because

the operator B may be used in some

contexts to denote a different con-

struction on Abelian groups.

We will write 𝑉 also for the additive group underlying 𝑉 . Thus an

expression such as B𝑉 or Torsor𝑉 will be understood as applying to the

underlying additive group
1

of 𝑉 .

Definition 14.2.2. We denote the type of all Euclidean spaces of dimension

𝑛 by 𝔼̃𝑛 :≡ ∑𝑉 : 𝕍̃𝑛 Torsor𝑉 . The elements of Pts𝐸 will be the points in

the geometry of 𝐸, and the elements of Vec𝐸 will be the vectors in the

geometry of 𝐸. We let 𝔼̃ denote the type of all Euclidean spaces; it is

equivalent to the sum ∑𝑛 :ℕ 𝔼̃𝑛 . ⌟

The torsor Pts𝐸 is a nonempty set upon which 𝑉 acts. Since 𝑉 is an

additive group, we prefer to write the action additively, too: given 𝑣 :𝑉
and 𝑃 : Pts𝐸 the action provides an element 𝑣 + 𝑃 : Pts𝐸. Moreover,

given 𝑃, 𝑄 : Pts𝐸, there is a unique 𝑣 :𝑉 such 𝑣 + 𝑃 = 𝑄; for it we

introduce the notation𝑄 −𝑃 :≡ 𝑣, in terms of which we have the identity

(𝑄 − 𝑃) + 𝑃 = 𝑄.

For each natural number 𝑛, we may construct the standard Euclidean

space 𝔼𝑛 : 𝔼̃𝑛 of dimension 𝑛 as follows. For Vec𝐸 we take the standard

inner product space𝕍 𝑛 , and for Pts𝐸we take the corresponding principal

torsor ℙshℝ𝑛
.

Theorem 14.2.3. Any Euclidean space 𝐸 is merely equal to 𝔼𝑛 , where 𝑛 is
dim𝐸.

Proof. Since we are proving a proposition and any torsor is merely trivial,

by Theorem 14.1.2 we may assume Vec𝐸 is 𝕍 𝑛 . Similarly, we may assume

that Pts𝐸 is the trivial torsor. □

Lemma 14.2.4. The type 𝔼̃𝑛 is a 1-type.

Proof. Observe using Theorem 5.5.7 that 𝔼̃𝑛 ≃ 𝑠 ∑𝑉 : BO(𝑛) B𝑉 . The types

BO(𝑛) and B𝑉 are 1-types, so the result follows from Item (4). □

Definition 14.2.5. Given a natural number 𝑛, we define the Euclidean
group by

E(𝑛) :≡ Ω𝔼̃𝑛 .

Here we take the basepoint of 𝔼̃𝑛 to be 𝔼𝑛 , and we equip 𝔼̃𝑛 with the

proof that it is a connected groupoid provided by Theorem 14.2.3 and

Lemma 14.2.4. ⌟

The standard action of E(𝑛) (in the sense of Definition 5.2.28) is an action

of it on the Euclidean space 𝔼𝑛 .

Theorem 14.2.6. For each 𝑛, the Euclidean group E(𝑛) is equivalent to a
semidirect product O(𝑛) ⋉ℝ𝑛 .

Proof. Recall Definition 8.2.1 and apply it to the standard action 𝐻̃ : BO(𝑛) →
Group of O(𝑛) on the additive group underlying ℝ𝑛

, as defined in Def-

inition 14.1.4. The semidirect product O(𝑛) ⋉ ℝ𝑛
has ∑𝑉 : BO(𝑛) B𝑉 as

its underlying pointed type. Finally, observe that E(𝑛) ≃ ∑𝑉 : BO(𝑛) B𝑉 ,

again using Theorem 5.5.7. □

geometry and groups 249

2
It would be a mistake to regard a geo-

metric object as a triple (𝐸, 𝑀, 𝑔), for

then symmetries would be allowed

to permute the materials.

14.3 Geometric objects

In this section, we discuss the notion of “object” in Euclidean space, but

much of what we say is more general and applies equally well to other

sorts of geometry, such as projective geometry or hyperbolic geometry.

Let 𝐸 be a Euclidean space, as defined in Definition 14.2.1. The points

of 𝐸 are the elements of Pts𝐸, and intuitively, a geometric object in 𝐸

ought to come with a way to tell which points of 𝐸 are inside the object.

For example, in the standard Euclidean plane with coordinates labelled

𝑥 and 𝑦, the 𝑥-axis is described by the equation 𝑦 = 0. In other words,

we have a function of type 𝑔 : Pts𝐸→ Prop defined by (𝑥, 𝑦) ↦→ 𝑦 = 0.

It’s the predicate that defines the line as a subset of the plane. More

complicated objects can also be specified as sets of points of 𝐸 by other

functions Pts𝐸 → Prop. Now consider a typical Euclidean symmetry

of the line, for example, the symmetry given by the function 𝑡 : (𝑥, 𝑦) ↦→
(𝑥 + 3, 𝑦). It is compatible with the action of Vec𝐸 on Pts𝐸, and it sends

the line to itself. If we consider the pair (𝐸, 𝑔) as an element of the type

∑𝐸 : 𝔼̃(Pts𝐸 → Prop), then, by univalence, we see that the translation 𝑡

gives rise to an identification of type (𝐸, 𝑔) = (𝐸, 𝑔).
Now suppose the object to be described is a car, as an object in a

3-dimensional Euclidean space. Then presumably we would like to give

more information than just whether a point is inside the car: we may

wish to distinguish points of the car by the type of material found there.

For example, to distinguish the windshield (made of glass) from the

hood (made of steel). Thus, letting 𝑀 denote the set of materials found

in the car, with one extra element for the points not in the car, we may

choose to model the car as a function of type Pts𝐸→ 𝑀.

In order to unify the two examples above into a general framework,

one may observe that Prop is a set (with 2 distinguished elements, True
and False). That motivates the following definition.

Definition 14.3.1. Let 𝑀 be a set. A geometric object is a pair (𝐸, 𝑔) of type

EucObj :≡ ∑𝐸 : 𝔼̃(Pts𝐸→ 𝑀). If one wishes to emphasize the role played

by the set 𝑀, we may refer to (𝐸, 𝑔) as a geometric object with materials
drawn from the set 𝑀.

2
We may also say that (𝐸, 𝑔) is a geometric object

in 𝐸. When 𝑀 is Prop, we will think of the object as the subset of Pts𝐸
consisting of those points 𝑃 such that 𝑔(𝑃) holds. ⌟

Exercise 14.3.2. Show that EucObj is a groupoid. ⌟

The exercise above allows us to speak of the symmetry group of a

geometric object.

Exercise 14.3.3. Show that the symmetry group of a geometric object in

𝔼𝑛 is a subgroup of E(𝑛). ⌟

Exercise 14.3.4. Let 𝐸 be a Euclidean space of dimension 𝑛, and let 𝑃 be

a point of 𝐸. The subset of Pts𝐸 containing just the point 𝑃 is defined by

the predicate𝑄 ↦→ (𝑄 = 𝑃). Show that its symmetry group is isomorphic

to O(𝑛). ⌟

One often considers situations in geometry with multiple objects in

the same space. For example, one may wish to consider two lines in

the plane, or a point and a plane in space. This prompts the following

definitions.

geometry and groups 250

Definition 14.3.5. Suppose we are given an parameter type 𝐼 and a set

𝑀𝑖 for each 𝑖 ∈ 𝐼. A configuration of geometric objects relative to that

data is a Euclidean space 𝐸 together with a function 𝑝𝑖 : Pts𝐸→ 𝑀𝑖 for

each 𝑖 ∈ 𝐼. Its consituents are the geometric objects of the form (𝐸, 𝑝𝑖), for

each 𝑖 ∈ 𝐼. If 𝑛 is a natural number, and we let 𝐼 be the finite type with 𝑛

elements, then we may refer to the configuration as a configuration of 𝑛

objects. ⌟

Definition 14.3.6. Given an type 𝐼 and a family of geometric objects

𝑇𝑖 parametrized by the elements of 𝐼, an arrangement of the objects is

a configuration, also parametrized by the elements of 𝐼, whose 𝑖-th

consituent is merely equal to 𝑇𝑖 . ⌟

For example, suppose we consider arrangements consisting of a point

and a line in the plane. The arrangements where the point is at a distance

𝑑 from the line, where 𝑑 ≥ 0, are all merely equal to each other, because

there is a Euclidean motion that relates any two of them. Hence, in

some sense, the arrangements are classified by the set of nonnegative

real numbers 𝑑. This motivates the following definition.

Definition 14.3.7. Given an parameter type 𝐼 and a collection of geometric

objects𝑇𝑖 parametrized by the elements of 𝐼, then an incidence type between

them is a connected component of the type of all arrangements of the

objects. ⌟

14.4 The icosahedron

Definition 14.4.1. The icosahedron (with side length 2) is the regular solid

in standard euclidean three-space 𝔼3
with vertices at cyclic permutations

of (0,±1,±𝜑), where 𝜑 = (1 +
√

5)/2 is the golden ratio. ⌟

Remark 14.4.2. The four vertices (0,±1,±𝜑)make up a golden rectangle
with short side length equal to 2. To check that the above vertices really

form a regular polyhedron, we just need to calculate the length between

to adjacent corners of golden rectangles:

∥(0, 1, 𝜑) − (1, 𝜑, 0)∥ =
√

1 + (𝜑 − 1)2 + 𝜑2 =
√

4 = 2 ⌟

14.5 Frieze patterns

See Figures 14.2 and 14.3

14.6 Incidence geometries and the Levi graph

14.7 Affine geometry

Barycentric calculus. Affine transformations. Euclidean / Hermitian

geometry (isometries, conformity...)

geometry and groups 251

𝑥 𝑦

𝑧

Figure 14.1: Icosahedron with its

golden rectangles.

∞∞

...

...

∞×

...

...

22∞

...

...

...

...

2★∞

...

...

★∞∞

...

...

∞★

...

...

...

...

★22∞

...

...

...

...

Figure 14.2: The seven frieze patterns

up to isometry, with their orbifold

symbols.

geometry and groups 252

∞∞

...

...

∞×

...

...

22∞

...

...

...

...

2★∞

...

...

★∞∞

...

...

∞★

...

...

...

...

★22∞

...

...

...

...

Figure 14.3: The seven frieze patterns

up to isometry, with their orbifold

symbols and superimposed genera-

tors.

Figure 14.4: Tricycle on carpet.

14.7.1 affine planes and Pappus’ law

14.7.2 affine frames, affine planes

14.7.3 the affine group as an automorphism group

14.7.4 the affine group as a semidirect product

14.7.5 affine properties (parallelism, length ratios)

14.8 Inversive geometry (Möbius)

14.8.1 residue at a point is affine

14.8.2 Miquel’s theorem

14.9 Projective geometry

Projective spaces (projective invariance, cross ratio, harmonic range...).

Conics/quadrics. (Classification in low dimensions?)

geometry and groups 253

complex algebraic plane projective curves (tangent complexes, singular

points, polar, hessian, ...).

14.9.1 projective planes

14.9.2 projective frames

14.9.3 the projective group and projectivities

14.9.4 projective properties (cross-ratio)

14.9.5 fundamental theorem of projective geometry

15
Galois theory

The goal of Galois theory is to study how the roots of a given polynomial

can be distinguished from one another. Take for example 𝑋2 + 1 as a

polynomial with real coefficients. It has two distincts roots in ℂ, namely

𝑖 and −𝑖. However, an observer, who is limited to the realm of ℝ, can

not distinguish between the two. Morally speaking, from the point

of view of this observer, the two roots 𝑖 and −𝑖 are pretty much the

same. Formally speaking, for any polynomial 𝑄 :ℝ[𝑋,𝑌], the equation

𝑄(𝑖 ,−𝑖) = 0 is satisfied if and only if 𝑄(−𝑖 , 𝑖) = 0 also. This property

is easily understood by noticing that there is a automorphism of fields

𝜎 :ℂ → ℂ such that 𝜎(𝑖) = −𝑖 and 𝜎(−𝑖) = 𝑖 which also fixes ℝ. The

goal of this chapter is to provide the rigourous framework in which this

statement holds. TODO: complete/rewrite the introduction

15.1 Covering spaces and field extensions

Recall that a field extension is simply a morphism of fields 𝑖 : 𝑘 → 𝐾 from

a field 𝑘 to a field 𝐾. Given a fixed field 𝑘, the type of fields extensions

of 𝑘 is defined as

𝑘\Fields :≡ ∑
𝐾 : Fields

homFields(𝑘, 𝐾)

Definition 15.1.1. The Galois group of an extension (𝐾, 𝑖) of a field 𝐾,

denoted Gal(𝐾, 𝑖) or Gal(𝐾/𝑘) when 𝑖 is clear from context, is the group

Aut𝑘\Fields (𝐾, 𝑖). ⌟

Remark 15.1.2. The Structure Identity Principle holds for fields, which

means that for 𝐾, 𝐿 : Fields, one has

(𝐾 = 𝐿) ≃ Iso(𝐾, 𝐿)

where Iso(𝐾, 𝐿) denotes the type of these equivalences that are homo-

morphisms of fields. Indeed, if one uses 𝐾 and 𝐿 also for the carrier

types of the fields, one gets:

(𝐾 = 𝐿) ≃ ∑
𝑝 :𝐾=U 𝐿

(trp𝑝(+𝐾) = +𝐿) × (trp𝑝(·𝐾) = ·𝐿)

×(trp𝑝(0𝐾) = 0𝐿) × (trp𝑝(1𝐾) = 1𝐿)

Any 𝑝 :𝐾 =U 𝐿 is the image under univalence of an equivalence 𝜙 :𝐾 ≃ 𝐿,

254

galois theory 255

and then:

trp𝑝(+𝐾) = (𝑥, 𝑦) ↦→ 𝜙(𝜙−1(𝑥) +𝐾 𝜙−1(𝑦))

trp𝑝(·𝐾) = (𝑥, 𝑦) ↦→ 𝜙(𝜙−1(𝑥) ·𝐾 𝜙−1(𝑦))

trp𝑝(0𝐾) = 𝜙(0𝐾)

trp𝑝(1𝐾) = 𝜙(1𝐾)

It follows that:

(𝐾 = 𝐿) ≃ ∑
𝜙 :𝐾≃𝐿

(𝜙(𝑥 +𝐾 𝑦) = 𝜙(𝑥) +𝐿 𝜙(𝑦))

×(𝜙(𝑥 ·𝐾 𝑦) = 𝜙(𝑥) ·𝐿 𝜙(𝑦))
×(𝜙(0𝐾) = 0𝐿) × (𝜙(1𝐾) = 1𝐿)

The type on the right hand side is the same as Iso(𝐾, 𝐿) by definition.

In particular, given an extension (𝐾, 𝑖) of 𝐾:

UGal(𝐾, 𝑖) ≃ ∑
𝑝 :𝐾=𝐾

trp𝑝 𝑖 = 𝑖 ≃ ∑
𝜎 : Iso(𝐾,𝐾)

𝜎 ◦ 𝑖 = 𝑖

This is how the Galois group of the extension (𝐾, 𝑖) is defined in ordinary

mathematics. ⌟

Given an extension (𝐾, 𝑖) of field 𝑘, there is a map of interest:

𝑖∗ :𝐾\Fields→ 𝑘\Fields, (𝐿, 𝑗) ↦→ (𝐿, 𝑗𝑖)

Lemma 15.1.3. The map 𝑖∗ is a set-bundle.

Proof. Given a field extension (𝐾′, 𝑖′) in 𝑘\Fields, one wants to prove that

the fiber over (𝐾′, 𝑖′) is a set. Suppose (𝐿, 𝑗) and (𝐿′, 𝑗′) are extensions

of 𝐾, together with paths 𝑝 : (𝐾′, 𝑖′) = (𝐿, 𝑗𝑖) and 𝑝′ : (𝐾′, 𝑖′) = (𝐿′, 𝑗′𝑖).
Recall that 𝑝 and 𝑝′ are respectively given by equivalences 𝜋 :𝐾′ = 𝐿

and 𝜋′ :𝐾′ = 𝐿′ such that 𝜋𝑖′ = 𝑗𝑖 and 𝜋′𝑖′ = 𝑗′𝑖. A path from ((𝐿, 𝑗), 𝑝)
to ((𝐿′, 𝑗′), 𝑝′) in the fiber over (𝐾′, 𝑖′) is given a path 𝑞 : (𝐿, 𝑗) = (𝐿′, 𝑗′)
in 𝐾\Fields such that trp𝑞 𝑝 = 𝑝′. However, such a path 𝑞 is the data

of an equivalence 𝜑 : 𝐿 = 𝐿′ such that 𝜑 𝑗 = 𝑗′, and then the condition

trp𝑞 𝑝 = 𝑝′ translates as 𝜑𝜋 = 𝜋′. So it shows that 𝜑 is necessarily equal

to 𝜋′𝜋−1
, hence is unique. □

The fiber of this map at a given extension (𝐿, 𝑗) of 𝑘 is:

(𝑖∗)−1(𝐿, 𝑗) ≃ ∑
𝐿′ : Fields

∑
𝑗′ :𝐾→𝐿′

(𝐿, 𝑗) = (𝐿′, 𝑗′𝑖)

≃ ∑
𝐿′ : Fields

∑
𝑗′ :𝐾→𝐿′

∑
𝑝 : 𝐿=𝐿′

𝑝 𝑗 = 𝑗′𝑖

≃ ∑
𝑗′ :𝐾→𝐿

𝑗 = 𝑗′𝑖

≃ hom𝑘(𝐾, 𝐿)

where the last type denotes the type of homomorphisms of 𝑘-algebra

(the structure of 𝐾 and 𝐿 being given by 𝑖 and 𝑗 respectively).

In particular, the map 𝑡 : UGal(𝐾, 𝑖) → (𝑖∗)−1(𝐾, 𝑖) mapping 𝑔 to

trp𝑔(id𝐾) identifies with the inclusion of the 𝑘-automorphisms of 𝐾

into the 𝑘-endomorphisms of 𝐾.

TODO: write a section on polynomials in chapter 12

galois theory 256

Definition 15.1.4. Given an extension 𝑖 : 𝑘 → 𝐾, an element 𝛼 :𝐾 is

algebraic if 𝛼 is merely a root of a polynomial with coefficients in 𝑘. That

is if the following proposition holds:

∥∑
𝑛 :ℕ

∑
𝑎 :𝕟+1→𝑘

𝑖(𝑎(0)) + 𝑖(𝑎(1))𝛼 + · · · + 𝑖(𝑎(𝑛))𝛼𝑛 = 0∥

⌟

Definition 15.1.5. A field extension (𝐾, 𝑖) is said to be algebraic when

each 𝑎 :𝐾 is algebraic. ⌟

Remark 15.1.6. Note that when the extension (𝐾, 𝑖) is algebraic, then 𝑡

is an equivalence. However, the converse is false, as shown by the non-

algebraic extension ℚ ↩→ ℝ. We will prove that every ℚ-endomorphism

of ℝ is the identity function. Indeed, any ℚ-endormorphism 𝜑 :ℝ→ ℝ

is linear and sends squares to squares, hence is non-decreasing. Let

us now take an irrational number 𝛼 :ℝ. For any rational 𝑝, 𝑞 :ℚ such

that 𝑝 < 𝛼 < 𝑞, then 𝑝 = 𝜑(𝑝) < 𝜑(𝛼) < 𝜑(𝑞) = 𝑞. Hence 𝜑(𝛼) is in any

rational interval that 𝛼 is. One deduces 𝜑(𝛼) = 𝛼. ⌟

Definition 15.1.7. A field extension 𝑖 : 𝑘 → 𝐾 is said finite when 𝐾 as a

𝑘-vector space, the structure of which is given by 𝑖, is of finite dimension.

In that case, the dimension is called the degree of 𝑖, denoted [(𝐾, 𝑖)] or

[𝐾 : 𝑘]when 𝑖 is clear from context. ⌟

15.2 Intermediate extensions and subgroups

Given two extensions 𝑖 : 𝑘 → 𝐾 and 𝑗 :𝐾 → 𝐿, the map 𝑖∗ can be seen as

a pointed map

𝑖∗ : BGal(𝐿, 𝑗) → BGal(𝐿, 𝑗𝑖), 𝑥 ↦→ 𝑥 ◦ 𝑖.

Then, through Lemma 15.1.3, 𝑖∗ presents Gal(𝐿, 𝑗) as a subgroup of

Gal(𝐿, 𝑗𝑖). One goal of Galois theory is to characterize those extensions

𝑖′ : 𝑘 → 𝐿 for which all subgroups of Gal(𝐿, 𝑖′) arise in this way.

Given any extension 𝑖 : 𝑘 → 𝐿, there is an obivous Gal(𝐿, 𝑖)-set 𝑋 given

by

(𝐿′, 𝑖′) ↦→ 𝐿′.

For a pointed connected set-bundle 𝑔 : 𝐵→ BGal(𝐿, 𝑖), one can consider

the type of fixed points of the Ω𝐵-set 𝑋 𝑓 :

𝐾 :≡ (𝑋𝑔)Ω𝐵 ≡∏
𝑥 : 𝐵

𝑋(𝑔(𝑥))

It is a set, which can be equipped with a field structure, defined pointwise.

Morevover, if one denotes 𝑏 for the distinguished point of 𝐵, and (𝐿′′, 𝑗′′)
for 𝑔(𝑏), then, because 𝑔 is pointed, one has a path 𝑝 : 𝐿 = 𝐿′′ such that

𝑝𝑖′ = 𝑗′′. There are fields extensions 𝑖′ : 𝑘 → 𝐾 and 𝑗′ :𝐾→ 𝐿 given by:

𝑖′(𝑎) :≡ 𝑥 ↦→ snd(𝑔(𝑥))(𝑎), 𝑗′(𝑓) :≡ 𝑝−1 𝑓 (𝑏)

In particular, for all 𝑎 : 𝑘, 𝑗′𝑖′(𝑎) = 𝑝−1 snd(𝑔(𝑏))(𝑎) = 𝑝−1 𝑗′′(𝑎) = 𝑖′(𝑎).
Galois theory is interested in the settings when these two contructions

are inverse from each other.

15.3 separable/normal/etc.

15.4 fundamental theorem

1
Hans Wussing. The genesis of the
abstract group concept. A contribution

to the history of the origin of abstract

group theory, Translated from the

German by Abe Shenitzer and Hardy

Grant. MIT Press, Cambridge, MA,

1984, p. 331.

2
Israel Kleiner. “The evolution of

group theory: a brief survey”. In:

Math. Mag. 59.4 (1986), pp. 195–215.

doi: 10.2307/2690312.

3
I. M. Yaglom. Felix Klein and Sophus
Lie. Evolution of the idea of symmetry
in the nineteenth century. Transl. from

the Russian by Sergei Sossinsky. Ed.

by Hardy Grant and Abe Shenitzer.

Birkhäuser Boston, Inc., Boston, MA,

1988, pp. xii+237.

4
Camille Jordan. Traité des substitu-
tions et des équations algébriques. Les

Grands Classiques Gauthier-Villars.

Reprint of the 1870 original. Édi-

tions Jacques Gabay, Sceaux, 1989,

pp. xvi+670.

5
Felix Klein. “Vergleichende Betrach-

tungen über neuere geometrische

Forschungen”. In: Math. Ann. 43.1

(1893), pp. 63–100. doi: 10.1007/
BF01446615.

A
Historical remarks

Here we briefly sketch some of the history of groups. See the book by

Wussing
1

for a detailed account, as well as the shorter survey by Kleiner
2
.

There’s also the book by Yaglom
3
.

Some waypoints we might mention include:

• Early nineteenth century geometry, the rise of projective geometry,

Möbius and Plücker

• Early group theory in number theory, forms, power residues, Euler

and Gauss.

• Permutation groups, Lagrange and Cauchy, leading (via Ruffini) to

Abel and Galois.

• Liouville and Jordan
4

ruminating on Galois.

• Cayley, Klein and the Erlangen Program
5
.

• Lie and differentiation.

• von Dyck and Hölder.

• J.H.C. Whitehead and crossed modules.

• Artin and Schreier theory.

• Algebraic groups (Borel and Chevalley et al.)

• Feit-Thompson and the classification of finite simple groups.

• Grothendieck and the homotopy hypothesis.

• Voevodsky and univalence.

257

https://doi.org/10.2307/2690312
https://doi.org/10.1007/BF01446615
https://doi.org/10.1007/BF01446615

We leave aside that this sometimes

can be done in different ways. His-

torically, the first way was by “Gödel-

numbering”: encoding all bits of

syntax, including statements, as

natural numbers, so that the con-

structions and deductions of the

theory correspond to definable oper-

ations on the encoding numbers. In

type theory, there are usually much

more perspicacious ways of encod-

ing mathematical theories using

types and type families.

1
The original reference is Gödel

2
,

translated into English in van Hei-

jenoort
3
. For an accessible intro-

duction, see for instance Franzén
4

or Smullyan
5
.

2
Kurt Gödel. “Über formal un-

entscheidbare Sätze der Principia

Mathematica und verwandter Sys-

teme I”. in: Monatsh. Math. Phys. 38.1

(1931), pp. 173–198. doi: 10.1007/
BF01700692.

3
Jean van Heĳenoort. From Frege to
Gödel: A Source Book in Mathematical
Logic, 1879–1931. Source Books in

the History of the Sciences. Harvard

University Press, 2002, pp. xii+661.

4
Torkel Franzén. Gödel’s Theorem: An
Incomplete Guide to Its Use and Abuse.
A. K. Peters, 2005, pp. x+172.

5
Raymond M. Smullyan. Gödel’s in-
completeness theorems. Vol. 19. Oxford

Logic Guides. The Clarendon Press,

Oxford University Press, New York,

1992, pp. xvi+139.

6
Krzysztof Kapulkin and Peter

LeFanu Lumsdaine. “The simpli-

cial model of Univalent Foundations

(after Voevodsky)”. In: Journal of
the European Mathematical Society
23.6 (Mar. 2021), pp. 2071–2126. doi:

10.4171/jems/1050.

7
Marc Bezem, Thierry Coquand,

and Simon Huber. “A model of

type theory in cubical sets”. In: 19th
International Conference on Types for
Proofs and Programs. Vol. 26. LIPIcs.

Leibniz Int. Proc. Inform. Schloss

Dagstuhl. Leibniz-Zent. Inform.,

Wadern, 2014, pp. 107–128. doi:

10.4230/LIPIcs.TYPES.2013.107.

B
Metamathematical remarks

Metamathematics is the study of mathematical theories as mathematical

objects in themselves. This book is primarily a mathematical theory of

symmetries. Occasionally, however, we have made statements like “the

law of the excluded middle is not provable in our theory”. This is a

statement about, and not in, the type theory of this book. As such it is a

metamathematical statement.

Sometimes it is possible to encode statements about a theory in the

language of the theory itself. Even if true, the encoded metamathematical

statement can be unprovable in the theory itself. The most famous

example is Gödel’s second incompleteness theorem.
1
. Gödel encoded,

for any theory𝑇 extending Peano Arithmetic and satisfying some general

assumptions, the statement that 𝑇 is consistent as a statement Con(𝑇) in
Peano Arithmetic. Then he showed that Con(𝑇) is not provable in 𝑇.

We say that a metamathematical statement about a theory 𝑇 is in-
ternally provable if its encoding is provable in 𝑇. For example, the

metamathematical statement “if 𝑃 is unprovable in 𝑇, then 𝑇 is consis-

tent” is internally provable in 𝑇, for any 𝑇 that satisfies the assumptions

of Gödel’s second incompleteness theorem.

The type theory in this book satisfies the assumptions of Gödel’s second

incompleteness theorem, which include, of course, the assumption that

𝑇 is consistent. Thus there is no hope that we can prove the consistency

of our type theory internally. Moreover, by the previous paragraph,

we must be prepared that no unprovability statement can be proved

internally.

[TODO For consistency of UA, LEM, etc, refer to simplicial set model
6
.

For unprovability of LEM, refer to cubical set model
7
.]

One property of type theory that we will use is canonicity. We call an

expression closed if it does not contain free variables. One example of

canonicity is that every closed expression of type ℕ is a numeral, that is,

either 0 or 𝑆(𝑛) for some numeral 𝑛. Another example of canonicity is

that every closed expression of type 𝐿⨿ 𝑅 is either of the form inl𝑙 for

some 𝑙 : 𝐿 or of the form inr𝑟 for some 𝑟 :𝑅.

Both examples of canonicity above are clearly related to the inductive

definitions of the types involved: they are expressed in terms of the

constructors of the respective types. One may ask what canonicity then

means for the empty type False, defined in Section 2.12.1 as the inductive

type with no constructors at all. The answer is that canonicity for False
means that there cannot be a closed expression of type False. But this

actually means that our type theory is consistent! Therefore we cannot

prove general canonicity internally.

258

https://doi.org/10.1007/BF01700692
https://doi.org/10.1007/BF01700692
https://doi.org/10.4171/jems/1050
https://doi.org/10.4230/LIPIcs.TYPES.2013.107

metamathematical remarks 259

8
The notation :≡ tells the reader that

we make a definition (or reminds the

reader that this definition has been

made).

[TODO no canonical forms: 𝑥 :ℕ, trp𝑃ua(id)(0) :ℕ, with 𝑃 :≡ (𝑝 : True ↦→
ℕ) and (problematic) trp𝑄⟲(0) :ℕ with 𝑄 :≡ (𝑧 : S1 ↦→ ℕ).]

[TODO A second important property of our theory is that one can

compute canonical forms.]

B.1 Equality by definition

B.1.1 Basics

The concept of definition was introduced in Section 2.2, together with

what it means to be the same by definition. Being the same by definition

(NB appears for the first time on p. 26!) is a relationship between

syntactic expressions. In this section we provide more details about this

relationship.

There are four basic forms of equality by definition:

(1) Resulting from making an explicit definition, e.g., 1 :≡ succ(0), after

which we have 1 ≡ succ(0);8

(2) Resulting from making an implicit definition, like we do in inductive

definitions, e.g., 𝑛 + 0 :≡ 𝑛 and 𝑛 + succ(𝑚) :≡ succ(𝑛 + 𝑚), after

which we have 𝑛 + 0 ≡ 𝑛 and 𝑛 + succ(𝑚) ≡ succ(𝑛 + 𝑚);

(3) Simplifying the application of an explicitly defined function to an

argument, e.g., (𝑥 ↦→ 𝑒𝑥)(𝑎) ≡ 𝑒𝑎 ;

(4) Simplifying (𝑥 ↦→ 𝑒𝑥) to 𝑓 when 𝑒𝑥 is the application of the function

𝑓 to the variable 𝑥, e.g., (𝑥 ↦→ 𝑆(𝑥)) ≡ 𝑆.

Equality by definition is the congruence closure of these four basic

forms, that is, the smallest reflexive, symmetric, transitive and congruent

relation that contains all instances of the four basic forms. Here a

congruent relation is a relation that is closed under all syntactic operations

of type theory. One such operation is substitution, so that we get

from the examples above that, e.g., 1 + 0 ≡ 1 and 𝑛 + succ(succ(𝑚)) ≡
succ(𝑛 + succ(𝑚)). Another important operation is application. For

example, we can apply succ to each of the sides of 𝑛 + succ(𝑚) ≡
succ(𝑛 + 𝑚) and get succ(𝑛 + succ(𝑚)) ≡ succ(succ(𝑛 + 𝑚)), and also

𝑛 + succ(succ(𝑚)) ≡ succ(succ(𝑛 + 𝑚)) by transitivity.

Let’s elaborate id ◦ 𝑓 ≡ 𝑓 claimed on page 12. The definitions used on

the left hand side are id :≡ (𝑦 ↦→ 𝑦) and 𝑔 ◦ 𝑓 :≡ (𝑥 ↦→ 𝑔(𝑓 (𝑥))). In the

latter definition we substitute id for 𝑔 and get id ◦ 𝑓 ≡ (𝑥 ↦→ id(𝑓 (𝑥))).
Unfolding id we get (𝑥 ↦→ id(𝑓 (𝑥))) ≡ (𝑥 ↦→ (𝑦 ↦→ 𝑦)(𝑓 (𝑥))). Applying (3)

we can substitute 𝑓 (𝑥) for (𝑦 ↦→ 𝑦)(𝑓 (𝑥))) and get (𝑥 ↦→ (𝑦 ↦→ 𝑦)(𝑓 (𝑥))) ≡
(𝑥 ↦→ 𝑓 (𝑥)). By (4) the right hand side is equal to 𝑓 by definition. Indeed

id ◦ 𝑓 ≡ 𝑓 by transitivity.

Equality by definition is also relevant for typing. For example, let𝐴 :U
and 𝑃 :𝐴→U . If 𝐵 ≡ 𝐴, then (𝐵→U) ≡ (𝐴→U) by congruence, and

also 𝑃 : 𝐵→U , and even ∏𝑥 : 𝐵 𝑃(𝑥) ≡ ∏𝑥 :𝐴 𝑃(𝑥).

B.1.2 Deciding equality by definition (not updated yet)

By a decision procedure we mean a terminating algorithmic procedure

that answers a yes/no question. Although it is possible to enumerate

metamathematical remarks 260

9
TODO: think about the last, 𝜂.

10
The Coq Development Team. The
Coq Proof Assistant. Available at

https://coq.inria.fr/.

11
It’s commonly accepted that every

algorithm can be thus implemented.

12
It is possible to weaken the notion

of canonicity so that the argument

still works even if the proof 𝑡 uses

the Univalence Axiom. Of course,

the argument must fail if we allow 𝑡

to use LEM!

all true equalities by definition, this does not give a test that answers

whether or not a given instance 𝑒 ≡ 𝑒′ holds. In particular when 𝑒 ≡ 𝑒′
does not hold, such an enumeration will not terminate. A test of equality

by definition is important for type checking, as the examples in the last

paragraph of the previous section show.

A better approach to a test of equality by definition is the following.

First direct the four basic forms of equality by definition from left to

right as they are given.
9

For the first two forms this can be viewed as

unfolding definitions, and for the last two forms as simplifying function

application and (unnecessary) abstraction, respectively. This defines a

basic reduction relation, and we write 𝑒 → 𝑒′ if 𝑒′ can be obtained by a

basic reduction of a subexpression in 𝑒. The reflexive transitive closure

of→ is denoted by→∗. The symmetric closure of→∗ coincides with ≡.

We mention a few important properties of the relations→,→∗ and ≡.

The first is called the Church–Rosser property, and states that, if 𝑒 ≡ 𝑒′,
then there is an expression 𝑐 such that 𝑒 →∗ 𝑐 and 𝑒′→∗ 𝑐. The second

is called type safety and states that, if 𝑒 :𝑇 and 𝑒 → 𝑒′, then also 𝑒′ :𝑇.

The third is called termination and states that for well-typed expressions

𝑒 there is no infinite reduction sequence starting with 𝑒. The proofs

of Church–Rosser and type safety are long and tedious, but pose no

essential difficulties. For a non-trivial type theory such as in this book

the last property, termination, is extremely difficult and has not been

carried out in full detail. The closest come results on the Coq
10

(TODO:

find good reference).

Testing whether or not two given well-typed terms 𝑒 and 𝑒′ are equal

by definition can now be done by reducing them with → until one

reaches irreducible expressions 𝑛 and 𝑛′ such that 𝑒 →∗ 𝑛 and 𝑒′→∗ 𝑛′,
and then comparing 𝑛 and 𝑛′. Now we have: 𝑒 ≡ 𝑒′ iff 𝑛 ≡ 𝑛′ iff (by

Church–Rosser) there exists a 𝑐 such that 𝑛 →∗ 𝑐 and 𝑛′→∗ 𝑐. Since 𝑛

and 𝑛′ are irreducible the latter is equivalent to 𝑛 and 𝑛′ being identical

syntactic expressions.

B.2 The Limited Principle of Omniscience

Remark B.2.1. Recall the Limited Principle of Omniscience (LPO), Princi-

ple 3.6.22: for any function 𝑃 :ℕ→ 𝟚, either there is a smallest number

𝑛0 :ℕ such that 𝑃(𝑛0) = 1, or 𝑃 is a constant function with value 0. We

will show that LPO is not provable in our theory.

The argument is based on the halting problem: given a Turing machine

𝑀 and an input 𝑛, determine whether 𝑀 halts on 𝑛. It is known that

the halting problem cannot be solved by an algorithm that can be

implemented on a Turing machine.
11

We use a few more facts from computability theory. First, Turing

machines can be enumerated. We denote the 𝑛th
Turing machine 𝑀𝑛 , so

we can list the Turing machines in order: 𝑀0 , 𝑀1 , Secondly, there

exists a function 𝑇(𝑒 , 𝑛, 𝑘) such that 𝑇(𝑒 , 𝑛, 𝑘) = 1 if 𝑀𝑒 halts on input 𝑛

in at most 𝑘 steps, and 𝑇(𝑒 , 𝑛, 𝑘) = 0 otherwise. This function 𝑇 can be

implemented in our theory.

Towards a contradiction, assume we have a closed proof 𝑡 of LPO in

our theory. We assume as well that 𝑡 does not depend on any axiom.
12

It

is clear that 𝑘 ↦→ 𝑇(𝑒 , 𝑛, 𝑘) is a constant function with value 0 if and only

https://coq.inria.fr/

metamathematical remarks 261

13
Allen Hatcher. Algebraic Topology.

Cambridge University Press, 2001,

pp. xii+551. isbn: 978-0-521-79540-1.

url: https://pi.math.cornell.
edu/~hatcher/AT/AT.pdf; J. P.

May. A concise course in algebraic
topology. Chicago Lectures in Mathe-

matics. University of Chicago Press,

Chicago, IL, 1999; J. P. May and K.

Ponto. More concise algebraic topology.

Chicago Lectures in Mathematics.

Localization, completion, and model

categories. University of Chicago

Press, Chicago, IL, 2012.

14
We don’t define this formally here,

see Shulman
15

for a synthetic ac-

count. The idea is that the homotopy

type h(𝑋) of a type 𝑋 has a map

from 𝑋, 𝜄 :𝑋 → h(𝑋), and any con-

tinuous function 𝑓 : [0, 1] → 𝑋 gives

rise to a path 𝜄(𝑓 (0)) = 𝜄(𝑓 (1)) in
h(𝑋).

15
Michael Shulman. “Brouwer’s fixed-

point theorem in real-cohesive ho-

motopy type theory”. In: Mathe-
matical Structures in Computer Sci-
ence 28.6 (2018), pp. 856–941. doi:

10.1017/S0960129517000147. arXiv:

1509.07584.

16
This is due to Tarski, see Jech

17
,

p. 107.

17
Thomas J. Jech. The axiom of choice.
Studies in Logic and the Foundations

of Mathematics, Vol. 75. North-

Holland Publishing Co., Amsterdam,

1973, pp. xi+202.

if 𝑀𝑒 does not halt on input 𝑛. Now consider 𝑡(𝑘 ↦→ 𝑇(𝑒 , 𝑛, 𝑘)), which is

an element of a type of the form 𝐿⨿ 𝑅.

We now explain how to solve the halting problem. Let 𝑒 and 𝑛 be

arbitrary numerals. Then 𝑡(𝑘 ↦→ 𝑇(𝑒 , 𝑛, 𝑘)) is a closed element of 𝐿⨿ 𝑅.

Hence we can compute its canonical form. If 𝑡(𝑘 ↦→ 𝑇(𝑒 , 𝑛, 𝑘)) ≡ inr𝑟
for some 𝑟 :𝑅, then 𝑘 ↦→ 𝑇(𝑒 , 𝑛, 𝑘) is a constant function with value 0,

and 𝑀𝑒 does not halt on input 𝑛. If 𝑡(𝑘 ↦→ 𝑇(𝑒 , 𝑛, 𝑘)) ≡ inl𝑙 for some 𝑙 : 𝐿,

then 𝑀𝑒 does halt on input 𝑛. Thus we have an algorithm to solve the

halting problem for all 𝑒 and 𝑛. Since this is impossible, we have refuted

the assumption that there is a closed proof 𝑡 of LPO in our theory. ⌟

B.3 Topology

In this section we will explain how our intuition about types relates to

our intuition about topological spaces.

INSERT AN INTRODUCTORY PARAGRAPH HERE. [Intuitively, the

types of type theory can be modeled by topological spaces, and elements

as points thereof. However, this is not so easy to achieve, and the first

model of homotopy theory theory was in simplicial sets. Topological

spaces and simplicial sets are both models of homotopy types. And by a

lucky coincidence, it makes sense to say that homotopy type theory is

a theory of homotopy types.] Some references include: Hatcher, May,

and May and Ponto
13

Remark B.3.1. Our definitions of injections and surjections are lifted

directly from the intuition about sets. However, types need not be

sets, and thinking of types as spaces may at this point lead to a slight

confusion.

The real line is contractible and the inclusion of the discrete subspace

{0, 1} is, well, an inclusion (of sets, which is the same thing as an inclusion

of spaces). However, {0, 1} is not connected, seemingly contradicting

the next result.

This apparent contradiction is resolved once one recalls the myopic

nature of our setup: the contractibility of the real line means that “all real

numbers are identical”, and our “preimage of 3.25” is not a proposition:

it contains both 0 and 1. Hence “{0, 1} ⊆ ℝ” would not count as an

injection in our sense.

We should actually have been more precise above: we were referring

to the homotopy type of the real line, rather than the real line itself.
14

We

shall later (in the chapters on geometry) make plenty of use of the latter,

which is as usual a set with uncountably many elements. ⌟

B.4 Choice for finite sets (†)

This section is a short overview of how group theory is involved in relating

different choice principles for families of finite sets. A paradigmatic case

is that if we have choice for all families of 2-element sets, then we have

choice for all families of 4-element sets.
16

The axiom of choice is a principle that we may add to our type theory

(it holds in the standard model), but there are many models where it

doesn’t hold.

https://pi.math.cornell.edu/~hatcher/AT/AT.pdf
https://pi.math.cornell.edu/~hatcher/AT/AT.pdf
https://doi.org/10.1017/S0960129517000147
https://arxiv.org/abs/1509.07584

metamathematical remarks 262

18
Radu Diaconescu. “Axiom of choice

and complementation”. In: Proc.
Amer. Math. Soc. 51 (1975), pp. 176–

178.

19
N. Goodman and J. Myhill. “Choice

implies excluded middle”. In: Z.
Math. Logik Grundlagen Math. 24.5

(1978), p. 461. doi: 10.1002/malq.
19780242514.

20
Errett Bishop. Foundations of construc-
tive analysis. McGraw-Hill Book Co.,

New York, 1967, pp. xiii+370.

In fancier language, this says that

the axiom of choice implies that all

cohomology sets H1(𝑋, 𝐺) are trivial.

Principle B.4.1 (The Axiom of Choice). For every set 𝑋 and every family

of non-empty sets 𝑃 :𝑋 → Set≠∅, there exists an dependent function of

type ∏𝑥 :𝑋 𝑃(𝑥). In other terms, for any set 𝑋 and any family of sets

𝑃 :𝑋 → Set, we have

⌟(B.4.1) ∏
𝑥 :𝑋
∥𝑃(𝑥)∥ →

∥∥∥∥∏
𝑥 :𝑋

𝑃(𝑥)
∥∥∥∥.

Remark B.4.2. We have an equivalence between the Pi-type ∏𝑥 :𝑋 𝑃(𝑥) and

the type of sections of the projection map pr1 : ∑𝑥 :𝑋 𝑃(𝑥) → 𝑋, under

which families of non-empty sets correspond to surjections between sets

(using that 𝑋 is a set). Thus, the axiom of choice equivalently says that

any surjection between sets admits a section.

Because of this equivalence, we’ll sometimes also call elements of the

Pi-type sections. ⌟

The following is usually called Diaconescu’s theorem
18

or the Goodman–

Myhill theorem
19

, but it was first observed in a problem in Bishop’s book

on constructive analysis
20

.

Theorem B.4.3. The axiom of choice implies the law of the excluded middle,
Principle 2.18.2.

Proof. Let 𝑃 be a proposition, and consider the quotient map 𝑞 :𝟚→ 𝟚/∼,

where ∼ is the equivalence relation on 𝟚 satisfying (0 ∼ 1) = 𝑃. Like any

quotient map, 𝑞 is surjective, so by the axiom of choice, and because our

goal is a proposition, it has a section 𝑠 :𝟚/∼→ 𝟚. That is, we also have

𝑞 ◦ 𝑠 = id.

Using decidable equality in 𝟚, check whether 𝑠([0]) and 𝑠([1]) are

equal or not.

If they are, then we get the chain of identifications [0] = 𝑞(𝑠([0])) =
𝑞(𝑠([1])) = [1], so 𝑃 holds.

If they aren’t, then assuming 𝑃 leads to a contradiction, meaning ¬𝑃
holds. □

We’ll now define some restricted variants of the axiom of choice, that

however are not always true, and our goal is to see how they relate to

each other and to other principles.

Definition B.4.4. Let AC denote the full axiom of choice, as in Princi-

ple B.4.1. If we fix the set 𝑋, and consider (B.4.1) for arbitrary families

𝑃 :𝑋 → Set, we call this the 𝑋-local axiom of choice, denoted 𝑋-AC.

If we restrict 𝑃 to take values in 𝑛-element sets, for some 𝑛 :ℕ, we

denote the resulting principle AC(𝑛). (That is, here we consider families

𝑃 :𝑋 → BΣ𝑛 .)

If we both fix 𝑋 and restrict to families of 𝑛-element sets, we denote

the resulting principle 𝑋-AC(𝑛). ⌟

Exercise B.4.5. Show that 𝑋-AC is always true whenever 𝑋 is a finite

set. ⌟

Lemma B.4.6. If 𝑋-AC holds for a set 𝑋, then ∥𝑋 → BG∥0 is contractible for
any group 𝐺.

Proof. Suppose we have a map 𝑓 :𝑋 → BG. We need to show that 𝑓 is

merely equal to the constant map. Consider the corresponding family

of sets consisting of the underlying sets of the 𝐺-torsors represented by

https://doi.org/10.1002/malq.19780242514
https://doi.org/10.1002/malq.19780242514

metamathematical remarks 263

21
Andreas Blass. “Cohomology detects

failures of the axiom of choice”. In:

Trans. Amer. Math. Soc. 279.1 (1983),

pp. 257–269. doi: 10.2307/1999384.

22
We might call this conclusion

𝑋-ACdec
.

23
This kind of higher inductive type

is also known as a pushout, and its

constructors fit together to give a

commutative square:

𝑌 𝑋

𝟙 𝐶

𝑝

𝑓

𝑐

𝑓 (𝑥) : 𝐵𝐺, for 𝑥 :𝑋. That is, define 𝑃 :𝑋 → Set by setting 𝑃(𝑥) :≡ (sh𝐺 =

𝑓 (𝑥)). Since BG is connected, this is a family of non-empty sets, so by

the axiom of choice for families over 𝑋, there exists a section. Since

we’re proving a proposition, let 𝑠 : ∏𝑥 :𝑋(sh𝐺 = 𝑓 (𝑥)) be a section. Then

𝑠 identifies 𝑓 with the constant map, as desired. □

We might wonder what happens if we consider general∞-groups 𝐺

in Lemma B.4.6. Then the underlying type of a 𝐺-torsor is no longer a set,

but can be any type. Correspondingly, we need an even stronger version

of the axiom of choice, where the family 𝑃 is allowed to be arbitrary. Let

AC∞ denote this untruncated axiom of choice, and let 𝑋-AC∞ denote

the local version, fixing a set 𝑋. This is connected to another principle,

which is much more constructive, yet still not true in all models.

Principle B.4.7 (Sets Cover). For any type 𝐴, there exists a set 𝑋 together

with a surjection 𝑋 → 𝐴. ⌟

We abbreviate this as SC.

Exercise B.4.8. Prove that the untruncated axiom of choice, AC∞, is

equivalent to the conjunction of the standard axiom of choice, AC, and

the principle that sets cover, SC. ⌟

Exercise B.4.9. Prove that we cannot relax the requirement that 𝑋 is a set

in the axiom of choice. Specifically, prove that S1
-AC(2) is false ⌟

We now come to the analogue of Lemma B.4.6 for arbitrary∞-groups.

Exercise B.4.10. Prove that if the untruncated 𝑋-local axiom of choice,

𝑋-AC∞, holds for a set 𝑋, then ∥𝑋 → BG∥0 is contractible for all

∞-groups 𝐺. ⌟

We now discuss two partial converses to Lemma B.4.6, both due to

Blass
21

.

Theorem B.4.11 (Blass). Let 𝑋 be a set such that ∥𝑋 → BG∥0 is contractible
for all groups 𝐺. Then every family of non-empty sets over 𝑋, 𝑃 :𝑋 → Set,
that factors through a connected component of Set, merely admits a section.

Proof. We suppose 𝑃 :𝑋 → Set is such that all the sets 𝑃(𝑥) have the same

size, i.e., the function 𝑃 factors through BAut(𝑆) for some non-empty set

𝑆. This in turn means that we have a function ℎ :𝑋 → BG, where 𝐺 :≡
Aut(𝑆), with 𝑃 = pr1 ◦ ℎ, where pr1 : BAut(𝑆) = ∑𝐴 : Set∥𝑆 ≃ 𝐴∥ → Set is

the projection.

By assumption, ℎ is merely equal to the constant family. But since we

are proving a proposition, we may assume that ℎ is constant, so 𝑃 is the

constant family at 𝑆. And this has a section since 𝑆 is non-empty. □

Obviously, the same argument works if we consider all ∞-groups

𝐺 and families of types that are all equivalent. For the second partial

converse, we look at decidable sets.

Theorem B.4.12 (Blass). Let 𝑋 be a decidable set such that ∥𝑋 → BG∥0 is
contractible for all groups 𝐺. Then every family of non-empty decidable sets
over 𝑋 merely admits a section.22

Proof. Equivalently, consider a surjection 𝑝 :𝑌 → 𝑋, where 𝑋 and 𝑌 are

decidable sets, and let 𝐶 be the higher inductive type with constructors

𝑐 :𝐶, 𝑓 :𝑋 → 𝐶, and 𝑘 : ∏𝑦 :𝑌(𝑐 = 𝑓 (𝑝(𝑦)).23
Using the same kind of

https://doi.org/10.2307/1999384

metamathematical remarks 264

argument as in Lemma 8.6.7 and Theorem 8.7.8, we can show, using

decidability of equality in 𝑋 and 𝑌, that the identity type 𝑐 =𝐶 𝑓 (𝑥) is
equivalent to a type of reduced words over 𝑌 ⨿ 𝑌. In particular, 𝐶 is a

groupoid, and it’s easy to check that it’s connected. Hence we can form

the group 𝐺 :≡ Ω(𝐶, 𝑐).
By assumption, the map 𝑓 is merely equal to the constant map, so

since we’re proving a proposition, we may assume we have a family

of elements ℎ(𝑥) : 𝑐 = 𝑓 (𝑥), for 𝑥 :𝑋. Taking for each 𝑥 the last 𝑦 in the

corresponding reduced word, we get a family of elements 𝑠(𝑥) :𝑌 such

that 𝑝(𝑠(𝑥)) = 𝑥, but this is precisely the section we wanted. □

It seems to be an open problem, whether we can do without the

decidability assumption, i.e., whether the converse of Lemma B.4.6 holds

generally.

Now we turn as promised to the connections between the various

local choice principles 𝑋-AC(𝑛). The simplest example is the following.

Theorem B.4.13. Let 𝑋 be any set. Then 𝑋-AC(4) follows from 𝑋-AC(2) and
𝑋-AC(3).

Proof. Let 𝑃 :𝑋 → BΣ4 be a family of 4-element sets over 𝑋. Consider

the map Bf : BΣ4 → BΣ3 that maps a 4-element set to the 3-element set

of its 2 + 2 partitions. Choose a section of Bf ◦ 𝑃 by 𝑋-AC(3). Now

use 𝑋-AC(2) twice to choose for each chosen partition first one of the

2-element parts, and secondly one of the 2 elements in each chosen

part. □

We now look a bit more closely at what happened in this proof, so as

to better understand the general theorem. The key idea is the concept of

“reduction of the structure group”.

[TODO, Elaborate: For a family of 𝑛-element sets over a base type 𝑋,

𝑃 :𝑋 → BΣ𝑛 , there is a section if and only if there is a “ to a subgroup of

Σ𝑛 , whose action on the standard 𝑛-element set, 𝕟, has a fixed point.]

Now we return to the local case, and we give the general sufficient

condition that ensures that 𝑋-AC(𝑛) follows from 𝑋-AC(𝑧) for each 𝑧 :𝑍,

where 𝑍 is a finite subset of ℕ.

Definition B.4.14. The condition 𝐿(𝑍, 𝑛) is that for every finite subgroup

𝐺 of Σ𝑛 that acts on 𝕟 without fixed points, there exists finitely many

proper, finite subgroups 𝐾1 , · · · , 𝐾𝑟 of 𝐺 such that the sum of the indices,

|𝐺 : 𝐻1| + · · · + |𝐺 : 𝐻𝑟 |,

lies in 𝑍. ⌟

We now turn to the global case, where we can change the base set.

Here the basic case is Tarski’s result alluded to above, which shows that

we don’t need choice for 3-element sets, in contrast to the local case,

Theorem B.4.13.

Theorem B.4.15. AC(2) implies AC(4).

Proof. Let 𝑃 :𝑋 → BΣ4 be a family of 4-element sets indexed by a set 𝑋.

Consider the new set 𝑌 consisting of all 2-element subsets of 𝑃(𝑥), as 𝑥

runs over 𝑋,

𝑌 :≡ ∑
𝑥 :𝑋
[𝑃(𝑥)]2.

metamathematical remarks 265

24
Blass, “Cohomology detects failures

of the axiom of choice”.

25
Andrzej Mostowski. “Axiom of

choice for finite sets”. In: Fund. Math.
33 (1945), pp. 137–168. doi: 10.4064/
fm-33-1-137-168.

The set 𝑌 carries a canonical family of 2-element sets, so we may choose

an element of each. In other words, we have chosen an element of each

of the 6 different 2-element subsets of each of the 4-element sets 𝑃(𝑥).
For every 𝑎 :𝑃(𝑥), let 𝑞𝑥(𝑎) be the number of 2-element subsets {𝑎, 𝑏}

of 𝑃(𝑥)with 𝑏 ≠ 𝑎 for which 𝑎 is the chosen element.

Define the sets 𝐵(𝑥) :≡ { 𝑎 :𝑃(𝑥) | 𝑞𝑥(𝑎) is a minimum of 𝑞𝑥 }, and re-

member that they are subsets of 𝑃(𝑥). This determines a decomposition

of 𝑋 into three parts 𝑋 = 𝑋1 + 𝑋2 + 𝑋3, where

𝑋𝑖 :≡ ∑
𝑥 :𝑋
(𝐵(𝑥) has cardinality 𝑖), 𝑖 = 1, 2, 3.

Note that 𝐵(𝑥) can’t be all of 𝑃(𝑥), since that would mean that 𝑞𝑥 is

constant, and that is impossible, since the sum of 𝑞𝑥 over the 4-element

𝑃(𝑥) is 6.

Over 𝑋1, we get a section of 𝑃 by picking the unique element in 𝐵(𝑥).
Over 𝑋3, we get a section of 𝑃 by picking the unique element not in

𝐵(𝑥).
Over 𝑋2, we get a section of 𝑃 by picking the already chosen element

of the 2-element set 𝐵(𝑥). □

The following appears as Theorem 6 in Blass
24

.

Theorem B.4.16. Assume ∥𝑋 → BC𝑛∥0 is contractible for all sets 𝑋 and
positive integers 𝑛. Then AC(𝑛) holds for all 𝑛.

Proof. We use well-founded induction on 𝑛, the case 𝑛 ≡ 1 being trivial.

Let 𝑃 :𝑋 → BΣ𝑛 be a family of 𝑛-element sets, and let 𝑌 :≡ ∑𝑥 :𝑋 𝑃(𝑥)
be the domain set of this set bundle. Consider the family 𝑄 :𝑌 → BΣ𝑛−1

defined by

𝑄((𝑥, 𝑦)) :≡ { 𝑦′ :𝑃(𝑥) | 𝑦 ≠ 𝑦′ } = 𝑃(𝑥) \ {𝑦},

where we use the fact that 𝑃(𝑥) is an 𝑛-element set and thus has decidable

equality, so we can form the (𝑛 − 1)-element complement 𝑃(𝑥) \ {𝑦}.
By induction hypothesis, we get a section of 𝑄, which we can express

as a family of functions

𝑓 : ∏
𝑥 :𝑋

(
𝑃(𝑥) → 𝑃(𝑥)

)
where 𝑓𝑥(𝑦) ≠ 𝑦 for all 𝑥, 𝑦. Since 𝑃(𝑥) is an 𝑛-element set, we can

decide whether 𝑓𝑥 is a permutation or not, and if so, whether it is a cyclic

permutation. We have thus obtained a partition 𝑋 = 𝑋1+𝑋2+𝑋3, where

𝑋1 :≡ { 𝑥 :𝑋 | 𝑓𝑥 is not a permutation },
𝑋2 :≡ { 𝑥 :𝑋 | 𝑓𝑥 is a non-cyclic permutation },
𝑋3 :≡ { 𝑥 :𝑋 | 𝑓𝑥 is a cyclic permutation }.

We get a section of 𝑃 over 𝑋1 by induction hypothesis by considering

the family of the images of 𝑓𝑥 .

We get a section of 𝑃 over 𝑋2 by first choosing a cycle of 𝑓𝑥 (there are

fewer then 𝑛 cycles because there are no 1-cycles), and then choosing an

element of the chosen cycle.

We get a section of 𝑃 over 𝑋3 by the assumption applied to the

map 𝑋3 → BC𝑛 induced by equipping each 𝑃(𝑥) with the cyclic order

determined by the cyclic permutation 𝑓𝑥 . □

https://doi.org/10.4064/fm-33-1-137-168
https://doi.org/10.4064/fm-33-1-137-168

metamathematical remarks 266

[TODO: State the general positive result due to Mostowski
25

, maybe

as an exercise and give references to the negative results, due to Gauntt

(unpublished).]

metamathematical remarks 267

Bibliography

Ahrens, Benedikt, Krzysztof Kapulkin, and Michael Shulman. “Univalent categories and the Rezk

completion”. In: Math. Structures Comput. Sci. 25.5 (2015), pp. 1010–1039. issn: 0960-1295. doi:

10.1017/S0960129514000486 (page 147).

Atten, Mark van and Göran Sundholm. “L.E.J. Brouwer’s ‘Unreliability of the Logical Principles A New

Translation, with an Introduction”. In: History and Philosophy of Logic 38.1 (2017), pp. 24–47. doi:

10.1080/01445340.2016.1210986. arXiv: 1511.01113 (page 44).

Awodey, Steve. Category theory. Second. Vol. 52. Oxford Logic Guides. Oxford University Press, Oxford, 2010,

pp. xvi+311. isbn: 978-0-19-923718-0 (page 147).

Baez, John C. and Michael Shulman. “Lectures on 𝑛-categories and cohomology”. In: Towards higher
categories. Vol. 152. IMA Vol. Math. Appl. Springer, New York, 2010, pp. 1–68. doi:

10.1007/978-1-4419-1524-5_1. arXiv: math/0608420 (page 61).

Bezem, Marc, Thierry Coquand, and Simon Huber. “A model of type theory in cubical sets”. In: 19th
International Conference on Types for Proofs and Programs. Vol. 26. LIPIcs. Leibniz Int. Proc. Inform. Schloss

Dagstuhl. Leibniz-Zent. Inform., Wadern, 2014, pp. 107–128. doi: 10.4230/LIPIcs.TYPES.2013.107

(page 258).

Bishop, Errett. Foundations of constructive analysis. McGraw-Hill Book Co., New York, 1967, pp. xiii+370

(page 262).

Blass, Andreas. “Cohomology detects failures of the axiom of choice”. In: Trans. Amer. Math. Soc. 279.1 (1983),

pp. 257–269. doi: 10.2307/1999384 (pages 263, 265).

Buchholtz, Ulrik, Tom de Jong, and Egbert Rĳke. “On epimorphisms and acyclic types in univalent

mathematics”. In: The Journal of Symbolic Logic (2025), pp. 1–36. doi: 10.1017/jsl.2024.76. arXiv:

2401.14106 (page 153).

Buchholtz, Ulrik et al. “Central H-spaces and banded types”. 2023. arXiv: 2301.02636 (page 232).

Connes, Alain. “Cohomologie cyclique et foncteurs Ext𝑛”. In: C. R. Acad. Sci. Paris Sér. I Math. 296.23 (1983),

pp. 953–958 (page 80).

Coq Development Team, The. The Coq Proof Assistant. Available at https://coq.inria.fr/ (page 260).

Coquand, Thierry. “Type Theory”. In: The Stanford Encyclopedia of Philosophy. Ed. by Edward N. Zalta.

Metaphysics Research Lab, Stanford University, 2018. url:

https://plato.stanford.edu/archives/fall2018/entries/type-theory/ (page 13).

Diaconescu, Radu. “Axiom of choice and complementation”. In: Proc. Amer. Math. Soc. 51 (1975), pp. 176–178

(page 262).

Douglas, Jesse. “On finite groups with two independent generators. I–IV”. In: Proc. Nat. Acad. Sci. U.S.A. 37

(1951), pp. 604–610, 677–691, 749–760, 808–813. doi: 10.1073/pnas.37.9.604 (page 117). doi:

10.1073/pnas.37.10.677.

doi: 10.1073/pnas.37.11.749.

doi: 10.1073/pnas.37.12.808.

— “On the supersolvability of bicyclic groups”. In: Proc. Nat. Acad. Sci. U.S.A. 47 (1961), pp. 1493–1495. doi:

10.1073/pnas.47.9.1493 (page 117).

Escardó, Martín. UF-Factorial. Agda formalization. 2019. url:

https://www.cs.bham.ac.uk/~mhe/TypeTopology/UF-Factorial.html (page 88).

Franzén, Torkel. Gödel’s Theorem: An Incomplete Guide to Its Use and Abuse. A. K. Peters, 2005, pp. x+172

(page 258).

268

https://doi.org/10.1017/S0960129514000486
https://doi.org/10.1080/01445340.2016.1210986
https://arxiv.org/abs/1511.01113
https://doi.org/10.1007/978-1-4419-1524-5_1
https://arxiv.org/abs/math/0608420
https://doi.org/10.4230/LIPIcs.TYPES.2013.107
https://doi.org/10.2307/1999384
https://doi.org/10.1017/jsl.2024.76
https://arxiv.org/abs/2401.14106
https://arxiv.org/abs/2301.02636
https://coq.inria.fr/
https://plato.stanford.edu/archives/fall2018/entries/type-theory/
https://doi.org/10.1073/pnas.37.9.604
https://doi.org/10.1073/pnas.37.10.677
https://doi.org/10.1073/pnas.37.11.749
https://doi.org/10.1073/pnas.37.12.808
https://doi.org/10.1073/pnas.47.9.1493
https://www.cs.bham.ac.uk/~mhe/TypeTopology/UF-Factorial.html

bibliography 269

Freyd, Peter. Abelian categories. An introduction to the theory of functors. Harper’s Series in Modern

Mathematics. Harper & Row, Publishers, New York, 1964, pp. xi+164 (page 154).

Furstenberg, Harry. “The inverse operation in groups”. In: Proc. Amer. Math. Soc. 6 (1955), pp. 991–997. doi:

10.2307/2033124 (page 161).

Giraud, Jean. Cohomologie non abélienne. Die Grundlehren der mathematischen Wissenschaften, Band 179.

Springer-Verlag, Berlin-New York, 1971, pp. ix+467 (page 140).

Gödel, Kurt. “Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I”. In:

Monatsh. Math. Phys. 38.1 (1931), pp. 173–198. doi: 10.1007/BF01700692 (page 258).

Goodman, N. and J. Myhill. “Choice implies excluded middle”. In: Z. Math. Logik Grundlagen Math. 24.5

(1978), p. 461. doi: 10.1002/malq.19780242514 (page 262).

Hatcher, Allen. Algebraic Topology. Cambridge University Press, 2001, pp. xii+551. isbn: 978-0-521-79540-1.

url: https://pi.math.cornell.edu/~hatcher/AT/AT.pdf (page 261).

Heĳenoort, Jean van. From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931. Source Books in the

History of the Sciences. Harvard University Press, 2002, pp. xii+661 (page 258).

Jech, Thomas J. The axiom of choice. Studies in Logic and the Foundations of Mathematics, Vol. 75.

North-Holland Publishing Co., Amsterdam, 1973, pp. xi+202 (page 261).

Jordan, Camille. Traité des substitutions et des équations algébriques. Les Grands Classiques Gauthier-Villars.

Reprint of the 1870 original. Éditions Jacques Gabay, Sceaux, 1989, pp. xvi+670 (page 257).

Kapulkin, Krzysztof and Peter LeFanu Lumsdaine. “The simplicial model of Univalent Foundations (after

Voevodsky)”. In: Journal of the European Mathematical Society 23.6 (Mar. 2021), pp. 2071–2126. doi:

10.4171/jems/1050 (page 258).

Klein, Felix. “Vergleichende Betrachtungen über neuere geometrische Forschungen”. In: Math. Ann. 43.1

(1893), pp. 63–100. doi: 10.1007/BF01446615 (page 257).

Kleiner, Israel. “The evolution of group theory: a brief survey”. In: Math. Mag. 59.4 (1986), pp. 195–215. doi:

10.2307/2690312 (page 257).

Kuperberg, Greg. “Noninvolutory Hopf algebras and 3-manifold invariants”. In: Duke Math. J. 84.1 (1996),

pp. 83–129. doi: 10.1215/S0012-7094-96-08403-3 (page 114).

Land, Markus. Introduction to infinity-categories. Compact Textbooks in Mathematics. Birkhäuser/Springer,

Cham, 2021, pp. ix+296. isbn: 978-3-030-61523-9; 978-3-030-61524-6. doi: 10.1007/978-3-030-61524-6

(page 151).

Lurie, Jacob. Higher topos theory. Vol. 170. Annals of Mathematics Studies. Princeton, NJ: Princeton University

Press, 2009, pp. xviii+925. isbn: 9781400830558. doi: 10.1515/9781400830558 (page 151).

Mac Lane, Saunders. Categories for the working mathematician. Second. Vol. 5. Graduate Texts in Mathematics.

Springer-Verlag, New York, 1998, pp. xii+314. isbn: 0-387-98403-8 (page 147).

Mangel, Éléonore and Egbert Rĳke. Delooping the sign homomorphism in univalent mathematics. 2023. arXiv:

2301.10011 [math.GR] (page 113).

May, J. P. A concise course in algebraic topology. Chicago Lectures in Mathematics. University of Chicago Press,

Chicago, IL, 1999 (page 261).

May, J. P. and K. Ponto. More concise algebraic topology. Chicago Lectures in Mathematics. Localization,

completion, and model categories. University of Chicago Press, Chicago, IL, 2012 (page 261).

Mostowski, Andrzej. “Axiom of choice for finite sets”. In: Fund. Math. 33 (1945), pp. 137–168. doi:

10.4064/fm-33-1-137-168 (page 265).

Peano, Giuseppe. Arithmetices principia: nova methodo. See also https://github.com/mdnahas/Peano_Book/

for a parallel translation by Vincent Verheyen. Fratres Bocca, 1889. url:

https://books.google.com/books?id=z80GAAAAYAAJ (page 13).

Prüfer, Heinz. “Theorie der Abelschen Gruppen”. In: Math. Z. 20.1 (1924), pp. 165–187. doi:

10.1007/BF01188079 (page 170).

Recorde, Robert and John Kingston. The whetstone of witte: whiche is the seconde parte of Arithmetike, containyng
thextraction of rootes, the cossike practise, with the rule of equation, and the woorkes of surde nombers. Imprynted

at London: By Ihon Kyngstone, 1557. url: https://archive.org/details/TheWhetstoneOfWitte

(page 35).

https://doi.org/10.2307/2033124
https://doi.org/10.1007/BF01700692
https://doi.org/10.1002/malq.19780242514
https://pi.math.cornell.edu/~hatcher/AT/AT.pdf
https://doi.org/10.4171/jems/1050
https://doi.org/10.1007/BF01446615
https://doi.org/10.2307/2690312
https://doi.org/10.1215/S0012-7094-96-08403-3
https://doi.org/10.1007/978-3-030-61524-6
https://doi.org/10.1515/9781400830558
https://arxiv.org/abs/2301.10011
https://doi.org/10.4064/fm-33-1-137-168
https://github.com/mdnahas/Peano_Book/
https://books.google.com/books?id=z80GAAAAYAAJ
https://doi.org/10.1007/BF01188079
https://archive.org/details/TheWhetstoneOfWitte

bibliography 270

Riehl, Emily. Category Theory in Context. Aurora: Modern Math Originals. Dover Publications, 2016. url:

https://math.jhu.edu/~eriehl/context/ (pages 78, 147).

Rĳke, Egbert. Introduction to Homotopy Type Theory. Forthcoming book with CUP. Version from 06/02/22.

2022 (page 61).

— The join construction. 2017. arXiv: 1701.07538 (pages 45, 61).

Russell, Bertrand. Introduction to mathematical philosophy. 2
nd

Ed. Dover Publications, Inc., New York, 1993,

pp. viii+208 (page 53).

Shulman, Michael. “Brouwer’s fixed-point theorem in real-cohesive homotopy type theory”. In: Mathematical
Structures in Computer Science 28.6 (2018), pp. 856–941. doi: 10.1017/S0960129517000147. arXiv:

1509.07584 (page 261).

Smullyan, Raymond M. Gödel’s incompleteness theorems. Vol. 19. Oxford Logic Guides. The Clarendon Press,

Oxford University Press, New York, 1992, pp. xvi+139 (page 258).

Stallings, John R. “Foldings of 𝐺-trees”. In: Arboreal group theory (Berkeley, CA, 1988). Vol. 19. Math. Sci. Res.

Inst. Publ. Springer, New York, 1991, pp. 355–368. doi: 10.1007/978-1-4612-3142-4_14 (page 223).

Swan, Andrew W. “On the Nielsen–Schreier Theorem in Homotopy Type Theory”. In: Log. Methods Comput.
Sci. 18.1 (2022). doi: 10.46298/lmcs-18(1:18)2022 (pages 220, 222).

Trimble, Todd. Monomorphisms in the category of groups.
https://ncatlab.org/toddtrimble/published/monomorphisms+in+the+category+of+groups. Jan.

2020 (page 187).

Univalent Foundations Program, The. Homotopy Type Theory: Univalent Foundations of Mathematics. Institute

for Advanced Study: https://homotopytypetheory.org/book, 2013 (pages 24, 25, 48, 50, 51, 65, 147,

155).

Wärn, David. Eilenberg-MacLane spaces and stabilisation in homotopy type theory. 2023. arXiv: 2301.03685

[math.AT] (page 231).

— Path spaces of pushouts. Preprint. 2023. url: https://dwarn.se/po-paths.pdf (page 183).

Wussing, Hans. The genesis of the abstract group concept. A contribution to the history of the origin of abstract

group theory, Translated from the German by Abe Shenitzer and Hardy Grant. MIT Press, Cambridge,

MA, 1984, p. 331 (page 257).

Yaglom, I. M. Felix Klein and Sophus Lie. Evolution of the idea of symmetry in the nineteenth century. Transl. from

the Russian by Sergei Sossinsky. Ed. by Hardy Grant and Abe Shenitzer. Birkhäuser Boston, Inc., Boston,

MA, 1988, pp. xii+237 (page 257).

https://math.jhu.edu/~eriehl/context/
https://arxiv.org/abs/1701.07538
https://doi.org/10.1017/S0960129517000147
https://arxiv.org/abs/1509.07584
https://doi.org/10.1007/978-1-4612-3142-4_14
https://doi.org/10.46298/lmcs-18(1:18)2022
https://ncatlab.org/toddtrimble/published/monomorphisms+in+the+category+of+groups
https://homotopytypetheory.org/book
https://arxiv.org/abs/2301.03685
https://arxiv.org/abs/2301.03685
https://dwarn.se/po-paths.pdf

Glossary

! · placeholder for an element (proof) of a proposition, 76

∅ · the empty type, Section 2.12.1, 29

𝑝−1
· reverse identification, path inverse, Definition 2.5.1, 17

𝑋∗ · list of elements of 𝑋, 31

𝑓 · path obtained by univalence from 𝑓 , 33

𝐴÷ · underlying type of a pointed type 𝐴, 48

¬𝑃 · negation of a proposition 𝑃, 35

−𝑧 · negation of an integer 𝑧, 67

[𝑥] · orbit through 𝑥 :𝑋(sh𝐺), 135

[𝑢]0 · orbit through 𝑢 :𝑋ℎ𝐺, 134

𝐴+ · 𝐴 together with a disjoint base point, 48

𝑚√
𝑡 · 𝑚th

root function on cycles, 89

𝑆̃ · signed version of the set 𝑆, 183

𝟙 · trivial group, Example 4.2.20(1), 103

𝑝̃ · transport between types along a path, 33

|𝑡| · constructor for the propositional truncation ∥𝑇∥ applied to 𝑡 :𝑇, 40

∥𝑇∥ · propositional truncation of a type 𝑇, 39

: · element judgment, 9

B · identification in a definition, 65

:≡ · definition, 12

= · equality, 35

=−→ · identity type, Item (E1), 15

≡ · equality by definition, 12

𝑦
=−→
𝑝
𝑦′ · path-over type, Definition 2.7.1, 20

⨿ · binary sum, 30

◦ · function composition, 12

𝑝 ∗ 𝑞, 𝑞 · 𝑝, 𝑞𝑝, 𝑞 ◦ 𝑝 · path concatenation or composition, 17

⊣ · adjunction, 156

≃→ · type of equivalences, 24

∃𝑥 :𝑋 𝑃(𝑥) · proposition expressing existential quantification, 40

→ · function type, 10

↦→ · “maps to”, function definition, 12

�→ · type of isomorphisms, 149

{ 𝑡 :𝑇 |𝑃(𝑡) } · set comprehension, 47

− · subtraction of integers, 67

× · cartesian product of two types, 28

∨ · disjunction of propositions, 40

𝐺 ⋉ 𝐻 · semidirect product group, Definition 8.2.1, 172

𝜀 · the empty list, Definition 2.12.11, 31

𝜂 · 𝜂-rule, 12

𝜄+ · embedding of ℕ into Z, 67

𝜄− · embedding of ℕ− into Z, 67

271

glossary 272

∏𝑥 :𝑋 𝑇(𝑥) · product type of dependent functions, 10

𝜌𝑚 · formal 𝑚th
root function, Definition 3.8.3, 89

∑𝑥 :𝑋 𝑌(𝑥) · sum type, of dependent pairs (𝑥, 𝑦), 22

Σ𝑛 · symmetric group of degree 𝑛, Example 4.2.20(2), 103

Σ𝑆 · permutation group on a set 𝑆, Example 4.2.20(3), 103

Ω𝑘 · loop map of pointed map, Definition 4.4.3, 108

Ω𝑋 · type of symmetries (loops) in pointed type, Definition 4.2.10, 101

Ω · group constructor, Definition 4.2.8, 101

Ω · homomorphism constructor, Definition 4.4.2, 108

0 · the natural number zero, Peano’s rules, Item (P2), 13

1 · the natural number 1, 14

2 · the natural number 2, 14

3 · the natural number 3, 14

abs(𝐺) · the abstract group of symmetries in a group 𝐺, Definition 4.3.4, 107

A𝑛 · alternating group of degree 𝑛, Definition 4.5.7, 115

ap 𝑓 · application of 𝑓 to a path, Definition 2.6.1, 19

𝑓 (𝑝) · application of 𝑓 to the path 𝑝, Definition 2.6.1, 19

apd 𝑓 · application of a dependent function to a path, Definition 2.7.6, 21

𝑓 (𝑝) · application of dependent 𝑓 to the path 𝑝 Definition 2.7.6, 21

Aut𝐴(𝑎) · automorphism group of the element 𝑎 in the type 𝐴, Definition 4.2.15, 102

Bicyc · the type of bicycles, Definition 4.6.1, 117

Cay(𝐺; 𝑆) · Cayley graph of a group 𝐺 with respect to 𝑆, 218

coker 𝑓 · cokernel of a homomorphism 𝑓 , 189

cst𝑋𝑡 · constant function at 𝑡 :𝑇, 11

Cyc · the type of cycles, Definition 3.6.3, 80

Cyc0 · the type of infinite cycles, Definition 3.8.1, 88

Cyc𝑚 · the type of cycles of order 𝑚 > 0, Definition 3.8.1, 88

D𝑛 · dihedral group of degree 𝑛, 173

D∞ · infinite dihedral group, Definition 4.6.3, 117

𝐸 · equivalence from Mono(𝐺) to Sub(𝐺), 131

Epi𝐺 · type of epimorphisms from the group 𝐺, 186

False · the empty type, Section 2.12.1, 29

FinSet · the groupoid of finite sets, 57

FinSet𝑛 · the groupoid of sets of cardinality 𝑛, 57

F𝑆 · free group on a decidable set of generators, 182

Group · type of groups, 101

Groupabs
· type of abstract groups, 159

G-Setabs
· type of G-sets, 163

𝐺-Set · type of 𝐺-sets, 123

𝑋𝑃 · underlying 𝐺-set of 𝑃, 124

Hom(𝐺, 𝐻) · type of group homomorphisms, 108

Homabs(G ,H) · type of abstract homomorphisms, 161

Hom𝐺(𝑋,𝑌) · type of maps of 𝐺-sets, 124

id · identity function, 12

im(𝑓) · the (propositional) image of 𝑓 , 43

im𝑛(𝑓) · the 𝑛-image of 𝑓 , 93

in · inclusion into wrapped copy, 31

InfCyc · the type of infinite cycles, Definition 3.5.3, 77

Inj(𝑇) · type of injections into 𝑇, 47

inl · inclusion of left summand, 30

inn · homomorphism from 𝐺 to its inner automorphisms, Definition 4.4.21, 113

glossary 273

inr · inclusion of right summand, 30

isMono(𝑖) · proposition stating that 𝑖 is a monomorphism of groups, 130

Ker(𝑓) · the kernel group of the homomorphism 𝑓 , 188

ker(𝑓) · the inclusion of the kernel group of 𝑓 into its codomain, 188

Mono𝐺 · 𝐺-set of monomorphisms into 𝐺, 194

Mono(𝐺) · type of monomorphismsinto the group 𝐺, 130

ℕ · the type of natural numbers, Peano’s rules, Item (P1), 13

ℕ− · the type of negated natural numbers, Example 2.12.9, 31

no · the denying boolean, Section 2.12.1, 29

ns · naturality square, Definition 2.6.5, 20

po𝑝 · convert path over path, Definition 2.7.3, 21

pt𝑋 · base point of a pointed type 𝑋, 48

Q8 · quaternion group, Definition 4.6.3, 117

refl𝑎 · reflexivity, identity type, Item (E2), 15

s · successor function on Z, 67

sgn · sign homomorphism, Definition 4.5.6, 114

Sub(𝐺) · type of subgroups of 𝐺, 128

Sub𝐺(𝑋) · set of 𝐺-subsets of 𝑋, 124

succ · the successor function on ℕ, Peano’s rules, Item (P3), 13

swap · interchange the elements of Bool, Exercise 2.13.3, 33

Torsor𝐺 · the type of 𝐺-torsors, 140

tot(𝑓) · totalization of 𝑓 , 25

Tot(𝑌) · the total type ∑𝑥 :𝑋 𝑌(𝑥), 22

triv · the element of the unit type, Section 2.12.1, 29

trp𝑇𝑒 · transport function, Definition 2.5.4, 18

True · the unit type, Section 2.12.1, 29

ua𝑋,𝑌 · postulated element of the univalence axiom, 33

ℙ𝑏0 · the type family 𝑏 ↦→ (𝑏0
=→ 𝑏), 71

U · universe, 13

U =1
∗ · pointed, connected groupoids, Definition 4.2.5, 101

U ∗ · universe of pointed types, Definition 2.21.1, 48

wdg · winding number function, 75

yes · the affirmative boolean, Section 2.12.1, 29

Z · the set of integers, Definition 3.2.1, 67

ℤ · group of integers, Example 4.2.18, 102

Index

cardinality, 210

abstract group, 107

abstract monomorphisms, 195

action

coinduced, 142

free, 137

induced, 141

of a group in a type, 127

of a group on an element, 127

restricted, 141

action type, 133

actions

of a group on a set, 125

alternating group, 115

automorphism

inner, 113

automorphism group, 102, 106

base point, 48

bicycle, 117

binary sum type, 30

binomial coefficient, 88

bound variable, 11

cardinality

of finite 𝐺-set, 125

of finite group, 102

category, 150

locally small, 151

of 𝐺-sets, 150

of groups, 150

of sets, 150

opposite, 152

precategory, 149

small, 151

wild category, 150

wild precategory, 148

classifying map, 108

classifying type, 101

cokernel, 189

composition

of functions, 12

of group homomorphisms, 109

of paths, 17

concatenation

of paths, 17

congruence, 16

conjugate, 194

conjugation, 113, 160, 162, 194

connected

graph, 221

connected set bundle, 68

currying, 26

cycle, 80

infinite, 77, 88

of order 𝑚 > 0, 88

decidable set bundle, 68

decidable proposition, 44

decidable set, 48

definition, 12

degree

function, 81

designated shape, 101

diagram, 38

commutative, 38

commutative by definition, 38

subtype, 70

to fill a, 39

dihedral group, 173

disjunction, 40

dummy variable, 11

element, 9

empty type, 29

epimorphism

of groups, 186

equation, 35

equivalence relation

induced by map, 54

even, 115

exists, 40

factorial function, 15

family

274

index 275

of elements, 10

of types, 9

fiber, 23

filler

of a diagram, 39

finite 𝐺-set, 125

finite set bundle, 68

finite group, 102, 210

fixed, 137

flattening construction, 219

forget, 62

higher structure, 62

properties, 62

structure, 62

free, 137

free group, 182

function, 10

𝑛-connected, 93

𝑛-truncated, 93

constant, 11

degree 𝑚, 81

factorial, 15

identity, 12

function extensionality, 20

functor, 153

functor category, 155

functor precategory, see functor category

graph

Cayley graph, 218

labeled, 218

group, 101

abstract, 107

acting on a set, 122

alternating group, 115

binary product, 105

dihedral group, 173

finite, 102

infinite dihedral group, 117, 173

Klein four-group, 105

of automorphisms, 102, 106

of integers, 102

permutation group, 103

quaternion group, 117

semidirect product, 172

stabilizer, 136

symmetric group, 103

group action

of 𝐺-set, 122

groupoid, 35

𝐺-set (of group), 123

G-set (of abstract group), 163

𝐺-subset, 124

Hedberg’s theorem, 48

homomorphism, 108

of abstract group, 161

of groups, 108

identification, 15

identity type, 15

image, 62

function, 193

projection to, 193

image group, 192

induced action, 141

induction principle, 14

infinite dihedral group, 117, 173

initial object, 152

injection, 42

into a type, 47

injective, 42

intersection

of monomorphisms, 178

of sets, 177

invariant map type, 134

isomorphism

in a (wild pre-)category, 149

of abstract groups, 160

of groups, 109

iteration, 67

kernel, 188

associated to, 199

group, 188

Klein four-group, 105

Law of Excluded Middle, 44

LEM, see Law of Excluded Middle

Limited Principle of Omniscience, 85

list

head, 31

tail, 31

list type, 31

loop type constructor, 101

LPO, see Limited Principle of Omniscience

map, 10

of 𝐺-sets, 124

mathematics

univalent, 9

merely, 41

monoid, 158

index 276

monomorphism, 130

of groups, 186

natural transformation, 155

naturality square, 20

negation

of integer, 67

neutral element, 107, 158

normal subgroup, 195

normalizer, 204

obelus, 48

odd, 115

orbit set, 134

ordering

local, 114

sign, 114

parameter type, 10, 19

partial order, 150

path over, 20

permutation

even, 115

permutation group, 103

Pi type, 19

pointed type, 48

pointing path, 48

poset, 150

predicate, 46

preimage, 23

preorder, 150

principle

induction, 14

recursion, 14

product type, 10, 19

proof

of a proposition, 34

proper monomorphism, 130

proper subgroup, 132

proposition, 34

Propositional resizing, 44

propositional truncation, 39

pullback

in types, 176

of groups, 178

pullback diagram, 177

quaternion group, 117

quotient group, 197

quotient homomorphism, 197

recursion principle, 14

Replacement principle, 45

restriction, 141

semidirect product, 172

set, 35

of kernels, 196

comprehension, 47

of orbits, 134

shape, 101

sigma type, 22

sign, 115

sign ordering, 114

signed set, 183

sink

of a diagram, 38

source

of a diagram, 38

stabilizer, 136

substitution, 18

subtype, 46, 47

successor, 13

sum of groups, 179

sum type, 22

Sylow subgroup, 214

symmetric group, 103

symmetries in a group 𝐺, 101

symmetry

in a type, 64

of an element, 16

symmetry type constructor, 101

terminal object, 152

torsor, 140

total type, 22

totalization, 25

transitive 𝐺-set, 126

transport, 18

triple, 22

trivial group, 103

trivial monomorphism, 130

trivial subgroup, 132

truncation

propositional, 39

tuple, 23

type, 8

𝑛-connected, 93

𝑛-truncated, 36

of epimorphisms from a groups, 186

of monomorphisms into a group, 130

of normal subgroups, 195

binary product, 28

index 277

binary sum, 30

cartesian product, 28

empty, 29

of abstract groups, 159

of abstract homomorphisms, 161

of booleans, 29

of groups, 101

of lists, 31

of subgroups of a group, 128

propositional truncation, 39

Sigma, 22

sum, 22

unary sum, 31

unit, 29

unary sum type, 31

underscore, 11

union of sets, 177

unit type, 29

univalence axiom, 33

univalent, 149

universe, 13

Vierergruppe, 105

wedge of pointed types, 179

Weyl group, 204

wrapped copy type, 31

zero, 13

	Short contents
	Contents
	1 Introduction to the topic of this book
	1.0.1 Who is this book for?
	1.0.2 Outline of the book

	2 An introduction to univalent mathematics
	2.1 What is a type?
	2.2 Types, elements, families, and functions
	2.3 Universes
	2.4 The type of natural numbers
	2.5 Identity types
	2.6 Product types
	2.7 Identifying elements in members of families of types
	2.8 Sum types
	2.9 Equivalences
	2.10 Identifying pairs
	2.11 Binary products
	2.12 More inductive types
	2.12.1 Finite types
	2.12.3 Binary sums
	2.12.8 Unary sums
	2.12.10 Lists

	2.13 Univalence
	2.14 Heavy transport
	2.15 Propositions, sets and groupoids
	2.16 Propositional truncation and logic
	2.17 More on equivalences; surjections and injections
	2.18 Decidability, excluded middle and propositional resizing
	2.19 The replacement principle
	2.20 Predicates and subtypes
	2.21 Pointed types
	2.22 Operations that produce sets
	2.22.6 Weakly constant maps
	2.22.9 Set quotients

	2.23 More on natural numbers
	2.24 The type of finite sets
	2.25 Type families and maps
	2.26 Higher truncations
	2.27 Higher structure: stuff, structure, and properties

	3 The universal symmetry: the circle
	3.1 The circle and its universal property
	3.2 The integers
	3.3 Set bundles
	3.4 The symmetries in the circle
	3.5 A reinterpretation of the circle
	3.6 Connected set bundles over the circle
	3.7 Interlude: combinatorics of permutations
	3.8 The mᵗʰ root: set bundles over the components of Cyc
	3.9 Higher images
	3.10 Universal property of Cycn

	4 Groups, concretely
	4.1 Brief overview of the chapter
	4.2 The type of groups
	4.2.17 First examples

	4.3 Abstract groups
	4.4 Homomorphisms
	4.5 The sign homomorphism
	4.6 Bicycles
	4.7 Infinity groups (∞-groups)

	5 Group actions and subgroups
	5.1 Brief overview of the chapter
	5.2 Group actions (G-sets)
	5.2.18 Transitive G-sets
	5.2.26 Actions in a type

	5.3 Subgroups
	5.3.1 Subgroups through G-sets
	5.3.10 Subgroups as monomorphisms
	5.3.24 The Lagrange construction

	5.4 Invariant maps and orbits
	5.4.22 The Orbit–Stabilizer theorem

	5.5 The classifying type is the type of torsors
	5.5.8 Homomorphisms and torsors

	5.6 Any symmetry is a symmetry in Set
	5.7 The lemma that is not Burnside's

	6 A categorical interlude
	6.1 Brief overview of the chapter
	6.2 Categories
	6.3 Abstract notions and duality
	6.4 Functors and natural transformations
	6.5 Adjunctions
	6.6 Limits and Colimits
	6.7 The Yoneda Lemma
	6.8 Monoidal categories

	7 Groups, abstractly
	7.1 Brief overview of the chapter
	7.2 Monoids and abstract groups
	7.3 Abstract homomorphisms
	7.4 Groups: from abstract to concrete and back
	7.5 Homomorphisms, from abstract to concrete and back
	7.6 Actions, from abstract to concrete and back
	7.7 Heaps (†) red just moved from symmetry without proofreading BID211116

	8 Constructing groups
	8.1 Brief overview of the chapter
	8.2 Semidirect products
	8.3 Wreath products
	8.4 The pullback
	8.5 Pushouts of types
	8.6 Sums of groups
	8.7 Free groups

	9 Normal subgroups and quotients
	9.1 Brief overview of the chapter
	9.2 Epimorphisms
	9.3 Images, kernels and cokernels
	9.3.1 Kernels and cokernels
	9.3.10 The image

	9.4 The action on the set of subgroups
	9.5 Normal subgroups
	9.5.13 The associated kernel

	9.6 Intersecting with normal subgroups
	9.7 Automorphisms of groups
	9.8 The Weyl group
	9.9 The isomorphism theorems
	9.10 More about automorphisms

	10 Finite groups
	10.1 Brief overview of the chapter
	10.2 Lagrange's theorem, counting version
	10.3 Cauchy's theorem
	10.4 Sylow's Theorems

	11 Group presentations
	11.1 Brief overview of the chapter
	11.2 Graphs and Cayley graphs
	11.3 Examples
	11.4 Subgroups of free groups
	11.5 Intersecting subgroups
	11.6 Connections with automata (*)

	12 Abelian Groups
	12.1 Brief overview of the chapter
	12.2 Abelian groups
	12.2.1 Center of a group
	12.2.8 Universal set bundle and simple connectedness
	12.2.12 Abelian groups and simply connected 2-types
	12.2.14 Higher deloopings

	12.3 Direct sums and reduced wreath products
	12.4 Stabilization

	13 Rings, fields and vector spaces
	13.1 Rings, abstract and concrete
	13.1.1 Abstract rings
	13.1.7 Mixed rings
	13.1.12 Move to a better place (Ch. 11 or 2)
	13.1.30 Concrete rings

	13.2 vector spaces
	13.3 the general linear group as automorphism group
	13.4 determinants (†)
	13.5 examples: rationals, polynomials, adding a root, field extensions
	13.6 ordered fields, real-closed fields, pythagorean fields, euclidean fields
	13.7 complex fields, quadratically closed fields, algebraically closed fields

	14 Geometry and groups
	14.1 Inner product spaces
	14.2 Euclidean spaces
	14.3 Geometric objects
	14.4 The icosahedron
	14.5 Frieze patterns
	14.6 Incidence geometries and the Levi graph
	14.7 Affine geometry
	14.7.1 affine planes and Pappus' law
	14.7.2 affine frames, affine planes
	14.7.3 the affine group as an automorphism group
	14.7.4 the affine group as a semidirect product
	14.7.5 affine properties (parallelism, length ratios)

	14.8 Inversive geometry (Möbius)
	14.8.1 residue at a point is affine
	14.8.2 Miquel's theorem

	14.9 Projective geometry
	14.9.1 projective planes
	14.9.2 projective frames
	14.9.3 the projective group and projectivities
	14.9.4 projective properties (cross-ratio)
	14.9.5 fundamental theorem of projective geometry

	15 Galois theory
	15.1 Covering spaces and field extensions
	15.2 Intermediate extensions and subgroups
	15.3 separable/normal/etc.
	15.4 fundamental theorem

	A Historical remarks
	B Metamathematical remarks
	B.1 Equality by definition
	B.1.1 Basics
	B.1.2 Deciding equality by definition (not updated yet)

	B.2 The Limited Principle of Omniscience
	B.3 Topology
	B.4 Choice for finite sets (†)

	Bibliography
	Glossary
	Index

