SYMMETRY

Am Anfang war die Symmetrie — In the beginning was symmetry!

Werner Heisenberg, Der Teil und das Ganze:
Gespriche im Umkreis der Atomphysik, 1969,
English translation, Physics and Beyond, 1971.

by

Marc Bezem
Ulrik Buchholtz
Pierre Cagne
Bjorn Ian Dundas
Daniel R. Grayson

Book version: 566bcea (2026-01-22)

Copyright © 2025 by Marc Bezem, Ulrik Buchholtz, Pierre Cagne,
Bjorn Ian Dundas, and Daniel R. Grayson. All rights reserved.

This work is licensed under the Creative Commons Attribution-ShareAlike
‘ @ @ @ 4.0 International License. To view a copy of this license, visit:

http://creativecommons.org/licenses/by-sa/4.0/

This book is available at: https://unimath.github.io/SymmetryBook/book.pdf

To cite the book, the following BsIpX code may be useful:

@misc{Symmetry,
title = {Symmetry},
author = {Marc Bezem and Ulrik Buchholtz and Pierre Cagne
and Bjern Ian Dundas and Daniel R. Grayson},
date = {2026-01-22},
howpublished = {\url{https://github.com/UniMath/SymmetryBook}},
note = {Commit: \texttt{566bcea}}

ii

http://creativecommons.org/licenses/by-sa/4.0/
https://unimath.github.io/SymmetryBook/book.pdf

N a0 K~ W

|

10
11
12
13
14
15

Short contents

Short contents . 1iii

Contents - v

Introduction to the topic of this book - 1
An introduction to univalent mathematics
The universal symmetry: the circle - 64
Groups, concretely - 99

Group actions and subgroups - 122

A categorical interlude - 147

Groups, abstractly - 158
Constructing groups - 172

Normal subgroups and quotients - 185
Finite groups - 209

Group presentations - 216

Abelian Groups - 225

Rings, fields and vector spaces - 234
Geometry and groups - 246

Galois theory - 254

Historical remarks . 257
Metamathematical remarks . 258
Bibliography - 268

Glossary - 271

1ii

SHORT CONTENTS iv

Index - 274

Contents

Short contents . 1iii
Contents - v
Introduction to the topic of this book - 1

An introduction to univalent mathematics - 8
21 Whatisatype? - 8

2.2 Types, elements, families, and functions - 9

2.3 Universes - 12

2.4 The type of natural numbers - 13

2.5 Identity types - 15

2.6 Product types - 19

2.7 Identifying elements in members of families of types - 20
2.8 Sumtypes - 22

2.9 Equivalences - 23

2.10 Identifying pairs - 26

2.11 Binary products - 28

2.12 More inductive types - 28

2.13 Univalence - 32

2.14 Heavy transport - 33

2.15 Propositions, sets and groupoids - 34

2.16 Propositional truncation and logic - 39

2.17 More on equivalences; surjections and injections - 41
2.18 Decidability, excluded middle and propositional resizing - 44
2.19 The replacement principle - 45

2.20 Predicates and subtypes - 45

2.21 Pointed types - 48

2.22 Operations that produce sets - 49

2.23 More on natural numbers - 54

2.24 The type of finite sets - 56

2.25 Type families and maps - 58

2.26 Higher truncations - 60

2.27 Higher structure: stuff, structure, and properties - 62

The universal symmetry: the circle - 64
3.1 The circle and its universal property - 64

3.2 Theintegers - 67

3.3 Setbundles - 68

3.4 The symmetries in the circle - 73

3.5 A reinterpretation of the circle - 75

3.6
3.7
3.8
39
3.10

Connected set bundles over the circle - 79
Interlude: combinatorics of permutations - 87

The m™ root: set bundles over the components of Cyc -

Higher images - 92
Universal property of Cyc, - 96

Groups, concretely - 99

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Brief overview of the chapter - 99
The type of groups - 100
Abstract groups - 106
Homomorphisms - 108

The sign homomorphism - 113
Bicycles - 116

Infinity groups (co-groups) - 120

Group actions and subgroups - 122

5.1
5.2
53
54
55
5.6
5.7

Brief overview of the chapter - 122

Group actions (G-sets) - 122

Subgroups - 128

Invariant maps and orbits - 133

The classifying type is the type of torsors - 140
Any symmetry is a symmetry in Set - 143

The lemma that is not Burnside’s - 144

A categorical interlude - 147

6.1
6.2
6.3
6.4
6.5
6.6

6.7
6.8

Brief overview of the chapter - 147
Categories - 148

Abstract notions and duality - 152
Functors and natural transformations - 153
Adjunctions - 156

Limits and Colimits - 157

The Yoneda Lemma - 157

Monoidal categories - 157

Groups, abstractly - 158

7.1
7.2
73
74
75
7.6
77

Brief overview of the chapter - 158

Monoids and abstract groups - 158

Abstract homomorphisms - 161

Groups: from abstract to concrete and back - 162

Homomorphisms, from abstract to concrete and back -

Actions, from abstract to concrete and back - 168
Heaps (1) - 170

Constructing groups - 172

8.1
8.2
8.3
8.4
8.5
8.6

Brief overview of the chapter - 172
Semidirect products - 172

Wreath products - 176

The pullback - 176

Pushouts of types - 178

Sums of groups - 178

88

165

CONTENTS

Vi

10

11

12

13

14

8.7 Free groups - 182

Normal subgroups and quotients - 185
9.1 Brief overview of the chapter - 185

9.2 Epimorphisms - 185

9.3 Images, kernels and cokernels - 188

9.4 The action on the set of subgroups - 194
9.5 Normal subgroups - 195

9.6 Intersecting with normal subgroups - 200
9.7 Automorphisms of groups - 201

9.8 The Weyl group - 204

9.9 The isomorphism theorems - 206

9.10 More about automorphisms - 206

Finite groups - 209

10.1 Brief overview of the chapter - 210

10.2 Lagrange’s theorem, counting version - 210
10.3 Cauchy’s theorem - 212

10.4 Sylow’s Theorems - 213

Group presentations - 216

11.1 Brief overview of the chapter - 216
11.2 Graphs and Cayley graphs - 217
11.3 Examples - 220

11.4 Subgroups of free groups - 220

11.5 Intersecting subgroups - 223

11.6 Connections with automata (*) - 223

Abelian Groups - 225

12.1 Brief overview of the chapter - 225

12.2 Abelian groups - 225

12.3 Direct sums and reduced wreath products - 233
12.4 Stabilization - 233

Rings, fields and vector spaces - 234

13.1 Rings, abstract and concrete - 234

13.2 vector spaces - 244

13.3 the general linear group as automorphism group - 245

13.4 determinants (t) - 245

13.5 examples: rationals, polynomials, adding a root, field
extensions - 245

13.6 ordered fields, real-closed fields, pythagorean fields, euclidean

fields - 245
13.7 complex fields, quadratically closed fields, algebraically closed
fields - 245

Geometry and groups - 246
14.1 Inner product spaces - 246

14.2 Euclidean spaces - 247

14.3 Geometric objects - 249

CONTENTS

vii

15

14.4 Theicosahedron - 250

14.5 Frieze patterns - 250

14.6 Incidence geometries and the Levi graph - 250
14.7 Affine geometry - 250

14.8 Inversive geometry (Mdobius) - 252

14.9 Projective geometry - 252

Galois theory - 254

15.1 Covering spaces and field extensions - 254
15.2 Intermediate extensions and subgroups - 256
15.3 separable/normal/etc. - 256

15.4 fundamental theorem - 256

Historical remarks . 257
Metamathematical remarks - 258
B.1 Equality by definition - 259

B.2 The Limited Principle of Omniscience - 260
B.3 Topology - 261

B.4 Choice for finite sets (1) - 261
Bibliography - 268

Glossary - 271

Index - 274

CONTENTS

Viii

1

Introduction to the topic of this book

Poincaré sagte gelegentlich, dass alle Mathematik eine Gruppenge-
schichte war. Ich erzihlte ihm dann iiber dein Programm, das er
nicht kannte.

Poincaré was saying that all of mathematics was a tale about groups.
I then told him about your program, which he didn’t know about.

(Letter from Sophus Lie to Felix Klein, October 1882)

Since this book is called “Symmetry” it is reasonable to hope that
by the time you've reached the end you’ll have a clear idea of what
symmetry means.

Ideally the answer should give a solid foundation for dealing with
questions about symmetries. It should also equip you with language
with which to talk about symmetries, making precise — but also reflecting
faithfully — the intuition humans seem to be born with.

So, we should start by talking about how one intuitively can approach
the subject while giving hints about how this intuition can be made into
the solid, workable tool, which is the topic of this book.

What is symmetry?

When we say that something is “symmetric” or possesses many “sym-
metries”, we mean that the thing remains unchanged, even if we “do
things to it.” The best examples to begin with is if the something is some
shape, for instance this square O. Rotating by 9o degrees doesn’t change
it, so we may say that “rotation by 9o degrees is a symmetry of 0” Of
course, rotating by 90 degrees will move individual points in O, but that
is not of essence — the shape remains the same. However, the outcome
of rotating by 360 degree or not at all is the same - even from the point
of view of each individual point in O — so it probably feels contrived to
count rotations by 0 and 360 degrees as different rotations.

It feels reasonable to consider the rotations by 0°, 90°, 180°, and 270°
to be all the (rotational) symmetries of O. Two thoughts may strike you:

(1) are these all the symmetries?

(2) “rotation” indicates a motion, through different squares, joining O
with itself via a “journey in the world of squares”.

The following cartoon animates a rotation of O by 90°. The center of
the square should be thought of as being in the same place all the
time.

INTRODUCTION TO THE TOPIC OF THIS BOOK

A0S S 0D OR

How is that reconcilable with a precise notion of symmetry?

The answer to the first question clearly depends on the context. For
example, if we allow reflections the answer is “no”. Each context has its
own answer to what the symmetries of the square are.

Actually, the two questions should be seen as connected. If a symmetry
of O is like a round trip (loop) in the world (type) of squares, what
symmetries are allowed is dependent on how big a “world of squares”
we consider. Is it, for instance, big enough to contain a loop representing
a reflection?

We argue that in order to pin down the symmetries of a thing (a

“shape”), all you need to do is specify
(1) atype X (of things), and
(2) the particular thing x (in X).

It is (almost) that simple!
Note that this presupposes that our setup is strong enough to support
the notion of a round trip.

From “things” to mathematical objects

Different setups have different advantages. The theory of sets is an
absolutely wonderful setup, but supporting the notion of a round trip in
sets requires at the very least developing fields like mathematical analysis,
topology and homotopy theory, which (while fun and worthwhile in itself)
is something of a detour.

The setup we adopt, homotopy type theory, or univalent foundations,
seems custom-built for supporting the notion of a round trip of a thing
x in a type X. We get support for important operations on round trips
of x: one can do such round trips after another (composition), one can
go any round trip in the reversed direction (inverse), and there is always
the trivial round trip of staying in place (unit). This provides round trips
with a structure that is called a group in mathematics, satisfying all the
properties that these operations ought to have.

In practice, one of the most important things is to be able to compare
symmetries of “thing 1” and “thing 2”. In our case this amounts to
nothing but a function, f:X; — X», that takes thing 1, x; in Xj, to
thing 2, x> in X».

X1 XZ

2

INTRODUCTION TO THE TOPIC OF THIS BOOK

While such comparisons of symmetries are traditionally handled by
something called a group homomorphism which is a function satisfying a
rather long list of axioms, in our setup the only thing we need to know
of the function is that it really does take thing 1 to thing 2 — everything
else then follows naturally.

Some important examples have provocatively simple representations
in this framework. For instance, consider the circle shown in the margin,
with one designated point x on it. Since symmetries of x are interpreted
as loops, you see that you have a loop for every integer — the number
7 can be represented by looping seven times counterclockwise. As we
shall see, in our setup any loop in the circle is naturally identified with
a unique integer (the winding number if you will). Everything you can
wish to know about the structure of the group of integers is built-in in the
circle.

Another example is the free group of words in two letters a and b. This
is represented by the figure eight in the margin. In order to be able to
distinguish the two circles we call them a and b, with the point x as the
(only) point on both. The word ab?a~! is represented by looping around
circles a and b respectively 1, 2 and —1 times in succession — notice that
since the b? is in the middle it prevents the a and the a~! from meeting
and cancelling each other out. If you wanted the abelian group on the
letters a and b (where 2 and b are allowed to move past each other), you
should instead look at the torus:

=

Just why this last example works can remain a puzzle for now.

The importance of the ambient type X “of things”

In many situations, the type X “of things” can be more difficult to draw,
or to define mathematically. For instance, what is the “type of all squares”
which we discussed earlier, representing all rotational symmetries of 0O?
You have perhaps already visualized it as the type of all squares in the
plane, with 00 being the shape the loop must start and stop in. This idea
works well for the oriented square depicted in the margin. Note that the
only reflective symmetry of the oriented square is reflection in the center
— and the outcome is the same as a rotation by 180°. However, for 0O we
would get reflective symmetries that are not rotations. It is actually a
little difficult to come up with a simple geometry of the plane that gives
exactly the rotational symmetries of O. Later in the book, we will first
pursue an algebraic approach, using that any rotational symmetry of O
can be reached by doing the 90°-rotation a few times, together with the
fact that taking any loop four times reduces to not doing anything at all:
they represent the cyclic group of order four.

A by-product of this line of thinking is the distinguished position of
the circle. To express this it is convenient to give names to things: let

pSY

3

INTRODUCTION TO THE TOPIC OF THIS BOOK

(i.e., a dot) be the chosen base point in the circle and O the loop winding
once around the circle counterclockwise. Then a symmetry of a shape
X0 in X is uniquely given by the image of U under a function S! — X
taking « to xo. So,

the study of symmetries is the study of (pointed) functions
between types of things, with the circle being the type that
gives you access to individual symmetries.

This is similar to the idea of replacing membership in a set S by
function from a one-point set 1 into S: a point s in S is uniquely given
by the function 1 — S taking the value s.

Just as you don’t need much information about the one-point set to
get this to work, you don’t need much information about the circle to
embark on a study of symmetries. Essentially you need to know of « and

O, and that there is no “hidden relation” between the symmetries of -.

Contrast this to the type of squares which has such a “hidden relation”:
where we identified a 360° rotation with doing nothing. This point of
view has the benefit of being readily formalized while offering geometric
intuition.

Symmetries have natural scopes

The natural scope of the symmetries of a thing x in a type X are the
things in X that can be reached from x by a journey in X.

Let’s make this precise with an example. In our setup, as a consequence
of univalence, journeys from one set to another in the type of sets
are uniquely given by one-to-one correspondences between these sets,
commonly called bijections.

Now consider the set {1,2, 3}. Then a symmetry of {1, 2, 3} in the type
of finite sets amounts to the same thing as a symmetry of {1, 2, 3} in the
type of sets with three elements: a symmetry of {1, 2,3} will not “pass
through” sets that have, say, five elements. Think of the type of finite
sets as being the disjoint union of all the types of sets with n-elements,
wheren =0,1,2,...: if a symmetry is a loop it should not be allowed to
jump between the type of sets with three elements and the type of sets
with five elements.

In fact, any type X can be naturally divided into “components”: each
element xg in X belongs to one and only one component, and the one
xo belongs to we call X(,,), and the symmetries of xp in X may be
identified with the symmetries of x¢ in X(y,). Hence from the perspective
of symmetries of xg only the component containing it matters, and we
confine our discussion to “connected” types of things, i.e., those having
just one component.

The geometric intuition also points to the possibility of seemingly
different symmetries being identified: when looping once around the
circle it shouldn’t matter “how” or “how fast” you do it. Consider the
picture of the abelian group on two letters @ and b from before, but now
together with a more frivolous loop (in pink) homotopic to a:

Type of empty sets:

L]
live dodos

flying elephants

Type of one-element sets:

Type of two-element sets:

L]
{Calvin, Hobbes}
{1,2}

L]

{9, Louise}

{Thelma, Hobbes}
°

4

INTRODUCTION TO THE TOPIC OF THIS BOOK 5

=

You might think of a symmetries of x as a rubber band confined to
the circle and pinned to xp. In the picture we’ve drawn such a rubber
band (in orange) which can be deformed to 4, and this deformation we
consider as an identification of the two symmetries. In the language we
adopt, this is hard-wired, and so our arguments are independent of any
picture: pictures serve only as inspirations and are very helpful when
trying to discover proofs.*

Our use of univalent foundations has several advantages. Roughly,
univalence is the assertion that two types are “equivalent” if and only if
there is a “path” (called an “identification”) between them in the (large)
“type of types”. In group theory, two groups share exactly the same
properties if there is an “isomorphism” between them (an invertible
homomorphism), and with univalent foundation this is manifested by
the isomorphism corresponding to a path between the groups in the
type of groups. Hence we can use this path to transport any theorem
about one group to the other: the two groups are “identified”. The
power of univalence is hard to overstate; it will simplify many proofs
and make many statements accessible that otherwise would have been
out of reach.

There are many kinds of symmetry and many ways of studying it.
Euclidean plane geometry is the study of properties that are invariant
under rigid motions of the plane. Other kinds of geometry arise by
considering other notions of transformation. Univalent mathematics
gives a new perspective on symmetries: Motions of the plane are forms
of identifying the plane with itself in possibly non-trivial ways. It may
also be useful to consider different presentations of planes (for instance
as embedded in a common three-dimensional space) and different
identifications between them. For instance, when drawing images in
perspective we identify planes in the scene with the image plane, not
in a rigid Euclidean way, but rather via a perspectivity (see Figure 1.1).
This gives rise to projective geometry.

Does that mean that a plane from the point of view of Euclidean
geometry is not the same as a plane from the point of view of projective
or affine geometry? Yes. These are of different types, because they
have different notions of identification, and thus they have different
properties.

Here we follow Quine’s dictum: No entity without identity! To know
a type of objects is to know what it means to identify representatives of
the type. The collection of self-identifications (self-transformations) of a
given object form a group.

Group theory emerged from many different directions in the latter
half of the 19'" century. Lagrange initiated the study of the invariants
under permutations of the roots of a polynomial equation f(x) = 0,
which culminated in the celebrated work of Abel and Galois, proving

'There’s a subtle point, which may
be a source of confusion if brushed
under the carpet: a priori there could
be “several ways” in which two
symmetries should be identified.
For many purposes this poses no
problem, but we want to present
a theory that mirrors the classical
theory faithfully, and so restrict
our “types of things” where there
aren’t multiple ways of identifying
symmetries. The technical term —
when we get that far will be “pointed
connected groupoids”. This means
disallowing types like the sphere:

X0

There are fundamentally different
ways of identifying the symmetry
represented of x(by the equator
with the trivial symmetry: when
thought of as a rubber band the
equator can contract either over the
north or the south poles (or more
complicated ways). There’s some-
thing called “truncation” which can
fix any type to one of the desired sort
where identifications of symmetries
are unique.

FIGURE 1.1: A perspectivity identifies
the planes determined by the trian-
gles ABC and A’B’C’ in a way that
doesn’t preserve Euclidean distances
or angles.

INTRODUCTION TO THE TOPIC OF THIS BOOK

the unsolvability of general quintic (and higher degree) polynomials by
radicals. In number theory, Gauss had made detailed studies of modular
arithmetic, proving for instance that the group of units of Z/nZ is cyclic
precisely when n is 1, 2, 4, pk or 2pk, where p is an odd prime and
k > 0. Klein was bringing order to geometry by considering groups of
transformation, while Lie was applying group theory in analysis to the
study of differential equations.

Galois was the first to use the word “group” in a technical sense,
speaking of collections of permutations closed under composition. He
realized that the existence of a resolvent equation is equivalent to the
existence of a normal subgroup of prime index in the group of the
equation.

1.0.1 Who is this book for?

At the outset the plan for this book was that it ought to cater for two very
groups of readers. If you already have a classical first course in abstract
group theory, this text has as its ambition that you should gain a new
perspective on the material, and at the same time learn about homotopy
type theory by seeing it applied to a field you are familiar with. However,
at the outset, another audience seemed just as plausible to us: what if
you're not well versed in abstract algebra, but open to learning about it
from a type theoretic perspective? This might apply to a computer science
student with aspirations towards the many applications of algebra.

The first audience may have become our predominant target as the
book has progressed, partially because it probably is more sizable than
the second since most students have been brain-washed to think only in
terms of sets at the time they’re ready for this book.

1.0.2 Outline of the book

TBD
All of mathematics is a tale, not about groups, but about co-groupoids.
However, a lot of the action happens already with groups.

Glossary of coercions

Throughout this book we will use the following coercions to make the
text more readable.

e If X is the pointed type (A, a), then x: X means x : A.

® On hold, lacking context: If p and g are paths, then (p, q) means
(.9~

¢ If e is a pair of a function and a proof, we also use e for the function.

e If ¢ is an equivalence between types A and B, we use ¢ for the
identification of A and B induced by univalence.

e If p:A = B with A and B types, then we use p for the canonical
equivalence from A to B (also only as function).

e IfXis(A,a,...)witha:A, then pty and even just pt mean a.

INTRODUCTION TO THE TOPIC OF THIS BOOK

How to read this book

A word of warning. We include a lot of figures to make it easier to follow
the material. But like all mathematical writing, you'll get the most out of
it, if you maintain a skeptical attitude: Do the pictures really accurately
represent the formal constructions? Don't just believe us: Think about it!

The same goes for the proofs: When we say that something clearly
follows, it should be clear to you. So clear, in fact, that you could go and
convince a proof assistant, should you so desire.

Acknowledgement

The authors acknowledge the support of the Centre for Advanced Study
(CAS) at the Norwegian Academy of Science and Letters in Oslo, Norway,
which funded and hosted the research project Homotopy Type Theory
and Univalent Foundations during the academic year 2018/19, as well
as the CAS Alumni Fellowship, which financed several meetings and
gatherings instrumental to getting the book closer to its final form.

7

2

An introduction to univalent mathematics

2.1 What is a type?

In some computer programming languages, all variables are introduced
along with a declaration of the type of thing they will refer to. Knowing
the type of thing a variable refers to allows the computer to determine
which expressions in the language are grammatically well formed*, and
hence valid. For example, if s is a string® and x is a real number, we may
write 1/x, but we may not write 1/s.3

To enable the programmer to express such declarations, names are
introduced to refer to the various types of things. For example, the
name Bool may be used to declare that a variable is a Boolean value?, Int
may refer to 32-bit integers, and Real may refer to 64-bit floating point
numbers®.

Types occur in mathematics, too, and are used in the same way: all
variables are introduced along with a declaration of the type of thing
they will refer to. For example, one may say “consider a real number
x”, “consider a natural number n”, “consider a point P of the plane”,
or “consider a line L of the plane”. After that introduction, one may say
that the type of n is natural number and that the type of P is point of the
plane. Just as in a computer program, type declarations such as those are
used to determine which mathematical statements are grammatically
well formed. Thus one may write “P lies on L” or 1/x, but not “L lies on
P” nor 1/L.°

Often ordinary English writing is good enough for such declarations in
mathematics expositions, but, for convenience, mathematicians usually
introduce symbolic names to refer to the various types of things under
discussion. For example, the name N is usually used when declaring
that a variable is a natural number, the name Z is usually used when
declaring that a variable is an integer, and the name R is usually used
when declaring that a variable is a real number. Ways are also given
for constructing new type names from old ones: for example, the name
R x R may be used when declaring that a variable is a point of the plane,
for it conveys the information that a point of the plane is a pair of real
numbers.

Once one becomes accustomed to the use of names such as N in
mathematical writing and speaking, it is natural to take the next step
and regard those names as denoting things that exist. Thus, we shall
refer to N as the type of all natural numbers, and we will think of it as a
mathematical object in its own right. Intuitively and informally, it is a
collection whose members (or elements) are the natural numbers.

*The grammar of a programming lan-
guage consists of all the language’s
rules. A statement or expression in a
programming language is grammati-
cally well formed if it follows all the
rules.

2A string is a sequence of characters,
such as “qwertyuiop”.

3In a programming language, the well
formed expression 1/x may produce
a run-time error if x happens to have
the value 0.

4A Boolean value is either true or false.

5An example of a floating point number
is . 625 x 233 — the mantissa . 625 and
the exponent 33 are stored inside the
floating point number. The “point”,
when the number is written in base 2
notation, is called “floating”, because
its position is easily changed by
modifying the exponent.

6In mathematics there are no “run-
time” errors; rather, it is legitimate
to write the expression 1/x only if
we already know that x is a non-zero
real number.

AN INTRODUCTION TO UNIVALENT MATHEMATICS 9

Once we view the various types as existing as mathematical objects,
they become worthy of study. The language of mathematics is thereby
improved, and the scope of mathematics is broadened. For example, we
can consider statements such as “N is infinite” and to try to prove it.

Historically, there was some hesitation” about introducing the collec-
tion of all natural numbers as a mathematical object, perhaps because
if one were to attempt to build the collection from nothing by adding
numbers to it one at a time, it would take an eternity to complete the
assembly. We won't regard that as an obstacle.

We have said that the types of things are used to determine whether
mathematical statements are well formed. Therefore, if we expect “N is
infinite” to be a well-formed statement, we’ll have to know what type of
thing N is, and we’ll have to have a name for that type. Similarly, we’ll
have to know what type of thing that type is, and we’ll have to have a
name for it, and so on forever. Indeed, all of that is part of what will be
presented in this chapter.

2.2 Types, elements, families, and functions

In this section we build on the intuition imparted in the previous section.

In univalent mathematics,® types are used to classify all mathematical
objects. Every mathematical object is an element (or a member) of some
type. Before one can talk about an object of a certain type, one must
introduce the type itself. There are enough ways to form new types from
old ones to provide everything we need to write mathematics.

One expresses the declaration that an object a is an element of the type
X by writing a: X .9

Using that notation, each variable x is introduced along with a decla-
ration of the form x : X, which declares that x will refer to something of
type X, but provides no other information about x. The declared types
of the variables are used to determine which statements of the theory
are grammatically well formed.

After introducing a variable x:X, it may be possible to form an
expression T representing a type, all of whose components have already
been given a meaning. (Here the variable x is regarded also as having
already been given a meaning, even though the only thing known about
it is its type.) To clarify the dependence of T on x primarily, we may
write T(x) (or Ty) instead of T. Such an expression will be called a family
of types parametrized by the variable x of type X. Such a family provides
a variety of types, for, if a is any expression denoting an object of X,
one may replace all occurrences of x by a in T, thereby obtaining a new
expression representing a type, which may be regarded as a member and
which may be denoted by T(a).

Naturally, if the expression T doesn’t actually involve the variable x,
then the members of the family are all the same, and we’ll refer to the
family as a constant family of types.

Here’s an example of a family of types: let T be the type of all natural
numbers greater than 2. For any element 1 of T we let P, be the type of
n-sided polygons in the plane. It gives a family of types parametrized
by the elements of T. One of the members of the family is the type Ps of
all pentagons in the plane.

7TO DO : Include some pointers to
discussions of potential infinity and
actual infinity, perhaps.

8The term “univalent” is a word
coined by Vladimir Voevodsky, who
introduced it to describe his prin-
ciple that types that are equivalent
in a certain sense can be identified
with each other. The principle is
stated precisely in Principle 2.13.2.
As Voevodsky explained, the word
comes from a Russian translation
of a mathematics book, where the
English mathematical term “faith-
ful” was translated into Russian as
the Russian word that sounds like
“univalent”. He also said “Indeed
these foundations seem to be faithful
to the way in which I think about
mathematical objects in my head.”

9The notation in mathematics based
on set theory that corresponds (sort
of) to thisisa € X.

AN INTRODUCTION TO UNIVALENT MATHEMATICS

A family of types may be parametrized by more than one variable.

For example, after introducing a variable x : X and a family of types
T parametrized by x, we may introduce a variable ¢ : T. Then it may
be possible to form an expression S representing a type that involves
the variables x and t. Such an expression will be called a family of
types parametrized by x and f, and we may write S(x, f) instead of S to
emphasize the dependence on x and t. The same sort of thing works
with more variables.

After introducing a variable x : X and a family of types T, it may be
possible to form an expression ¢ of type T, all of whose components have
already been given a meaning. Such an expression will also be called
a family of elements of T parametrized by the elements of X, when we

wish to focus on the dependence of e (and perhaps T) on the variable x.

To clarify the dependence of e on x primarily, we may write e(x) (or ey)
instead of e. Such a family provides a variety of elements of members
of the family T, for, if a is any expression denoting an object of X, one
may replace all occurrences of x by a in e and in T, thereby obtaining an
element of T'(a), which may be regarded as a member of the family e and
which will be denoted by e(a).

Naturally, if the expressions e and T don’t actually involve the variable
x, then the members of the family are all the same, and we’ll refer to the
family as a constant family of elements.

Here’s an example of a family of elements in a constant family of

types: we let n be a natural number and consider the real number /n.
It gives a family of real numbers parametrized by the natural numbers.

(The family may also be called a sequence of real numbers). One of the
members of the family is V11.

Here’s an example of a family of elements in a (non-constant) family
of types. As above, let T be the type of all natural numbers greater
than 2 and let P, be the type of n-sided polygons in the plane, for any
n:T. Now consider the regular n-sided polygon p, of radius 1 with
a vertex on the positive x-axis, for any n:T. We see that p, : P,. One
of the members of this family of elements p, is the regular pentagon ps
of radius 1 with a vertex on the positive x-axis. The pentagon ps is an

element of the type Ps, which is a member of the family of types P, (n:T).

In short, 5: T and p5: Ps.

The type X containing the variable for a family of types or a family of
elements is called the parameter type of the family.

Just as a family of types may depend on more than one variable, a
family of elements may also depend on more than one variable.

Families of elements can be enclosed in mathematical objects called
functions (or maps), as one might expect. Let e be a family of elements of
a family of types T, both of which are parametrized by the elements x of
X. We use the notation x + e for the function that sends an element a
of X to the element e(a) of T(a); the notation x — e can be read as “x
maps to e” or “x goes to e”. (Recall that e(a) is the expression that is
obtained from e by replacing all occurrences of x in e by a.) If we name
the function f, then that element of T will be denoted by f(a). The type
of the function x + e is called a product type and will be denoted by
I1;.x T(x). If T is a constant family of types, then the type will also be
called a function type and will be denoted by X — T. Thus when we

10

AN INTRODUCTION TO UNIVALENT MATHEMATICS 11

write f: X — T, we mean that f is an element of the type X — T, and
we are saying that f is a function from X to T. The type X may be called
the domain of f, and the type T may be called the codomain of f.

Given an element ¢ of T, we can consider the function x + t mapping
all elements of X to t. Such functions are called constant functions, and
they occur so often that we introduce a special notation for them.

DerINITION 2.2.1. Let X and T be types, and t an element of T. Define
cstX : X — T tobe x > t, the constant function at t. 4

An example of a function is the function n - /i of type N — R.

Another example of a function is the function n + p,, of type ['I,,.n Pa,
where P, is the type of polygons introduced above, and p, is the polygon
introduced above.

Another example of a function is the function m +— (n +— m + n) of
type N — (N — N). It is a function that accepts a natural number as
argument and returns a function as its value. The function returned is
of type N — N. It accepts a natural number as argument and returns a
natural number as value.

The reader may wonder why the word “product” is used when
speaking of product types. To motivate that, we consider a simple
example informally. We take X to be a type with just two elements, b and
c. We take T(x) to be a family of types parametrized by the elements of
X, with T(b) being a type with 5 elements and T(c) being a type with 11
elements. Then the various functions f of type [],.x T(x) are plausibly
obtained by picking a suitable element for f(b) from the 5 possibilities in
T(b) and by picking a suitable element for f(c) from the 11 possibilities
in T(c). The number of ways to make both choices is 5 X 11, which is a
product of two numbers. Thus [],.x T(x) is sort of like the product of
T(b) and T(c), at least as far as counting is concerned.

The reader may wonder why we bother with functions at all: doesn’t
the expression e serve just as well as the function x + e, for all practical
purposes? The answer is no. One reason is that the expression e doesn’t
inform the reader that the variable under consideration is x. Another
reason is that we may want to use the variable x for elements of a different
type later on: then e(x) is no longer well formed. For example, imagine
first writing this: “For a natural number n we consider the real number
y/n” and then writing this: “Now consider a triangle 7 in the plane.”
The result is that v/ is no longer usable, whereas the function n +— vn
has enclosed the variable and the family into a single object and remains
usable.®

Once a family e has been enclosed in the function x + e, the variable
x is referred to as a dummy variable or as a bound variable.** This signifies
that the name of the variable no longer matters, in other words, that
x — e(x)and t — e(t) may regarded as identical. Moreover, the variable
x that occurs inside the function x +— e is regarded as unrelated to
variables x which may appear elsewhere in the discussion.

If the variable x in our notation x +— e(x) is a dummy variable, and
its name doesn’t matter, then we may consider the possibility of not
specifying a variable at all. We introduce now a methodical way to do
that, by replacing the occurrences of the variable x in the expression e(x)
by an underscore, yielding e(_) as alternative notation for the function

'°Students of trigonometry are already
familiar with the concept of function,
as something enclosed this way. The
sine and cosine functions, sin and
cos, are examples.

MStudents of calculus are familiar with
the concept of dummy variable and
are accustomed to using identities

suchas [” f(t)dt = [f(x)dx.

AN INTRODUCTION TO UNIVALENT MATHEMATICS 12

x — e(x). For example, the notation 4/_ can serve as alternative notation
for the function n — +/n introduced above, and 2 + _ can serve as
alternative notation for the function n + 2 + n of type N — N.

We have mentioned above the possibility of giving a name to a function.

We expand on that now by introducing notation for making and for
using definitions.

The notation x := z will be an announcement that we are defining
the expression x to be the expression z, all of whose components have
already been given a meaning; in that case, we will say that x has been
defined to be (or to mean) z. The forms allowed for the expression x will
be made clear by the examples we give.

For example, after writing n := 12, we will say that n has been defined
to be 12.

For another example, naming the function x +— e(x) as f (as we did
above) can be done by writing f = (x +— e(x)). Alternatively and more
traditionally, we may write f(x) := e(x). Both mean that f has been
defined to be x — e(x) and that, consequently, f(a) has been defined to
be e(a), for any element a of X.

The notation b = ¢ will denote the statement that the expressions b
and ¢ become the same thing if all the subexpressions within b or ¢ are
expanded according to their definitions, if any; in that case, we will say
that b and c are the same by definition. For example, after writing n := 12
and m := n, we may say that j + 12 = j + m and that m X 11 = 12 x 11.

Whenever two expressions are the same by definition, we may replace
one with the other inside any other expression, because the expansion
of definitions is regarded as trivial and transparent.

We proceed now to the promised example. Consider functions f : X —
Y and g:Y — Z. We define the composite function g o f: X — Z by
setting g o f := (a — g(f(a))). In other words, it is the function that
sends an arbitrary element a of X to g(f(a)) in Z. (The expression g o f
may be read as “g circle f” or as “g composed with f”.) The composite
function g o f may also be denoted simply by gf.

Now consider functions f: X =Y, ¢:Y — Z,and h: Z — W. Then
(hog)o fand ho(g o f) are the same by definition, since applying the
definitions within expands both expressions to a — h(g(f(a))). In other
words, we have established that (h o g) o f = h o (g o f). Thus, we may
write J1 o g o f for either expression, without danger of confusion.

One may define the identity function idx : X — X by setting idx :=
(a — a). Application of definitions shows that f o idx is the same by
definition as a — f(a), which, by a standard convention, which we
adopt'?, is to be regarded as the same as f. In other words, we have
established that f oidx = f. A similar computation applies to idy o f.

In the following sections we will present various other elementary
types and elementary ways to make new types from old ones.

2.3 Universes

In Section 2.2 we have introduced the objects known as types. They have
elements, and the type an element belongs to determines the type of thing
that it is. At various points in the sequel, it will be convenient for types
also to be elements, for that will allow us, for example, to enclose families

2The convention that f = (a — f(a))
is referred to as the n-rule in the
jargon of type theory.

AN INTRODUCTION TO UNIVALENT MATHEMATICS 13

of types in functions. To achieve this convenience, we introduce types
that are universes. Some care is required, for the first temptation is to
posit a single new type U called the universe, so that every type is realized
as an element of 7. This universe would be “the type of all types”, but
introducing it would lead to an absurdity, for roughly the same reason
that introduction of a “set of all sets” leads to the absurdity in traditional
mathematics known as Russell’s paradox.'> Some later approaches to
set theory included the notion of a class, with the collection of all sets
being the primary example of a class. Classes are much like sets, and
every set is a class, but not every class is a set. Then one may wonder
what sort of thing the collection of all classes would be. Such musings
are resolved in univalent mathematics as follows.

(1) There are some types called universes.

(2) If U is a universe, and X : U is an element of U, then X is a type.

(3) If X is a type, then it appears as an element in some universe U.

Moreover, if X and Y are types, then there is a universe U containing
both of them. This universe U also contains the type X — Y and
similar types constructed from X and Y.

(4) If U and U’ are universes, U :U’, X is a type, and X : U, then also
X :U’'. (Thus we may regard U’ as being larger than U.)

(5) There is a particular universe Uy, which we single out to serve as

a repository for certain basic types to be introduced in the sequel.

Moreover, Uy :U for every other universe U, and thus Uy is the
smallest universe.

It follows from the properties above that there are an infinite number
of universes, for each one is an element of a larger one. For the sake of
clarity, throughout this book, we use an infinite sequence of universes
‘Uo:‘lh:‘llz:

Now suppose we have a type X and a family T(x) of types parametrized
by a variable x of type X. Choose a universe U with T(x):U. Then

we can make a function of type X — U, namely f = (x — T(x)).

Conversely, if f”is a function of type X — U, then we can make a family
of types parametrized by x, namely T’ := f’(x). The flexibility offered by
this correspondence between families of types in U and functions to U
will often be used.

2.4 The type of natural numbers

Here are Peano’s rules'> for constructing the natural numbers in the
form that is used in type theory.

(P1) there is a type called N in the universe Uy (Whose elements will be
called natural numbers);

(P2) there is an element of N called 0, called zero;

(P3) if m is a natural number, then there is also a natural number succ(m),
called the successor of m;

(P4) suppose we are given:

3In fact, type theory can trace its ori-
gins to Russell’s paradox, announced
in a 1902 letter to Frege as follows:

There is just one point where I
have encountered a difficulty. You
state that a function too, can act
as the indeterminate element.
This I formerly believed, but now
this view seems doubtful to me
because of the following contra-
diction. Let w be the predicate: to
be a predicate that cannot be pred-
icated of itself. Can w be predi-
cated of itself? From each answer
its opposite follows. Therefore
we must conclude that w is not

a predicate. Likewise there is no
class (as a totality) of those classes
which, each taken as a totality, do
not belong to themselves.

To which Frege replied:
Incidentally, it seems to me that
the expression “a predicate is
predicated of itself” is not exact. A
predicate is as a rule a first-level
function, and this function re-
quires an object as argument and
cannot have itself as argument
(subject).
Russell then quickly added Appen-
dex B to his Principles of Mathematics
(1903), in which he said that “it is the
distinction of logical types that is the
key to the whole mystery”, where
types are the ranges of significance of
variables. For more on the history of
type theory, see Coquand*4.

*4Thierry Coquand. “Type Theory”.
In: The Stanford Encyclopedia of Phi-
losophy. Ed. by Edward N. Zalta.
Metaphysics Research Lab, Stan-
ford University, 2018. URL: https:
//plato.stanford.edu/archives/
fall2018/entries/type-theory/.

'5Giuseppe Peano. Arithmetices prin-
cipia: nova methodo. See also https:
//github . com/mdnahas/Peano_
Book/ for a parallel translation by
Vincent Verheyen. Fratres Bocca,
1889. URL: https://books.google.
com/books?id=z80GAAAAYAA].

https://plato.stanford.edu/archives/fall2018/entries/type-theory/
https://plato.stanford.edu/archives/fall2018/entries/type-theory/
https://plato.stanford.edu/archives/fall2018/entries/type-theory/
https://github.com/mdnahas/Peano_Book/
https://github.com/mdnahas/Peano_Book/
https://github.com/mdnahas/Peano_Book/
https://books.google.com/books?id=z80GAAAAYAAJ
https://books.google.com/books?id=z80GAAAAYAAJ

AN INTRODUCTION TO UNIVALENT MATHEMATICS 14

a) a family of types X (m) parametrized by a variable m of type
N;
b) an element a of X(0); and
) a family of functions g, : X(m) — X(succ(m)).
Then from those data we are provided with a family of elements

f(m):X(m), satisfying f(0) = a and f(succ(m)) = g (f(m)).

The first three rules present few problems for the reader. They provide
us with the smallest natural number 0:N, and we may introduce as
many others as we like with the following definitions.

1 := succ(0)
2 = succ(1)
3 = succ(2)

You may recognize rule (P4) as “the principle of mathematical induc-
tion”.*® We will refer to it simply as “induction on N”.

You may also recognize the function f in (P4) as “defined by recursion”.
The point of the induction principle is that the type X(m) of f(m) may
depend on m. An important special case is when X (m) does not depend
on m, that is, when X(m) := Y for some type Y. In this non-dependent
case we refer to the principle as “the recursion principle for N”. In
other words, throughout this book, the difference between an induction
principle and the corresponding recursion principle is that in the latter
principle the type family is constant.

The resulting family f may be regarded as having been defined
inductively by the two declarations f(0) := a and f (succ(m)) = gm(f(m)),
and indeed, we will often simply write such a pair of declarations as a
shorthand way of applying rule (P4). The two declarations cover the
two ways of introducing elements of N via the use of the two rules (P2)
and (P3). (In terms of computer programming, those two declarations
amount to the code for a recursive subroutine that can handle any
incoming natural number.)

With that notation in hand, speaking informally, we may regard (P4)
above as defining the family f by the following infinite sequence of
definitions.

f(0)=a

f(1) = go(a)

f(2) = g1(go(a))
f(3) = g2(g1(80(a)))

(The need for the rule (P4) arises from our inability to write down an
infinite sequence of definitions in a finite amount of space, and from the
need for f(m) to be defined when m is a variable of type N, and thus is
not known to be equal to 0, nor to 1, nor to 2, etc.)

We may use induction on N to define of iteration of functions. Let
Y be a type, and suppose we have a function e: Y — Y. We define by

6Rule (P4) and our logical framework
are stronger than in Peano’s original
formulation, and this allows us to
omit some rules that Peano had to
include: that different natural num-
bers have different successors; and
that no number has 0 as its successor.
Those omitted rules remain true in
this formulation and can be proved
from the other rules, after we have
introduced the notion of equality in
our logical framework.

AN INTRODUCTION TO UNIVALENT MATHEMATICS 15

induction on N the m-fold iteration e™ : Y — Y by setting ¢’ := idy and
esueelm := ¢ o ™. (Here we apply rule (P4) with the the type Y — Y as
the family of types X(m), the identity function idy for a, and the function
d +— e od for the family g, : (Y = Y) — (Y — Y) of functions.)

We may now define addition of natural numbers by induction on N.

For natural numbers n and m we define n + m :N by induction on N
with respect to the variable m by setting n + 0 := n and n + succ(m) :=
succ(n + m). (The reader should be able to extract the family X (m), the
element a, and the family of functions g,, from that pair of definitions.)
Application of definitions shows, for example, that 2 + 2 and 4 are the
same by definition, and thus we may write 2 + 2 = 4, because both
expressions reduce to succ(succ(succ(succ(0)))).

Similarly we define the product m - n : N by induction on m by setting
setting 0 - n := 0 and succ(m) - n := (m - n) + n.

Alternatively (and equivalently) we may use iteration of functions to
define addition and multiplication, by setting n + m := succ™(n) and
m-n:= (G i+n)"0).

Finally, we may define the factorial function fact : N — N by induction
on N, setting fact(0) := 1 and fact(succ(m)) := succ(m) - fact(m). (One
can see that this definition applies rule (P4) with X(m) := N, with 1 for
a, and with the function n + succ(m) - n for g,,.) Application of the
definitions shows, for example, that fact(3) = 6, as the reader may verify.

2.5 Identity types

One of the most important types is the identity type, which implements a
notion of equality. Identity types are formed of a type and two elements
of that type; we shall have no need to compare elements of different

types.
Here are the rules for constructing and using identity types.

(E1) for any type X and for any elements 2 and b of it, there is an identity
type a = b; moreover, if X is an element of a universe U, then so is
a—=b.

(E2) for any type X and for any element a of it, there is an element refl,
of type a = a (the name refl comes from the word “reflexivity”)

(E3) suppose we are given:

a) atype X and an element a: X;

b) a family of types P(b, ¢, ...) parametrized by a variable b of
type X, a variable e of type a = b, and perhaps some further
variables; and

c) an element p of P(a, refl,,...).

Then from those data we are provided with a family of elements
f(b,e,...):P(b,e,...). Moreover, f(a,refl,,...) =p.

We will refer to an element i of @ = b as an identification of a with b.
Since the word “identification” is a long one, we may also refer to i as a
path from a to b — this has the advantage of incorporating the intuition
that an identification may proceed gradually through intermediate steps.

When the type of a and b is not clear
we may clarify it by writing a =x b.

AN INTRODUCTION TO UNIVALENT MATHEMATICS 16

The need to record, using the element i, the way we identify a with b
may come as a surprise, since normally, in mathematics, one is accus-
tomed to regarding a as either equal to b or not. However, this reflects
a situation commonly encountered in geometry when congruence of
geometric figures is considered. For example, in Euclidean space, two
equilateral triangles of the same size are congruent in six (different)
ways."7 The chief novelty of univalent mathematics is that the basic
logical notion of equality, as implemented by the identity typesa = b,
is carefully engineered to accommodate notions of congruence and sym-
metry from diverse areas of mathematics, including geometry. Exposing
that point of view in the context of geometry is the main point of this
book.

In light of the analogy with geometry just introduced, we will refer
to an element i of 4 = a as a symmetry of a. Think, for example, of
a congruence of a triangle with itself. An example of a non-trivial
symmetry will be seen in Exercise 2.13.3.

Consider the identity type fact(2) = 2, where fact denotes the factorial
function defined in Section 2.4. Expansion of the definitions in fact(2) =
2 simplifies it to succ(succ(0)) = succ(succ(0)), so we see from rule (E2)
that reflsycc(succ(0)) Serves as an element of it.' We may also write either
refly or reflg, () for that element. A student might want a more detailed
derivation that fact(2) may be identified with 2, but as a result of our
convention above that definitions may be applied without changing
anything, the application of definitions, including inductive definitions,
is normally regarded as a trivial operation, and the details are usually
omitted.

We will refer to rule (E3) as “induction for identity”. To signal that we
wish to apply it, we may announce that we argue by (path) induction on e,
or simply by path induction.

The family f resulting from an application of rule (E3) may be regarded
as having been completely defined by the single declaration f(a, refl,) :=
p, and indeed, we will often simply write such a declaration as a
shorthand way of applying rule (E3). The rule says that to construct
something from every identification e of 2 with something else, it suffices
to consider the special case where the identification e is refl, :a = 4.9

Intuitively, the induction principle for identity amounts to saying that
the element refl, “generates” the system of types a — b, as b ranges over
elements of A.?°

Equality relations are symmetric. For identity types we establish some-
thing similar, taking into account that the notion of equality implemented
here keeps track of the way two things are identified, and there can be
multiple ways. Given a type X and elements a and b of X, we have an
identity type a = b of (zero or more) identifications of a with b. We also
have an identity type b = a of identifications of b with 2. Symmetry now
takes the form of a function from type a = b to type b = 4, intuitively
reversing any identification of a with b to give an identification of b with
a. In order to produce an element of b = a from an elemente of a = b,
for any b and e, we argue by induction on e. We let P(b, ¢) be b = a for
any b of type X and for any e of type a = b, for use in rule (E3) above.
Application of rule (E3) reduces us to the case where b is a and p is refl,,
and our task is now to produce an element of @ = a; we choose refl, for

17Six, since we allow reflections, other-
wise there are only three.

8We will see later that numbers only
have trivial symmetries, so the pos-
sibility that there are other ways to
identify fact(2) with 2 doesn't arise.

'9Notice that the single special case in
such an induction corresponds to the
single way of introducing elements
of identity types via rule (E2), and
compare that with (P4), which dealt
with the two ways of introducing
elements of N.

29We can also use a geometric intuition:
when b “freely ranges” over elements
of A, together with a pathe:a = b,
while we keep the element a fixed,
we can picture e as a piece of string
winding through A, and the “free-
ness” of the pair (b, e) allows us to
pull the string e, and b with it, until
we have the constant path at a, refl,.
A A

Conversely, we can imagine b start-
ing at a2 and e starting out as

refl;, and then think of b roaming
throughout A, pulling the string e
along with it, until it finds every
path from a to some other element.

AN INTRODUCTION TO UNIVALENT MATHEMATICS 17

it.

Equality relations are also transitive. We proceed in a similar way as
for symmetry. For each a,b,c:X and for each p:a = b and for each
q:b = ¢ we want to produce an element of type a = c. By induction on
g we are reduced to the case where c is b and g is refl;, and we are to
produce an element of @ = b. The element p serves the purpose.

Now we state our symmetry result a little more formally.

DeriNtTION 2.5.1. For any type X and for any a, b : X, let
symm, , :(a = b) — (b > a)

be the function defined by induction by setting symm,, ,(refl,) = refl,.
This operation on paths is called path inverse, and we may abbreviate
symm, ,(p) as p~. a
Similarly, we formulate transitivity a little more formally, as follows.

DEerINITION 2.5.2. For any type X and for any a,b,c: X, let
trans, . :(a > b) = (b = ¢) = (a = ¢))

be the function defined by induction by setting (trans, ; 5 (p))(refly) = p.

This binary operation is called path composition or path concatenation,
and we may abbreviate (trans, p,(p))(q) as either p +q, oras q - p, qp, or
gop. 4

The intuition that the path p summarizes a gradual change from a to
b, and q summarizes a gradual change from b to c, leads to the intuition
that p * g progresses gradually from a to ¢ by first changing a to b and
then changing b to c; see Figure 2.1.

The notation g o p for path composition, with p and ¢ in reverse order,
fits our intution particularly well when the paths are related to functions
and the composition of the paths is related to the composition of the re-
lated functions in the same order, as happens, for example, in connection
with transport (defined below in Definition 2.5.4) in Exercise 2.5.5.

The types of symm, , and trans, ;. express that = is symmetric
and transitive. Another view of symm, , and trans, j ¢ is that they are
operations on identifications, namely reversing an identification and
concatenating two identifications. The results of various combinations
of these operations can often be identified: we formulate some of these
identifications in the following exercise.

Exercisk 2.5.3. Let X be a type and let a, b, ¢, d : X be elements.
(1) For p:a = b, construct an identification of type p refl, = p.
(2) For p:a = b, construct an identification of type refl, * p = p.

(3) Forp:a = b,q:b = c,and r:¢c = d, construct an identification of
type (p+q)xr > pr(g*7).
(4) For p:a = b, construct an identification of type p~! = p = refl,.

(5) For p:a = b, construct an identification of type p * p~t = refl,.

(6) For p:a = b, construct an identification of type (p~!)~1 5 p. a
Givenanelementp :a = a, we may use concatenation to define powers
p":a = a by induction on 1:N; we set p° := refl, and p"*! = p - p".

Negative powers p~" are defined as (p~1)".2!

Ficure 2.1: Composition (also called
concatenation) of paths in X

?'We haven't yet assigned a meaning to
—n, but after we introduce the set of
integers Z below in Definition 3.2.1,
we’ll be justified in writing p* for any
z:Z. See also Example 2.12.9.

AN INTRODUCTION TO UNIVALENT MATHEMATICS 18

One frequent use of elements of identity types is in substitution, which
is the logical principle that supports our intuition that when x can by
identified with y, we may replace x by y in mathematical expressions
at will. A wrinkle new to students will likely be that, in our logical
framework where there may be various ways to identify x with y, one
must specify the identification used in the substitution. Thus one may
prefer to speak of using an identification to transport properties and data
about x to properties and data about y.

Here is a geometric example: if x is a triangle of area 3 in the plane,
and vy is congruent to x, then y also has area 3.

Here is another example: if x is a right triangle in the plane, and y
is congruent to x, then vy is also a right triangle, and the congruence
informs us which of the 3 angles of y is the right angle.

Now we introduce the notion more formally.

DeriniTION 2.5.4. Let X be a type, and let T(x) be a family of types
parametrized by a variable x : X (as discussed in Section 2.2). Suppose
a,b:X and e:a = b. Then we may construct a function of type T(a) —
T(b). The function
trpeT :T(a) — T(b)

is defined by induction setting trprTeﬂu = idr(g). 4

The function thus defined may be called the transport function in the
type family T along the path e, or, less verbosely, transport.*> We may also
simplify the notation to just trp,. The transport functions behave as
expected: we may construct anidentification of type trp,.,, = trp,. o trp,.
In words: transport along the composition e o e’ can be identified with
the composition of the two transport functions. This may be proved by
induction in the following exercise.

Exercis 2.5.5. Let X be a type, and let T(x) be a family of types
parametrized by a variable x:X. Suppose we are given elements
a,b,c:X, e:ra > b, and ¢’:b — c¢. Construct an identification of
type

trp,.,, = trp, otrp,. a

Yet another example of good behavior is given in the following exercise.

Exercisk 2.5.6. Let X, Y be types. As discussed in Section 2.2, we may
regard the expression Y as a constant family of types parametrized by
a variable x : X. Produce an identification of type trp;/ = idy, for any
pathp:a > b. 4

In Section 2.15 below we will discuss what it means for a type to have at
most one element. When the types T(x) may have more than one element,
we may regard an element of T(x) as providing additional structure on x.
In that case, we will refer to the transport function trp, : T(a) — T(b) as
transport of structure from a to b.

Take, for example, T(x) := (x = x). Then trp, is of type (a — a) —
(b = b) and transports a symmetry of a to a symmetry of b.

By contrast, when the types T(x) have at most one element, we may
regard an element of T(x) as providing a proof of a property of x. In
that case, the transport function trp, : T(a) — T(b) provides a way to
establish a claim about b from a claim about a4, so we will refer to it as

**We sometimes picture this schemat-
ically as follows: We draw X as a
(mostly horizontal) line, and we
draw each type T(x) as a vertical line
lying over x : X. As x moves around
in X, these lines can change shape,
and taken all together they form a
2-dimensional blob lying over X.
The transport functions map points
between the vertical lines.

T(a) T®)

— X

AN INTRODUCTION TO UNIVALENT MATHEMATICS

substitution. In other words, elements that can be identified have the
same properties.

2.6 Product types

Functions and product types have been introduced in Section 2.2, where
we have also explained how to create a function by enclosing a family of
elements in one. In this section we treat functions and product types in
more detail.

Recall that if X is a type and Y(x) is a family of types parametrized
by a variable x of type X, then there is a product type®3 [],.x Y(x) whose
elements f are functions that provide elements f(a) of type Y(a), one
for each a: X. We will refer to X as the parameter type of the product. By
contrast, if Y happens to be a constant family of types, then [],.x Y will
also be denoted by X — Y, and it will also be called a function type.

If X and Y(x) are elements of a universe U, then so is [],.x Y(x).

Functions preserve identity, and we will use this frequently later on.
More precisely, functions induce maps on identity types, as the following
definition makes precise.

DEerIntTION 2.6.1. For all types X, Y, functions f: X — Y and elements
x,x": X, the function

apf,x,x’ Z(X = X') - (f(x) = f(x,))

is defined by induction by setting ap f,x,x(reﬂx) = refly(y). 4

The function ap o for any elements x and x’ of X, is called an
application of f to paths or to identifications, and this explains the choice
of the symbol ap in the notation for it. It may also be called the function
(or map) induced by f on identity types.

When x and x” are clear from the context, we may abbreviate ap, . .,
by writing ap instead. For convenience, we may abbreviate it even
further, writing f(p) for ap(p).

The following lemma shows that ap ¢ is compatible with composition.

CONSTRUCTION 2.6.2. Given a function f : X — Y, and elements x, x’, x" : X,
and paths p:x = x' and p’:x’ = x”, we have an identification of type
ap,(p”-p) = ap;(p’) - ap;(p).

Similarly, we have that ap ; is compatible with path inverse in that we have
an identification of type apf(p‘l) = (apf(p))‘1 forallp:x = x’.

Finally, we have an identification of type ap,4(p) = p forall p:x = x’.

Implementation of Construction 2.6.2. By induction on p and p’, one re-
duces to producing an identification of type

apf(reflx -refl,) = apf(reﬂx) . apf(reﬂx).

Both apf(reﬂx - refly) and ap; (refly) - apf(reﬂx) are equal to refls(y) by
definition, so the identification reflref,,, has the desired type.

The other two parts of the construction are also easily done by induction
onp. o

Exercise 2.6.3. Let X be a type and T'(x) a family of types parametrized by
a variable x : X. Furthermore, let A be a type, let f : A — X be a function,

23Also known as a Pi-fype.

19

AN INTRODUCTION TO UNIVALENT MATHEMATICS 20

let a and a’ be elements of A, and let p:a = a’ be a path. Verify that the
two functions trpFT,of and trpzpf(p) are of type T(f(a)) — T(f(a’)). Then
construct an identification between them, i.e., construct an element of
type trpzof = trpzpf(p). a

If two functions f and g of type [],.x Y(x) can be identified, then
their values can be identified, i.e., for every element x of X, we may
produce an identification of type f(x) = g(x), which can be constructed
by induction, as follows.

DerINITION 2.6.4. Let f, g: [],.x Y(x). Define the function

ptw, o (f = &) = (;}I{f(x) = g(x)> ,

by induction by setting ptw f(reﬂf) = x o reflpy. 2 y

Conversely, given f, ¢: [1,.x Y(x), from a basic axiom called function
extensionality, postulated below in Principle 2.9.18, an identification f =
g can be produced from a family of identifications of type f(x) = g(x)
parametrized by a variable x of type X.

DeriniTION 2.6.5. Let X, Y be types and f, g: X — Y functions. Given an
element 1 of type [1;.x f(x) = g(x), elements x and x’ of X, and a path
p:x = x’, we have two elements h(x’) - apf(p) and apg(p) - h(x) of type
f(x) = g(x’). We construct an identification

ns(h,p): (h(x')-ap,(p) = ap,(p) - h(x)) ,

between them by induction on p, by setting ns(/1, refl,) to be an element
of h(x) - refl¢() = h(x), which can be constructed by induction on k(x),
as in Exercise 2.5.3. We depict the type of ns(/, p) in Figure 2.2 and call
ns(h, p) a naturality square. 4

2.7 Identifying elements in members of families of types

If Y(x) is a family of types parametrized by a variable x of type X, and a
and a’ are elements of type X, then after identifying a with a’ it turns
out that it is possible to “identify” an element of Y(a) with an element of
Y(a’), in a certain sense. That is the idea of the following definition.

DErINITION 2.7.1. Suppose we are given a type X in a universe U and a
family of types Y(x), also in U, parametrized by a variable x of type X.
Given elements a,a’: X, y:Y(a),and y’:Y(a’) and a pathp:a = a’, we
define a new type y % y"in U as follows. We proceed by induction
on a’ and p, which reduces us to the case where a’ is a and p is refl,,
rendering y and y’ of the same type Y(a) in U, allowing us to define
y r—:a—> y’ tobe y = y’, which is also in U. 4

Anelement g:y % y’ is called an identification of y with y’ over p, or a

path from y to y’ over p. Intuitively, we regard p as specifying a way for
a to change gradually into a’, and this provides a way for Y(a) to change
gradually into Y(a’); then g charts a way for y to change gradually into
y’ as Y(a) changes gradually into Y(a’).?

Remark 2.7.2. Given a type Z, Definition 2.7.1 has a special case in which
Y(x) := Z for all x:X. Given elements a,4’:X, a path p:a = a’ and

24The notation ptw is chosen to remind
the reader of the word “point-wise”,
because the identifications are pro-
vided just for each point x. An alter-
native approach goes by considering,
for any x : X, the evaluation function
evy : (TTy.x Y(x)) — Y(x) defined
by evy(f) = f(x). Then one could
define ptwf,g(p, X) = ap,y, (p)- The
functions provided by these two def-
initions are not equal by definition,
but they can be identified, and one
can easily be used in place of the
other.

apf(ﬂ)

fx) —=— f(x)

h(x)J— —Jh(x’)

() ——> - 8(x’)

FiGure 2.2: Illustration of Defini-
tion 2.6.5.

25We picture this as follows: the path
from y to y’ over p travels through
the vertical lines representing the
types Y(x) as x : X moves along the
pathpin X froma to a’:

Y(a) Y@)

AN INTRODUCTION TO UNIVALENT MATHEMATICS 21

elements z, z": Z, we can form both the type z = 7’ and the identity type
p
z = z’. These types are readily identified by induction on p. 4

The following definition identifies the type of paths over p with a type
of paths using transport along p.

DEerINITION 2.7.3. In the context of Definition 2.7.1, define by induction on
p an identification po,, : <y % y’) = (trp;/(y) = y’) in U, by setting
POyeq, = refly =, . 4
Many of the operations on paths have counterparts for paths over
paths. For example, we may define composition of paths over paths as
follows.
DEFINITION 2.7.4. Suppose we are given a type X and a family of types
Y(x) parametrized by the elements x of X. Suppose also that we have
elements x, x’, x”: X, apathp:x = x’,and a path p’: x” = x”. Suppose
further that we have elements y:Y(x), ¥’ :Y(x’), and y”:Y(x"), with
paths g:y — y’ over p and q’:y’ — y” over p’. Then we define the
p r

composite path (§' o0 q):y — y” over p’ o p as follows. First we apply
plep

path induction on p’ to reduce to the case where x” is x” and p is refl,.

That also reduces the type ¥’ — y” to the identity type y’ = y”, so we
pl

may apply path induction on g’ to reduce to the case where y” is y’ and
q’ is refl,,. Now observe that p’ o p is p, so g provides the element we
need. 4

Similarly, one can define the inverse of a path over a path, writing
gy’ —_1—> y for the inverse of g : y — y’. For these operations on paths
- P

over paths we have identifications analogous to those for the operations

on paths in Exercise 2.5.3, after some modification. For example, g1 o g

of type y -]_——> y and refl, of type y —_H—> y cannot be directly used to
p~lop refl,

form an identity type, since their types are not equal by definition. We
will state these identifications when we need them.
Exercisk 2.7.5. Try to state some of these identifications yourself. 4

The following construction shows how to handle application of a
dependent function f to paths using the definition above.

DEFINITION 2.7.6. Suppose we are given a type X, a family of types Y (x)
parametrized by the elements x of X, and a function f: J], Y(x). Given
elements x, x": X and a path p : x = x’, we define

apd (p): (1) > F(x)
by induction on p, setting

apdf (reﬂx) = reﬂf(x). d

The function apd is called dependent application of f to paths.2® For
convenience, we may abbreviate apd(p) to f(p), when there is no risk
of confusion.

The following construction shows how functions of two variables may
be applied to paths over paths.

26We picture f via its graph of the
values f(x) as x varies in X. The
dependent application of f to p is
then the piece of the graph that lies

over p:

Y (x)

Y(x')

AN INTRODUCTION TO UNIVALENT MATHEMATICS 22

DEFINITION 2.7.7. Suppose we are given a type X, a family of types Y (x)
parametrized by the elements x of X, and a type Z. Suppose also we are
given a function g: [,.x(Y(x) — Z) of two variables. Given elements
x,x":X,y:Y(x),and y': Y(x’),apathp:x = x’, and a path q:y % y

over p, we may construct a path

apap, (p)(q) : g(x)(y) = g(x")(y)

by induction on p and g, setting

apapg(reﬂx)(reﬂy) = reflg(n)(y)- 4

The function p — g > apap g(p)(q) is called application of g to paths
over paths. For convenience, we may abbreviate apap g(p)(q) to g(p)(9).
The following definition will be useful later.

DEerINITION 2.7.8. Suppose we are given a type X, a family of types Y (x)
parametrized by the elements x of X, and a type Z. Suppose also
we are given a function g: [],.x(Y(x) — Z) of two variables. Given
an element x: X, elements y, y": Y(x), and an identification g:y = y’,
then we define an identification of type apap (refl,)(q) = ap 2(0(@), by
induction on g, thereby reducing to the case where y’ is y and g is
refl,, rendering the two sides of the equation equal, by definition, to

reflg(x)(y)- -

2.8 Sum types

There are sums of types. By this we mean if X is a type and Y(x) is a
family of types parametrized by a variable x of type X, then there will be
a type*” Y_..x Y(x) whose elements are all pairs (4, b), where a: X and
b:Y(a). Since the type of b may depend on a we also call such a pair a
dependent pair. We may refer to X as the parameter type of the sum.?

If X and Y(x) are elements of a universe U, thensois }_,.x Y(x).

Proving something about (or constructing something from) every
elementof). x Y(x)is done by performing the construction on elements
of the form (a, b), for every a: X and b:Y(a). Two important examples
of such constructions are:

(1) first projection, fst : (. x Y(x)) — X, fst(a, b) = a;
(2) second projection, snd(a,b):Y(a), snd(a, b) := b.

In (2), the type of snd is, in full, [.. - y(x) Y(fst(z)).
RemMARk 2.8.1. An important special case of sum types is when the type

Y(x) does not depend on x: X. In that case the sum type }_,.x Y(x) is
denoted as X X Y and called a binary product type, see Section 2.11. 4

ReMARK 2.8.2. One may consider sums of sums. For example, suppose X
is a type, suppose Y (x) is a family of types parametrized by a variable x of
type X, and suppose Z(x, y) is a family of types parametrized by variables
x:X and y:Y(x). In this case, the iterated sum }.,.x ¥.y(x) Z(x,y)
consists of pairs of the form (x, (v, z)). For simplicity, we introduce the
notation (x,y,z) = (x,(y,z)), and refer to (x,y,z) as a triple or as a
3-tuple.

27Also known as a Sigma-type.

28We may denote Y, . x Y(x) by Tot(Y)
and also call it the fotal type of the
family Y(x). We can picture it, in
the style of the pictures above, as
the entire blob lying over X. (Each
Y (x) is a vertical line over x : X, and a
point ¥ : Y(x) becomes a point (x, y)
in the blob.)

Y(X) Zx:X Y(x)

lfst
\.—/ X

X

Another example of an iterated sum
is when Z’(u) is a family of types
parameterized by a variable u of
type Ly x Y(x). Elements of the
type Y.y, ¢ Y(x) Z'(u) are triples
((x,), z). We use the triple-notation
also for this case.

AN INTRODUCTION TO UNIVALENT MATHEMATICS

That process can be repeated: suppose Xj is a type, suppose Xo(x1)
is a family of types parametrized by a variable x1 of type Xi, suppose
X3(x1,x7) is a family of types parametrized by variables x1:X; and
x2:Xo(x1), and so on, up to a family X, (x1, ..., x,-1) of types. In this
case, the iterated sum

2 Z Z Xn(x1,...,%0_1)

x1:X1x2:X0(x1) xp-1: Xp-1(X1,00,X0-2)

consists of elements of the form (x1, (x2, (... (x4-1,Xx)...))); each such
element is a pair whose second member is a pair, and so on, so we may
refer to it as an iterated pair. For simplicity, we introduce the notation
(x1,x2,...,xy) for such an iterated pair, and refer to it as an n-fuple. .

2.9 Equivalences

Using a combination of sum, product, and identity types allows us to
express important notions, as done in the following definitions.

The property that a type X has “exactly one element” may be made
precise by saying that X has an element such that every other element is
equal to it. This property is encoded in the following definition.

DErINITION 2.9.1. Given a type X, define a type isContr(X) by setting

isContr(X):=) [](c > x). y
c:Xx:X

If (¢, h) : isContr(X), then ¢ will be called the center of the the contraction
h, and we call the type X contractible.

By path composition, one sees that any element x : X can serve as the
center of a contraction of a contractible type X.

The following lemma gives an important example of a contractible
type.

Given a type X and an element a of X, the singleton type } . x(a = x)
consists of pairs (x, i) with i:a = x. The following lemma shows that a
singleton type has exactly one element, justifying the name.

LemMmA 2.9.2. For any type X and a: X, the singleton type Y .. x(a = x) is
contractible.

Proof. Take as center the pair (a,refl;). We have to produce, for any
element x of X and for any identification i:a = x, an identification
of type (a,refl;) = (x,i). This is done by path induction on i, which
reduces us to producing an identification of type (a, refl;) = (a, refl,);
reflexivity provides one, namely refl(, ref,)- O

DerINITION 2.9.3. Given a function f: X — Y and an element y: Y, the
fiber (or preimage) f~(y) is encoded by defining

fly) =Y. (y> f(x).
x:X

In other words, an element of the fiber f~1(y) is a pair consisting of an
element x of X and an identification of type y = f(x). 4

In set theory, a function f:X — Y is a bijection if and only if all
preimages f~!(y) consist of exactly one element. We can also express
this in type theory, in a definition due to Voevodsky, for types in general.

23

AN INTRODUCTION TO UNIVALENT MATHEMATICS 24

DEFINITION 2.9.4. A function f : X — Y is called an equivalence if f~'(y) is
contractible for all y: Y. The condition is encoded by the type

isEquiv(f) = H isContr(f_l(y)). a
y:Y

We may say that X and Y are equivalent if we have an equivalence
between them.

DEFINITION 2.9.5. We define the type X = Y of equivalences from X to Y
by the following definition.

(X5Y)=) isEquiv(f). J
f:X->Y

Suppose f:X = Y is an equivalence, and let t(y) : isContr(f (y)),
for each y:Y, be the corresponding witness to contractibility of the
fiber. Using t we can define an inverse function g:Y — X by setting
g(y) = fst(fst(t(y))). This can be seen as follows.

By unfolding all the definitions*®, we have an identification of type
f(g(y)) = y. Moreover, (x, refl¢(,)) is an element of the fiber FUf(x),
and t(f(x)) is a proof that this fiber is contractible. Hence the center
of contraction fst(f(f(x)) is identified with (x, refl¢()), and so g(f(x)) =
(fst(fst(t(f (x)))) = x.

We have shown that f and g are inverse functions. When it won't
cause confusion with the notation for the fibers of f, we will write f
instead of g.

For any type X, the identity function idx is an equivalence from X to X.
To see that, observe that for every element a in X, idy'(a) is a singleton
type and hence is contractible. This observation, combined with the fact
that trprTeﬂx = idy(y), gives that the function trp! from Definition 2.5.4 is
an equivalence from T(x) to T(y), foralle:x = y.

Exercisk 2.9.6. Make sure you understand the two applications of fst
in the definition f~'(y) := fst(fst(t(y))) above. Show that f~! is an
equivalence from Y to X. Give a function (X = Y) — (Y = X). a

Exercisk 2.9.7. Give a function (X > Y) - (Y S5 Z) > (X 5 Z)). 4
Exercise2.9.8. Consider types A, B, and C, functions f :A — B,g:A — C

and /: B — C, together with an element e: 1 f = g. Prove that if two of
the three functions are equivalences, then so is the third one. a

The following lemma gives an equivalent characterization of equiva-
lence that is sometimes easy to use.

ConsTRUCTION 2.9.9. Let X, Y be types. For each equivalence f : X — 'Y, we
have a function ¢ :Y — X such that for all x : X we have g(f(x)) = x and for
all y Y we have f(g(y)) = y. Conversely, if we have such a function g, then
f is an equivalence.

Implementation of Construction 2.9.9. Given an equivalence f:X — Y we
can take ¢ := f~1. For the converse, see Chapter 4 of the HOTT Book,3°
or isweq_iso. m|

We put Construction 2.9.9 immediately to good use.

29Note that fst(t(y)): f~1(y),
so fst(fst(t(y))) : X with
snd(fst(t(y))):y = f(fst(fst(t(y)))).

39The Univalent Foundations Program.
Homotopy Type Theory: Univalent
Foundations of Mathematics. Institute
for Advanced Study: https: //
homotopytypetheory . org/book,
2013.

https://homotopytypetheory.org/book
https://homotopytypetheory.org/book
https://unimath.github.io/doc/UniMath/e47ce20/UniMath.Foundations.PartA.html#isweq_iso

AN INTRODUCTION TO UNIVALENT MATHEMATICS 25

LemMa 2.9.10. Let X be a type with element a, and let B(x, i) be a type for all
x:Xand i:a = x. Define f(x,i):B(x,i) — B(a,refl;) by induction on i,
setting f(a,refl,, b) := b for all b: B(a, refl,). Then f defines an equivalence

f: Z Z B(x,i) — B(a,refl,).
x:Xi:a5x
Proof. We can also define g:B(a,refl;) = Y v.x ;.25 B(x, i) mapping
b:B(a,refl;) to (a,refl,, b). Clearly f(g(b)) = b for all b:B(a,refl,).
Moreover, g(f(x,i,b)) = (x,i,b) is clear by induction on i, for all
b:B(x,i). By Construction 2.9.9 it follows that f is an equivalence. O

The above lemma clearly reflects the contractibility of the singleton
type Y. x(a = x).3* For this reason we call application of this lemma
‘to contract away’ the prefix }_,.x Y ;.,5,, in order to obtain a simpler
type. It is often applied in the following simpler form.

CoroLLARY 2.9.11. With conditions as above, but with B not depending on i,
the same f establishes an equivalence

Z((u 5 x)x B(x)) = B(a).
x: X

In the direction of further generality, we offer the following exercise.

Exercise 2.9.12. Suppose X, Y are types related by an equivalence f : X —
Y. Let B(x) be a type parameterized by x : X. Construct an equivalence
between }_,.x B(x)and ¥, .y B(f'(y)). a

The next exercise gives a dual to Corollary 2.9.11 that may be dubbed
‘to substitute away’.

ExErcisk 2.9.13. Let X be a type with element 4, and let B(x) be a type

parameterized by x : X. Give an equivalence between [],.x((a = x) —

B(x)) and B(a). J
We proceed now to define the notion of equivalences in families.

DEerINITION 2.9.14. Let X be a type, and let Y(x), Z(x) be families of types
parametrized by x:X. A map f of type [],.x(Y(x) — Z(x)) can be
viewed as a family of maps f(x):Y(x) — Z(x) and is called a map of
families. The fotalization of f is defined by tot(f)(x, y) := (x, f(x)(y)).
Using the denotation Tot(_) for the total type of a type family we thus
have

tot(f): Tot(Y) — Tot(2)). a

LemmMa 2.9.15. Let conditions be as in Definition 2.9.14. If f(x):Y(x) — Z(x)
is an equivalence for every x : X (we say that f is an equivalence of families),
then tot(f) is an equivalence.

Proof. If f(x):Y(x) — Z(x) is an equivalence for all x in X, then the
same is true of all f(x)™':Z(x) — Y(x). Then we have the totalization
tot(x — f(x)7!), which can easily be proved to be an inverse of tot(f)
(see the next exercise). Now apply Construction 2.9.9. O

Exercisk 2.9.16. Complete the details of the proof of Lemma 2.9.15. 4
The converse to Lemma 2.9.15 also holds.

LemMma 2.9.17. Continuing with the setup of Definition 2.9.14, if tot(f) is an
equivalence, then f is a equivalence of families.

3'In fact, an alternative proof would
go as follows: First, we use Con-
struction 2.9.9 to construct an ele-
ment of Y. x Ly .y Z(x,y) =
Yow:(5,. x Y(x) Z(fstw, snd w), i.e., the
associativity of sum types, where
X is a type, Y(x) is a family of types
depending on x: X, and Z(x, y) is a
family of types depending on x : X
and y: Y(x). Then, we construct
for any contractible type X and for
any family of types Y(x) depending
on x : X, an equivalence between
Y x:x Y(x)and Y(c), where c is the
center of contraction of X.

3?*Univalent Foundations Program,
Homotopy Type Theory: Univalent
Foundations of Mathematics.

AN INTRODUCTION TO UNIVALENT MATHEMATICS 26

For a proof see Theorem 4.7.7 of the HoI'T Book3>.
Yet another application of the notion of equivalence is to postulate
axioms.

PrincipLE 2.9.18. The axiom of function extensionality postulates that the
function ptw . (f = g) = Ili.x f(x) > g(x) in Definition 2.6.4 is
an equivalence. Formally, we postulate the existence of an element
funext : isEquiv(ptw). From that we can construct the corresponding
inverse function

ptwl, - (L[{)5 g(0) = (F 5).

Thus two functions whose values can all be identified can themselves be
identified. This supports the intuition that there is nothing more to a
function than the values it sends its arguments to. a

Exercise 2.9.19. Let X be a type. Construct an equivalence of type
(True — X) S X. y
Exercisk 2.9.20. Let X be a type, and regard True as a constant family of
types over X. Construct an equivalence of type (Y_,.x True) > X. .

Exercise2.9.21. Let X and Y be types, and let Z(y) be a type parameterized
by y: Y. Construct an equivalence of type (X x Y.y Z(y) > Ly v(X X
Z(y))- 4
Exercise 2.9.22. Let X and Y be types, and let Z(x, y) be a type pa-
rameterized by x:X and y:Y. Construct an equivalence of type
(Zx:ny:yZ(x,y)) iZy:ny:xZ(x,y)- -
ExErcisk 2.9.23. Let X, Y and Z be types. Given functions f: X — Y
and g:Y — Z, construct a family of equivalences of type (gf)(z) =
Ywig@)f ~1(fstw) parameterized by z : Z. Hint: use Footnote 31. 4

Exercise 2.9.24. Let X and Y be types, and let Z(x, y) be a type pa-
rameterized by x:X and y:Y. Construct an equivalence of type
(ITTe:x Zyiv Z(x,y) = Lpoxoy [x Z(x, f(x)).33 4
Exercise2.9.25. Let X and Z be types, and let Y(x) be a type parameterized
by x: X. For any function f : Z — X, construct an equivalence of type
(IL.2 Y(f(2))) = Lg.z05, .y vix)(f = fstog).34 4
Exercise2.9.26. Let X and Z be types, and let Y(x) be a type parameterized
by x:X. Construct an equivalence® of type ((L,.x Y(x)) — Z) >
[T::x(Y(x) = 2). -

2.10 Ildentifying pairs

The identity type of two elements of }_,.x Y(x) is inductively defined
in Section 2.5, as for any other type, but one would like to express the
identity type for pairs in terms of identifications in the constituent types.
This would explain better what it means for two pairs to be identified.
We start with a definition.

DEFINITION 2.10.1. Suppose we are given a type X and a family of types
Y(x) parametrized by the elements x of X. Consider the function

pair: [| (Y(x) — X_;{Y(x’))

x:X

33This equivalence is sometimes called

the type-theoretic axiom of choice;
more prosaically, it expresses the
distributivity of products (Il-types)
over sums (X-types). We discuss the
real axiom of choice in Section B.4.

34The special case Z = X, f = idx

applies to any product type.

35This canonical equivalence is of-

ten called “currying”, after Haskell
B. Curry, and will be treated trans-
parently, i.e., we will pass between
f(x,y) and f(x)(y) without denoting
it. Note that the equivalence goes be-
tween (XXY) —» Zand X — (Y — Z)
in case Y(x) is constant.

We picture paths between pairs
much in the same way as paths
over paths, cf. Footnote 25. Just

as, to give a pair in the sum type

Y x:x Y(x), we need both the point
x in the parameter type X as well
as the point y in Y(x), to give a
path from (x, y) to (x’, y’), we need
bothapathp:x = x"aswell as
apathqg:y % y’ over p. Here’s

a similar picture, where we de-
pict the types in the family as be-
ing 2-dimensional for a change.

AN INTRODUCTION TO UNIVALENT MATHEMATICS 27

defined by
pair(x)(y) = (x, y).

For any elements (x, y) and (x’, y’) of } . x Y(x), we define the map
(Z v>v) = (@ >E.y)

by

(p, q) > apap,;.(p)(q)-
(Refer to Definition 2.7.1 for the meaning of the type y % y’, and
to Definition 2.7.7 for the definition of apap.) We introduce (p, q) as
notation for apappair(p)(q). 4

CoONSTRUCTION 2.10.2. In the situation of Definition 2.10.1, if x’ is x, so that
we have (y ;ﬂ> y) =y = y’), then for any q:y — y’, we can construct an
re:

identification of type:

(reﬂx, q) = appair(x) q
Implementation of Construction 2.10.2. By induction on ¢ it suffices to
establish an identification
(refly, refl,) = appair(x)(reﬂy),
both sides of which are equal to refl,) by definition. |

The following lemma gives the desired characterization of paths
between pairs.

LEMMA 2.10.3. Suppose we are given a type X and a family of types Y(x)

parametrized by the elements x of X. For any elements (x,y) and (x’,y’) of
Y x.x Y(x), the map defined in Definition 2.10.1 defined by

(r,9) (.9

is an equivalence of type
(X v>v) > (xn=>Ey).
prx>x’ b

Proof. Call the map ®@. A map the other way,

Vi) S yN—> Y yov,

pix>x P
can be defined by induction, by setting
W(refl,,)) = (refly, refly).

One proves, by induction on paths, the identifications W(®(p, q)) =
(p,q) and ®(¥(r)) = r, so ¥ and @ are inverse functions. Applying
Construction 2.9.9, we see that ® and W are inverse equivalences, thereby
obtaining the desired result. O

We often use fst((p, q)) = p and snd((p, 9)) = g, which follow by
induction on p and g from the definitions of ap and (_,_). Similarly,
r = (fst(r), snd(r)) by induction on r.

AN INTRODUCTION TO UNIVALENT MATHEMATICS

2.11 Binary products

There is special case of sum types that deserves to be mentioned since
it occurs quite often. Let X and Y be types, and consider the constant
family of types Y(x) := Y. In other words, Y(x) is a type that depends
on an element x of X that happens to be Y for any such x. (Recall
Exercise 2.5.6.) Then we can form the sum type) ,.x Y(x) as above.
Elements of this sum type are pairs (x, y) with x in X and y in Y (x) = Y.3°
In this case the type of ¥ doesn’t depend on x, and in this special case
the sum type is called the binary product, or cartesian product of the types
X and Y, denoted by X X Y.

At first glance, it might seem odd that a sum is also a product, but
exactly the same thing happens with numbers, for the sum 5 +5 + 5 is
also referred to as the product 3 X 5. Indeed, that’s one way to define
3 X5.

Recall that we have seen something similar with the product type
[L.x Y(x), which we let X — Z denote in the case where Y(x) is a
constant family of the form Y (x) := Z, for some type Z.

The type X XY inherits the functions fst, snd from), . x Y(x), with the
same definitions fst(x, y) := x and snd(x, y) := y. Their types can now be
denoted in a simpler way as fst : (XXY) — X andsnd : (XxY) — Y, and
they are called as before the first and the second projection, respectively.

Again, proving something about (or constructing something from)
every element (a,b) of X X Y is simply done foralla: X and b:Y.

There is an equivalence between (a1, b1) = (a2, b2) and (a1 = ap) X
(b1 = by). This follows from Lemma 2.10.3 together with Exercise 2.5.6.

If f:X = Yand f': X’ = Y’, then we let f X f’ denote the map of
type (X X X’) — (Y x Y’) that sends (x, x’) to (f(x), f'(x")).

The following lemma follows from Lemma 2.10.3, combined with
Definition 2.7.3 and Exercise 2.5.6.

LemMA 2.11.1. Suppose we are given type X and Y. For any elements (x, y)
and (x’,y’) of X XY, the map defined in Definition 2.10.1 defined by

(p.9)~ (v, 9)

is an equivalence of type
xS)XY>Y)> (xy) > &, y)).

Exercisk 2.11.2. Let X, Y be types in a universe U, and consider the
type family T(z) in U depending on z : Bool defined by T(no) := X and
T(yes) := Y. Show that the function (IT,.peo1 T(0)) = X X Y sending f
to (f(no), f(yes)), is an equivalence. a

Exercisk 2.11.3. Let X and Y be types. Construct an equivalence of type
(XxY) S (Y x X). ¥

2.12 More inductive types

There are other examples of types that are conveniently introduced in
the same way as we have seen with the natural numbers and the identity
types. A type presented in this style shares some common features:
there are some ways to create new elements, and there is a way (called

28

36These cartesian products we illustrate

as usual by rectangles where one
side represents X and the other Y.
T

y)i

fstl

X

snd
—

y

AN INTRODUCTION TO UNIVALENT MATHEMATICS 29

induction) to prove something about every element of the type (or family
of types). We will refer to such types as inductive types, and we present
a few more of them in this section, including the finite types, and then
we present some other constructions for making new types from old
ones. For each of these constructions we explain the identity type for
two elements of the newly constructed type in terms of identity types
for elements of the constituent types.

2.12.1 Finite types

Firstly, there is the empty type in the universe Uy, denoted by @ or by
False. It is an inductive type, with no way to construct elements of it.
The induction principle for 0 says that to prove something about (or
to construct something from) every element of @, it suffices to consider
no special cases (!). Hence, every statement about an arbitrary element
of @ can be proven. (This logical principle is traditionally called ex
falso (sequitur) quodlibet.37) As an example, we may prove that any two
elements x and y of () are equal (i.e., construct an identification of type
x = y) by using induction on x. We may even prove by induction on x : 0
that the elements 0 and succ(0) of N are equal (i.e., construct a function
of type 0 — (0 = succ(0)).

An element of @ will be called an absurdity. Of course, one expects that
there are no real absurdities in mathematics, nor in any logical system
(such as ours) that attempts to provide a language for mathematics, but
it is important to have such a name so we can discuss the possibility,
which might result inadvertently from the introduction of unwarranted
assumptions. For example, to assert that a type T has no elements,
it would be sensible to assert that an element of T would lead to an
absurdity. Providing a function of type T — 0 is a convenient way to
make that assertion.

Secondly, there will also be an inductive type called True in the
universe Uy provided with a single element triv; (the name triv comes
from the word “trivial”). Its induction principle states that, in order to
prove something about (or to construct something from) every element
of True, it suffices to consider the special case where the element is
triv. As an example, we may construct, for any element u : True, an
identification of type u = triv; we use induction to reduce to the case
where u is triv, and then refly;, provides the desired element. One may
also construct, for any elements x and y of True, an identification of type
x = y by using induction both on x and on y.

There is a function X — True, for any type X, namely: a + triv. This
corresponds, for propositions, to the statement that an implication holds
if the conclusion is true.

Exercisk 2.12.2. Let X be a type. Define the function e of type (True —
X) — X by e(f) := f(triv). Prove that e is an equivalence. This is called
the universal property of True. a

Thirdly, there will be an inductive type called Bool in the universe U,
provided with two elements, yes and no. Its induction principle states
that, in order to prove something about (or to construct something from)
every element of Bool, it suffices to consider two cases: the special case
where the element is yes and the special case where the element is no.

37From falsehood, anything follows.
Also called the principle of explo-
sion.

AN INTRODUCTION TO UNIVALENT MATHEMATICS

We may use substitution to construct an element of type (yes =
no) — 0, expressing that the identification of yes with no leads to an
absurdity. To do this, we introduce a family of types P(b) in the universe
Uy parametrized by a variable b:Bool. We define P(b) by induction
on b by setting P(yes) := True and P(no) := False. (The definition of
P(b) is motivated by the expectation that we will be able to construct
an equivalence between P(b) and yes — b.) If there were an element
e:yes = no, we could substitute no for yes in triv:P(yes) to get an
element of P(no), which is absurd. Since e was arbitrary, we have
defined a function (yes = no) — 0, as desired.

In the same way, we may use substitution to prove that it is absurd
that successors of natural numbers are identical to 0, i.e., for any n : N
that (0 = succ(n)) — 0. To do this, we introduce a family of types
P(i) in Uy parametrized by a variable i:N. Define P recursively by
specifying that P(0) := True and P(succ(m)) := False. (The definition of
P(i) is motivated by the expectation that we will be able to construct
an equivalence between P(i) and 0 = i.) If there were an element
e:0 = succ(n), we could substitute succ(n) for 0 in triv: P(0) to get an
element of P(succ(n)), which is absurd. Since e was arbitrary, we have
defined a function (0 = succ(n)) — 0, establishing the claim.

In a similar way we will in Section 2.24 define types m for any 7 in N
such that mis a type (set) of # elements.

2.12.3 Binary sums

For sum types of the form) ;.0 T(b), with T(b) a type depending on b
in Bool, there is an equivalence with a simpler type.3® After all, the type
family T(b) is fully determined by two types, namely by the types T(no)
and T(yes). The elements of) ,.po0 T(b) are dependent pairs (no, x)
with x in T(no) and (yes, y) with y in T(yes). The resulting type can
be viewed as the disjoint union of T(no) and T(yes): from an element of
T(no) or an element of T(yes) we can produce an element of } ;. g0 T(b).

These disjoint union types can be described more clearly in the
following way. The binary sum of two types X and Y, denoted X 11 Y,
is an inductive type with two constructors: inl :X — X IIY and
inr : Y — X [1Y.39 Proving a property of any element of X L1 Y means
proving that this property holds of any inl, with x: X and any inr, with
y:Y. In general, constructing a function f of type I'I,. x11y T(z), where
T(z) is a type depending on z, is done by defining f(inl,) for all x in X
and f(inry) forall y in Y.

Exercisk 2.12.4. Let X, Y be types in a universe U, and consider the type
family T(z) in U depending on z :Bool defined by induction on z by
T(no) := X and T(yes) := Y. Show that themap f: XIIY — }.po01 T(D),
defined by f (inly) := (no, x) and f(inr,) := (yes, y), is an equivalence.
Identification of two elements a and b in X L1 Y is only possible if they
are constructed with the same constructor. Thus inl, = inr, is always
empty, and there are equivalences of type (inl, = inly) = (x = x’) and
(inr, = inry) Sy >Sy).
Exercise 2.12.5. Prove these statements using Exercise 2.12.4, Lemma 2.10.3,
and a characterization of the identity types of Bool. 4

30

38n a case like this, we can thicken up
the lines denoting T(no) and T(yes)
in our picture, if we like:

T(yes)

T(no)

no

39Beware that in a picture, the same

Bool

yes

point may refer either to x in X or to

inly in the sum X ITY:

X1Y,”
;X

~
N

N
Yy

\
\

AN INTRODUCTION TO UNIVALENT MATHEMATICS 31

Exercise 2.12.6. Let X, Y, Z be types. Define a function e from (X11Y) —
Zto (X — Z)x(Y — Z) by precomposition with the constructors. Prove
that e is an equivalence. This is called the universal property of the binary
sum. 4

Exercise 2.12.7. Let X be a type. Construct an equivalence of type
(Xmoe) - X. 4

2.12.8 Unary sums

Sometimes it is useful to be able to make a copy of a type X: A new
type that behaves just like X, though it is not equal to X by definition.
The unary sum or wrapped copy of X is an inductive type Copy(X) with
a single constructor, in : X — Copy(X).#> Constructing a function
f Tz copy(x) T(z), where T(z) is a type depending on z: Copy(X), is
done by defining f(in,) for all x:X. Taking T(z) to be the constant
family at X, we get a function, out : Copy(X) — X, called the destructor,
with out(iny) := x for x:X, and the induction principle implies that
ingu(zy — z for all z: Copy(X), so there is an equivalence of type
Copy(X) = X, as expected. It follows that there are equivalences of
type (iny = iny) = (x = x’) and (out(z) = out(z’)) = (z > z’).

Note that we can make several copies of X that are not equal to each
other by definition, for instance, by picking different names for the
constructor. We write Copy_ . (X) for a copy of X whose constructor is

con: X — Copy_.(X).

ExampLE 2.12.9. Here’s an example to illustrate why it can be useful
to make such a wrapped type: We introduced the natural numbers
N in Section 2.4. Suppose we want a type consisting of negations
of natural numbers, {...,-2,-1,0}, perhaps as an intermediate step
towards building the set of integers {...,-2,-1,0,1,2,...}.4* Of course,
the type N itself would do, but then we would need to pay extra attention
to whether 7 : N is supposed to represent n as an integer or its negation.
So instead we take the wrapped copy N~ := Copy_(N), with constructor
—:N — N7. We will also write —: N~ — N for the destructor, inductively
defined by —(—n) := n. (The ambiguity will always be resolved by the
types.) In fact, the constructor and the destructor are each other’s inverse
since we also have —(—(-n)) = —n, and so by induction —(-m) = m for
all m :N~. By Construction 2.9.9 we get that they are equivalences. .

2.12.10 Lists

One other very common inductive type is that of lists over a given type

X. Intuitively, a list of elements of type X is a sequence x1x3...x, of

elements of X, which is possibly the empty list, denoted ¢. That is, we

allow n = 0. The number of elements 7 is called the length of the list.
More formally, we have the following:

DermniTION 2.12.11. For any type X, let X* be the type of lists of elements
of X.#* This is the inductive type with constructors ¢ : X* (the empty list)
and concatenation*3 of type X — X* — X7, taking an element x: X and a
list ¢ to the extended list x{ consisting of x followed by the elements of ¢.
In the extended list x?¢, x is called the head and /¢ is called the tail. a

4°A point x : X corresponds to the
point in, : Copy(X):

’ \

‘oL Copy(X)

Note that Copy(X) can alternatively
be defined as } ;. frye X-

4'We implement this in Defini-
tion 3.2.1.

42In other places, the type of lists is
denoted List X or [X].

43This constructor doesn’t have a name
for us, since all it does is juxtapose
its two arguments. It is often called
“cons”, as it is a kind of prototypical
constructor, since many other kinds
of data can be represented in terms
of lists. This is the basis of Lisp:
the list processing programming
language.

AN INTRODUCTION TO UNIVALENT MATHEMATICS

As an inductive type, X* comes with a induction principle: Construct-
ing a function f of type [1;.x- T(£), where T({) is a type depending on
{: X", may be done by giving:

(1) an element ¢, :T(¢); and
(2) a family of functions gy ¢:T(¢) — T(x?).

The resulting function satisfies f(¢) = ¢, and f(xf) = gxo(f(£)). That s,
we can produce a function on all lists by specifying how to handle the
empty list and how to reduce the case of an extended list to that of its
tail.

For example, we can define a function len : X* — N, giving the length
of a list, satisfying len(¢) = 0 and len(x¢) = succ(len(?)).
Exercisk 2.12.12. Prove that len : X* — N is an equivalence whenever X
is contractible. J

Note that there are no general functions producing the head and tail of
an arbitrary list, since the empty list has neither head nor tail. However,
we can use binary sums with the one-element type True to define

hd : X* —» X I True, tl:X" — X" True

satisfying hd(¢) = inrgiy, hd(xf) = inl,, tl(e) = inrgiy, and tl(x¢) = inl,.
ExERcIsE 2.12.13. Define a function of type X* — X* — X" that concate-

nates two lists. (Hint: Use induction on the first argument.)
Use this to define a function rev : X* — X* that reverses a list. a

Exercisk 2.12.14. Construct an identification of type {1 (£203) = (é162)03
for any 4, £, £3: X*. (Hint: Use induction on ¢;.) 1

We shall see in Theorem 2.22.2 below that X" is a set whenever X
is. Exercise 2.12.14 shows that concatenation of lists is associative, so
we don't need to use parentheses to indicate grouping within a list. It
also justifies denoting both the binary constructor and concatenation as
juxtaposition, with no separate symbol or name.

2.13 Univalence

The univalence axiom, to be presented in this section, greatly enhances
our ability to produce identifications between the two types and to use
the resulting identifications to transport (in the sense of Definition 2.5.4)
properties and structure between the types. It asserts that if U is a
universe, and X and Y are types in U, then a specific function, mapping
identifications between X and Y to equivalences between X and Y, is an
equivalence.

We now define the function that the univalence axiom postulates to
be an equivalence.

DerINITION 2.13.1. For types X and Y ina universe U and apathp: X = Y,
transport along p in the type family id; is a function from X to Y. We
recall the definition by path induction from Definition 2.5.4, setting
trplrigx = idx. As observed in Section 2.9, transport functions are
equivalences, so that the result is a function

(p— trp;d“) (XDSY)>(X>SY). 4

32

AN INTRODUCTION TO UNIVALENT MATHEMATICS

We may write trp;gClﬂ more briefly as §, which we also use to denote
the corresponding function of type X — Y, instead of X = Y.
We are ready to state the univalence axiom.

PrincrpLE 2.13.2 (Univalence Axiom). Let U be a universe. Voevodsky’s
univalence axiom for U postulates that p — § is an equivalence of type
(X >Y) > (X >Y), forall X,Y:U. Formally, we postulate the
existence of a family of elements

s : Y= id
uay,y : isEquiv((p: X = Y) — trp;,)

parameterized by X, Y : U. 4

For an equivalence f: X = Y, we will adopt the notation f: X = Y
to denote (p > p)~(f), the result of applying the inverse function of
(p — P), given by uax y, to f. Thus there are identifications of type
p = pand f > f. There are also identifications of type idx —= reflx
andgf > gfifg:Y > Z.

Exercisk 2.13.3. Prove that Bool = Bool has exactly two elements, reflgqo
and swap (where swap is given by univalence from the equivalence
Bool — Bool interchanging (swapping) the two elements of Bool), and
that swap - swap = reflpg]. a

2.14 Heavy transport

In this section we collect useful results on transport in type families that
are defined by a type constructor applied to families of types. Typical
examples of such ‘structured’ type families are Y(x) — Z(x) and x = x
parametrized by x: X.

DEFRINITION 2.14.1. Let X be a type, and let Y(x) and Z(x) be families of
types parametrized by a variable x : X. Define Y — Z to be the type
family with (Y — Z)(x) = Y(x) — Z(x). 4

Recall from Definition 2.9.14 that an element f: [],.x(Y — Z)(x) is
called a map of families, and f is called an equivalence of families, if
f(x):Y(x) = Z(x) is an equivalence for all x : X.

CONSTRUCTION 2.14.2. Let X be a type, and let Y(x) and Z(x) be types for
every x : X. Then we have for every x,x": X, e:x = x’, f:Y(x) — Z(x), and
Y'Y (x’) (see the diagram in the margin):

tp! Ay = wp? (f(pla ()).

Implementation of Construction 2.14.2. By induction on e:x = x’. For
e = refl,, we have ™! = refl,, and all transports are identity functions of
appropriate type. O

An important special case of the above lemma is with U as parameter

type and type families Y := Z :=idy;. ThenY — Zis X — (X — X).

Now, if A,B:U and e: A = B comes from an equivalence g : A =B by
applying the univalence axiom, then the above construction combined
with function extensionality yields that for any f:A — A (see the
diagram in the margin)

trpy "X (f) S go fogh

YY) — s 7w

elu trPele thrpg

x’ Y(x') ——— Z(x’
) trpy % (f))

Transport using univalence:

A—7L a4

A
E’lu glz zlg
& & trpg (f) B

33

AN INTRODUCTION TO UNIVALENT MATHEMATICS 34

The following construction is implemented by inductionone:x = x’.

ConsTRUCTION 2.14.3. Let X, Y be types, f,g:X — Y functions, and let
Z(x) = (f(x) = g(x)) for every x:X. Then for all x,x" in X, e:x = x/,
and i: f(x) = g(x) we have:

trpez(i) = apg(e) .- apf(e)_l.

EXERCISE 2.14.4. Implement Construction 2.14.3 in the following special
cases, where Y = X and a4, b are elements of X:

(1) trp2=*b (i) S i
(2) trpf~m (i) S e - i

(3) trpi= (i) Si-el;

(4) trpf=*=%(i) S e - i - e (also called conjugation). a

There is also a dependent version of Construction 2.14.3, which is
again proved by induction on e.#

CONSTRUCTION 2.14.5. Let X, Y (x) be types and f(x), g(x):Y(x) for all x: X.
Let Z(x) = (f(x) = g(x)), with the identification in Y (x), for every x: X.
Then forall x,x" in X, e:x = x’,and i: f(x) = g(x) we have:

trpZ(i) = po, (apdg(e)) -apypr (i) - po, (apdf(e))_l.

The following construction will be used later in the book.

DEerINITION 2.14.6. Let X, Y(x) be types and f(x):Y(x) for all x: X. Given
elements x,x":X and a path p:x = x’, we define an equivalence
(f(x) % f(x) = (f(x) = f(x)). We do this by inducion on p, using
Definition 2.7.1, thereby reducing to the case (f(x) = f(x)) = (f(x) >
f(x)), which we solve in the canonical way as before. J

Exercise 2.14.7. Let X and Y be types with elements x: X and y:Y. Let
f,8:X — Y be functions and e: f = ¢ and identification. Define by
induction on e and for any p:y — f(x) an identification trptw(e, p),
called pointwise transport, of type trp? — i)h(x))(p) = ptw(e)(x)-p. 2

2.15 Propositions, sets and groupoids

Let P be a type. The property that P has at most one element may be
expressed by saying that any two elements are equal. Hence it is encoded
by [1,5.p(a = b). We shall call a type P with that property a proposition,
and its elements will be called proofs of P. We will use them for doing
logic in type theory. The reason for doing so is that the most relevant
thing about a logical proposition is whether it has a proof or not. It
is therefore reasonable to require for any type representing a logical
proposition that all its members are equal.

Suppose P is a proposition. Then English phrases such as “P holds”,
“we know P”, and “we have shown P”, will all mean that we have
an element of P. We will not use such phrases for types that are not
propositions, nor will we discuss knowing P conditionally with a phrase
such as “whether P”. Similarly, if “Q” is the English phrase for a
statement encoded by the proposition P, then the English phrases “Q

44We picture this in two stages. First,
we show the fiberwise situation as
follows:
Y(x")
Y(x)

................... g
..... f

trp, (f(x))
\;e\”‘—/ X

X

Here, there’s not room to show all
that’s going on in the fiber Y(x’), so
we illustrate that as follows:

Y(x')

po, (apd,(e)), trp, (g(x))
g(x)
trpeZ (i)]

f@)

aptrpzf (l)

po, (apd(e))

trp, (f(x))

AN INTRODUCTION TO UNIVALENT MATHEMATICS 35

holds”, “we know Q”, and “we have shown Q”, will all mean that we
have an element of P.

Typically, mathematical properties expressed in English as adjectives
will be encoded by types that are propositions, for in English speech,
when you assert that a certain adjective holds, you are simply asserting
it, and not providing further information. Examples: the number 6 is
even; the number 7 is prime; the number 28 is perfect; consider a reqular
pentagon; consider an isosceles triangle.

Sometimes adjectives are used in mathematics, not to refer to properties
of an object, but to modify the meaning of a noun, producing a different
noun phrase denoting a different mathematical concept. For example, a
directed graph is a graph, each of whose edges is given a bit of additional
information: a direction in which it points. Other examples: differentiable
manifold; bipartite graph; vector space; oriented manifold.

Let X be a type. If for any x : X and any y : X the identity type x = y
is a proposition, then we shall say that X is a set. The reason for doing
so is that the most relevant thing about a set is which elements it has;
distinct identifications of equal elements are not relevant. Alternatively,
we shall say that X is a 0-type.>

The following definition introduces notational alternatives commonly
used in mathematics.

DerINITION 2.15.1. Let P be a proposition as defined above. We define
the negation of P by setting —=P := (P — 0).

Let A be a set, as defined above, and let 4 and b be elements of A. We
write 2 = b as alternative notation for the type a = b. Formally, we
define it as follows.

(a=0b):=(a>D)

The type a = b is called an equation. When it has an element, we say that
a and b are equal. In line with this definition we also define the type
(a # b) :== =(a = b); an element of it asserts that the elements a and b of
the set A are not equal. 4

Equations are propositions, so we can speak of them being true or
false, and we may use them after the words if, since, whether, and because
in a sentence. In set theory, everything is a set and all equations a = b are
propositions; our definition of a2 = b is designed to make the transition
from set theory to type theory minimally disconcerting.

(Good motivation for the form of the equal sign in the notationa = b is
provided by a remark made by Robert Recorde in 1557 in the Whetstone
of Witte4*: “And to avoid the tedious repetition of these words is equal to,
I will set, as I do often in work use, a pair of parallels, or twin lines of
one length, thus: =, because no two things can be more equal.”#7 In fact,
the remark of Recorde presages the approach described in this book, for
although those two little lines are congruent, they were not considered
to be equal traditionally, since they are in different places, whereas they
may be considered to be equal in the presence of univalence, which
converts congruences to identifications.)

Let X be a type. If for any x: X and any y : X the identity type x = y
is a set, then we shall say that X is a groupoid, also called a 1-type.

45Sets are thought to consist of points.
Points are entities of dimension o,
which explains why the count starts
here. One of the contributions of
Vladimir Voevodsky is the extension
of the hierarchy downwards, with
the notion of proposition, including
logic in the same hierarchy. Some
authors therefore call propositions
(=1)-types, and they call contractible

types (=2)-types.

46Robert Recorde and John Kingston.
The whetstone of witte: whiche is the
seconde parte of Arithmetike, containyng
thextraction of rootes, the cossike prac-
tise, with the rule of equation, and the
woorkes of surde nombers. Imprynted
at London: By Ihon Kyngstone,
1557. URL: https://archive.org/
details/TheWhetstoneOfWitte.

479[nd to auoide the tedioufe repetition of
thefe woordef : if equalle to : ¥ will
fette af 3 doe often in woorfe vfe, a
paire of pacallelef, or Gemorve linef of
one lengthe, thuf: ——, bicaufe noe
.2. thyngef, can be moare equalle.

https://archive.org/details/TheWhetstoneOfWitte
https://archive.org/details/TheWhetstoneOfWitte

AN INTRODUCTION TO UNIVALENT MATHEMATICS

The pattern continues. If for any n:N, any x: X, and any y: X the
identity type x = y is an n-type, then we shall say that X is an (1 +1)-type.
If X is an n-type, we also say that X is n-truncated.

We prove that every proposition is a set, from which it follows by
induction that every n-type is an (n + 1)-type.

Lemma 2.15.2. Every type that is a proposition is also a set.

Proof. Let X be a type and let f:[[,,.x(a = b). Leta,b,c:X and
let P(x) be the type a = x depending on x:X. Then f(a,b):P(b)
and f(a,c):P(c). By path induction we construct for all §:b = ¢ an
identification of type q - f(a,b) = f(a, c). For this it suffices to observe
that refly, - f(a,b) and f(a, b) are equal by definition. Since 4 is arbitrary,
it follows that any g:b = ¢ can be identified with f(b,c) - f(b,b)7},
which doesn’t depend on q. Hence X is a set.]

A more interesting example of a set is Bool.

LemMa 2.15.3. Bool is a set.

Proof. The following elegant, self-contained proof is due to Simon Huber.
For proving p = q for all b,b’:Bool and p,q:b = b’, it suffices (by
induction on g) to show p = refl, for all b:Bool and p :b = b. To this
end, define by induction on b, b’ : Bool, a type C(b, b’, p) forallp:b = b’,
by setting C(yes, yes, p) = (p — reflyes), C(no,no, p) = (p = refly,),
and arbitrary in the other two cases. By induction on b one proves that
C(b,b,p) = (p = refly) for all p. Hence it suffices to prove C(b, b’, p)
for all b,b’:Bool and p:b = b’. By induction on p this reduces to
C(b, b, refly), which is immediate by induction on b : Bool.]

We now collect a number of useful results on propositions.

LemMA 2.15.4. Let A be a type, and let P and Q propositions. Let R(a) be a
proposition depending on a : A. Then we have:

(1) False and True are propositions;

(2) A — P is a proposition;

(3) I'ls.a R(a) is a proposition;

(4) P x Q is a proposition;

(5) if Ais a proposition, then Y, . o R(a) is a proposition;
(6) P LI =P is a proposition.

Proof. (1): If p, q:False, then p — g holds by induction for False. If
p,q:True, then p = g is proved by double induction, which reduces the
proof to observing that refly;y : triv = triv.

(2): Ifp,q: A — P, then p = g is proved by first observing that p and
g are functions which, by function extensionality, can be identified if
they have equal values p(x) = g(x) in P for all x in A. This is actually
the case since P is a proposition.

(3): If p, q: ['l,. 4 R(a) one can use the same argument as for A — P
but now with dependent functions p, g.

36

AN INTRODUCTION TO UNIVALENT MATHEMATICS

(4): If (p1, q1), (2, 92) : P X Q, then (p1, 1) = (p2, q2) is proved com-
ponentwise. Alternatively, we may regard this case as a special case of
().

(5): Given (a1, 1), (a2, 172): Y, R(a), we must establish that (a1, 71) =
(a2, 7). Combining the map in Definition 2.10.1 with the identity type in

Definition2.7.3 yieldsamap (¥, . 4,24, trpy.(r1) = 12) — ((a1,11) = (a2, 12)),

so it suffices to construct an element in the source of the map. Since A is
a proposition, we may find u : a1 = 4. Since R(ay) is a proposition, we
may find v: trp) (r1) = ro. The pair (1, v) is what we wanted to find.
(6): If p, g : PL1 =P, then we can distinguish four cases based on inl/inr,
see Section 2.8. In two cases we have both P and —P and we are done.
In the other two, either p = inl, and g = inly with p’,g": P, or p = inr
and q = inry with p’, q": =P. In both these cases we are done since P
and —P are propositions.]

Several remarks can be made here. First, the lemma supports the use
of False and True as truth values, and the use of —, [, X for implication,
universal quantification, and conjunction, respectively. Since False is a
proposition, it follows by (2) above that A — 0 is a proposition for any
type A. As noted before, (2) is a special case of (3).

Notably absent in the lemma above are disjunction and existential
quantification. This has a simple reason: True LI True has two distinct
elements inlyy and inryiy, an is therefore not a proposition. Similarly,
Y_..n True has infinitely many distinct elements (1, triv) and is not a
proposition. We will explain in Section 2.16 how to work with disjunction
and existential quantification for propositions.

The lemma above has a generalization from propositions to n-types
which we state without proving. (The proof goes by induction on n,
with the lemma above serving as the base case where 1 is —1.)

LemMma 2.15.5. Let A be a type, and let X and Y be n-types. Let Z(a) be an
n-type depending on a : A. Then we have:

(1) A — X isan n-type;

(2) T1a.a Z(a) is an n-type;

(3) X XY isan n-type.

(4) if Aisan n-type, then ;. 4 Z(a) is an n-type;

We formalize the definitions from the start of this section.

DEFINITION 2.15.6.

isProp(P) =[], .,(p =)
isSet(S) = HW:S isProp(x = y) = HW:S Hp/q:(x;y)(p =q)
isGrpd(G) = Hg,h:G isSet(¢ > h)=... a
Lemma 2.15.7. For any type A, the following types are propositions:
(1) isContr(A);
(2) isProp(A);
(3) isSet(A);

37

AN INTRODUCTION TO UNIVALENT MATHEMATICS

(4) isGrpd(A);
(5) the type that encodes whether A is an n-type, for n > 0.

Consistent with that, we will use identifiers starting with “is” only
for names of types that are propositions. Examples are isSet(A) and
isGrpd(A), and also isEquiv(f).

Proof. Recall that isContr(A)is }5.4I1,.4(a = y). Let (a, f) and (b, g)
be elements of the type isContr(A). By Definition 2.10.1, to give an
element of (a, f) = (b, g) it suffices to giveane:a = bandane’: f % g
For e we can take f(b); for e’ it suffices by Definition 2.7.3 to give
an e”:trp, f — g. Clearly, A is a proposition and hence a set by
Lemma 2.15.2. Hence the type of g is a proposition by Lemma 2.15.4(3),
which gives us e”.

We leave the other cases as exercises. o

Exercise 2.15.8. Make sure you understand that isProp(P) is a proposition,
using the same lemmas as for isContr(A). Show that isSet(S), isGrpd(G)
and isEquiv(f) are propositions. 4
The following exercise shows that the inductive definition of n-types

can indeed start with n as —2, where we have the contractible types.
Exercise 2.15.9. Given a type P, show that P is a proposition if and only
if p = g is contractible, for any p, q : P. 4
RemMaRrk 2.15.10. We now present the notion of a diagram. A diagram
is a graph whose vertices are types and whose edges are functions or
identifications. This means the edges have a direction. Usually there
is one vertex with only outgoing edges, called the source, and one with
only incoming edges, called the sink. Here is an example.

X L>

I

s 2

The information conveyed by this diagram to the reader is that X, Y, S,

He—=

and T are types, and that f, g, p, and q are functions; moreover, f is of
type X = Y, gisof type S — T, p is of type X — S, and g is of type
Y — T. The source is the left upper vertex X and the sink is the lower
right vertex T.

Observe that we can travel through the diagram from X to T by follow-
ing first the arrow labeled f and then the arrow labelled 4. Consequently,
the composite function g o f is of type X — T.

There is another route from X to T : we could follow first the arrow
labeled p and then the arrow labelled g. Consequently, the composite
function g o p is also of type X — T.

We say that a diagram is commutative by definition if, whenever there
are two routes from one vertex to another, the corresponding composite
functions are equal by definition. For example, in the diagram above,
the condition would be that gop =g o f.

When the sink of the diagram is a set, then equality of functions into the
sink is a proposition, and we may consider whether two such functions
are equal. In that case, we say that a diagram is commutative if, whenever

38

AN INTRODUCTION TO UNIVALENT MATHEMATICS 39

there are two routes from one vertex to another, the corresponding
composite functions are equal. For example, in the diagram above, the
condition would be that gop =g o f.

In general, a diagram is a visual way to represent identity types. For
example, if in the above diagram the type T is not a set, then the diagram
represents the identity type g op = g o f. To give an element of such
an identity type (which may or may not be possible) is called to fill the
diagram, and such an element is then called a filler of the diagram.

There are other sorts of diagrams. For example, identifications may be
composed, and thus we may have a diagram of identifications between
elements of the same type. For example, suppose W is a type, suppose
that x, y, s, and t are elements of W, and consider the following diagram.

X
Jr
S

It indicates that f is of type x = y, gisof types = t, pisof type x = s,

[

- <
-

and g is of type y — t. We may also consider whether such a diagram is
commutative by definition, or, in the case where all the identity types are
sets, is commutative. Such diagrams are again a visual way to represent
identity types.#For example, the above diagram represents the identity
type gop = go f, and we also speak of filling diagrams of identifications.
For a concrete example of filling such a diagram, see the naturality square
in Definition 2.6.5. 4

2.16 Propositional truncation and logic

As explained in Section 2.15, the type formers —, [, X can be used with
types that are propositions for the logical operations of implication,
universal quantification, and conjunction, respectively. Moreover, True
and False can be used as truth values, and — can be used for negation. We
have also seen that LI and X can lead to types that are not propositions,
even though the constituents are propositions. This means we are still
lacking disjunction (P Vv Q) and existence (3,..x P(x)) from the standard
repertoire of logic, as well as the notion of non-emptiness of a type. In
this section we explain how to implement these three notions.

To motivate the construction that follows, consider non-emptiness
of a type T. In order to be in a position to encode the mathematical
assertion expressed by the English phrase “T is non-empty”, we will need
a proposition P. The proposition P will have to be constructed somehow
from T. Any element of T should somehow give rise to an element of
P, but, since all elements of propositions are equal to each other, all
elements of P arising from elements of T should somehow be made to
equal each other. Finally, any proposition Q that is a consequence of
having an element of T should also be a consequence of P.

We define now an operation called propositional truncation,* that
enforces that all elements of a type become equal.

DerINITION 2.16.1. Let T be a type. The propositional truncation of T is the
type || T|| defined by the following constructors:

4When diagrams get more compli-
cated, the information they convey
is not always sufficient to find out
which identity type(s) they represent.
In such cases additional information
will be provided.

49The name “truncation” is slightly
misleading since it suggests leaving
something out, whereas the correct
intuition is one of adding identifica-
tions so everything becomes equal.

AN INTRODUCTION TO UNIVALENT MATHEMATICS 40

(1) an element constructor |¢|:||T|| for all t:T;

(2) an identification constructor providing an identification of type x = y
forall x, y:||T]|.

The identification constructor ensures that || T|| is a proposition. The
induction principle states that, for any family of propositions P(x)
parametrized by a variable x:||T]|, in order to prove [].. r P(x), it
suffices to prove [I;.7 P(|f|). In other words, in order to define a function
f:TL.ymy P(x), it suffices to give a function g: [];.7 P([t[). Moreover,
the function f will satisfy f(|f|) = g(t) forall :T. J

Consider the special case where the family P(x) is constant. We see
that any function g:T — P to a proposition P yields a (unique) function
f:IT|| — P satistying f(|t|) = g(t) for all t : T.5° A useful consequence
of this recursion principle is that, for any proposition P, precomposition
with |_| is an equivalence of type

(JIT| - P) — (T—P).

This is called the universal property of propositional truncation.

DeriNITION 2.16.2. Let T be a type. We call T non-empty if we have an
element of || T||.5* a

When we view propositional truncation as an operation on types,
the type of ||_|| is U — U. However, that view does not take into
account that [|T|| is a proposition. It is more informative to pack this
information into the codomain of the operation and let ||_|| have the
type U — Y x.q isProp(X). The type } x.¢; isProp(X) is also denoted
as Prop,; and even as Prop. See Example 2.20.6 for more information.

Now that propositional truncation is available, we are ready to define
logical disjunction and existence.

DeriNtTION 2.16.3. Given propositions P and Q, define their disjunction
by (P Vv Q) = ||P LI Q||. It expresses the property that P is true or Q is
true. y

DEFINITION 2.16.4. Given a type X and a family P(x) of propositions
parametrized by a variable x of type X, define a proposition that encodes
the property that there exists a member of the family for which the
property is true by (d,.x P(x)) := || Lr. x P(x)||. It expresses the property
that there exists an element x : X for which the property P(x) is true; the
element x is not given explicitly. 4

The following logical quantifier could have been defined earlier, since
it doesn’t use propositional truncation. We present it now, for complete-
ness.

DErRINITION 2.16.5. Given a type X and a family P(x) of propositions
parametrized by a variable x of type X, define a proposition that encodes
the property that there exists a unique member of the family for which the
property is true by the proposition (3!,.x P(x)) := isContr(}_,.x P(x)).

|

Exercisk 2.16.6. Given x : || T||, prove that 3;.7(x = |£]). 4

ExercisE 2.16.7. Suppose P is a proposition. Produce an equivalence of
type P = ||P||. a

5°Given t,t’: T, we have an identifi-
cation of type |[{| = [t’|. The exis-
tence of the function g implies that
we have an identification of type
<g(t)) = g(#']), and hence an identi-
fication of type f(t) = f(t’). Thus a
necessary condition for the existence
of g is the existence of identifications
of type f(t) = f(#'). Thatjustifies
the the hypothesis that P is proposi-
tion.

5'We may alternatively say that T is
inhabited, in order to avoid confusion
with the concept of T not being empty,
which would be represented by the
proposition =(T = 0), which is
equivalent to —=—T.

AN INTRODUCTION TO UNIVALENT MATHEMATICS 41

The exercise above us to easily convert elements of type || P|| to elements
of type P when P is a proposition.

DerINITION 2.16.8. Let A be a type. For any element a of A, the type
Ay = Yy alla = x|| is called the connected component of a in A.5> We
say that elements x, y of A are in the same component of A if ||[x = yl||.
The type A is called connected>3 if it is non-empty with all elements in the
same component. Formally, this property is encoded by the following
proposition.
isConn(A) = || A|| X H lx = y]l. a
X,y A

Note that the empty type 0 is not connected.

One can view being connected as a weak form of being contractible —
without direct access to a center and to identifications of elements.

Exercisk 2.16.9. Show that the component of 2 in A is connected. Show
that elements in the same component have the same propositional prop-
erties, that is, for any P: A — Prop, P(x) = P(y) for any x, y: A with
llx = yll. :
Exercisk 2.16.10. Show that any connected set is contractible. 4

Exercise 2.16.11. Let A be a connected type, and suppose thata = a is a
proposition for every a : A. Show that A is contractible. 4

Exgrcisg 2.16.12. Show that). 4 B(x) is connected when A is connected
and B(x) is connected for any x : A. a

In the following definition we introduce the adverb merely, which
serves as a quicker way to say the propositional truncation of in English
speech.

DEerINITION 2.16.13. What we mean by merely constructing an element of
a type T is constructing an element of || T||. a

For example, a type is non-empty if it merely has an element, and a type
is connected if any two elements can be merely identified with each other.

2.17 More on equivalences; surjections and injections

In this section we collect a number of useful results on equivalences.

Consider the function f : T — 2 that is constant 0. The fibers of f at 0
andlare),,.{0 > 0and) ,.; 1> 0, respectively. The latter fiber is not
contractible: having an element of it would mean having an element of
1 = 0, which would in turn lead to an element in False (using a similar
reasoning as in Section 2.12.1). Hence f is not an equivalence. Observe
that both fibers are propositions, that is, contain at most one element.

As a function between sets f is an injection (one-to-one), but not a
surjection. We need these important concepts for types in general. We
define them as close as possible to their usual meaning in set theory:
a function from A to B is surjective if the preimage of any b : B is non-
empty, and injective if such preimages contain at most one element. This
motivates the following definitions.

DerINITION 2.17.1. A function f : A — B is a surjection, or is surjective, if
for all b: B there exists an a: A such that b = f(a), thatis, 9,.4(b =

fla))> .

52In Section 2.20 we will define the
notion of subtype. It will turn out
that A(,) is a subtype of A.

53In Exercise 2.22.5 below we will
define the set of connected components
of a type.

54A function f: A — Bisasplit
surjection if for all b : B we have
ana:Awithb S f(a), in other
words, we have a function of type
Ily:pLa:alb = f(”)) This is equiv-
alent to saying we have a function
g:B — Aand an identification
p:fog = idp (sucha giscalled a
section of f).

AN INTRODUCTION TO UNIVALENT MATHEMATICS 42

DerINITION 2.17.2. A function f:A — B is an injection, or is injective, if
f~1(b) is a proposition for all b : B. The property of being an injection is
encoded by the type isInj(f) = I, . isProp(f (b)). y
Exercrsk 2.17.3. Let A be a type and B a set and f: A — B a function.
Give maps in both directions between the proposition isInj(f) and the
type [T, 0. a((f(a) = f(a’)) = (a = a’)). Give a function f : True — Set
that is not injective. 4
LemMma 2.17.4. For all types A, B, a function f: A — B is an equivalence if
and only if f is an injection and a surjection.

Proof. If f : A — B is an equivalence, then all fibers are contractible, so
f is both an injection and a surjection. Conversely, if f is both injective
and surjective, we show that f~1(b) is contractible, for each b : B. Being
contractible is a proposition, so by Definition 2.16.1 we can drop the
truncation in ||Y_,. 4 b = f(a)||. Now apply injectivity.>>]

If the types A and B in the above lemma are sets, then we call equiva-
lences between A and B also bijections.

CoroLLaRY 2.17.5. Let A, B be types such that A is non-empty and B is
connected. Then any injection f : A — B is an equivalence.

Proof. By Lemma 2.17.4 it suffices to show that f is surjective. This is
a proposition, so by Definition 2.16.1 and || A|| we may assume a: A, so
f(a):B. By Il .8llx = yll we now get that all preimages under f are
non-empty. O

LemMa 2.17.6. Let f: X — Y be a surjective map from a connected type X.
Then Y is connected too.

Proof. For any map f: X — Y between arbitrary types, if y, y":Y and
we are given x,x": X, p:y = f(x), p’:y’ = f(x’) and g:x = x’, then
we have a path between y and y’ given by the composite

y == f0) 5 f&)

Now the lemma follows by eliminating the propositional truncations in
the assumptions, using that the conclusion is a proposition. o

CoNSTRUCTION 2.17.7. For every f:A — B, b:B,and z,z’ :f‘l(b), there is
an equivalence

(2.17.1) z>z2)> apj?l(snd z/-sndz7t).
Implementation of Construction 2.17.7. We can construct this equivalence
forz = (a,p) and z’ = (a’,p’), where a,a’: A, p:b = f(a) and p’:b =
f(a’), as the composition
(z=>2)=(ap) > @,p))
= X pov

q:a=a’

=) apig)p >y
q:a—a’

=) v S apg)
q:a—a’

= ap}l(p’ ph).

55This argument applies generally:
Any non-empty proposition is con-
tractible.

AN INTRODUCTION TO UNIVALENT MATHEMATICS 43

The second equivalence relies on Definition 2.7.3 and Construction 2.14.3.
O

LemmMma 2.17.8. A function f : A — B is an injection if and only if each induced
function apy : (a > a’) —> (f(a) > f(a’))isan equivalence, forall a,a’ : A.5°

Proof. It follows directly from (2.17.1) that if ap, is an equivalence,
then f~1(b) is a proposition, as all its identity types (fibers of ap f) are
contractible.

On the other hand, if we fixa,a’: Aand p: f(a) = f(a’), then (2.17.1)
applied to b = f(a), z := (a, refls(,)) and 2" := (a’, p), gives ap;l(p) =
(z © z’), which shows that if each f~!(b) is a proposition, then ap ¢ isan
equivalence. o

CoRrOLLARY 2.17.9. Let A and B be types and let f : A — B be a function. Then
we have:

(1) All fibers of f are (n+1)-types if and only if all fibers of each map induced
by f on identity types are n-types;

(2) If Ais connected and a : A, then all fibers of f are (n+1)-types if and only
if all fibers of ap : (a = a) — (f(a) > f(a)) are n-types;

(3) If A and B are connected, then f is an equivalence if and only if each map
induced by f on identity types is an equivalence;

(4) If A and B are connected and a : A, then f is an equivalence if and only if
apy :(a > a) - (f(a) > f(a))is an equivalence.

Proof. (1) When n is -2 this is Lemma 2.17.8 and the proof for n > -1
is similar. (2) By (1) and Exercise 2.16.9. (3) By Lemma 2.17.8 and
Corollary 2.17.5. (4) By (3) and Exercise 2.16.9. O

Exercise 2.17.10. Let A,B:U,F:A — U and G:B — U, and f:A > B
and ¢: [1,.4(F(a) = G(f(a))). Give an equivalence from },. 4 F(a) to
Y».5 G(b). (An important special caseis F = G o f.) 4

Another application of propositional truncation is the notion of image.

DeriNtTION 2.17.11. Let A, B be types and let f : A — B. We define the
image of f as
im(f) =) Jly > f(x)). ¥
y:Bx:A
Note that (Jy.4(y = f(x))) = || f'(y)||, the propositional truncation
of the fiber. For this reason, im(f) is called the propositional image.
Later we will meet other notions of image, based on other truncation
operations.

Exgercise 2.17.12. Show that the image of f : A — B induces a factorization
f = iop,visualized by the following diagram>7

AX /B

im(f)

56Warning: If A and B are sets, then
each ap is an equivalence if and
only if all implications (f(a) =
f(a’)) = (a = a’) hold, but this is in
general not sufficient.

57This diagram actually commutes by
definition.

Thus the image factorization of f is
a 6-tuple. For convenience we may
simplify and speak of the "image
factorization f = h o g." Here C is
implicit in the types of ¢ and h. The
particular identification of f with

h o g follows from the context, as do
the proofs that ¢ is an injection and &
is a surjection.

AN INTRODUCTION TO UNIVALENT MATHEMATICS 44

where p is surjective and i is injective. Show that the following type
of image factorizations of f : A — B is contractible:

Y Y Y ((f S hog) xisSurj(g) x isnj(h)). J

C:Ug:A—>Ch:C—B

Exercrsk 2.17.13. Let A be a type and B as set and f : A — B. Show that
im(f) is a set. 4

ExErcisk 2.17.14. Let f:A — B for A and B types, and let P(b) be a
proposition depending on b: B. Show that [[, . im(f) P(fst(z)) if and only

if Ha:A P(f(a)) -

2.18 Decidability, excluded middle and propositional resizing

Recall from Lemma 2.15.4(6) that P L1 =P is a proposition whenever P is
a proposition.
DErINITION 2.18.1. A proposition P is called decidable if P 11 —P holds. .

In traditional mathematics, it is usually assumed that every proposition
is decidable. This is expressed by the following principle, commonly
abbreviated LEM.

PrincrpLE 2.18.2 (Law of Excluded Middle). For every proposition P, the
proposition P L1 =P holds. a

(The “middle” ground excluded by this principle is the possibility
that there is a proposition that is neither true nor false.)

Type theory is born in a constructivist tradition which aims at devel-
oping as much mathematics as possible without assuming the Law of
Excluded Middle.5® Following this idea, we will explicitly state whenever
we are assuming the Law of Excluded Middle.

Exercrsk 2.18.3. Show that the Law of Excluded Middle is equivalent to
asserting that the map (yes = _):Bool — Prop is an equivalence. 4

A useful consequence of the Law of Excluded Middle is the principle of
“proof by contradiction”: to prove a proposition P, assume its negation
=P and derive a contradiction. Without the Law of Excluded Middle,
this proves only the double negation of P, that is -——P. However, with
the Law of Excluded Middle, one can derive P from the latter: indeed,
according to the Law of Excluded Middle, either P or =P holds; but =P
leads to a contradiction by hypothesis, making P hold necessarily.

Exercisk 2.18.4. Show that, conversely, LEM follows from the principle
of double-negation elimination: For every proposition P, if =—P, then P
holds. M|

Remark 2.18.5. We will later encounter a weaker version of the Law of
Excluded Middle, called the Limited Principle of Omniscience (Princi-
ple 3.6.22), which is often enough.>? 4

Sometimes we make use of the following, which is another consequence
of the Law of Excluded Middle:

PriNncIpLE 2.18.6 (Propositional Resizing). For any pair of nested universes

U :U’, the map (P +— P):Prop,, — Propy,, is an equivalence.®! 4
Exercisk 2.18.7. Show that if the Law of Excluded Middle holds, then
Propositional Resizing holds. 1

58Besides any philosophical reasons,
there are several pragmatic rea-
sons for developing constructive
mathematics. One is that proofs
in constructive mathematics can
be executed as programs, and an-
other is that the results also hold in
non-standard models, for instance
a model where every type has a
topological structure, and all con-
structions are continuous. See also
Footnote 14.

59As the naming indicates, we can
think of the Law of Excluded Middle
itself as an omniscience principle,
telling us for every proposition P,
whether P is true or false. It was
this interpretation of the Law of Ex-
cluded Middle that led Brouwer to
reject it in his 1908 paper on De onbe-
trouwbaarheid der logische principes.®°

6Mark van Atten and Goran Sund-
holm. “L.E.]. Brouwer’s ‘Unrelia-
bility of the Logical Principles A
New Translation, with an Introduc-
tion”. In: History and Philosophy of
Logic 38.1 (2017), pp. 24—47. DOL:
10.1080/01445340.2016.1210986.
arXiv: 1511.01113.

©1The map P + P is welltyped by
cumulativity of the universes, that is,
by point (4) of Section 2.3. Note that
the map is not the identity function
due to its type.

https://doi.org/10.1080/01445340.2016.1210986
https://arxiv.org/abs/1511.01113

AN INTRODUCTION TO UNIVALENT MATHEMATICS 45

2.19 The replacement principle

In this section we fix a universe U. We think of types A:U as small
compared to arbitrary types, which are then large in comparison.®* Often
we run into types that are not in U (small) directly, but are nevertheless
equivalent to types in U.

DEerFINITION 2.19.1. We say that a type A is essentially U-small if we have a
type X : U and an equivalence A = X. And A is locally U-small if all its
identity types are essentially U-small. 4

Note that Y x.¢(A = X), the type expressing that A is essentially
U-small, is a proposition by the univalence axiom for U. Of course, any
A:U is essentially U-small, and any essentially U-small type is locally
U-small.

To show that a type is locally U-small we have to give a reflexive
relation Eq, : A — A — U that induces, by path induction, a family of
equivalences (x = y) = Eq,(x,).

Exercise 2.19.2. Show that U is locally U-small, and investigate the
closure properties of essentially and locally ?-small types. (For in-
stance, show that if A: U and B(x) is a family of locally U-small types
parametrized by x : A, then [],.. 4 B(x) is locally U-small.) 4

RemMARK 2.19.3. Note that propositional resizing (Principle 2.18.6) equiva-
lently says that any proposition is essentially 7I-small, where we may
take U to be the smallest universe Uy. When we assume this, we get
that any set is locally Up-small. 4

We will make use of the following principle (recall the definition of
the image, Definition 2.17.11).
PriNcIPLE 2.19.4 (Replacement). For any map f: A — B from an essen-
tially U-small type A to a locally U-small type B, the image im(f) is
essentially U-small. 4

This is reminiscent of the replacement principle of set theory which
states that for a large (class-sized) function with domain a small set and
codomain the class V of all small sets, the image is again a small set.
This follows from our replacement principle, assuming propositional
resizing, or the even stronger principle of the excluded middle.

The replacement principle can be proved using the join construction
of the image, cf. Rijke®3, which uses as an assumption that the universes
are closed under pushouts.®

ExERcISE 2.19.5. Show that the replacement principle implies that for any
locally ?I-small type A, and any element a : A, the connected component
A(y) is essentially U-small. 4

Another consequence is that the type of finite sets, which we’ll define
below in Definition 2.24.5, is essentially small.

2.20 Predicates and subtypes

In this section, we give two (equivalent) definitions of the notion of a
subtype of a given type T. The first definition is based on the notion of a
predicate on T. A predicate tells, or ‘predicates’, whether an element of

2The terminology small /large is also
known from set theory, where
classes are large collections, and
sets are small collections.

63Egbert Rijke. The join construction.
2017. arXiv: 1701.07538.

64Pushouts are certain higher induc-
tive types that suffice to construct
all the higher inductive types that
we need, but we don’t actually need
them in this book.

https://arxiv.org/abs/1701.07538

AN INTRODUCTION TO UNIVALENT MATHEMATICS 46

T belongs to the subtype. The second definition is based on the notion
of injection, defined in Definition 2.17.2.

DErFINITION 2.20.1. Let T be a type and let P(t): Prop® be a family of
propositions parametrized by a variable ¢ : T. Then we call P a predicate
on T.% If P(t) is a decidable proposition for any ¢ : T, then we say that P
is a decidable predicate on T 4

Given a type T and a function f : T — Bool, Lemma 2.15.3 yields that
f(t) = yes is a proposition, and we can form the predicate P(t) := (f(t) =
yes). Then P:T — Prop is a decidable predicate by Exercise 2.20.2.
However, not every predicate can be given through a f : T — Bool, since
Prop and Bool are only equivalent if LEM holds (Exercise 2.18.3).

In the special case that P:T — €U is a decidable predicate we can
define xp:T — Bool by induction (actually, only case distinction) on
d(t): P(t) L1 =P(t), setting xp(t) = yes if d(t) = inl_and xp(f) = no if
d(t) = inr_. In this way, decidable predicates on a type T correspond to
their characteristic functions T — Bool.

ExEercise 2.20.2. Show that f(t) = yes is a decidable predicate on T, for any
type T and function f : T — Bool. Show that (P = True) LI (P = False)
holds for every decidable proposition P. 4

DerINITION 2.20.3. Let T be a type. The type of subtypes of T, denoted by
Sub(T), is defined by

Sub(T) := (T — Prop).

Given a predicate P on T, we define Tp :=) ;.7 P(t) to be the underlying
type of the subtype of T characterized by P. y

The following lemma states that identity types in a subtype®” are
equivalent to those in the type itself.

LEmMA 2.20.4. Let T be a type and P : T — Prop a predicate on T. Recall the
underlying type Tp = Y ;.1 P(t), and consider the projection map fst from Tp to
T. Then apy, : ((x1,p1) = (x2, p2)) = (x1 = x2) is an equivalence, for any
elements (x1, p1) and (x2, p2) of Tp.

Proof. Corollary 2.9.11 gives that fst™1(t) =~ P(t) for all t : T, so that fst is
an injection. Now apply Lemma 2.17.8. O

REMARK 2.20.5. A very convenient consequence of Lemma 2.20.4 is that
we can afford not to distinguish carefully between elements (¢, p) of the
subtype Tp and elements t of type T for which the proposition P(t) holds.
We will hence often silently coerce from Tp to T via the first projection,
and if ¢ : T is such that P(f) holds, we’ll write ¢ : Tp to mean any pair (¢, p)
where p : P(t), since when P(f) holds, the type P(t) is contractible. .

ExampLE 2.20.6. The type of types that are propositions and the type of
types that are sets are defined as:

Propg, = Z isProp(X) and Sety = Z isSet(X).
X:U X:U

Both Prop,, and Sety; are subtypes of U, and both are types in a
universe one higher than U. We just write Prop and Set when we don't
care about the precise universe U.

65Recall that Prop abbreviates Propy; =
Yor.q isProp(T).

% Note that giving a predicate on T is
equivalent to givingamap Q:T —
Propy, for a suitable universe U,
and we often say that Q itself is the
predicate. We leave U implicit.

67The phrase ‘subtype’ is often used
for ‘underlying type of the subtype’.
See Footnote 68 for when it is impor-
tant to be precise.

AN INTRODUCTION TO UNIVALENT MATHEMATICS 47

Following the convention in Remark 2.20.5, when we have a type A
for which we know that it is a proposition (or a set), we simply write
A:Prop (or A:Set). a

LemmMa 2.20.7. The proposition isSet(Prop) holds, that is, Prop is a set.

Proof. We show that P = Q is a proposition for all propositions P and Q.

By univalence, P = Q is equivalent to (P = Q) = Y f.p—q isEquiv(f).
The latter is a proposition by Lemma 2.15.4(2)(5), using that isEquiv(f)
is a proposition. O

Since Prop is a set, Sub(T) is also a set, for any type T.%

Exercisk 2.20.8. Let T and X be types, f: X — T a function, and P: T —
Prop a predicate. Show that [],.x P(f(x)) holds if and only if the
following type® is contractible:

Y f = fstog. a

g X—-Y .7 P(t)

We call the result in Exercise 2.20.8 the universal property of subtypes.7°
A pair like (Tp, fst) in Lemma 2.20.4 is actually an example of the
second approach to subtypes, which we will explain now.

DEFINITION 2.20.9. A injection into a type T is a type S together with an
injection f: S — T. The type S is called the underlying type of the injection
into T.7* Selecting a universe U as a repository for such types S allows
us to introduce the type of injections into T in U as follows.

Inf"(T):=),) ishnj(f).

S:Uf:5-T

When no confusion can arise, we simply write Inj(T) for Inj" (T). 4

Lemma 2.20.10. The function mapping any subtype P of T to the injection
fst : Tp — T defines an equivalence from Sub(T') to Inj(T), for any type T. The
inverse equivalence maps any injection i:S — T to the subtype (t — i~1(t))
of T.

Proof. We postpone the proof till Construction 2.25.6 (2), where this and
similar results are obtained by a general method. If you just can’t wait,
do Exercise 2.20.11. o

As a consequence, Inj(T) is a set since Sub(T) is, for any type T.
Exercise 2.20.11. Prove Lemma 2.20.10. Hints: For the round trip starting
with P, use function extensionality and Corollary 2.9.11. For the round
trip starting with (S, i), show that the function g in Footnote 69 is an
equivalence in case X = S, f = i is an injection, and P = i~1(). 4

Lemma 2.20.4 has other important consequences:

CoRrOLLARY 2.20.12. For any n > =1, if T is a n-type, then Tp is also a n-type.

In particular, if T is a set, then Tp is again a set; we then call Tp a subset
of T and we may denote it by {¢:T| P(t)}.7*
Exercise 2.20.13. Let T be a set. Define the relation C:(Sub(T) x
Sub(T)) — Prop by (Py € P1) := [I;.7(Po(t) — Pi(t).73 Prove that
the relation C is a partial order’* with a least and a greatest element
(even if T is the empty type). 4

68 Caution: When identifying ‘sub-
types’, it should be clear whether
they are considered as elements of
Sub(T) or as underlying types of
subtypes, i.e., as elements of some
universe U. The identity types
P =Sub(T) Q and Tp i)fu TQ are
in general not equivalent!

69

X;)T

|
< |
: fst

Zt:TP(t)

7°In set theory,if SC Tand f: X —» T
is such that f(x)isin S forall x in X,
then x = f(x) is the unique function
g:X — Ssuchthat f =iog, wherei
is the inclusion map of Sin T.

7*Instead of using this tedious phrase,
we will simply call S a ‘subtype” of
T, if the injection is clear from the
context. The cautioning Footnote 68
applies here as well.

72 The full notation as an element of
Inj(T) would be ({ £ : T'| P(t) }, fst, p),
with p witnessing that fst is an in-
jection. In traditional set theory one
would call fst the inclusion of the
subset, which is unique for each sub-
set. In contrast, there can be many
pairs (X, i), withi: X — T anin-
jection, defining the same subset
of T. If in set theory one would de-
fine subsets through such pairs, one
would have to solve a size issue and
define an equivalence relation such
that equivalent pairs define the same
subset. In type theory, however, we
have universes, and the identity type
of Inj¥(T) identifies precisely the
triples defining the same subset.

Such considerations also apply to
subtypes, and later to subgroups in
Definition 5.3.11.

73Recall that we can move without
notice between (Sub(T) x Sub(T)) —
Prop and Sub(T) — Sub(T) — Prop.

74Recall that an partial order on a set
S is a relation R that is (1) reflexive:
R(x, x), (2) transitive: R(x,y) —
R(y, z) = R(x, z), and (3) antisymmet-
ric: R(x,y) = R(y,x) = x = y. See
also Example 6.2.8.

AN INTRODUCTION TO UNIVALENT MATHEMATICS 48

DerINITION 2.20.14. A type A is called a decidable set if the identity type
x = y is a decidable proposition for all x, i : A. a

Note the slight subtlety of this definition together with Definition 2.18.1:
Any proposition has decidable identity types (since each instance is
contractible) and is thus a decidable set, even though it may not be
decidable as a proposition.

The way we phrased this definition implies that A is a set. The
following celebrated and useful theorem states that this is unnecessary.

THEOREM 2.20.15 (Hedberg). Any type A for which we have a function of type
[Ly:a((x = y) U =(x = y)) is a decidable set.

For a proof see Theorem 7.2.5 of the HoI'T Book7>.

2.21 Pointed types

Sometimes we need to equip types with additional structure that cannot
be expressed by a proposition such as isProp(X) and isSet(X) above.
Therefore the following is not a subtype of U.

DEFINITION 2.21.1. A pointed type is a pair (A, a) where A is a type and a
is an element of A. The type of pointed types is

U, = Z A.
A:U

Given a type A we let A, be the pointed type you get by adding a default
element: A, := (A L True, inryy). Given a pointed type X = (A, a),
the underlying type is X. = A,7® and the base point is pty = a, so that
X = (X., pty).

Let X := (A,a) and Y = (B, b) be pointed types. Define the map
ev, :(A — B) = Bby ev,(f) = f(a). Then the fiber of ev, at b is the
type ev,! = Y. a5(b = f(a)). The latter type is also called the type of
pointed functions from X to Y and denoted by X —. Y. In the notation
above,

X —-.Y)= Z (pty = f(pty)).
fiX>Y.
Given a pointed function g = (f, p), the underlying function is g. := f,
and the pointing path is gpt == p, so that g = (g-, gpt)-
If Z is also a pointed type, and we have pointed functions f: X —, Y
and g:Y —. Z, then their composition gf : X —. Z is defined as the
pair (- f-, &:(fpt)gpt), as illustrated below.””

Sot
pty z f-(pty)

s s
8pt 8- (fpt)
pt; — g+(pty) —_— g+(f+(ptx))
We may also use the notation g o f for the composition. 4
DeriNtTiON 2.21.2. If X = (A, a) is a pointed type, then we define the
pointed identity map idx : X —. X by setting idx = (ida, refl,). a
Remark 2.21.3. If X is a pointed type, then X. is a type, but X itself is not
a type. It is therefore unambiguous, and quite convenient, to write x : X
forx:X.,and X — U for X. — U. Likewise, we can write f : X — Y for

75Univalent Foundations Program,
Homotopy Type Theory: Univalent
Foundations of Mathematics.

76The obelus + is sometimes used to
denote division, but is also used to
for subtraction, especially in North-
ern Europe. This inspired our use,
considering its “adjoint” relationship
to + detailed in Exercise 2.21.4.

77In particular, (gf)- = g-f-.

AN INTRODUCTION TO UNIVALENT MATHEMATICS

f-:X. = Y.. In that case we still write f,;:pty — f(pt,) for the witness
of pointedness. 4

Exercise 2.21.4. If A is a type and B is a pointed type, give an equivalence
from A — B. to A, —. B. a

Exgercise 2.21.5. Let A be a pointed type and B a type. Give an equivalence
from) ;,.3(A —. (B, D)) to (A. — B). a
Since U, and X —, Y are sum types, the results on identifying pairs
in Section 2.10 apply to pointed types and pointed maps as well.
DerintTION 2.21.6. If X and Y are pointed types, we define the type of
pointed equivalences from X to Y as:
X5.Y:=) isEquiv(f.) a
f:X->.Y
Exercisg 2.21.7. From an identification of pointed types p:X = Y,

construct an identification of the underlying types, p.: X. = Y., as well
as an identification q : pt, = p.(pty). Together, this gives a map of type

(XSY)— (X 3. Y).

Show that this is an equivalence. 4

The following result gives a useful characterization of identity types
of pointed maps, extending Principle 2.9.18.

ConstrucTION 2.21.8. Let X and Y be pointed typesand f, g: X —. Y pointed
maps from X to Y. Then we have an equivalence ptw, of type

f=>9~=)3 ((h(ptx) - for) = gpt)-
h: Hx:X(,ﬂ(x)i)g%(x))
Implementation of Construction 2.21.8. Define the type family T by T(k) :=
(pty = k(pty)) forany k: X — Y. The equivalence ptw, is the composite
of the following chain of known equivalences:

fF=>9>) (i % gpt) by Lemma2.10.3
e:(fiog.)

S Y (trpl(fr) © gpt) by Definition 2.7.3

e:(f:>g-)
> ¥

= (Ptw(ptw ™ (M))(pty) - for) = gpr) ()

(trpgtw,l(h)(fpt) = gpt) by Exercise 2.9.12
)

=) ((h(pty) - fp) = gpt) ().
T (0 >5g- ()

Here (*) uses pointwise transport from Exercise 2.14.7,

trptw(ptw (1), for) : trpgtw-l(h)(fpt) = ((ptw(ptw ™ (1))(pty) - fpt),

and (**) uses that ptw is an equivalence. |

2.22 Operations that produce sets

The following lemma holds for n-types in general, but we only need it
for propostions and sets.

f+(ptx)

y "lh(Ptx)

pty — 8:(ptx)

FiGURE 2.3: Transportin T

49

AN INTRODUCTION TO UNIVALENT MATHEMATICS 50

LemMA 2.22.1. Let X and Y be types.

(1) If X and Y are propositions, then so are X = Y and X = Y. In other
words, Prop is a set.

(2) If X and Y are sets, then so are X = Y and X = Y. In other words, Set
is a groupoid.

Proof. By univalence, X = Y and X = Y are equivalent, whereas
the latter is equal by definition to } ¢, x_,y isEquiv(f). If X and Y are
propositions (sets), then by Lemma 2.15.5 also X — Y is a proposition
(set). Moreover, isEquiv(f) is a proposition by Lemma 2.15.7. Now the
lemma follows by Corollary 2.20.12. o

One may wonder whether N as defined in Section 2.12 is a set. The
answer is yes, but it is harder to prove than one would think. In fact we
have the following theorem.

THEOREM 2.22.2. All inductive types in Section 2.12 are sets if all constituent
types are sets.”

Proof. We only do the case of lists X, for a set X, and leave the other
cases to the reader (cf. Exercise 2.22.3). We have to give identifications
of typep = g forall {,¢':X* and p,q:¢ = ¢’. By induction on g it
suffices to give identifications of type p —= refl; for all p:¢{ = {. Note
that this cannot simply be done by induction on p. Instead we first give
an inversion principle for identifications in X* as follows. Define a type
T(,¢,p)for€,€:X* and p:{ = ¢ by induction on ¢ and ¢’:5

T(e,e,p):
T(xt,x"l',p):

(p = refl,)
Y, Y (»>apap(g)(r)

q:x=x"r: (>

For the other cases the choice isimmaterial, say T'(¢, x¢, p) = T(x¢, €, p) :=
0. Next we give elements of type T(¢, ¢/, p) for all ¢, ¢, and p by induction
on p, reducing to T (¢, ¢, refly) for all £: X*, which we deal with by case
distinction on the list £. For ¢ we use reflyes,, and for the case x{¢ we use
the triple (refl,, refl;, reflieq,,), noting that apap (refly)(refly) = refl,,.
We can now give identifications of type p — refl; forall p:{ = ¢ by
list induction on ¢. For ¢ we use the element of T(¢, ¢, p) constructed
above. For the case x{, the element of T(x{, x{, p) constructed above
yields a triple (q,7,s) with g:x = x, r:{ = ¢ and s:p = apap(qg)(r).
Since X is a set, we have g = refl, (as already indicated by the ordinary
equals signs), and by induction hypothesis we have an identification
e:r = refl,. We get the desired identification by concatenating s and

apap, ., (\)(e):
p = apap(q)(r) = apap(refl,)(refly) = refl. O

Exercise 2.22.3. Show that X I1 Y is a set if X and Y are sets. 4

Recall that propositional truncation is turning any type into a proposi-
tion by adding identifications of any two elements. Likewise, there is a
operation turning any type into a set by adding (higher) identifications
of any two identifications of any two elements. The latter operation is
called set truncation. It is yet another example of a higher-inductive

type.

780ur proof follows the same idea due
to Simon Huber that we used in the
case of Bool in Lemma 2.15.3.
A variation can be used to give
a complete characterization of the
identity types of inductive types. See
the HoIT book, e.g., Section 2.13 for
details on the encode—decode method.79
For lists, this gives equivalences

(e > ¢e) > True
XSS DS)XxED)
(e S xb) > (xf > ¢) > False

from which we can deduce more gen-
erally that X* is an n-type, when X is
an n-type and n > 0. Corollary 2.24.9
below gives a different proof of this.

79Univalent Foundations Program,
Homotopy Type Theory: Univalent
Foundations of Mathematics.

80Recall that the function apap
from Definition 2.7.7 gives the action
on paths for a function taking two
arguments. Here it takes a path in X,
g:x =x',and apathin X*,r:{ = ¢,
to a path between the concatenations,
apap(q)(r) :x¢ = x’¢’. On reflexiv-
ities it satisfies apap (refly)(refly) =
reflyy.

AN INTRODUCTION TO UNIVALENT MATHEMATICS 51

DerINITION 2.22.4. Let T be a type. The set truncation of T is a type || T||o
defined by the following constructors:

(1) an element |t|g:||T||o forall £:T;
(2) aidentification p = g forallx,y:[|T|lpand p,q:x = y.

The (unnamed) second constructor ensures that ||T||o is a set. The
induction principle states that, for any family of sets S(x) defined for
each x :||T||o, in order to define a function f : TT,. 7y, S(x), it suffices to
give a function g: [I;.7 S(|t]o). Computationally, we get f(|t|o) = g(t)
forallt:T. .

In the non-dependent case we get that for any set S and any function
g:T — S there is a (unique) function f :[|T||o — S satisfying f(|t|o) =
g(t) forall t: T.8* A consequence of this recursion principle is that, for
any set S, precomposition with |_|o is an equivalence

(Tllo =95 — (T—=29).

This is called the universal property of set truncation.®3

Exercisk 2.22.5. Let A be a type. Define for every element z : || Ao the
connected component corresponding to z, A,), a subtype of A, such that
for a: A, you recover the notion from Definition 2.16.8: A 4),) = A(u).84

Prove that the set truncation map |_|p: A — || Al|o in this way exhibits
A as the sum of its connected components, parametrized by || A]|o:

AS Z A(z)'
z:[|Allo

Prove that A is connected iff || A||o is contractible. a

2.22.6 Weakly constant maps

The universal property of the propositional truncation, Definition 2.16.1,
only applies directly to construct elements of propositions (that is, to
prove them). Here we discuss how we can construct elements of sets.
DEFINITION 2.22.7. Amap f : A — B is weakly constant if f(x) = f(x’) for
all x,x": A. 1
This is in contrast to a constant map, which can be identified with one
of the form x +— b for some b: B. Any constant map is indeed weakly
constant. Note also that when B is a set, weak constancy of f : A — B is
a proposition.
TraeOREM 2.22.8. If f : A — B is a weakly constant map, and B is a set, then
there is an induced map g :||A|| — B such that g(|x|) = f(x) for all x : A.

Proof. Consider the image factorization (Exercise 2.17.12) A LN im(f) 4

B of f, where p(x) = (f(x), |(x, refl)l) and i(y,) = y.
The key pointis thatim(f) is a proposition because f is weakly constant.

Firstnote thatim(f)is a setby Exercise 2.17.13. Let (y1, z1), (y2, z2) : im(f).

We have to prove (y1,z1) = (y2, z2), which is a proposition. Hence we
may hypothesize (by truncation induction on z;) that we have x1, x2: A
with y; = f(x;) for i =1,2. Hence we get y1 = f(x1) = f(x2) = y2 and
therefore (y1, z1) = (y2, 22)-

81Lemma 7.3.1282gives an equivalence
from |t|g = |t|o to ||t S ¢|| for all
t,t:T.

82Univalent Foundations Program,
Homotopy Type Theory: Univalent
Foundations of Mathematics.

83More generally, there are operations
turning any type into an n-type, sat-
isfying a similar universal property
as propositional truncation and set
truncation. We denote these oper-
ations by ||_||, with corresponding
constructor |_|,. Propositional trun-
cation ||_|| can thus also be denoted
as ||_|]|-1. Sometimes it is convenient
to consider contractible types as
—2-types, with constant truncation
operator || T|| - := True and construc-
tor |t|—p = triv.

84Hint: Use maps |la = _||: A — Prop
and the fact that the universe of
propositions is a set.

AN INTRODUCTION TO UNIVALENT MATHEMATICS 52

Thus, by the universal property of the truncation, we get g’ : [|A|| —
im(f) such that ¢’(|x|) = p(x) = (f(x), |(x, reflf(y))|). Composing with i
we get g :=io g :||A|| = B with g(|x|) := f(x), as desired. O

2.22.9 Set quotients

As an example, we first present an abstraction of the possible economical
situations of a person as a quotient. Net worth can be defined as wealth
minus debt. Let’s assume wealth w and debt d are natural numbers.
The debt can be greater than the wealth, yielding a negative net worth,
but at this point in our book we do not have negative numbers at
our disposal. However, we do have the binary product, and the pair
(w,d): (N x N) also completely determines the net worth. However,
(w,d) contains more information than necessary for the net worth:
(succ(w), succ(d)), for example, determines the same net worth as (w, d),
and (succ(w), suce(d)) # (w, d). Put differently, the type N x N does not
capture the notion of net worth, since its identity types don’t capture
equality of net worth.

Clearly, we need a different type to capture the notion of net worth.
Of course, we want a type construction that works not only for the
special case of net worth, but also in similar situations. Common to
such situations is that we have a type A and an equivalence relation®
R:A — A — Prop. In the example of net worth, we have A := (N x N),
and the equivalence relation is R((w1, d1), (w2, d2)) := (w1 +dy = wy+4d1),
precisely capturing equality of net worth, wq — di = w; — dp, without
actually using subtraction and negative numbers.

What we need is a new type, which is like A, but with R as equal-
The
quotient set A/R that we will define and study in this section ful-

ity. Note that the latter requires that the new type is a set.

fills these requirements. In the special case of A := (N X N), and
R((w1, d1), (wo, d2)) = (w1 + dp = wo + dy), the type A/R could in fact be
used as a type of integers, cf. Section 3.2 and see Exercise 2.22.14.

DEerINITION 2.22.10. Given a type A and an equivalence relation R: A —
A — Prop, we define the quotient set®® A/R as the image of the map
R:A — (A — Prop). Indeed, A/R is a set, since Prop is a set, and so
are A — Prop and the image }_p.aprop Ja:a(P = R(a)) of R. Fora:A
we define [a] := (R(a), |(a, reflg(y))|) in A/R; [a] is called the equivalence
predicate of a.87 a
Any element of the image of R is merely an equivalence predicate: a
predicate P on A for which there exists a : A such that P(x) holds if and
only if R(a, x) holds.
In the following proofs we frequently use Exercise 2.17.14.
LemmMa 2.22.11. For any equivalence predicate P: A/R and a : A, P and [a] are
equal if and only if P(a) holds.

Proof. Assume P and [a] are equal. Then P(x) iff R(a, x) for all x: A.
Now take x := a and use reflexivity R(a, a) to conclude P(a).
Conversely, assume P(a), and let x : A be given. To prove the propo-
sition P(x) = R(a, x) we may assume that P = [b] for some b: A. Then
P(x) = R(b, x), and we need to show R(b, x) = R(a, x). This follows from
P(a) = R(b, a) using symmetry and transitivity.]

wealth w

debt d

85Recall that an equivalence relation is
one that is (1) reflexive: R(x, x), (2)
symmetric: R(x,y) — R(y, x), and
(3) transitive: R(x,y) — R(y,z) —
R(x, z).

86We may wonder about the universe
level of A/R, assuming A : U and
R:A — A — Propg;. By the Replace-
ment Principle 2.19.4, A/R is essen-
tially U-small, since A — Propy;,
is locally 7I-small. Alternatively,
we could use Propositional Resiz-
ing Principle 2.18.6 to push the val-
ues of R into a lower universe.

87In set theory, A would be a set and
the equivalence relation R would be
a subset of A X A, satisfying the con-
ditions in Footnote 85. Equivalence
classes would be subsets of A.

Our definition may look differ-
ent, but is actually a natural gen-
eralization of the definition in set
theory to type theory. First, we let
A be an arbitrary type. Note that
R — (z — R(fst(z))(snd(z)) is an
equivalence from A — (A — Prop)
to (A x A) — Prop). So, indeed the
equivalence relation R corresponds
to a subtype of A X A.

Note further that fst([a]) = R(a)
and that snd([a]) certifies the (ob-
vious) fact that R(a) is in the image
of R. For each a: A, the predicate
R(a): A — Prop is a subtype of A.
Therefore we call [a] the equivalence
predicate (instead of class) of a2, which
is true for a since R(a)(a), that is, by
reflexivity.

We will use [4] and R(a) inter-
changeably.

AN INTRODUCTION TO UNIVALENT MATHEMATICS 53

The following theorem gives two important properties of the set
quotient, the second is commonly called the universal property.

THEOREM 2.22.12. We have [x] = [x'] if and only if R(x, x’) for all x,x’: A.
Also, let B be a setand f:A — B a function such that f(x) = f(x’) for
all x,x": A such that R(x,x"). Then the type Y.o.ajr—p(f = go[_]) is
contractible.58

We will construct the center of contraction f:A/R — B such that
f(lx]) = f(x) for all x: A.

Proof. For the first part we use Lemma 2.22.11 applied to P, := [x] and

x'.
Now let B be a set and let f : A — B a function satisfying f(x) = f(x’)
for all x, x”: A such that R(x, x’). We first define the center of contraction
f:A/R — B. Letz = (P,p): A/R. To define f(z) in B, we note that f o fst
is a weakly constant map of type } .. 4(P =
we getamap g: Jy.4(P = [x]) = B and we put f(z) := g(p).
We check the equality by definition: As an element of A/R, equivalence

[x]) — B. By Theorem 2.22.8

predicate [x] is accompanied by the witness p = |(x, refl;y))| : 3. a([x] =
[y]). By Theorem 2.22.8, this is mapped by g, by definition, to (f o
fst)(x, refl;)) = f(x), as desired

= f = ho[_], then for any z: A/R, the type
g(z)=h(z)isa propos1t10n since B is a set, so we may assume z = [x]
x]) = f(x) = h([x]), as desired. O

Exercisk 2.22.13. Give an equivalence A/R — || Al when R(x, y) := True
forall x,y: A% a
Exercisg 2.22.14. Let A := (N X N) and R:A — A — Prop defined by
R((w1,dv), (w2,d2)) = (w1 +dy = wy +dy). Let Z = {(w,d) | (d =
0) vV (w =0Ad #0)}. Construct an equivalence f : A/R — Z such that
for all (w, d, p): Z we have f([(w, d)]) = (w, d). 4
It is also possible to postulate?® the quotient set as a higher inductive
type.
DeriNITION 2.22.15. Let A be a type and R: A — A — Prop an equiva-

Now, if g, h satisfy g o [

for some x : A. Then g([x

lence relation. Define the quotient A/R to be type with the following
constructors:

(1) a constructor s of type isSet(A/R) ensuring that A/R is a set;
(2) an element constructor [x]: A/R forall x: A;

(3) a constructor providing a proof r(x, y,p) of [x] = [y] forall x, y: A

and p:R(x, y).

Let B(z) be a set for every element z : A/R. The induction principle for
A/R states that, in order to define an element of B(z) for every z: A/R, it
suffices to give elements b, : : B([x]) for every x : A together with a proof of

the proposition by ﬁ by forall x, y: A and p: R(x, y). The function
r(xyp

f thus defined satisfies f([x]) = by for all x: A. 4

ExErcisk 2.22.16. Give an equivalence between A/R as defined in Defini-

tion 2.22.10 and A/R as defined in Definition 2.22.15. 4

8In a diagram:

891f A is a finite set, we can picture this
relation as a complete symmetric
graph, i.e., with an edge between
every pair of nodes, like this:

A

Convince yourself that a general
equivalence relation on a finite set
looks like a union of such complete
graphs.

9°The method of "postulating” what we
want has many advantages; they are
the same as the advantages of theft over
honest toil. Russell9*

91 Bertrand Russell. Introduction to math-
ematical philosophy. 2" Ed. Dover
Publications, Inc., New York, 1993,
pp- viii+208.

AN INTRODUCTION TO UNIVALENT MATHEMATICS 54

ReMARK 2.22.17. We can use set quotients to give an alternative definition
of the set truncation ||Al|p of a type A. Consider the relation R: A —
A — Prop given by R(x,y) = |[x = y||. This is easily seen to be an
equivalence relation, using refl, symm and trans from Section 2.5. Hence
we get a quotient set A/R that satisfies (|x|p = |y]o) = ||[x = y]|, for all
elements x and y of A, where we write |_| for the equivalence predicates.
Furthermore, Theorem 2.22.12 implies that A/R satisfies the recursion
principle of Definition 2.22.4: If S is a set, and g: A — S is any function,
then g(x) = g(y) holds whenever ||x = y|| by the induction principle of
the propositional truncation, and hence we get a function f : A/R — S
satisfying f(|x|g) = g(x) for all x: A, as desired.* 4

Exercise 2.22.18. Let A and B be types and f : A — B a function. Consider
the equivalence relation on A induced by f given by93

=f=(ar(a" | f(a) > f(a)ll)):A— (A — Prop).

Let the quotient set A/=¢ be defined as in Definition 2.22.10. Show that
the map (|_|o o p): A — |[im(f)||o, with p from Exercise 2.17.12, induces
a unique equivalence e : A/=¢ — [[im(f)|[o with|_[oop =efo[_]. 4

2.23 More on natural numbers

A useful function N — N is the predecessor pred defined by pred(0) := 0
and pred(succ(n)) := n. Elementary properties of addition, multiplica-
tion and predecessor can be proved in type theory in the usual way.
We freely use them, sometimes even in definitions, leaving most of the
proofs/constructions to the reader.

DerINITION 2.23.1. Let 11, m :N. We say that m is less than or equal to
n, and write m < n, if there is a k:N such that k + m = n. Such a k is
unique, and if it is not 0, we say that m is less than n, denoted by m < n.
Both m < n and m < n are propositions for all n1, m : N. 4

Exgrcise 2.23.2. Try your luck in type theory proving any of the following.
The successor function satisfies (succ(n) = succ(m)) ~ (n = m). The
functions + and - are commutative and associative, - distributes over
+. The relations < and < are transitive and preserved under +; < also
under .. We have (m < n) ~ ((m < n) I (m = n)) (so < is reflexive).
Furthermore, (m < n) X (n < m)) ~(m =n),and =((m < n) X (n < m))
(so < is irreflexive). a

We can prove the following lemma by double induction.
LemMA 2.23.3. The relations =, < and < on N are decidable.

By Hedberg’s Theorem 2.20.15, we get an alternate proof that N is a
set.

We will now prove an important property of N, called the least number
principle for decidable, non-empty subsets of N. We give some more details
of the proof, since they illustrate an aspect of type theory that has not
been very prominent up to now, namely the close connection between
proving and computing.

CONSTRUCTION 2.23.4. Let P(n) be a proposition for all natural numbers n.
Define the type Pmin(n) expressing that n is the smallest natural number such

92Expanding the definitions, this
means that we can take the 0-
truncation ||Al|o of A:U to be the
U-small image of the (—1)-truncated
identity relation A — (A — Propy;).
Similarly, we can recursively con-
struct the (n + 1)-truncation
by taking the U-small image of
the n-truncated identity relation
A — (A — Lx.qisnType).

931f f is injective, then ap ¢ is an equiv-
alence by Lemma 2.17.8, so that
A/=y is essentially given by Re-
mark 2.22.17.

AN INTRODUCTION TO UNIVALENT MATHEMATICS

that P(n):
Pain(1) := P(n) x [(P(m) = n < m)
m:N

Then we seek a function

(223.1) min(P): [[(P(n) I =P(n)) > g P(n) =)_ Pmin(n),
n:N n:N n:N

computing a minimal witness for P from evidence that P is decidable and that a
witness exists.

Implementation of Construction 2.23.4. First note that Pmin(n) is a propo-
sition, and that all # such that Pnin(n1) are equal. Therefore the type
Y. :N Pmin(n) is also a proposition.

Given a function d(n) : P(n) L1 =P(n) deciding P(n) for each n:N, we
define a function up :N — N which, given input 7, searches fora k < n
such that P(k). If such a k exists, up returns the least such k, otherwise
pup(n) = n. This is a standard procedure that we will call bounded
search. The function up is defined by induction, setting pp(0) := 0 and
pp(succ(n)) = pp(n) if pp(n) < n. Otherwise, we set pp(succ(n)) := n if
P(n), and up(succ(n)) := succ(n) otherwise, using d(n) to decide, that is,
by induction on d(n): P(n) L1 =P(n). By design, up ‘remembers’ where
it has found the least k (if so). We are now done with the computational
part and the rest is a correctness proof.

By induction on # :N and d(n) : P(n) LI =P(n) we show

pp(n) <n and pp(n) <n — P(up(n)).

The base case where n := 0 is easy. For the induction step, review the
computation of up(succ(n)). If pp(succ(n)) = up(n) since up(n) < n,
then we are done by the induction hypothesis. Otherwise, either
pp(succ(n)) = n and P(n), or up(succ(n)) = succ(n). In both cases
we are done.

Also by induction on n:N and d(n): P(n) LT =P (n) we show

P(m) — up(n) < m, for all m in N.

The base case n = 0 holds since up(0) = 0. For the induction step,
assume P(m) — up(n) < m for all m (IH). Let m :N and assume P (m).
We have to prove pp(succ(n)) < m. If up(succ(n)) = pp(n) we are done
by IH. Otherwise we have up(n) = n and pp(succ(n)) = succ(n) and
=P(n). Then up(n) < m by IH, and n # m, so up(succ(n)) < m.

By contraposition we get from the previous result

pup(n) =n — —P(m), forall m < n.

Note that there may not be any # such that P(); the best we can do is

to prove
P(n) — Pmin(up(succ(n)))

by combining previous results. Assume P(n). Then up(succ(n)) < n <
succ(n), so that P(up(succ(n))). Moreover, P(m) — up(succ(n)) < m for
all m in N. Hence Ppin(pp(succ(n))).

Since), .n Pmin(n) is a proposition, we obtain the required function
by the induction principle for propositional truncation, Definition 2.16.1:

min(P): %(P(n) 11 -P(1n)) — H ZN P(n)H - ZN;‘ Pmin(n). O

55

AN INTRODUCTION TO UNIVALENT MATHEMATICS

ReEMARK 2.23.5. In the interest of readability, we do not always make
the use of witnesses of decidability in computations explicit. A typical

example is the case distinction on pip(11) < n in Construction 2.23.4 above.

This remark applies to all sets and decidable relations on them. We shall
immediately put this convention to good use in the proof of a form of
the so-called Pigeonhole Principle (PHP). a

LeEmMA 2.23.6. For all N:N and f:N — N such that f(n) < N for all
n < N +1, there exist m < n < N + 1 such that f(n) = f(m).

Proof. By induction on N. In the base case N = 0 there is nothing to
do. For the induction case N + 1, assume the lemma proved for N
(induction hypothesis, IH, for all f). Let f be such that f(n) < N + 1 for
alln < N +2. The idea of the proof is to search foran n < N +1 such that
P(n) := (f(n) = N), by computing pp(N + 1) as in Construction 2.23.4.
If up(N+1) = N +1, thatis, f(n) < N foralln < N + 1, then we are
done by IH. Assume up(N +1) < N +1,s0 f(up(N +1)) = N. If also
f(N +1) = N then we are done. If f(N + 1) < N, then we define g by
g(n) = f(N+1)if f(n) = N, and g(n) = f(n) otherwise. Then IH applies
to g, and we getm <n < N +1with g(n) = g(m). If f(n) = f(m) we are
of course done. Otherwise, f(n), f(m) cannot both be smaller than N, as
g(n) = g(m). In both remaining cases, f(n) = g(n) = g(m) = f(N +1)
and f(N +1) = g(n) = g(m) = f(m), we are done. O

We can now rule out the existence of equivalences between finite sets
of different size.

CoRrOLLARY 2.23.7. If m < n, then (Y,.n k < m) # (L.n k < n).

Another application of Construction 2.23.4 is a short proof of Euclidean
division.
LemMa 2.23.8. For all n, m : N with m > 0 there exist unique q,v :N such that
r<mandn=qm+r.

Proof. Define P(k) := (n < km). Since m > 0 we have P(n). Now set
k := up(n) as in Construction 2.23.4. If n = km and we set g := k and
r:=0. If n < km, then k > 0 and we set q := k — 1. By minimality we
have gm < n < km and hence n = qm + r for some r < m. o

2.24 The type of finite sets

Recall from Section 2.12.1 the types False, True and Bool containing zero,
one and two elements, respectively. We now define generally the type of
n elements for any 7 : N.

DEFINITION 2.24.1. For any type X define succ(X) := X LI True. Define
inductively the type family Fin(n), for each n :N, by setting Fin(0) := 0
and Fin(succ(n)) := succ(Fin(n)). The type Fin(n) is called the type with
n elements, and we denote its elements by 0,1, ..., n — 1 rather than by
the corresponding expressions using inl and inr.

We also define as abbreviation m := Fin(n) for a natural number 7, so
0 := Fin(0), 1 := Fin(1), 2 := Fin(2), etc. 4

EXERCISE 2.24.2.

(1) Denote in full the elements of 0, 1, and 2.

56

AN INTRODUCTION TO UNIVALENT MATHEMATICS 57

(2) Construct an equivalence in T = True and one in 2 = Bool.
(3) Construct equivalences inm = Y.y k < n forall n:N.
(4) Show that m = n if we are given an element of type m — mn. 4

DEFINITION 2.24.3. Given a type X, we define the proposition
isFinSet(X) = 3,,.n(X = n)

to express that X is a finite set.9* 4

LemMA 2.24.4. For all types X we have:

(1) L.~ X > nl| is a proposition;93

(2) L. .nIX = | if and only if isFinSet(X).
Proof.

(1) Assume (n,p),(m,q): Ly:nllX = ml|l. Then gop™':n=m, so
n = m by Exercise 2.24.2. By Lemma 2.10.3, Definition 2.7.3 and the
fact that the type of g is a proposition, it follows that (1, p) = (m, q).

(2) Functions in both directions are easily defined by using the recursion
principle of propositional truncation, see after Definition 2.16.1. O

DEFINITION 2.24.5. The groupoid of finite sets is defined by

FinSet :=) _ isFinSet(S).
S :Set

For n : N, the groupoid of sets of cardinality n is defined by

FinSet, =) _ |ln > S|.
S:Set
Lemma 2.24.4 yields a function # : FinSet — N such that #(S) is the
cardinality of the finite set 5.97 4

Observe that we have identifications in FinSety; — FinSet; = 1, and
in FinSet =), . FinSet, by Lemma 2.24.4. Also, FinSet is the image
of the map Fin :N — €U from Definition 2.24.1, and is hence essentially
U-small (for any universe U), by Principle 2.19.4, Item (P1) in Section 2.4,
and our assumption that U is the smallest universe.

Exercisk 2.24.6. Show that every finite set is a decidable set. 4

We have already seen several examples of 2-element sets: Bool, 2, 1111
that can easily be identified. Which one to use depends on the context
and is a matter of convenience. Later we will also use {+1}. In contrast
to these concrete examples, one cannot identify%® an arbitrary 2-element
set with any of these. The following exercise makes this precise, and
gives a useful and surprising case of a 2-element set that actually can be
identified with 2.

Exercisk 2.24.7. Show that T = T is a 2-element set for every 2-element
set T. Using univalence, show that = []r. pinset, (T = 2). In spite of the
above, give an element of [1. ginset, (T = T) = 2).

Finally, give an element of []1. pinger, (T = (2 = T)). 4

94When moving beyond sets, there

are two different ways in which a
type can be finite: an additive way
and a multiplicative way, but it would
take us too far afield to define these
notions here.

95In other words, an 7 : N such that

[IX = nl| is unique if it exists.

96Here it doesn’t matter whether we

take the sum over Set or over U,
since any finite set is a set. Hence
we also have FinSet, = Set(—
FinSet(y) = U(y)-

97#(S) = n is also phrased as: S is in the

same component in Set as m, or S has
cardinality n, or S is an n-element set.

98Any 2-element set is by definition

merely identified with 2, but the prob-
lem is that we cannot “name” the
elements, not even one of them. Hav-
ing a name for one of the elements
would be sufficient, since then the
“other” element is uniquely deter-
mined.

AN INTRODUCTION TO UNIVALENT MATHEMATICS 58

Exercisk 2.24.8. Recall the definition of lists of elements of a type X, X*,
from Definition 2.12.11. Construct an equivalence

lookup : X" —) (Finn — X)
n:N

that sends a list £ = x1x2 ... x, to the pair (1, x) of its length n and the
function x that maps an element i of Fin(n) to the element x; : X. 4

Using this, we get a generalization of Theorem 2.22.2:

COROLLARY 2.24.9. For any n > 0, if X is an n-type, then so is X*.99
Proof. Combine Lemma 2.15.5 with the fact that N is a set. O

ReEMARK 2.24.10. A subset of a finite set is not necessarily finite itself:
Let p be a proposition. Then p is also a set. If p is a finite set, then

we have #(p): N, and we can prove that p holds if and only if #(p) = 1.
Since equality in N is decidable, this would mean that we can decide p.

Conversely we have that p is a finite set if p is decidable: If p LI -p, then
p = Tin case p and p = 0 in case —p.

It now follows from Exercise 2.24.12 below that every decidable
predicate on a finite set S defines a finite subset of S. 4

Exercise 2.24.11. Let X be a finite set and P: X — Prop a decidable
predicate. Show that 3,.x P(x) and [],.x P(x) are decidable. Hint:
since the goals are propositions, you may assume an identification of X
with a standard n-element set. Use induction on #, being careful about
the induction hypothesis. 4
ExEercisE 2.24.12. Let X be a finite set and F : X — FinSet a family of finite
sets. Show that the sum type), .x F(x) is a finite set.

Let Y be a finite set and assume we have an equivalence e(x) : F(x) = Y
for every x : X. Then show that #(}_, . x F(x)) = #(X) X #(Y).

Foranymap f : X — N, define the arithmetical sum (3_,.x f(x)):N. .
ExEercisk 2.24.13. Let X be a finite set and R: X — X — Prop a decidable
equivalence relation. Show that the quotient X/R is a finite set. a

2.25 Type families and maps

There is a natural equivalence between maps into a type A and type
families parametrized by A. The key idea is that the fibers of a map form
a type family. We will elaborate this idea and some variations.

Lemma 2.25.1. Let A:U and B:A — U. Recall the projection function
fst : (Y,.4 B(a)) = A. The function e, : B(a) — fst™(a) defined by e, (b) =
((a, b), refl,) is an equivalence, for all a : A.

Proof. Note that fst(x,b) = x and that 2 = x does not depend on

b. Hence fst (1) > Y. 4(B(x) X (¢ = x)) via rearranging brackets.

Applying Corollary 2.9.11 leads indeed to the equivalence e,.]

Lemma 2.25.2. Let A,B:U and f:A — B. Then e: (L,.p f (b)) — A
defined by e(b, a, p) = a is an equivalence.

Proof. The function e is the composite of three equivalences

(Z Y0 f(a))) EN (X/% g(b LN f(a))) LN (Z;‘ True) 24,

b:Ba:A

9We need n > 0, since for a con-
tractible (—2-type) X we get an equiv-
alence X* = N by Exercise 2.12.12,
and N is not contractible.

AN INTRODUCTION TO UNIVALENT MATHEMATICS 59

where the first one interchanges the first two arguments, the second one
contracts away the inner sumtype (using Lemma 2.9.2), and the third
one is fst (using Exercise 2.9.20). |

If f in Lemma 2.25.2 is an injection, then (Y. 5 f ~}(b), fst) corresponds
to a subtype of B, and hence A is a n-type if B is a n-type by Corol-
lary 2.20.12.

LemMA 2.25.3. Let A: U be a type.**® Then

preim : Z(B —A) - (A-U)
B:U
given by preim(B, f)(a) := f~1(a) is an equivalence. The inverse equivalence
is given by sending C: A — U to (L ;.4 C(a), fst).

Proof. We apply Construction 2.9.9, and verify the two conditions. Let
C:A — U. We have to identify C with preim(}_,., C(a), fst). As
preim(}_,. 4 C(a), fst)(a) = fst™(a), it suffices by function extensionality
to identify the latter fiber with C(a), for all a: A. This follows directly
from Lemma 2.25.1 and the univalence axiom.

Let f : B — A. We have to identify (Y,. 4 f *(a), fst) with (B, f). Using
the univalence axiom, we get an identification &: },., f1(a) = B,
where ¢ is the equivalence from Lemma 2.25.2. Using Lemma 2.10.3, it
remains to give an element of the type fst % f.

As an auxiliary step we note that forany p: X = Y and g: X — A,
h:Y — A, the type g % h of paths over p can be identified with the
type ¢ = h o p, since the two types are equal by definition for p = reflx.
Applying this here means that we must give an identification of fst with
f oé. Hence it suffices to identify fst and f o e, which follows by function
extensionality from the definition of ¢ in Lemma 2.25.2. O

The above result can be generalized to situations with more properties
and/or structure. Examples are to be found in Construction 2.25.6 below.
We prepare by the following exercises.

Exercisk 2.25.4. Let X and Y be types, p:Y = X an identification, and
T:X — U a type family. Construct an equivalence of type }_,.x T(x) =
Yy T(E). 4
Exercise 2.25.5. Let S:U — U and let X be a type. Construct an
equivalence of type (X — Yy.¢; S(Y)) = Yr.x—a [Lr: x S(F(x)). 4
ConsTtrUCTION 2.25.6. Let A be a type and S:U — U. Then we have
equivalences of the following types:

(1) (A— Lp.q S(B) = Lp.uu Ly:p—alla:a S(F1(a)).
(2) (A — Propy) = Y. Lf:—alla:a isProp(f~*(a));
(3) (A — Sety) = Yp.u Ls:p—alla:aisSet(f ' (a));

(4) (A—>U) > Lp.q Lfipoallea f (@)

Implementation of Construction 2.25.6. (1) In view of Exercise 2.25.5, and
rearranging sums on the right, it suffices to construct an equivalence of
type (Cr. a—a [1a:a S(F(2)) = Y,f): yy.0(B—ay [1a:a S(f1(a)). Now
we can apply the equivalence constructed in Exercise 2.25.4 with p the

109Note that we need A to be in the
same universe as the one we're tak-
ing type families in.

AN INTRODUCTION TO UNIVALENT MATHEMATICS

path induced by the equivalence preim from Lemma 2.25.3. Indeed, for
T(F) = [Ty, S(F(a)) we have T(preim(B, f) = [T, 4 S(f ™ (a)).

For (2), use (1) with S := isProp.

For (3), use (1) with S := isSet.

For (4), use (1) with S := idq;. O

Since Prop is a set, by Lemma 2.20.7, we obtain the following corollary
of Construction 2.25.6(2).

COROLLARY 2.25.7. Subtypes as in Definition 2.20.9 correspond to predicates
by taking fibers, and Inj(T) is a set, for any type T.

Exercisk 2.25.8. For any pair of nested universes U : U’, let S: U’ — U’
be the predicate that determines the essentially ?-small U’-types,

S(A)=Y ASX,
X:Uu

as in Definition 2.19.1. Show that projection to the U-type defines
an equivalence of type (¥.¢ S(A)) = U, and whence construct an
equivalence of type

A—-w= 3), [[s¢),
B:U' f:B—Aa:A
between families of U/-small types parametrized by A and maps to A in
U’ with essentially U-small fibers, for any A:U". 4

2.26 Higher truncations

We've seen the propositional truncation in Section 2.16 and the set
truncation in Section 2.22. As mentioned in Remark 2.22.17, it’s possible
to define the latter in terms of the former by considering the propositional
truncation of the identity types of a type A. In this section we want
to generalize this to higher truncation levels and show how we can
inductively define all the n-truncation operations using propositional
truncation combined with the replacement principle, Principle 2.19.4,
which is used to stay within a given universe.

ConsTRUCTION 2.26.1. For any integer n > —1 we have an n-truncation
operation ||_||, : U — U, along with unit maps |_|, : A — || All, satisfying
the following universal property.

For any n-type B, precomposition with |_|, induces an equivalence:

(||A||n — B) = (A — B).

Implementation of Construction 2.26.1. We proceed by induction. For
n = —1, we have this from the higher inductive type definition, Defini-
tion 2.16.1, with element constructor |_|: A — || A]|.

To go from n to n + 1, we fix a type A : U and consider the n-truncated
identity type family

I,:A— (A - Z isnType(X)), x = (y = llx = ylla).
X:U

Let ||All,+1 = im(I,) be the image of I,, Definition 2.17.11, and let
|_ln+1:A — ||Alln+1 be the map from the domain of I, to its image,
x = (In(x), |(x, refly, ())|) with I,,(x) = [|[x = _||, as defined above.

60

AN INTRODUCTION TO UNIVALENT MATHEMATICS 61

Since the type of n-types is an (n + 1)-type, || Al x+1 is an (n + 1)-type
by Lemma 2.15.5. We also note that the map

(2.26.1) lx = ylln = (xlws1 = [Ylua),

induced by the universal property of n-truncation, is an equivalence.

Indeed, the right-hand side is equivalent to

[T =zl = lly = zlla),

z:A

and we get an inverse by going backwards along this equivalence at
|refly |y :|ly = ylln-

To prove the universal property, let Bbe any (1 +1)-typeand g: A — B
any map.

It suffices to show that for any z: || A|| ,+1, there is a contractible type

of extensions }_,. 3((_ = ¥) = -1 (2)—p (§ © fst)), visualized by

n+1

|11 (2)
l &oﬁ?t
T -—-= > B,

since then there’s a contractible type of extensions of g to all of || Al| ,+1.

Since this is a proposition and |_| ,+1 is surjective, it suffices to prove this
for z of the form |x|,4+1 with x : A. We need to show that the type

ITE TT(xler = 1xw1) = (v S g(x))

x:Ay:Bx':A

is contractible. By the equivalence above, we can rewrite this, first as

[T TTUx =l — (v > gx)),

x:Ay:Bx':A

and then, since y = g(x’) is an n-type, as

ITY T (x5 x)—> (v > gx).

x:Ay:Bx':A

Now we can contract away x” and the identification x = x’, so we're left

with
[TYLw> &),
x:Ay:B

which is indeed contractible.

Finally, we need to re-size || A|| 41 to fit in the universe U that A came
from. By (2.26.1), its identity types are essentially U-small by induction
hypothesis, so again since |_|,+1 is a surjection from the U-small type
A, the replacement principle, Principle 2.19.4, implies that || A|| .41 is
essentially U/-small.]

This construction is due to Rijke***

book'°2,

, see also the presentation in his

01 Rijke, The join construction.

192Egbert Rijke. Introduction to Homo-

topy Type Theory. Forthcoming book
with CUP. Version from 06/02/22.
2022.

The precise formalization of the
intuitive notions of “stuff”, “struc-
ture”, and “properties” was worked
out in terms of category theory in
UseNet discussions between John
Baez, Toby Bartels, and James Dolan
on sci.physics.researchin 1998.
It was clear that the simplest de-
scription was in terms of homotopy
types, and hence it’s even simpler
in type theory. See also Baez and
Shulman'©3 for further discussion.

193John C. Baez and Michael Shulman.

“Lectures on n-categories and coho-
mology”. In: Towards higher categories.
Vol. 152. IMA Vol. Math. Appl.
Springer, New York, 2010, pp. 1-68.
por: 10.1007/978-1-4419-1524-
5_1. arXiv: math/0608420.

https://doi.org/10.1007/978-1-4419-1524-5_1
https://doi.org/10.1007/978-1-4419-1524-5_1
https://arxiv.org/abs/math/0608420

AN INTRODUCTION TO UNIVALENT MATHEMATICS

2.27 Higher structure: stuff, structure, and properties

Recall from Lemma 2.25.2 that any map f : B — A can be described as
“projecting away” its fibers, by using the equivalence e:

B————— Y,.af ')
(2.27.1) \ /

We say that f forgets these fibers. If A and B are groupoids, these
fibers are themselves groupoids, but it can happen that they are sets,
propositions, or even contractible. Accordingly, we say that:

e f forgets at most structure if all the fibers are sets;
e f forgets at most properties if all the fibers are propositions;
* f forgets nothing if all the fibers are contractible.

Here, the structure and properties in question are on a or of a, respectively,
as captured by the fibers at 4, for each a: A. Of course, a map forgets
properties if and only if it’s an injection, and it forgets nothing if and
only if it’s an equivalence.

Going in the other direction, we say that:

® f forgets at most n-structure if all the fibers are n-truncated. If n > 1,

this is therefore a kind of higher structure.*** 1%4We're updating the terminology

62

slightly: In the above references, n-
Thus, an element of a groupoid is 1-structure (this is sometimes infor- structure is referred to as n-stuff, but

mally called stuff), while an element of a set is a structure, or O-structure,

while an proof of a proposition is a property, or (—1)-structure. n-stuff into n-structure.
Looking at (2.27.1) another way, we see that to give an element b of

B lying over a given element a : A amounts to specifying an element of

f~Y(a), so we say that the elements of B are elements of A with extra

n-structure, if the fibers f~!(a) are n-truncated.
Refining the usual image and image factorization from Definition 2.17.11

and Exercise 2.17.12, using Lemma 2.25.2, we can factor f:B — A

through first its 0-image and then its usual (—1)-image as follows:'%5 195Using the general n-truncation
from Section 2.26, we can define
= -1 -1 -1 the n-image in a similar way and
B= HX;‘f (@) > HZ;‘Hf (@)llo — aZA“f @l — A prove that the n-image factoriza-

tion is unique. See Section 3.9 for
the details. Since the unit type 1
is the unique (=2)-type, we have

Here, the first map forgets pure higher structure, the second map forgets pure
structure, while the last forgets at most properties (this is the inclusion |X||_—2 = 1 for any type X.
of the usual image). Of course, each of these maps may happen to

forget nothing at all. Saying that the second map forgets pure structure

indicates that not only are the fibers sets, they are nonempty sets, so the

structure in question exists, at least. Note also that the fibers of the first

map are connected, which indicates that what is forgotten at this step, if

anything, is pure higher structure.

ExampLE 2.27.1. Let us look at some examples:

e The first projection fst : FinSet X FinSet — FinSet forgets 1-structure
(stuff), namely the second set in the pair.

nowadays the term higher structure is
more common, so we have renamed

AN INTRODUCTION TO UNIVALENT MATHEMATICS

e The first projection fst : }_4.pinset A — FinSet from the type of pointed
finite sets to the type of finite sets forgets structure, namely the
structure of a chosen point.

¢ The inclusion of the type of sets with cardinality #, FinSet,, into the
type of all finite sets, FinSet, forgets properties, namely the property
“having cardinality n”. 4

Exercisk 2.27.2. Analyze more examples of maps between groupoids in
terms of “what is forgotten”. 4

Exercisk 2.27.3. Let |_|":|| f~(a)|lo — || f~!(a)|| be the map defined by the
induction principle in Definition 2.22.4 from |_| : f~1(a) — || f~}(a)||. In
the refined image factorization above, the map for the second arrow maps
any pair (a, x) with x : || f "1(a)||o to the pair (a,|x|"). Forany p: || f 1(a)l|,
give an equivalence from the fiber of the latter map at (a, p) to || f~1(a)|o-
What is forgotten by this map, and what is remembered? 4

63

3
The universal symmetry: the circle

An effective principle in mathematics is that when you want to study a
certain phenomenon you should search for a single type that captures
this phenomenon. Here are two examples:*

(1) The contractible type 1 has the property that given any type A a
function 1 — A provides exactly the same information as picking an
element in A. For, an equivalence from A to 1T — A is provided by
the function a — (x +— a), see Exercise 2.9.19.

(2) The type Prop of propositions has the property that given any type
A a function A — Prop provides exactly the same information as
picking a subtype of A, see Definition 2.20.3 and Lemma 2.20.10.

We are interested in symmetries, and so we should search for a type X
which is so that given any type A the type of functions X — A (or A — X,
but that’s not what we’re going to do) picks out exactly the symmetries
in A. We will soon see that there is such a type: the circle* which is
built exactly so that this “universality with respect to symmetries” holds.
It may be surprising to see how little it takes to define it; especially in
hindsight when we eventually discover some of the many uses of the
circle.

A symmetry in A is an identification p : a = g for some a: A. Now,
we can take any iteration of p (composing p with itself a number of
times), and we can consider the inverse p~! and its iterations. So, by
giving one symmetry we give at the same time a lot of symmetries.
For a particular p:a = a it may be that some of the iterations can be
identified (in their type @ = a). For instance, it may be that there is
an identification of type p?> = p° (as in Exercise 2.13.3). Even more
dramatically: if there is an identification of type p = refl,, then all the
iterations of p can be identified with each other. However, in general
we must be prepared that all the iterations p, of p (for n positive, 0 and
negative) are distinct. Hence, the circle must have a distinct symmetry
for every integer. We would have enjoyed defining the integers this way,
but being that ideological would be somewhat inefficient. Hence we
give a more hands-on approach and define the circle and the integers
separately. Thereafter we prove that the type of symmetries in the circle
is equivalent to the set of integers.

3.1 The circle and its universal property

Propositional truncation from Section 2.16 was the first higher inductive
type, that is, an inductive type with constructors both for elements and for

64

*Notice that these have arrows point-
ing in different directions: In (1)
we're mapping out of 1, while in (2)
we're mapping in to Prop.

2We call this type the “circle” be-
cause it has many properties which
are analogues, in our context, of
properties of the topological cir-
ce{(x,y) € RZ|x% + yz =1}
See Section B.3 for a discussion of
the relationship between topolog-
ical spaces and types. In the later
chapters on geometry we'll return to
“real” geometrical circles.

THE UNIVERSAL SYMMETRY. THE CIRCLE 65

identifications, we introduced. The circle is another example of a higher
inductive type, see Chapter 6 of the HoI'T book3 for more information.

DeriNtTiON 3.1.1. The circle is a type S! : U with an element (constructor)
«:S! and an identification (constructor) () : »+ = . For convenience and
clarity the (higher) induction principle for S! is explained by first stating
a recursion principle for S!.

Let A be a type. In order to define a function f :S! — A, it suffices to
give an element a of A together with an identification of type a = a.
The function f defined by this data satisfies f(+) = a4 and the recursion
principle provides an identification of type ap () = .

Let A(x) be a family of types parametrized by the variable x :S'. The
induction principle of S states that, in order to define a family of elements
of A(x) parametrized by the variable x : S!, it suffices to give an element
a of A(+) together with an identification / of type a % a, see Figure 3.1.

The function f : [],.q1 A(x) defined by this data satisfies f(¢) = a and the
induction principle provides an identification of type apd I(U) =1 4

Giving a as above is referred to as ‘the base case’, and giving I as ‘the
loop case’. Given this input data to define a function f will often be
abbreviated by writing f(¢) := a and f(O) := I. Notice the use of :=
in the second definition, instead of :=. That signifies that f(Q) and !
are not equal by definition, but rather, that an identification is given
between them, i.e., an element of type f(() = [is given, or an element
of apd;(O) = [is given, in the dependent case.

The following result states that any function from the circle exactly
picks out an element and a symmetry of that element. This is a “universal
property” of the circle.

THEOREM 3.1.2. For all types A, the evaluation function

evy (S - A)— Z(a > a) defined by eva(g) = (g(°), g(O))
a:A
is an equivalence, with inverse ve, defined by the recursion principle of the
circle.

Proof. Fix A:U. We apply Construction 2.9.9. Foralla:Aand [:a = a
we may construct an identification of type ev(ve(a,)) = (a,1) by the
recursion principle. It remains to construct identifications of type
ve(ev(f)) = f for all f:S! — A. Such constructions are provided by
the following more general result. Given f,g:S! — A, p: f(*) 5 g(*),
and q: f(O) = p~t- g(Q) - p, we construct an identification of type
f = g, as follows. It suffices, by function extensionality, to construct
an element of type P(x) := (f(x) = g(x)) for a variable x:S'. This
we do by circle induction. For the base case we take p. The loop
case reduces to constructing an identification of type trpg (p) = p, by
Definition 2.7.3. By Construction 2.14.3 we have an identification of type
trpfi(p) = g(O) - p - f(O)™". Using g we construct an identification of
type ¢(O) = p - f(O) - p~'. Hence we may construct an identification
of type trp?,(p) = p, by an easy calculation. Now apply Lemma 2.10.3,
and we have constructed a function of type (ev(f) = ev(g)) — (f = g).

Now we get an identification of type ve(ev(f)) = f, for we have an
identification of type ev(ve(ev(f))) = (f(¢), f(O)), and (f(*), f(O)) =
ev(f), with p := refl¢(.) and g coming from the induction principle. O

3Univalent Foundations Program,
Homotopy Type Theory: Univalent
Foundations of Mathematics.

A(') ZX:S1 A(x)

fst

Sl

DL

Ficure 3.1: The induction principle of
st

THE UNIVERSAL SYMMETRY: THE CIRCLE 66

CoroLLARY 3.1.3. For any a : A, the function

evi (81, 9) =+ (A,)) = (a 5 a)
sending (g,p) top~' - ¢(Q) - p is an equivalence.
Proof.# Consider the following diagram (see Remark 2.15.10):

g (g(+),g refly(.))

(Sl - A) Za tA ((Sl/ .) s (A/ IZ))

evy (/Ot(equ)

ZH :A(a = ﬂ),

where the top map is an equivalence by Corollary 2.9.11, and the left map
is an equivalence by Theorem 3.1.2. This diagram represents the identity
typeeva = (g (g(*), reflg(l.) - 8(O) - refly(.))). Anidentification of this
type is provided by function extensionality and Exercise 2.5.3. The result
now follows from Lemma 2.9.17. O

ReEMARK 3.1.4. By almost the same argument as for Theorem 3.1.2 one
can obtain the dependent universal property of the circle. Given a type
family A:S! — U, the dependent evaluation function, which also maps
g to (g(+), g(V)) but has type ([T,.s1 A(x)) = X, a()(a —:;_) a), is an
equivalence. (Compare the latter type to the type of ev4 in Theorem 3.1.2
and see Figure 3.1.) a

REMARK 3.1.5. A function f :S! — A is often called a loop in A, the picture
being that f throws O :+ = ¢ as a lasso in the type A.

Using the equivalence in Corollary 3.1.3 and univalence, 4 — a is
identified with the pointed functions from the circle, which allows for a
very graphic interpretation of the symmetries of 2 in A: they are traced
out by a function f from the circle and can be seen as loops in the type
A starting and ending at a!° 4

Lemma 3.1.6. The circle is connected.

Proof. We show ||+ = z|| for all z:S! by circle induction as in Defini-
tion 3.1.1. For the base case we take |refl.|: ||+ = *||. The loop case is
immediate as ||+ = °|| is a proposition. O

In the proof above, the propositional truncation coming from the
definition of connectedness is essential. If this truncation were removed
we wouldn’t know what to do in the induction step (actually, having an
element of type [],.q1(* = z) contradicts the univalence axiom). This
said, the family R:S! — U with R(z) := (+ © z) is extremely important
for other purposes. In Example 3.3.9, we will call R the “universal set
bundle” of the circle, and it is the key tool in proving that the type of
symmetries in the circle is a set that can be identified with the set of
integers. Recall that we use the phrase “symmetries in the circle” to refer
to the elements of « = +,° whereas we use the phrase “symmetries of the
circle” to refer to the elements of S! S¢; S!. The latter type is equivalent
to S! 11 S!, as follows from Exercise 3.4.11 and Exercise 3.4.12.

In order to proceed, we should properly define the set of integers and
explore the concept of set bundles.

4This can also be done directly: The
inverse to evf sends [:a = ato
(vea(a,l),refly). Try to verify this!

5This is of course how we have been
picturing loops the whole time.

®Here we are using “the circle” to
mean the pointed type (S!, *). But it
also turns out that the type ® = ¢ is
equivalent to the type x = x, for any
x:Sh

THE UNIVERSAL SYMMETRY. THE CIRCLE

3.2 The integers

We define the type of integers in one of the many possible ways.”

DerIniTION 3.2.1. Let Z be the higher inductive type with the following
three constructors:

(1) t4+:N — Z for the nonnegative numbers, 0,1, . ..

(2) 1-:N7 — Z for the nonpositive numbers, -0, -1, ...
(3) zeq: 1-(~0) = 1+(0).

Because we used the copy N~ for the nonpositive numbers from Exam-
ple 2.12.9, we can leave out the constructor symbols (. when the type
is clear from context. Thus we have ...,-2,-1,-0,0,1,2,...:Z and
zeq: —0=70.

The type Z comes with an induction principle: Let T(z) be a family of
types parametrized by z : Z. In order to construct an element f(z) of T(z)
for all z: Z, it suffices to give functions g and h such that g(n): T(1,(n))
and h(n):T(1—(m)) for all n:N, m : N7, together with q: h(-0) :Zq> £(0).

Here ¢ and & can be defined by induction on 7 :N, m :N~.8

The resulting function f: [],.7 T(z) satisfies f(n) = g(n) and f(-n) =
h(—n) for n : N, and there is an (unnamed) element of apd f(zeq) =q. 4

Like the type N, the type Z is a set with decidable equality and ordering
relations.

One well known self-equivalence is negation, —:Z — Z, inductively
defined by setting —t,(n) = (—(—n), —_(m) = 1,(-m), ap_(zeq) =
zeq 1.9 Negation is its own inverse.

The successor function's : Z — Zis likewise defined inductively, setting
s(n) := succ(n), s(=0) := 1, s(—succ(n)) := —n, and ap (zeq) := refl;.

The successor function s is an equivalence. It is instructive to depict
iterating s in both directions as a doubly infinite sequence containing all
integers:

The inverse s™! of s is called the predecessor function. We recall the
n-fold iteration s" defined earlier; the n-fold iteration of s~ will be
denoted by s™". Since s” = id = 57, this defines the iteration s? for all
z:2.*°

Addition of integers is now defined by iteration: z + y := s¥(z). This
extends + on the t,-image of N, see Exercise 3.2.2. From addition and
—:Z — Z one can define a subtraction function setting z — y = z + (—y).
Since addition and subtraction are mutually inverse, the function w
z + w is an equivalence, and we may iterate it to define multiplication:
zy = (w — z +w)¥(0).

Exgrcise 3.2.2. Show that (.(n + m) = 1.(n) + t:(m) and t(nm) =
ty(n)t (m) forall n, m:N. a

The ordering relations < and < on Z are easily defined and shown to

extend those on N.

67

7Here are some of these alternatives:

* As the copy of N where 2 means
n and 2n + 1 means —n — 1, for
n:N.

e Asthe sum N II N, where inl,,
means —n — 1 and inr,, means n.

e Asthesum NIITIIN, where from
the left copy of N we get —n — 1,
from the center 0: T we get 0, and
from the right copy of N we get
n+1,forn:N.

® As the quotient of N X N under
the equivalence relation (1, m) ~
(n’,m’) defined by n +m’ =n’+m,
where (11, m) represents n — m.

® As the subset of N X N consisting
of those (n, m)withn =0vm =0
(picking canonical representa-
tives for the above equivalence
relation).

e Astheloops * = e in the circle.

80f course, giving 1 is the same as

giving h': [T,.n T(—n).

9Here we included the constructor

symbols for clarity, but the defini-
tion allows us to use the negation
symbol unadorned, because the fol-
lowing diagram is commutative by
definition:

_
%

*_ l

L+

N——2Z

I

°In the same way, we can define the

iteration f*: X — X for any equiva-
lence f: X — X.

THE UNIVERSAL SYMMETRY: THE CIRCLE 68

Recall the induction principle for Z in Definition 3.2.1 above. Instead
of defining ¢ and h explicitly, we will often give f(0) directly, and define
g’ and K’ such that ¢’(z):T(z) — T(z + 1) for all z: Z with z > 0, and
h'(z):T(z) = T(z — 1) for all z:Z with z < 0. The function f thus
defined satisfies f(-0) = f(0), f(z +1) = g'(z, f(z)) for all z > 0, and
f(z=1)=h'(z, f(z)) forallz < 0.

ExERrcisk 3.2.3. Show that x + y =y + xand xy = yx forall x,y:Z. .

3.3 Set bundles

As mentioned earlier, it is possible to define the integers as the type
+ = + of symmetries in the circle. Our investigation of + = + will use
the concept of set bundles. Since we are going to return to this concept
several times, we take the time for a fuller treatment before we continue
with proving the equivalence of « = « and Z.

DEFINITION 3.3.1. A set bundle over a type B is amap f:A — B such that
for each b : B the preimage (fiber) f~1(b) is a set. We say that a set bundle
f:A— BoverBis

e connected if A is connected,
* finite if all preimages are finite sets,
e decidable if all preimages are decidable sets.

If A and B are pointed types, a pointed set bundle is a pointed map
f:A —. B such that, when forgetting the points, f.: A. — B. is a set
bundle. Here it suffices that A is a pointed type.™*

We do not require the preimages of f. to be pointed types. 4

With a formula, given a type B, the type of set bundles over B is

SetBundle(B) = Y_ Y TTisSet(f (b)),

A:Uf:A->Bb:B

with variations according to the flavor.

Recall the equivalence in Construction 2.25.6(3) between the type
B — Set of families of sets parametrized by elements of B, and the
type of set bundles over B given above. We shall frequently use this
equivalence, even without explicit mention.

LemMa 3.3.2. For any type B, SetBundle(B) is a groupoid.

Proof. By Lemma 2.22.1 we have that Set is a groupoid, and hence
B — Set is a groupoid by Lemma 2.15.5(1). O

Moreover, by Corollary 2.20.12, all variations of set bundles in Defini-
tion 3.3.1 defined by a predicate are groupoids as well. This does not
apply pointed set bundles: a point is extra structure, not just a property.

We should notice that the notion of a set bundle is just one step up
from the notion of an injection (a map such that all the preimages are
propositions — following the logic, injections perhaps ought to be called
“proposition bundles”). The formulation we give is not the only one and
for some purposes a formulation based on B — Set is more convenient.

Exercisk 3.3.3. Let A, B and C be types. Show:

"' Given a pointed type (4, a), a
typeBandamap f:A — B,
(f, reflpia)): (A, @) —. (B, (@) is
a pointed map. Indeed, the forgetful
map (Lp.5((A,a) =« (B,b))) —
(A — B) is an equivalence by Corol-
lary 2.9.11.

THE UNIVERSAL SYMMETRY. THE CIRCLE 69

(1) The (unique) map of type A — 1 is a set bundle iff A is a set;

(2) Forany b:B, themap x — b from 1 to Bisasetbundleiff b = bisa
set;

(3) If f:A — Band g:B — C are set bundles, then g f is a set bundle.

(4) If frtA—> Band ¢g:B — C, and g and gf are set bundles, then f
is a set bundle. Hint: apply Corollary 2.17.9 to ap, : (b= f(a) —
(8(b) = g(f(a)).

(5) If Ais connected, a = 4 a is connected for some a : A, B is a groupoid,
and f:A — B is a set bundle, then A is contractible. Hint: use
Corollary 2.17.9 and Exercise 2.16.10.

(6) If f: A — Bisasetbundle and B is an n-type with n > 0, then A is
also an n-type. a

Figure 3.2 visualizes two examples of set bundles over the circle.
Consider the picture on the left first. If we let b be the element on the
circle marked at the bottom left hand side, then the preimage f~1(b)
is marked by the the two dots in A straight above b, so that in this
case each preimage contains two points (i.e., each preimage can be
merely identified with Bool). However, A is not the constant family,
like A’ depicted on the right, since we have a string of identifications
A’ =Y, .qBool S (S! X Bool) = (S +S'), and the latter type is not
connected. Obviously something way more fascinating is going on.

A D sh+s
>

ExERcIsE 3.3.4. In this exercise you are asked to elaborate the difference
between A and A’ above. Let gyl := (z — Bool):S! — Set.

(1) This part is about A’. Show that) _,.q1 Bool is not connected. Give
an element of the type cpool = Veset(Bool, reflgyor).

(2) One can define A by A :=), .41 Veset(Bool, swap). Show that A is
connected. Give an element of type (cBool = Veset(Bool, swap)) —
False. Hint: use Exercise 2.13.3 and Theorem 3.1.2. a

ReMARK 3.3.5. It is possible to misunderstand what a “connected set bun-
dle” is: the other interpretation “all the preimages are connected” would
simply give us an equivalence (since connected sets are contractible),
and this is not what is intended. (Equivalences are set bundles, but not
necessarily connected set bundles and connected set bundles are not
necessarily equivalences.)

Likewise for the other qualifications; for instance, in a “finite set
bundle” f: A — B, all fibers are finite sets, but the type A is usually not
a finite set.

FiGURrE 3.2: A visualization of two set
bundles over the circle

THE UNIVERSAL SYMMETRY. THE CIRCLE 70

We trust the reader to keep our definitions in mind and not the other
interpretations. 4

RemMARK 13.3.6. Set bundles are closely related to a concept from topology
called “covering spaces” (or any variant of this concept, including Galois
theory) and from algebra as locally constant sheaves (of sets). Either
way, the concept is useful because it singles out the (sub)symmetries.

In this chapter, we focus on set bundles over the circle. We start by
refining the notion of diagram introduced in Remark 2.15.10.

RemARK 3.3.7. Consider the left diagram below, where i1, i, are injections
constituting S as a subtype of X and T as a subtype of Y, respectively, in
the sense of Definition 2.20.9."* This diagram represents the identity type
f oi1 = i 0 g. Since i is an injection, the type } o.s_,7(f 011 = i20g)
is a proposition,'3 which may or may not be true. So, when is it true?

X L Y X L> Y
i1]iz fst]]fst
s—2.T Xp AN Yo

In the right diagram we depict the case in which § is given by a predicate
P:X — Prop and T by a predicate Q:Y — Prop, with the injections
being first projections. We can now apply the universal property of
subtypes Exercise 2.20.8 to Yo with (f o fst): Xp — Y and get that the
three propositions [.x, Q(f(fst(z))) and [,.x(P(x) — Q(f(x))) and
Yo xp—1o (f ofst = fstog) are logically equivalent. If these propositions
hold, we say that f respects the subtypes and we may call the diagram a
subtype diagram.

If g is a proof of [I,.. x (P(x) — Q(f(x))), then we can uniquely define
the function g : Xp — Yg, the one labelling the dashed arrow in the right
diagram above, by (x,p) — (f(x), q(x,p)). The functions f o fst and
fstog are identified by reflexivity. We may call g the function induced by
f on subtypes, and will also denote it by f.

Now consider the special case in which f: X — Y is an equivalence.

If the inverse of f also respects the subtypes, that is, if [,.y(Q(y) —
P(f~!(y))), then the function that is induced by f on the subtypes is also
an equivalence. Moreover, the functions induced by f and f~! are then
each other’s inverses. 4

THEOREM 3.3.8. In the diagram below, the equivalence f in the second row
is preim from Lemma 2.25.3, and the equivalence g in the same row is
defined by g(S) = (S(-),trpisczi‘))) (Theorem 3.1.2 applied with A = U, and
Definition 2.13.1). Along the vertical arrows we have maps that forget the
property that constitutes its domain as a subtype of the codomain, all modest
variations of the first projection.

The statement of the theorem is now that the diagram below is the composite
of subtype diagrams (see Remark 3.3.7) in which the induced functions f and

g in the third row are equivalences as well.

*2To stress that a function is an injec-
tion we may decorate the — in its
type with a hook: <.

3Consider i (f(i1(s))) for all s : S,
and then use Exercise 2.9.24.

THE UNIVERSAL SYMMETRY. THE CIRCLE

Yx:u(X — X)

f J

(Casu(d = 8Y)) —— (S! = U) —— Ty.u(X S X)

]] J

SetBundle(S") % (S' — Set) — LxisaX = X)

Proof. We prove first that preim respects the subtypes. Let A:U and
h:S! — A such that (A, h) is a set bundle. This means that #7'(a) is a
set, for any a : A. Since preim(A, h)(a) = h~!(a), we immediately get that
preim(A, 1) :S! — Set. In order to prove that preim ™ also respects the
subtypes one simply reverses this argument.

Next we prove that g respects the subtypes. Let S:S! — U be such
that S(z) is a set for all z:S!'. This means in particular that S(¢) is a set.
Since g(S) = (S(+), trps(u)), we are done. In order to prove that ¢~! also
respects the subtypes we reason as follows. Let X:U and h: X = X
be given. Assume that X is a set. We have g‘l(X ,h) = veq(X, hh), see
Theorem 3.1.2 and Principle 2.13.2. Now, since X = veq; (X, h)(*) is a set
and S! is connected, we have g‘l(X ,h):S! — Set and we are done.

Note that the left subtype diagram is fully general: it also holds when
we replace S! by any type B. This is not true for the right subtype
diagram. O

In slogan form: A set bundle over the circle is a set with a permutation
of its elements. The fiber over «:S! gives the set, and transporting along
O gives the permutation.

ExamPLE 3.3.9. A simple yet important example of a set bundle over a
groupoid B with an element by is given by the family of identity types
Py, (b) = (bg = b) parameterized by b:B. These identity types are
indeed sets since B is a groupoid. The alternative form of this (pointed)
set bundle is the map fst : }_;,.5(bo = b) — B, the domain canonically
pointed at (bg, refly,), and with refl;, as the pointing path of fst.

In the above example, the reader may have noticed that, by Lemma 2.9.2,
Y».5(bo = D) is contractible. Hence yet another form of this set bundle
is the constant map csty, : 1 — B, also with pointing path refl,,. What is
special about these examples is captured by the following definition and
ensuing lemma. 4

DEerINITION 3.3.10. Let A and B be pointed types and f : A —. B a pointed
set bundle. We call f universal if for every pointed set bundle g:C —. B
there is a unique h: A —. C with f = gh, that is, if the following type
is contractible:

Z f i)A—nB gl’l o
h:A—.C

In the above definition we get that 1: A —, C is a set bundle as well by
Exercise 3.3.3(4). The examples preceding Definition 3.3.10 are indeed
universal set bundles according to the following lemma.

Lemma 3.3.11. Let (A, ag) be a pointed type, (B, by) a pointed groupoid, and
f (A, ag) =« (B, bo) a pointed set bundle. Then f is universal if and only if
A is contractible.

71

THE UNIVERSAL SYMMETRY. THE CIRCLE 72

Proof. Let conditions be as above and assume A is contractible. Let
(C, ¢o) be a pointed type and g:(C, cp) —« (B, bg) a set bundle. Let
fo:bo = f(ag) and go:byp = g(co) be the respective pointing paths.
Define h: (A, ap) —. (C, co) by a + co with pointing path refl,. Clearly
gofgt: f(ag) = g(h(ag)) = g(co), which yields an identification of f(a)
and g(h(a)) for all a: A as A is contractible. Apply now function exten-
sionality Principle 2.9.18 to get an identification of type f =45 gh. The
pointing path of ghisalso g : by = g(co). We getan identification of type
(f, fo) ©a—.5 (gh, g0) since go = (g0f5 1) fo- The type (4, ag) —. (C, co)
is contractible since A is contractible, yielding that / is unique.

For the other direction of the lemma we use a reasoning pattern that
is typical for universality. Assume that f is universal. As shown above,
cstp, : 1 —. (B, bp) is also universal. Hence we have maps h and h’ and
identifications of all identity types represented in the following diagram,
simplified by ignoring the points:

1 " A h 1 " A
\‘ CS‘V
cstl70 f
B

Using the universality of f, we can identify h’h with ids. Using the
universality of csty,, we can identify hh’ withidy. Now Construction 2.9.9
yields an equivalence between 1 and A, implying that A is contractible.

o

A particularly important example of a pointed set bundle is the
following.

DerINITION 3.3.12. Recall the set of integers Z from Definition 3.2.1, with
its successor function s : Z = Z being an equivalence. The set bundle
R:S' — U is defined by the recursion principle of the circle from
Definition 3.1.1 by putting R(*) := Z and R(Q) := 5. This is indeed a set
bundle since S! is connected, so that R(x) is a set for all x : S!. We also
write R:S! — Set. Recall Tot(R) = },.q1 R(z) and point Tot(R) at (¢, 0).
Now define

exp := fst : Tot(R) — S', with pointing path refl..

We call exp the exponential set bundle over the circle. 4

RemARk 3.3.13. The reason for the name “exponential” comes from
the following visualization. If x is a real number, then the complex
exponentiation e*™* = cos(27x) + isin(27x) has absolute value 1 and so
defines a continuous function to the unit circle { (x, y) :R?*| x> + y> =1},
where we have identified R? with the complex numbers. Choosing
any point z on the unit circle, we see that the preimage of z under the
exponential function is a shifted copy of the integers inside the reals.™*

This connection between the integers and the unit circle is precisely
captured in a form that we can take further by studying the set bundle
exp : Tot(R) — S'. Ny

In the next section we will see that the exponential set bundle of the
circle is in fact universal. We’ll continue the general study of set bundles
in Section 5.2 and indeed throughout the book. For now, we’ll focus our
attention on the circle and set bundles over it.

Draw the triangle!

Tot(R)

*4homotopy types have to wait until
Appendix B.3

THE UNIVERSAL SYMMETRY. THE CIRCLE 73

3.4 The symmetries in the circle

With the set Z of integers defined as in Section 3.2, we will now construct
an equivalence between Z and the type ¢« =g ¢, and that under this
equivalence 0: Z corresponds to refl. : « = +,and 1 to U, and -1 to Q.
More generally, the successor s : Z — Z corresponds to composition with

~! corresponds to composition with 1.

O, while the predecessor s

The first step is to identify the exponential set bundle Definition 3.3.12
with the universal set bundle in Example 3.3.9, i.e., identify the type
family

R:S' - 4, R(*):=Z,R(V) =5
with the family
P.:S' -, P.(z) = (» > z).

What does it mean to identify the families P. and R? Type families are a
special case of functions. Function extensionality reduces the question to
the pointwise identification of P. and R as functions. Using univalence,
it suffices to give an equivalence from P.(z) to R(z) for every z:S?, that
is, recalling Definition 2.14.1, giving a (fiberwise) equivalence f : P. — R.
We will use Construction 2.9.9, so will also define g: R — P..

ReMARK 3.4.1. We recall Construction 2.14.2 defining how transport
behaves in families of function types. Given a type A and two type
families P,Q: A — U, transport along p:a = a’ of h:P(a) — Q(a)
can be identified with the function ’crp;2 oh o trpg 4 of type P(a’) —
Q(a’). As a simplification we could use the notation ~ introduced after
Principle 2.13.2 for the transport functions. However, we now take the
further step of allowing univalence to be completely transparent, that is,
leaving out both ~ and ~ when no confusion can occur. Here this means
that the picture for the transport of 1 becomes:

a P(a) —— Q(a)

..lp zlP(rJ) zl@(p)

hP(p)!
2 Py 2EO o @),

In, for example, the definition of the exponential set bundle R above,

this means that we may denote R(Q) as s instead of 5, and may write

R(Q)(0) =1. J
If A is S!, then the induction principle for the circle says that giving

an h(z):P(z) — Q(z) for all z: S is the same as specifying an element

h(e):P(¢) = Q(*) and, using Definition 2.7.3 and Remark 3.4.1, an iden-

tification () : Q(Q) h(*) P(O)™! 5 h(), see the following diagram:

h(*)

P(s) —— Q()

P e
h()
P(s) ——— Q(*).
If P,Q are families of sets, then h(Q) is a proof that this diagram
commutes.
We now define f:P. — R and g:R — P. that will turn out to give
inverse equivalences between P.(z) and R(z), for each z:S!.

It follows directly that addition of
integers corresponds to composition
of loops.

zZ Tot(R)

Ficure 3.3: Transport in the family R

THE UNIVERSAL SYMMETRY. THE CIRCLE 74

DErINITION 3.4.2. The function f: J],.q1(P.(z) — R(z)) is defined by
f(@)(p) = R(p)(0). 4

In Figure 3.3, the function f(+)(p) above has been visualised forp = 0",
n=-2,-1,0,1,2.

LemMA 3.4.3. For f as in Definition 3.4.2 we have f(*)(O") = n forall n: Z.
Proof. First consider positive 7 : N and apply induction. In the base case
n = 0 we have f(*)(QO°) = f(refl.) = trpfeﬂ.(O) = 0. For n = s(m) with
m :N we have
s(m) s(m)
f()(O)=R(O)0)
= R(0 O)(0)

= R(U)(R((S)(O)) since ap preserves composition
= RO)(f(NO))
=s(f (-)(Zl))) = s(m) by the induction hypothesis.

This completes the induction step for positive . For negative n the proof
is similar. o

In the definition of the second map, take into account that R(+) = Z
and P.(¢) = (¢« >).

DEFINITION 3.4.4. The function g : [],.51(R(z) — P.(z)) is defined by circle
induction. We first define

n =
ger= (o B) 2o 50,
Then, using Remark 3.4.1, the type g(O) should be

P.(O) g(*)R(O) ™ > g(*).

B}.z deflmtlon,. R(U) 1§ s. Using Exercise 2.14.4(2.) we ca.n identify P. (.U) The type of g(03) can be expressed
with composition with). The element g(O) is obtained by function by this diagram:
extensionality and a simple calculation, using the identification of

n—QO" =

Z ————— (*>)

O O"tand Q" for any n: Z. J
THEOREM 3.4.5. For every z : S, the functions f(z) defined in Definition 3.4.2 ik oo
and g(z) in Definition 3.4.4 are inverse equivalences between P.(z) and R(z). AL NN

Proof. We apply Construction 2.9.9 and verify the two conditions. First,
we need to give elements H(z, p): ¢(z)(f(z)(p)) = p for all z:S! and
p:P.(z) = (+ = z). Byinductiononp : « = zitsuffices toset H(¢, refl.) :=
reflyen. since g(*)(f(*)(refl.)) = g(+)(0) = refl..

Secondly, we need to give elements G(z)(n): f(z)(g(z)(n)) = n for all
z:S' and n: R(z). By circle induction it suffices to define G(+) and G(Q),
but the type of G(¢) is a proposition (as Z is a set), so the information
for G(O) is redundant. Hence, it suffices to show that f(*)(g(*)(n)) =
f()(QO") = n for all n:Z. This follows from Lemma 3.4.3. O

COROLLARY 3.4.6. The circle S is a groupoid, and the function
QO :Z—>(*>g)

sending n to O" is an equivalence.

THE UNIVERSAL SYMMETRY. THE CIRCLE 75

Proof. For any z:S!, the type P.(z) = (+ =g z) is a set since R(z) is a
setand f(z):P.(z) — R(z) an equivalence. Since the circle is connected
and being a set is a proposition, it follows that y =g z is a set, for any
y,z:S'. Hence S! is a groupoid. By Definition 3.4.4, O~ = g(*) is an
equivalence. O

Recall the definition of universal set bundle from Definition 3.3.10.
Now that we know that the circle is a groupoid we can harvest the
following results.

CoroLLARY 3.4.7. The set bundle P. from Example 3.3.9 is universal. The
exponential set bundle exp from Definition 3.3.12 is universal.

Proof. By Lemma 3.3.11 and Theorem 3.4.5. m

DErINITION 3.4.8. The inverse equivalence f(¢) of g(¢) = O™ = (n — O")
is called the winding number function wdg : (+ =) = Z. a

The following lemma is a simple example of a technique called deloop-
ing, which we will further elaborate in Section 7.5.

LemMa 3.4.9. Let A be a connected type and a : A an element. Assume we have
an equivalence e : (¢ = *) — (a = a) of symmetries such that e(refl.) = refl,
ande(p-q) > e(p)-e(q), forallp,q:(+ = ¢). Then &:S' — A defined by
circle recursion by setting é() = a and é(Q) := e(Q) is an equivalence.

Proof. We have ap; — e since they produce equal values when applied
to O", for all n:Z. Now use that A and S! are connected and apply
Corollary 2.17.9(3). O

Exgrcisk 3.4.10. Generalizing Definition 3.4.8, of winding numbers, use
circle induction to define, for any point x : S! of the circle an equivalence,
wdg, :(x = x) = Z. (You'll need commutativity of addition in Z.)
Conclude from Lemma 3.4.9 that we have equivalences f, :S! = S! with
fx(+) = x, for each x:S!.%5 J
EXERCISE 3.4.11. Let —idgi :S! — S! be defined by —idgi(*) := * and
—idg1(Q) == UL Show the —idgi and idg: are not in the same component
of S! — Sl Prove the following proposition:

[T llids = ¢l 1T]|—ids: = ¢ J
t:S1=G!

Exercist 3.4.12. For any f:S! — S!, give an equivalence from S! to
(S — st) f), that s, from S! to the component of S' — S! at f. Hint: use
Lemma 3.4.9. a
We note in passing that combining the above two exercises yields an
equivalence from (S! = S') to (S! I1S!), that is, a characterization of the
symmetries of the circle (in constrast to the title of this Section 3.4).

3.5 A reinterpretation of the circle

In this section we return to the equivalences in Theorem 3.3.8. We’ll use
these to get a different perspective on the circle, which highlights it as a
type classifying very simple symmetries, namely sets with permutations.
We have already seen one example in Definition 3.3.12, namely the set Z of
integers together with the successor s : Z = Z, defining the exponential

51f we think of the circle as repre-
sented by the unit length complex
numbers, then fy(y) corresponds to
the usual product xy. Alternatively,
if we think of points on the circle as
representing rotations of the unit
circle in R?, then fy(y) corresponds
to the composition of the rotations by
xand y.

THE UNIVERSAL SYMMETRY. THE CIRCLE 76

set bundle exp. By Corollary 3.4.7, exp and its friends P. : S! — Set and
cst. : T — S! are appearances of the universal set bundle over the circle.
The importance of exp will become apparent when we eventually
explain that the circle is equivalent to the connected component of (Z, s) in the
type Lx . (X — X).10
Recall from Theorem 3.3.8 the equivalence

gf :SetBundle(S") =) (X 5 X).
X :Set
When restricting to corresponding connected components, we get equiva-
lences between these. So to understand the components of SetBundle(S!)
it suffices to understand the components of }_x.s.(X = X), which cor-
respond to components of Y x . (X — X) at pairs (X, t), where X is a
set with a permutation ¢.'7

We are particularly interested in understanding the symmetries in
these components, so before we prove that the circle is equivalent to the
component containing (Z, s), let us investigate the equalities in the type
Y x.q(X — X) abit further.

Define the type family D by D(X) := (X — X) for all X:U. Recall
that, given X,Y:U and t: X — X and u:Y — Y, Lemma 2.10.3 and
Definition 2.7.3 give an equivalence between the identity type (X, t) =
(Y, u) and type of pairs consisting of a p : X = Y and an identification of
type trp? (t) = u. The transport on the left is precisely the special case
described after Construction 2.14.2 (see diagram in the margin), so that
the latter identity type type is equivalentto p ot o =1 S u. If p = & for
an equivalence ¢: X = Y, this is equivalent toe ot = u oe, or et = ue
for short. In total, we have an equivalence between the identity type
(X, t) = (Y, u) and the sum type (see diagram in the margin)

Z et Sx_y ue.
e: X>5Y
These types are sets whenever X and Y are, and then we may write
et = ue.

In particular, given a set X with a permutation ¢, we have an equiv-
alence from (Z,s) = (X, t) to }.,.z=x es = te. See Figure 3.4 for an
illustration. This equivalence is transparent in the sense that we never
denote it. For example, any power s" of s itself gives a symmetry
(s",p):(Z,s) = (Z,s), where p is a proof of s s = ss".

ReMARK 3.5.1. The type s” s = ss" in the paragraph above is a proposition.
Since all elements of a proposition are equal, it is often not necessary
to name such elements explicitly. If the proposition in question is clear
from the context, we may use ! as a default name of its elements. Be
warned that different occurrences of ! may refer to elements of different
propositions. In cases where the element of a proposition is not of
interest (beyond its mere existence), we may even just ignore it. For
example, again in the paragraph above, we may ignore p and consider
s" as a symmetry of (Z,s). (Note that we did already coerce the function
s” to the equivalence.) 4

The following property jumps out at us when we contemplate Fig-
ure 3.4: the equivalence e is uniquely determined by the element e(0) : X.
More precisely:

16The elements of this connected com-
ponent can be thought of as infinite
cycles: sets X with a successor func-
tion t: X — X such that (X, t) can
be merely identified with (Z, s). That
is, (X, t) looks exactly like (Z, s), but
we don’t know which element of X is
“zero”:

7Given a set X with a permutation
t, we may coerce and view (X, t) as
an element of }_x.¢;(X — X). Then,
for any (Y, u) in the same connected
component of } x.¢ (X — X)as
(X, t), we have that Y also is a set
and u also a permutation of Y.

o

\

FiGURE 3.4: An identification of
two infinite cycles. The equivalence
e:7Z > X is marked in blue.

THE UNIVERSAL SYMMETRY. THE CIRCLE 77

LemMa 3.5.2. For every (X, t) in the component of Y x.¢;(X — X) containing
(Z, s), the function

evo : ((Z,8) > (X,t)) = X defined by evy(e,!) = e(0)
is an equivalence.

Proof. We'll prove that every fiber of evy is contractible. Given xo: X we
must determine a unique equivalence ¢ : Z — X such that es = te and
e(0) = xq. Induction on n : Z (positive and negative n separately) shows
that for such an e, we have e(n) = t"(x¢) for all n : Z. It remains to prove
that n — t"(xp) is an equivalence, for every xg: Z. Since we are proving
a proposition, and we are assuming (X, t) is in the component of (Z, s),
it suffices to prove it for (X, t) = (Z, s). Clearly, for any xo, n : Z, we have
s"(xg) = n + xg, and the map n — n + x is an equivalence, with inverse
n = n— Xxo. O

In particular, evg : ((Z,s) = (Z,s)) — Z is an equivalence, mapping
s" ton forall n:Z. Cf. wdg : (+ = +) — Z from Definition 3.4.8.

DerINITION 3.5.3. Let InfCyc be the component of }_x .¢;(X — X) contain-
ing (Z,s). Elements of InfCyc are called infinite cycles.'®
Define by circle induction

¢:S! — InfCyc setting c(¢) = (Z,s)

and c(Q):c(*) = c(*) given by the predecessor equivalence s : (Z — Z)

_1S=SS_1. N

and the trivial proof of the proposition s

As explained in Remark 3.5.1, we often leave out the propositional
data pertaining to InfCyc (and other subtypes) from the notation.

The main result of this section is Theorem 3.5.6 below, stating that
the function c from Definition 3.5.3 is an equivalence. Since it’s such a
crucial result, we are going to give two proofs. Each proof illuminates a
different aspect and gives methods that will be used later.

For the first, we return to the equivalences of Theorem 3.3.8. As said
above, these restrict to equivalences between corresponding compo-
nents. In particular, evy : (S — U) 5 Yx.¢(X = X) maps the type
family P. to the pair (+ = +, O-_), which can be identified with (Z, s)
through Corollary 3.4.6. Hence, ev¢; restricts to an equivalence between
the connected component of P. in S! — U and the connected component
of (Z,s)in Yx.q(X = X).

Recall the constant maps cst; : (1 — S!) for z:S!. The equivalence
preim maps cst. to (x:S!) — Y. .1(x = ¢) which can be identified with
P.. Now consider the following diagram:

(T,est)
(3:5:1) lﬂ”\

SetBundle(Sl)(ﬂ/cst.) pTNim) (S'—-u Jp) s> InfCyc
Both the left and the right triangle represent identity types. We have
an identification for the left triangle because the fiber }_ .¢(x = z) of
cst, at x:S! can be identified with P;(x) = (z = x), for any z:S!. For
the right triangle we apply circle induction to construct an element of

18See also Definition 3.6.3 below for
general cycles.

Ficure 3.5: For the fiber of the
universal set bundle, P.(¢) = (* = *),
we increase the winding number
when we transport the endpoint (in
blue) along O, and we decrease it
when we transport the starting point
(in red) in the same way.

THE UNIVERSAL SYMMETRY. THE CIRCLE 78

I1,.51 c(z) = evy(P;). Thebase case z = « is exactly the abovementioned
application of Corollary 3.4.6. For the loop case we observe that the
following diagram commutes:

Note that to transport in the family P_(¢) = (_ = *), we use Exer-
cise 2.14.4(3), and that is why we picked the predecessor equivalence
in Definition 3.5.3. This is also illustrated in Figure 3.5.*°

With (3.5.1) in hand, we see that c is an equivalence if and only if
either of the two other downward maps are.*

We now show that the map (1, cst_) on the left is an equivalence. Since
the codomain is connected, it suffices to show that the fiber at (1, cst.) is
contractible. This fiber is the sum type }_,.q1((1, cst.) = (1, cst;)), where
the identity type is by Lemma 2.10.3 equivalent to pairs of an equivalence
e:1 — T and elements of the identity type represented by the triangle

T —1

ch A

st.

Since 1 is contractible, this just amounts to the identity type « = z, and
Y ..qi(* = z)is indeed contractible.

Exercisk 3.5.4. This exercise is about results that go by the name “the
type-theoretic Yoneda Lemma.” See the book by Riehl** for the Yoneda
lemma in category theory.

Let X be a type and F: X — U a function. Use transport to give an
equivalence ey from the type F(x) to the type [],.x((x = y) — F(y)),
for any x : X. The functions (x = y) — F(y) thus obtained need not be
equivalences, but sometimes they are.

Next, for X:U, show that the map sending x:X to (y — (x =
y)): X — U is an injection. Hint: use Lemma 2.17.8 and e, above, for
suitable F. In order to appreciate this hint, you can also directly prove
that all fibers of the map are propositions. a

We now give the second, more direct, proof that c is an equivalence.
For this we use the following lemma, which is of independent interest.

LemmMma 3.5.5. Let X and Y be connected types, x an element of X, and f a
function from X toY. Then f is an equivalence if and only if ap , : (x >x)—
(f(x) = f(x)) is an equivalence.

Proof. Using Corollary 2.17.9(3) it suffices to show that each map induced
by f on identity types is an equivalence if and only if the specific map
ap; : (x > x) = (f(x) > f(x))is an equivalence. Being an equivalence
is a proposition, so the result follows in two easy steps from X being
connected, using Exercise 2.16.9. [}

THEOREM 3.5.6. The function ¢:S' — InfCyc from Definition 3.5.3 is an
equivalence.

9 Another option would have been
to choose the opposite equivalence
Z 5 P.(*),sending n to O™, in
the base case. The point is: You can
move the minus sign around, but it
has to pop up somewhere.

29At this point we could conclude with
an appeal to Exercise 3.5.4, yielding
that P_is an equivalence.

*'Emily Riehl. Category Theory in Con-
text. Aurora: Modern Math Origi-
nals. Dover Publications, 2016. URL:
https://math. jhu.edu/~eriehl/
context/.

https://math.jhu.edu/~eriehl/context/
https://math.jhu.edu/~eriehl/context/

THE UNIVERSAL SYMMETRY. THE CIRCLE 79

Proof. In view of Lemma 3.5.5 we only need to show that ap, : (+ =
*) = ((Z,s) = (Z,s)) is an equivalence. Note that both the domain
and the co-domain of ap, have been identified with Z. Consider the
following diagram in which we compose ¢ with the equivalences from
Corollary 3.4.6 and Lemma 3.5.2:
Z—2 (52, (29D (Zs) —— Z

For ¢ to be an equivalence, it suffices to show that the composition is an
equivalence from Z to itself. By definition, ap_(Q) is the identification
corresponding to s1, sending 0 to —1, and by induction on 7 : Z it follows
that evg(ap.(O")) = s7(0) = —n. And the map n + —n is indeed an
equivalence.]

3.6 Connected set bundles over the circle

Let A be a type and f: A — S! a function. By Corollary 2.17.9(1), f isa
set bundle over S! if and only if each map induced by f on identity types
is injective. Assume that f: A — S! is a set bundle with A connected.
Let ag be an element of A. By Exercise 2.16.9 the condition that each ap
is injective can be relaxed to ap; :(ag = ag) — (f(ag) = f(ap)) being
injective. Now look at the following diagram, with wdg the winding
number function from Exercise 3.4.10 and O~ from Corollary 3.4.6:

(3.6.1) (a0 =4 a0) <5 (f(a0) =gt f(a0)) m) Z—= (=)
Define the composite gy := wdgy,) ©ap, and consider its image, which
is a subset of the integers. Clearly, ¢ is an injection, so that its fibers
are propositions, and the image is the subset }_,,.» gj?l(n). Obviously,
a classification of connected set bundles over the circle also classifies
certain subsets of Z, or, equivalently, certain subsets of symmetries of
». Such subsets of Z are closed under addition and negation, and those
of (+ =) are closed under concatenation and inverses, since apy, wdg
and O~ are compatible with these operations. Using language to be
introduced in Chapter 9, we actually “classify the subgroups of the
integers”.

Recall that set bundles over the circle are equivalent to sets with permu-
tations. Which sets with permutations (X, t) correspond to connected set
bundles? It is not so surprising that the answer has to do with whether
any two points x, x”: X can be connected by applying t some number of
times.

DerINITION 3.6.1. Let X be a set with a permutation f. Elements x, x": X
such that x” = #"(x) for some n : Z are said to be connected by t, denoted
x ~ x’ whenever t is clear from the context. The relation ~ is an
equivalence relation. (Exercise: Check this.) a

Recall Figure 3.2. We now have all the tools to analyze the difference
between the left and the right picture in full generality.

ConsTrUCTION 3.6.2. Let X be a set with a permutation t, defining the equiv-
alence relation ~ as in Definition 3.6.1. The set bundle over the circle cor-
responding to (X, t) in Theorem 3.3.8 is the pair (},.q1 E(z), fst) where

By Exercise 3.3.3(6) A is a groupoid.

Since A is connected, the propo-
sition gj?l(n) does not depend on
the choice of a, so the subset only
depends on f.

For subgroups in general, in Chap-
ter 9, the setbundle f is pointed, and
has a pointing path p : pt; = f(pt,).
Then ap f is composed with p‘l_ v,
conjugation. See also Defini-

tion 4.4.3.

Recall that the iteration " makes
sense for all integers n since t is an
equivalence.

THE UNIVERSAL SYMMETRY. THE CIRCLE 8o

E = vey (X, f):S! — U, with ve defined by circle induction in Theorem 3.1.2.
Then we have a bijection between ||}_,.q E(z)||o and the quotient X/~ as
defined in Definition 2.22.10.

Implementation of Construction 3.6.2. Abbreviate }_,.q1 E(z) by A. We
define a map g:||Allo — X/~, from the set of components of A to
the quotient set of X using the universal property of set truncation
(Definition 2.22.4), pair induction, and circle induction. To define
g0:I1,.51(E(z) — X/~), we put go(*) = [_]: X — X/~ and need
20(Q): go(*) i go(*), equivalent to go(*) =x—x/~ go(*)t. The lat-
ter we get by function extensionality and Theorem 2.22.12, since x ~ f(x)
for any x : X.

The inverse of h: (X /~) — ||Allo of g is defined as the extension of
ho: X — [|Allo with hg(x) := | (e, x)|o. We just need to check that hg(x) =
ho(x’), or equivalently, || (¢, x) =4 (¢, x")||, whenever x ~ x’. Since this is
a proposition, if x” = " (x) with n : Z, we may use induction on 7 (positive
and negative) together with the paths, (Q,re—ﬂt(x)) 2(o,x) D4 (5, t(x)),
to conclude.

It’s easy to check that g and & are mutually inverse.]

In Figure 3.6 we see the set bundle corresponding to the set {1, 2, 3, 4, 5}
with the permutation 1 +— 2 +— 3 + 1,4 +— 5 + 4. There are two
components, showing that the permutation splits into two cycles.

DErINITION 3.6.3. Let Cyc be the subtype of } x.¢;(X — X) of those pairs
(X, t) where X is a nonempty set with an equivalence t and any x, x": X
are connected by f. Expressed in a formula:

Cyc:=),), (IXlIx [T J& =)

X:Sett: X5X x,x:Xn:Z

Elements of Cyc are called cycles.** 4

CoroLLARY 3.6.4. Under the equivalence described in Construction 3.6.2,
connected set bundles over the circle correspond to cycles.

Proof. We use the notations of the implementation of Construction 3.6.2.
If A is connected, then ||A||o is contractible and hence also X/~ is
contractible, so (X, t) is a cycle.

Conversely, if (X, t) is a cycle, then X/~ is contractible and hence also
|| Allo is contractible, so A is connected. O

We already know some connected set bundles over the circle, namely
the universal set bundle, which is also represented by the constant map
cst. : 1T — S!, and which we showed is equal to the exponential set
bundle, which in turn corresponds to the infinite cycle (Z, s) consisting of
the set of integers Z with the successor permutation. Another example
is the left one of the two examples given in Figure 3.2.

We now introduce the remaining set bundles over the circle, first as
functions to the circle, then as families of sets. Eventually we’ll show
— assuming a weak form of the Law of the Excluded Middle - that
these (with the universal set bundle) are all the decidable connected set
bundles over the circle.

= Q1

— N W

>

FiGuUre 3.6: A set bundle with two
components.

22Qur cycles are a special case of what
is elsewhere called cyclically ordered
sets, and they are closely related to
the cyclic sets of Connes?3.

23 Alain Connes. “Cohomologie cy-
clique et foncteurs Ext"”. In: C. R.
Acad. Sci. Paris Sér. I Math. 296.23

(1983), pp- 953-958.

THE UNIVERSAL SYMMETRY. THE CIRCLE 81

DeriNtTION 3.6.5. For m : N positive, define the degree m function by circle
induction

oSt — S, setting 0,,(¢) ==+ and 6,(Q) = Q™. J

On loops, the degree m function is the map (_)": (s = *) = (+ = *),
which is indeed an injection for positive m, so 6, is a set bundle
corresponding to the subset of (+ = ¢) consisting of ()" :+ = « for all
n:Z.

In Section 3.4 we gained a lot of insight into the universal set bundle,
cst. : 1 — S, by constructing an equivalence with the exponential set
bundle, see Theorem 3.4.5. In this section, we’ll learn more about the
degree m map, 6, : S' — S!, by constructing an equivalence with another
concrete family.

Fix a positive number m :N. Recall the finite set m from Defini-
tion 2.24.1 with elements denoted 0,1, ...,m — 1, as well as the equiv-
alence of type m = Y ;.\ k < m from Exercise 2.24.2. Hence we may
define a successor map s : m — m by

k+1 ifk<m-—1,
s(k) =
ifk=m-1.

ExErcIsk 3.6.6. Show that s :m — m is an equivalence by defining an
explicit inverse. 4

Thus, (m, s) is another key example of a cycle called the standard finite
m-element cycle. As seen in Theorem 3.3.8, any cycle corresponds to a set
bundle over S'. Just as the set bundle R in Definition 3.3.12 corresponds
to the standard infinite cycle (Z, s), we will now define the set bundle
R, corresponding to standard finite m-element cycle.

DerINITION 3.6.7. Fix m : N positive. Define the set bundle R,, :S' — Set
by Ry (¢) := mand R,,(Q) := 5. Recall Tot(R,,) = }_,.51 Ry (z) and point
Tot(R;,) at (¢, 0). Now define

pow,, = fst : Tot(R,;) — S! with pointing path refl..

We call pow,, the m™ power bundle of the circle.

-

ReMARK 3.6.8. The analogue of our degree m function is the m'™ power
of complex numbers restricted to the unit circle, mapping z to z™ if
|z| = 1. If we parameterize the unit circle by the angle 6 : R (defined up
to multiples of 27t), so z = e%, then z™ = ™. Figure 3.7 illustrates the
m'™ power bundle over the circle. Choosing any point z on the unit circle,
we see that the preimage of z under the m™™" power map is a shifted copy
of the m different m'™ roots of unity inside the unit circle. 4

To identify 6,, and pow,, as set bundles over S!, it suffices to define an
equivalence ¢, : Tot(R,,) — S' and an identification @, of the identity
type Om1pm — pow,, represented by the triangle below.

Tot(R,) —2— Sl

pom Aﬂ
gl

Note that (_)0: (s S ¢) — (¢ S o) is
constant and hence not injective.

As a subset of Z, this is simply all
multiples of m.

m Tot(Rm)

O = N W

s O

Frcure 3.7: The m™ power bundle for
m =5.

THE UNIVERSAL SYMMETRY. THE CIRCLE 82

To see how to define ¢, and a,,, we draw in Figure 3.8 the type Tot(R,,)
— 1 (the mark k is the
element (¢, k) : Tot(R,;)), and arcs following the successor permutation
of m. We denote these arcs by aj := (Q,rcT(k)) (s, k) = (+,s(k)). The
m™ power map (which is just the first projection) sends each mark to
+:S! and each arc to .

This is indicated in blue on the inside of the clock. To define 1, we

unrolled into a “clock”, with marks 0,1,...,m

must send all the marks to «:S! and all arcs to refl., except one, which
goes to . This is indicated in red on the outside of the clock.

ConstrucTION 3.6.9. For each positive integer m, there is an equivalence

V2 Tot(Ry) — S and an element ay, : 5upm = pow,,.

Implementation of Construction 3.6.9. Since Tot(R,,) = }_,.q1 Riu(z), to de-
fine 1, we first split the argument into a pair (z, k). In order to
facilitate circle induction we consider ¢, as an element of the type
[L.s1(Ru(z) — S'). We define ¢,,(z): R;u(z) — S! by circle induction
on z. The base case is {;(*) := cst. :m — S!, the constant function at
(recall R, () = m). Since transport in a function type is by conjugation
(Construction 2.14.2), and the codomain type is constant, we need to
give an identification ¢,,(Q) of type ¥ (*) =m_ost Ym(*)Rn(O). We
construct 1,,(Q) using function extensionality, by giving an element in
m — (+ = *). Since ¢, needs to send all arcs, except the last, in Tot(R,,)
to reflexivity, we map k to refl. for k < m — 1, and we map m — 1 to O.

The inverse of ¢, maps * to (¢,0), i.e., the mark at 0, and O to
A1 - - Ao, i.e., the product of all the arcs around the circle. We leave it
as an exercise to prove that this really defines an inverse to ¢,,,.

We likewise use function extensionality and pair and circle induction
to define a, reducing the problem to giving (with a slight abuse of
notation) ay (¢, k): pow,, (¢, k) = 0m(Pm(s, k)) together with elements
am(Q, k) witnessing that the two composites agree in the square

am(k)

pow,, (4 k) 22 5, (e, K))
powm(ak)lll 11 Om (Ym(ax))
pow,, (+,5(6) 255, (1 (+, s(K))).

In Figure 3.9 we show these m squares with the left and right hand sides
simplified according to the definitions.

We see that we can pick a,,(¢, k) = U7k, and then we can take for
am(Q, k) the trivial proofs that reflLO % = O~ ®D U, fork < m —1, and
OO MmN =000, fork=m-1. u!

In Figure 3.10, which is an adaptation of Figure 3.8, we illustrate the
last part of the above construction in the case m = 5.

The labels on the inner arcs show pows(OU, k), on the outer arcs
05¢5(Q, k), and on the radiuses a, (¢, k). The proofs o, (O, k) prove the
commutativity of the five squares in circular arrangement.

COROLLARY 3.6.10. The degree m map 6, :S' — S is a connected set bundle
for each positive integer m, and all the preimages 6,(z), z: S, are m-element
finite sets.

We get an explicit equivalence m = §;,!(+) from 1, and a,,: send k to
(+, 070, using the following exercise.

refl. 1
2
refl.
refl.
0
3 O
refl. 4

Ficure 3.8: Unrolling Tot(Rs) as a
“clock”. (Here we're going around
in a counterclockwise fashion as
mathematicians are wont to do.)

am(+,0)

I I
ap(*,m=1)

lﬁl
!

O
am(+,0)

Ficure 3.9: The simplified types of the
squares a;; (O, k).

refl.

refl. 2

refl.

Ficure 3.10: The proof for the case
m =5 around the clock.

THE UNIVERSAL SYMMETRY. THE CIRCLE

Exercise 3.6.11. Let A, B, C be types and f:A — C, g:B — C func-
tions. Assume moreover we have an equivalence ¢:A — B, an el-
ement h:J],.4 f(x) = gle(x)), and an element c:C. Show that
(a,p) + (e(a), h(a)p) defines an equivalence f~1(c) — g7(c). Ny

Recall that our goal is to understand the type of connected set bundles
over the circle. Since the type of set bundles is equivalent to S! — Set,
and Setis a groupoid (Lemma 2.22.1), Lemma 2.15.5(1) gives that the type
of set bundles over the circle is a groupoid. We will pin this groupoid
down by first analyzing the sets of identifications in it.

To do this, we generalize Lemma 3.5.2 to other kinds of cycles. However,
since we're dealing with multiple components, it'll be useful to have a
set labeling the components first.

DEFINITION 3.6.12. For any cycle (X, t), let Hy := {n:Z|t" =id } : Sub(Z).
|

Thus, H; is the subset of Z determined by the predicate t" = id for
n:Z. Recall that Sub(Z) = (Z — Prop) is a set.

Lemma 3.6.13. Let (A, f) be a connected set bundle over the circle with cor-
responding cycle (X, t) according to Corollary 3.6.4. For any x : X we have
Hy = {n:Z|t"(x) = x }, and for any a : A, we have that H; also equals the
image of the composite

= aps = =
(3.6.2) (a =>4a) — (f(a) =g f(a)) = Z,
where the second map is the winding number function from Exercise 3.4.10.

Proof. We may suppose that the set bundle (A, f) over the circle has
the form (Y, .q1 E(z), fst), where E = veq(X,f):S! — U is the family
corresponding to the cycle (X, t). To prove the proposition in the lemma
quantifying over 4, i.e., over z :S! and x : E(z), it suffices to consider the
case z = * and x : X, since the circle is connected.

For any point x : X, corresponding to the point a := (¢, x) : A, the type
(a >4 a)isequivalentto), . t"(x) = x in such a way that the composite
function (3.6.2) corresponds to the first projection. Hence the image
of (3.6.2) is precisely { n: Z| t"(x) = x }.

It remains to show that { n:Z| t"(x) = x } € H; (the other inclusion
being clear). So assume t"(x) = x. Then if x’: X is any other point, to
prove the proposition #"(x’) = x’, we may assume we have k:Z with
x’ = tK(x). Then t"(x’) = t"+*(x) = t¥(x) = x’, as desired. O

LemMma 3.6.14. Let (X, t) and (Y, u) be cycles. The following propositions are
equivalent:

@) X,) = Y, u)l;
(2) H: =Sub(Z) Hy;
(3) Forall xo: X, yo:Y, the type Y- . (x,1)=(v,u) €(X0) = Yo is contractible.

Proof. Proving (2) from (1) is easy, since (2) is a proposition.

Assume (2), i.e., forany x: X, y:Y and n:Z, t"(x) = x if and only if
u"(y) = y. In order to prove (3), let xo: X and yo: Y. We must determine
a unique equivalence e : X — Y such that et = ue and e(xg) = yo.

83

THE UNIVERSAL SYMMETRY. THE CIRCLE 84

A necessary condition that e has to fulfill is the following. For any
x:X and n: Z with x = t"(x(), we must have

e(x) = e(t"(xo)) = u"(e(x0)) = u"(yo).

This shows uniqueness of ¢ once its existence has been established. For
showing existence, we use that for any x : X there exists an n : Z with
x = t"(xp) and that u"(yo) is independent of such n. Technically, to
use the proposition 3,,.z(x = #"(xg)) to construct e(x):Y, we prove
instead that the type Py = ¥,.y [1.z((x = t"(x0)) — (y = u"(y0))) is
contractible, and define e(x) to be its center. Note that P, is a subtype of
Y (the product part is a proposition since Y is a set).

Let x : X. Since being contractible is a proposition we may assume a
m:Z with x = t"(xp). As center of P, we take y = u™(yo). We need to
show, for any n : Z, that x = t"(x9) = t"(xo) implies u™(yo) = 1" (yo). But
this follows from our starting assumption, since the former is equivalent
to " "(xp) = xo and the latter to ™" (yo) = yo. Note that we also get
e(xo) = yo as the center of Py,. We still need to show that any two y, y’

in P, are equal. But this is clear, since x = t"(xg), so y = u™(yo) = y’.

It’s easy to prove the proposition that this e is indeed an equivalence, so
this is left to the reader.

Finally, we prove that (1) follows from (3). This is almost immediate:
since (1) is a proposition we may assume x: X and yo:Y and use the
center of contraction. O

The following corollary of Lemma 3.6.14 (3) generalizes Lemma 3.5.2.

CoOROLLARY 3.6.15. Let (X, t), (Y, u) : Cyc and let xo: X. If any of (1)—(3) in
Lemma 3.6.14 is true, then the function

evo : (X, t) S (Y,u)) =Y defined by evo(e,!) = e(xo)

is an equivalence.

As a second consequence, we get the following for the type of loops at
the standard m-cycle.

COROLLARY 3.6.16. For cycles (m, s), evaluation at 0 : m gives an equivalence
((m,s) = (m,s)) > m with evo(reflms) = 0, and composition with the
identification (s,!): (m, s) = (m), s) corresponds to the operation s : m — m,
that is, the diagram in the margin commutes.

RemaRrk 3.6.17. In Corollary 3.6.16, the equivalence s :m — m is not.

uniquely determined by the stated property. Its inverse would give the
same result for any m (even for Z). In fact there are as many as there are
positive integers less than m that are relatively prime to m. This behavior
has number theoretic consequences and origins and will be investigated
further when we have the proper machinery to put it to good use. 4

And as a third consequence, we get a more concrete description of the
set of components of Cyc, and hence, by Corollary 3.6.4, of the type of
connected set bundles over the circle.

CoRrOLLARY 3.6.18. Let H : Cyc — Sub(Z) be the map sending (X, t) to H;.

Then the image of H 1is equal to the the subset of Sub(Z) consisting of those
H C Z that contain 0 and are closed under addition and negation.>*

- ev
(m, s) = (m,s) — s m

(O) ls

— ev|
(m,s) > (m,s) ——— m

24By H C Z being closed under addi-
tion and negation, we simply mean
thatif z, z’ are in H, then so are z + z’
and -z.

THE UNIVERSAL SYMMETRY. THE CIRCLE 85

Proof. Recallim(H) = ¥y sub(z) A(x,1):cyc(H = Hi). Let H: Sub(Z). We
have to prove that Jx 1).cy(H = Ht) if and only if H € Z contains 0 and
is closed under addition and negation. Assume J(x ¢).cyc(H = Ht). Since
we have to prove a proposition, we may assume we have a cycle (X, t)
with H = H;. Now the required properties of H follow immediately
from the definition of H; = {n:Z | t" = id}.

Conversely, suppose H C Z contains 0 and is closed under addition
and negation. Define the relation ~y on Z by setting z ~y z’ if and
only if the difference z — z’ is in H. This is an equivalence relation: it is
reflexive since H contains 0, transitive since H is closed under addition,
and symmetric since H is closed under negation. So let X := Z/~y, and
define £([z]) := [s(z)] for z : Z. This is well defined, since z ~y z’ holds if
and only if s(z) ~g s(z’). Itis clear that (X, t)isa cyclewith H; = H. O

Exercisk 3.6.19. Let (X, t) and (Y, u) be cycles, and f : X — Y a map such
thatuf = ft. Show: (i) H; € H,; (ii) f is surjective; (iii) if H, € H; then
f is also injective. 4
The components of Cyc will pop up many times from now on, so we
make the following definitions to make it easier to talk about them.

DerINITION 3.6.20. The type of orders is defined to be Order := ||Cyc||o.
We say that the infinite cycle (Z, s) has infinite order, and the standard
m-cycle (m), s) has finite order m, for positive m : N.

We write ord = |_|o: Cyc — Order for the map from cycles to their
orders, and we write ord(t) := ord(X, f) for short.

We say that the order d := ord(X, t) divides the order k := ord(Y, u),
written d|k, for cycles (X, t), (Y, u), if H, C H;. J

We have a canonical injection N < Order, mapping 0 to the infinite
order and each positive 7 to the finite order n. The orders in the image are
called principal, and we don’t make any notational distinction between a
natural number 4 and the corresponding principal order. As a subset of
Z according to Corollary 3.6.18, a principal order is simply dZ, so we see
that the divisibility relation on orders extends that on natural numbers.

From the proof of Corollary 3.6.18 we get a map Order — Cyc,
mapping the corresponding subset H : Sub(Z), containing 0 and closed
under addition and negation, to the cycle (Z/~g, s). This generalizes the
definition of the standard cycles from principal orders to all orders.

DeriNITION 3.6.21. Given an order d : Order, we call (Z/~, s) the standard
cycle of order d, where ~, is the equivalence relation with z ~; z’ if and
only if t*=%" =id for a cycle (X, t) of order d, and s([z]) = [z + 1]. 4

Note that ~; doesn’t depend on the chosen cycle.

The description in Corollary 3.6.18 is still not as concrete as we’d like.
Is it true that any order is principal, in other words, that every cycle
has either infinite order or finite order m for some positive m :N? Most
other textbooks will tell you that the answer is yes, but the proof is
unfortunately not constructive. It makes sense first to restrict to decidable
set bundles/cycles.*> Even so, we need one further non-constructive
assumption, namely:

PrincrpLE 3.6.22 (Limited Principle of Omniscience). For any given func-
tion P :N — 2, either there is a smallest number ng : N such that P(ng) = 1,
or P is a constant function with value 0. a

Note that we're still being cavalier
with universe levels. Really, we
should write SetBundle(S!)q;, Cycq,
Orderq, etc., to indicate from which
universe U we draw the types in-
volved. We trust that the reader can
fill these in if desired.

>5This rules out certain patholog-
ical cycles, such as the subset
{ (2™ . C| n:Z}, with a suitable
equivalence, e.g., incrementing the
exponent. Here a : R is an unknown
real number, of which we don’t know
whether it is rational or not.

THE UNIVERSAL SYMMETRY: THE CIRCLE 86

The Limited Principle of Omniscience is weaker than the Law of

Excluded Middle Principle 2.18.2, as we prove in the following lemma.®

LemMa 3.6.23. The Law of Excluded Middle implies the Limited Principle of
Ommniscience.

Proof. LetP:N — 2. By the Law of Excluded Middle, either P is constant
0, or there exists some 7 : N such that P(n) = 1. But in that case we may

apply Construction 2.23.4 to conclude that there is a smallest 7 : N such
that P(ng) = 1. O

Exercisk 3.6.24. Without using LEM or LPO, show that (Q(P) — False) —
False holds for every function P :N — 2, where Q(P) is the proposition
obtained by applying the Limited Principle of Omniscience to the
function P. 4

As for the Law of Excluded Middle, we are free to assume the Limited
Principle of Omniscience or not, and we will be explicit about where we
will use it. The Limited Principle of Omniscience makes it possible to
prove that the canonical map N — Order®® (the codomain being the
subtype of Order given by decidable cycles), is an equivalence. We will
elaborate this equivalence in the next paragraphs.

We already know from Corollary 3.6.18 that the map is an injection,
and a cycle (X, t) has infinite order if and only if H; = {0},>” and it has
finite order m if and only if H; = mZ, for positive m : N.

Fix now a decidable cycle (X, t), and consider the corresponding subset
H:=H; ={n:Z|t" =id}. This is a decidable subset, since t" = id is
a proposition, and 7 is in H if and only if t"(x) = x for some/all x: X
(recall that X is non-empty).

Apply the Limited Principle of Omniscience (Principle 3.6.22) to the
function P:N — 2 defined by P(n) = 1if n + 1is in H, and P(n) = 0
otherwise. If P(n) is constant 0, then H = {0}, so (X, t) has infinite order.
(As a set bundle, it is then equivalent to the universal set bundle.)

Otherwise, if ng is the smallest natural number with m :=ng+1in H,
then we claim H = mZ, from which it follows that (X, t) has order m.

Clearly, mZ C H, since if t™ = id, then also " =id. And if t7 = id,
then by Euclidean division of integers, cf. Lemma 2.23.8, there exist k: Z
and r :N with v < m so that ¢ = km 4+ r. Now, the number r is in H, since
" = $97km = id and is less than the minimal positive value m in H, and
so we must conclude that » = 0. In other words, g is a multiple km, as
desired.

We summarize these results in the following lemma.

LemMa 3.6.25. The Limited Principle of Omniscience (Principle 3.6.22) implies
that the type of connected decidable set bundles over the circle is the sum of the
component containing the universal set bundle and for each positive integer m,
the component containing the m-fold set bundle.

7

RemARK 3.6.26. The reader may wonder how the “orientation reversing’
map r:S! — Sl givenby r(¢) := + and () := O~ fits into the picture.?®
As connected decidable set bundles, we have (S!,) = (S!, id), since r is

26Tt is also the case that the Limited
Principle of Omniscience does not
imply the Law of Excluded Middle,
because a model that satisfies the
Limited Principle of Omniscience
but not the Law of Excluded Middle
can be built using sheaves over the
real line R.

Nevertheless, the Limited Princi-
ple of Omniscience is not construc-
tive, for otherwise we could simply
decide the truth of every open prob-
lem in mathematics that can (equiv-
alently) be expressed by a function
P:N — 2 being constant with value
0. This type of argument was first
given by Brouwer.

Here we give an example based
on the famous Goldbach conjecture,
which states that every even inte-
ger greater than 2 is the sum of two
primes. Using that the latter two
primes are necessarily smaller than
the even integer itself, it is possible
to (equivalently) express the truth of
the Goldbach conjecture by a func-
tion P:N — 2 being constantly 0.
Now assume we have a proof t of the
Limited Principle of Omniscience in
type theory, not using any axioms.
Then £(P) is an element of the sum
type L 11 R, where R expresses that
the function P is constantly 0, and
L implies the negation of R. By the
computational properties of type
theory one can compute the canoni-
cal form of t(P), which is either inr,
for some element r: R, or inl; for
some element [: L. If t(P) = inr, the
Goldbach conjecture is true, and if
t(P) = inl; the Goldbach conjecture
is false. Thus the Goldbach conjec-
ture would be solved, and therefore
it is unlikely that t exists. In the ap-
pendix, B.2, we give a longer but
decisive argument against the con-
structivity of the Limited Principle of
Omniscience.

*7This is why it’s natural to associate to
0:N the infinite order.

28 As an operation on infinite cycles,
see Definition 3.5.3, cr¢™! : InfCyc —
InfCyc maps (X, t) to (X, 1, flip-
ping the arrows.

THE UNIVERSAL SYMMETRY. THE CIRCLE 87

an equivalence:
Sl

Sl

N4

This is a special case of the general case of an equivalence e: A — A’
depicted in the diagram in the margin, implying (4, fe,!) = (4’, f, 1.
The point is that the degree m and degree —m maps give the same bundles
(by composing with r), while as maps they are different. 4

3.7 Interlude: combinatorics of permutations

In this section, we take a break from analyzing set bundles in order to look
more closely at permutations themselves, in particular permutations of
finite sets. In Figure 3.11 we depict the same permutation as in Figure 3.6,
but “unfolded”.

It will be useful to have a more concise notation for permutations.
The permutation ¢ will be denoted (1 2 3)(4 5). The two groups of
parentheses indicate the two cycles, and the order within a group
indicates the cyclic order. Since the starting point in a cycle doesn't
matter, we could also have written, e.g., (31 2)(5 4).

In general, if a1, a, . . ., ai are pairwise distinct elements of a decidable
set A, then we write (a1 a2 --- ai) for the permutation of A that maps
aj to ay, ..., ax to a1, and leaves any other elements untouched. Such a
permutation is called a cyclic permutation or, somewhat confusingly, a
cycle. If we want to specify the length, we call it a k-cycle. A 2-cycle is
also called a transposition.

ReEMARK 3.7.1. Any cycle (X, f) in the sense of Definition 3.6.3 (i.e., a
cyclically ordered set) gives rise to a permutation ¢ of X consisting of a
single cycle. If X is an n-element set and xp : X, then we can write this
permutation in cycle notation as (xq t(xg) -+ t""(xp)).

Any permutation t on a set X corresponds via Theorem 3.3.8 to a
set bundle over S!, p: A — Sl. Writing A as a sum of its connected
components, we express this set bundle as a sum of connected set
bundles, but these correspond to cycles by Corollary 3.6.4. Note that
cyclic permutations can move at most finitely many elements, and cannot
give, e.g., the infinite cycle (Z,s). Moreover, to define the cycle (X, t)
from, e.g., the transposition (x x’) requires that the set X is decidable. .

DEFINITION 3.7.2. Let A be a set with a permutation ¢. If o(a) = a, we say
that a is a fixed point of 0. If o(a) # a, we say that a is moved by 0. The
support of o is the subset of A consisting of the elements that are moved
by o. 4

Note that if A is decidable, then we can decide whether an element is
moved or is a fixed point.

Exercise 3.7.3. Let A be a decidable set with two permutations ¢, T. Show
that if o, 7 have disjoint supports, then they commute in the sense that
0T =102 4
Exercise 3.7.4. Prove that a k-cycle permutation of a decidable set A
can be written as a composition of k — 1 transpositions by verifying the

A——m A

N

FIGURE 3.11: A permutation ¢ with
two cycles.

29Thus, disjoint cycles commute, so
when we express a permutation on
a finite set as a product of disjoint
cycles, the order doesn’t matter.

THE UNIVERSAL SYMMETRY: THE CIRCLE 88

identity

(a1 az --- ax) = (a1 ax)(ar ax-1)--- (a1 az). a

COROLLARY 3.7.5. Any permutation of a finite set can be expressed as a compo-
sition of transpositions.

To show this, first write the permutation as a composition of cyclic
permutations, then apply Exercise 3.7.4 to each cycle.3°

Exercisk 3.7.6. Show that there are n! permutations of a finite set of
cardinality n, where n! := fact(n) is the usual notation for the factorial
function.

Hint: One way (not the only one) is to construct bijections Aut(0) = 1

and
(3.7.1) Aut(AII1) = (AL 1) x Aut(A)
for all finite sets A.3* 1

Exercisk 3.7.7. Let A be a finite set of cardinality 7 and assume 0 < k < n.
Show that the number of k-element subsets of A is given by the binomial

Find a formula for the number of k-cycle permutations of A using

coefficient33

factorials and /or binomial coefficients. a

3.8 The m™ root: set bundles over the components of Cyc

Let’s first give names to some important components of Cyc that we have
met in previous sections, e.g., in Lemma 3.6.25.

DerinimioN 3.8.1. Define Cyc,, := Cyc(;). For each positive m : N, define
ms)- We call Cyc, and Cyc,, the type of infinite cycles and
type of m-cycles, respectively. a

Cyc,, = Cyc

Recall the equivalence ¢ :S' = Cyc, of Definition 3.5.3 between the
circle and the type of infinite cycles. In this section, we reinterpret the
degree m function 0,, as a map of infinite cycles. In fact 0,, makes sense
as a map on all cycles, and we’ll use it to begin the classification of the
connected set bundles over Cyc,,, for positive integers n. That’s why it’s
instructive to rephrase connected set bundles over Sl in terms of cycles,
even though they could just be transported along the identification
¢:S!' 5 Cyc, corresponding to c.

Before we do the degree m maps, let’s note that the universal set bundle
over Cyc, is represented by the constant function cstpt, : 1 — Cyc,
sending the unique element of 1 to pt, := (Z,s):Cyc,, the standard
infinite cycle.34

For the rest of this section, we fix some positive m :N. We now give a
description of the m-fold set bundle over the circle in terms of cycles.

We proceed as follows. First we present the answer, a set bundle
we call p,,:Cyc, = Cyc,, and then we prove that 6,,:S! — S! and
pm : Cyc, — Cyc, correspond to each other (and to pow,, : Tot(R,;) —
S!) under the equivalence ¢ :S' = Cyc,.

What should we require of p,, (X, t) for (X,) : Cyc,? Well, 6,, : St — St
sends « to * and O to O™; only the O where k is a multiple of k is in

39This representation is not unique, as

for example (1 2) = (2 3)(1 3)(2 3) as
permutations of {1, 2,3}. However,
in Corollary 4.5.11 below, we’ll show
that the parity (odd/even) of the
number of transitions is invariant.

3'In fact, the bijection (3.7.1) can be

constructed for any decidable set.
Escard63* constructed more gener-
ally, for any type X, an equivalence
Aut(X 11 1) S (X I 1) x Aut(X),
where

Y = 2 H((y S 2)U((y S z) — 0)).

y:Yz:Y

By a local version of Hedberg’s Theo-
rem 2.20.15, Y’ is a subtype of Y.

32Martin Escard6. UF-Factorial. Agda

formalization. 2019. URL: https :
//www.cs.bham. ac.uk/~mhe/
TypeTopology/UF-Factorial.html.

33Binomial coefficients are familiar

from Pascal’s triangle,

where each number is the sum of the
two above, e.g., (g) =6.

The forgetful map from Cyc to
InfCyc is an equivalence. Therefore
we consider Cyc, and InfCyc as
definitionally equal.

34In light of Lemma 3.5.2 we see that

the fiber of this universal set bundle
over (X, t):Cyc, is (equivalent to) X
itself — that’s certainly a universal set
associated to the infinite cycle (X, t)!

https://www.cs.bham.ac.uk/~mhe/TypeTopology/UF-Factorial.html
https://www.cs.bham.ac.uk/~mhe/TypeTopology/UF-Factorial.html
https://www.cs.bham.ac.uk/~mhe/TypeTopology/UF-Factorial.html

THE UNIVERSAL SYMMETRY. THE CIRCLE 89

the image of 0,,. So we have to find an infinite cycle (Y, u) with “u™
corresponding to t”. We achieve this by “stretching” X: Let Y be m
copies of X and let u jump idly from one copy to another except every
m'™ time when u also is allowed to use ¢. This is illustrated in Figure 3.12
with the shift by ¢ being vertical and the movement from copy to copy
going around a circle.

ConstruCTION 3.8.2. For any type X and t : X — X, we define the m" root
Vt:(mx X) — (mx X).
Implementation of Construction 3.8.2. We set

(k+1,x) fork<m—1and

Vt(k,x) =
(0,t(x)) fork=m-—1. O

Only one m™h of the time does Vf use t: X — X, the rest of the time it
applies the successor in m. Indeed, iterating V/f we get an identification
of type (V)" (k, x) = (k, t(x)); hence the term “m'™ root” is apt.

DeriNtTiON 3.8.3. The formal m™ root function is defined by:
Pm Z(X—)X)—) 2(X—>X), pom(X,t) = (mx X, Vt). 4
X:Uu X:u

We use p for “root” to denote this incarnation of the degree m function.

Lemma 3.8.4. Ift : X — X isan equivalence, then sois ¥/t : (mxX) — (mxX).

Proof. Lett:X — X be an equivalence. We prove that the fibers of Vt
are contractible.

For the fiber at (0, x) we note, using Lemma 2.10.3, that identifications
in (0, x) = (Vt)(¢, y) consist of pairs of proofs of ¢ = m — 1 and identi-
fications in x = #(y). Both Yp.,,, £ = m — 1 and t~!(x) are contractible,
and so (V+)71(0, x) is contractible.

For the fiber at (k, x) with k:m not 0, identifications in (k,x) =
(Vt)(£,y) consist of pairs of proofs of £ + 1 = k and identifications in
x = y, so (Vt)"\(k, x) is contractible since both Y., £ + 1 = k and
Yy.x X =y are. O

Lemma 3.8.5. Let X : U and t : X — X. If (X, t) isa cycle, then so is pm(X, t).

Proof. Clearly, mx X is a nonempty set if X is. We already know ¥/t is an
equivalence if f is. For connectedness, let (k, x), (k’, x") : (mx X). We need
to show the proposition that there exists 1 : Z with (k’, x") = (V)" (k, x).
Let n: Z be such that x” = t"(x). Then (V)" (k, x) = (k, t"(x)) = (k, x'),
so if k = k’ we’re done. Assume k < k’. Then (VH)¥~*(k,x’) = (k’, x"),
so (Vt)y"m+K'=k(k,x) = (k’,x’), as desired. The case k > k’ is similar. O

The question now arises: how does p;, act on the components of Cyc,
and what can we say about the preimages p;,!(X, t) for an arbitrary cycle
(X, t)?

The first part is easy, since the product of m with an n-element set is
an mn-element set.

Lemma 3.8.6. The degree m function restricts to give pointed maps

pm:Cyc, =« Cyc,,, and py:Cycy —. Cyc,.

Vt:(mx X) = (mx X)

N

m

Ficure 3.12: The m™ root Vt of a
function t : X — X, here illustrated
in the case m = 5.

Of course, it’s also quite easy to write
. m .

down an inverse of Vt given an

inverse of f.

In terms of iterated addition, we
have ¢(k,r) = (z ¥ z + m)" (k).

THE UNIVERSAL SYMMETRY. THE CIRCLE 90

Proof. Recall Definition 3.8.1. The components Cyc, are pointed by
pty = (Z,s) if k = 0, and pt, := (k,s) else. Note that the function
@:(mxZ) — Zgivenby @(k, r) := k+mr is an equivalence, with inverse
given by Euclidean division by m. Moreover, we have @i/s = s ¢, since

o (Vs(k, 7)) =k +1+mr=s(p(k,r) forall(k,r):mXxZ.

This shows that ¢ gives an identification of infinite cycles (mx Z, i/s) =
(Z,5), and hence the m'™ root construction maps the component Cyc, to
itself.

Analogously, we can restrict ¢ to an equivalence mXx n = Y ;. n(k <

mn), and get an identification of cycles p,,(pt,) = pt,,,, showing that

mn’
pm maps the component Cyc, to the component Cyc, . . O

We now analyze how p,, acts on paths. Let (¢,!):(X,t) = (X’,t).
Since p,; maps first components X to m X X, we get that the first
projection ofap, (¢,!)isid X e: (mX X) — (mx X’). We are particularly
interested in the case of the loops, that is, (¢,!):(X,t) = (X,t). We
calculate (id X e)(k, x) = (k, e(x)), which by the property of the m'" root
is equal to (¥/e)"(k, x). In particular, if we take e := t~1, then we get
(id x t71) = (V1) which means that ap pm(f‘l,) is indeed the m'™h
power of a generating loop at the image cycle p,;(X, t). In particular,
this holds for the standard infinite cycle (Z, s) : Cyc, and the standard
n-cycle (m,s): Cyc,,.

Why does p;, : Cyc, — Cyc, correspond to the m-fold set bundle we
defined in Definition 3.6.5? Recall the equivalence c¢:S! — C from
Definition 3.5.3. For the two m-fold set bundles to correspond under
this equivalence we need an element in the identity type represented by

S! —— Cyg,

W e

St —— Cyc,.
Thatis, we need an elementin p,, ¢ i>sl—>Cyc0 ¢ 6. Under the equivalence

eveye, (8! - Cyc,y) = Z (X, t)=(X,1))
(X,t):Cyc,

of Theorem 3.1.2, the composite ¢ 6,, is given by ((Z,s),s™) and the
composite py,c is given by ((m x Z, /s),id X s7!): we must produce an
element in

((m x Z, s),id x s_1) > ((Z,s),s™).

Consider the equivalence ¢ : (m x Z) = Z with ¢(k, n) := k + mn also
used in Lemma 3.8.6. discussed above. Transport of 4/s along ¢ is
exactly s, i.e., ps=s .35 Likewise, transport of id X g1 along @ iss™",

so that ¢ lifts to an element in ((m x Z, ¥5),id xs™) = ((Z,s),s™).
Exercisk 3.8.7. Extend the above construction to an identification of type
PmC i’sl—uCch c 6, in case all these maps are taken to be pointed. .

So we know that the fiber of p,, at an infinite cycle (X, f) is an m-
element set. In fact, we will identify this set as X /m := X/~,, where ~,
is the equivalence relation that identifies points that are a distance mr

35Note that we formulate this in such
a way that we don’t need to talk
about the inverse of ¢. Of course,
the inverse of ¢ maps z:Z to the
remainder and the integer quotient
of z under Euclidean division by m,
cf. Lemma 2.23.8.

THE UNIVERSAL SYMMETRY. THE CIRCLE 91

apart, for some r : Z. Formally, let x ~,, x"ifand only if 3, .7(x" = """ (x)).
(Such an r is unique if it exists.) Indeed, the fiber is

Y (X)) D (mxY, Yu)).

(Y, u):Cyc,

We sketch an equivalence from X /m to p,,!(X, t). See Construction 3.8.11
below for a careful proof of a more general statement for arbitrary cycles,
not only infinite ones. Let Y be an equivalence class of X /m, taken as a set.
One should think of Y as a set {. .., t72"(x), t 7™ (x), x, t"(x), t>"(x), .. .}
for some x : X. Then (Y, t"*) is an infinite cycle and we can construct a nat-
ural3® identification i : (X, t) = (mx Y, ¥/t™), so that (Y, t",i): p; (X, t).
Themap Y +— (Y, ™, i) is the intended equivalence.

The reader will no doubt have noticed that X /m is a finite cycle. We'll
return to the significance of this below in Section 3.9.

Our next step is to identify the fiber of p,, over a general cycle (X, t).
Classically, the remaining cases are those of finite n-cycles, but it’s
illuminating to be a bit more general. Note that the equivalence relation
~n defined above for an infinite cycle makes sense for all cycles.

Lemma 3.8.8. For any order d : Order, the type Z(X,t):cycd X is contractible,
where Cyc,; denotes the component of Cyc consisting of cycles of order d.

Proof. First we note that the goal is a proposition. Clearly, for any cycle
(Y, u), the singleton type Z(X,t):Cycmu)((X/ t) = (Y, u)) is contractible.
Using Lemma 3.6.14 and Corollary 3.6.15, it follows that) x ; Cyey) X
is contractible. Now the lemma follows by set truncation elimination. O

Lemma 3.8.9. For any cycle (X, t), if (V1" = idmxx, then m divides n, i.e.,
n = mq for some q:Z, and t1 = idx. In other words, m divides the order of

m

t.

This follows simply by looking at the first component, where V acts
as the successor operation on m. See Definition 3.6.20 for the order.

We're almost ready to identify the fiber of p,, at a cycle (X, t). Let’s
explore first the problem of finding an identification of (X, t) with
pm(Y,u) = (mx Y, u) for a given cycle (Y,u). By Lemma 3.6.14,
a necessary condition for such an identification is H; =guz) H e
Recall from Definition 3.6.12 that H; = {n:Z|t" = idx } and Hyy =
{n:Z| (Wu)" = idmxy }. We know from Lemma 3.8.9 that m divides the
order of X/u, so the fiber p;!(X,t) is nonempty only if m divides the
order of t.

A key ingredient for the converse is the following.

LemMma 3.8.10. Let (X, t): Cyc be a cycle with order divisible by m and let
xo be an element of X. Then the map f:m — X/m, f(k) == [t*(xo)] is an
equivalence.

Proof. Fix an equivalence class V : X /m and consider its preimage under
f, fYUV) = Tp.m(V = [t¥(x0)]). The contractibility of this type is
a proposition, so we may choose x:X with V = [x]. Then (V =
[tK(x0)]) = ([x] = [t*(x0)]) = (x ~m tF(x0)). So we need to show that
Yk m(X ~m t¥(x0)) is contractible. More simply, we need to show that
thereis a unique k with x ~,, t¥(x¢). Since (X, t) is a cycle, we may further
choose n:Z with x = t"(x¢). By Euclidean division, write n = gm +r

36The map defined by e(k, x) := tk(x) is
an equivalence from m X Y to X such

that te = e V™).

Here we take V not as a set, but as an
element of the set X — Prop. See the
discussion after Lemma 2.20.4 for the
distinction.

THE UNIVERSAL SYMMETRY. THE CIRCLE 92

with q:Z, r:m. Then x = t"(xg) ~m t"(xg), so we have our center. Let
k : m also satisfy x ~,, t*(xo). We need to show the proposition k = r.
But t" % (xo) ~m X0, S0 we may take ¢’ :Z with 7' m+r=K(x0) = xo. Since m
divides the order of ¢, this implies r = k, as desired. a

Now we have all the pieces needed to prove the main result.

ConsTruCTION 3.8.11. For any cycle (X, t), we have an equivalence between
o (X, t) and P X X /m, where P expresses that m divides the order of t,
formally P := (H; € mZ) (see Definition 3.6.20).37

Implementation of Construction 3.8.11. We'll use Construction 2.9.9, and
we first define the function

o (X, t) > PxX/m,

by mapping (Y, u) and an identification of cycles e : (X, t) = (mXxY, /u)
to the proof of P from Lemma 3.8.9 and the class V, = [¢e71(0, y)]: X/m,
for any y:Y.3® Asasubsetof X, V, = {x:X| fst(e(x)) = 0}.

In the other direction, to define the function

h:PxX/m— p,l(X,1),

fix an equivalence class V of X /m, and assume that m divides the order
of t. As in the discussion after Exercise 3.8.7, we take V as the set of
elements in X that lie in the class V. Then (V, ") is a cycle.3® We also
need an identification (X,t) = p,(V,t") = (mXV, W) This we
define viaa map e’:mx V — X, e’(k, v) := t¥(v), which preserves cycle
structure: te’ = ¢’A/t". The map ¢’ is an equivalence if H; € Huyr, by
Exercise 3.6.19. So let nn:Z, and assume that t" = idx. Then P implies
that we may write n = gm for some q:Z, so

(Vemy® = (Am)1" = (idg X ™)1 = (idgm X ") = (idgm X idy) = idmxy-

Straight from these definitions, we see that g o h = id. We leave to the
reader to check that h o g =id. |

3.9 Higher images

In this section we take a quick break from characterizing the connected
set bundles of Cyc,, for finite orders n in order to make good on our
earlier promise to say something about the fact that each fiber of p,,
carries a cycle structure. This involves the notion of 0-image of a map,
but we might as well introduce the general notion of n-image while
we're at it.

Recall from Definition 2.17.11 the propositional image }_, . g|| f)l
of amap f:A — B. The propositional image can be generalized using
n-truncation instead of propositional truncation.

Recall furthermore the image factorization from Exercise 2.17.12:

A f B

im(f)

37When X is a decidable set then LPO
allows for a simpler formulation:
Then P is either false, in which case
Pnl(X, t) is empty, or true, in which
case the preimage is X /m.

38Note that this doesn’t depend on y,
so that Theorem 2.22.8 applies: (0, y)
and (0, y’) are a distance mr apart,
and e~! preserves this distance.

39Indeed " is properly restricted to V:
If x lies in V, then so does " (x).

THE UNIVERSAL SYMMETRY. THE CIRCLE 93

Here p is surjective and i is injective, and any such factorization is
equivalent to this one. Both surjectivity (Definition 2.17.1) and injectivity
(Definition 2.17.2) rely on the notion of a proposition: all fibers of p are
nonempty and all fibers of i are propositions.

The uniqueness of the factorization f = ip can be visualized in terms
of the two diagonals of the diamond below: for any surjection g: A — X
and injection h: X — B with f = hg, one can construct a (unique)
equivalence e with ¢ = ep and i = he.

X X
g h g 0 h
(3.9.1) A/f\B A/eg\B
im(f) im(f)

The existence of a unique equivalence e as above is called the universal
property of the propositional image. Uniqueness of e above also follows
from the following two exercises.

Exercisk 3.9.1. Let A, B, X be types and i:A — B an injection. Let
i_:(X - A) - (X — B) be postcomposition with i. Show that
ap; :(f > g) — (if > ig)isanequivalence, forany f,g: X — A. .
Exercise 3.9.2. Let A,B,Y be types and p:A — B be a surjection.
Let _p:(B = Y) — (A — Y) be precomposition with p. Show that
ap , :(f — ¢) = (fp = gp) is an equivalence, forany f,g:B =Y. .

We will now define higher images and generalize the notions of
injection and surjection such that a similar universal property of higher
images can be proved.

DerINITION 3.9.3. Let A, B be types and let f:A — B. We define the
n-image of f as

imn(f) = Z”f_l(b)”n 4
b:B

Observe that im_1(f) = im(f).

DEFINITION 3.9.4. A type A is called n-connected if its truncation || A]|, is
contractible. A function f: A — B is called n-connected if the fiber f~1(b)
is n-connected, for each b : B. 1

Thus, any type is (—2)-connected, since its (—2)-truncation is con-
tractible. Moreover, the (—1)-connected types are precisely the nonempty
ones, and the 0-connected types are those we have called connected in
Definition 2.16.8.

DEFINITION 3.9.5. A function f: A — B is called n-truncated if the fiber
f71(b) is an n-type, for each b: B. 4
One may verify now that the (—1)-connected functions are the surjec-
tions, and the (—1)-truncated functions are the injections.
There is a factorization f = ip of amap f : A — B through its n-image,
where p is defined by setting p(a) = (f(a), |(a, refl,))|), and where i is
defined by setting i := fst, as in the following diagram.

Recall that i_ and _p are compact
denotations of the maps h + ih and
h v hp, respectively.

If A and B are sets, then the fibers
of f:A — B are sets as well. Hence
imp(f) amounts to the set of pairs
(b,a) such thatb = f(a), thatis,
the inverse of the relation that is
commonly known as the graph of f.

It is instructive to explore the special
case of n = =2. Everymap f:A — B
is trivially (—2)-connected. Moreover,
fst : im_»(f) — Bis an equiva-
lence and (—2)-truncated maps are
precisely equivalences. Thus the fac-
torization of f : A — B through its
(—2)-image can go through B and be
identified with f = idpf.

THE UNIVERSAL SYMMETRY. THE CIRCLE 94

(3.9-2) X« /

imy, (f)

The map i is n-truncated, because, for any b:B, the fiber i~!(b)
is equivalent to || f~'(b)||,. Furthermore, by Lemma 2.25.2 and the
following lemma, p is n-connected.

LemMma 3.9.6. For every type A, the constructor |_|,:A — ||A|ln is n-
connected.

Proof. We have to prove that the n-truncation of each fiber of |_|,
is contractible. We start by defining a function c: [T, A”n|||x|;1||n
producing the centers. Since c takes values in n-types, we can define ¢
by n-truncation elimination by setting c(|al,,) = |(a, reflj;,)|,

The next step is to construct an element of [T,..j 4y, ITy:jjxp:1y, (c(x) =
y). Since the identity ¢(x) = y is an (n — 1)-type, it suffices to give an
element of [, 4), Iz |x:1(c(x) = |z[4). Since fibers are sum types, it
suffices to give an element of [T4y, [T2: 4 I1p:x =), (c(x) = |(a, p)ln)-
After swapping the first two products, the identity reduces by path
induction to c(|a|,) = |(a, refl,,)| », for which we can use the reflexivity
path.]

ConstrUCTION 3.9.7.Let §:A — X and h: X — B, and let 3:A —
Yp.8 h=1(b) be the composition of ¢ with the canonical equivalence X —
Y. h1(b) from Lemma 2.25.2. Thus §(a) = (h(g(a)), g(a), refly(4(ay) for
each a : A, and the situation is visualized in the following diagram:

A g X h B
X zl fst
Y5 hH(b)

Then we have equivalences e(b): (hg)™'(b) = L. -1y § (b, y) forall b: B.

Implementation of Construction 3.9.7. Let, for each b: B, e(b) map any pair
(a,p):(hg)'(b) to ((g(a),p),(a,q)). Here q is of type (b, g(a),p) =
(h(g(a)), g(a), refly,(g(a))) and is given componentwise by p:b = h(g(a)),
refly(;), and by the easy path over p from p to refly (s in the identity
type family _ = h(g(a)). This construction uses Definition 2.10.1,
Definition 2.7.3, and Exercise 2.14.4(3). O

Exercrsk 3.9.8. Complete the details of Construction 3.9.7. In particular,
prove that e is a fiberwise equivalence. Alternatively, construct your
own e by using Corollary 2.9.11 (twice!). 4

ExErcisk 3.9.9. Let X bea type and let Y(x) bea type forall x : X. Construct
an equivalence between ||}_,.x Y(x)||, and || .. x| Y ()| n [n- a

We shall show in Theorem 3.9.11 that the n-image factorization of
f:A — Bin Equation (3.9.2) is unique. This result is called the universal
property of the n-image. We start by defining a convenient abbreviation.

DerINITION 3.9.10. Let X and Y be types. For any f: X — Y we define
the type Fact(f) of factorizations of f as follows:

As a figure of speech we may speak
of "a factorization f = h o g." Here
Z is implicit in the types of ¢ and

h. The particular identification of f
with h o ¢ follows from the context.

THE UNIVERSAL SYMMETRY. THE CIRCLE 95

Fact(f) = Y)Y fShog a

Z:Ug:X—>Zh:Z->Y

THEOREM 3.9.11. Let f:A — Band n >

—2. Then the following type of
factorizations of f through its n-image is contractible:

Z (isnConn(g) X isnTrunc(h)).
(C,g,h,r): Fact(f)

Proof. As the center of contraction we take (im,(f), p, i, refls, !, !), with
p and i as in Equation (3.9.2). We can use refl; : f = ip since fst(p(a)) =
f(a)foralla:A.

Let X be a type and assume we are given an n-connected function
g:A — X and an n-truncated function /1 : X — B and an identification
y:f — hg. Our task is then to construct a equivalence e : im,(f) — X
and to give identifications represented by the left and the right triangle in
Figure 3.13, that is, of types ¢ = ep and i = he. Then the factorization
(X, g, h,s,!,!) canbe identified with the center of contraction by standard
transport lemmas.

To simplify these constructions, we are going to replace ¢ and & by
projection maps. In view of Construction 3.9.7, we may assume without
loss of generality that X = },.5 P(b) for some family of n-types P(b),
and h = fst.

By Lemma 2.25.2 we may also assume without loss of generality that
A=Yy.pYy.pp) Qb y), where Q(b, y) = ¢ 1(b, y) are the fibers of g,
which are all n-connected by assumption. Define R(b) := Yy :p(b) QW,y)
for all b:B. With A = ¥ .3 R(b), the function g takes the form of
the projection map (b, y, q) — (b, y), as shown in Figure 3.14. Using
s: f = hg we get an identification of f with the first projection, and an
equivalence between its n-imageand } . || R(b)|| ». The n-connected map
p then takes the form (b, y, q) — (b, |(y, 9)|») as shown in Figure 3.14.

Since (Y_;.5 1) = B via fst, each type in Figure 3.14 can be considered
to be the sum of a type family parametrized by b : B. For constructing the
equivalence e that makes Figure 3.14 commute, it suffices to construct
for each b : B the equivalence e, such that Figure 3.15 commutes. Then
we obtain e as desired by summing over B, that is, by putting e(b, z) :=
(b, ep(z)) for all b: B and z : || R(D)|| -

Now let b:B. We have [|[RO)|[» = [|Xy.p@) QM, Y|l Since P(b) is
an n-type by assumption, we have the canonical equivalence of type
1y pe) QU Wl — Ly pwyllQM, y)l|» defined by mapping [(y, q)|x to
(y,191n) (cf. Exercise 3.9.9). Since Q(y, b) is n-connected for each y : P(b)
by assumption, so that ||Q(b, y)||, is contractible, we also have the
canonical equivalence fst : Y., . p)||Q(b, y)ll» — P(b). The composite of
these two equivalences is ej.

Finally, the identifications of type ¢ = ep and i = he, represented by
the left and right triangle in Figure 3.14, can also be constructed pointwise
for every b : B, that is, in Figure 3.15. Indeed, we have e|_|,, = fst for the
left triangle, and the right triangle commutes trivially. |

Exercise 3.9.12. Let A be a coherent type, B a type, and f:A — B a
function. Then all n-images of f (1 > —2) are coherent. a

For the rest of this section, fix some natural number m > 0. As
for our promised application, we consider the fibers of the m™ root

imn(f)

FiGURE 3.13: Visualization of task to
construct e.

LIIRO)l
b:B

(b,y,q)H(b,I(y/q)V g Y’c

Lz R(b)

by, q)H(by)\« /

X P(b)
b:B

FIGURE 3.14: Visualization of task to
construct e, reinterpreted.

IR,
ep \
/

P)

R(b) 1

Ficure 3.15: Taking summands for
b: B in Figure 3.14.

THE UNIVERSAL SYMMETRY. THE CIRCLE 96

map pn. On infinite cycles, this is equivalent to the degree m map
of the circle by Exercise 3.8.7, so we have a map _/m:Cyc, — Set,
which we identify with the family R,, :S! — Set (Definition 3.6.7) by
precomposing with the equivalence ¢ :S! — Cyc, from Theorem 3.5.6.
For every infinite cycle (X, t), the set X /m has m elements, and the (-1)-
image is readily identified with FinSet,,, the groupoid of m-element sets
(Definition 2.24.5). But what is the 0-image? The following theorem
identifies the 0-image of X /m with Cyc,,.

TueEOREM 3.9.13. The 0-image factorization of the map _/m:Cyc, — Set
consists of the type Cyc,, and maps q:Cyc, — Cyc,, and r:Cyc, — Set.
The map q sends any infinite cycle (X, t) to the m-cycle (X /m,t), where
t:X/m — X/m maps [x] to [t(x)]. The map r:Cyc, — Set sends any
m-cycle to its underlying set, so that indeed _/m = rq.

Proof. We need to check that g is 0-connected and that r is 0-truncated.

The latter is direct, since the preimage of r at any set S can be identified
as a subset of the set of functions S — S.

To show that g is 0-connected, it suffices to consider the fiber at
the standard m-cycle (m,s). We’ll show that this fiber is equivalent
to Cyc, itself, which is indeed 0-connected. The mediating map is
induced by our old friend p,,. Indeed, define ¢ :Cyc, — q~'(m,s) by
P(X,t) = (pm(X,t),e71), where e : (mx X)/m = mmaps [(k, x)] to k.4°
As inverse of ¢, define 1 by Y((Y, u), e’) := (e’(0), u™), for all (Y, u) : Cyc,
ande’:m = Y/m. O

Exercisk 3.9.14. Complete the details of the proof above. 4
The theorem and its proof in fact generalize to cycles of all orders.

Exercise 3.9.15. Let d be any order and let p;, : Cyc; — Cyc, ; be the
restriction of the m'™ root map to Cyc,. Define _/m:Cyc, ; — Set as
the family of fibers of p,,. Show that the 0-image factorization of _/m
goes via Cyc,, by lifting _/m to q:Cyc,,; — Cyc,,. In particular, show
that the preimage of q at the standard m-cycle can be identified with
CyC a 4

3.10 Universal property of Cyc,

Fix a natural number n > 0 and recall the definition of Cyc, from
Definition 3.8.1. This section is devoted to showing that maps out of
Cyc,, into a groupoid A are given by the choice of a point together with
a symmetry of order n: any map Cyc,, — A is uniquely determined by a
point a : A together with a symmetry ¢:a = a such that refl, = ¢”*.4*

Recall that Cyc,, contains the point pt, := (m,s), i.e., the standard n-
cycle. This point has a symmetry o, := (s7!,!) whose second projection
is a proof that ss™! = s™!s. Recall also from Corollary 3.6.16 that all
symmetries of pt, are of the form ¢/, fori =0,...,n - 1.

Given a groupoid A, and a map f:Cyc, — A, one can consider
f(pt,):Aand ap f(on) : f(pt,) = f(pt,). Proofs of the equation refl,; =
oy, in the set pt, = pt, are mapped by ap s to proofs of refl¢p) =
ap(0os)". Hence, the following map is well defined:

evy,a :(Cyc, > A) — Z Z refl, =o", f (f(pt,), apf(on), n.

a:Aoc:a>a

4°To see that e is well defined, keep
in mind that m X X is equipped
with permutation ¥t by p,. Also, e
preserves cycle structure.

4'Notice that this is a less general
result than Theorem 3.1.2, the uni-
versal property of the circle, where
we don’t need to assume that A is a
groupoid. That’s why n > 0 in this
section.

THE UNIVERSAL SYMMETRY. THE CIRCLE 97

THEOREM 3.10.1. For any groupoid A, the map evy, 4 above is an equivalence.

Proof. Leta:A and 0:a = a be such that refl, = ¢" holds. We want to
prove that the fiber

Y. (a,0,) > evua(f)
f:Cyc,—A
is contractible. Hence we first need to construct a function f : Cyc, — A
together with an identification p:a = f(pt,) such that ap f(an)p =po,
see the diagram in the margin.

In order to do so, we will construct a function f : Cyc,, — A together
with a family of functions p, : (pt, = x) — (a = f(x)), parametrized
by x:Cyc,, satisfying p»(70,) = px(t)o for all 7:pt, = x. By setting
p = ppt, (refl,t), we will then have succeeded.

Let’s explain why the above indeed suffices. First, a simple path
induction on @:x = x’ shows that apf(a)ﬁx(_) = pr(a_). On the
other hand, instantiating the condition on p with x := pt, proves that
Ppt, (ton) = Ppt (T)o for all :pt, = pt, . This leads to the chain of
equations:

apy (on)p = an(Gn)ﬁptu (reﬂptn) = ﬁptn (on reﬂptn)
= Ppt, (reflpr 04) = Pyt (reflye Yo = po

This shows that p suffices.
It remains to construct the promised f and p. For each x:Cyc,,
consider the type (with the product part visualized in the margin)

T(x):=), Y. [n(ron) =@=p n(t)o.

b:A m:(pt,>x)—(a>b) T:pt,>x
We claim that T(x) is contractible for each x:Cyc,. We then get f(x),
px as well as the proof that p, has the desired property as the three
components of the center of contraction, respectively.
To prove that T(x) is contractible for all x in the connected type Cyc,,
it is enough to prove it for x = pt, . First, the equivalence i — ¢/, of type
n = (pt, = pt,) induces an equivalence of type

Tpt) > Y. Y, [Inrs(k) =@z nlk)o.
b:A m:n—(a>b) k:n
Now, note that any 7:n — (a = b) such that n(s(k)) = n(k)o for all
k:m is entirely determined by 71(0), as then 7(i) = m(0)o’ for all i:m.
Moreover, any path g in @ = b defines a function 7, :i + o’ which
satisfies 71,(0) = g and 714(s(k)) = 7t4(k)o for all k : m. Thus, evaluation at
0 is an equivalence

evp : (Z Hn(s(k)) =(a5b) n(k)a) S (a>b), evo(n,!):=mn(0).

n:n—(a>b) k:n

The equivalence ev(induces an equivalence of type

T(pt,) = (Z a> b)
b:A

and hence T(pt,) is contractible. This completes the construction of the
center of contraction of the fiber ev;}A (a,0,)).

a — f(pt,)
alu ulapf(ﬂn)

@ —— f(pt,).

The construction of f is really a
special case of the delooping of the
abstract group homomorphism

ol o in Section 7.5.

THE UNIVERSAL SYMMETRY. THE CIRCLE

Finally, we prove that the fiber ev;}A(a, 0,!) is a proposition. Let
(f,p,Y)and (f’,p’,!) be two elements of the fiber. We want to identify
them. From the proofs in their third components we infer pop~! =
aps(o,) and p'op’™t =ap (o), respectively. Define the family of sets
U(x) = (f(x) = f'(x)) parametrized by x:Cyc,. It suffices to find a
X Ix:cye, U(x) such that the diagram in the margin commutes.

The element 7 := p’p~' : U(pt,) is peculiar in that trpgl(’f) = 7 for all
q:pt, — pt,. Indeed, we use once again that symmetries of pt, in Cyc,
are of the form ¢/, and we calculate:

s i -1 -1

trplj;’(’t) = apf;((j;;,) T apf((j,{l)_l = p o Tpg_ip_l = p’p

Now it is easy to prove that the following type is contractible:

Vo= ¥ TT a=uplo

a:U(x) r:pt, >x

To do so, we use the connectedness of Cyc, and verify the contractibility
of V(pt,). Clearly, (7,!) is a center of contraction by the peculiarity of 7.
Also, if a and f are elements of V(pt,), then & = B by taking r = refl,, .
Now y is defined as the function mapping x to the center of contraction
of V(x), so that x(pt,) = 7 as we wanted. O

As a direct corollary, we can classify the connected set bundles over
Cyc,, for finite orders n. Indeed, the corresponding families S : Cyc, —
Set are precisely those cycles (X, t) with " = id, i.e.,, whose order
divides n. If we restrict to decidable connected set bundles, equivalently,
decidable cycles, these are the usual finite cycles with order dividing .

4 —=— F(pt,)

P'lu /
x(pt,)

f'(pt,)

98

4
Groups, concretely

Anidentity typeis not just any type: in the previous sections we have seen
that the identity type a =4 a reflects the “symmetries” of an element a
in a type A.* Symmetries have special properties. For instance, you can
rotate a square by 90°, and you can reverse that motion by rotating it by
—90°. Symmetries can also be composed, and this composition respects
certain rules that hold in all examples. One way to study the concept of
“symmetries” would be to isolate the common rules for all our examples,
and to show, conversely, that anything satisfying these rules actually is
an example.

With inspiration of geometric and algebraic origins, it became clear to
mathematicians at the end of the 19 century that the properties of such
symmetries could be codified by saying that they form an abstract group.
In Section 2.5 we saw that equality is “reflexive, symmetric and transitive”
—implemented by operations refl,, symm, , and trans, » ¢, and an abstract
group is just a set with such operations satisfying appropriate rules.

We attack the issue more concretely: instead of focusing on the abstract
properties, we bring the type exhibiting the symmetries to the fore. This
type is called the classifying type of the group. The axioms for an abstract
group follow from the rules for identity types, without us needing to
impose them. We will show in Chapter 7 that the two approaches give
the same end result.

In this chapter we lay the foundations and provide some basic examples
of groups.

4.1 Brief overview of the chapter

In Section 4.2 we give the formal definition of a group along with some
basic examples. In Section 4.3 we expand on the properties of a group
and compare these with those of an abstract group. In Section 4.4
we explain how groups map to each other through “homomorphisms”
(which to us are simply given by pointed maps), and what this entails for
the identity types: the preservation of the abstract group properties. As
an important example, we study the sign homomorphism in Section 4.5,
which also provides us with the alternating groups.

In most of our exposition we make the blanket assumption that the
identity type in question is a set, but in Section 4.7 we briefly discuss
co-groups, where this assumption is dropped.

99

Since the symmetries p:a =4 a are
paths that start and end at the point
a:A, we also call them loops at a, or
automorphisms of a.

4.2 The type of groups

In order to motivate the formal definition of a group we revisit some
types that we have seen in earlier chapters, paying special attention to
the symmetries in these types.

ExaMPLE 4.2.1. We defined the circle S! in Definition 3.1.1 by declaring
that it has a point « and an identification (“symmetry”) O :+ = «. In
Corollary 3.4.6 we proved that « = « is equivalent to the set Z (of
integers), where n € Z corresponds to the n-fold composition of (J with
itself (which works for both positive and negative 7). We can think of this
as describing the symmetries of + as follows. We have one “generating
symmetry” J, and this symmetry can be composed with itself any
number of times, giving a symmetry for each integer. Composition of
symmetries here corresponds to addition of integers.

The circle is an efficient packaging of the “group” of integers, for the
declaration of » and O not only gives the set Z of integers, but also the
addition operation. 4

ExampLE 4.2.2. Recall the finite set 2:FinSet, from Definition 2.24.1,
containing two elements. According to Exercise 2.13.3, the identity type
2 = 2has exactly two distinct elements, refly and swap, and doing swap
twice yields refls. We see that these are all the symmetries of a two point
set you'd expect to have: you can let everything stay in place (reflz); or
you can swap the two elements (swap). If you swap twice, the result
leaves everything in place. The pointed type FinSet, (of “finite sets with
two elements”), with 2 as the base point, is our embodiment of these
symmetries, i.e., they are the elements of 2 = 2.

Observe that, by the induction principle of S!, there is an interesting
function S! — FinSety, sending «: S! to 2:FinSet, and O to swap. We
saw this already in Figure 3.2. 4

Note that the types S! and FinSet, in the examples above are groupoids.
For an arbitrary type A and an element a : A, the symmetries of a4 in A
form an co-group, cf. Section 4.7 below. However, in elementary texts it is
customary to restrict the notion of a group to the case whena =4 aisa
set, as we will do, starting in Section 4.3. This makes things considerably
easier: if are we given two elements g, 1:a =4 a4, then the identity type
g = his a proposition (and we can simply write g = k). That is, g can
be equal to & in at most one way, and questions relating to uniqueness of
identification will never present a problem.

The examples of groups that Klein and Lie were interested in often had
more structure on the set @ =4 a, for instance a topology or a smooth
structure. For such a group it makes sense to look at smooth maps from
the real numbers to a =4 4, or to talk about a convergent sequence of
symmetries of a. > See Appendix A for a brief summary of the history
of groups.

ReEMARK 4.2.3. The reader may wonder about the status of the identity
type a =4 a’ where a,a’: A are different elements. One problem is of
course thatif p, g :a =4 a’, there is no obvious way of composing p and
q to get another element in a =4 a’. Another problem is thata =4 a’
does not have a distinguished element, such as refl,:a =4 4.3 Given
an f:a =4 a’ we can use transport along f to compare a =4 a’ with

GROUPS, CONCRETELY 100

*Such groups give rise to co-groups
by converting continuous (or
smooth) symmetries of a in A
parametrized by the continuous
(or smooth) real interval, into iden-
tifications, as described already
in Footnote 14 in Chapter 2. Then
also smooth or continuous paths in
a 54 a turn into identifications of
symmetries. See also Section B.3.

3The typea =, a’ does have an
interesting ternary composition,
mapping p, q,7 to pg~'r. A set with
this kind of operation is called a heap,
and we’ll explore heaps further in
Section 7.7.

a =4 a (much as affine planes can be compared with the standard plane
or a finite dimensional real vector space is isomorphic to some Euclidean
space), but absent the existence and choice of such an f the identity
typesa =4 a’ and a =4 a are different animals. We will return to this
example in Section 7.7. 4

REMARK 4.2.4. As a consequence of Lemma 2.20.4, the inclusion of
the component A(,) = Y. 4lla = x| into A (i.e., the first projection)
induces an equivalence of identity types from (a,!) = Aw (@, D) toa Sa
a. This means that, when considering the loop type a =4 a, “only
the elements x : A with x merely equal to a are relevant”. To avoid
irrelevant extra components, we should consider only connected types A
(cf. Definition 2.16.8).

Also, our preference for @ =4 a to be a set indicates that we should
consider only the connected types A that are groupoids. 4

DerINITION 4.2.5. The type of pointed, connected groupoids is the type

U =) (A xisConn(A) x isGrpd(A)). a
AU
Exercisk 4.2.6. Given a type A and an element a:A, show that A is
connected if and only if the proposition ;. lla =4 x|| holds. Show
furthermore that A is a groupoid if and only if the type a =4 4 is a set.
Conclude by showing that the type U is equivalent to the type

Y.) ((Hlla Sa) xisSet(@ 54 a))_ .,

A:Ua:A x:A
RemaRK 4.2.7. We shall refer to a pointed connected groupoid (A, 4, p, q)
simply by the pointed type X := (A,a). There is no essential ambi-
guity in this, for the types isConn(A) and isGrpd(A) are propositions
(Lemma 2.15.4 and Lemma 2.15.7), and so the witnesses p and g are
unique. 4

We are now ready to define the type of groups.

DErINITION 4.2.8. The type of groups is a wrapped copy (see Section 2.12.8)
of the type of pointed connected groupoids U;?,

Group := Copy, (U b,

with constructor Q : U — Group. 4 A groupis an element of Group.

DEFINITION 4.2.9. We write B: Group — U for the destructor associated
with Copyq(UT!). For G:Group, we call BG the classifying type of
G.5 Moreover, the elements of BG will be referred to as the shapes of
G, and we define the designated shape of G by setting shg = pty, ie.,
the designated shape of G is the base point of its classifying type, see
Definition 2.21.1. 4

DEFINITION 4.2.10. Given a pointed type X = (A, a), we define QX :
(a =4 a), ie., the type of the symmetries of a:A. The type QX is
pointed at refl,. 4

DEerINITION 4.2.11. Let G be a group. We regard every group as a group of
symmetries, and thus we refer to the elements of QBG as the symmetries
in G; they are the symmetries of the designated shape shg of G. We
adopt the notation

UG = QBG

GROUPS, CONCRETELY 101

The meaning of the superscript “= 1"
can be explained as follows: We also
define

U=! := Groupoid

= E isGrpd(A)
AU
to emphasize that groupoids are 1-
types; the type of connected types is
defined as follows.

1>%:= Y isConn(A)
A:U

o
*

Similar notations with a subscript
indicate pointed types.

4The reader may ask why we use Q,
which only makes a wrapped copy
of each (4,s,p,q) :U=1. The answer
is that flatly defining groups as their
classifying types would be confusing.
Using Q) we avoid awkward termi-
nology such as * ‘the group of the
integers is the circle”. The symbol Q
is inspired by Q in Definition 4.2.10,
which in Section 4.3 will be used to
recover the traditional concept of a
group. Recall also the example of the
negated natural numbers N~ from
Section 2.12.8: Its elements are —n
for n:N to remind us how to think
about them. And the same applies
to Group: Its elements are QX for
X : UL to remind us how to think
about them.

5As a notational convention we al-
ways write the “B” so that it sits
next to and matches the shape of its
operand. You see immediately the
typographical reason behind this
convention: The italic letters B, G
get along nicely, while the roman B
would clash with its italic friend G if
we wrote BG instead.

for the type of symmetries in G; it is a set.® (Notice the careful distinction
above between the phrases “symmetries in” and “symmetries of ”.) a

DErINITION 4.2.12. A group G is a finite group if the set UG is finite.
For any finite group G we denote the number of symmetries in G by
#(G) = #(UG), also called the cardinality of G. 4

REMARK 4.2.13. As noted in Section 2.12.8, the constructor and destructor
pair forms an equivalence Group =~ U;!. The type U is a subtype of
U., so once you know that a pointed type X is a connected groupoid,
you also know that X is the classifying type of a group, namely G := QX.

Note that the equivalence also entails that identifications (of groups)
of type G = H are equivalent to identifications (of pointed types) of
type BG = BH. a

REMARK 4.2.14. Defining a function f: [1g.Group T(G), where T(G) is a
type parametrized by G : Group, amounts to defining f(G) for G = QX,
where X is a pointed connected groupoid, namely the classifying type
BG7 4

Frequently we want to consider the symmetries Q(A, a) of some
element 4 in some groupoid A, so we introduce the following definition.

DeriNiTION 4.2.15. For a groupoid A with a specified point a, we define
the automorphism group of a : A by

Auty(a) = Q(A(u)r (a,1),

i.e., Auta(a) is the group with classifying type BAuta(a) = (A(y), (a,!)),
the connected component of A containing a, pointed at 4. a
REMARK 4.2.16. If A is connected, then fst : A;) — A is an equivalence
between the pointed types (A, (a,!)) and (A, a), pointed by refl,. Con-
sequently, for any G = Q(A, a) : Group, we have an identification of type
G 5 Auty(a).

In other words, for any G = QBG, we have an identification G =
Autpg(shg), of G with the automorphism group of the designated shape
ShG :BG. J

4.2.17 First examples

ExamPpLE 4.2.18. The circle S', which we defined in Definition 3.1.1, is
a connected groupoid (Lemma 3.1.6, Corollary 3.4.6) and is pointed at
*. The identity type * =g ¢ is equivalent to the set of integers Z and
composition corresponds to addition. This justifies our definition of the
group of integers as

Z:=Q(Sh).

In other words, the classifying type of Z is BZ := S!, pointed at ». Recall
from Remark 4.2.16 that there is then a canonical identification of type
Z = Autgi(+). It is noteworthy that along the way we gave several
versions of the circle, each of which has its own merits. For example, the
type of infinite cycles in Definition 3.5.3 and Theorem 3.5.6,

InfCyc = Z Z 1(Z,s) = (X, t). 4

X:Ut:X-X

Exercisk 4.2.19. Use various results from Chapter 3 to construct two
different identifications of type Z = Autcyc(Z, s). a

GROUPS, CONCRETELY 102

6Taking the symmetries in a group
thus defines a map U: Group — Set,
with QX +— QX. Just as with “B”,
we write the “U” so that it matches
the shape of its operand.

71f you are bothered by the conven-
tion to write the classifying type of G
in italic like a variable, you can either
think of BG as a locally defined vari-
able denoting the classifying type
that is defined whenever a variable
G of type Group is introduced, or
you can imagine that whenever such
a G is introduced (with the goal of
making a construction or proving
a proposition), we silently apply
the induction principle to reveal a
wrapped variable BG: U7 1.

ExaMPLE 4.2.20. Apart from the circle, there are some important groups
that come almost for free: namely the automorphisms of specific elements
in the groupoid Set, and even one in the groupoid Prop.

(1) Recall that True, and hence True = True, is contractible. Hence
Autpop(True) is a group called the trivial group, denoted by 1. In
fact, for any proposition P we can also identify the trivial group
with Autpyop(P), see Exercise 4.2.21. Unlike Prop, the type True is
connected, so we can also identify the trivial group with Q(True, triv),
or with Q(C, c) for any contractible type C and element ¢ : C, or with
Autg(x) for any set S and element x: S.8

(2) If n:N, then the permutation group of n letters (also known as the
symmetric group of degree n) is

X, = Autser(m).

The classifying type is thus BZ, = (FinSet,, n), where FinSet,
Set(y) is the groupoid of sets of cardinality n (cf. 2.24.5).

Again, we can also identify the group X, with Autginset(n) (by
Exercise 4.2.21), with Autginset, (1) (by Remark 4.2.16), or even with
Autq(m) (by stretching the definition of Aut, using that Uy, is a
connected groupoid, see Remark 4.7.5).

(3) More generally, if S is a set, is there a pointed connected groupoid
(A, a) so thata =4 a models all the “permutations” S —get S of S?
Again, the only thing wrong with the groupoid Set of sets is that Set
is not connected. The group of permutations of S is defined to be

Ls = Autser(S),
with classifying type BXs = (Set(s), S). 4

ExERcIsE 4.2.21. Show that Autpep(P) is a trivial group for any proposition
P. Verify that Xy, X1, and Xp,ee are all trivial groups. Using Defini-
tion 2.24.1, give identifications of type Autringet(n) = Ly for n:N. Also,
give an identification of type Autget(N) = Autset(Z). a

ExampLE 4.2.22. In Corollary 3.6.16 we studied the symmetries of the
standard m-cycle (m, s) for m a positive integer, and showed that there
were m different such symmetries. Moreover, we showed that these
symmetries can be identified with the elements 0,1,...,m —1 of m
(according to the image of 0), and under this correspondence composition
of symmetries correspond to addition modulo m, with 0 the identity.
Note that all of these can be obtained from 1 under addition. With
Cyc, Cyc,, from Definition 3.6.3, 3.8.1, the cyclic group of order m is thus
defined to be
Ci = Autcyc(m, s),
with classifying type BC,, = (Cyc,,, (m,s)).?

By using univalence on the equivalences of Theorem 3.3.8, we get a
chain of identifications

Cm == AutZX:Set(X_)X)(m’ S)
J

AUtSetBundle(Sl) (Sl , Om) = AUfsl —>Set(Rm)r

GROUPS, CONCRETELY 103

8This note is for those who worry
about size issues — a theme we
usually ignore in our exposition.
Recall from Section 2.3 the chain
of universes Ug: U1 : Uz : ...
such that for each i all types in U;
are alsoin Uj forallj > i. Let
Prop, = Yp.q, isProp(P) be the
type of propositions in Ug. Then
True: Prop, and Prop, : Uy (because
the sum is taken over). In order
to accommodate the trivial group
Autpropo (True), the universe “U” ap-
pearing as a subscript of the first
L-type in Definition 4.2.5, reap-
pearing later in Definition 4.2.8
of the type of groups, needs to be
at least as big as Uj. If U is taken
to be Uy, then the type Group of
groups will not be in Uy, but in the
bigger universe Us. Exercise 4.2.35
below asks you to verify that Group
is a (large) groupoid. If we then
choose some group G : Group and
look at its group of automorphisms,
AutGroup(G), this will be an element
of Group only if the universe U in
the definition of Group is at least as
big as Uy. Clearly, this doesn't stop
and so we also need an ascending
chain of types of groups:

Group; = Copyg ((‘U,-)fl) ‘Ui

Any group we encounter will be an
element of Group,; for i large enough.
As a matter of fact, the trivial group
Autryye(triv) is an element of Group,.
The Replacement Principle 2.19.4
often allows us to conclude that a
group G belongs to Group,,. This is
the case for g, for S : Sety, and for
AutGroup(G), for G : Groupy, as we
invite the reader to check. (Hint: use
Exercise 2.19.5.) However, even with
this principle there are groups that
only belong to Group; for i > 0 large
enough.

Issues concerning universes are
nontrivial and important, but in this
text we have chosen to focus on other
matters.

9Note that the cyclic group of order 1
is the trivial group, the cyclic group
of order 2 is equivalent to the sym-
metric group Xp: there is exactly
one nontrivial symmetry f and f2 is
the identity. When m > 2 the cyclic
group of order m is a group that
does not appear elsewhere in our
current list. In particular, the cyclic
group of order m has only m differ-
ent symmetries, whereas we will see
that the group of permutations ¥,
hasm!=1-2----. m symmetries.

where 6,,:S! — S! is the degree m map, and R, :S! — Set is the m'h
power bundle from Definition 3.6.7.

For reasons that will become clear later (Definition 9.5.8), we introduce
another name for the cyclic group of order m, corresponding to the last
step above, namely,

Z]mZ = Autgi_,go(Rim). J

ExampLE 4.2.23. There are other (beside the symmetries of the m-cycle
and of the m-fold set bundle) ways of obtaining the cyclic group of
order m, which occasionally are more convenient. The prime other
interpretation comes from thinking about the symmetries of the m-cycle
in a slightly different way. We can picture the m-cycle as consisting of
m points on a circle, e.g., as the set of m'™" roots of unity in the complex
plane, as shown in Figure 4.1.

Any cyclic permutation is in particular a permutation of the m-
element set underlying the cycle. This manifests itself as the pro-
jection map pr:Cyc,, — FinSet,,:((X,t),!) = (X,!),"° equivalently,
using the notation introduced above, pr: BC,, — BX;;, where the group
L = Autge(m) is that of all permutations of the set m. This pro-
jection map, whose fiber at X: BX,, can be identified with the set
Yo xoxll(X,t) = (m,s)||, captures C,, as a “subgroup” of the permuta-
tions, namely the cyclic ones, corresponding to the fact that the shapes
of C,, (i.e., the elements of BC,,) are those of %, together with the extra
structure of the “cyclic ordering” determined by ¢.

But how do we capture the other aspect of C,,, mentioned in Exam-
ple 4.2.22, that all the cyclic permutations can be obtained by a single
generating one? When thinking of the m'™" roots of unity as in Figure 4.1,
we can take complex multiplication by & to be the generating symmetry.

The key insight is provided by the function R, :S! — FinSet,
from Definition 3.6.7, with R,,(*) := m and R,,(OQ) := s, picking out
exactly the cyclic permutation s : m = m (and its iterates) among all
permutations. Using our new notation, we can also write this as

Ry :BZ — BXy,.

Set truncation (Definition 2.22.4) provides us with a tool for capturing
only the symmetries in FinSet,, hit by R,,: the (in language to come)
subgroup of the permutation group generated by the cyclic permutation
s is the group

C, =Q(BC,, Shcgﬂ),

where BC), = ZX:FinSetn,l|R;n1(X)||0 and sh¢r = (m, | (¢, reflm)|o). Thatis,
BC;, is the 0-image of R,, in the sense of Section 3.9, and is in particular
a pointed connected groupoid. Since we have a factorization of R, as
the equivalence ¢ :S!' = Cyc, followed by the map _/m :Cyc, — BZ,,
and since Cyc,, is the 0-image of the latter by Theorem 3.9.13, we
get a uniquely induced pointed equivalence g: BC,, =, BC,,."* This
identifies the set ||R;;(X)|lo with the set of cycle structures on the m-
element set X. 4

EXERCISE 4.2.24. Show that the set truncation of R;!(2) is contractible.
This reflects that C, and X, can be identified.*? a

GROUPS, CONCRETELY 104

y
52
. 51
- x
ém—l

FIGurE 4.1: The m-cycle as the m'™h
roots of unity. (Here & = e2m/m jg o
primitive mt™ root.)

°In the terminology of Section 2.27,
this map forgets the cycle structure
on the underlying set.

More precisely, but using language
not yet established: C;, is both iso-
morphic to Z/mZ, the “quotient
group” (cf. Definition 9.5.8) of Z by
the “kernel” (cf. Definition 9.3.2) in-
duced by Ry, and to C;,, which is
the corresponding “image” (cf. Sec-
tion 9.3.10). This pattern will later be
captured in Theorem 9.9.2.

2We will later see that C2 =Group X2
is contractible.

ExErcisE 4.2.25. Elaborate the symmetries of shcr = (m, [(e, refly)|o) in
BC;,, and show that they are indeed the permutations of m than can be
generated by R,,(0), that is, by s. a

ExamPpLE 4.2.26. If you have two groups G and H, their product G x H is
given by taking the product of their classifying types:*3

G x H = Q(BG x BH)

For instance, X X X is called the Klein four-group or Vierergruppe, because
it has four symmetries. In general, Lemma 2.11.1 gives an identification
U(G x H) > UG x UH. a

Exercisk 4.2.27. Show that we cannot identify C4 and X X2, i.e., the
Klein four-group is not a cyclic group. 4

ExampLE 4.2.28. If S is an n-element finite set, n:N, and G: S — Group
is an S-indexed family of groups, then we can likewise form the product
of the family, by taking the product of the classifying types:

HG(S) =0 <H BG(s), s shG(s)>
s:S 5:S

Function Extensionality, Principle 2.9.18, says that that the function ptw

of Definition 2.6.4 gives an equivalence:

ptw :U (H G(s)) = HUG(S) a
5:S 5:S

ExERcISE 4.2.29. (1) Show that a finite product of connected groupoids
is again connected, so that the above definition makes sense.™#

(2) Show that when S is identified with a standard 2-element set such
as Bool, then the product of an S-indexed family of groups reduces
to the binary product of Example 4.2.26. 4

REMARK 4.2.30. In Lemma 4.3.3 we will see that the identity type of a
group satisfies a list of laws justifying the name “group” and we will
later show in Lemma 7.4.7 that groups are uniquely characterized by
these laws. 4

Some groups have the property that the order you compose the
symmetries is immaterial. The prime example is the group of integers
Z = Q(S', »). Any symmetry is of the form " for some integer 7, and
if O™ is also a symmetry, then O" O™ = Q"™ = Q""" = O™ O".

Such cases are important enough to have their own name:
DEFINITION 4.2.31. A group G is abelian if all symmetries commute, in the
sense that the proposition

isAb(G):= [] gh=hg
g,h:UG

is true. In other words, the type of abelian groups is

AbGroup =) isAb(G). a
G : Group
ExERcisE 4.2.32. Show that symmetric group X is abelian, but that >3 is

not. Show that if G and H are abelian groups, then so is their product
G X H. |

GROUPS, CONCRETELY 105

13Note that B(G X H) = BG X BH is
pointed at shgxy = (shg, shy).

*4For infinite products, we can either
use the Axiom of Choice, Princi-
ple B.4.1, or take the connected com-
ponent of base point, s > shgs)-

SI(T&

o{.. ..lw

We can visualize symmetries ¢ and & commuting with each other in
a group A = Q(A, a) by the picture in the margin; going from (upper
left hand corner) a to (lower right hand corner) a by either composition
gives the same result.

REMARK 4.2.33. Abelian groups have the amazing property that their
classifying types are themselves identity types (of certain 2-types). This
can be used to give a very important characterization of what it means
to be abelian. We will return to this point in Section 12.2.

Alternatively, the reference to underlying symmetries in the definition
of abelian groups is avoidable using the “one point union” of pointed
types X V'Y of Definition 8.6.1. (It is the sum of X and Y where the base
points are identified.). Exercise 8.6.6 offers the alternative definition
that a group G is abelian if and only if the “fold” map BG V BG —. BG
(where both summands are mapped by the identity) factors through the
inclusion BG V BG —, BG x BG (where inl, is mapped to (x, shg) and
inry to (shg, x)). The latter turns out to be a proposition equivalent to
isAb(G). 4
Exercisk 4.2.34. Let Q(A, a) : Group and let b be an arbitrary element of
A. Prove that the groups Q(A, a) and Q(A, b) are merely identical, in
the sense that the proposition [|Q(A, a) = Q(A, b)|| is true. Similarly for
co-groups in Section 4.7 when you get that far. 4

Exercisk 4.2.35. Given two groups G and H. Prove that G = H is a set.
Prove that the type of groups is a groupoid. This means that, given a
group G, the component of Group, containing (and pointed at) G, is
again a group, Autgroup(G), which we will call more simply the group
Aut(G) of automorphisms of G, or the automorphism group of G. 4

We'll see more examples of groups in Sections 4.5 and 4.6 and indeed
throughout the rest of the book.

4.3 Abstract groups

Studying the identity type leads one to the definition of what an abstract
group should be. We fix a type A and an element a : A for the rest of the
section, and we focus on the identity type a — a. We make the following
observations about its elements and operations on them.

(1) There is an element refl, :a = a. (See page 15, rule (E2).) We set
e := refl, as notation for the time being.

(2) For g:a 5 a, the inverse g~ :a = a was defined in Definition 2.5.1.
Because it was defined by path induction, this inverse operation
satisfies e™! = e.

(3) For g,h:a = a, the product I - g:a = a was defined in Defini-
tion 2.5.2. Because it was defined by path induction, this product
operation satisfies e - g = g.

For any elements g, g1, §2, $3:4 — 4, we consider the following four
identity types:

(1) the right unitlaw: ¢ = g -e,

(2) the left unit law: g > e- g,

GROUPS, CONCRETELY

inclusi(ml
BG x BG

-

BG v BG 4, Bg

-

-

3

106

(3) the associativity law: g1- (g2 - g3) = (81- $2) - §3,

(4) the law of inverses: ¢ - ¢71 S e.

In Exercise 2.5.3, the reader has constructed explicit elements of these
identity types. If @ = a is a set, then the identity types above are all
propositions. Then, in line with the convention adopted in Section 2.15,
we could simply say that Exercise 2.5.3 establishes that the equations
hold. That motivates the following definition, in which we introduce a
new set S to play the role of 2 = a. We introduce a new element e : S to
play the role of refl;, a new multiplication operation, and a new inverse
operation. The original type A and its element a play no further role.*>

DEFINITION 4.3.1. An abstract group consists of the following data.

(1) AsetS, called the underlying set.
(2) Anelemente:S, called the unit or the neutral element.

(3) A function S — S — S, called multiplication, taking two elements
g1, &2 S to their product, denoted by g1 - §2:S.

Moreover, the following equations should hold, forall g, g1, $2, $3:S.
(@) g-e=gande- g = g (the unit laws)
() g1-(g2-93) = (g1 g2) - g3 (the associativity law)

(4) A function S — S, the inverse operation, taking an element g : S to its
inverse g~ 1.

Moreover, the following equation should hold, for all g:S.
(c) g+ ¢! = e (the law of inverses) a

RemMARK 4.3.2. Strictly speaking, the proofs of the various equations are
part of the data defining an abstract group, too. But, since the equations
are propositions, the proofs are unique, and by the convention introduced
in Remark 2.20.5, we can afford to omit them, when no confusion can
occur. Moreover, one need not worry whether one gets a different group
if the equations are given different proofs, because proofs of propositions
are unique. 4

Taking into account the introductory comments we have made above,
we may state the following lemma.

LemMA 4.3.3. If G is a group, then the set UG = (shg = shg) of symmetries
in G (see Definition 4.2.11), together with e := reflg., ¢! = symmg, . o &
and h - § = transgh she she (§)(h), define an abstract group.

Proof. The type UG is a set, because BG is a groupoid. Exercise 2.5.3
shows that all the relevant equations hold, as required. m|

DEFINITION 4.3.4. Given a group G, the abstract group of Lemma 4.3.3,
abs(G), is called the abstract group associated to G. 4

Lemma 4.3.3 implies that all examples of groups, such as those in

Section 4.2.17, can easily be turned into examples of abstract groups.
The following exercise provides a different source of examples.

GROUPS, CONCRETELY 107

15In Section 4.7 we will come back to A
and a and consider the case in which
A is an arbitrary connected type and
a:A. Then a = a need not be a set.

ExERcIsE 4.3.5. Let G be an abstract group with underlying set S. Let X be
a set. Show that the set X — S of functions from X to S, together with
pointwise operations induced by G, forms and abstract group which is
abelian if and only if G is. 1

We leave the study of abstract groups for now; in Chapter 7 we’ll
show that the G +— abs(G) construction furnishes an equivalence from
the type of groups to the type of abstract groups, and we’ll correlate
concepts and constructions on groups to corresponding ones for abstract
groups.

4.4 Homomorphisms

REMARK 4.4.1. Let G and H be groups, and suppose we have a pointed
function k:BG —. BH. Suppose also, for simplicity (and without
loss of generality), that pty,; = k(ptys) and kpe = refly,, . Applying
Definition 2.6.1 yields a function f := ap, : UG — UH, which satisfies
the following identities:

f (reﬂptBG) = reﬂptBHr
fg7h =(fign™ for any g: UG,
fg'-g)=f(g) f(g) foranyg,g :UG.

The first one is true by definition, the others follow from Construc-
tion 2.6.2. These three identities assert that the function ap, preserves,
in a certain sense, the operations provided by Lemma 4.3.3 that make
up the abstract groups abs(G) and abs(H). In the traditional study of
abstract groups, these three identities play an important role and entitle
one to call the function f a homomorphism of abstract groups. 4

A slight generalization of the discussion above will be to suppose
that we have a general pointed map with an arbitrary pointing path
kot : ptgy — k(ptyc), not necessarily given by reflexivity. Indeed, that
works out, thereby motivating the following definition.

DerINITION 4.4.2. The type of group homomorphisms from G :Group to
H : Group is defined to be

Hom(G, H) = Copy, (BG —. BH),

i.e, it is a wrapped copy of the type of pointed maps of classifying
spaces with constructor Q : (BG —. BH) — Hom(G, H). We again write
B: Hom(G, H) — (BG —. BH) for the destructor, and we call Bf the
classifying map of the homomorphism f.16 a

We would like to understand explicitly the effect of a general homo-
morphism f from G to H on the underlying symmetries UG, UH, again
without assuming that pointing path of Bf is given by reflexivity. So we
should first study how pointed maps affect loops:

DerINITION 4.4.3. Given pointed types X and Y and a pointed func-
tion k: X —. Y (as defined in Definition 2.21.1), we define a function
Qk:QX — QY by setting'”

Qk(p) = k};tl -apy (p) - kpt, forall p:pty = pty.

Later we will need that Qk is a pointed map and define (Qk)pt : reflp, —
k1§t1 - kpt by the inverse law of path algebra, Exercise 2.5.3. 4

GROUPS, CONCRETELY 108

®When it is clear from context that a
homomorphism is intended, we may
write f:G — H.

7Recall Definition 2.6.1 for ap, and
that we may abbreviate ap ¢ (p) by

fp).

REMARK 4.4.4. If k: X —. Y has the reflexivity path refl,, as its pointing
path, then we have an identification Qk = ap, . a

DEFINITION 4.4.5. Given groups G and H and a homomorphism f from
G to H, we define the function Uf: UG — UH by setting Uf = QBf.
In other words, the homomorphism QBf induces QBf as the map on
underlying symmetries. a

LEMMA 4.4.6. Given groups G and H and a homomorphism f : Hom(G, H),
the function Uf : UG — UH defined above satisfies the following identities:

(4.4.1) (Uf)(reflp,) = reflp,,,
(4-4-2) Ung™ = (U g)™ for any g: UG,
(4.4.3) (Uf)g’ - g) = Uf)g) - (Uf)g) forany g, g":UG.

Proof. We write f = (f., p), where p : pty; = f.(ptg). By induction on
p, which is allowed since pty,, is arbitrary, we reduce to the case where
ptgy = f:(ptpg) and p = refl,, . We finish by applying Remark 4.4.1
and 4.4.4. O

DEFINITION 4.4.7. A homomorphism f:G — H is an isomorphism if its
classifying map Bf is an equivalence. We let Iso(G, H) be the subset of
isomorphisms in Hom(G, H).*® a
DerintTION 4.4.8. If G is a group, then we use Definition 2.21.2 to define
the identity homomorphism idg : G — G by setting idg = Q(idpg). The
identity homomorphism is an isomorphism. 4

REMARK 4.4.9. From Exercise 2.21.7, we have an equivalence
(G =Group H) = Iso(G, H)

between the identity type of the groups G and H and the set of isomor-
phisms. We use the convention introduced in Remark 3.4.1 also here.
That is, we allow ourselves to also write p : Iso(G, H) for the isomorphism
corresponding to an identification p: G = H, and Bp:BG =. BH for
the corresponding pointed equivalence of classifying types. Conversely,
given an isomorphism f : Iso(G, H), we may denote the corresponding
pathalsoas f:G = H. 4

DerINITION 4.4.10.If G, G’, and G” are groups, and f:G — G’ and
f’:G" — G” are homomorphisms, then we use the definition of compo-
sition of pointed functions in Definition 2.21.1 to define the composite
homomorphism f’ o f :G — G” by setting f’ o f := Q(Bf’ o Bf). 4

Recall from Section 2.21, that when there is little danger of confusion,
we may drop the subscript “+” when talking about the unpointed
structure.

REMARK 4.4.11. To construct a function ¢ : T1¢. Hom(c,m) T(f), where T(f)
is a family of types parametrized by f : Hom(G, H), it suffices to consider
the case f = QBf."9 4

Identifications of homomorphisms f —=tom(c,H) f” are equivalent to
identifications of pointed maps Bf =pc—,.r Bf’; the latter are (by Con-
struction 2.21.8 and the fact that BH is a groupoid) given by identifications
of (unpointed) maps & : Bf. = Bf". such that

(shg)Bf , = Bf .

GROUPS, CONCRETELY

109

8Both Iso(G, H) and Hom(G, H) are
sets, using Lemma 4.4.12 below.

19We use the same notational conven-
tion regarding “B” applied to homo-

morphisms as we do for groups.

shy)
prt prt
/ N

Bf .(shg)

_ =
h(ShG)

Bf!(shg)

We will later show that if G and H are groups, then Hom(G, H) is
equivalent to the set of “abstract group homomorphisms” from abs(G)
to abs(H) (see Lemma 7.5.1), but it is instructive to give a direct proof of
the following.

LeMMA 4.4.12. The type of homomorphisms Hom(G, H) is a set for all groups
G, H.

Proof. Givenhomomorphisms f, f': Hom(G, H), we use the equivalence
just described,

F>M>) h(shc)Bf ,, = Bf ;-

I Bf .S Bf.

Thus our goal is to prove that any two elements (h,!), (j,!) of the right-
hand side can be identified. By function extensionality, the type h = j
is equivalent to the proposition [];.g. hi(t) = j(t). So now we can use
connectedness of BG., and only check the equality on the point shg. By
assumption,

h(shc) = Bf Bf 5 = j(sho).

This concludes the proof that f = f” is a proposition, or in other words
that Hom(G, H) is a set.>® O

EXAMPLE 4.4.13.

(1) Consider two sets S and T. Recall from Example 4.2.20 that Set(s) =
Yx:setllS = X|| is the component of the groupoid Set containing S,
and when pointed at S represents the permutation group Xs. The
map _ LI T:Sets) — Setsiir) sending X to X LI T induces a group
homomorphism Xs — Xgiir, pointed by the path reflg;ir: SIIT =
(LI T)(S). Thought of as symmetries, this says that if you have a
symmetry of S, then we get a symmetry of S LI T (which doesn’t do
anything to T).

Likewise, we have a map _ X T : Set(s) — Set(sxr) sending X to X X T,
inducing a group homomorphism X5 — Xsx7, pointed by the path
reflsyr : S X T = (_XT)(S). Thought of as symmetries, this says that
if you have a symmetry of S, then we get a symmetry of S X T (which
doesn’t do anything to the second component of pairs in S x T).

In particular, we get homomorphisms of symmetric groups %, —
Zp+n and L, — X, induced by identifications Fin(m + n) =
Fin(m) LI Fin(n) and Fin(mn) = Fin(m) X Fin(n).>*

(2) Let G be a group. Since there is a unique map from BG to 1 (uniquely
pointed by the reflexivity path of the unique element of 1), we get
a unique homomorphism from G to the trivial group. Likewise,
there is a unique morphism from the trivial group to G, sending the
unique element of 1 to shg, and pointed by refly,; the uniqueness
follows from Lemma 2.9.10, cf. Lemma 3.3.11.

(3) If G and H are groups, the projections BG < BG x BH — BH and
inclusions BG — BGXBH < BH (e.g., the inclusion BG — BGxBH is
given by z - (z, shy)) give rise to group homomorphisms between
G x H and G and H, namely projections G «— G x H — H and
inclusions G - G X H < H.

GROUPS, CONCRETELY 110

20 The same argument shows that the
type X —. Y is a set whenever X is
connected and Y is a groupoid. A
more general fact is that X —. Y
is an n-type whenever X is (k — 1)-
connected and Y is (n + k)-truncated,
forallk > 0and n > —1.

*'The latter identification is somewhat
arbitrary, but let’s say it’s defined
using the lexicographic ordering on
the product.

(4) In Example 4.2.22 we gave an example of an isomorphism, namely
one from the cyclic group C,, to Z/mZ, and in Example 4.2.23
we looked at R,, :BZ —. B%,, pointed by refl,,, which induces
a homomorphism (_ mod m):Z — L, factoring through Z/mZ
(and, equivalently, through C,,). 1

REMARK 4.4.14. In the examples above, we insisted on writing the path
pointing a group homomorphism, even when this path was a reflexivity
path. We now adopt the convention that there is no need to specify the
path in this case.*® Thus, given a map f: A — B between connected
groupoids and a : A, the group homomorphism Auta(a) — Autp(f(a))
defined by (f, reflf(,)) will simply be referred to as f.

However, it is important to understand that different homomorphisms
can have the same underlying unpointed function.”> Consider, for
example, the group X3, whose classifying space is BX3 := (FinSets, 3),
and the symmetry 7: UX;3 that is defined (through univalence) by

0—1, 1—0 22, i.e., 7 is the transposition (0 1).

Then the function id : FinSet; — FinSets gives rise to two elements of
Hom(X3,X3): the first one is (id, refl3), which is simply denoted idy,;
the second one is (id,), which we will denote 7 temporarily. Let us
prove idy, # 7, that is, we suppose idy, = 7 and derive a contradiction.
By Definition 4.4.3 we get ¢ = Q(idy,)(c) = Q(%)(0) = 1~'o7 for all
o: UZ3, so T commutes with every other element of UX3. This fails for
the transposition ¢ := (1 2), since 07(0) = 2 while 7g(0) = 1. (See also
Exercise 4.2.32.) 4

CONSTRUCTION 4.4.15. For pointed types X, Y, Z and pointed maps f : X —. Y
and g:Y —. Z, we get an identification of type

Q(g © f) @x—az) Q(g) © QA(f).

Implementation of Construction 4.4.15. Let x denote the base point of X.
By induction on ft and on gpt, we reduce to the case where fr = refly(y)
and gpt = reflg(f(x)), and it suffices to identify ap ., with ap, cap,.
By Principle 2.9.18, it suffices to identify ap . ((p) with ap,(ap(p)) for
each p: QX. For that purpose, it suffices to even identify ap,, (p) with
ap,(ap(p)) forany x": X and any p: x = x’. Then by induction on p, it
suffices to give an identification ap g0 f(reﬂx) = ap g(ap L (refly)), and that
can be done by reflexivity, by observing that both sides are equal, by
definition, to reflg(f(x))- O

COROLLARY 4.4.16. For composable group homomorphisms ¢ : Hom(G, H),
Y : Hom(H, K), we get an identification U(y o ¢) = Uy o Ug.

The following example expresses that Z is a “free group with one
generator”.

ExAMPLE 4.4.17. Chapter 3 was all about the circle S! and its role as a
“universal symmetry” and how it related to the integers. In our current
language, Z = Q(S!, *) and much? of the universality of S! is found in
the following observation. If G is a group, then Corollary 3.1.3 yields an
equivalence of sets

evig : ((S',*) . BG) S UG, evic(f, for) = Qf:, for)(O).

GROUPS, CONCRETELY 111

220r more generally, whenever the
pointing path is clear from context.

23Later, in Theorem 9.10.2, we'll ex-
amine this phenomenon in more
detail.

24Not all: BG is a groupoid and not an
arbitrary type, cf. Section 4.7.

The domain of this equivalence is equivalent to Hom(Z, G). Hence,
evpg provides a way to identify Hom(Z, G) with the underlying set UG.
Like in Theorem 3.1.2, the inverse of evpg is denoted vepc and satisfies
vep;(g)(*) = shg and vepg(g)(U) = g. Moreover, vepc(g) is pointed by
reﬂShG . N

The following lemma states the “naturality” of evpg in the previous
example.
LemMA 4.4.18. Let G and H be groups and f : Hom(G, H). Then the following
diagram commutes,

Hom(Z,G) —— UG

for| jLIf

Hom(Z,H) —=— UH,

where the horizontal maps evaluate the map on underlying symmetries at the
loop O :UZ.

Proof. Let k: Hom(Z, G), giving Uk:UZ — UG. Going across horizon-
tally and then down, k is mapped first to Uk(Q), and then to Uf (Uk(O)).
Going the other way takes k to U(f o k)(O), which is equal to Uf (Uk(O))
by Corollary 4.4.16. o

EXERcISE 4.4.19. Let G be a group and A a groupoid. Use the definitions
and Exercise 2.21.5 to construct equivalences between the types:*>

(1) BG. — A

(2) Ya:aXys:p6.»aa = f(she)

(3) La:4(BG —. (A, a))

(4) X4.a Hom(G, Auta(a)) -

The definition of group homomorphism in Definition 4.4.2 should be
contrasted with the usual — and somewhat more cumbersome — notion
of a group homomorphism f : G — H of abstract groups where we must
ask of a function of the underlying sets that it in addition preserves the
neutral element, multiplication, and inverse operation. In our setup this
is simply true, as we saw in Lemma 4.4.6. In terms of the abstract groups
determined by G and H, we can write these equations as

Uf(eg) = en
Uf(g-c &) =Uf(g) -u Uf(Z) forall g, ¢’ : UG,
Uf(g™) = (Uf(g)! for all g: UG.

We come back to abstract homomorphisms in Section 7.3.

ExAMPLE 4.4.20. In this example we analyse what happens when we move
the shape of a group along a path in the classifying type. This path can
in particular be a loop at the shape. More precisely, let G be a group, y an
element of BG, and p a path of type shg = y. Then (idpg, p~') isa pointed
equivalence of type BG =, (BG., y) and hence induces an isomorphism
from G to Q(BG., y).2* By Remark 4.4.9 we then get an identification
of these groups. Moreover, by path induction on p, the equivalence
U(Q(idgc, p™)) = Q(idse, p™") of type (shg = shg) = (y = y)*7 can

GROUPS, CONCRETELY 112

25We'll return to these in more detail
in Section 5.2.26.

260ne may wonder why p~! in
(idpg, p~1). The reason is our conven-
tion for the direction of the pointing
path of a pointed map.

27Note that U(Q(BG.,y)) =
Q(BG-,y) =y > y).

28We have seen similar maps, e.g., all
the way back in Exercise 2.14.4(4).

be identified with the map g > pgp~'. This map is called conjugation.?®
In Exercise 7.2.10 we come back to the special case in which y = shg. 4

The above example motivates and justifies the following definition
of a homomorphism from a group to its inner automorphisms, that is,
automorphisms that come from conjugation. Such automorphisms will
further be discussed in Section 9.7. Recall that BAut(G) is the connected
component of G in the type Group, pointed at G.

DEFINITION 4.4.21. Let G be a group. Define the homomorphisminn : G —
Aut(G) by setting

Binn : BG —. BAut(G), v+~ Q(BG.,y),

where the path pointing Binn is pinn := reflg : G = Binn(shg). Note that
Pinn is well defined since Binn(shg) = G. Notice furthermore that the
codomain of Binn is correct: since BG is connected, the proposition |G =
Q(BG., y)|| holds for all y : BG, by the argument in Example 4.4.20.

4.5 The sign homomorphism

In this section we're going to define the very important sign homomorphism
sgn : X, — X, defined for n > 2.* To do this, we need to assign to
every n-element set A a 2-element set Bsgn(A).

We get this 2-element set as a quotient of the set of all possible ways
of choosing an element from each 2-element subset of A, where two
different such choices are deemed the same if they differ in an even
number of pairs. Since choosing an element from a 2-element set is
equivalent to ordering it (e.g., chosen element first), we can also talk about
ways of ordering all possible 2-element subsets of A, or equivalently,
ways of directing the complete graph on A. Figure 4.2 shows all 8 ways
of directing the complete graph on a 3-element set divided into the 2
resulting equivalence classes.

To see that this really defines an equivalence relation, it helps to
generalize a bit. Thus, fix a finite set E, and let P : E — BX; be a family
of 2-element sets with parameter type E.

DEFINITION 4.5.1. The parity relation ~ on [,.r P(e) relates functions that
disagree in an even number of points. That is, f ~ g holds if and only if
the subset { e :E| f(e) # g(e) } has an even number of elements.3 a

LemMa 4.5.2. The parity relation ~ is an equivalence relation on the set
I'le.r P(e), and the quotient is a 2-element set if E is nonempty, otherwise it is
a 1-element set.

Proof. The ~ relation is clearly symmetric, and it is reflexive, since the
empty set has an even number of elements. To show transitivity, let
fi, f2, f3: Il..g P(e). We can partition E according to whether the f;
agree or disagree:

El‘]‘ :E{E:Elﬁ(€)=fj(€)}, Fij ZE{€:E|fi(€)¢fj(€)}.

By transitivity of equality, E;; N Ejx C Ejk, for all 7, j, k. Hence, the Venn
diagram of these sets has the simplified form shown in the margin,
where we set

D :={e:E| file) = fale) = fz(e) }, Ez"j =E;\D.

GROUPS, CONCRETELY 113

*9The approach we take here is similar
to that of Mangel and Rijke3°.

3°Eléonore Mangel and Egbert Rijke.
Delooping the sign homomorphism in
univalent mathematics. 2023. arXiv:
2301.10011 [math.GR].

Ficure 4.2: The two equivalence
classes of directions of the complete
graph on a 3-element set.

31This makes sense because any 2-
element set is decidable, and a subset
of a finite set specified by a decidable
predicate is itself a finite set. We
may apply the usual set-theoretic
operators, such as union and set
difference, to these subsets. Note
also that the parity relation is itself
decidable.

@
&/

Exs

E1p Ei3

https://arxiv.org/abs/2301.10011

Here we also use that E1» U Ex3 U Eq3 = E (as subsets of E), since of the
three function values at any e in E, two must agree.

We now find Fy; = E; U Ej; (disjoint union), and similarly for F13 and
F»3. Taking cardinalities, we get

#(Fu) + #(F13) + #(F23) = 2(#(E12) + #(Ei3) + #(Eé?))),

so if two of the F;;’s have an even number of elements, then so does the
third. We also see that at least one of the F;;’s has even cardinality, so
the quotient has at most 2 elements.

Clearly, if E is empty, then [],.r P(e) is contractible, so the quotient is
contractible. Assume now that E is nonempty. To show the proposition
that the quotient is a 2-element set, we may assume that E is the n-
element set {1,...,n} (since n > 0), and (by induction on n) that each
set P(e) is {+1} (our favorite 2-element set for the moment). Then any
function is equivalent to either the all +1-function or the function that
is =1 at 1 and +1 otherwise, according to how many times it takes the
value —1.]

Recall from Example 4.2.28 that we can form the product of any (finite)
family of groups. In particular, if we take the constant family at G,
indexed by a finite set S, we get a power G, with classifying type BG®
and underlying set of symmetries UG®.32

DerINITION 4.5.3. Given a finite set E, we define a homomorphism
ue : Hom(XE,) by deciding whether E is nonempty, and proceed-
ing accordingly:

If E is nonempty, we use the construction P + (I1,.r P(e))/~ from
above, pointed by the identification indicated in the proof of Lemma 4.5.2,
i.e., identifying the class of the all +1-function with +1in {+1}.

If E is empty, then BZ5 is contractible, so X} is the trivial group and
we take the corresponding unique definition of pg. 4

ExErcisk 4.5.4. From Exercise 4.2.29(1) we know that Function Extension-
ality identifies the set of symmetries in 25 with {+1}£. Show that under
this identification, Uyr maps a function s : E — {+1} to the product of
its values.33 4

DErINITION 4.5.5. A local ordering of a finite set A is an element of the
set [1..r(a) P(e), where E(A) is the set of 2-element subsets of A, and
P:E(A) — BX, maps a 2-element subset to the underlying 2-element set.

A sign ordering3* of a finite set A is an element of ([],. E(A) P(e))/~, ie.,
the quotient of the set of local orderings modulo the parity relation. .

DEFINITION 4.5.6. The sign homomorphism sgn : Hom(%,, %) is defined
via the pointed map Bsgn : BL,, —. BXy, where Bsgn(A) := Buga)(P),
with P as in Definition 4.5.5 and pig(4) as in Definition 4.5.3. We make
Bsgn pointed using the total ordering 0 < 1 < --- < n—1 on the standard
n-element set, m = shy,, to identify each 2-element subset with the
standard 2-element set, and using the pointedness of Bp. 4

Not only does the notion of a sign ordering allow us to define the sign
homomorphism, we also get a new family of examples of groups:3°

GROUPS, CONCRETELY 114

32See Exercise 4.2.29(1).

33Note that this works even when E is
empty, since the product of an empty
collection of numbers is +1.

34This term is used in analogy with to-
tal and cyclic orderings, even though
it’s harder to visualize as an order-
ing. It seems to have first been used
by Kuperberg3>.

35Greg Kuperberg. “Noninvolutory
Hopf algebras and 3-manifold invari-
ants”. In: Duke Math. J. 84.1 (1996),
pp- 83—-129. por: 10.1215/S0012 -
7094-96-08403-3.

35We'll study this construction more
generally later in Section 9.3: in these
terms A, is the kernel of the sign
homomorphism.

https://doi.org/10.1215/S0012-7094-96-08403-3
https://doi.org/10.1215/S0012-7094-96-08403-3

DerINITION 4.5.7. For any n : N, we define the alternating group of degree n
to be

0= Q(Y. Bsgn(A), (n, Bsgnpt(ptz))>,
A:BL,

i.e., the shapes of A, are sign ordered n-element sets, and the designated
shape is m with the sign ordering coming from the usual total ordering.
The symmetries in A, are called even permutations. 4

Exercisk 4.5.8. Give two isomorphisms from Az to Cs. a

Something interesting happens when we consider permutations on
other shapes in BY,, i.e., arbitrary n-element sets A. The same map,
Bsgn, can be considered as a map BAut(A) — BX,, but we can cannot
make this pointed uniformly in A.37 However, the self-identifications of
a 2-element set T, (T = T), can be identified with {+1},3® according to
whether it transposes the elements of T, or not. Hence, we can define
the sign of any permutation of a finite set:

DerINITION 4.5.9. Let A be a finite set, and let o be a permutation of A.
If the cardinality of A is 0 or 1, then the sign of o is +1. Otherwise, the
sign of o is +1 according to whether Bsgn_ (o) swaps the elements of the
2-element set Bsgn. (A), or not. We write sgn(o): {+1} for the sign of o,
and call o even if sgn(o) = 1, and odd otherwise. a

For permutations of the standard n-element set, this is the same as
the value Usgn(o): UX,. Note that sgn defines an abstract homomor-
phism from Aut(A) to X, for each A, since it does so for A = shy,.
Even better, this abstract homomorphism comes from a concrete one
sgn? : Hom(Aut(A), X,) for each finite set A. Indeed, since T = U is
a 2-element set for any 2-element sets T and U, we can consider the
map Bsgn‘f : BAut(A) — BX; that maps B: BAut(A) to (Bsgn.(4) =
Bsgn, (B)). The identification of Bsgn“(A) with {+1} mentioned above
makes Bsgnf into a pointed map BsgnA : BAut(A) —. BY,, i.e., itdefines
an homomorphism sgnA : Hom(Aut(A), X,), as announced.3?

LemMA 4.5.10. (1) The sign of a transposition is —1.

(2) The sign of a k-cycle is (—1)F1.

(3) The identity permutation can only be expressed as a product of an even
number of transpositions.

Proof. For (1), it suffices to consider the transposition (1 2) of a standard
n-element set {1,2,...,n}. Relative to the standard local ordering
1<21<3,...,1<n,2<3,...,n-1 < n), the transposition only
changes the ordering 1 < 2 to 2 < 1, thus differing at exactly one place.
Now (2) follows via Exercise 3.7.4.
For (3), assume idg = (a1 b1) - - - (ax bg), and take the sign of both sides.
Since sgn is a homomorphism, we get +1 = (—=1)*, so k is even.]

COROLLARY 4.5.11. If a permutation o is expressed as a product of transpositions
in two ways,

o =(ay b1)---(am by) = (c1d1)- - (cu dn),

then the parity of m equals that of n, and we have sgn(o) = (-1)™ = (-1)".

GROUPS, CONCRETELY 115

37Why not? A construction
p:Ila: Bz, (Bsgn.(A) = shy,) would
amount to an identification of Bsgn
with the constant map.

38See Exercise 2.24.7. In this section,
we identify U, with the set {+1},
which has a compatible abstract
group structure given by multiplica-
tion.

39This is an instance of a more general
construction, called delooping (see
Section 7.5). The formula for Bsgn‘f‘
here is very simple since ¥, is a fairly
simple group.

1 2 3 4 5
g \‘. \. L \‘l
1 2 3 4 5
FiGure 4.3: A different representa-

tion of the permutation ¢ from Fig-
ure 3.11.

Exercise 4.5.12. Here’s a different way of finding the sign of a permutation
of the standard n-element set m (or of any totally ordered n-element set —
but these are all uniquely identified with m).

For 0:m = m, we call an ordered pair of elements i, j with i < j but
o(i) > o(j) an inversion. If we represent o graphically as in Figure 4.3,
then inversions are crossings of the edges (i, o(i)) and (j, o(j)). Show
that sgn(o) = (=1)™¥(%), where inv(0) is the number of inversions. a

RemARK 4.5.13. The two graphical representations Figures 3.11 and 4.3
each have their uses: In the former, the cycle decomposition is immedi-
ately visible, while permutations are easily composed using the latter
style. Note that the number of inversions depend on the linear ordering,
whereas the sign itself does not.

We also remark that when we compose permutations in the latter style,
we don’'t immediately see the number of crossings/inversions, but we
can imagine “pulling the strings taut”, whereby the parity of the number
of crossings (and thus the sign) is preserved, as seen in Figure 4.4. 1

ExERCcISE 4.5.14. Recall from Exercise 3.7.6 that there are n! permutations
in £,. Show that there are n!/2 even permutations for n > 2. 4

4.6 Bicycles

In Definition 3.6.3 we introduced the type of cycles: pairs (X, ¢t) of a
nonempty set X and a bijection ¢t : X = X such that any two elements
x,x": X canbe connected in the sense that we have (under a propositional
truncation) a way to get from x to x’ by repeated application of ¢ and its
inverse. These gave rise to the group of integers Z via the infinite cycle
(Z, s) in Example 4.2.18 and the cyclic groups of finite order C,, via the
finite cycles (m, s) in Example 4.2.22.

To give many more concrete examples of groups, we now focus on
sets with two bijections, a and b, such that any two elements x, x” can be
connected by repeated application of 2 and b and their inverses, such
as the ones depicted in Figures 4.5 and 4.6, where we use the colors
amaranth and bluebell to indicate the actions of a and b, respectively.
We call these bicycles the infinite dihedral and the quaternion bicycle,
respectively, for reasons that will become clear later.

To capture the idea of “connectedness” for bicycles, we note that it
may be necessary to alternate the application of the two equivalences
(and their inverses) an arbitrary number of times. One convenient way
of formalizing this is via lists of elements of Z L1 Z, where the left/right
elements indicate a power of a/b, respectively. Given a type X with two
self-equivalences a,b: X = X, we define the meaning [¢]: X = X of
such a list ¢ by induction, cf. Section 2.12.10:

[e] == idx
[inl, ¢] == a" o [¢]
[inr, £] := b" o [£]]
For example, we have [inl3inr_pinl_; inr;]| = a3b=2a7'b. With this in
place, we can define the type of bicycles as follows:

DEFINITION 4.6.1. Let Bicyc be the subtype of Y x.¢;(X — X)X (X — X) of
those pairs (X, a, b) where X is a nonempty set with two self-equivalences

GROUPS, CONCRETELY 116

X
v
/
tE— o
N ee—eo N

FiGURE 4.4: The composition

(1 2)(1 2) = idy illustrated in the
style of Figure 4.3, with first two,
then no crossings.

FiGure 4.5: The infinite dihedral
bicycle.

Ficure 4.6: The quaternion bicycle.

a and b, such that any x, x": X are connected by a and b. Expressed in a
formula:

Bicyc:=)|

X:Setg: XS5Xb:X5X

Y X Uxix I 3F & =1aw)).

x,x": X €:(Z11Z)

Elements of Bicyc are called bicycles. 4

REMARK 4.6.2. In Section 8.7 we shall see that just like cycles are equiva-
lently described as connected set bundles over the circle S', the bicycles
are the connected set bundles over the type S! v S!: two circles with
their base points linked together. This type can also be constructed in
analogy with S! as a higher inductive type with three constructors: a
base point, ¢, and two loops, U1 and O, as depicted in Figure 4.7.

We shall also generalize to an arbitrary set S of self-equivalences, and
the “S-fold cycles” will be the connected set bundles over the classifying
type BFs of the “free group” on S many generators. We postpone this,
since it requires some machinery to show that BFs is a groupoid. All in
good time; first we need to learn to ride our bicycles!4° 4

With the definition of bicycles in place, we can define the infinite
dihedral and quaternion groups as automorphism groups:

DEFINITION 4.6.3. Letting (Z11Z, a, b) be the standard infinite dihedral bicycle,
with

a(inly,) = inly, 41, a(inr,) = inry, 1,

b(inl,) = inr,, b(inr,) :=inl,,

we define the infinite dihedral group to be Do = Autpicyc(Z11Z, a, b).43
Similarly, letting (8, a, b) be the standard quaternion bicycle, with

k+1, ifkiseven,
a(k) :=

k+3, ifkisodd

k-1, ifkiseven,
b(k) =

k-3, ifkisodd

(all operations modulo 8), we define the quaternion group to be Qg =
AutBiCyC (8,a,b).

Now let us investigate the identifications of bicycles: If (X, a, b) and
(X’,a’,b’) are elements of }_x.¢;(X — X) X (X — X), then univalence,
together with Definition 2.7.3, Lemma 2.10.3, and Construction 2.14.2,
gives an equivalence

(X,a,b) > (X, a2, b)) S Y, (ea>a’e)x(eb > be),

e: XSX!

to a type whose three components we can visualize as:

X X —4% X X —*bt ,x
elz elz zle elz zle
X’ X' ———— X’ X ———— X’

If X and X’ are sets, then this is the subtype of X — X’ consisting of
equivalences e satisfying ea = a’e and eb = b’e. This means that the

GROUPS, CONCRETELY 117

2 O1

i

FiGurEe 4.7: The type S! v S! is a point
with two loops attached.

49Like “cycle”, our use of “bicycle” is
idiosyncratic. But just like cycles give
rise to cyclic groups, bicycles give
rise to a generalization of the notion
of bicyclic groups, see Douglas*'4>.

#Jesse Douglas. “On finite groups
with two independent generators.
I-IV”.in: Proc. Nat. Acad. Sci. U.S.A.
37 (1951), pp. 604-610, 677-691, 749~
760, 808-813. por: 10.1073/pnas.37.
9.604. por: 10.1073/pnas.37.10.
677.

por: 10.1073/pnas.37.11.749.
por: 10.1073/pnas.37.12.808.

42Jesse Douglas. “On the supersolv-
ability of bicyclic groups”. In: Proc.
Nat. Acad. Sci. U.S.A. 47 (1961),
PP- 1493-1495. por: 10.1073/pnas.
47.9.1493.

43We'll define more dihedral groups,

and gain a new perspective on D,
in Section 8.2.

AN
e

FiGuRrE 4.8: An “abnormal” bicycle
with only the identity symmetry.

()

https://doi.org/10.1073/pnas.37.9.604
https://doi.org/10.1073/pnas.37.9.604
https://doi.org/10.1073/pnas.37.10.677
https://doi.org/10.1073/pnas.37.10.677
https://doi.org/10.1073/pnas.37.11.749
https://doi.org/10.1073/pnas.37.12.808
https://doi.org/10.1073/pnas.47.9.1493
https://doi.org/10.1073/pnas.47.9.1493

symmetries of a bicycle (X, a,b) are given by those self-equivalences
e:X = X that commute with both a and b in the sense that ae = ae and
be = eb.

We now see the added complexity of going from cycles to bicycles:
For a (uni)cycle (X, t), any power t" of t will commute with ¢ itself, but
for a bicycle (X, a, b), we need not have ab = ba. Indeed, neither of the
bicycles in Figures 4.5 and 4.6 satisfies this. And there are many bicycles
whose only symmetry is the identity, e.g., the one in Figure 4.8, or has
fewer symmetries than desired, as in Figure 4.9.

However, all is not lost! Since all elements are connected by two self-
equivalences, we still have that any identification (X, a,b) = (X', a’,b’)is
determined by the image of any given element x : X, giving a weakening
of Corollary 3.6.15 for cycles.

LemMa 4.6.4. Given bicycles (X, a,b) and (X', a’,b’), for any xo : X, we have
that the evaluation map

evy, : ((X,a,b) S (X, a, b)) - X/, evy,(e) = e(xo)
is injective.

Proof. Fix x”: X’. It suffices to show that there is at most one equivalence
e:X = X’ satisfying ea = a’e, eb = b’e, and e(xg) = x’. It follows by list
induction on £: (Z 11 Z)* that e[[£] = [{]’e, where [_] and [_]’ use the
respective pairs of self-equivalences, (a,b) and (a’, b’).

Now by connectivity, for every x : X there exists alist £ with x = [£](xo).
Since we're proving a proposition (the uniqueness of the value of e(x)),
we may assume we have such a list. But then e(x) = e([¢](xo)) =
[€1’e(xo) = [£1’x’ is independent of e, as desired. O

This tells us what'’s special about the infinite dihedral and the quater-
nion bicycles: they are normal 44

DEFINITION 4.6.5. A bicycle (X, a, b) is normal if the evaluation map
evy i (X, a,b) > (X,a,b)) > X, evie) =e(x)

is an equivalence for all x : X. a

In other words, a normal bicycle has the maximum possible amount
of symmetry, in that any element is just like any other.

Exercisk 4.6.6. Show that if the evaluation map is an equivalence for
some x : X, then its an equivalence for all x : X. a

In other words, for anormal bicycle (X, a, b) there is a unique symmetry
(i.e., permutation of X commuting with 2 and b) mapping any x to x’
for any x, x”: X.

DEeFINITION 4.6.7. Given a normal bicycle (X, a, b) with elements x, x": X,
let »O,: (X, a,b) = (X, a,b) be the symmetry that sends x to x’. a

It follows that ,0O, = idx and »0O, o O, = »»O,. We also have that
the inverse of ev, : ((X, a,b) > (X,a, b)) — X maps x’ to y/Oy.

In Section 3.6 we used the subset H; = { n: Z| t" =id } of Z to study a
cycle (X, t). There, we get the equal subsets { n:Z| t"(x) = x } no matter
which x : X we pick.#> For a bicycle (X, a, b), however, the relationship

GROUPS, CONCRETELY 118

FIGURE 4.9: Another “abnormal”
bicycle: It has four elements, but only
two symmetries.

#What follows is a special case of a
more general story that resumes
in Definition 5.2.24 (for actions) and
will be the focus of Chapter 9 on
normal subgroups.

45This is because all cycles (X, t) are
normal in the general sense of Corol-
lary 3.6.15.

between the subsets
Hy={:(Z1U2)" | [](x) =x}

for varying x : X is exactly what determines normality. We leave this as
an exercise now, as we'll return to normality in greater generality later,
especially in Chapter 9.

Exercise 4.6.8. Show that a bicycle (X, a,b) is normal if and only if
Hy =H, forallx,y:X. a

EXERcISE 4.6.9. Show that any commuting bicycle (X, a, b), i.e., one satisfy-
ing ab = ba, is normal. Then show that the map

Cyc x Cyc — Bicye, (X, 1), Y,u)) = (X xY,t xidy,idx X u)

induces an equivalence onto the subtype of commuting bicycles.4®

Assume now that we are given a normal bicycle (X, 4, b) with a chosen
element xg: X. We get a surjective map [_]|(xo):(Z L1 Z)* — X, which
induces an equivalence relation on (Z L1 Z)*.

Exercisk 4.6.10. Check that two lists £, £’ : (Z 11 Z)* are equivalent if and
only if [¢] = [¢']. a
REMARK 4.6.11. Let us consider how list concatenation behaves with
respect to the induced symmetries of (X, 4, b). Note that if a symmetry
maps x to x’, then it also maps [¢](x) to [¢](x’), since symmetries
commute with a,b, and hence with [{]. That is, Oy = o) Dpepex)-
Then we can use [’][[¢] = [¢'¢] to calculate:

[€1(x0)Bxo © [¢/1(x0)Hxo = [€7€0(x0) DL€ N(x0) © [€1(x0)Hx0 = [€7€11(x0) Do

xoB[eD(x0) © x0T N(x0) = 0B [EN(x0) © [€1(x0) DM€ T (x0) = xoTI[€87 T (x0)

This is the punchline: To get concatenation of lists to correspond to
composition of symmetries, we need to go backwards to the symmetry
that takes us to xg from [£]|(x¢), rather than the other way round. a

REMARK 4.6.12. The reader may have noticed that the symmetries of
the infinite dihedral bicycle in Figure 4.5 can be realized as geometric
symmetries of our picture of it, namely vertical translations and 180°
rotations. In fact, our figure has the same symmetries as the frieze pattern
of Figure 4.10. In Figure 4.11 we superimpose the bicycle on the frieze.
We also fix an element xg, which allows us to name all the elements via
applications of a and b. Finally, we indicate two generating geometric
transformations: T, a downwards translation, and R, a 180° rotation
around the midpoint between xy and bxg (the white circle). In other
Oy, and R = y)Opy, = p-1y,0x,- Notice that R
can map elements quite far geometrically, for instance, R(a"xo) = a"bxy.

words, T = yOaxy = g-1x,

In general, we have

T([€1(x0)) = pep(atx0)Brenee) (€1 (x0)) = [€inl-1](x0),
R(IL€T(x0)) = genp-1x0)Breno) (M€ (x0)) = [€inr_1](xo),

so T'/R amounts to appending inl_; /inr_; to the end of the list, respec-
tively, that names a given point. Conversely, if we named the points by
applying T and R (and inverses) to xg, then it would be the geometrically
local operations a and b that would correspond to inserting T~! and

GROUPS, CONCRETELY 119

46For example, the Klein four-group
from Example 4.2.26 is equivalent
to the automorphism group of the
commuting bicycle:

()

~—~7

FIGURE 4.10: A frieze pattern with
infinite dihedral symmetry.

adxg o e a3bxg

a’xg *<_ e a7?bxg
axo o< e g lpxg
TJ R
X0 eone bxg
1 VS

“lxg o< e abxg

xo * e a’bxg

FiGure 4.11: The frieze in Figure 4.10
with the infinite dihedral bicycle
of Figure 4.5 superimposed.

R~! at the end. For example, a(T~?R(xo)) = T"2RT"!(xo). In fact, see
already saw one manifestation of this in Figure 3.5 back in Section 3.5,
and we’ll return to this phenomenon several times throughout the
book. We'll discuss friezes and other geometrical objects in more detail
in Chapter 14. 4
Exercisk 4.6.13. Construct an identification between the infinite dihedral
bicycle (X, a, b) and its geometric cousin (X, T, R), where T and R are as
in Figure 4.11. 4
ExERcIsE 4.6.14. Two (normal) bicycles may represent the same group even
though they belong to two different components of Bicyc: Construct an
isomorphism between the automorphism groups of the bicycles below:

/AN m.
Qﬂ//

Then construct an isomorphism between either of these automorphism
groups and the symmetric group 3. J

4.7 Infinity groups (co-groups)

Disregarding the requirement that the classifying type of a group G is a
groupoid (so that UG is a set) we get the simpler notion of co-groups:

DerINITION 4.7.1. The type of co-groups is

coGroup := Copy(U.°), where U0 := Z A x isConn(A)

is the type of pointed, connected types.
As for groups, we have the constructor Q : U; 0 ooGroup and the
destructor B: coGroup — U.°. a

REMARK 4.7.2. Just as “group” is a synonym for “pointed, connected
groupoid” (wrapped with Q), “co-group” is a synonym for “pointed,
connected type” (wrapped with Q). As for pointed, connected groupoids,
we suppress the propositional information from the notation, and write
(A, a) instead of (A, a,!) for an pointed, connected type. 1

DEerINITION 4.7.3. Given G : coGroup, the underlying pointed type BG: U.
is called the classifying type of G and shg := pty; is called the designated
shape. 4

DEFINITION 4.7.4. For any type A with a specified point a, we define the
automorphism co-group of a : A by

Aut,q(ﬂ) = Q(A(u)r (Ll, '))/

i.e., Auta(a) is the co-group with classifying type BAuta(a) = (A(,), (a,!)),
the connected component of A containing a, pointed at a. 4
REMARK 4.7.5. It can certainly happen that the connected component
of A containing a is groupoid, even though A itself is not a groupoid.

GROUPS, CONCRETELY

120

For example, consider a type universe U and a set S:U. Then Us) is
a groupoid, and the automorphism co-group Auty(S) is an ordinary

group.
Because we have an inclusion 7.~ < U.”°, we get a corresponding
injection Group < coGroup. a

DEeFINITION 4.7.6. A homomorphism of co-groups is a pointed function of
classifying types, i.e., given two co-groups G and H,we define

Hom(G, H) := Copy(BG —. BH).

Given f = QBf: Hom(G, H), we call Bf : BG —. BH the classifying map
of f -

GROUPS, CONCRETELY

121

5
Group actions and subgroups

Historically, groups have appeared because they can “act” on a set (or
more general objects), that is to say, they collect some of the symmetries
of the set. This is a point of view that we will return to many times and
we give the basic theory in Section 5.2. This section should remind the
reader of the material in Chapter 3, where we dealt with the special case
of the group of integers. More generally, connected set bundles now
reappear in the guise of “transitive G-sets”, and these are intimately
related to the set of subgroups of a group. These also generalize the
bicycles of Section 4.6, from which we lift the notion of “normality”.

Also discussed in Section 5.2 is the notion of “G-torsor”. A G-torsor is a
G-set that is merely equal to the universal set bundle, see Examples 3.3.9
and 5.2.4. The type of G-torsors recovers the classifying type of the
group G, and this idea is used in Chapter 7 to build the equivalence
between our definition of a group and the abstract version taught in
most algebra classes.

5.1 Brief overview of the chapter

After setting things up in Section 5.2, and studying subgroups in Sec-
tion 5.3, we introduce the important operations of taking invariant maps
and orbits of an action in Section 5.4. The fundamental equivalence
between the classifying type BG of a group G and the type of G-torsors
is constructed in Section 5.5. In Section 5.6 we apply G-torsors to prove
Cayley’s Theorem for our groups, and in Section 5.7 we begin the study of
the combinatorics of group actions. This allows us to count, for instance,
how many ways there are of “coloring” objects acted on by groups, and
it lays the groundwork for the combinatorics of finite groups we’ll be
looking at in Chapter 10.

5.2 Group actions (G-sets)

One of the goals of Section 7.4 below is to prove that the types of
groups and abstract groups are equivalent. In doing that, we are invited
to explore how elements of abstract groups should be thought of as
symmetries and introduce the notion of a G-set. However, this takes
a pleasant detour where we have to explore a most important feature
of groups: they can act on things (giving rise to manifestations of
symmetries)!

DeriNtTION 5.2.1. For G a group, a G-set is a function

X :BG — Set,

122

GROUP ACTIONS AND SUBGROUPS 123

and X(shg) is referred to as the underlying set. If p : x = y in BG, then the
transport function X(x) — X(y) induced by X(p) = trpy(p): X(x) =
X(y) is also denoted by X (p). We denote X(p)(a) by p -x a. The operation
-x is called the group action of X. When X is clear from the context we
may leave out the subscript X." In particular, if g: UG, then X(g) is a
permutation of the underlying set X(shg) of X.

The type of G-sets is

G-Set := (BG — Set). J

ExawmrLE 5.2.2. If G is a group and X is a set, then trivg X defined by

trivgX(z) == X, forall z:BG,

is a G-set. Examples of this sort (regardless of X) are called trivial
G-sets. 4

RemaRk 5.2.3. The reader may have noticed that the type of G-sets is
equivalent to the type of set bundles over BG. The reason we have
allowed ourselves two names is that our focus is different: for a G-set
X :BG — Set we focus on the sets X(z), whereas when talking about set
bundles the first projection) ,.pc X(z) — BG takes center stage. Each
focus has its advantages. 4

ExamrLE 5.2.4. If G is a group, then

P : BG — Set, Psh (z) := (she = 2)

is a G-set called the principal G-torsor.> We've seen this family before in
the guise of (preimages of) the “universal set bundle” of Example 3.3.9.

There is nothing sacred about starting the identification shg = z at
shg. Define more generally

(5.2.1) P :BG — G-Set, Py = (z— (y = 2)),

Applying P_to a path g:y — y’ induces an equivalence from P to P,
thatsends p:y = z to pg':y’ S z. As a matter of fact, Theorem 5.5.7
will identify BG with the type of G-torsors via the map P, using the full
transport structure of the identity type P, (z) = (y = z). 4

Note that the underlying set of Py, is
Pshc (Shc) = [P)shc (ShG) = (ShG = ShG) = UG,
the underlying symmetries of G. If we vary both ends of the identifica-

tions simultaneously, we get another G-set:

ExampLE 5.2.5. If G is a group, then

Ad¢g :BG - U, Adg(z) =(z 5 2)

is a G-set (or G-type) called the adjoint G-set (or G-type).3 Notice that by
the induction principle for the circle,

Y Ade(z)= Y (2 5 2)

z:BG z:BG
is equivalent to the type of (unpointed!) maps S' — BG, known in other
contexts as the free loop space of BG, an apt name given that it is the
type of “all symmetries in BG.” The first projection), .p5 Adg(z) — BG
correspond to the function (S! — BG) — BG given by evaluating at*.

*Note that in this case -: (x = y) —
X(x) — X(y). See Example 5.2.4
for a special case where -y is indeed
path composition.

Much of what follows will work
equally well for co-groups; if G is
(a group or) an infinity group, a
G-type is a function X : BG — U,
with underlying type X(shg). This is
an action in U, and more generally,
an action of G on an element of
type A is a function X :BG — A,
see Section 5.2.26 below.

2The term “G-torsor” will reappear
several times and will mean nothing
but a G-set in the component of Py
- a “twisted” version of Pyp. .

3Note that Adg also makes sense

for co-groups. With the name “ad-
joint” we conform to usual termi-
nology. The action of Adg works
as conjugation: if p:y = z, then
Adg(p):(y S y) S (z S z)is given
by:

Adg(p)(q) = pap~tinz S z.

The picture

is a mnemonic device illustrating
that it couldn’t have been different,
and should be contrasted with the
picture for Py (p): (she Sy S
(ShG = Z):

reflgy,

shg é shg

qlu IIlPshG (P)(q)
y %) z.

GROUP ACTIONS AND SUBGROUPS 124

ExampLE 5.2.6. Let G and H be groups. Recall the set Hom(H, G) of
homomorphisms from H to G (Lemma 4.4.12). We will define group
actions on Hom(H, G) by moving the shapes of G and H as in Exam-
ple 4.4.20: Reusing the notation Hom(H, G), define for any x : BH and
y:BG

Hom(H, G)(x, y) := Hom(Q(BH-, x), Q(BG., y)).

Alternatively, by Definition 2.21.1 and Definition 4.4.2, we have

Hom(H, G)(x,y) = Copyg(Z (y = f(x)))-

f:BH.—BG.

The type Hom(H, G) may be considered to be a (H X G)-set:
Hom(H, G): (BH X BG) — Set,

and we shall be particularly interested in the restriction to G, giving a
G-set for which we again reuse the notation:

Hom(H, G)(y) := Hom(H, G)(shy,). J

Exercise 5.2.7. Provide an identification between the G-sets Ad¢ and
Hom(Z, G) of Examples 5.2.5 and 5.2.6.4 4

DeriNtTiON 5.2.8. If G is a group and X, Y are G-sets,5 then a map from X
toY is an element of the set

Homg(X,Y) = [[(X(z) - Y(2)).
z:BG

When f is such a map, we may write f;, for f(z). 4
ReMARK 5.2.9. Given G-sets X,Y and a map f from X to Y, we have

fw(g xx) =gy fz(x)forall z, w:BG, x: X(z), g : z = w. In other words,
the diagram on the right commutes:

z X(z) L) Y(z)

b e

w X(w) - Y (w)

Animportant special case is when Y is the G-set trivgProp that is constant
Prop: Given a map P from X to trivgProp, we have P, (g - x) if and only
if P;(x) for all z, w: BG, x : X(z), g : z = w. This applies to the following
definition. a

DerINITION 5.2.10. A G-subset of a G-set X is a map from X to the G-set
trivgProp that is constant Prop. The type of all such maps is denoted®

Subg(X) := Homg(X, trivgProp) = H Sub(X(z)).
z:BG

Similarly to Corollary 2.20.12, Subg(X) is a set.” If P is a G-subset of X,
then the underlying G-set of P, denoted by Xp, is defined by

Xp(z) = Z P(z,x), forallz:BG. 4
x:X(z)

4Hint: This is similar to Exam-
ple 4.4.17: identify Hom(Z, G)(y)
with EZ :BG Zp:ziz(y - Z) and
use Lemma 2.9.10.

5This definition generalizes to co-
groups and G-types.

6Recall Definition 2.20.3: Sub(T) =
(T — Prop).

7 The type Subg(X) can be uncurried
(Exercise 2.9.26) as Tot(X) — Prop,
the type of subtypes of Tot(X) =
Y».Bc X(x) (Definition 2.20.3).

GROUP ACTIONS AND SUBGROUPS

Exercise 5.2.11. Show that evaluation at shg is an equivalence from
Subg(X) to

Y II (ew- I as-»).

Q: Sub(X(shg)) x: X(shg) g:UG

The latter type is the type of all subsets of X(sh¢) that are closed under
the group action. 4

The following exercise wil be used in the subsequent remark.

Exercise 5.2.12. Let (A, a) and (B, b) be pointed types and let A be
connected. Give an equivalence from (A,a) —. (B,b) to (A,a) —.
By, (b, 1)) J
ReMARK 5.2.13. A G-set X is often presented by focusing on the underlying
set X(shg) and providing it with a structure relating it to G determining
the entire function X : BG — Set. More precisely, since BG is connected,
using Exercise 5.2.12, we have the following chain of easy equivalences:

G-Set = (BG- — Set)
%Y Y (S5 X(sho)
S:Set X : (BG.—Set)
= Y (BG —. (Set, 5))
S:Set

=, Z (BG —. (Sets), (S,1)))
S:Set

> Z Hom(G, Xs)
S:Set

Hence a G-set X can, without loss of information, be considered as a
set X(shg) and a homomorphism from G to the permutation group of
X(shg). a
DEerINITION 5.2.14. If G is a group and S is a set, then an action of G on S
is a homomorphism from G to the permutation group of Xs of S. 4

By the construction in Remark 5.2.13 we identify G-sets and sets with
an action of G on a set.
Exercisk 5.2.15. Prove that a group G is abelian if and only if the G-sets
Adg and trivg(UG) are identical. 4
ExERrcIsE 5.2.16. Prove that a group G is the trivial group if and only if
the G-sets Adg and Py, are identical. a
DerintTION 5.2.17. Let G be a group and X : BG — Set a G-set. We say X
is finite if the underlying set X (shg) is finite. (If X(sh¢) is an n-element
set, then so is X(z), for any z : BG.) For any finite G-set X we denote the

number of elements in X(shg) by #(X), also called the cardinality of X.

.

5.2.18 Transitive G-sets

We saw in Chapter 3 that connected set bundles play a special role: In the
case of the circle, classifying the group of integers Z, they correspond to
cycles (Corollary 3.6.4).

We hinted there that they are connected to subgroups, so we now
study them over a general group G. As G-sets they are called transitive
G-sets. Classically, an abs(G)-set (a notion we have yet not defined) X is

125

GROUP ACTIONS AND SUBGROUPS 126

said to be transitive if there exists some x : X such that for all y: X’ there
exists a g : X with x = g - y. In our world this translates to:

DEerINITION 5.2.19. A G-set X : BG — Set is transitive if the proposition

4 I Ja&=gw

x:X(shg) y: X(shg) g: UG
holds. J

REMARK 5.2.20. In other words, X is transitive if and only if there exists

isTrans(X) =

some x : X(shg) such that the map _- x: UG — X(shg) is surjective.
Note also that by connectedness (cf. Exercise 2.16.9) it is equivalent to
demand this over all z : BG:

(5-22) I1 [T 3 @&=gw.

z2:BG x:X(shg) y: X(shg) g:25z

Yet another equivalent way of expressing that X is transitive is to
say that X(shg) is nonempty and for any x, y : X(sh¢) there exists some
g :UG with x = g - y. Note that the empty G-set is not transitive. 4

Lemma 5.2.21. A G-set is transitive if and only if the associated set bundle is
connected (see Definition 3.3.1).

Proof. Consider a G-set X:BG — Set and the associated set bundle
f:X — BG where X = Yy:8c X(y) and f is the first projection. Now, X
is connected if and only if there exists a z : BG and an x : X(z) such that
forall w: BG and y : X(w) there exists some ¢:z — w such thaty = g - x.
Since BG is connected, this is equivalent to asserting that there exists
some x : X(shg) such that for all y : X(sh¢) there exists some g : UG such
thatx = g-y. O

The next lemma is an analog of Corollary 3.6.15 (for cycles), and a
generalization of Lemma 4.6.4 (for bicycles). The action in Figure 5.1
corresponds to the bicycle back in Figure 4.8 (and reproduced in Fig-
ure 5.2) illustrates what can go wrong. We’ll study exactly when we get
surjectivity in Section 9.5 on “normal” subgroups.

Lemma 5.2.22. Let X, Y : BG — Set be G-sefs. Let z: BG and x : X(z). If X is
transitive, then the evaluation map

evy : Homg(X,Y) — Y(z), evy(f) = fz(x)

is injective.3

Proof. We show that for any y : Y(z), there is at most one f : Homg(X, Y)
such that f;(x) = y. Let f, f': Homg (X, Y) such that f,(x) = y = f/(x).
Let w:BG and x’: X(w). It suffices to show that f,(x”) = f,,(x’). Since
the latter is a proposition, we may assume (by the transitivity of X,

using Lemma 5.2.21) that we have a g:z = w such that g -x x = x”.
Using Remark 5.2.9, we have

fu(x) = fu(g x x) = gy fo(x) = g v f1(x) = fu(g x x) = f(x). D

Via function extensionality, the identity type X = Y, for G-sets X, Y is
a subtype of the type Homg(X, Y). Hence we also have that evaluation
at some x : X(z), for any given z : BG, is an injection

evy (X =gset Y) = Y(2).

i

Ficure 5.1: An Q(S! v S!)-set X for
which evy is not surjective. At the
bottom the type S' v S! is visualized
as two circles with a common base
point. Note that the underlying

set of X with the red and the blue
permutation is a bicycle in the sense
of Definition 4.6.1.

’.‘\@
Y

Ficure 5.2: Alternative representation
of the Q(S! v S')-set X from Fig-
ure 5.1, using colors and arrows

to represent which parts lies over
which circle in which orientation.

8Recall that for type families
X, Y:T - U,and f: [[;.7(X(z) =
Y(z)), we may write f; :(X(z) —
Y(z)) (instead of the more correct
f(z)) for its evaluation at z: T.

GROUP ACTIONS AND SUBGROUPS

ExERCISE 5.2.23. Reverse engineer the Q(S! Vv S')-set X in Figures 5.1
and 5.2. Show that X = X is contractible. Conclude that ev,, while
injective, is not surjective. (Hint: the induction principle for S! v Sl isa
generalization of the induction principle for the circle to two loops.) 4

We can now generalize the definition of normal bicycle from Defini-
tion 4.6.5 to transitive G-sets:

DEFINITION 5.2.24. A transitive G-set X : BG — Set is normal if the evalua-
tion map

evi (X Sase X) > X(x), evale) = e(v)
is an equivalence for all x : X. 4

Exercisk 5.2.25. Show that if the evaluation map is an equivalence for
some x : X, then its an equivalence for all x : X. (This generalizes Exer-
cise 4.6.6.) g

5.2.26 Actions in a type

Oftentimes it is interesting not to have an action on a set, but on an
element in any given type (not necessarily the type of sets). For instance,
a group can act on another, giving rise to the notion of the semidirect
product in Section 8.2. We will return these more general types of actions
many times.

DerIntTION 5.2.27. If G is any group? and A is any type, then we define
an action of G in A as a function

X:BG — A.

The particular “object of type A being acted on” is X(sh¢): A4,
Fixing a : A as the underlying object, we define an action of G on a to
be a homomorphism from G to Auta(a). a
This generalizes our earlier definition of G-sets X : BG — Set from Def-
inition 5.2.1, and harmonizes with Remark 5.2.13, relating G-sets and
actions of G on a set. Indeed, we identify an action of G in A with a pair
of an underlying object 4 : A and an action of G on a:

(BG — A) >) Hom(G, Aut(a))
a:A

This equivalence, hinted at in Exercise 4.4.19, maps an action X : BG — A
to the pair consisting of a4 := X(sh¢) and the homomorphism represented
by the pointed map from BG to the pointed component A, given by X.

DerINITION 5.2.28. The standard action of G on its designated shape shg is
obtained by taking A := BG and X := idpg. 4

ExampLE 5.2.29. The symmetric group X acts on the cyclic group Cz as
follows. Given a 2-element set S consider the type }_x.get(S = (X — X))
of pairs (X, f) of a set X and a “pair” of functions f; : X — X (one for
each s: S). In this type we have the element (1 II S, f), consisting of the
3-element set 111 S and the function f:S — ((1LIS) — (111S)) defined
by

fs(inlp) = inrg,

fs (il’ll‘s) = il'uﬂswap(s)/

fs (inrswap(s)) = inlp.

9Even an co-group in the sense of
Section 4.7.

127

GROUP ACTIONS AND SUBGROUPS 128

Then G(S) = Auty, ., s—x—x(I1LIS, f) defines anaction BX, — Group.™
Furthermore, we identify G(Bool) with BC3 by mapping a shape (X, f) in
BG(Bool) to the 3-cycle (X, fyes) and identifying the 3-cycle (111Bool, fyes),
for the f defined above, with the standard 3-cycle (3, s), correlating inlg
with 0: 3. a

ExErcisE 5.2.30. Show that action of £, on C3 from Example 5.2.29 gives
an identification X, = Aut(Cs). 4
ExampLE 5.2.31. By composing constructions we can build new actions
starting from simple building blocks. For example, the standard action
of symmetric group X, is to permute the elements of the standard
n-element set n. Composing with the projection BX, — Set, we get the
corresponding standard X,,-set.’* Composing further with the operation
_ — Bool:Set — Set, mapping any set S to the set S — Bool, we get the
action of X, on the set of decidable subsets of n. 1

5.3 Subgroups

In our discussion of the group Z := Autgi(*) of integers in Chapter 3
we discovered that some of the symmetries of « were picked out by the
degree m function 6,,:S' — S! (for some particular natural number
m > 0, see Definition 3.6.5). On the level of the set « = ¢, the symmetries
picked out are all the iterates (positive or negative or even zero-fold)
of O™. The important thing is that we can compose or invert any of
the iterates of (" and get new symmetries of the same sort (because
of distributivity mnq + mny = m(n1 + nz)). So, while we do not get all
symmetries of (unless m = 1), we get what we’d like to call a subgroup
of the group of integers.

The case of m = 0 is special. The iterates of OY, i.e., of refl., can also be
composed and inverted, never to give something else than Y itself. This
is what we’d like to call the trivial subgroup of the group of integers. We
can pick out the single symmetry O° by the constant map cst. : 1 — S'.

Both 0,, and cst. can trivially be pointed to make them into classifying
maps of homomorphisms that are injections on the respective sets of
symmetries. Using Corollary 3.6.10, each 0,, is a pointed connected
set bundle over the circle, and cst. is even the universal set bundle by
Lemma 3.3.11. Finally, Lemma 5.2.21 gives yet another equivalent view,
namely the of pointed transitive G-sets. This view will now be used for
our first formal definition of the notion of a subgroup of a group G.

5.3.1 Subgroups through G-sets

The idea of this approach is to take the total type of a transitive G-set
X and to choose a point x : X(shg) in the underlying set of X. Then the
symmetries of (shg, x) are precisely the symmetries of shg that keep the
chosen point x in place.

DeriNITION 5.3.2. For any group G, define the type of subgroups of G as

Sub(G) = Z X(shg) x isTrans(X).
X :BG—Set

The underlying group of the subgroup (X, x): Sub(G) is

°If S is {s, s’}, then we can picture the
designated shape as follows, where
the blue and red arrows denote f;
and f,/, respectively:

~

11s,” .

11Check that this action is transitive for
n > 0.

2To lighten the notation, we leave
out the proof that X is transi-
tive. (Otherwise, we would write
(X, x,!): Sub(G).) In Remark 5.3.22
below we'll set out further notational
conveniences regarding subgroups.

GROUP ACTIONS AND SUBGROUPS 129

Q[¥ x(2), b, 0)). ,

z:BG

Exercisk 5.3.3. Show that },.35 X(z) above is a connected groupoid.

Hint: use Lemma 5.2.21. 4

ExaMPLE 5.3.4. Recall from Definition 3.6.7 the S'-set R,,:S' — Set
defined by R;,(*) := m and R,,(Q) = 5. Here m > 0 so that we can
point R,, by 0: Ry, (+).*3 Transitivity of Ry, is obvious. Which symmetries
p:* = ¢ are picked out by R,,, that keep the point 0: R,,(*) in place?
Those that satisfy R,,(p)(0) = 0, i.e., p = O"* for some integer k. Given
a, in Construction 3.6.9, it should not come as a surprise that these are
precisely the symmetries picked out by o,,.

The case of m = 0 connects to another old friend: the S'-set R : S — Set
defined by R(¢) := Z and R(U) = §, see Definition 3.3.12. Again we
point by 0: R(+) and transitivity of R is obvious. The only symmetry
that keeps 0 in place is refl., since R(QO)(0) = s¥(0) = k = 0if and only if
k = 0. Again, no surprise in view of the results in Section 3.4 identifying
R as the universal set bundle over S'. a

The following result is analogous to the fact that Sub(T) is a set for
any type T, see Definition 2.20.3. It captures that the essence of picking
out symmetries (or picking out elements of a type), is a predicate, like
Ry (p)(0) = 0 in Example 5.3.4.

LemMa 5.3.5. For any group G, the type Sub(G) of subgroups of G is a set.

Proof. Let G be a group, and let (X, x,!) and (X’, x’,!) be elements of
Sub(G), i.e., subgroups of G. Any f: (X, x,!) = (X’,x’,!), can be viewed
as a family of equivalences of type X(z) = X’(z), parameterized by
z:BG, with feg.(x) = x’. By the definition of Sub(G), the G-set X is
transitive, and x : X(sh¢). Now Lemma 5.2.22 applies.** It follows that
(X,x,1) = (X', x’,!) is a proposition. m]

ExamrLE 5.3.6. Consider the symmetric group X, from Example 4.2.20(2),
for some n > 0. The X,-set X: BZ, — Set given by X(A,!) := A for
A :FinSet, is obviously transitive. For any k:m, we can point X by
k:X(shs,) = n.*> Thus we have (X, k): Sub(Z,). The symmetries that
are picked out are those 7:m = m that satisfy (7 -x k) = k. In other
words, 1 keeps k in place and can be any permutation of the other
elements of n. From the next Exercise 5.3.7 we get that the underlying
group of each (X, k) is isomorphic to X;_1. 4
Exercisk 5.3.7. Give an equivalence from the type of n-element sets to
the type of pointed (n+1)-element sets. Hint: use Exercise 2.24.6. 4

Exercisk 5.3.8. For any set A with decidable equality, give an equivalence
from Ato Y 5.¢4(A = (B+1)). a

ExampLE 5.3.9. Recall from Example 4.2.22 the definition Cg := Autcy.(6, s)
of the cyclic group of order 6. This group can be visualized as the rota-
tional symmetries of a regular hexagon, i.e., the rotations by 2r - m/6,
where m =0,1,2,3,4,5. The symmetries of the regular triangle (rota-
tions by 21 - m /3, where m = 0, 1, 2) can also be viewed as symmetries
of the hexagon, see Figure 5.3. Thus there is a subgroup of Cs which, as
a group, is isomorphic to C3, and which we now construct.

3Any element of m would do.

*Instance: z =shg, Y = X’and y = x'.

'5The choice of the point does matter
for the symmetries that are picked
out.

16This uses the alternative notation for
the group action of X introduced in
Definition 5.2.1.

Ficure 5.3: Geometrical shapes
illustrating Cs as subgroup of Cs.

GROUP ACTIONS AND SUBGROUPS 130

In order to obtain Cj as a subgroup we can define F: C4 — Set defined
by F(X,t) = X/2 for all (X, t): BCs, where X /2 is defined in Section 3.8
as the quotient of X modulo identifying elements that are an even power
of t away from each other. Clearly, F is a transitive G-set. On symme-
tries, F maps 7:(6,s) = (6,s) to ([k] — [n(k)]):(6,s)/2 = (6,5)/2.17
The symmetries 7t satisfying F(7t)([0]) = [0] are the even powers of
5.8 The subgroup that we have defined above is (F, [0],!): Sub(Cs).
The underlying group of (F, [0],!) is Q(¥x1): cye, X/2, ((6,5),[0])). Us-
ing ps: BC3 —. BC¢ from Lemma 3.8.6, and the equivalence between
X /2 and p;l(X , 1) from Construction 3.8.11, and the equivalence from
Lemma 2.25.2, we get an equivalence between the underlying group of
(F,[0]," and Cs. 4

There are other subgroups of Cq, and in this example they are ac-
counted for simply by the various factorizations of the number 6.

5.3.10 Subgroups as monomorphisms

For many purposes it is useful to define “subgroups” slightly differently.
We now give a second, equivalent definition of a subgroup, generalizing
the examples 0,, and cst. from the introduction of this chapter. Recall that
both Ué,, and U cst. are injective. Also recall Corollary 2.17.9(2), which
implies that Uf is injective iff Bf is a set bundle, for any homomorphism
f.

DerINtTION 5.3.11. Let G and H be groups. We say that homomorphism
i: Hom(H, G) is a monomorphism, denoted isMono(i), if Ui: UH — UG
is an injection (all preimages of Ui are propositions).

The type of monomorphisms into G* is

Mono(G) =) Y

H :Group i : Hom(H,G)

isMono(i).

We call H the underlying group of (H, i,!) : Mono(G).
A monomorphism (H, 7,!) into G is:

(1) trivial if H is the trivial group;*
(2) proper if i is not an isomorphism. a

ExampLE 5.3.12. We will present the subgroups from Example 5.3.6 with
monomorphisms. For each 7 : N, consider the homomorphism i, : £, —
Zn+1 of permutation groups with Bi, sending A: B, = FinSet, to
A+ True: BX,41. As pointing path we take the reflexivity path. This is a
monomorphism since Ui, : UX, — UZX,, is an injection, extending any
permutation 7t of m to a permutation of m + 1 by adding the last element
as a fixed point.

In the picture in the margin we have taken n = 3 and {1,2, 3} for 3.
How can we obtain the other proper, non-trivial subgroups of X3? First of
all, one should not expect to find all subgroups through monomorphisms
j: Zo — X3, see Exercise 5.3.14. Using only X, the two other subgroups
can be obtained by varying the pointing path of i3. These pointing paths
are induced by the permutations of 3. In Exercise 5.3.13 you are asked
to elaborate each case. a

Exercisk 5.3.13. Calculate im(Ui3) for each pointing path:3 = 3. .

17The function [k] +— [n(k)] is well-

defined since permutations that
commute with s preserve distance.

1811 view of Corollary 3.6.16, these

symmetries can be visualized by
the vertices of the regular triangle,
see Figure 5.3. The same is true

for the symmetries picked out by
F(m)([1]) = [1]. Both F(m)([0]) = [1]
and F(n)([1]) = [0] give the other
inscribed regular triangle.

9The similarity of this type with

the type of subtypes Sub(T) :=
Ys:u Lf:s—r isInj(f) in Defini-
tion 2.20.3 is not coincidental, and
the remarks made there in Foot-
note 72 apply here as well.

In particular, the identity type
of Mono(G) identifies precisely the
triples that define the same sub-
group, namely when their homomor-
phisms differ by precomposition by
an identification of their underlying
groups.

29This amounts to Bi being the univer-

sal set bundle over BG, see Defini-
tion 3.3.10

Thati: ¥ — X3 is a monomorphism
can visualized as follows: if X3 repre-
sent all symmetries of an equilateral
triangle in the plane (with vertices
1,2, 3), then i is represented by the
inclusion of the symmetries leaving 3
fixed; i.e., reflection through the line
marked with dots in the picture.

3

GROUP ACTIONS AND SUBGROUPS 131

Exercisk 5.3.14. Define monomorphisms j, j': C3 — X3 such that Uj #
Uj’ while (Cs, j,!) and (Cs, j/,!) can be identified. a
ExawmrLE 5.3.15. If G and H are groups, then ig: G — G X H, classified
by Bic : BG —. BG x BH with Big(z) = (z,shy), pointed by reflexivity,
is a monomorphism: Uic maps g: UG to (g, reflsy,) and is obviously
injective. We call i¢ the first inclusion and we have a similar second
inclusion i :H — G X H. a

LemMA 5.3.16. Let G be a group. The map sending (X, pt,!): Sub(G) fo the
monomorphism classified by fst : (¥, .pc X(2), (shg, pt)) —+ BG, pointed by
reflexivity, yields an equivalence®*

F: Sub(G) — Mono(G): (X, pt) (Q (y X(z),(shc,pt)),g fst).
z:BG

Proof. The inverse equivalence is E defined as follows:
E :Mono(G) — Sub(G), (H, i)~ E(H,i) = (BiZ', (shy, Bip)),

where the monomorphism i : Hom(H, G) is given by the pointed map
(Bi., Bipt) :BH —. BG. The preimage function Bi;':BG — Set is a
transitive G-set since i is a monomorphism, and (shy, Bipt) : Bi:l(shc) =
Y ..pr(shg = Bi.-(x)). Now do Exercise 5.3.18 below. O

ExampLE 5.3.17. In this example we explain how the equivalence between
Mono(G) and Sub(G) works in the special case G = X3 and with two
versions of the same subgroup.

Recall (X, i3,!):Monoy, with i3: Xy —. X3 :B = (B + True) from
Example 5.3.12. The preimage function Bi;' maps any A: BZ;3 to
Y 5. Bs,(A = (B + True)). In particular we have (2, reﬂg):Bigl(i’b) (re-
call that i3 is pointed by reflexivity).

Wehave E(X,, i3,!) = (Bi3', (2, refl3),!). Goingback asin Lemma.3.16
we get (L. gy, Bi 1(A), fst, !). Using Lemma 2.25.2 one sees that, indeed,
the latter monomorphism can be identified with (X, i3, !).

Why do we say that (X3, 3,!): Sub(X3) from Example 5.3.6 defines
the same subgroup as (X, i3,!) : Monos, from Example 5.3.12? The
reason is that they pick out the same symmetries in X3, as argued in
these examples. Moreover, (X3,3,!) and E(Z,, i3,!) can be identified.
Note that X3(A,!) = Aand Bi3! = ¥ 5. By, (A = (B + True)). Now apply
Exercise 5.3.8 and verify that the points correspond. Lemma 5.3.20 below
offers a general result of this kind. 4

Exercisk 5.3.18. Complete the details of the proof of Lemma 5.3.16 above
using Corollary 2.17.9(2), Lemma 2.25.2, Lemma 5.2.21. 4

Since Sub(G) is a set by Lemma 5.3.5, Lemma 5.3.16 allows us to
conclude:

COROLLARY 5.3.19. Let G be a group. Then Mono(G) is a set.

The following lemma states that the equivalences in Lemma 5.3.16
preserve the subsets of symmetries that are picked out.
LemMa 5.3.20. Let G be a group and g : UG a symmetry. Recall the equivalence
F from Lemma 5.3.16. For all (X, pt,!): Sub(G) and (H, i,!) : Mono(G) such
that (H,i,!) = F(X, pt,!), we have X(g)(pt) = pt in Xsn. if and only if there
exists h: UH such that ¢ = Ui(h) in UG.

21Recall that we may omit “!”s: propo-
sitional data never dies, it just fades
away!

GROUP ACTIONS AND SUBGROUPS 132

Proof. Let (X, pt,!): Sub(G). It suffices to prove the lemma for (H, i,!) =
F(X, pt,!): Mono(G). This means BH = (}_, .5 X(z), (shg, pt)) and Bi =
fst. We have to prove: X(g)(pt) = pt iff there exists an : (shg, pt) =
(shg, pt) such that ¢ = Ui(h) = Q fst(h).

If X(g)(pt) = pt, then we can simply take 1 := (g, reflp).

For the converse, assume there exists an 4 : (shg, pt) = (shg, pt) such
that ¢ = Ui(h). Then h = (g, p) for some p: X(g)(pt) = pt.>* O

Through the equivalence E we can translate the concepts in Defini-
tion 5.3.11 to subgroups in Sub(G). First, observe that the underlying
groups of a subgroup in Mono(G) and of its image under E in Sub(G)
can be identified.

DerINITION 5.3.21. We say that a subgroup (X, pt,!): Sub(G) is:
(1) trivial if the underlying group (¥, .pg X(z), (shg, pt)) is trivial;
(2) proper if X(shg) is not contractible. 4

REMARK 5.3.22. A note on classical notation is in order. If (X, pt,!) is
a subgroup corresponding to a monomorphism (H, 7,!) into a group
G, tradition would permit us to relax the burden of notation and we
could write “a subgroup i: H C G”, or, if we didn’t need the name of
i: Hom(H, G), simply “a subgroup H € G” or “a subgroup H of G”. .
ExaMmpLE 5.3.23. We saw in Example 5.3.15 that the first inclusion i1 : G —
GxG'isamonomorphism. The corresponding GXxG’-set is the composite
of the first projection proj, : BG. X BG. — BG. followed by the principal
G-torsor Py, : BG — Set:z — (shg = z) of Example 5.2.4.

More generally, if i : Hom(H, G) and f: Hom(G, H), and fi = idg,
then (H, i,!) : Mono(G), corresponding to the subgroup with G-set given
by the composite of Bf with the principal H-torsor Py, . 4

5.3.24 The Lagrange construction

In this section we give a general version of Lagrange’s Theorem. It serves
as a basis for more traditional versions, such as the counting version in
Exercise 5.3.27 below.

ConstrRUCTION 5.3.25. Let G bea group. For every subgroup (X, pt,!) : Sub(G)
of G, with underlying group called H, we have a function Ly of type

(TI X gxx=pt) > (UGS (X(shg) x UH)).
x:X(shg) g:UG

Implementation of Construction 5.3.25. Define the map [_]: UG — X(sh¢)
by [g¢] := g -x ptfor all g: UG. Then Lemma 2.25.2 yields an equivalence
from UG to the sum of fibers }, . X(Shc)[x]‘l. For every x: X(shg), the
fiber [x]~! of [_] at x is Y¢.uc(x = g x pt), and the latter subset of UG is
equal to subset (shg, pt) = (shg, x). So we get an equivalence from UG
to ¥x: x(she)((shg, pt) = (shg, x)). We are done if we can replace this
irritating little last x with pt, since UH := ((shg, pt) = (shg, pt)). We use
the premiss [. x(she) Lg: uc(§x X = pt). Applying Exercise 2.9.24 to this
premiss, we obtain a function g: X(sh¢) — UG such that g(x) -x x = pt
for all x: X(shg). In other words, (g(x),!) is a path of type (shg, x) =
(shg, pt), and hence postcomposition3 gives the desired equivalence

*2This path p is in fact equal to reflpt
since Xgp is a set.

Which of the equivalent sets
Mono(G) and Sub(G) is allowed to
be called “the set of subgroups of G”
is, of course, a choice. It could easily
have been the other way around and
we informally refer to elements in
either sets as “subgroups” and use
the given equivalence E as needed.

An argument for our choice can

be as follows. In set-based math-
ematics one has two options for
defining "subgroup": either as a cer-
tain subset (uniquely given by its
characteristic function to Prop) or

as an equivalence class of injections
(taking care of size issues since the
class of monomorphisms will not
form a small set). The former is the
usual choice and is the one we model
here with Sub(G), whereas the other
corresponds to Mono(G).

23 Precomposition with the in-
verse gives an equivalence be-
tween (shg, pt) = (shg, x) and
(shg,x) = (shg, x), leading to
the equivalence L}; in Construc-
tion 5.3.26.

GROUP ACTIONS AND SUBGROUPS 133

between (shg, pt) = (shg, x) and (shg, pt) = (shg, pt). Thus we get in
total an equivalence between UG and X(shg) x UH, and we define Ly (g)
to be that equivalence.* |

A minor modification of the above implementation, indicated in Foot-
note 23 gives Construction 5.3.26, which is sometimes more convenient,
e.g., in the proof of Lemma 5.7.2.

CONSTRUCTION §5.3.26. Let conditions be as in Construction 5.3.25. Then we
have an equivalence Li;(f) between UG and Y., . x(shy)((shg, x) = (shg, x)).

Exercisk 5.3.27. The goal of this exercise is to state and prove the tra-
ditional formulation of Lagrange’s Theorem. Let G be a finite group
and (X, x,!): Sub(G) a subgroup, whose underlying group we call
H. Assume that X is a finite G-set. Show that H is finite and that
#(G) = #(X) x #(H). a
Exercisk 5.3.28. The goal of this exercise is to illustrate that Construc-
tion 5.3.25 also can be applied to infinite groups. Recall the group of
integers Z = Q(S!, +) and the Z-set R, :S' — Set from Definition 3.6.7,
defined by Ry, (*) := m and R,,(O) = s, for m > 0. Let Hy, be the
underlying group of (R, 0,!). Identify UZ with m X UH,,. a

Exercisk 5.3.29. The goal of this exercise is to illustrate that Construc-
tion 5.3.25 also can be applied to infinite groups and a subgroup that is
"abnormal". Recall Figure 5.1 ... 4

5.4 Invariant maps and orbits

We now return to some important constructions involving G-sets for
a group G. Some of these make equally good sense for G-types for an
oo-group G, in which case we add a footnote to this effect.

We are particularly interested in what happens when a G-set is not
transitive, that is, does not satisfy the requirement of Definition 5.2.19. In
Chapter 3, under the name of set bundles over the circle, we have already
seen examples of transitive and non-transitive S'-sets: In Figure 3.2
the left picture exhibits a transitive one, and the right picture a non-
transitive one. Also, Figure 3.6 shows a non-transitive Sl-set, whereas
the m™ power bundle over the circle in Figure 3.7 is a transitive S!-
set. Lemma 5.2.21 gives a good explanation of these pictures: A G-set
is transitive if and only if the associated set bundle is connected. In
other words, if a G-set X:BG — Set is transitive, then the group
action connects® any two elements in the total type) ,.pc X(z). If
X is not transitive, then the latter total type falls apart in different
components. Since these components are themselves connected, the
choice of an element of them gives rise to a subgroup of G in the sense
of Definition 5.3.2.

DEFINITION 5.4.1. Let G be a group and X : BG — Set a G-set,?® then the
action type of X, denoted*”

XhG = Z X(Z),
z:BG

24This construction also works co-
groups acting on types. However,
the premiss may be harder to fulfill
in such general cases.

25In the sense that ||(z, x) = (w, y)|| if

and only if there existsa g:z = w
such that g -x x = y.

26This definition can be generalized to
oo-groups G and G-types X.

*7The superscripts and subscripts are
decorated with “hG”, following a
convention in homotopy theory. The
action type is sometimes denoted
X/G.

GROUP ACTIONS AND SUBGROUPS 134

is the total type of X, see Section 2.8. By Definition 2.7.3 and Defini-
tion 2.10.1, we get an equivalence

((Z,X) i>th (w/y)> = Z 8§ X=Y,

gz>w

which also goes for their (often used) propositional truncations.

The type of invariant map528 is BInvariant maps are dependent
functions f and the reason for the
XhG .= H X(2). new name in this context is that
21 BC f(z) =g f(z) for any z: BG and
g:z = z. Cf. Lemma 5.4.19. Note
The set of orbits (soon to be identified with the set truncation of Xj,g, that there need not be any invariant
. L. maps: [[,.q1 * = z is empty. Using
see Lemma 5.4.4) is the subset of Subg(X) consisting of all G-subsets P Theorem 3.4.5, Figure 3.3 explains
of X such that the underlying G-subset Xp is transitive:* why: the successor function has no
fixed point.
X/G:= P S%G(X) isTrans(Xp). - *9See Definition 5.2.19.

We have seen many instances of action types before: When G-sets are
considered as set bundles f : A — BG, they are the domains A. Recall
for example Figure 3.6, showing an action of Z on {1, 2, 3,4, 5} with no
invariant maps and an action type equivalent to a sum of two circles.
In Figure 5.4, we show a similar Z-set, with underlying set {0, 1,2, 3, 4, 5},
three orbits, and 5 corresponding to the only invariant map.3° 3°Sending ¢ to 5 and O to refls.

In Figure 5.4 we have highlighted one single component of the action
type in blue (i.e., corresponding to an element of the set of orbits), and >
we see that it contains a subset of the underlying set, the three red
elements {0, 1,2}. Such a set is what is traditionally called an orbit. This 4
connection is emphasized in Corollary 5.4.5.

DerINITION 5.4.2. Let G be a group and X : BG — Set a G-set. We define
the map [_]o from the action type Xj,¢ of X to Subg(X), the set of G-
subsets of X, as follows. For any u : X, let [u]o be the G-subset of X

5,

that sends z : BG to 1
(x:X(z) = llu = (z,x)||): X(z) — Prop. 4
Recall from Definition 5.4.1 the equivalence of ||(z, x) = (w, y)|| and
d;:250(g - x = y). The next lemma follows easily from the properties of FIGURE 5.4: A Z-set with three orbits
|| u = (Z/ x)” X and one invariant map.

LemMA 5.4.3. Let G be a group and X:BG — Set a G-set. For every
u: Xy, the underlying G-set (z = L. x(»)lu = (z,)| of [u]o, defined in
Definition 5.2.10, is transitive. Hence [_]o is a map from Xpc to X /G.

In view of the above lemma, we call [u]y the orbit through u. The
following lemma implies that the set of orbits can be identified with the
set truncation of the action type.

LemMA 5.4.4. Let G be a group and X : BG — Set a G-set.3' Then the map 3'This lemma can be generalized to
[_lo: Xne — X/G is surjective. Moreover, we have a (unique) identification eo-groups G and G-types X.

of (X/G,[_lo) and (| Xncllo, |_lo) in the type }s.set(Xnc — S).

Proof. Consider an orbit O: X/G, i.e., O is a G-subtype of X such that
X is transitive. We have to show that there exists a u : X}, such that O =
[u]o. By the connectivity of BG it suffices to show O(shg) =x(shc)—Prop
[u]o(shg) for some u. Transitivity of Xp means that there exists an

GROUP ACTIONS AND SUBGROUPS

x: X(shg) such that O(shg, x) and for all y : X(sh¢) such that O(shg, y)
there exists a g: UG such that g - x = y, i.e., [(shg, x)]o(shg, y). So we
take u := (shg, x) and have to show O(shg,) if and only if [u]o(shg, y),
for all y: X(shg). But this follows directly from the observation made
just above the lemma (see also Remark 5.4.8 below).

The second part of the lemma follows from Remark 2.22.17. o

Another way to state the above lemma is that the map [_]o: Xnc —

X /G factors as the composite of |_|o followed by a unique equivalence:
Xuc = I Xncllo = X/G.
COROLLARY 5.4.5. Define the map [_]: X(shg) — X /G by [x] := [(shg, x)]o-
Then [x] = [y] is equivalent to 3. (g - x = y). Moreover, [_] is surjective
and factors (uniquely) by an equivalence through the quotient set of X(shg)
modulo the equivalence relation 3,.c(g - x = y), cf. Exercise 2.22.18.

In view of this corollary, we call [x] the orbit through x.

Proof. In the proof of surjectivity in Lemma 5.4.4 we used u := (shg, x)
to get O = [u]o, so [_] is surjective. The last statement follows since both
propositions are equivalent to || (shg, x) = (shg, y)I| O

ReMARK 5.4.6. Let G be a group and X : BG — Set a G-set. We have the
following chain of definitions and equivalences:

Subg(X) = H (X(z) — Prop)
2:BG
= (Xng — Prop) (by Footnote 7 and Exercise 2.9.26)
> (IXngllo = Prop) (since Prop is a set)
5 (X/G — Prop) (by Lemma 5.4.4)
= Sub(X/G). ¥

Exercisk 5.4.7. Show: X /G is contractible if and only if X is transitive. .

REMARK 5.4.8. Given a group G, a G-set X and x, y : X(shg), the following
propositions are all equivalent and we may pass from one to another
without mention:

* [x]=x/c ly];

* [x](shg) =x(sh¢)—Prop [¥](shc);
* Jouclg-x=y)

* |l(shg, x) = (she, Y)II;

* [x](shg, y);

* [yl(shg, x).

As functions of x and y, all of the above define the equivalence relation
on X (shg) induced by the surjection [_]. 4

Thus, both the underlying set X(shg) and the action type X}, have
equivalence relations (induced by the surjections [_] and [_Jo, respec-
tively) with quotient set X/G.3> We can write X(sh¢) and X}, as sums
of the respective fibers, which we will elaborate in the next paragraphs.

Let O:X/G be an orbit and consider [O];! = You:x,.(O = [u]o).
Note that the underlying G-set Xo = (z:BG — L,.x() O(z,y)) of O

135

32 This also justifies the notation X/G.
We have a diagram of surjective

maps:

X(shg)

x—(shg,x)

o

X/G

A

XnG

GROUP ACTIONS AND SUBGROUPS 136

is transitive. It follows that O(u) holds if and only if O = [u]o, for all
u:Xpg.33 Therefore, the fiber [O];! is equivalent to the action type
(Xo)ne = Xz.8c Xo(2).

After the previous paragraph, the elaborationof [O] ™} = Y. x (she)(O =
[x]) is easy. Recall that [x] = [(shg, x)]o, so that the fiber [O]! is equiva-
lent to the underlying set of Xo, i.e., Xo(shg) = Y. x(she) O(shg, x) via
identity on first components. We depict the situation in the diagram34 in
the margin. Note how the role of X in Footnote 32 is taken over by Xo.

DEFINITION 5.4.9. Let G be a group, X : BG — Set a G-set, and x : X(sh¢)
an element.3>

(1) Define the group G, := Autx,(shg,x). Clearly, fst :BG, — BG
is a set bundle: each fiber at z:BG is a subset of X(z). Hence
(Gx, fst, 1) : Mono(G) is monomorphism into G. We call the subgroup
Gy of G the stabilizer (sub)group at x. The inclusion fst of BG, in BG
classifies a monomorphism denoted by i, : Hom(Gy, G).

(2) Define G - x := {y: X(shg)| [x] =x/c [y]} to be the underlying set of
the orbit through x.3° a

REMARK 5.4.10. In the above definition, the underlying G-set X[, =
(z:BG) = Ly x(sho)ll (she, x) = (z, y)|| of the orbit [x] plays an impor-
tant double role: On one hand its action type (X[])nc, pointed at (shg, x),
is the classifying type BG of the stabilizer group G,. On the other hand it
=5 (she,)l
[x], we have easy
identifications of G - x and Xo(shg), as well as of BGy and (Xo)nc, using

is a transitive G-set whose underlying set }, . x(sh)ll (Sh, x)
is the underlying set of the orbit [x]. Thus, for O =

[x] = [(shg, x)]o. Applying the maps in Footnote 34 in this particular
case, we obtain Figure 5.5.

Note furthermore that the base point of BG, depends on the choice of
x, but the underlying type (BG,)-, being a connected component, only
depends on the orbit [x]: X/G. a

ExERrcIsk 5.4.11. Let G be a group and X :BG — Set a G-set. Show: if
[x] = [y], then ||Gx = G|, for any x, y : X(shg). 4
ReEMARK 5.4.12. In fact, every subgroup of G is a stabilizer subgroup.
We can equivalently define the stabilizer subgroup of x by an element
of Sub(G), namely the transitive G-set X[, pointed by x as element
of the subset X,|(shg) of X(shg). If X is transmve, then all orbits are
equal (Exercise 5.4.7) and the stabilizer subgroup of x simplifies to
(X, x,!): Sub(G), a general form defining a subgroup of G. 4

The following lemma states that the orbits of a G-set X sum up to its
underlying set, with the sum taken over the set of orbits X/G.

LemMA 5.4.13. The inclusions of the orbits form an equivalence

(Y [01") S X(shg).

0:X/G

Proof. Recall that [O]™! = ¥y x(sne)(O = [x]), and then abstract away
the O using Lemma 2.9.10.37 |

O,x,h) > x

There are two possible extreme cases for G, that are important:

DEFINITION 5.4.14. Let G be a group, X a G-set and x : X(shg) an element
of the underlying set.3® We say that

33We use the first step of Remark 5.4.6.
If O(u) and O(v), then ||lu = o|| by
the transitivity of Xp. The rest is
obvious.

34 Along the horizontal arrow, (O, x)
maps to (O, (shg, x)), for x: Xp(shg).

Z Xo(shg) ——

0:X/G 0:X/G

oSN S
X/G

35This definition can be generalized to
oco-groups G and G-types X.

36This is short for the underlying set of
the underlying G-set of the orbit [x]
of X.

(x1, y) =—— ([(shg, %)]o, (shg, ¥))

N

Ficure 5.5: Along the horizontal
arrow, the second component y: G - x
is mapped to (shg, y): BGx.

37In fact, for every set A and every
equivalence relation on A, the equiv-
alence classes sum up to A.

38This definition can be generalized to
oco-groups G and G-types X.

Y. (Xo)c

GROUP ACTIONS AND SUBGROUPS 137

(1) x is fixed if iy is an isomorphism (so Gy is all of G), and
(2) xis freeif Gy is trivial.

We say that X itself is free if each x : X(shg) is free. 4

ExampLE 5.4.15. Let G be a group. For every set S, every element s: S
is fixed under the trivial G-set trivgS, since the group action is the
identity function. In contrast, every element g: UG is free under the
G-set Py = (sheg = _), as), . pg Psns (2)) is contractible. For an example
with more variation, see Example 5.7.1 upto Table 5.1. Find the fixed
elements, the free elements and those that are neither fixed nor free. .

Exgrcisk 5.4.16. Make sure you understand Example 5.4.15 by elaborating:
® BG; in the case of trivg§,

* BG, in the case of Py,

* BGy for each f:4 — 2 in the case of Example 5.7.1, see Table 5.1.

LemMa 5.4.17. Let G be a group and X a G-set. Then we have for all x : X(shg)
that x is free if and only if the (surjective) map (_- x): UG — (G- x) is injective
(and hence a bijection).

Proof. Consider two elements of the orbit, say g - x, g’ - x for g, ¢’ : UG.

We have ¢-x = ¢’- x ifand only if x = ¢"!¢’- x if and only if ¢! ¢’ lies in
UGy. Hence the map (_ - x) is injective iff UGy is contractible. Now use
Exercise 2.16.11 yielding that that Gy is trivial iff UG, is contractible. O

Lemma 5.4.18. Let G be a group and X :BG — Set a G-set.3 Then the
following propositions are equivalent:

(1) The action type Xy is a set;

(2) The map [_lo: Xnc — X/G from Definition 5.4.2 is an equivalence;
(3) The G-set X is free.

Proof. We prove the relevant implications in circular order.

(1) Assume X is a set. The map [_lo: Xnc — X/G is surjective by
Lemma 5.4.4, so it suffices to show it is injective. Since Xy is a set, it
suffices to show that [u]y = [v]o implies u = v, for all u, v : X. This
follows immediately from the definition of [_]o, as the propositional
truncation plays no role.

(2) Assume [_]o: X — X/G is an equivalence. Then Xj,¢ is a set since
X /G is a set, and hence all components of Xj,¢ are contractible. It
follows that all stabilizer groups Gy are trivial, and hence X is free.

(3) Assume X is free. Then all stabilizer groups G, are trivial, so
all identity types (shg, x) = (shg, x) are contractible. Since BG is
connected we get that u = u is contractible for all u : Xj,c. Hence
X is a set.4° O

LemMA 5.4.19. Given a group G and a G-set X, an element x : X (shg) is fixed
if and only if the orbit G - x is contractible, i.e., x = g - x for all g: UG.#*

39This lemma can be generalized to
co-groups G and G-types X.

49A type T is a set if and only if all
identity types t =t t are con-
tractible.

#1This lemma can be generalized to
oco-groups G and G-types X. In that
case UG = QBG is the underlying
type of G.

GROUP ACTIONS AND SUBGROUPS

Proof. The orbit G - x of x is the fiber of Biy : BGy —. BG at shg. Since
BG is connected, this is contractible if and only if all fibers of Biy are
contractible, i.e., Biy is an equivalence, which in turn is equivalent to i,
being an isomorphism. |

When X : BG — Set is a G-set for an ordinary group G, the subset
{x:X(shg)| x is fixed }

is closely related to the type X""C of invariant maps. If we evalu-
ate an invariant map f:]],.pc X(z) at shg we do indeed land in
this subset: Letting x = f(shg), and taking the dependent action
on paths, apdf(g) X % x, we can use Definition 2.7.3 to conclude

trp?(x) = g-x = x, for all g:UG. The following lemma states that,
conversely, each fixed x uniquely determines an invariant map.

LemMa 5.4.20. Let G be a group and X a G-set, with X hG = T17,. 56 X(2) the
set of invariant maps. Evaluation ev := (f : X"C) f(shg) at shg gives

(1) an injection of type (HZ:BG X(z)) — X(shg), which is
(2) an equivalence of type (I1,.pc X(z)) = { x: X(shg)| x is fixed }.

Proof. Let x: X (shg). We prove that the fiber of ev at x,

o= Y x=flsho),
f:Tlz:36 X(2)

is a proposition. Let (f,!), (g,!): ev!(x). Then it suffices to prove f = g,
which follows by extensionality from f(shg) = x = g(shg) since BG is
connected. This proves (1).

For (2), assume that x: X(shg) is fixed, so iy = fst:BGy — BG is
an equivalence. This means that fst_l(z) is contractible for all z: BG.
Spelling out fst™! (z), using Lemma 2.9.10, identifies each fiber fst™1(z)
with Y, . x(z)ll(shg, x) = (z,y)||. Projecting on the first component of
each center of contraction gives a invariant map f such that ||(shg, x) =
(shg, f(shg))|l, from which the proposition x = f(shg) follows. This
proves that ev is surjective, so an equivalence by (1).]

Exercisk 5.4.21. Let G be the group X XX, and X the G-set mapping
any pair (A, B) of 2-element sets to the set A — B. Elaborate the action
of G on X(shg) and determine the set of orbits and the set of invariant
maps. You can do the same exercise for the following easier cases first:
the G-set that is constant 2 X 2, and the X-sets X(_,2) and X(2,_). 4

5.4.22 The Orbit-Stabilizer theorem

Consider a group G, a G-set X and an element x : X(sh¢), and recall
Definition 5.4.9. The classifying type of the stabilizer group Gy is the
component of Xuc =),.3c X(z) pointed by the shape (shg, x). The
first projection of a symmetry of (shg, x) is a symmetry of shg, and the
second projection is a proof of a proposition. This suggest the following
simple way for G to act on the symmetries of shg, by just ignoring the
second projection:

138

GROUP ACTIONS AND SUBGROUPS 139

DEFINITION 5.4.23. Let G be a group, X a G-set and x : X(sh¢) an element
of the underlying set. Recall BGy = Y. ;). x,.l(shc, x) = (z,y)l|, the
classifying type of the stabilizer group Gy. Define the G,-set G, :BGy —
U by setting G, := Py 0 Biy.#? 4
The underlying set of G, is UG. The group action of G, is explored in
the following exercise.
Exercist 5.4.24. Let s : (shg, x,!) = (z,y,!) be a path in BG, with first
component s1, and let ¢: UG. Show thats -z ¢ = s1g, i.e., the group
action of G is path composition. 4

The following exercise prepares for the subsequent Orbit-Stabilizer
Theorem.

EXERCISE 5.4.25. Elaborate the action type of G from Definition 5.4.23 in
each of the cases of Exercise 5.4.16, that is, elaborate

e (Gs)nc, in the case of trivgS,
* (Gg)ug, in the case of Py,
¢ (éf)hcf for each f :4 — 2, in the case of Example 5.7.1, Table 5.1.

Compare your findings with G - s, G - g, and each G - f, respectively. .
The action type of Gy can be identified with the underlying set of the

orbit through x under X. This is achieved by a chain of easy equivalences,
spelled out in the following construction.

CONSTRUCTION 5.4.26 (Orbit-Stabilizer theorem). Let G be a group, X a
G-set X, x : X(shg) an element of the underlying set of X.43 Recall the G-set
G from Definition 5.4.23. Then we have an equivalence from the action type
(Gx)ng, to the underlying set (G -x x) of the orbit through x.

Implementation of Construction 5.4.26. The desired equivalenceis the com-
position of elementary equivalences for sums and products, followed by
contracting away the variable z: 44

(Gx)th = Z éx(”)

u:BGy

= Y. Y. li(she,x) = (z,y)ll X (shg = 2)
z:BGy:X(z)

=), Il=xplyl = (Gxx). o
y:X(shg)

The above construction has some interesting consequences. One is
that (Gy)sc, is a set, so that Lemma 5.4.18 applies:

COROLLARY 5.4.27. The Gy-set Gy is free.

We further obtain that the underlying set of the orbit of G, through g
can be identified with the underlying set of G,.

CororLARY 5.4.28. For any g : UG, the map (_-_) is an equivalence from
UGy to (Gx ¢,)-

Proof. This follows directly from Lemma 5.4.17, applied to G, and Gy,
using that G, is free. a

In the case of a subgroup of G, we have the following result.

42Spelled out: for all (z, y): Xjc in
the same component as (shg, x),
Gx(z,y) = (shg > z). In Defini-
tion 5.5.9 we will see that Py © Biy
is a special case of the restriction
of a G-set by a homomorphism in
Hom(H, G).

43This construction can be generalized
to co-groups G and G-types X.

4 Note that Exercise 5.4.24 already
implies that (Gy)pc, is a set: given
(shg,x,!,g)and (z,y,!,g’), there can
be at most one s :shg = z such that
sg,8§=58=¢g"

GROUP ACTIONS AND SUBGROUPS 140

CONSTRUCTION 5.4.29. Let G be a group and let (X, x,!) : Sub(G) be a subgroup
of G as defined in Definition 5.3.2. Then we have an equivalence [_] from the
underlying set X(shg) of X to Gy /Gy, the set of orbits of G,.

Implementation of Construction 5.4.29. The function [_], is the composi-
tion of three equivalences. Since X is transitive, fst : (G -x x) — X(shg)
is an equivalence. The Orbit-Stabilizer Construction 5.4.26 gives us an
equivalence o from (G -x x) to (Gy)ng,. Since the latter type is a set, the
function [_]o from Lemma 5.4.4 is an equivalence from (Gy)pg, to Gy /G;.
Now define [x’] = [o(fst™1(x"))]o for any x’: X(shg). O

The reader may notice that the last two results contain some of the
ingredients of the traditional formulation of Lagrange’s Theorem: the
group G, the subgroup Gy, the orbits (cosets) (Gy -5 g) and the set of
orbits G,/Gy. It is in fact possible to obtain the counting version of
Lagrange’s Theorem, Exercise 5.3.27, from the above results:

ExErcisk 5.4.30. Let G be a finite group and (X, x,!) : Sub(G) a subgroup,
whose underlying group we call H. Assume that X is a finite G-set.
Show that #(G) = #(X) X #(H) using Lemma 5.4.13, Corollary 5.4.28 and
Construction 5.4.29, instead of Construction 5.3.25. 4

5.5 The classifying type is the type of torsors

Recall the definition of the principal G-torsor Py, = (shg¢ = _) from
Example 5.2.4. In this section we elaborate the concept of torsor and
give one example of its use. In Section 7.4 we’ll use torsors to prove
that the type of groups and the type of abstract groups are equivalent
by classifying abstract groups via their pointed connected groupoid of
torsors. To see how this might work it is good to start with the case of
a (concrete) group G. In the end we want the torsors of abs(G) to be
equivalent to BG, so to get the right definition we should first explore
what the torsors of G look like and prove Theorem 5.5.7, showing that
BG is equivalent to the type of G-torsors.

DerINITION 5.5.1. Given a group G, the type of G-torsors® is

Torsorg =) I[P, = XII,
X :G-Set

where Py, = (shg = _) is the principal G-torsor of Example 5.2.4.

Exercisk 5.5.2. Show that a G-set is a G-torsor if and only if it is free and
transitive. _,

ReMARK 5.5.3. For G a group, the type of G-torsors is just another name
for the component of the type of set bundles over BG containing the
universal set bundle.

Observe that for a group G, Torsorg is a connected groupoid4® and so
— by specifying the base point Py, — it classifies a group. Guess which
onel47. 4

DerINITION 5.5.4. Recall from Example 5.2.4(5.2.1) the definition, for all
y:BG, of P, : BG — Set as the G-set with P,(z) = (y = z). Note that P,
is a G-torsor, so we can define

P_:BG —. (Torsorg, Psn): y > Py,

45This works equally well with co-
groups: G-torsors are in that case
G-types in the component of the
principal torsor Py, :BG — U.
There is no conflict with the case
when the co-group G is actually a
group since then any G-type in the
component of the principal G-torsor
will be a G-set.

46Admittedly in a higher universe, but
we can use the Replacement Princi-
ple 2.19.4 to see that Torsorg is equiv-
alent to a type in the same universe
as G — even before we have Theo-
rem 5.5.7 showing we can take BG.

47By the way, the name “torsor” is a
translation from the French forseur,
introduced by Giraud,#® who related
them to “twisting” operations on
bundles. Since BG is equivalent
to the type of G-torsors, we can
also think of shapes t : BG as giving
rise to “twists”. Indeed, for a G-
set X, we can think of X(x) as a
“twisted” version of the underlying
set, X(shg).

48Jean Giraud. Cohomologie non abéli-
enne. Die Grundlehren der mathe-
matischen Wissenschaften, Band 179.
Springer-Verlag, Berlin-New York,
1971, pp. ix+467.

49That is, we have classified a homo-
morphism from G to Autg.-set(Psh)-
It'll turn out to be an isomorphism.

GROUP ACTIONS AND SUBGROUPS 141

pointed by reflexivity.4® If G is not clear from the context, we may choose
to write PG instead of P°_. 4

Remark 5.5.5. We will use several variants of P, in combination with
some of the conventions introduced back in Chapter 2. In this remark,
to avoid confusion, we explain these variants.
First, we also use P_to denote its induced action on paths: for y,z:BG
we have
P:(y—z)— P, —>P),

defined by path induction as in Definition 2.6.1.

Then, as Py = P is an identity between families of types, function
extensionality (Principle 2.9.18) applies. For q:y — z, we may also use
P, to denote the corresponding function of type [1.z (P, (x) = P.(x)).

Finally, as P, (x) and P;(x) are types, univalence (Principle 2.13.2)
applies. Therefore we may use P;(x) to denote the corresponding
equivalence, i.e., transport in the type family P (x), sending p : P, (x) =
(y S x)topg L:Py(x) = (z 5 x).5° y

For connoisseurs of category theory, the following lemma is a corollary
of a type-theoretic Yoneda lemma, and the proof is Exercise 3.5.4.5"

LEmMA 5.5.6. Let G be a group. For all y, z : BG the induced map of identity
types
P:(y>z)— (Py S P,)
is an equivalence.
The following theorem justifies the title of this section, stating that the
classifying type of a group is the type of its torsors.

THEOREM 5.5.7. Let G be a group. Then the function PS:BG — Torsorg
from Definition 5.5.4 is an equivalence.>*

Proof. Since both Torsorg and BG are pointed and connected, it suffices
by Corollary 2.17.9(4) to show that IP_G :(shg = shg) = (Pahe = Pane) is
an equivalence. This follows directly from Lemma 5.5.6. O

5.5.8 Homomorphisms and torsors

In view of the equivalence [P’_G between BG and (Torsorg, Psp,;) of Theo-
rem 5.5.7 one might ask what a group homomorphism f : Hom(G, H)
translates to on the level of torsors. Off-hand, the answer is the round-trip
(PH)Bf(PS)™!, but we can be more concrete than that. We do know that
for z : BG the G-torsor P& should be sent to Pg((z), but how do we express
this for an arbitrary G-torsor?

DeriNITION 5.5.9. Let f: Hom(G, H) be a group homomorphism. If
Y :BH — Set is an H-set, then the restriction f*Y of Y to G is the G-set
given by precomposition>3

fY == (Y o Bf): BG — Set.

If X:BG — Set is a G-set, we define the induced H-set fiX:BH — U
by setting, for w : BH,>*

L

fX(w) :

Y ((Bf(z) > w) x X(2)) HO

z:BG

5°In a commutative diagram,

q
y = Z
S 2
4 Py (p)
X.

5t is also possible to prove the
lemma directly by an applica-
tion of Construction 2.9.9: Take
as inverse equivalence the map
Q mapping any f:P, = P;to
Q(f) = (fy(refly) ™' : (y = 2).

52A similar results holds for co-groups.

53Example: Gy from Definition 5.4.23
can be written as i} P, i€, as the
restriction of the principal G-torsor
to the stabilizer group Gy using
iy : Hom(Gy, G).

54 Note that the type fiX(w) can also
be identified as the orbit set of the
G-set (z: BG) — (Bf(z) > w) x X(z),
whose underlying set is equivalent to
Puty, (1) X X(shc).

55This situation is common in algebra
and is often referred to by saying
that some construction, in this case
the untruncated definiens of fiX, is
not “exact”. See also Exercise 5.5.10.

GROUP ACTIONS AND SUBGROUPS 142

The following exercise shows that the set-truncation in the definition
of fi above really makes a difference.5

Exercise 5.5.10. Find groups G, H, a homomorphism f : Hom(G, H) and
a G-set X such that (w:BH) — ¥, .ps ((Bf(z) > w) x X(z)) is an H-type
that is not an H-set. a
ExERCIsk 5.5.11. Give an equivalence from fiX to XoBf ! (i.e., (f 1) X)if f
isanisomorphism. Give an equivalence between the types Homp (£ X, Y)
and Homg (X, f*Y), for all G-sets X and H-sets Y. a

ReMARK 5.5.12. The purpose of this remark is to explain how £ X and f*Y
may be viewed as a certain kind of image and preimage, respectively.
In Definition 2.17.11 we defined the (propositional) image of a function
f:A — B, and in Section 3.9 the higher images. In these definitions
we used the whole domain A of f. In Definition 2.9.3 we defined the
preimage, or fiber, of f, for any element b of the codomain B.

It is natural to generalize both image and preimage of a function to
subtypes of the domain and codomain. Let A and B be types, f: A — B
a function, and consider the types of subtypes Sub(A) = (A — Prop)
and Sub(B) = (B — Prop). Given a subtype Y: Sub(B) of B, consider
f*Y =Y o f. Then f*Y is subtype of A consisting of precisely those a: A
for which f(a) is in Y, in other words, the premimage of Y under f.

Now let X : Sub(A) be a subtype of A and consider the subtype of B
defined by the predicate (b:B) — [|X,.4((f(a) = b) X X(a))||. This is
fiX with propositional truncation instead of set truncation, and it holds
precisely for all b : B for which there exists an 4 in X with f(a) = b, in
other words, the image of X under f.

Note that the above makes little sense for A = BG and B = BH, since
predicates on connected types are constant. However, the intuition
carries over to Set valued functions X and Y and a set truncated f1X,
analogously to higher images defined in Section 3.9. 4
ReMARK 5.5.13. Dually to fiX(w) in Definition 5.5.9, there is also a coin-
duced H-set f.:BH — Set given by

fX@w) = [T ((Bf(z) = w) = X(2)).

z:BG

Note that this always lands in sets since X does.5® a

Exercisk 5.5.14. Give an equivalence between the types Homg(f*Y, X)
and Hompg (Y, f.X), for all G-sets X and H-sets Y. a

When X is the G-torsor [P’f , for some x : BG, the contraction (recall
Lemma 2.9.10) of }_,.p5(x = z) induces an equivalence 1, of type

fIPE (w) =

Z ((Bf(z) > w) X (x > z)) Ho S (Bf(x) S w) = ch(x)(w).
z:BG

Taking x = shg, we get a path n: fi P, — Pé}l(shc). We also have the
path Bf ,;:shy = Bf(shg), so that the action of P! gives us a path
70: Papy, = Ilj’gH = Pé}(shc). Combining we get n7170: Pany; = fi Pahe-

If X is a G-set such that ||Psn, = X||, then fiX is an H-set such that
|Psn;, = fiX||, so that f; : Torsorg —. Torsory, pointed by 77 7.

Summing up, we have implemented the following:

56The type f:X(w) can also be iden-
tified as the set of invariant maps
of the G-set Pgr(w) — X, where
(Pyr(w) — X)(z) = (Bf(z) > w) —
X(z) for z: BG.

GROUP ACTIONS AND SUBGROUPS 143

CONSTRUCTION 5.5.15. Let f: Hom(G, H) be a group homomorphism. Then
f induces a pointed map f, : Torsorg —. Torsory, and we have a path of type
fiPS S PHBf = f<PH all represented by the following diagram:

prt
shg Bf(shg) «—— shy

Bf

BG ——— BH

| J»

Torsorg T) Torsory
1

u:DShG f f’ |]:Dsh(; ﬁ H:[)ShH'

5.6 Any symmetry is a symmetry in Set

For abstract groups there is a result, attributed to Cayley, which is often
stated as “any group is a permutation group”. In our parlance this
translates to “any symmetry is a symmetry in Set”. The aim of this
section is to give a precise formulation of the latter and prove it, using
what we learned in Section 5.5.

Let G be a group. Recall from Example 5.2.4 the principal torsor
Pshe, : BG — Set:z = (shg = z). Since Py (shg) := UG, Py, restricts to
a pointed function BG —. BX g, i.e., classifies a homomorphism from
G to the permutation group Xy = Autse(UG), denoted by>7

pG : Hom(G, o).
Tueorem 5.6.1 (Cayley). For any group G, pg is a monomorphism.>®

Proof. Inview of Definition 5.3.11 we need to show that Bpg = Py, : BG —
BXy is a set bundle. Note first that Py, factors as:

P
BG —— (Torsorg, Psh.) = ((BG — Set)(pshc), Pohe)

eVgh
IpshG 6

BZuc = (Setuc), UG)

In this diagram, ° : BG —. (Torsorg, Py,) is the equivalence of Theo-
rem 5.5.7, and evgy : (BG — Set)(uj,Sh) Set(yc) is the evaluation map
defined by evgn (E) := E(shg) and pointed by reflexivity. In Exercise 5.6.2
you are asked to justify this factorization.

We must show that for X :Set(g) the fiber evs‘}}G (X) is a set. This
fiber is by definition } . (5—set) <'P‘shc>(X — E(shg)), which is a subtype
of Y r.pgoset(X = E(shg)). The latter is the type of pointed maps from
BG to (Set, X) and hence a set by Lemma 4.4.12, in particular Footnote 20.
Therefore the fiber ev;}}c (X) is also a set. O

Note that the above theorem yields that (G, pg,!) is a monomorphism
into Xyj6. In other words, G is a subgroup of Xc.

ExEeRcIsE 5.6.2. Show that Py, and evgy 0P areequal as pointed maps. 4

57The letter p commemorates the word
“regular”

58By Definition 5.3.11, pg is a
monomorphism means that the
induced map Upg from the symme-
tries of shg in BG. to the symmetries
of UG in Set is an injection, i.e., “any
symmetry is a symmetry in Set”.

GROUP ACTIONS AND SUBGROUPS 144

ReEMARK 5.6.3. In many cases, the set UG used in Theorem 5.6.1 is larger
than necessary for obtaining the symmetries in G as symmetries of a
set. A case in point is the group X3, where the symmetries are already
symmetries of a set, namely of the set 3. However, Ux3 = (3 = 3)isa
6-element set. Let’s take a closer look at where and how this happens in
the proof.

As stated in Exercise 5.6.2, the map Py, : BG —. Set(g) classifying
the monomorphism pg is decomposed as an equivalence P followed
by the evaluation map evg. This is depicted in the following diagram,
where the second line shows the induced maps on the symmetries.

[Pl evshc
BG —— (Torsorg, Psh;) ——— Set(ug)

P_ — €Vshg —
uG v ([I:Dshc - lpshc) — (UG - UG)

Let PP be the G-set given by PP(z) := (Psy.(z) = Psp.(z)) for all z: BG.
By function extensionality, Ps,, — Psp is equivalent to [T, .35 PP(2),
the type of invariant maps of PP. By Lemma 5.4.20(1), such invariant
maps, and hence the corresponding symmetries of Py, are uniquely
determined by their value at shg.>

Note that the underlying set of PP is PP(shg) = (UG = UG). Lemma5.4.2

characterizes exactly the invariant maps of PP as corresponding via evgh,
with fixed elements of UG — UG. In other words, evg, forgets about
the extra structure of PP and sends invariant maps of PP to fixed per-
mutations of UG. For example, in the case of X3, we go in total from
permutations of 3 to fixed permutations of the 6-element set 3 = 3.

In Exercise 5.6.4 you are asked to explore the abstract group of fixed
permutations of UG. 4

Exercise 5.6.4. Let conditions be as in Remark 5.6.3. By analyzing
transport in the type family Py, (_), show that a permutation 7t of UG is
fixed if and only if (gg’) = g7(g’) for all g, g’ : UG. Show that the fixed
permutations of UG form an abstract group and that evaluation of such
a permutation at reflg,; yields an abstract isomorphism from this group
to abs(G). a

5.7 The lemma that is not Burnside’s

ExampLE 5.7.1. Since the lemma to come is about counting orbits and
elements of orbits, we start by elaborating an example. Recall from
Example 4.2.22 the cyclic group C4 = Autcyc(4, s), where Cyc is defined
in Definition 3.6.3 as the type of cycles, i.e., pairs (X, t) of a set X and a
permutation t : X = X such that any two points of X are some t-steps
apart. Let X: BCy — Set be the C4-set mapping any (4, f): BCy4 to
A — 2. Then the underlying set of X is 4 — 2, i.e., binary sequences
of length 4. The group action induced by X cyclically rotates such
sequences, by 0,1,2 or 3 posi’cions.60

By Corollary 5.4.5, the set of orbits X /Cy is equivalent to the quotient
of 4 - 2 induced by [_]: (4 — 2) - X/C4 from Lemma 5.4.4. As also
stated by that lemma, the equivalence class of any x:4 — 2 consists
precisely of all cyclic rotations of x. Clearly, 0000 and 1111 have singleton

59This is an alternative way to under-

o (zftand that evgy, and hence Py,

classifies a monomorphism.

60Use Corollary 3.6.16, univalence, and
Construction 2.14.2.

GROUP ACTIONS AND SUBGROUPS 145

equivalence classes. The equivalence class of 0001 (resp. 0111) consists
of all four binary sequences with exactly one 1 (resp. 0). Before you
start thinking that swapping 0’s and 1’s gives a new equivalence class,
consider 0101 that forms an equivalence class together with 1010. Finally,
0011 forms an equivalence class together with 1001, 1100 and 0110. Thus
we have distributed all 16 sequences over six orbits, as in the left column
of Table 5.1.

In the right column of Table 5.1, we have given in each row the
respective stabilizing symmetries in BC4. Exercise 5.4.11 tells us that
it doesn’t matter too much which element in the orbit one chooses.®
For the cardinality #((C4)y) of the finite stabilizer groups, the particular
x one chooses within in each orbit is irrelevant, but may vary from
orbit to orbit. Now we can observe something interesting: the product
#(Cy - x) X #((Cyq)y) (i-e., in each row, the number of elements on the
left times that on the right) is equal to #(C4) = 4, for each x in the
underlying set of X. This follows from Lagrange’s Theorem, in particular
Exercise 5.3.27, applied with G = C4 and taking for X the underlying
Cy-set of [x], which is transitive.

Another observation in Table 5.1 is that, since there are six orbits and
the orbits induce a disjoint partition of 4 — 2, there are in total 24 pairs
(g, x) with g - x = x. This insight leads to the following lemma. 4

LemMma 5.7.2. Let G be a finite group and let X : BG — Set be a finite G-set.
For any ¢ : UG, define the set X8 = { x: X(shg)| g - x = x } of points fixed by
g Then each X&, the sum type } . uc X&, and the set of orbits X /G are finite
sets, and we have

(5.7.1) #(Y Xg) = #(X/G) x #(G).

g:UG
Proof. We first need to make sure that the sets involved are finite. Finite
sets are decidable sets, see Exercise 2.24.6. Hence each X¢ is a finite set,
as it is a decidable subset of X(shg), see Remark 2.24.10.

Finiteness of } ;. ¢ X¢ follows from Exercise 2.24.12. Regarding the
set of orbits, note that Corollary 5.4.5 yield that X /G is equivalent to
the quotient of X(shg) modulo the equivalence relation J,. ;g x = g+ .
The latter proposition is decidable by Exercise 2.24.11. Now apply
Exercise 2.24.13.

Since the main statement Equation (5.7.1) of the lemma is a proposition,
we may assume that, for both X(shg) and UG, we have an equivalence
to a standard finite set. Rearranging sums and writing X(sh¢) as the
sum of fibers of [_]: X(shg) — X/G gives equivalences:

Yx=Y ¥ grenS Y Y (gxmnS

g:UG g:UG x: X(shg) x:X(shg) g:UG
Y, UGS),), (O=[xhxUG) >), Y, UG
x:X(shg) 0:X/G x:X(shg) 0:X/G x:Xo(shg)

In the last step we have used that O = [x] is equivalent to O(shg, x),
which means that x is in the underlying set Xo(shg) of the orbit O, see
Definition 5.4.1 and Definition 5.2.10.

Note that the last type in the chain above reflects how we counted in
Table 5.1: for every orbit, and every element in the underlying set of that
orbit, we counted the stabilizers of that element.

orbit stabilizers
0000 0,1,2,3
1111 0,1,2,3
0001, 0010, 0100, 1000 0
0111,1011,1101,1110 0
0101, 1010 0,2
1100,0110, 0011, 1001 0

TabLE 5.1: Underlying sets of orbits
and the stabilizers of their elements.

61Here it matters even less since Cy is
abelian.

GROUP ACTIONS AND SUBGROUPS

We aim to apply the Lagrange construction with subgroups defined
by Xo and xo: Xo(shg), for any orbit O:X/G. These points xp can
be obtained as the ‘least’ x: X(shg) such that O = [x], where ‘least’
means: corresponding to the smallest number under the equivalence
of X(shg) with a standard finite set. We also have to give functions
fo: Tl :xo6he) Lg: UG & X0 ¥ = X0, for every O: X/G. Such functions
are obtained by using the transitivity of Xp in combination with the
equivalence between UG and a standard finite set: we can simply take
the ‘least’ g : UG such that g -x, ¥ = xo. Applying Construction 5.3.26,
we get an equivalence between UG and). x, (shs) UGx. We conclude
that #()_,. uc X&) = #(X/G) X #(G), using Exercise 2.24.12. O

As a first application of Burnside’s Lemma, we note the following
number-theoretic consequence, which falls out when we consider the
analog of Example 5.7.1 for the case of C, acting on base-n sequences of
length p.

Tueorem 5.7.3 (Fermat’s Little Theorem). For any prime p and natural
number n, we have p | n? —n.

Proof. Consider the action X : BC, — Set of the cyclic group C, on a set
of size n? given by
X(S,t) = (S = m),

for any p-cycle (S, t). The underlying set is the type of functions p — n,
which is finite of cardinality n?.

Now apply Burnside’s Lemma 5.7.2. The stabilizer subgroup of a
function f : p — mis either trivial or all of Cp,. In the former case, f is one
of the n constant functions, and all the other n” — n possible functions
are free. We get:

#(%;C xg) = np + (n” — n) = #(X/C,) X #(C,),
8 p

and since #(C,) = p, we conclude that p divides n? —n. O

146

6

A categorical interlude

We have seen that many types carry a notion of morphism between its
elements:

e We have functions f : A — B between types A and B in a universe U
(Section 2.2),

¢ We have identifications p : x = y between elements x, y of any type A
(Section 2.5),

* We have pointed functions f : A —. B between pointed types A and B
in U, (Definition 2.21.1),

e We have fiberwise maps f: [],.x(A(x) — B(x)) between families
A, B: X — U (Definition 2.9.14),

e Wehave homomorphisms f : Hom(G, H) between groups G, H : Group
(Definition 4.4.2),

e We have maps of G-sets f: Homg (X, Y) for X, Y :BG — Set (Defini-
tion 5.2.8; a special case of fiberwise maps).

In all those cases, we have notions of identity morphism and composition
of morphisms. We have also seen that some maps between types
are paired with maps on morphisms, for example, taking underlying
symmetries in groups, U: Group — Set (Definition 4.2.11), comes with
a corresponding operation of taking the underlying map of symmetries
of a group homomorphism,

U: Hom(G, H) — (UG — UH)

(Definition 4.4.5) satisfying U(id¢) = idyc and U(y o @) = Up o Ug
(Corollary 4.4.16).

It’s very useful to develop some abstractions for types equipped with
a notion of morphism and maps equipped with maps of morphisms like
this. These give the notions of (wild) categories and functors, respectively,
and category theory is the study of these structures.

Here we give a brief primer”on category in order to systematize what
we’ve done so far, and prepare for the main result of the next chapter,
which is to give an equivalence of categories between the categories of
concrete and abstract groups.

6.1 Brief overview of the chapter

In Section 6.2 we define the kinds of categories we need, along with many
examples (including the above). Then we discuss various abstract notions

147

This chapter introduces some useful
terminology that we’ll use in the
rest of the book. It can probably be
skipped at a first reading, and only
consulted as needed.

'The topic is of course too vast to
cover in detail here, so we refer to
the literature for more details. Cat-
egory theory in univalent founda-
tions is also treated in Chapter 10 of
the HoT'T book? (based on Ahrens,
Kapulkin, and Shulman3), while
Awodey#* and Riehl> give traditional
expositions, and Mac Lane® gives a
comprehensive treatment.

3Univalent Foundations Program,
Homotopy Type Theory: Univalent
Foundations of Mathematics.

4Benedikt Ahrens, Krzysztof Ka-
pulkin, and Michael Shulman. “Uni-
valent categories and the Rezk com-
pletion”. In: Math. Structures Com-
put. Sci. 25.5 (2015), pp. 1010-1039.
I1SSN: 0960-1295. por: 10 . 1017 /
S0960129514000486.

5Steve Awodey. Category theory. Sec-
ond. Vol. 52. Oxford Logic Guides.
Oxford University Press, Oxford,
2010, Pp. XVi+311. ISBN: 978-0-19-
923718-0.

®Riehl, Category Theory in Context.

7Saunders Mac Lane. Categories for the
working mathematician. Second. Vol. 5.
Graduate Texts in Mathematics.
Springer-Verlag, New York, 1998,
Pp- xii+314. 15BN: 0-387-98403-8.

https://doi.org/10.1017/S0960129514000486
https://doi.org/10.1017/S0960129514000486

A CATEGORICAL INTERLUDE 148

in categories (terminal and initial objects, products and coproducts) and
remark on the importance of duality in Section 6.3. In Section 6.4 we
cover functors and natural transformations, and in Section 6.5 we treat
adjunctions; we have already seen some examples of adjunctions, for
example in Exercises 5.5.11 and 5.5.14.

We have also seen an incarnation of the Yoneda lemma in Exercise 3.5.4;
in Section 6.7 we treat the O.G. version. We end with a brief introduction
to monoidal categories in Section 6.8, as we'll see in Chapter 12 that
abelian groups form an example.

6.2 Categories

As mentioned above, many types come equipped with notion of morphism
or arrow between its elements which is more general than identification or
isomorphism. For instance we have type of functions A — B for A, B: U
and the type of pointed functions A —. B for A,B:U.. There are
identity morphisms and composition of morphisms, and this motivates
the following definition:

DEFINITION 6.2.1. A wild precategory® consists of the following data:

(1) A type Ob, called the type of objects.

(2) For each pair of objects A, B: O, a type of morphisms hom(A, B).
These are also known as arrows, and written A — B when there’s no
danger of confusion. If f : A — B is such an arrow, then we say that
the domain of f is A and the codomain of f is B.

(3) For each object A:Ob, an identity arrow ids : A — A.

(4) For each pair of arrows f:A — B and g:B — C, a composite arrow
gof:A—CY

(5) For each arrow f: A — B, a pair of identifications
Atidgof = f, p:foida = f.

(6) For each triple of arrows f:A — B, g:B — C,and h:C — D, an
identification

aho(gof)>(hog)of.

If C = (Ob,hom, id, A, p, @) is a wild precategory, then we write A, B:C
instead of A, B: Ob to indicate that A, B are elements of the underlying
type of objects of C. We also write Ob(C) for this type. We may write
f,g:A —¢ B to emphasize where the arrows f and g live, if needed,
and sometimes hom¢(A, B) or C(A, B), instead of hom(A, B). 4

RemARK 6.2.2 (On the adjective “wild”). With this definition, we readily
equip the universes of types U and of pointed types U. with a structure
of wild precategories. In the former case, we can use reflexivities for A,
p, and a. In the latter, we leave their definition as an exercise.

We use the adjective “wild” to highlight a deficiency of this definition
as it stands: We haven't specified any further laws for the identifications
A, p, and a. For example, it would be sensible to require an identification

8See below for remarks on the termi-
nology. Adding further properties
to the data given here eventually
recovers the notion of a category
simpliciter, see Definition 6.2.6.

9To be fully explicit, the composition
operation has type

H (B—>C)—>(A—>B)—> (A—-C),
A,B,C:0b

and we might denote it g 04 p,c f.
Since the objects A, B, and C can
often be inferred, we leave them out,
lest the notation becomes too heavy.
A similar remark goes for the other
operations.

A CATEGORICAL INTERLUDE 149

of A and p at an identity: ids oida = ida, as well as a filler for the
pentagonal diagram of a’s coming from four composable arrows:

ko(ho(gof))
apky .
ko((hog)of) (koh)o(gof)
(6.2.1)

(kolhog)of — = (kohog)o f

Of course, we would on occasion then need a filler for a three dimensional
diagram of pentagons for five composable arrows, etc., etc., ad infinitum.*°
The corresponding structure is known to connoisseurs as an (oo, 1)-
precategory. It is an open problem as we write this whether this notion
can be defined in our type theory. We would certainly hope that types
and pointed types would furnish examples. a

However, when the types of morphisms hom(A, B) are sets, then the
types of A, p, and «a are propositions, so any coherence conditions are
automatically fulfilled. This motivates the following definition.

DEerINITION 6.2.3. A precategory is a wild precategory C in which the types
A —¢ B are sets, for all objects A, B:C. 1

Most (wild) precategories we shall meet satisfy a further condition that
makes them better behaved than arbitrary precategories: a univalence
condition. In fact, for the wild precategory of types and functions, this
condition is exactly the Univalence Axiom (Principle 2.13.2)!

In order to define this, we need the notion corresponding to equivalence
in an general wild precategory.

DEFINITION 6.2.4. A morphism f: A — B in a wild precategory C is an
isomorphism if have g, h: B — A and identifications ¢ :idg = f o g and
p:ida = h o f. This condition is encoded by the type

)y ng%idB>><(y hof;idA)

g:B—A h:B—A

stso() = (

If f is an isomorphism, we also say that f is invertible.
We define the type A = B of isomorphisms from A to Bin C (A S¢ B
if needed) by the following definition.

(ASB)=) islso(f). a

f:A—B
The type isIso(f) is indeed a proposition,** and every identity arrow
is an isomorphism. We write f~! for the inverse of an isomorphism f.

DerIniTION 6.2.5. A wild precategory C is univalent if for all objects
A, B:Ob(C), the function

idtoisoa g : (A i)Ob(C) B) — (A =¢ B)

defined by path induction sending refl4 to id4, is an equivalence. a

°There is a hierarchy of notions, A-
precategories, for n > 2, with coher-
ence conditions involving up to n
composable arrows. The wild precat-
egories lie between A; and A3 in this
hierarchy. Besides the mentioned
identification of A and p for two iden-
tities, we’d also require fillers for
diagrams like

apf07V fos Qﬁog(m

folidog) —F—> (foid)og

as well as coherences when one or
both of f and g are identities.

"This follows just as for functions: If f
is an isomorphism, then each factor
in the product is contractible, as, e.g.,
Y¢:Ba f o g = idp is the fiber of
fo_:(B— A) — (B — B)atidg,
and all functions f o _and _o f are
equivalences of types using the data
that makes f an isomorphism along
with A, p, and a.

A CATEGORICAL INTERLUDE

DErINITION 6.2.6. A wild category is a univalent wild precategory, and a
category is a univalent precategory. a

Now we are ready to restate the examples mentioned in the introduc-
tion to the chapter. In each case we leave it to the reader to supply most
of the data.

® The wild category of types (in universe U) has U as its type of objects,
and the function type A — B as its type of arrows for A, B:U. Itis
univalent by the Univalence Axiom.

e The wild category of pointed types (in a universe U) has U. as its type of
objects, and the type of pointed maps A —. B as its type of arrows.

® The wild category of families over a given type X has X — U as its type
of objects, and the type of fiberwise maps (X —g Y) :=[1,.5 X(b) —
Y(b) as its type of arrows.

® The category of sets has Set as its type of objects, and the function type
A — B as its type of arrows. It’s a category since each type A — B is
a set, and it’s univalent.

e The category of groups has Group as its type of objects, and the homo-
morphism type (G — H) := Hom(G, H) as its type of arrows.

e The category of G-sets, for a group G, has G-Set as its type of objects,
and the type of morphisms of G-sets Hom¢g (X, Y) (Definition 5.2.8)
as its type of arrows.

By the univalence condition, in a category each identity type A = B
is equivalent to the set A = B, and is hence a set. Thus we get the
following.

Lemma 6.2.7. The type of objects of a category form a groupoid.

And important special case is when each arrow type A — Bis a

proposition.
ExamPLE 6.2.8. A preorder is precategory in which every arrow type is a
proposition. In this case, the types of A, p, and «a are contractible, so the
data of a preorder reduces to just a type P and a binary relation, typically
written < : P — P — Prop, that is reflexive, x < x (via the identities)
and transitive, i.e., if x < y and y < z implies x < z (via composition).

A partial order, also known as a poset, is a univalent preorder. In this
case, the type of objects is a set. This happens if and only if the relation
is symmetric, i.e., if x < y and y < x implies x = y.

Typical examples are (N, <), (Z, <), (Prop, —), and (Sub(S), C) for a
set S. A preorder that fails to be a poset is the two-element type 2 with
the always true relation. This is hence also an example of a precategory
that fails to be univalent. a

Another important special case is when every morphism is an isomor-
phism.

DerINITION 6.2.9. A (wild) pregroupoid is a (wild) precategory in which
every arrow is invertible. A (wild) groupoid is a univalent (wild) pre-
groupoid. 4

150

A CATEGORICAL INTERLUDE 151

wild precategory

wild category precategory wild pregroupoid
hom-sets / \
category wild groupoid pregroupoid

only

. . univalence
isomorphisms

groupoid

ExamPrLE 6.2.10. Every type X gives rise to a wild groupoid, its (wild)
path groupoid, having X as its type of objects and x = y as its type of
arrows. The arrows are invertible, since paths are always invertible.

If X is a 1-type, then this structure is a groupoid. 4

There’s no conflict with the terminology introduced in Section 2.15,
because this construction gives an equivalence from the type of 1-types
(in U) to the type of groupoids (in U), as we shall see below.

Definitions 6.2.1, 6.2.3, 6.2.6 and 6.2.9 are summarized as a diagram of
inclusions in Figure 6.1.

RemaRk 6.2.11. This is a good moment to remark on the size issues we
have so far swept under the rug. The definition of a wild precategory
C can be parametrized by two universe levels: The type of objects
belong to one, Ob:U’, while the family of arrows belong to another,
hom :0b — Ob — U.

If they coincide, then we call C a U-small category. For instance, a path
groupoid for a type X : U is U-small.

The other common case is where U :U’, in which case we call C
locally U-small. For example, the (wild) categories of types, sets, pointed
types, groups, etc., built from types in U are all locally U-small. This
generalizes Definition 2.19.1 for the case of path groupoids. a

Many notions in category theory work already at the level of wild
categories,"> but a notable exception is the construction of slice categories,
(also known as over categories).

ExamrLE 6.2.12. The slice precategory of a precategory C over an object
C:C, denoted C/C, has as objects the type }_4.c A — C of pairs (4, f)
of an object A and an arrow f:A — C with codomain C. An arrow
from (A, f) to (A, f’) is an arrow g: A — A’ such that f" o g = f.*5 The
identities and compositions are inherited from C. If C is univalent (and
hence a category), then sois C/C.

If we try to define the slice C/C for an arbitrary wild precategory C,
using identifications f’ o ¢ = f, we find that we need the pentagon
coherence for a for C in order to define the a for C/C.

Of course, for particular wild categories, it may very well happen that

C/C is again a wild categories.*® 4

Ficure 6.1: The various notions

of categories arranged in a cube:

on the bottom face we loose the
adjective “wild” by requiring arrows
to form sets; on the front left face we
loose the prefix “pre” by requiring
univalence; and on the front right face
we restrict to groupoids by requiring
all arrows be invertible.

2They all work at the level of (oo, 1)-
categories. We refer to Lurie'3 and
Land*4 for details.

3Jacob Lurie. Higher topos theory.
Vol. 170. Annals of Mathematics
Studies. Princeton, NJ: Princeton
University Press, 2009, pp. xviii+925.
1SBN: 9781400830558. por: 10.1515/
9781400830558.

*4Markus Land. Introduction to infinity-
categories. Compact Textbooks in
Mathematics. Birkhduser/Springer,
Cham, 2021, pp. ix+296. 1SBN: 978-3-
030-61523-9; 978-3-030-61524-6. DOL:
10.1007/978-3-030-61524-6.

15This is a proposition since C is a
precategory. We illustrate the arrow
as a commuting triangle:

16This will be the case when C should
be an (oo, 1)-category, carrying the
whole hierarchy of coherences,
which then carry over to C/C.

https://doi.org/10.1515/9781400830558
https://doi.org/10.1515/9781400830558
https://doi.org/10.1007/978-3-030-61524-6

A CATEGORICAL INTERLUDE 152

Exercisk 6.2.13. Construct a wild precategory structure on the slice of the
universe U /B over a fixed type B: U. 4

6.3 Abstract notions and duality

Many concepts that we introduced in Chapter 2 for the wild category of
types make sense in arbitrary wild precategories.

DERINITION 6.3.1. A terminal object in a wild precategory C is an object 1
such that for any object A :C, the arrow type A — 1is contractible. .

Exercisk 6.3.2. Show that if C is univalent, then the type of terminal
objects is a proposition. 4

The unit type 1 is a terminal object in the wild category of types, and
in the category of sets, while the trivial group 1 is a terminal object in
the category groups.

The is a “dual” notion as well.

DEFINITION 6.3.3. An initial object in a wild precategory C is an object 0
such that for any object A :C, the arrow type 0 — A is contractible. .

For example, the empty type 0 is initial in the wild category of types,
while the trivial group 1 is initial in the category of groups.

The relationship between terminal and initial objects reflects a deep
aspect of category theory: Every concept comes with a dual version
obtained by “reversing all the arrows”. More formally, can introduce for
every wild precategory its opposite category that has its arrows reversed.

DEFRINITION 6.3.4. For any wild precategory C = (Ob,hom,id, A, p, a),
define the opposite C°P to have the same type of objects, morphisms
homgor (A, B) := hom¢(B, A), identities the same, and composition re-
versed: If f:A —¢ Band g:B —¢ C, then g o f: A —¢ C works as the
composite f ocop g 0of §:C —¢op Band f: B —¢or A. We then swap the
roles of A and p, and a~! plays the role of a in C°P. 4

LemMma 6.3.5. The operation of taking opposites defines an equivalence from
the type of wild precategories to itself, with a trivially defined identification
(CoP)°P = C.

It follows that any construction or theorem about wild precategories
has a dual version, obtained by precomposition with (_)°P.

For example, the dual of the slice category construction is the coslice
category C/C (also known as the under category).

As a further example of a pair dual notions, we consider that of
monomorphisms and epimorphisms.

DEFINITION 6.3.6. An arrow f : A — B in a wild precategory C is called a
monomorphism™ if post-composition with f is an injection

fo_:(C—>¢cA)— (C—¢B)

for all objects C:C.
Dually, f is called an epimorphism'® if pre-composition with f is an
injection
_of:(B—¢C)—>(A—cC)

for all objects C:C." If C is a precategory, then these conditions reduce

17For short: a mono
8For short: an epi

9We can illustrate these in diagrams
as saying that f is a mono if a map
into the codomain of f factors in at
most one way through the domain of

f

A
b
C > B

and dually, f is an epi if a map out
of the domain of f factors in at most
one way through the codomain of f:

A—C
i,
B

A CATEGORICAL INTERLUDE 153

to the implications
fog=foh—g=h and gof=hof—g=h,

respectively. 4

We already met the monomorphisms in the category of groups in Def-
inition 5.3.11 using a different definition.

ExErcisk 6.3.7. Show that the monomorphisms in the category of groups
are the same as those of Definition 5.3.11. 4

Exercisk 6.3.8. Show that the monomorphisms in the wild category of
types are just the injections, and the epimorphisms in the category of
sets are just the surjections. a

The epimorphisms in the wild category of types are always surjections,
but are much more restricted. See Buchholtz, de Jong, and Rijke* for
details.

ExEerciske 6.3.9. Show that every morphism in a preorder is both a mono
and an epi. r

6.4 Functors and natural transformations

Not only do have arrows in (wild pre-)categories, there’s also a notion of
arrow between them. These are called functors.

DerINITION 6.4.1. A wild functor F:C — D between wild precategories
C and D consists of a function F: Ob(C) — Ob(C), mapping objects to
objects, and a family of functions®*

F:] (A —c¢ B) = (F(A) —>p F(B))
AB:C

together with identifications
Fiq:F(ida) > ida, and F.:F(go f) = F(g) o F(f),

for all objects A and composable arrows f and g in C.
If D is a precategory, then the types of Fig and F, are propositions,
and in this case we just call F a functor. 4

ExErcISE 6.4.2. Show that every wild functor maps isomorphisms to
isomorphisms. a

ExAMPLE 6.4.3. A functor between preorders (P, <) and (Q, <) amounts
to a monotone map F:P — Q, ie, p < p’ implies F(p) < F(p’) for
p,p’:P. 4
ExamrLE 6.4.4. Taking the underlying set of symmetries U gives a functor
U:Group — Set. It’s easy to check that U(idg) = idyg, and we verified
the preservation of composition in Corollary 4.4.16. 4

ExaMpLE 6.4.5. Given a group homomorphism f : G — H, we have three

functors

fi
~

G-Set « f*— H-Set
~_
f-
with actions on objects described in Definition 5.5.9 and Remark 5.5.13.
The action on arrows of restriction is again given by restriction: If g: X —

20Ulrik Buchholtz, Tom de Jong, and
Egbert Rijke. “On epimorphisms and
acyclic types in univalent mathemat-
ics”. In: The Journal of Symbolic Logic
(2025), pp- 1—36. por: 10.1017/jsl1.
2024.76. arXiv: 2401.14106.

?'In practice, the functions on objects
and arrows are named the same
as the functor, but they could be
disambiguated with subscripts, say,
Fo and Fy, if needed.

https://doi.org/10.1017/jsl.2024.76
https://doi.org/10.1017/jsl.2024.76
https://arxiv.org/abs/2401.14106

A CATEGORICAL INTERLUDE 154

Y is a map of H-sets with X, Y : BH — Set, then f*(g): f*X — f*Y maps
z:BG to gpf(z) : X(Bf(z)) — Y(Bf(2)).

The action on arrows of induction along f takes a map of G-sets
g:X =Y, for X,Y:BG — Set, to the functorial action of set truncation,
for w:BH: 4

ExampLE 6.4.6. Taking n-truncation gives a wild functor ||_||,, : U — U=".
For n = 0, this is a functor from U to Sety;. a

ExampLE 6.4.7. We can extend the operation of adding a default element
from Definition 2.21.1 to a wild functor (_)+ : U — ‘U.. It takes a function
f:A — B to the function f, : A, — B, with

f+(inlp) = inlf,), and fi(pty,) = ptp, .

The operation of taking underlying types of pointed types likewise
extends to a wild functor (_).: U. — U. 4

ExampLE 6.4.8. Taking loop types extends to a wild functor Q: U. — U..
We defined the action on maps in Definition 4.4.3, except we didn’t equip
Qk with a pointing path, for k: X —. Y. However, that’s easily remedied
using the path groupoids laws from back in Exercise 2.5.3:

ptoy = reflye, = k;tl . reﬂk(ptx) kpt = k;tl -apy. (ptax) - kpt = Qk(ptyy)

We leave it to the reader to fill in the remaining data. 4

ExaMPLE 6.4.9. For an object C of a precategory C, recall the slice pre-
category C/C of Example 6.2.12. Taking the domain of an object
(A, f: A — C) of the slice extends to a functor fst :C/C — C. 4

ExampLE 6.4.10. Similar to the slice and coslice constructions, we have
the formation of the arrow precategory C™ of a precategory C. It has as
objects triples (A, B, f) of two objects A, B:C and an arrow f:A — B.
The arrows from (A, B, f) to (A’, B, f’) are pairs of arrows g: A — A’
and h: B — B’ making a commutative square:

A3, n

1l

BT)B,

Projecting out the domain and the codomain gives two functors

C dom c— cod c

Note that C™ is a category if C is. a

Exerciske 6.4.11. Define identity wild functors and composition of wild
functors, along with identifications A:idp o F = F, p:Foid¢ = F,
and a:H o (GoF) = (H o G) o F. Define the fillers for the pentagon
diagram (6.2.1) for four composable functors

coicliczicgﬁa

in the case where C4 is a (non-wild) precategory. 4

There’s also a notion of arrow between functors. These are called natural
transformations.>*

*>Freyd?3 observed that “categories
are what one must define in order
to define functors, and that functors
are what one must define in order to
define natural transformations.” In
this sense, natural transformations
are at the heart of category theory.

?3Peter Freyd. Abelian categories. An
introduction to the theory of functors.
Harper’s Series in Modern Mathe-
matics. Harper & Row, Publishers,
New York, 1964, pp. Xi+164.

A CATEGORICAL INTERLUDE 155

DEFINITION 6.4.12. A wild natural transformation a: F — G between two
wild functors F, G :C — D between wild precategories C and D consists
of a family of arrows

ap:F(A) -»p G(A)

indexed by objects A :C, and a family of fillers for the squares

F(A) —5 G(A)
F)| lew
F(B) — G(B)

in D for each arrow f: A —¢ B>
If D is a precategory, then the types of the naturality square fillers are
propositions. In this case, we just call a a natural transformation. 4

ExampLE 6.4.13. There is a wild natural transformation n:idg — ((_)+)-
from the identity wild functor on the universe U to the composition

usu S a
of the wild functors from Example 6.4.7. Its action on objectsisinl : A —
(A4):, where (A4): = AII 1. The naturality squares commute by
reflexivity. 4

ExamPLE 6.4.14. Every function f : A — B between types in U becomes a
wild functor between the corresponding wild path groupoids using the
action on paths, ap; from Definition 2.6.1.

Likewise, given two functions f, g:A — B, we get for every family
of identifications & : [T,.4 f(x) = g(x) a wild natural transformation
between the corresponding wild functors, using the naturality squares
of Definition 2.6.5. 4

With natural transformations as arrows we can elevate the type of
functors to a precategory.

DEerINITION 6.4.15. For a wild precategory C and a precategory D we have
the functor precategory C — D, also written [C, D] or D, has functors
from C to D as objects and natural transformations as arrows. The
identity arrow at F is the identity natural transformation idr : F — F that
assigns to each object A :C the identity arrow idp(4). The composition
likewise forms compositions objectwise. a

Exercise 6.4.16. Show that a natural transformation a:F — G in a
functor precategory C — D is invertible if and only if each component
as:F(A) —»p G(A) is. 4
ExErcisk 6.4.17. Show that the functor precategory C — D is univalent if
D is.?5 In this case we call it the functor category. 4

Exercise 6.4.18. Let A be a type and C category. Show that restricting to
the action on objects induces an equivalence

(A—C)— (A— Ob(0))

from the functor category whose domain is the wild path category of A
to the type of functions from A to the objects of C. 4

A functor F :C°? — D whose domain is an opposite category is called
contravariant, because it reverses the directions of arrows: f:C —¢ C’in

24These squares are called the “natural-
ity squares” for a.

25This is Thm. 9.2.5 in the HoI'T
book?*.

26Univalent Foundations Program,
Homotopy Type Theory: Univalent
Foundations of Mathematics.

A CATEGORICAL INTERLUDE

C maps to F(f):F(C’) —»p F(C) in D. If needed for emphasis, we may
say that a functor F :C — D is covariant by contrast.

ExaMmPLE 6.4.19. For an object C of a locally U-small wild precategory C,
we can form the co- and contravariant wild functors

Hom¢(C,_):C - U,

Home(_,C):C®? - U,

whose actions on morphisms are by post- and precomposition, respec-
tively. These are called representable functors. a

6.5 Adjunctions

We have already seen two examples of an adjunctions in Exercises 5.5.11
and 5.5.14. Given a group homomorphism f : G — H, there are families
of bijections

a: Homy(fi X,Y) EN Hom¢(X, f*Y),

B: Homg(f*Y, X) S Homp(Y, f. X),
for G-sets X and H-sets Y that are furthermore natural. This just means
that if we fix either X or Y, then we get natural transformations of

corresponding functors. For example, fixing X, we can regard a as a
natural transformation

a: Hompy(fi X,_) = Homg(X, f*_)
from the representable functor for H-Set at f; X to the composition of f*
and the representable functor for G-Set at X.
DerINITION 6.5.1. A (wild) adjunction between two (wild) precategories C
and D consists of:
e a (wild) functor F:C — D (the left adjoint),
¢ a (wild) functor G : D — C (the right adjoint),
* a (wild) natural isomorphism & : Homp(F_,_) = Hom¢(_, G_).

We write F 4 G to denote this situation. a

The essence of an adjunction is thus the ability to transpose between
arrows F(C) —p D and C —¢ G(D). There is however another way
of packaging this information. We can transpose the identity idpc)
to get an arrow 7c:C —¢ GF(C), and the identity idgp) to get an
arrow ¢p:FG(D) —p D. Naturality of a makes these into natural
transformations

n:id¢ = GF, and ¢:FG —idp

called the unit and counit of the adjunction.

Exgrcisk 6.5.2. Use naturality of @, along with unit laws to fill the triangle
laws in Figure 6.2. ¥

Conversely, given F, G, 11, and ¢, along with fillers for the triangle laws,
we can recover a by sending f : F(C) —p D to the composite

G
c 2 crie) £ q).

FGE(C) 2% F(C)

F
(ncﬂ /dp()

F(C)

G(D)

id
! ‘V TG(eD)

G(D) = GFG(D)

Ficure 6.2: Triangle laws for an
adjunction F 4 G.

156

A CATEGORICAL INTERLUDE

Exercisk 6.5.3. Use the functor and triangle laws to check that a thus
defined is a natural isomorphism. a

ExampLE 6.5.4. We have a wild adjunction ||_||, 4 t, with||_||,,: U — U="
(cf. Example 6.4.6) as the left adjoint and the inclusion ¢, : U=" — U as the
right adjoint. Indeed, the constructor |_|, acts as the unit, precomposition
with which gives the equivalence

(IXlln = Y) = (X > Y)

for X:U and Y : U=". a

ExampLE 6.5.5. Also the add/forget base points functors from Exam-
ple 6.4.7 can be arranged into a wild adjunction (_)+ -4 (_)-. For A: U,
and X : U we have

a:(Ar —=. X) > (A— X))
given by precomposition withinl : A — A,. 4
6.6 Limits and Colimits
6.7 The Yoneda Lemma

6.8 Monoidal categories

157

7
Groups, abstractly

7.1 Brief overview of the chapter

Recall from Section 4.3 the definition of an abstract group and how to
obtain an abstract group from a concrete one. In this chapter we will
implement an inverse construction, how to obtain a (concrete) group
from an abstract one, in Section 7.4. Likewise, in Section 7.5, we show
how to obtain a (concrete) homomorphism from an abstract one. Thus
we will have shown that, in principle,* it doesn’t matter whether one
develops group theory on the concrete or on the abstract level. More
precisely, we give an equivalence of categories between the categories of
concrete and abstract groups.

Before we implement the above constructions, we first introduce
in Section 7.2 a simpler structure, called monoid, of which abstract
groups are a special case.> We then define in Section 7.3 the notion of
homomorphism for abstract groups.

After groups and homomorphism, it is natural to continue to group
actions, in Section 7.6, and again relate the abstract to the concrete.

In the optional Section 7.7 we look at how general identities types
a =4 a’ relate to groups.

7.2 Monoids and abstract groups

A monoid is a collection of data consisting only of (1), (2), and (3) from
the list in Definition 4.3.1. In other words, the existence of inverses is not
assumed. For convenience we reproduce the shortened list here.

DEerINITION 7.2.1. A monoid consists of the following data.
(1) AsetS, called the underlying set.
(2) Anelement e:S, called the unit or the neutral element.

(3) A function S — S — S, called multiplication, taking two elements
g1, 82+ S to their product, denoted by g1 - g2:S.

Moreover, the following equations should hold, for all g, g1, §2, 3 S.

(@) g-e=gande- g = g (the unit laws)
(d) g1-(g2-83) = (g1 g2) - g3 (the associativity law)

The property that S is a set, the unit laws, and the associativity law, are
together known as the monoid laws. 4

158

1Of course this is not a reason to stop
here, but to continue finding out
which parts of group theory benefit
from the concrete approach. Just
to mention a few we have seen al-
ready: the conceptual simplicity
of homomorphisms being pointed
maps, actions being maps from the
classifying type to Set, and the gener-
alizations to co-groups indicated in
Chapter 5.

20ne could advocate for the name
‘abstract monoid’ here, were it not
the case that we have no concrete
analogue for monoids in our setting.
The reason is the symmetry of the
identity types.

ExampLE 7.2.2. Let S be a set, and consider the type S* of lists of elements
of S as defined in Definition 2.12.11. Then S* is a set according to
Theorem 2.22.2. We can give S* the structure of a monoid with the empty
list € as unit, and concatenation from Exercise 2.12.13 as multiplication,
denoted *. Then the monoid laws can easily be proven to hold and hence
(5%, €,#) is a monoid. a
Building on the definition of a monoid, we may encode the type of
abstract groups as follows. We let S denote the underlying set, e: S
denote the unit, y:S — S — S denote the multiplication operation
g+ (h+— g-h),and (:S — S denote the inverse operation g > g~.
Using that notation, we introduce names for the relevant propositions.

UnitLaws(S, e, u) := H((/J(g)(e) =g) x (u(e)(g) = g))
g:S

AssocLaw(S, p) = [(u(81)(u(82)(83)) = p(u(81)(82))(83))
81,82,83:S
MonoidLaws(S, e, p) := isSet (S) X UnitLaws(S, e, 1) X AssocLaw(S, p)
InverseLaw(S, e, 1, 1) = [[(p(g)(1(g)) = ¢)
g:S
GroupLaws(S, e, y, t) :== MonoidLaws(S, e,) X InverseLaw(S, e, y, t)

DerINITION 7.2.3. Recall the definition of abstract group in Definition 4.3.1.
The type of abstract groups is

Group™ =YY Y Y GroupLaws(S,e, u,0). 4
S:Ue:Sp:5-5-51:5-85

Thus, following the convention introduced in Remark 2.8.2, an abstract
group G will be a quintuple of the form G = (S, e, 1, 1,!). For brevity,
we will usually omit the proof of the properties from the display, since
it’s unique, and write an abstract group as though it were a quadruple
G=(S,e).

ReMARK 7.2.4. Instead of including the inverse operation as part (4) of
the structure (including the property (4) (c)), some authors assume the
existence of inverses by positing the property (4) (c) below.

(4) A function (\)71:S — S, the inverse operation, satisfying:
(c) g¢-g ! =eforall g:S (the law of inverses).
(5) Forall g:S there exists an element /1 : S such thate = g - h.

We will now compare (5) to (4). Property (5) contains the phrase
“there exists”, and thus its translation into type theory uses the quantifier
-, as defined in Section 2.16. Under this translation, property (5) does
not immediately allow us to speak of “the inverse of ¢”. However, the
following lemma shows that we can define an inverse operation as in
(4) from a witness of (5) — its proof goes by using the unit laws (3) (a)
and the associativity law (3) (b) to prove that inverses are unique. As a
consequence, we can speak of “the inverse of g”. a

LemmMa 7.2.5. Given a set S together with e and - as in Definition 7.2.1 satisfying
the unit laws, the associativity law, and property (5), we have a unique “inverse”
function S — S having property (4) (c) of Definition 4.3.1.

GROUPS, ABSTRACTLY

159

Proof. Consider the function yi:S — (S — S) definedas g — (h — g-h).
Let ¢ :S. We claim that the fiber ()~ (e) is contractible. Contractibility
is a proposition, hence to prove it from (5), one can as well assume the
actual existence of h such that ¢ - 1 = e. Then (h,!) is an element of
the fiber u(g)~!(e). We will now prove that it is a center of contraction.
For any other element (4’,!), we want to prove (h,!) = (1’,!), which is
equivalent to the equation /1 = h’. In order to prove the latter, we show
that & is also an inverse on the left of g, meaning that /1 - ¢ = e. This
equation is also a proposition, so we can assume from (5) that we have
an element k : S such that & - k = e. Multiplying that equation by g on
the left, one obtains

k=e-k=(g-h)-k=g-(h-k)y=g-e=g,
from which we see that /1 - g = ¢. Now it follows that
h=h-e=h-(g-h)=(h-g)-h"=e-h =1,

as required. Hence p(g)~!(e) is contractible, and we may define g~! to be
the center of the contraction, for any g : S. The function g + ¢! satisfies
the law of inverses (4) (c), as required.3 Since the inverse of each g: S is
unique, it follows by function extensionality that this ‘inverse” function
is unique. O

Remark 7.2.6. That the concept of an abstract group synthesizes the
idea of symmetries will be justified in Section 7.4 where we prove
that the function abs : Group — Group™® from Definition 4.3.4 is an
equivalence. a
Remark 7.2.7. If G = (S, e, u, 1) and G’ = (S, ¢/, 1/, ') are abstract groups,
an element of the identity type G = G’ consists of quite a lot of informa-
tion, provided we interpret it by repeated application of Lemma 2.10.3.
First and foremost, we need an identification p : S = S’ of sets, but from
there on the information is a proof of a conjunction of propositions.* An
analysis shows that this conjunction can be shortened to the equations
e’ = p(e) and u'(p(s), p(t)) = p(u(s,t)). A convenient way of obtaining
an identity p that preserves these equations is to apply univalence to an
equivalence f:S = S’ that preserves them. We call such a function f an
isomorphism of abstract groups. 4

Exercisk 7.2.8. Perform the abovementioned analysis. 4

Exercisk 7.2.9. Let G = (S, e, 11, 1) be an abstract group. Define another

structure G°P := (S, e, u°®, 1), where u°?:S — S — S sends a,b:S to

u(b, a), i.e., u°f swaps the order of the arguments as compared to p.
Show that ¢:S — S defines an isomorphism G = G°P.5 a

Exercise 7.2.10. Let G = (S, e, 1, t) be an abstract group and let g : S. For
any s:S, let conj$(s) := g -s-g~'. Show that the resulting function
conjé :S — S preserves the group structure (e.g., ¢ (s-s')- ¢! =
(g-5-¢71)-(g-s-g71)) and is an equivalence. The resulting identification
conj$: G = G is called conjugation by g. 4
ReMARK 7.2.11. Without the requirement that the underlying type of an
abstract group or monoid is a set, life would be more complicated. For
instance, for the case when g is ¢, the unit laws (3) (a) of Definition 7.2.1

GROUPS, ABSTRACTLY 160

3Note that this proof also shows that
(§71)' = gand hence g7 - g =, for
any g:S.

4 Even though we are able to give
a concise definition of co-groups
in Section 4.7, we don’t know how
to define the type of “abstract co-
groups” in a way similar to Defini-
tion 4.3.1: such a definition would
require infinitely many levels of op-
erations producing identifications
of instances of operations of lower
levels. And an identification would
similarly require infinitely many op-
erations identifying the operations at
all levels. See also Remark 7.2.11.

5Hint: in down-to-earth terms this
boils down to the equations e™! = e
and (a-b)"1=p"1.471,

would provide two (potentially different) identifications e -e = ¢, and we
would have to separately assume that they agree. This problem vanishes
in the setup we adopted for co-groups in Section 4.7. a

Exercise 7.2.12. Given an element g in an abstract group, prove that
e=g¢' gand ¢ = (¢71)7. (Hint: study the proof of Lemma 7.2.5.)
Exercisk 7.2.13. Prove that the types of monoids and abstract groups are
groupoids. 4

Exercisk 7.2.14. There is a leaner way of characterizing what an abstract
group is: define a sheargroup to be a set S together with an elemente: S,
afunction_*_:5— S — S,sending a,b:Stoaxb:S, and the following
propositions, where we use the shorthand 7 := a * e:

(1) exa =a,

(2) a*a=e,and

(3) cx(bxa) = (cxb)a,

for all a,b,c:S. Construct an equivalence from the type of abstract

groups to the type of sheargroups.® a

Exercisk 7.2.15. Another and even leaner way to define abstract groups,
highlighting how we can do away with both the inverse and the unit: a
Furstenberg group? is a nonempty set S together with a function _o_:S —
S — S,sending a,b:S toa ob:S, with the property that

(1) foralla,b,c:S wehavethat(aoc)o(boc)=aob,and
(2) foralla,c:S thereisab:S suchthataob =c.

Construct an equivalence from the type of Furstenberg groups to the
type of abstract groups.? 4

7.3 Abstract homomorphisms

In this section we define the notion of homomorphism for abstract groups,
which we touched upon just above Example 4.4.20. We start by an exercise
that simplifies the requirements for abstract group homomorphisms.
Exercise 7.3.1. Let G := (S, eg, -g, tg) and H = (T, ey, 1, L13) be abstract
groups, and f:S — T a function satisfying f(s -g s") =1 f(s) -3 f(s’) for
all s, s’:S. Show that f(eg) = ey and f(ig(s)) = tn(f(s)) foralls:S. .
Thus we see that, due to the properties of the abstract groups, if f
preserves multiplication, then f also preserves unit and inverses.*®
DeriNiTiON 7.3.2. Let G = (S, eg, g, tg) and H = (T, ey, -1, L31) be two
abstract groups,'* then the set of homomorphisms from G to # is

Homabs(g, H) = Z H (f(s g) =t f(s) “H f(S’))

f:5->Ts,s:S
For groups G and H, the function
abs : Hom(G, H) — Hom?™(abs(G), abs(H))

is defined as the function f + abs(f) := (Uf,!) made explicit in Defini-
tion 4.4.5 and satisfying the properties by Lemma 4.4.6. 4

GROUPS, ABSTRACTLY 161

®Hint: setting a - b := b * a gives you
an abstract group from a sheargroup
and conversely, letting a xb = b - a~!
takes you back. On your way you
may need at some point to show that
4 = a: setting ¢ = A and b = g in the
third formula will do the trick (after
you have established that & = ¢). This
exercise may be good to look back
to in the many instances where the
inverse inserted when “multiplying
from the right by a” is forced by
transport considerations.

7Named after Hillel Furstenberg who
at the age of 20 published a paper
doing this exercise.?

8Harry Furstenberg. “The inverse
operation in groups”. In: Proc. Amer.

Math. Soc. 6 (1955), pp. 991—997. DOI:
10.2307/2033124.

9Hint: show that the function a + aoa
is constant, with value, say, e. Then
show that S together with the “unit”
e, “multiplication” a - b := a o (e o b)
and “inverse” b~1 := e o bisan
abstract group.

'°For monoids this is not true: Let M
be the monoid with two elements, 1
and 0, with ordinary multiplication,
so the unit is 1. Consider 1 as the
trivial monoid. Now define h: 1 —
M by h(0) = 0. Then h preserves
multiplication, but not the unit. Note
that M cannot be extended to an
abstract group, since giving 0 an
inverse would make 0 equal to 1.

' Recall from Definition 4.3.1 that the
components comprise the underlying
set, the unit element, the multiplica-
tion, and the inverse operation. We
also need the laws to hold, but this
notation elides the corresponding
witnesses.

In the display, f(s -g s’) =t
f(s) -2 f(s’) is a proposition; hence a
homomorphism of abstract groups is
uniquely determined by its underly-
ing function of sets, and unless there
is danger of confusion we write f
instead of (f,!).

https://doi.org/10.2307/2033124

ReMARK 7.3.3. With our definition it is immediate that a homomorphism
of abstract groups also defines a homomorphism of the underlying
monoids, preserving multiplication and thereby unit. However, for
monoids as defined in Definition 7.2.1, it is possible to preserve multipli-
cation but not the unit, as shown in Footnote 10. Hence, for monoids we
define the set of homomorphisms from M = (S, epm, -m)to N = (T, en, -N)
by

Y ((Flemr =rex) x T (fs-ms) =1 f&)n f))). -

f:5->T 5,8":5

ExercIsE 7.3.4. Prove that the composition of two composable abstract
homomorphisms*? is again an abstract homomorphism. Prove also that

abs(idg) = idaps) and abs(fifo) = abs(f1) abs(fo)

for all fy: Hom(Gy, G1) and f1: Hom(G1, G2).*3 Show that Hom(G, G)
and Hom®*(G, G) are monoids. J

ExamrLE 7.3.5. Let G = (S, e, 1, t) be an abstract group and let g:S. In
Exercise 7.2.10 we defined conj$: S — S by setting conj$(s) = g-s- ¢!
forall s : 5, and asked you to show that it “preserves the group structure”,
i.e., it is a homomorphism

conj® : Homabs(g, g)

called conjugation by g. Actually, we asked for more: namely that conju-
gation by g is an isomorphism, and hence determines an identification
(for which we used the same symbol) conj$: G = G.

If H is some other abstract group, transport along conjé gives an
identification conjé : Hom(#, G) = Hom(#, G) which should be viewed
as “postcomposing with conjugation by ¢”. Similarly for elements in H,
giving rise to “precomposition with conjugation by h”.

The connection with inner automorphisms of a given group G is as
follows. Recalling Example 4.4.20 and Definition 4.4.21, we have that
abs(Binn)(g) = Q(idpg, g71) = conj?, for every g : UG. 4
Exercise 7.3.6. Let G := (S, eg, ‘g, tg) and H = (T, ey, 34, 131) be abstract
groups and consider the set Hom®*(#, G) of homomorphisms from
to G. For any f, g : Hom®™®(#, G), define the function (f -g ¢): T — S by
(f ‘¢ 9)(t) = f(t)-g g(t) for t : T. Show that G is abelian if and only if any
(f ¢ g) is a homomorphism. 4

7.4 Groups: from abstract to concrete and back

For constructing a group from an abstract group, we draw our inspiration
from Definition 5.5.4 and Theorem 5.5.7, which identify each group G
with the group classified by the type of its torsors, pointed by its principal
torsor. That is, in total analogy, we define the torsors for an abstract
group, and it will then be relatively simple to show that the constructions
of

(1) forming the abstract group of a group and

(2) taking the group classified by the torsors of an abstract group

GROUPS, ABSTRACTLY 162

>Composition here means composi-
tion of the functions on the underly-
ing sets, and composable means that
these functions have types such that
they indeed can be composed. The
latter is sometimes tacitly assumed.

3In other words, for composable
homomorphisms fo, fi.

Recall Footnote 4, explaining why
we do not consider an “abstract”
counterpart of the concept of co-
group. Consequently, all we do in
this section is set-based.

are inverse to each other.

Let G be a group and X : BG — Set a G-set. Using the underlying set
X(shg), we can restrict the codomain of X to Set(x(sh)), the classifying
type of Xx(sh;)- Then we can view X as the classifying function of a
group homomorphism from G to Xxsh.). We already know the abstract

versions of all three ingredients, the two groups and the homomorphism.

Thus, the abstract version of X can be expected to consist of the set X (shg)
and abs(X), the abstract homomorphism from abs(G) to abs(Xx(sh))-

A case in point is the principal G-torsor Py, = (z = (shg = z)).

Its underlying set is UG. The abstract version of the corresponding
homomorphism, defined by transport, is the function UG — (UG = UG)
mapping g to(g-_),i.e., postcomposition with g."4 A small generalization
now leads to the following definition.

DEFINITION 7.4.1. Given an abstract group G = (S, e, i, t), a G-set is a set
T together with a homomorphism G — abs(Xr) from G to the abstract
permutation group of T. Then the type of G-sets is defined as

G-Set®s =) Hom?™(G, abs(X7)).
T :Set

The principal G-torsor P&bs is the G-set consisting of the underlying
set S together with the homomorphism G — abs(Zs) with underlying
function S — (S = S) given by sending ¢ :S to (s — u(g,s)).

The type of G-torsors is

abs

Torsory® = Y |Pg™ S X J

X : G-Set?®
Exercise 7.4.2. In the setting of the above definition, give an identification
of (S, (s = (g, 5)) with (S, (s = (s, 1(g)))) in the type G-Set®™.15
ExampLE 7.4.3. Given a group G, recall from Lemma 4.3.3 that the
abstract group is abs(G) = (UG, eg,-, ()™ with UG = (shg = shg)
and eg = reflg, ., and - and (_)7!) as usual for paths. Unravelling the
definition, and Definition 7.3.2, we see that an abs(G)-set consists of

(1) asetS,and
(2) afunction f:UG — (S = S) such that

(3) forall p, q:UG we have that f(p q) = f(p) f(q). 4

Clearly, the types G-Set®™® and Torsor‘g‘;bs

is by definition connected. Thus we define:

are groupoids, and the latter

DEFINITION 7.4.4. For any abstract group G, the (concrete) group concr(G)
associated with G is the group classified by the pointed connected groupoid
(Torsor?;bs, P&bs). a

To help reading the coming proofs we introduce some notation that is
redundant, but may aid the memory in cluttered situations. Let x, y, z
be elements in some type, then define:*®

preinv:(y = x) = ((y = z) > (x > z)), preinv(q)(p) = Pyp = pg!
post:(y = z) = ((x > y) = (x > z)), post(p)(q) = post,q = pq

GROUPS, ABSTRACTLY 163

14 A (free) choice has been made to
define Py, using (shg = z) and
not (z = shg). In the latter case
the abstract homomorphism would
map g to (_- g71), i.e., precomposi-
tion with the inverse of g. See also
Exercise 7.4.2.

'5Every abstract group (S, e, , t)
has an isomorphic opposite group
(S,e, i, 1), where u’(g,8’) = (g’ g)
forall g, g’":S. The canonical isomor-
phism is .

1We recognize preinv from
Lemma 5.5.6 as the induced map
of identity types P :(y = x) —
(P, = Py), followed by evaluation
at z. Post-composition post is trans-
port in the family Py, while preinv is
precomposition by the inverse of its
argument. We will sometimes write
preinv, to stress the variable z in the
type of preinv, and likewise write
post,.

ExamrLE 7.4.5. Givena group G and z : BG, the principal G-torsor evaluated
at z,i.e., the set Psh (z) = (shg = z), has a natural structure of an abs(G)-
set by means of

preinv_ : UG — ((shg = z) = (shg = z2)).

Indeed, preinv, is an abstract homomorphism since, for all p, 4 : UG, we
have that preinv, (p q) = preinv_(p)preinv,(q)."7

Furthermore, for any z : BG, the abs(G)-set (shg = z, preinv, !) is an
abs(G)-torsor. Since this is a proposition and BG is connected, it suffices
to verify this for z = shg, for which it follows from Exercise 7.4.2. We
give this construction a short name by defining, for all z : BG, the map

Bg. :BG —. (Torsorg{;:(c), P;f:(c)), Bgs(z) = (Psng (2), preinv,, 1),

pointed by Exercise 7.4.2. The name Bg; anticipates its use as classifier
of a homomorphism. 4

DEEINITION 7.4.6. Let G be a group. The group homomorphism
g¢ : Hom(G, concr(abs(G)))

is classified by the function Bg defined in Example 7.4.5. 4
LemMa 7.4.7. For all groups G, the homomorphism q¢ is an isomorphism.

Proof. To prove that Bg is an equivalence it is, by Corollary 2.17.9(3),
enough to show that for x, y : BG the induced map

Bqg: (x =pc y) — (Bgg(x) = Bgg(v))
is an equivalence. Now, B (x) = Bq(y) can be unfolded to
((shg = x), preinv.) iabs(c)_Setabs ((shg = y),preinvy)

which, by Definition 2.7.3 and Lemma 2.10.3, is equivalent to

Z H f o (preinv (g)) = (preinvy(g)) of.

f:(shg>x)S(shg>y) §: UG

Under these identities, and using function extensionality, Bq; is given
by (with the type of f as above)

post, x>y —>Y [T TI (flpg™=rpg™).

f §:UG p:shg>x

Given a function f such that [T,.uc ITp:she=x (f(Pg) = f(p)g),*® the
preimage posts_}}G (f)unfoldsto }., .=, (f = post,_(r)). For proving that
postshG , and hence B, is an equivalence, we have to show that the latter
preimage is contractible. This goal is a proposition and BG is connected,
so we may assume that we have a path pg : shg = x. Thenanyr,s:x = y
such that posty, (r) = f = postg, (s) satisfy r po = f(po) = s po, so that
r = 5. Thus the preimage is a proposition. It remains to find an r such
that f = postg, (r). We take r = f(po)py ! and verify, using the property
of f, for any p :shg = x, that

f() = f(po(pa'p)) = F(po)(py'p) = (f(po)py")p = posty, (r)(p). O

We are now ready to prove the main result of this section.

GROUPS, ABSTRACTLY 164

7For any r:shg — z we have that
preinv_ (pq)(r) = r(pg)™" =
rq7lp7l = preinv_(p)(preinv, (q)(r)).
Without the inverse, this would have
gone badly wrong. Moreover, refer-
ring to Exercise 7.4.2, preinv is here
more natural than post: UG consists
of the symmetries of shg, and the z
is fixed.

8No need to invert g here.

THEOREM 7.4.8. The map abs : Group — Group?® is an equivalence.

Proof. Applying Construction 2.9.9 with Definition 7.4.4 as candidate
inverse, one half of the the work has been done in Lemma 7.4.7. It
remains to give, for any G, an isomorphism of type

G>

Group™ abs(concr(G)).

Let G = (S,e, u, t) be an abstract group. Then the underlying set of
abs(concr(G)) is [P’gbs = Torsor
using Definition 2.7.3, we see that this set is equivalent to

T[T (r(usts, 1) = (s, m(0)).
Ss,t:S

abs P_gbs. Unraveling the definitions and

e

m:S

Setting ¢ := e in the last equation, we see that 7t(s) = u(s, m(e)), thatis, ©
is simply right multiplication with an element 7(e): S. In other words,
the function

rg:S— Y [(mu(s, t) = uls, m(t)), ro(u) = (u(,u™h),"
m:5588,t:S

is an equivalence of sets.™

We have to promote rg from an equivalence of sets to an isomorphism
of abstract groups, with G as domain. The codomain of rg has its abstract
group structure induced by the equivalence with abs(concr(G)). The
abstract group structure of abs(concr(G)) is given by the symmetries of
P2bs; translated to the codomain Y. g2 15 ¢.5 (m(u(s,) = (s, me(t))
this corresponds via the first projection to a subset of permutations of
S, with the abstract group structure given by composition o. In view of
Definition 7.3.2, for rg to be an isomorphism, it suffices that rg preserves
multiplication: rg(u(u,v)) = rg(u) o rg(v). This follows directly from
function extensionality, associativity of p, and the equation p(u, v)™! =
p(v™!, u7). Hence the equivalence r¢ is indeed an isomorphism of
abstract groups.*°]

7.5 Homomorphisms, from abstract to concrete and back

Now that we know how to identify the type of groups with the type of
abstract groups, it is natural to ask if the respective notions of group
homomorphism also coincide.

They do, and we provide two independent and somewhat different
arguments. Translating from group homomorphisms to abstract group
homomorphisms is easy: if G and H are groups, then we defined

abs : Hom(G, H) — Hom?®(abs(G), abs(H))

in Definition 4.4.5 and Definition 7.3.2 as the function which takes a
homomorphism, classified by a pointed map Bf : BG —. BH, to the
induced map of identity types

Uf = QBf: UG — UH

together with the proof that this is an abstract group homomorphism
from abs(G) to abs(H).

GROUPS, ABSTRACTLY 165

9Indeed, conversely, u(_, u~1) satisfies
the condition for 7. Prove this! The
reason for using u~1 here, and not u,
becomes clear in the next paragraph.

20 This amounts to Cayley’s Theorem
for abstract groups, stating that every
abstract group G is isomorphic to
an abstract subgroup of the abstract
permutation group of the underlying
set S of G. The abstract subgroup is
the codomain of rg with idg, o and

O™

Going back is somewhat more involved, and it is here we consider
two approaches. The first is a compact argument showing directly how
to reconstruct a pointed map Bf : BG —. BH from an abstract group
homomorphism from abs(G) to abs(H). The second translates back and
forth via our equivalence between abstract and concrete groups.

The next subsections offer two proofs of the statement we are after:

Lemma 7.5.1. If G and H are groups, then
abs : Hom(G, H) — Hom?(abs(G), abs(H))

is an equivalence.

“Delooping” a group homomorphism

We now explore the first approach. It might be helpful to review
Lemma 3.4.9 for a simple example of delooping in the special case of the
circle. Here we elaborate the general case.

Proof. Suppose we are given an abstract group homomorphism
f: Hom?®*(abs(G), abs(H))

and we explain how to build a map Bg:BG — BH with a path p :shy =
Bg(shg) such that pf(w) = Bg(w)p for all w:shg = shg (so that
g: Hom(G, H) is a “delooping” of f, thatis, f = abs(g)).**

To get an idea of our strategy, let us assume the problem solved.
The map Bg:BG — BH will then send any path a:shg = x to a path
Bg(a): Bg(shg) = Bg(x) and so we get a family of paths p(a) := Bg(a)p
in shy = Bg(x) such that

plaw) = Bg(a)Bg(w)p = Bg(a)pf(w) = p(a)f(w)

for all w:shg = shg and a:shg = x.
This suggests to introduce the following family

Clx) = Y Y I [prlaw)=pla)f(w)

y:BH p:(sh¢>x)—(shy>y) w:shg>shg a:shg>x

An element of C(x) has three components, the last component being a
proposition since BH is a groupoid.

The type C(shg) has a simpler description. An element of C(shg) is a
pairy, p suchthat p(aw) = p(a) f (w) forany @ and w inshg = shg. Since
f is an abstract group homomorphism, this condition can be simplified
to p(w) = p(reflsh;) f(w), and the map p is completely determined by
p(reflsn;). Thus C(shg) is equal to ., . gy shu = y and is contractible.
Since BG is connected, we have [],.pg isContr C(x) and so, in particular,
we have an element of [],..p¢ C(x).

By projecting out the centers we get a map Bg:BG — BH together
with a map p: (sh¢ = x) — (shy = Bg(x)) such that p(aw) = p(a)f(w)
for all & in shg = x and w in shg — shg. We have, for a :shg — x

[T IT r@e)=BgMp(a)

x":BGA:x>x!

since this holds for A = refly. In particular, p(w) = Bg(w)p(reflgh,).

Wealsohave p(w) = p(reflsh.) f(w), hence p(reflsh.)Bg(er) = f(a)p(reflsh,)

for all a:shg = shg and we have found a delooping of f. o

GROUPS, ABSTRACTLY 166

*'We will thus have displayed a map
deloop : Hom?Ps(abs(G), abs(H)) —
Hom(G, H) with (abs o deloop) = id.
We leave it to the reader to prove that
deloop cabs = id.

From concrete to abstract homomorphisms via torsors.

For the second approach to Lemma 7.5.1 we need some preparation. We
first give the analogue of Definition 5.5.9 for inducing H-sets from G-sets
by an abstract homomorphism. There we defined, for all X : BG — Set,
f:Hom(G,H)and w:BH, fiX(w) = ||, .56 ((Bf(z) > w)x X(2))llo. As
explained in Remark 2.22.17, the set truncation can be defined by taking
the quotient with truncated identity on }_,.pc((Bf(z) = w) X X(z)).
Recall the G-set (z:BG) — ((Bf(z) = w) X X(z)) from Footnote 54.
Using Corollary 5.4.5, we can equivalently quotient its underlying set
Pohy, (w) X X (she) with the induced equivalence relation || (p, x) = (g, y)I|,
which is equivalent to J,.c((p = (9 - Uf(g))) X (g 'x x = y)). This
motivates the following:

DeriNtTION 7.5.2. Given groups G, H and an abstract homomorphism
¢ : Hom®(abs(G), abs(H)), we define the map ¢, from G-sets to H-sets
as follows. For any G-set X : BG — Set and w : BH, define

qqu(w) = ((ShH = w) X X(Shc))

to be the set quotient of (shy = w) X X(sh¢) modulo the equivalence
relation (p, x) ~ (9, y) if there exists a g: UG such that p = g¢(g) and
gxx=Y. N
LemMa 7.5.3. With ¢y as in Definition 7.5.2, the map 1¢ : 1P = Py
sending, for all w : BH, [(p, x)]: (shy = w) x4 UG to pp(x): (shgy = w), is
a well defined (fiberwise) equivalence. Consequently, (¢, n;l) is a pointed map
from (Torsorg, Psh) to (Torsory, Pany,).

Proof. First we show that 7, respects the equivalence relation. Let
(p,x) ~ (q,y) with p, q:(shg = w) and x, y:UG. Then there exists a
g:UGsuchthatp = g¢(g)and g-xx = y. Now, pp(x) = gp(gx) = qp(y),
so 1y is indeed well defined. It is also clearly a surjection. So it
remains to prove that 1 is injective. Assume (p, x) and (g, y) are such
that pp(x) = gd(y). Then p = gdp(yx~!) and yx~' -x x = y. Hence
(p,x) ~ (q,y), so their classes are equal. This shows that 1, is injective,
and completes the proof. O

Now comes the second proof of Lemma 7.5.1.

Proof. The family of equivalences P¢:BG = (Torsorg, Puy), for any
G : Group, from Definition 5.5.4 and Theorem 5.5.7 induces an equiva-
lence

P: Hom(G, H) = ((Torsorg, Psh.) —« (Torsorg, Pan,,))

by mapping, for any f : Hom(G, H), Bf to IP_H oBfo ([P’_G)‘l. Now define
A= (absoP1) = (g — UP7(g)). Then A is a map>>

A ((Torsorg, Pspe) —- (Torsory, Pany,)) — Hom?™(abs(G), abs(H)).

In order to show that abs : Hom(G, H) — Hom®(abs(G), abs(H)) is an
equivalence, we factor abs as A o . It then sulffices to prove that A is an
equivalence, since we already know that P.

For all & in the domain of A, we have Q#h o QIP’_G = Q[F"_H o A(h). The
situation is visualized by the following “flattened cube”:*3

GROUPS, ABSTRACTLY 167

22

23The outer square is the bottom face,
the middle square is the top. The
edges labelled with Q) connect the
back face with the front face.

(Torsorg, Psn,.) ., (Torsory, Psny,)

] K

BP!(h)

BG BH
Q Ql lQ Q
UG P~ (k) UH
EA(h)

Qp¢ lu ulm{“

(Pshc, = Pshc) T (IpshH = PshH)

It follows that A(h) is an abstract group homomorphism. We are done if
we show that A is an equivalence.
For any ¢ : Hom?™(abs(G), abs(H)), recall the pointed map

(o1, 1](751): ((Torsorg, Psn,) —- (Torsory, Papn,,))
from Definition 7.5.2 and Lemma 7.5.3. Let

C: Hom®™(abs(G), abs(H)) — ((Torsorg, Pshe) =+ (Torsory, Peny,)

be given by C(¢) = (¢, 17(1‘)1)

We show that A and C are inverse equivalences. Given an abstract
group homomorphism ¢ : Hom®(abs(G), abs(H)), we have the follow-
ing commutative diagram?* for A(C(¢)):

A(C
UG (Clo) UH

QPFlu ulm{“

(Pshc = Pshc) m} (PshH = PshH)

We have to prove A(C(¢)) = ¢. When we start with a g: UG, then QI]J’_G
sends g to®

[P’gG = preinv (g) = ((z:BG) + preinv_(g)) : (Pshg = Pene)-

We have QC(¢) = Q(¢, 17(;1). It follows from Exercise 7.5.4 that the
latter sends preinv (g) to preinv (¢(g)) = ((w:BH) + preinv,_ (¢(g)))
in Pshy, = Pany, which correspon(_is to ¢(g): UH under Q[PlH . In other
words, A(C(¢)) = ¢.

The composite CA is similar.2 o

Exercisk 7.5.4. Recall Definition 7.5.2 and show that ¢mt(w) maps [(p, x)]
in ¢ X(w) to [(p, Mshs(x))] in 1 X'(w), for any path m:X = X’ and
w:BH. Then prove that Q(¢, nq_bl) sends preinv (g) to preinv (¢(g)).
Hint: recall Definition 4.4.3 and start by making 17%1 explicit. 4

Exercisk 7.5.5. Show that Iso(X;, X) is contractible. 4

7.6 Actions, from abstract to concrete and back

Given a group G it should by now come as no surprise that the type
of G-sets is equivalent to the type of abs(G)-sets. As explained in
the introduction to Section 7.4, just above Definition 7.4.1, G-sets are
closely connected to homomorphisms from G to a permutation group.
According to Lemma 7.5.1

abs : Hom(G, Zs) — Hom®*(abs(G), abs(Xs))

24This is the instance h = C(¢) of

GROUPS, ABSTRACTLY

168

the front face of the “flattened cube”

above.

25Note that PG is pointed by reflexiv-

26

ity.

GROUPS, ABSTRACTLY

is an equivalence, where the group Zs is classified by the component of
the groupoid Set, pointed at S. The component information is moot by
Exercise 5.2.12.

Using Remark 5.2.13, we have the following chain of known equiva-
lences and definitions:

G-Set 5) Hom(G, Xs)
S:Set

> Z Hom?(abs(G), abs(Zs))
S:Set

= abs(G)-Set®.

Backtracking these equivalences we see that we have established

LemMA 7.6.1. Let G be a group. Then the map
eVen, : G-Set — abs(G)-Set™®, evshe (X) = (X(shg), ax)

is an equivalence, where the abstract homomorphism ax from abs(G) = UG
to abs(Zx(she))) = (X(shg) = X(shg)) is given by the group action of X:
ax(g) = X(g) = (g -x), forall g:UG.

ExampLE 7.6.2. Let H and G be groups. Recall from Example 5.2.6 that
the set of homomorphisms from H to G is a G-set in a natural way:

Hom(H, G):BG — Set, Hom(H, G)(z) := Hom(H, Q(BG-, z))

What abstract abs(G)-set does this correspond to? In particular, under
the equivalence abs : Hom(H, G) — Hom?®*(abs(H) abs(G)), what s the
corresponding action of abs(G) on the abstract homomorphisms? The
answer is that g : UG acts on Hom®*(abs(H), abs(G)) by postcomposing
with conjugation conj¢ by g as defined in Example 7.3.5.

Let us spell this out in some detail. Consider a path p :shg = z. Trans-
port along p in the family Hom(H, G)(z) is postcomposing a homomor-
phism in Hom(H, G) with theisomorphism Q(idgg, p~!) : Hom(G, Q(BG:, 2)),
see Example 4.4.20. Indeed, postcomposition with Q(idpg, g‘l) is an
abstract homomorphism from UG to the abstract permutation group of
the set Hom(H, G). This answers the first question above. As to the sec-
ond question, recall from Example 4.4.20 that abs(Q(idgg, g‘l)) = conjs.
Therefore the action of ¢ on Hom®™(abs(H), abs(G)) is postcomposition
with conjs. 4

For reference we list the conclusion of this example as a lemma:

LemmMma 7.6.3. If H and G are groups, then the equivalence of Lemma 77.6.1 sends
the G-set Hom(H, G) to the abs(G)-set Hom?®®(abs(H), abs(G)) with action
given by postcomposing with conjugation by elements of abs(G).

Let G and G’ be groups and f: Hom(G, G’) a homomorphism. Recall
from Definition 5.5.9 the restriction map

f:G'-Set — G-Set, f1(X) =X oBf.

We will have the occasion to use the following result which essentially
says thatif f : Hom(G, G’) is such that Uf is surjective,?” then f* embeds
the type of G’-sets as some of the components of the type of G-sets.

169

*7In Lemma 9.2.4 we will call such an
f an epimorphism, just as we called in

LemMa 7.6.4. Let G and G’ be groups and let f : Hom(G, G’) be such that Uf Definition 5.3.11 f an monomorphism

when Uf is injective.
is surjective. Then the map f* from Definition 5.5.9 is an injection. fising

Proof. We prove that, for all G-sets X and Y, the induced map f*: (X =
Y) = (f*X = f'Y) is an equivalence.
Since BG is connected, evaluation at shg yields an injection

eVshg * (f"X = f7Y) = (X(Bf(shg) = Y(Bf(shc))),
For the same reason the composite
eVshe 7 = eVi(shg) (X = Y) = (X(f(shg) = Y(f(shg)))

is likewise injective. Since all indentity types involved are sets, we can
conclude that the induced f*: (X = Y) — (f*X = f*Y) is injective.

For surjectivity, let F’: f*X = f*Y and write, for typographical conve-
nience, a: X(Bf(shg) = Y(Bf(shg)) for even, F’ := Fj . By the equiva-
lence between G-sets and abs(G)-sets,?® F’ is uniquely pinned down by
a and the requirement that for all g’ = Bf(g) with g: UG the diagram

X(g")

X(Bf(shc))

a

Y(Bf(shg))

X(Bf(shc))

a

Y(Bf(shc))

Y(g')

commutes. Likewise, (using transport along the identification f,; : shg: =
f(shg))an F: X = Y in the preimage of 4 is pinned down by the commu-
tativity of the same diagram, but with g¢’: Bf(shg) = Bf(shc) arbitrary
(an a priori more severe requirement, again reflecting injectivity). How-
ever, when f:UG — UG’ is surjective these requirements coincide,
showing that the induced f* is an equivalence.]

7.7 Heaps (1)

Recall that we in Remark 4.2.3 wondered about the status of general
identity typesa =4 a’, for a and a’ elements of a groupoid A, as opposed
to the more special loop types a =4 a. Here we describe the resulting
algebraic structure and how it relates to groups.

We proceed in a fashion entirely analogous to that of Section 4.2, but
instead of looking a pointed types, we look at bipointed types.

DeriNtTION 7.7.1. The type of bipointed, connected groupoids is the type

U=) (AxA). a
A: U=

Recall that U=! is the type of connected groupoids A, and that we also
write A : U for the underlying type. We write (A, a, a’): UZ! to indicate
the two endpoints.

Analogous to the loop type of a pointed type, we have a designated
identity type of a bipointed type, where we use the two points as the
endpoints of the identifications: We set I(A, a,a’) := (a =4 a’).

GROUPS, ABSTRACTLY 170

28

This section has no implications for
the rest of the book, and can thus
safely be skipped on a first reading.

*9The concept of heap (in the abelian
case) was first introduced by
Priifer3® under the German name
Schar (swarm/flock). In Anton
Sushkevich’s book Teopust O606-
wennblx ['pyrn (Theory of Generalized
Groups, 1937), the Russian term rpyna
(heap) is used in contrast to rpynna
(group). For this reason, a heap is
sometimes known as a “groud” in
English.

3°Heinz Priifer. “Theorie der Abel-
schen Gruppen”. In: Math. Z. 20.1
(1924), pp. 165-187. por: 10. 1007/
BF01188079.

https://doi.org/10.1007/BF01188079
https://doi.org/10.1007/BF01188079

DerintTION 7.7.2. The type of heaps®® is a wrapped copy (cf. Section 2.12.8)

of the type of bipointed, connected groupoids Uz},

Heap = Copyl(‘ll;1 ,

with constructor I: UZ' — Heap. a

We call the destructor B: Heap — U3}, and call BH the classifying type
of the heap H = IBH, just as for groups, and we call the first point in BH
is start shape of H, and the second point the end shape of H.

The identity type constructionI: Uz — Setinducesamap U: Heap —
Set, mapping IX to IX. These are the underlying identifications of the
heaps.

These is an obvious map (indeed a functor) from groups to heaps,
given by doubling the point. That is, we keep the classifying type and
use the designated shape as both start and end shape of the heap. In
fact, this map lifts to the type of heaps with a chosen identification.

Exercisk 7.7.3. Define two equivalences [, 7 : Heap = Y .Group BG, and
one ¢: Group = Y Heap UH. y

Recalling the equivalence between BG and the type of G-torsors
from Theorem 5.5.7, we can also say that a heap is the same as a group
G together with a G-torsor.3" It also follows that the type of heaps is a
(large) groupoid.

In the other direction, there are two obvious maps (functors) from
heaps to groups, taking either the start or the end shape to be the
designated shape.

Here’s an a priori different map from heaps to groups: For a heap H,
consider all the symmetries of the underlying set of identifications UH
that arise as r > pg~'r for p, g € UH.

Note that (p, q) and (p’, g”) determine the same symmetry if and only
if pg~t = p'q""

For the composition, we have (p, 9)(v’, q') = (pq~p’, q") = (p, 9'p"1q).

Exercisk 7.7.4. Complete the argument that this defines a map from heaps

,and if and only if p""1p = g7 13.

to groups. Can you identify the resulting group with the symmetry
group of the start or end shape? How would you change the construction
to get the other endpoint? 4

ExErcisk 7.7.5. Show that the symmetry groups of the two endpoints of a
heap are merely isomorphic.

Define the notion of an abelian heap, and show that for abelian heaps,
the symmetry groups of the endpoints are (purely) isomorphic. a

Now we come to the question of describing the algebraic structure of
a heap. Whereas for groups we can define the abstract structure in terms
of the reflexivity path and the binary operation of path composition, for
heaps, we can define the abstract structure in terms of a ternary operation,
as envisioned by the following exercise.

Exercisk 7.7.6. Fix a set S. Show that the fiber U7(S) = ZH:Heap(S =
UH) is a set.

Now fix in addition a ternary operation f: S xS xS — S on S. Show
that the fiber of the map Heap — Y.5.5,:(S X S X S — S), mapping H
to (UH, (p,q,r) — pq~'r), at (S,t) is a proposition, and describe this
proposition in terms of equations. a

GROUPS, ABSTRACTLY 171

31But be aware that are two such de-
scriptions, according to which end-
point is the designated shape, and
which is the “twisted” torsor.

8

Constructing groups

8.1 Brief overview of the chapter

8.2 Semidirect products

In this section we describe a generalization of the product of two groups,
recall Example 4.2.26, called the semidirect product, which gives us a new
way of building new groups. Like the product, both its classifying type
and its set of symmetries consist of pairs. It takes as input the action of a
group on a group.

Recall from Definition 5.2.27 that an action of a group G in groups is a
function H : BG — Group. This acts on the group H(shg). If the group
being acted on is fixed, say H : Group, then an action of G on H is given
by a homomorphism from G to Aut(H).

DerintTION 8.2.1. Given a group G and an action H: BG — Group, we
define a group called the semidirect product as follows:

GxH:=Q Y BH(t)
t:BG

Here the basepoint of the sum is taken to be the point (shg, shy).* a

Observe that if the action of G is trivial, then H(t) = H(shg) for all £,
so G < H = G x H(shg), reproducing the ordinary product of groups.

Before we study the underlying symmetries in G < H, let us pause to
look at some examples. In Example 5.2.29 we saw an action of £, on Cs.
Let us generalize this by giving an action of X, on the cyclic group C,
for any n:Order. Recall from Definition 3.6.21 that we may represent
C, as the automorphism group of the standard n-cycle (Z/~,,s), where
z ~y 2’ if and only for t* = t*' for any/all cycles (T,) of order n.2

The idea is that a cycle has two “directions” and ¥, can act by swapping
them. To implement this, let S be a 2-element set, and consider, as
in Example 5.2.29, the type } x.5.i(S = (X — X)). Let X .= S X Z/~be
the set quotient of S X Z where (s, z) ~ (s,2z')if z ~, z’and (s, z) ~ (s, 2’)
ifs # " and z ~, —z’,3 Now we can define f :S — X — X by setting:

fs([(s,2)) =(s,z+1)], and f([(s’,2)]) =[(s’,z—-1)] fors” #s.

Note that we can construct the element x¢ := [(s, 0)] of X unambiguously,
as we always have 0 ~,, —0.

Exercisk 8.2.2. Check that f is well defined, using the universal property
of the set quotient, Theorem 2.22.12.

Give an identification of our (X, f) with that of Example 5.2.29 when
nis 3. 4

172

*We deduce from Lemma 2.15.5(4),
that) ;. g BH(f) is a groupoid. See
Exercise 2.16.12 for a proof that
Y +.Bg BH(t) is connected.

>Recall also Definition 3.6.20. If n is
principal, then either # is infinite and
(Z,s) = (Z/~n,s) is an equivalence,
or n is finite, then this map factors
through m to give an equivalence
(m,s) — (Z/~y,s). If LPO (Princi-
ple 3.6.22) holds, then every order
is principal and these are the only
possibilities by Lemma 3.6.25.

3Check that ~ defines an equivalence
relation.

For any s:S, we can let s be the “forwards” direction, and get an
identification (X, fs) = (Z/~y, s) by sending [(s, z)] to [z] (and [(s’, z)]
to [—z] for s” # s). Thus, we’ve constructed an action of %3 on C,,.
DerINITION 8.2.3. Given any order # : Order, we define the corresponding
dihedral group of degree n by D,, := £y =xC,,, where C,, : BZ; — Group is
the above action of X, on C,,. a

We shall later see that if n is finite, then D, is a finite group of
cardinality 2n.4 But first we need to remedy the potential clash with
our previous definition of Dy, from Definition 4.6.3. Rather than just
construct a comparison for the infinite order, we’ll do it for all orders,
thus also constructing bicycles realizing all dihedral groups.

ConsTRUCTION 8.2.4. For each order n : Order, there is a pointed equivalence

P BDn i)* BiCyC((Z/"‘ﬂUZ/"nrurb))’

from the classifying type of the dihedral group of degree n to the connected
component of Bicyc at the standard dihedral bicycle of degree n, where:

a(inl;)) :=inl;4q) b(inlp)) = inr,

a(inry;)) :=inr;_y) b(inry)) := inlj;

Implementation of Construction 8.2.4. The idea is to think of an element
of BD,, which is a subtype of } 5. 5, ¥x:set(S — X — X), as a “bidi-
rectional cycle”, from which we can construct a bicycle on two copies
of X, more precisely on S X X, as depicted in Figure 8.1. That is, we let
¢S, X, f)=(5S%xX,a,b), where

a(s,x) = (s, fs(x)), b(s,x) = (swap(s), x).

We identify the image of the base point of BD,,, ({+1}, Z/~;, f), where
fs([z]) = [z + 5], with the standard dihedral bicycle of degree 1 by letting
(+1,x) = inl, and (-1, x) > inr,.

To define the inverse, suppose we have a bicycle (Y, a, b) in the compo-
nent of the standard dihedral bicycle of degree n. Then we set S := Y/a,
the set quotient of Y where we equate y and y’ if y’ = a*(y) forsome z: Z,
i.e., if y and y’ are connected by the a equivalence. Then S is a 2-element
set, because it is so in the standard case. Similarly, we set X := Y /b,
which is merely equivalent to the underlying set of the standard n-cycle,
Z[~y.

The key observation is now that any equivalence classes [y],:Y/a and
[y']p: Y/b, thought of a subsets of Y, intersect in unique element y”: Y.
In the bottom of Figure 8.1, the two classes in Y/a are the inner and
outer 5-cycles, and the 5 classes in Y/b are the 5 pairs linked by doubled
bluebell lines. Thus, we can define the corresponding bidirectional cycle
tobe (S, X, f), where f,,([y']s) := [a(y”)]. We leave it to the reader to
verify that these two constructions are indeed inverse. O

Exercise 8.2.5. Complete the verification that two maps in the implemen-
tation of Construction 8.2.4 are inverse. a

Thus, since we easily verify that the standard dihedral bicycles are
normal (Definition 4.6.5), we see that if n is finite, then D, has the same
cardinality as m L1 m, i.e., 2.

CONSTRUCTING GROUPS 173

4Since “order” is often used to denote
the cardinality of a group, it would
be confusing to call D, the dihedral
group of order n, although it would
match our notion of “order”.

Ficure 8.1: How a bidirectional
5-cycle corresponds to a dihedral
bicycle of degree 5. The doubled
bluebell lines indicate that b swaps
the two endpoints.

Exercise 8.2.6. Prove that the two 8-element groups, the quaternion
group Qg (Definition 4.6.3) and the dihedral group of degree 4, Dy, are
not isomorphic.> 4
To better understand the underlying symmetries of a general semidirect
product G < H, we note that Lemma 2.10.3 (on paths in X-types) takes a
simpler form when y and y’ are values of a family x — f(x) of elements
of the family x — Y(x), as the following lemma shows.
Lemma 8.2.7. Suppose we are given a type X and a family of types Y (x)
parametrized by the elements x of X. Suppose we are also given a function
f: Tly.x Y(x). For any elements x and x’ of X, there is an equivalence of type

((x, f() = (", f(x)) = (x = &) X (f(x) = f(x)),
where the identity type on the left side is between elements of Y . x Y (x).

Proof. By Lemma 2.10.3 and by composition of equivalences, it suffices
to establish an equivalence of type

(L f() }ﬂx')) = (¥ =) X (f(x) = f(2).
pix=x’

Rewriting the right hand side as a sum over a constant family, it suffices
to find an equivalence of type

(L f(x)%f(ﬂ) = Y (f0)=f().

pix=x’ pix=x’

By Lemma 2.9.15 it suffices to establish an equivalence of type

(7012 7)) = () =)

for each p: x = x’. By induction on x” and p we reduce to the case where
x’ is x and p is refl,, and it suffices to establish an equivalence of type

(f0 = 1)) = (0 = £,

Now the two sides are equal by definition, so the identity equivalence
provides what we need. O

The lemma above shows how to rewrite certain paths between pairs
as pairs of paths. Now we wish to establish the formula for composition
of paths, rewritten in terms of pairs of paths, but first we introduce a

convenient definition for the transport of loops in Y(x) along paths in X.

DerIniTION 8.2.8. Suppose we are given a type X and a family of types
Y(x) parametrized by the elements x of X. Suppose we are also given
a function f: [];.x Y(x). For any elements x and x’ of X and for any
identity p:x = x’, define a function (f(x’) = f(x")) = (f(x) = f(x)), to
be denoted by ¢’ — ¢'F, by induction on p and x’, reducing to the case

refly .— 7
= q .

where x’ is x and p is refl,, allowing us to set g a

We turn now to associativity for the operation just defined.

LemMma 8.2.9. Suppose we are given a type X and a family of types Y (x)
parametrized by the elements x of X. Suppose we are also given a function
f: Tls.x Y(x). Forany elements x, x’, and x" of X, for any identities p : x = x’
and p’:x" = x”, and for any q: fx" = fx”, there is an identification of type
(qp’)P = q(p“p).

CONSTRUCTING GROUPS

5Hint: Count elements of order 2.

174

Proof. By induction on p and p’, it suffices to show that (gflv)refly =

qeflyrefly) in which both sides are equal to g by definition. O
Observe that the operation depends on f, but f is not included as part
of the notation.
The next lemma contains the formula we are seeking.

Lemma 8.2.10. Suppose we are given a type X and a family of types Y (x)
parametrized by the elements x of X. Suppose we are also given a function
f:Tly.x Y(x). For any elements x, x’, and x” of X, and for any two identities
e:(x, f(x)) = (&, f(x)) and e’ : (x', f(x")) = (x”, f(x")), if e corresponds
to the pair (p,q) with p:x = x" and q: fx = fx under the equivalence of
Lemma 8.2.7, and e’ corresponds to the pair (p’,q") with p’:x’ = x” and
q': fx' = fx’, then e’ - e corresponds to the pair (p” - p,(q’?) - q).

Proof. By induction on p and p’ we reduce to the case where x” and x”
are x and p and p’ are refl,. It now suffices to show that e’- e corresponds
to the pair (refly, q’- q). Applying the definition of the map @ in the proof
of Lemma 2.10.3 to our three pairs, we see that it suffices to show that
(apapg(reﬂx)(q’)) . <apapg(reﬂx)(q)) = apapg(reﬂx)(q’ - q), with g, as
there, being the function g(x)(y) := (x, y). By Definition 2.7.8 it suffices
to show that (apg(x) q’) . (apg(x) q) =ap,, (4" - q), which follows from
compatibility of ap,(,, with composition, as in Construction 2.6.2. 0O

The lemma above will be applied mostly in the case where x” and x”
are x, but if it had been stated only for that case, we would not have been
able to argue by induction on p and p’.

Projection onto the first factor gives a homomorphism p := Q fst : G =
H — G. Moreover, there is a homomorphism s : G — G = H defined by
s =0 (t — (t, shH(t))), for t : BG. The two maps are homomorphisms
because they are made from basepoint-preserving maps. The map s is a
section of p in the sense the p o s = idg. There is also a homomorphism
jiH— Gx H defined by j := Q(u — (shg, 1)), for u : BH.

LemMma 8.2.11. The homomorphism j above is a monomorphism, and it gives
the same (normal) subgroup of G < H as the kernel ker p of p.
6

Proof. See 9.3.2 for the definition of kernel. According to Lemma 2.25.1,
the map BH — (Bp)~!(shg) defined by u +— ((shg, u), reflgy) is an
equivalence. This establishes that the fiber (Bp)~!(shg) is connected
and thus serves as the classifying type of ker p. Pointing out that the
composite map H 5 ker p — Gw=H is j and using univalence to promote
the equivalence to an identity gives the result. m]

Our next goal is to present the explicit formula for the multiplication
operation in UG = . First we apply Lemma 8.2.7 to get a bijection
UG~ H =~ UG x UH. Now use that to transport the multiplication
operation of the group UG x H to the set UG x UH. Now Lemma 8.2.10
tells us the formula for that transported operation is given as follows.

@9 =0 p.@" 9

In a traditional algebra course dealing with abstract groups, this formula
is used as the definition of the multiplication operation on the set UGxUH,

CONSTRUCTING GROUPS 175

éMUST BE MOVED TO THE SUB-
GROUP CHAPTER

but then one must prove that the operation satisfies the properties of
Definition 4.3.1. The advantage of our approach is that the formula
emerges from the underlying logic that governs how composition of
paths works.

8.3 Wreath products

A special class of semidirect products are prominent enough to be given
special attention: These are the wreath products.

Let G and H be groups, and X:BG — Set a G-set. Then G acts
on the power HX®h¢), je, the symmetries of the constant function
_ > shy in the function type X(shg) — BH. Indeed, consider the map
HX:BG — Group with

H*(z) := Autx(;)—pn(_ > shp).

Recall that if the underlying set of X is finite, then the classifying space
of HX(z) can be identified with the whole function type X(z) — BH,
see Exercise 4.2.29(1).

DeriNtTiON 8.3.1. With G, H, and X as above, we define the wreath product
of H by G via X as the semidirect product

Hix G =G~ HX. 1
Note that when X(shg) is finite, then the classifying type of H x G is

the type

B(Hx G) =) X(z) — BH.
z:BG

ExamriE 8.3.2 (The symmetry group of a hypercubes). 4
Examrie 8.3.3 (Sudoku). 4
ExamriE 8.3.4 (Symmetry groups of trees). 4

8.4 The pullback

Given two functions f:B — D and g:C — D with common target,
the “pullback” which we will now define should be thought about as
the type of all pairs of elements (b, ¢): B x C so that f(b) = g(c). This
construction is important in many situations also beyond group theory.

DerintTiON 8.4.1. Let B,C, D be typesand let f:B — Dand g:C — D
be two maps. The pullback of f and g is the type

[If,.9=). (f()>pgl)

(b,c):BxC
together with the two projections pry : [1(f,g) — Band pr.: [1(f,) —
C sending (b,c,p): [1(f,g) tob:Borc:C. If f and g are clear from the

context, we may write B Xp C instead of [](f, g) and summarize the
situation by the diagram

BxpC —< _, C

S
B——> D. .

f

CONSTRUCTING GROUPS

176

Exercise 8.4.2. Let f : B — D and g:C — D be two maps with common
target. If A is a type show that

(A - B) X(A—D) (A - C) —)(A — B Xp C)
B,y.p:fB=8y) = (a(f(a),ga),pa): fBa) = gy(a)))

is an equivalence.” 4

In view of Exercise 8.4.2 we will say that we have a pullback diagram

BN

I

D

OQ\
o —

\l Ll*&

to indicate that we have an element in (A — B) X(4—p)(A — C) such that
the resulting map A — B Xp C is an equivalence. This is emphasized
with the little 4 symbol in the upper left corner.

Exampii 8.4.3.If d: 1T — D denotes the constant function at d: D and
g:C — D is any map, then 1 Xp C is equivalent to the preimage
g d)=Xy.pd > gb).° .
ExampLE 8.4.4. Much group theory is hidden in the pullback. For instance,
the greatest common divisor d := gcd(a, b) of a, b : N is another name for
the number of components you get if you pull back the a-fold and the
b-fold set bundles of the circle: for a,b > 0, have a pullback

St x UCng(a,b) —— st

" e

S s
(where C,, is the cyclic group of order n).

To get a geometric idea, think of the circle as the unit circle in the
complex numbers so that the a-fold set bundle is simply taking the a-fold
power. With this setup, the pullback should consist of pairs (z, w) of unit
length complex numbers with the property that z* = w’. Leta = da’
and b = db’. Taking an arbitrary unit length complex number z, then
the pair (z%', z%) is in the pullback (since a’b = ab’). If (z, w) is in the
pullback, then so is (Cz, w), where C is any ah root of unity. Taking
C = e?™/7 we have that ({¥z, w) lies in the same component as (z, w) if
and only if d|k, see Figure 8.2.

In more detail: the left vertical map sends (z, k) to the product C¥z"’
and the top horizontal map S!' x UC; — S! sends (z, k) to 2.

Also, the least common multiple lem(a, b) = a’b = da’b’ = ab’ is
hidden in the pullback; in the present example it is demonstrated that
composite diagram map in the diagram makes each component of the
pullback a copy of the lem(a, b)-fold set bundle. a

DErINITION 8.4.5. Let S be a set and consider two subsets A and B of
S given by two families of propositions (for s:S) P(s) and Q(s). The
intersection A N B of the two subsets is given by the family of propositions
P(s) x Q(s). The union A U B is given by the set family of propositions
A(s) V B(s). a

CONSTRUCTING GROUPS 177

7This verifies that our defined pull-
back is the pullback in the cate-
gorical sense: if the solid diagram
commutes there is a unique dashed
arrow making the resulting diagram
commute:

Te—0n

81.e., the preimage is a pullback:
gld) —> C
-
L
D

1=

8/9
7/9
6/9
5/9
4/9
3/9
2/9
1/9

Q= N
: NN
QR W
(o[>

[o)Y[6;]

Ficure 8.2: The pullback in the case
a=6andb = 9(sod = 3). The
square represents the unit square
and we’ve drawn the solution to

ax = by (mod 1), corresponding
toz® = w’ whenz = 2™ and

w = e2™MY_ On the torus §! x S, the
solution consists of three circles.

Exercisk 8.4.6. Given two subsets A, B of a set S, prove that

(1) The pullback A xg B maps by an equivalence to the intersection AN B,

(2) If S is finite, then the sum of the cardinalities of A and B is equal to
the sum of the cardinalities of AU B and A N B. 4

DeriNiTION 8.4.7. Let f: Hom(H, G) and f": Hom(H’, G) be two homo-
morphisms with common target. The pullback H X H’ is the group
obtained as the (pointed) component of

Ptyser = (shH,ptH,,pf,pjﬂ)

of the pullback BH xpc BH" (Where ps:shg = f(shp) is the pointing
path of f, so that pf/pfl : f(shu) = f'(pty)).

If (H, f,!)and (H’, f’,!) are monomorphisms into G, then the pullback
is called the intersection and if the context is clear denoted simply
HNH'. g

ExamriE 8.4.8. If a, b : N are natural numbers with least common multiple
L, then LZ is the intersection aZ N bZ of the subgroups aZ and bZ of
Z. 4

Exercisk 8.4.9. Prove that if f: Hom(H, G) and f’: Hom(H’, G) are ho-
momorphisms, then the pointed version of Exercise 8.4.2 induces an
equivalence

Hom(K, H) Xpom(k,c) Hom(K, H") ~ Hom(K, H xg H')
for all groups K and an equivalence
UH x ¢ UH’ = (shpx.pr = shpxerr). 9

Elevate the last equivalence to a statement about abstract groups. a

RemARK 8.4.10. The pullback is an example of when a construction of
types not preserving connectivity can be used profitably also for groups.
We get the pullback of groups by restricting to a pointed component, but
also the other components have group theoretic importance. We will
return to this when discussing subgroups. a

8.5 Pushouts of types

(TBW)

8.6 Sums of groups

We have seen how the group of integers Z = (S?, «) synthesizes the notion
of one symmetry with no relations: every symmetry in the circle is of
the form " for some unique n. Also, given any group G = Auta(a), the
set a = a of symmetries of a corresponds to the set of homomorphisms
Z — G, i.e., to pointed functions (S!,+) —. (A, a) by evaluation at Q.
What happens if we want to study more than one symmetry at the time?

For instance, is there a group Z Vv Z so that for any group G = Autx(a)
a homomorphism Z vV Z — G corresponds to two symmetries of a? At
the very least, Z Vv Z itself would have to have two symmetries and these
two can’t have any relation, since in a general group G = Auta(a) there is

CONSTRUCTING GROUPS 178

9Hint: set A := S!, B := BH, C := BH’
and D := BG.

a priori no telling what the relation between the symmetries of 2 might
be. Now, one symmetry is given by a pointed function (S, *) —. (4, a)
and so a puair of symmetries is given by a function f:S! + S! — A with
the property that f sends each of the base points of the circles to a. But
S! + S! is not connected, and so not a group. To fix this we take the
clue from the requirement that both the base points were to be sent to a
common base point and define S' v S! to be what we get from S! + S?
when we insert an identity between the two basepoints.

The amazing thing is that this works — an enormous simplification of
the classical construction of the “free products” or “amalgamated sum”
of groups. We need to show that the “wedge” S! v S! is indeed a group,
and this proof simultaneously unpacks the classical description.

We start by giving a definition of the wedge construction which is
important for pointed types in general and then prove that the wedge of
two groups is a group whose symmetries are arbitrary “words” in the
original symmetries.

DEeFINITION 8.6.1. Let (A1, a1) and (A, a2) be pointed types. The wedge is
the pointed type (A1 V Ay, a12) given as a higher inductive type by

(1) functionsi1:A; - A1 VAyandip: Ay — A1V Ap
(2) anidentity g:i1a1 = izaz.
We point this type at 412 := i141. The function

i3 (a2 =4, 42) = (a12 =A,v4, 12)

is defined by i5 (p) := ¢~ 'i2(p)g, whereas (for notational consistency only)
we set if = d1:(a1 =4, a1) — (A12 =4,v4, a12). Simplifying by writing
i: A1+ Ay — AV A for the function given by i1 and ip (with basepoints
systematically left out of the notation), the induction principle is

[1 X [T c@&.

C:(A1VAy))—>Us: [Ta:ay+4, Ci(a) x:(A1VA2)

((s(a1) = C(g)s(a2)) —

.

Unraveling the induction principle we see that if B is a pointed type,
then a pointed function f : A; V Ay —. B is given by providing pointed
functions f1:A; —. B and f,: A —. B — the identity fi(a1) = f2(a2)
which seems to be missing is provided by the requirement of the functions
being pointed. For the record

Lemma 8.6.2. If B is a pointed type, then the function

i:(A1V Az =, B) = (A1 —. B)X (A2 —. B), i(f) = (fir, fir)

is an equivalence.

To the right you see a picture of i5 (p): it is the symmetry of the base
point aq2 := ija; you get by first moving to ira; with g, then travel around
with p (i2p, really) and finally go home to the basepoint with the inverse
of g.

DerINITION 8.6.3. If G1 = Auty, (21) and G, = Autg,(a2) are groups, then
their sum is defined as

GV Gy = AUtAlvAz(alz)-

CONSTRUCTING GROUPS 179

St v Sl if formed from S! + S1 by
inserting an identity

Yo identify! N\

A T

iop

i14A1

a1 g*l inay

The idea is that an identity in a1 = x
can be factored into a string of iden-
tities, each lying solely in A; or

in A>. We define a family of sets
consisting of exactly such strings

of identities — it is a set since A

and Aj are groupoids — and prove
that it is equivalent to the family
P(x) := (a12 =A,v4, X) which conse-
quently must be a family of sets. We
need to be able to determine whether
a symmetry is reflexivity or not, but
once we know that, the symmetries
of the base point in the wedge are
then given by “words pop1 ... pn”
where the p; alternate between being
symmetries in the first or the second
group, and none of the p; for pos-
itive j are allowed to be reflexivity.
Note that there order of the pjs is not
negotiable: if I shuffle them I get a
new symmetry.

ipAp

The homomorphisms i; : G1 — G1 V Gz and ip: G2 — G1 V Gy induced
from the structure maps i1 : A1 — A1 VAzand ip: Ay — Aj V Ap are also
referred to as structure maps. a

LemMma 8.6.4. If G1, G2 and G are groups, then the function
Hom(G; V G, G) —» Hom(G1, G) X Hom(G3, G)
given by restriction along the structure maps is an equivalence.
Proof. This is a special case of Lemma 8.6.2. |

Specializing further, we return to our initial motivation and see that
mapping out of a wedge of two circles exactly captures the information
of two independent symmetries:

CoroLLARY 8.6.5. If G is a group, then the functions
Hom(Z v Z,G) - Hom(Z, G) x Hom(Z, G) =~ UG x UG

is an equivalence.

Exercisk 8.6.6. This leads to the following characterization of abelian
groups formulated purely in terms of pointed connected groupoids
(with no direct reference to identity types). A group G is abelian if and
only if the canonical map

fold : BG vV BG —. BG
(given via Lemma 8.6.4 by idg : G — G) extends over the inclusion
i:BGV BG —. BG X BG

(given by the inclusions ing,iny : G — G X G).

As a cute aside, one can see that the required map BG x BG —. BG
actually doesn’t need to be pointed: factoring fold : BG vV BG — BG
over i:BG V BG — BG X BG — even in an unpointed way — kills all
“commutators” ¢hg 'h™1:U(G v G). () y

We end the section by proving that wedges of decidable groups are
decidable groups and that they can be given the classical description in
terms of words.

Lemma 8.6.7. Let G1 := Auty, (a1) and G = Auta,(az) be decidable groups,
then the wedge sum Gy V Gy = Auta,va,(a12) is a decidable group.

Let Cy be the set of strings (po, n,p1, ..., pn) withn:Nand, for0 < j < n

* pj:UGy for even j
* pj:UG, for odd j and
* pj is not reflexivity for j positive

(the last requirement makes sense and is a proposition since our groups are
decidable).
Then the function given by composition in UGz = (a12 = a12)

B:C1 — UG, B(po,n,p1,...pn) = i‘fpoigmifpz ... i?gp,,

(where i5py is i{py or i5pn according to whether n is even or odd) is an
equivalence.

CONSTRUCTING GROUPS

inclusionl
e

BG X BG

-

BG v BG 4, Bg

-

-

>

180

Proof. That the wedge is connected follows by transitivity of identifica-
tions, if necessary passing through the identification g:71a1 = iza; in
the wedge.

We must prove that the wedge is a groupoid, i.e., that all identity types
are sets, which we do by giving an explicit description of the universal
set bundle.

We use the notation of Definition 8.6.1 freely, and for ease of notation,
let asi4; = a; and i§k+i = iig fori =1,2, k:N. Define families of sets

C;:A; — Set, i=1,2

by
Ci(x) = (a; =4, x) X Z H Z (px # refly,,,)

n:N1<k<n pk :Gi+k=0i+k
when x : A;. Note that py # refl,,,, is a proposition; we leave it out when
naming elements. Hence, an element in C(a) isa tuple (po, 1, p1, ..., pn)
where po:a1 =a, a, p1:a2 =4, a2, p2:a1 =a, a1, and so on — alternating
between symmetries of a; and a,, and where py is the only identity
allowed to be refl. Define C1;: Cy(a1) — Ca(az) by

(refl,,0,) if po = refl,,, n =0,
Cuo(po,n,p1...,pn) = (p1,m=1,p2...,Pn) if po =refl, ,n # 0,
(refly,, mn+1,po,...,pn) if po # refl,,.

It is perhaps instructive to see a table of the values Ci2(po, 1, p1, - - ., Pn)
forn < 3:

‘ (pOr 0) (pOr 1/ Pl) (p()rzr p1, P2)

po=refly, | (refl,,0) (p1,0) (r1,1,p2)
Po ¥+ reﬂa1 (rEﬂazr 1/ PO) (reﬂazr 2/ pO/ Pl) (reﬂazr 3/ PO/ Pll PZ)

Since Ci; is an equivalence, the triple (Cy, Cz, C12) defines a family
C:A1V Ay — Set.

In particular, C(a12) := C1(a1). For x: A we let i$: C1(x) — C(i1(x)) be
the induced equivalence, and likewise for i$. We will show that C is
equivalent to P := P,,,, where P(x) := (a12 = x), and so that the identity
types in the wedge are equal to the sets provided by C.

One direction is by transport in C; more precisely,

a: H (P(x) = C(x))

x:A1VA3

is given by transport with a(ai2)(refly,,) = (refl,,, 0): C(a12). The other
way,

p: I (Cx)— Px)

x:A1VAy
is given by composing identities, using the glue g to make their ends
meet:

Bi1a)(po, 1, p1, - -, pu) = i1(po)is (p1)i5 (p2) . . . i5 o1 (Pn)

(here the definition ... 5 := i := i1 proves handy since we don’t need to
distinguish the odd and even cases) and likewise

B(i2a)(po, 1, p1, - .-, Pu) = i2(po)g 15 (p1)i5 (p2) - - - i5 (D)

CONSTRUCTING GROUPS

181

and compatibility with the glue Cy, is clear since the composite refl,p is
equal to p.

For notational convenience, we hide the x in a(x)(p) and B(x)(p) from
Now on.

That Ba(p) = p follows by path induction: it is enough to prove it for
x =app and p = refl,,,:

Ba(refly,) = (refl,,, 0) = iSrefl,, = refl,,.

That af(po, n, p1-..,pn) = (Po, 1, p1, ..., pn) follows by induction on
n and pg. For n = 0 it is enough to consider x = a1, and py = refl,,, and
then ap(refl,,, 0) := a(refl,,,) = (refly,, 0). In general, (for n > 0)

ap(po,n,p1-..,pn) = trpi(po)ii (1) (). 1 (po) L1 0)

C C
=Py, () - - - trpl.gﬂ (pn)(reﬂul,o).

n

The induction step is as follows: let 0 < k < n, then

trp(;fs' i]((j—l(pkln_k_lrpk-l-l/-"/pn)

Lk Pk1

- C iC
= ’crpl.fpk_1 i (refly,_,,n—k,px,...,pn)
=ig trpffk"_] (refly,_,,m =k, pi,...,pn)

:(Pk—l/” - k/ Pks--- /Pn)-

8.7 Free groups

We have seen in Example 4.4.17 that the group of integers Z is the free
group on one generator in the sense that the set of homomorphisms
from Z to any group G is equivalent (by evaluation at the loop) to the
underlying set of symmetries in G, UG. This set is of course equivalent
(by evaluation at the unique element) to the set of maps (1 — UG).

Likewise, we have seen in Corollary 8.6.5 that the binary sum Z v Z
is the free group on two generators, corresponding to the left and right
summands.

In general, a free group on a set of generators S is a group Fs with
specified elements i, : UFg labeled by s : S, such that evaluation gives an
equivalence Hom(Fs, G) = (S — UG) for each group G.

We now give a definition of the classifying type of a free group as a
higher inductive type that is very much like that of the circle, except
that instead of having a single generating loop, it has a loop U, for each
elements:S.

DeriNiTION 8.7.1. Fix a set S. The classifying type of the free group on S,
BFs, is a type with a point «: BFs and a constructor _:S — + = .
Let A(x) be a type for every element x : BFs. The induction principle
for BFs states that, in order to define an element of A(x) for every x : BFg,
it suffices to give an element a of A(*) together with an identification
ls:a Qi> a for every s:S. The function f thus defined satisfies f(*) = a

and we are provided identifications apd f(QS) — I for each s :S.
We define the free group on S as Fs := Q(BFg, *). a

CONSTRUCTING GROUPS

182

A priori, Fg is only an co-group. Nevertheless, we get immediately
from the induction principle that evaluation at the elements of S gives
an equivalence Hom(Fs, G) = (S — UG) for each co-group G.

In order to see that Fs is a group, we need to know that BFs is a
groupoid. This follows from a general theorem on identifications in
pushouts due to Warn.'® Here we restrict our discussion to decidable
sets S, where we can give a more concrete proof.

We can follow that same strategy as in Theorem 3.4.5 and Lemma 8.6.7
and show this by giving a description of Fg as an abstract group. To see
what this should be, think about what symmetries of * we can write
using the constructors O; for s : S. We can compose these out of s and
Q;l with various generators s. However, if we at any point have O Qs‘l
or ()5_1 s, then these cancel. This motivates the following definitions.

DerintTion 8.7.2. Fix a decidable set S. Let S := S + S be the (decidable) set
of signed letters from S. Also, let ~: S — S be the equivalence that swaps
the two copies of S. This map is an involution called complementation.

If a:S, we'll also write a:S for the left inclusion, and we’ll write
A =7:8§ for the right inclusion, so that 4 = A and A=a,ie,aand A
are complementary.

Recall the definition of lists T* over a set T, Definition 2.12.11, induc-
tively generated by the empty list ¢ and the recursive constructor that
concatenates an element ¢ : T to a list ¢, forming a new list £{ with head ¢
and tail {. Instead of “lists” we shall often speak about “words” formed
from “letters” taken from the set T, which is thus a kind of “alphabet”.

If we take T := S we get the set of words in the signed letters from S.
If we have a, b : S, we find among the elements of S* the following:

e,a,b,A,B,aa,ab,aA,aB,ba,bb,bA,bB,Aa, Ab,AA,AB, ...

When we interpret these as symmetries in BFs, i.e., as elements in UFg,
the words aA and Bb, etc., become trivial.

DerINITION 8.7.3. A word w:S* is called reduced if it doesn’t contain
any consecutive pairs of complementary letters. The map ps:S5* — S*
maps a word to its reduction, which is obtained by repeatedly deleting
consecutive pairs of complementary letters until none remain. 4

Exercise 8.7.4. Complete the definition of ps by nested induction on
words." 4

DerintTION 8.7.5. We define R to be the image of ps in 5*, whose elements
are the reduced words. We define Ds to be the fiber of ps at the empty
word, pgl(¢), whose elements are called Dyck words."> a

RemaRrk 8.7.6. Like any map, ps induces an equivalence relation ~ on the
set 5* where two words u, v are related if and only if they map to the
same reduced word, in other words, u ~ v if and only if ps(u) = ps(v).
Thus, ps induces an equivalence 5*/~ = Rs. 4

We are now ready to prove that set Rs of reduced words is equivalent
to UFs. We'll do this be defining an interpretation function from words
to elements of the free group.

Derintrion 8.7.7. We define [_]: S* — UFg by induction on words by

CONSTRUCTING GROUPS 183

°David Warn. Path spaces of pushouts.
Preprint. 2023. urL: https://dwarn.
se/po-paths.pdf.

"Hint: This is precisely the point
where we need S to have decidable
equality.

12Considered as a set of words, Ds
is called the 2-sided Dyck language.
Perhaps the 1-sided Dyck language is
more familiar in language theory:
Here, S is considered as a set of
‘opening parentheses’, while the
complementary elements are ‘closing
parentheses’. For example, the 1-
sided Dyck language for § = {(,)}
consists of all balanced words of
opening and closing parentheses,
e.g., (), (), 00, etc., while our Ds in
this case also has words like)(and

NG

https://dwarn.se/po-paths.pdf
https://dwarn.se/po-paths.pdf

setting
[&] = refl.
[aw] = O -[w], fora:S,
a
-1
[aw] = [Aw] = O -[w], fora:S. y
a

Tueorem 8.7.8. Fix a decidable set S. The interpretation map [[_]| restricts to
an equivalence, denoted the same way, [_]] : Rs — UFs.

Proof. We extend Rs to an Fs-set, Rs: BFs — Set, where we define
Rs(x) by induction on x : BFs, with

Rs(*) =Rs, and Rs(Q) =5, fora:S.
a

Here s, : Rs = Rg is the equivalence sending a word w to ps(aw),
whose inverse sends w to ps(Aw). These operations are indeed mutual
inverses, since aAw ~ w ~ Aaw.*3

Our goal now is to extend the definition of [_] to [_]: Rs(x) — P,
where P.(x) = (+ = x), for x : BFs, so that this is an inverse to the map
given by transport of ¢, 7, :(* = x) — Rgs(x), with 74(p) = trpiS(e).
Thinking back to Definition 3.4.4, we define [[_]x by induction on x with
[_]. =[_] and using [aw] = O, -[w].*4

We get an identification [_]Jlx o 7, = id by path induction, since
[e] = refl..

To prove the proposition 7, ([w]x) = w for all x: BFs and w: Rg(x), it
suffices to consider the case x = ¢, since BFs is connected. We prove that
7.([w]) ~ w holds for all words w : $* by induction on w, because then it
follows that 7.([[w]]) = w for reduced words w. The case w = ¢ is trivial.
In the step case for adding a : S, we calculate,

T([aw])) = trpss gy () = trp(3 (r.([w])) = s4(w) = ps(aw) ~ aw,
as desired, the complementary case being similar. O

Exercisk 8.7.9. Construct an equivalence Ry = Z sending ¢ to 0 such
that s. corresponds to s, where »: 1 is the unique element. This gives us
two more options to add to the list in Footnote 7 on Page 67: 1/~ and
Rq! 4

Exercise 8.7.10. Construct an equivalence Fpiirue — Fp VZ for each 11: N
using the universal properties. As a result, give identifications

Fn > (ZVvZ)v---)VvZ,

for n: N, where there are n copies of Z on the right-hand side. 4

CONSTRUCTING GROUPS 184

13The set R is very much like Z, but
instead of having only one successor
equivalence s, it has one for each
element of S.

4In a picture, the case for (), should
prove that it does not matter what
path you take around the square

RSL)(.i)O)

Rs ——s (+ 5 o).

9
Normal subgroups and quotients

9.1 Brief overview of the chapter

TBW (and stolen from the below)

9.2 Epimorphisms

In set theory we say that a function f:B — C of sets is an injection
if for all b,b’: B we have that f(b) = f(b’) implies that b = b’. This
conforms with our definitions. Furthermore, since giving a term b : B
is equivalent to giving a (necessarily constant) function ¢, : 1 — B, we
could alternatively say that a function f : B — C is an injection if and
only if for any two g, h:1 — B such that fg = fh we have that g = h.
In fact, by function extensionality we can replace 1 by any set A (two
functions are identical if and only if they have identical values at every
point).

Similarly, a function f : B — C is surjective if for all ¢ : C the preimage
fXc) = Lp.pc = f(b) is non-empty. A smart way to say this is to say
that the first projection from Y_.. || f *(c)|| to C is an equivalence. Since B
is always equivalent to Y. f~!(c), we see that for a surjection f : B — C
and family of propositions P:C — Prop, the propositions []..c P(c)
and [,.3 Pf(b) are equivalent. In particular, if g,h:C — D are two
functions into a set D the proposition []..c(g(c) = h(c)) is equivalent to
[1,.8(8f () = hf(c)).

From this we condense the following characterizations of injections
and surjections of sets which will prove to generalize nicely to other
contexts.

LemMma 9.2.1. Let f: B — C be a function between sets.

(1) the function is an injection of and only if for any set A and functions
g, h:A—B,

then fg=fh:A — Cimpliesg=h

(2) the function is an injection of and only if for any set D and functions
g, h:C—D,

Fo_8
B—>C D,
h

then gf = hf:A — C implies g = h.

185

NORMAL SUBGROUPS AND QUOTIENTS 186

By Lemma 9.2.1 there is a pleasing reformulation which highlights
that injections/surjections of sets are characterized by injections of sets
of functions: a function of sets f : B — C is

(1) an injection if and only if for any set A postcomposition by f given
an injection fromA — BtoA — C

(2) asurjection if and only if for any set D precomposition by f gives an
injection from B — D to B — D.

This observation about sets translates fruitfully to other contexts and
in particular to groups. To make it clear that we talk about group
homomorphisms (and not about the underlying unpointed functions of
connected groupoids) we resort to standard categorical notation.

DEFINITION 9.2.2. Given groups G, H, a homomorphism f : Hom(G, H)
is called a

(1) monomorphism if for any group F, postcomposition by f is an injection
from Hom(F, G) to Hom(F, H), and an

(2) epimorphism if for any group I, precomposition by f is an injection
from Hom(H, I) to Hom(G, I).

The type of epimorphisms from G is*

Bpig= ¥ Y iskpi(f)

H :Group f: Hom(G,G’)

The corresponding families of propositions are called
isMono, isEpi : Hom(G, H) — Prop. 4

ExERcISE 9.2.3. (1) Show that i : Hom(H, G) is a monomorphism if and
only if Ui is an injection of sets and that i is proper if and only Ui is
not a bijection.

(2) Show that f: Hom(G, G’) is an epimorphism if and only if Uf is an
surjection of sets.

(3) Consider a composite f = fy f> of homomorphisms. Show that f; is
an epimorphism if f is and f, is a monomorphism if f is. a
We've seen that for any group G, the underlying set UG := (shg =
shg) of abs(G) is equivalent to the set of homomorphisms Hom(Z, G)
which in turn is equivalent to the set of abstract homomorphisms

Hom?(abs(Z), abs(G)) and that abstraction preserves composition.

Hence, if f: Hom(G, H) is a group homomorphism, then saying that
Uf is an injection is equivalent to saying that postcomposition by f is an
injection Hom(Z, G) — Hom(Z, H). In this observation, the integers Z
plays no more of a r6le than 1 does in Lemma 9.2.1; we can let the source
vary over any group F:

Lemma 9.2.4. Let G and H be groups and f : Hom(G, H) a homomorphism.
The following propositions are equivalent:

(1) f is a monomorphism;

(2) Uf:UG — UH is an injection;

'Raw from old 5.3.21. Good example:
For groups G1 and G, then the
first projection from Gy X Gy is an

epimorphism.
U
uG d UH
Hom(Z, G) - 5 Hom(Z, H)

absl: abslz

abs fu
Homabs(Z, abs(G)) —— HomabS(Z, abs(H))

commutes (we've written Z also for
abs(Z) since otherwise it wouldn't
fit.

NORMAL SUBGROUPS AND QUOTIENTS 187

(3) Bf.:BG. — BH. is a set bundle.

Proof. We have already seen that condition (1) implies condition (2) (let
F be Z). Conversely, suppose that (2) holds and F is a group. Consider
the commutative diagram

Hom(F, G) Hom(F, H)

| |

(Hom(Z,F) - Hom(Z, G)) —— (Hom(Z, F) —» Hom(Z, H)),

where the vertical maps are the injections from the sets of (abstract)
homomorphism to the sets of functions of underlying sets and the
horizontal maps are postcomposition with f. Since the bottom function
is by assumption is an injection, so is the upper one. >

The equivalence of (3) and (2) follows immediately from Corol-
lary 2.17.9(1), using that BG is connected and f is pointed and the
equivalence between Hom(G, H) and BG —. BH. |

Similarly, we have:

LemMma 9.2.5. The following propositions are equivalent:
(1) f is an epimorphism;

(2") Uf:UG — UH is a surjection.

(3") Bf.:BG. — BH. has connected fibers.

Proof. The equivalence of (2’) and (3') is immediate.

For the rest, the easy direction is that (2”) implies (1"): (TODO)

The harder direction, that (1") implies (2”), is a corollary of the following
lemma, which states that monos are equalizers. Indeed, we can factor
any f: Hom(G, H) via the image as a surjection followed by a mono:

G —5im(f) —>H
If f is an epi, then so is i. But i is an equalizer,

. i ®

im(f) — H —33 L,

so as an epi, @i = i implies ¢ = 1, so i is an equalizer of already
equal homomorphisms, so i is an isomorphism, which implies that f is
surjective. O

LemMa 9.2.6. Every monomorphism i: H — G is an equalizer.3

Proof draft. Consider the projection 1: G — G/H to the set of cosets. Let
j:G/H — A be an injection into a group A. (We could for instance
let A be the free (abelian) group on G/H. [Add xref to statement that
inclusion of generators in an injection.])

Consider the group W := Autg(shg, cstgn,), where

E:= Y ((shg >t) > BA).
t:BG

2Alternatively: and g, i : Hom(F, G).
Then fg = fh implies that for
all p: Hom(Z, F) we have by as-
sociativity that f(gp) = (fg)y =
(fh)p = f(hp), and so, by assump-
tion, that gp = hp. Again, by func-
tion extensionality (of functions
Hom(Z,F) — Hom(Z, G)), this is
exactly saying that Ug is identical to
Uh.

3This proof follows an idea by Trim-
ble4.

4Todd Trimble. Monomorphisms in the
category of groups. https://ncatlab.
org/toddtrimble /published/
monomorphisms+in+the+category+
of+groups. Jan. 2020.

https://ncatlab.org/toddtrimble/published/monomorphisms+in+the+category+of+groups
https://ncatlab.org/toddtrimble/published/monomorphisms+in+the+category+of+groups
https://ncatlab.org/toddtrimble/published/monomorphisms+in+the+category+of+groups
https://ncatlab.org/toddtrimble/published/monomorphisms+in+the+category+of+groups

NORMAL SUBGROUPS AND QUOTIENTS 188

We have two homomorphisms ¢, ¢ : G — W with the same underlying
map, t — (t, cstgn,), but with different pointing paths:

Ppt = reﬂshc,cstShA ’ Ebpt = (reﬂshc/]71)

The equalizer of ¢ and ¢ thus consists of all ¢ : UG such that jn(gg’) =
jm(g’) for all ¢’: UG. Since j is injective, this is equivalent to n(gg’) =
ni(g’) for all ¢’ : UG, and this holds if and only if g belongs to H. o

9.3 Images, kernels and cokernels

The set of subgroups of a group G encodes much information about G,
partially because homomorphisms between G and other groups give
rise to subgroups.

In Example 4.2.23 we studied a homomorphism from Z to X, defined
via the pointed map R, : S —. BE,, given by sending * to mand O to
the cyclic permutation s,, : UL,, = (m = m), singling out the iterates of
s, among all permutations. From this we defined the group C,, through
a quite general process which we define in this section, namely by taking
the image of Ry,.

We also noted that the resulting pointed map from S! to BC,, was
intimately tied up with the m-fold set bundle - : S! —, S! - picking out
exactly the iterates of O™ — which in our current language corresponds
to a monomorphism i,, : Hom(Z, Z). This process is also a special case
of something, namely the kernel.

The relations between the cyclic groups in the forms Z/m, C,, and C;,
as in Example 4.2.22 are also special cases of what we do in this section.

In our setup with a group homomorphism f : Hom(G, G’) being given
by a pointed function Bf :BG —. BG/, the above mentioned kernel,
cokernel and image are just different aspects of the preimages

B)'(2)= L (25 Bf()
x:BG
for z: BG'. Note that all these preimages are groupoids.

The kernel will correspond to a preferred component of the preimage
of shg/, the cokernel will be the (G’-)set of components and for the image
we will choose the monomorphism into G’ corresponding to the cokernel.
This point of view makes it clear that the image will be a subgroup of G,
the kernel will be a subgroup of G, whereas there is no particular reason
for the cokernel to be more than a (G’-) set.

9.3.1 Kernels and cokernels

The kernel of f: Hom(G, G’) is a component of the fiber of Bf, whereas
the cokernel is the set of components of the fiber. We spell out the details.
DeriNtTION 9.3.2. We define a function

ker : Hom(G, G") = Monog

which we call the kernel. If f: Hom(G, G’) is a homomorphism we
must specify the ingredients in ker f := (Ker f, inger ¢, !) : Monog. The
classifying type BKer f of the kernel group> (or most often just the “kernel”)

For those familiar with the classical
notion, the following summary may
guide the intuition.

If Hom?P(G, §’) is an abstract
group homomorphism, the preimage
¢ (eg) is an abstract subgroup
which is classically called the kernel

of ¢.

On the other hand, the cokernel
is the quotient set of G’ by the
equivalence relation generated by
8’ ~ g’ - ¢(g) whenever g:G and
g’ : gl.

Even though the cokernel is in gen-
eral just a G’-set, we will see in Defi-
nition 9.5.8 that in certain situations
it gives rise to a group called the
quotient group.

5There is an inherent abiguity in our
notation: is the kernel of f a group
or a monomorphism into G? This is
common usage and is only resolved
by a type check.

NORMAL SUBGROUPS AND QUOTIENTS 189

is the component of the fiber of Bf pointed by

shier f = (sh, ps): (Bf) ' (she),

where p :she: = Bf(shg) is the part of Bf claiming it is a pointed map.®

The first projection BKer f — BGis a setbundle, since by Corollary 2.9.11

the preimages are equivalent to the sets Zp:ShG,i,Bf(z)” shier f = (z,p)Il,

giving a monomorphism inge, s of Ker f into G; together defining ker f :=

(Ker f,inger £, !) : Monog. a
Written out, the classifying type of the kernel, BKer f., is

L X

z2:BG p:shg=>f(z)

l(sh, pr) = (z,p)ll

and inye; s : Hom(Ker f, G) is given by the first projection.

DEeFINITION 9.3.3. Let f: Hom(G, G’) be a homomorphism. The cokernel
of f is the G’-set

coker f:BG" — Set, coker f(z) = ||(Bf) " (z)llo;

defining a function of sets
coker : Hom(G, G') — G’-Set. a

If a monomorphism i from G to G’ is clear from the context (“G € G"”),
we may write G’/G for the cokernel of i.

LemMMA 9.3.4. The cokernel coker f is a transitive G’-set.

Proof. Ttis enough to show that for all |x, p| € coker(sh¢) thereisa g: U

s.t. ¢ -Ishg, ps| = |x, p|. It suffices to do this for x being shg, and then
g = p}?lp will do. O

ReMARk 9.3.5. Since the cokernel is a transitive G’-set, we need just
to provide coker f(shg/) = ||Bf _1(shG/)||0 with a point to say that the
cokernel defines a subgroup of G’. The obvious point to choose is
Ishg, ps|. In the next section we will consider this subgroup in more
detail and call it the image of f.

Another proof of coker f being a transitive G’-set would be to say
that since BG is connected and equivalent to), . g5 Bf ~1(z) which maps
surjectively onto }, . p¢|| Bf ~1(2)||o the latter is connected — and, when
pointed at (shg/, [shg, p¢l), justanother name for E(coker f): Monogr.

Exercisk 9.3.6. Given a homomorphism f : Hom(G, G’), prove that

(1) f is a monomorphism if and only if the kernel is trivial
(2) f isan epimorphims if and only if the cokernel is contractible.

(3) if h: Hom(L, G) is a homomorphism such that fi: Hom(L, G’) is
the trivial homomorphism (equivalently, fh factors through the
trivial group 1), then there is a unique k: Hom(L, Ker f) such that
h> inker fk . N

The kernel, cokernel and image constructions satisfy a lot of important
relations which we will review in a moment, but in our setup many of
them are just complicated ways of interpreting the following fact about
preimages (see the illustration? in the margin for an overview)

6That is:

Ker f = Aut(Bf)fl(shG,)(ShG/ ps)

The associated abs(G’)-set
coker f(shg) is (also) referred to
as the (abstract) cokernel of f.

The subgroup of G’ associated with
the cokernel is the “image” of the
next section.

Hint: consider the corresponding
property of the preimage of Bf.

Kerf ——G

inger £
L)

1— G

F5l(x1, p2) ——> £71(x1)

[

s hof
(ffi) M) = Xg —> X,
in lfl
1 fst f2
fr (x2) X1 X5.

NORMAL SUBGROUPS AND QUOTIENTS 190

Lemma 9.3.7. Consider pointed functions (fi, p1): (Xo, x0) —» (X1, x1) and
(f2, p2) : (X1, x1) =+ (X2, x2) and the resulting functions

Fi:fit(x1) = (ff1) (x2), Fi(x,p) = (x, p2fap),

Fo:(fofi) ' (x2) = f5'(x2), Falx,q) = (fix, q)
(here the function

HiE o po) = fi (), B g, ()= (@ p) @ >) 2 1 5 o)

Then is the “first projection” explained in
the discussion of the interpretation

(1) H is an equivalence with inverse of pairs following Definition 2.10.1)

H7(x, q) = ((x, p2f2(0)), (g, vefl,),
(2) the composite F1H is identical to the first projection
fst : Fy' (x1, p2) = (f2f1) 7 (x2),

more precisely, if (x,q,(p, 7)) : F5'(x, p2), then fst(x, q,(p, 7)) is (x, q),
whereas F1H(x,q,(p, 1)) is (x, p2fop) and v :pafop — q provides the
desired element in F1H = fst.

Proof. That H is an equivalence is seen by noting that F; L(xy, p2) is equiv-
alent to Zx:Xo Zq:xzifzflx Zp:xliflx q > szzp and that Zq:xzifzflx q =
p2fop is contractible. 0

Hence, through univalence, H provides an identification
H:(Fy (x1,p2), fst) = (fi(x1), F1)

inthetype Y x. (X — (f2f1)"!(x2)) of function with codomain (f2 1)1 (x2).

From the universal property of the preimage it furthermore follows
that F is the unique map such that fstF = .1y, fst and H “1is
similarly unique with respect to fst H™1 = F.

CoroLLARY 9.3.8. Consider two composable homomorphisms fi : Hom(Go, G1)

and f: Hom(G1, Gp). There is a unique monomorphisms Fy from Ker fi to Ker f; Ker fi

Ker(f2f1) and a unique homomorphism Fy from Ker(f2 f1) to Ker f such that i I imker I

iNger f; = iNker o, F1 and fiinyer f, 7 = inker f, F2. Furthermore, Ker o5 iNger £,) hh G
Fi1 > Monog, iNyer F> in ifl

and Ker fz ket G f Gy

(COker fl) Binkerfz > BKer f,—Set COker(FZ)'

Consequequently,

(1) if fo is a monomorphism then Fy: Ker fi — Ker f, f1 is an isomorphism
and

(2) if f1 is a monomorphism then F, : Ker f, fi — Ker f, is an isomorphism.
If f,g: A — Set are two A-sets, then
Likewise, the set truncation of the maps F1 and F, constructed in Lemma 9.3.7 f — g is defined to be the set

give maps of families [Tf(@) - ga)
a:A
Fi: coker fi —pG,—set coker(fof1) Bf2, Fj: coker(fafi) —pG,—set COKer f2 and wesay that¢: f — gisan

equivalence if [],. 4 isEquiv ¢(a); see
such that Lemma 2.9.15.

NORMAL SUBGROUPS AND QUOTIENTS 191

(1) if fo is an epimorphism then F] : coker fi —Bg,—set coker(fofi) Bf is
an equivalence and

(2) if f1 is an epimorphism then FY: coker(faf1) —pG,—set coker fo is an
equivalence.

Exercisk 9.3.9. Let f: Hom(G, G’). Then the subgroup E(ker f):Subg
associated with the kernel is given by a G-set equivalent to the one
sending x : BG to

Y I X po U@l

p:shgr>Bf(x) B:shg=x
If f is an epimorphism this is furthermore equivalent to

x - (shg: = Bf(x)).

9.3.10 The image

For a function f : A — B of sets (or, more generally, of types) the notion
of the “image” gives us a factorization through a surjection followed
by an injection: noting that a — (f(a),!) is a surjection from A to the
“image” Y.l f ~1(b)||, from which we have an injection (first projection)
to B. This factorization

A=Y lIf ')l — B
b:B

is unique (Exercise 2.17.12).
For a homomorphism f : Hom(G, G’) of groups we similarly have a
unique factorization
GoImf -G

through an epimorphism followed by a monomorphism which, on the
level of connected groupoids, is given by

x>(Bf(x),| (x reflps(x))lo) _ fst ,
BG. Y..5c. | (Bf) 7 (2)llo ——— BG.,

together with base point information. In particular, we choose the base
point (shg, |(shg, pf)lo), so that the image group is

Im f = Auty_ 801210 (She', [(she, po)lo))-

In other words, the image is nothing but the subgroup of G’ associated
with the cokernel as discussed in Remark 9.3.5.

Exercisk 9.3.11. With the choice of point of Im f above, give paths for
x > (Bf(x), [(x, reflgs(x))|0) and fst so that these maps become pointed
maps whose composition is indeed equal to the pointed map Bf. Show
that these pointed maps indeed give an epimorphism and a monomor-
phism, respectively. Hint: for the epimorphism, use Lemma 3.9.6. 1

That the image gives a unique factorization is elegantly expressed by
saying that it is the unique inverse of composition. We use the pullback
construction from Definition 8.4.1 to express the type of epi/mono
factorizations of homomorphisms from G to G’ as Epi; XGroup Monog:
where the maps to Group are understood to be the first projections (so
that the epimorphisms and monomorphisms in question can, indeed, be
composed).

The formula for the image in group
theory is the same as the one for sets,
except that the propositional trunca-
tion we have for the set factorization
is replaced by the set truncation
present in our formulation of the
cokernel coker(f) := ||(Bf)™1(2)|lo-

NORMAL SUBGROUPS AND QUOTIENTS 192

CoNSTRUCTION 9.3.12. For all groups G, and G’ the map
o:Epi; XGroup Monog: — Hom(G, G')
given by composition,®
o(Z,p,), (Z',],1), @) = jap
is an equivalence with inverse given by the image factorization.

Implementation of Construction 9.3.12. For any integer n > —1 — and in
our case for n = 0 — on the level of types the factorization of a function
f:X—>Zas

x> (f (), (x refl gyl B fst
Zz:Z”f 1(2)”71 — V4

is unique in the sense that

if p: f = jg where q: X — Y is so that for all y:Y the n-
truncation of g7!(y) is contractible and j: Y — Z is so that
for all z : Z the fiber j7'(z) is n-truncated, then for each z: Z
the function f~!(z) — j~!(z) induced by (p and) g gives an
equivalence?

G f @l = (=)

identifying (under univalence) the two factorizations of f.

If X and Z are connected groupoids, then so is ¥_.. 7| f~!(z)||», and
so when applying the factorization to groups (when n = 0), the only
thing we need to worry about is the base point. If if the point-data
is given by x0:X, vo:Y, z0:Z, pg:yo — q(x0), pj:z0 — j(yo) and
pr:zo = f(xo) withb:pr = a;olj(pq)p,', where a: [1,.x f(x) = j(g(x))
witnesses that we have a factorization, then we point Y_.. || f~1(z)|l.
in (zo,|(x0, pf)|x) and note that the equivalence Y, . 7|l f ' (2)ll» = Y is
pointed via p, : yo = g(xo) and

pi .
= j(yo)

1

b: 20

reﬂZO /'pq

20 == f(xp) === j(q(x0)).

O

DeriNtTION 9.3.13. Explicitly, the image factorization for groups is the
function

o™': Hom(G, G") — Epi; XGroup Monog:
o‘l(f) = (Im £, PTim £/ D, m f, Nim £, N, reﬂlmf),

where as before the image group is the group
Im f = Auty_, coker f(z)(Shc’, [(shg, p)lo),

the monomorphism injy, s is obtained from the wrapping of the first
projection
Binipy s := fst : BIm f — BG’

8here p is an epimorphism from G
to the group Z, j a monomorphims
from the group Z' to G, a:Z = Z
and & is the isomorphism corre-
sponding to the identification
a:Z S Z’,asin Definition 2.13.1,
so that the composite looks like

G—Lsz oz l.og

9To see that the function is an equiva-
lence notice that it can be obtained as
follows: rewrite f~1(z) first as

Y Y25 f)xy > qx),

x:Xy:Y
then as

Y Y @Sy xy >)

y:Yx:X

and finally use that the n-truncation
of Yr.x ¥ = q(x) is contractible

Y
7
i Gy l
o]
: V4

Eeozllf ' @l ——>

G G’

P& ing, f

Im f.

NORMAL SUBGROUPS AND QUOTIENTS 193

and the epimorphism pr;, , is given on the level of classifying types by
sending x : BG to

Bprlmff(x) = (Bf(x)/ |(x/ reﬂBf(X))|0) :B Imf
Occasionally we may refer to the two projections of the image factor-
ization
im : Hom(G, G’) — Monog/, im(f) = (Im f,injm ¢, !)
pr'™: Hom(G, G’) — Epi, pr'™f :=(Imf, PLim /1)
as the image and the projection to the image. 4

In view of Exercise 9.3.14 below, the families
isepi, ismono: Hom(G, G’) — Prop

of propositions that a given homomorphism is an epimorphism or
monomorphism have several useful interpretations (parts of the exercise
have already been done).

Exercisk 9.3.14. Let f: Hom(G, G’) Prove that
(1) the following are equivalent
a) f isan epimorphism,
b) Uf is a surjection
c) the cokernel of f is contractible,
d) the inclusion of the image injy s : Hom(Im f, G’) is an isomor-
phism,
(2) the following are equivalent

a) f is a monomorphism,

b) Uf is an injection

c) the kernel of f is trivial

d) Bf:BG — BG' is a set bundle.

e) the projection onto the image pr;,, - Hom(G, Im f) is an iso-

morphism.

.

We need to understand how the image factorization handles composi-
tion of homomorphisms. This is forced by the uniqueness as follows.

) . Go
Lemma 9.3.15. Given composable homomorphisms f1: Hom(Go, G1) and Prim
f2: Hom(G1, Gy), unique factorization induces identifications
. = . . . Im f; Plim f f1
lm(fol) - Monog, (Im(primfz Mim £,)/ Mjm lenirn(l:)rim/r2 iNim £)7 ') N
i = . Plim(pryp, £, injm ;)
im 2 1
pr (f2f1) - Epig, (Im(primfz Mim f;), prim(primfzinimf1)PTim £,/)
G1 Im(pr;p, f,inim ;) === Im(f2.1)
. pr; \Linim(Prim fMim f)
Proof. Since composition preserves monomorphisms and epimorphisms — mf2
. . s . . A i . Im f» injm ffi
in particularinn, 5, Mim(pr,, ;i ;) - Hom(Im(pr; f,1Nim #), G2)isamonomor- f: 1
phism and p1rim(primf2mmfl)prirn I Hom(Go, Im(pr,,, fiNim £)) is an epi- "
morphism - this is just uniqueness of the image factorization of the G»

composite ff1.]

NORMAL SUBGROUPS AND QUOTIENTS 194

Lemma 9.3.16. Let f: Hom(G, G’) be a group homomorphism. The induced
map (Bpr,, f)‘l(shlm) = (Bf)"\(shg) gives an identification

ker pr; | f — Monog ker f.

Proof. Using univalence, this is a special case of Corollary 9.3.8 with
f2:=inimgand fi = pryg, o 1]

Exgrcisk 9.3.17. (1) If f :Monog/, then ua(primf) : f = Monog,iNim -

(2) If f:Epi, then va(inim) : f = Epic PTim f-

(True propositions suppressed). a
ExamPrLE 9.3.18. An example from linear algebra: let A be any 1 X n-matrix
with nonzero determinant and with integer entries, considered as a ho-
momorphism A: Hom(Z", Z"). “Nonzero determinant” corresponds to
“monomorphism”. Then the cokernel of A is a finite set with cardinality
the absolute value of the determinant of A. You should picture A as a
| det(A)|-fold set bundle of the n-fold torus (S')*" by itself.

In general, for an m X n-matrix A, then the “nullspace” is given by the
kernel and the “rowspace” is given by the image. 4

9.4 The action on the set of subgroups

Not only is the type of subgroups of G a set, it is in a natural way
(equivalent to the value at shg of) a G-set which we denote by the same
name. We first do the monomorphism interpretation

DEerINITION 9.4.1. If G is the group, the G-set of monomorphisms into G
Monog : BG — Set is given by

Monog(y) = Z Z isSet(Bf_l(shG))

H :Group f : Hom(H,G)(y)

for y : BG, where — as in Example 5.2.6 —

Hom(H,G)(y):=)}, (y > F(shn))
F:BH.—BG-
is the G-set of homomorphisms from H to G. 4

DerIniTION 9.4.2. If G is a group, then the action of G on the set of
monomorphisms into G is called conjugation.

If (H, F,p,!):Monog(shg) is a monomorphism into G and g : UG, then
the monomorphisms (H, F,p,!),(H,F,p g‘l, !): Monog(shg) are said to
be conjugate. 4
REMARK 9.4.3. The term “conjugation” may seem confusing as the ac-
tion of ¢:UG on a monomorphism (H,F, p,!):Monog(shg) (where
p:x = F(shy))is simply (H,F, p g’l, 1), which does not seem much like
conjugation. However, as we saw in Example 7.6.2, under the equiva-
lence abs : Hom(H, G) = Hom*(abs(H), abs(G)), the corresponding
action on Hom®(abs(H), abs(G)) is exactly (postcomposition with) con-
jugation c8 : abs(G) = abs(G). " 4

Summing up the remark:

1%See also counting results for finite
groups.

The type of monomorphisms into G
is Mono(shg), and as y : BG varies,
the only thing that changes in
Monog(y) is that BG = (BG., shg) is
replaced by (BG-, y).

"The same phenomenon appeared
in Exercise 5.2.7 where we gave an
equivalence between the G-sets
Hom(Z, G) and Adg (where the
action is very visibly by conjugation).

NORMAL SUBGROUPS AND QUOTIENTS

LemMA 9.4.4. Under the equivalence of Lemma 7.6.1 between G-sets and
abs(G)-sets, the G-set Monog corresponds to the abs(G)-set

)3)3 isProp(¢ ™~ (ec))
H:Group ¢ Hom?" (abs(H),abs(G))

of abstract monomorphismsofabs(G), withaction g-(H, ¢,!) := (H, c3 ¢, !)
for g abs(G), where ¢8 : abs(G) = abs(G) is conjugation as defined in Ex-
ample 7.3.5.

ReEMARK 9.4.5. We know that a group G is abelian if and only if conjugation
is trivial: for all g: UG we have ¢ = id, and so we get that Monog is a
trivial G-set if and only if G is abelian. 4

The subgroup analog of y — Monog(y) is

DEerINITION 9.4.6. Let G be a group and y : BG, then the G-set of subgroups
of Gis
Subg : BG — Set, Subg(y) = Z X(y) x isTrans(X).
X :BG—Set
|
The only thing depending on y in Subg(y) is where the “base” point
is residing (in X(y) rather than in X(shg)).

DEerINITION 9.4.7. Extending the equivalence of sets we get an equivalence
of G-sets E : Monog — Subg via

E(y):Monog(y) = Subg(y), E(H,F,pr,!) = (F 7, (shu, pr),!)

for y: BG (where H is a group, F:BH. — BG. is a map and pr:y —
F(shy) an identity in BG; and F~!:BG — Set is G-set given by the
preimages of F and (shy, pr):F~'(y) = Yy.pyy — F(x) is the base
point). If y is shg we follow our earlier convention of dropping it from
the notation. 4

Since the families are equivalent (via E) we use Monog or Subg
interchangeably.

9.5 Normal subgroups

In the study of groups, the notion of a “normal subgroup” is of vital
importance and, as for any important concept, it comes in many guises
revealing different aspects. For now we just state the definition in the
form that it is a subgroup “fixed under the action of G” on the G-set of
subgroups.

DerINITION 9.5.1. The set of normal subgroups is

Norg = H Subg(y)
y:BG

considered as a subset of Subg via the injection
i:Norg — Subg, i(N) = N(shg).

-

RemaRk 9.5.2. The function i taking a fixed point of the action Subg to its
actual subgroups is indeed an injection. Given two normal subgroups

195

NORMAL SUBGROUPS AND QUOTIENTS 196

N,N’":T1,.pc Subc(y) and a shape y: BG, the identity type N(y) —
N'(y) is a proposition as Subg(y) is a set. Hence, by connectedness
of BG, we construct an element N = N’ as soon as we have one of
N(shg) = N’(shg). This is exactly the statement of i being an injection.

In particular, Norg being a subset of Subg allows us to make the same
abuse as we did for other subtype: a subgroup H of G is said to be
normal whenever the fiber i~}(H) has an (necessarily propositionally
unique) element. 4

The corresponding set of fixed point in the G-set of monomorphisms

1_[Monog(y)

y:BG

will not figure as prominently, since the focus shifts naturally to an
equivalent set which we have already defined, namely the kernels.

DerINITION 9.5.3. If G is a group, let

. ker
Epig Kerg Monog

be the surjection/injection factorization of the kernel function restricted

to the epimorphisms from G. We call the subset Ker¢ the set of kernels.
Our aim is twofold:

(1) we want to show that ker : Epi. — Kerg is an equivalence, so that

knowing that a monomorphism is a kernel is equivalent to knowing
an epimorphism it is the kernel of.

(2) we want to show that the kernels correspond via the equivalence E
to the fixed points under the G action on the G-set of subgroups.

For x’,y’: BG', recall the notation P, (x’) := (y’ = x’).

DEerINITION 9.5.4. Define

nor: Epi, — Norg

by nor(G’, f,)(y) = (Ps(y) f, refls(,,!) for y : BG. a
Remark 9.5.5. The G-set P(,) f is not a G-torsor (except if f is an isomor-
phism). 4

LemMma 9.5.6. The diagram

i
Kerg>——— Monog

i

Norg Subg

commutes, where the top composite is the image factorization of the kernel and
the bottom inclusion is the inclusion of fixed points.

Proof. Following (G, f,!):Epi; around the top to Subg yields the tran-
sitive G-set sending y:BG to the set shg: = f(y) together with the
point p¢:shg: = f(shg) while around the bottom we get the transitive

Restricting the equivalence

E :Mono;g — Subg to the fixed
sets, we get an equivalence from
[T, .86 Monog(y) to Norg

We will achieve these goals by defin-
ing a function nor: Epi; — Norg
which we show is an equivalence
and, furthermore, that the two func-
tions inor, Ei ker : Epi; — Subg are
identical. Since inor is an injection,
this forces the surjection ker to be
injective too and we are done.

NORMAL SUBGROUPS AND QUOTIENTS

G-set sending v : BG to the set f(shg) = f(y) together with the point
reflfsne): f(shg) = f(shg). Hence, precomposition by pys gives the
identity proving that the diagram commutes. a

We will prove that both ker and nor in the diagram of Lemma 9.5.6
are equivalences, leading to the desired conclusion that the equivalence
E :Monog = Subg takes the subset Kerg identically to Norg. Actually,
since ker : Epi, — Kerg is a surjection, we only need to know it is an
injection, and for this it is enough to show that nor is an equivalence;
we'll spell out the details.

Since it has independent interest, we take a detour via a quotient
group construction of Definition 9.5.8 which gives us the desired inverse
of nor.

We start with a small, but crucial observation.

Lemma 9.5.7. Let N : Norg be a normal subgroup with N(y) = (X, pt,, ! for
y:BG. Then for any y,z: BG

(1) the evaluation map

evy: (X, = X;) = X:(y), evy:(f) = fy(pty)
is an equivalence and

(2) the map X :(y — z) — (X, = X;) (given by induction via Xrefl, =
refly,) is surjective.

Proof. To establish the first fact we need to do induction independently
on y:BG and z:BG in X,(z) at the same time as we observe that it
suffices (since BG is connected) to show that ev,, is an equivalence.
The composite
evyy X:(y > y) — Xyy

is determined by ev,, X (refl,) = pt,. By transitivity of X this composite
is surjective, hence ev,, is surjective too.

On the other hand, in Lemma 5.2.22 we used the transitivity of X,
to deduce that ev,, was injective. Consequently ev,,, is an equivalence.
But since ev,, is an equivalence and ev,, X is surjective we conclude
that X is surjective o

DerINITION 9.5.8. Let N :Norg be a normal subgroup with N(y) =
(Xy, pt,, 1) for y : BG. The quotient group is

G/N = AUtG-Set(XshG)-

The quotient homomorphism is the homomorphism gy : Hom(G, G/N)
defined by Bqn(z) = X; (strictly pointed). By Lemma 9.5.7, gy is an
epimorphism and we have defined a map

q:Norg — Epig, g(N) = (G/N,gqn,").

.

REMARK 9.5.9. It is instructive to see how the quotient homomorphism
Bgqn :BG — BG/N is defined in the torsor interpretation of BG. If
Y :BG — U is a G-type we can define the quotient as

Y/N:BG — U, Y/N(y):=) Y(z) X Xz (y).
z:BG

197

NORMAL SUBGROUPS AND QUOTIENTS 198

We note that in the case Py, () := (shg = y) we get that Py /N(y) =
Y...pc(shg = z) X X;(y) is equivalent to Xg.. Consequently, if Y is a
G-torsor, then Y/N is in the component of Xg,, and we have

—/N :Torsorg = (G-set)(pshc) — (G-set)x.

shc)’

Our quotient homomorphism gy : Hom(G, G/N) is the composite of the
equivalence P : BG = Torsorg of Theorem 5.5.7 and the quotient map
—-/N. a

LemMma 9.5.10. The map nor : Epi; — Norg is an equivalence with inverse
g :Norg — Epi.

Proof. Assume N :Norg with N(y) = (Xy,pt,,!) for y:BG. Then
nor g(N):BG — Set takes y: BG to (nor g(N))(y) = (Yy, reflx,, !), where
Yy(z) = (X; = X;). Noting that the equivalence ev : (X, = X;) =
X:(y) of Lemma 9.5.7 has evy (reflx,) := pt, we see that univalence gives
us the desired identity nor g(N) = N.*2

Conversely, let f: Hom(G, G’) be an epimorphism. Recall that the
quotient group is G/nor(f) = Autgset(Pf(shs)f) and the quotient ho-
momorphism gnorf : Hom(G, G/norf) is given by sending y:BG to
Pty f :BG — Set (strictly pointed — i.e., by reflp, ¢). We define a
homomorphism Q : Hom(G’, G/norf) by sending z : BG" to P, f and us-
ing the identification Py, f = Pp(she)f induced by pf :shgr = f(shg)
and notice the equality by definition:

Q f = gnorf : Hom(G, G/norf).

We are done if we can show that Q is an isomorphism. The preimage
of the base point P f is

L 1= @)= (fishe) = f(y)
z:BG'y:BG
which by Lemma 7.6.4 is equivalent to
Y. IIz>2) > (fshe) >0)
z:BG'v:BG’
which by Lemma 5.5.6 is equivalent to the contractible type), .35 z =
f(ShG). m]

CoroLLary 9.5.11. The kernel ker : Epi — Kerg is an equivalence of sets.

Proof. Since nor:Epi; — Norg and E:Monog — Subg are equiva-
lences, the inclusion of fixed points i : Nor — Sub is an injection and the
diagram in Lemma 9.5.6 commutes, the surjection ker : Epi, — Kerg is
also an injection. m

Summing up, using the various interpretations of subgroups, we
get the following list of equivalent sets all interpreting what a normal
subgroup is.

LemMA 9.5.12. Let G be a group, then the following sets are equivalent

(1) The set Epi, of epimorphisms from G,

(2) the set Kerg of kernels of epimorphisms from G,

2fix so that it adhers to dogmatic
language and naturality in N is clear

the diagram in Lemma 9.5.6

i
Kerg>——— Monog

Norc>;> Subg

NORMAL SUBGROUPS AND QUOTIENTS 199

(3) the set Norg of fixed points of the G-set Subg (aka. normal subgroups),
(4) the set of fixed points of the G-set Monog,

(5) the set of fixed points of the G-set of abstract subgroups of abs(G) of
Lemma 9.4.4.

9.5.13 The associated kernel

With this much effort in proving that different perspectives on the
concept of “normal subgroups” (in particular, kernels and fixed points)
are the same, it can be worthwhile to make the composite equivalence

ker q:Norg = Kerg

explicit — where the quotient group function q:Norg — Epi, is the
inverse of nor constructed in Definition 9.5.8 — and even write out a
simplification.

Let N : Norg be a normal subgroup with N(y) = (X, pt,, ") for y:BG
with X, : BG — Set, pt,: Xy(y) and !:isTrans(X;). Then

Ker q(N) = AUth:BG(Xxi)XshG)(ShG’ reﬂXshG)

and with the monomorphism inye, 4(n) : Hom(Ker g(N), G) given by the
first projection from Y, . 5(Xy = Xah,) to BG.

However, going the other way around the pentagon of Lemma 9.5.6,
we see that ass(N) := E~1i(N) : Monog consists of the group

ASS(N) = AUt):x:BG XshG (x) (ShG’ ptShG)

and the monomorphism into G given by the first projection (monomor-
phism because X, has values in sets). Since the pentagon commutes
we know that ass(N) is the kernel of 4(N): Epi., and the identification
ev:iker g(N) = Monosass(N) is given via Lemma 9.5.7 and univalence
by the equivalence

€Vixshg :(Xx - Xshc) - XshG (x)

Letting the proposition that ass(N) is a kernel be invisible in the
notation we may summarize the above as follows:

DerINITION 9.5.14. If N : Norg is a normal subgroup we call the kernel
ass(N) : Kerg the kernel assocaited to N. J

LemMA 9.5.16. The diagram of equivalences

i

Kerg Monog

ker

uy
e
=.
)
jo¥)
&
R
R
tm

Norg '+ Subg

commuites.

REMARK 9.5.15. In forming the kernel
associated to N, where did we use
that N was a fixed point of the G-set
Subg? If Y:BG — Setis a transitive
G-set and pt: Y(shg), then surely we
could consider the group

W = Auty.pg—set(Y)

as a substitute for the quotient group
(see Section 9.8). One problem is
that we wouldn’t know how to con-
struct a homomorphism from G to
W which we then could consider

the kernel of. And even if we tried
our hand inventing formulas for the
outcomes, ignoring all subscripts,
we’d be stuck at the very end where
we used Lemma 9.5.7 to show that
the evaluation map is an equivalence;
if we only had transitivity we could
try to use a variant of Lemma 5.2.22
to pin down injectivity, but surjec-
tivity needs the extra induction
freedom. a

NORMAL SUBGROUPS AND QUOTIENTS

9.6 Intersecting with normal subgroups

In Section 8.4 we defined the intersection of two monomorphisms and
by extension, of two subgroups. This is particularly interesting when
one of them is represented by a normal subgroup.

Exercise 9.6.1. If G is an abstract group and H and K are abstract sub-
groups. Give a definition of the intersection % N K is the abstract
subgroup of G agreeing with our definition for monomorphisms as in
Definition 8.4.7. 4
LemMa 9.6.2. Let (G/, f,!) : Epi; be an epimorphism, let N be the kernel of f
and let (H,i,!):Monog. Then N N H is the kernel of fi: Hom(H, G’). and
the induced homomorphism in Hom(H /(N N H), G’) is a monomorphism.

Proof. Now, N is the kernel of the epimorphism f, giving an equivalence
between BN. and the preimage

(Bf)'(she') =) (she: = Bf(y)).

y:BG

Writing out the definition of the pullback (and using that for each x : BH
the type -, .pc ¥ = Bi(x) is contractible), we get an equivalence between
BN Xpg BH and

B(fi)Y(shg') == Y she: = B(fi)x,
x:BH

the preimage of sh¢' of the composite B(fi): BH — BG'. By definition,
the intersection B(N N H) is the pointed component of the pullback
containing (pty,shy). Under the equivalence with B(f i)"Y(shg) the
intersection corresponds to the component of (shy, Bf (pi) py). Since (by
definition of the composite of pointed maps) p; := Bf (p;) pr we get that
the intersection N N H is identified with the kernel of the composite
fi: Hom(H, G').

Finally, since N N H is the kernel of the composite fi: Hom(H, G’),
under the equivalence of Lemma 9.3.16, N N H is equivalent to the
kernel of the epimorphism pr;, ;) : Hom(H, Im(f i)). Otherwise said,
the quotient group H/(N N H) is another name for the image Im(f7),
and injmf;) is indeed a monomorphism into G'. m|

Exercise 9.6.3. Write out all the above in terms of the set Subg of sub-
groups of G instead of in terms of the set Monog of monomorphism into
G. 4

Recall that if X : BG — Set is a G-set, then the set of fixed points is the
set [T,.pg X(v), which is a subset of X(sh¢) via the evaluation map. If
a homomorphism from a group H to G is given by F: BH. — BG. and
pr:shg = F(shp), then precomposition (“restriction of scalars”) by F
gives an H-set

F'X = X F:BH — Set.

In the case of inclusions of subgroups (or other situations where the ho-
momorphism is clear from the context) it is not uncommon to talk about
“the H-set X” rather than “F*X”. This can be somewhat confusing when
it comes to fixed points: the fixed points of F*X are givenby [,.py XF(v)

Is the below misplaced?

200

NORMAL SUBGROUPS AND QUOTIENTS

which evaluates nicely to XF(shy), but in order to considered these as
elements in X(shg) we need to apply X(pz!): X(F(shy)) = X(shg).
Consequently, we'll say that x : X(shg) is an H-fixed point if there is an
f: Iy sy XF(v) such that x = X(pz')f(shy).
LemMA 9.6.4. Let G be a group, X :BG — Set a G-set, x: X (shg), §:UG
and H = (H,F,p,!):Subg a subgroup of G (F:BH. — BG. and p :shg =
F(shp)).
Then g x is a fixed point for the H-action on X if and only if x is a fixed point
for the action of the conjugate subgroup ¢ H := (H,F, g"'pr,!) on X.

Proof. Consideran f: [],.3y XF(v). Then g-x = X(pz')(f(shp)) if and
only if x = ¢~ X(pp")(f (shn)) = X((g7'pr) ™" (f (shn))- o

9.7 Automorphisms of groups

This section explores the relation between the symmetries in a group
G, and the symmetry of the group G. More formally, recall that Group
is a groupoid, hence Autcroup(G) is defining a group, that we will
simply denote Aut(G) in the rest of this section. Recall in particular that
BAut(G) is the connected component of G in type of groups (pointed at
G), which is equivalent to the connected component of BG in U. (pointed
at BG). Let us now use this equivalence to define an homomorphism
inn : G — Aut(G) by setting

Binn : BG —. BAut(G), vy~ Q(BG.,vy)

where the path pointing Binn is Notice that for this map Binn to be
defined properly, we need to show that, for all y : BG, the proposition
IG = Q((BG-, y))l| holds. We are targeting a family of propositions
from the connected type BG, so it is enough to prove the proposition
at y = shg, for which it is obvious: take |reflg| as an element of
IG = Q(BG., shq)l|.

Remark 9.7.1. For pedagogical purposes, we will now make explicit the
map

Uinn : UG — U(Aut(G)).

More precisely, for each symmetry ¢:UG, the element Uinn(g) is a
symmetry of Aut(G), that is, through univalence, a isomorphism of

groups from G to itself. We want to describe the automorphism U inn(g).

By definition, Uinn = refl!- aPpinn (L) - reflg. So it remains to determine
appi,- We proceed by inductionon p :shg = y to prove that B(apg;,,., (7))

isequal to the pathin BG = (BG., y) given by the pair of paths (reflz., p):

indeed, this is trivial for p = reflg, .. Then, through univalence, Bini(p)) is
the equivalence idpg. pointed by the path p. In particular, when p : UG
is a symmetry in G, then B(Uinn(g)) is the equivalence in BG = BG

given by idpg. pointed by g. Or in terms of abstract groups:
U(Uinn(g)): UG = UG, hw> g 'hg

In that form, it is easier for the reader that is used to group theory in
set-theoretic foundations to see that the homomorphism inn is taking
each elements of the group to the inner automorphism associated to
it. a

201

NORMAL SUBGROUPS AND QUOTIENTS

After the interlude in the remark, it should come as no surprise that
we can identify the kernel of inn with the center of G. Indeed, there is a
composition of identifications from the fiber at G’: BAut(G) of Binn as
follows:

(Binn)"1(G’) = (Y G5 Q((BG+,y))>

y:BG

=N (Z Z = trpp(shcr))

y:BGp:BG,5BG.
= (BG. S BG.)

In particular, we can consider the equivalence from the fiber at shp(g) =
G to BG. = BG.. Through this equivalence, the point (shg, Binn,) is
transported to reflg;.. Hence, we have an identification in

Ker(inn) = AUt(Binn)fl(G)(ShG/ reflgg) = Autpg, =p6.)(reflpg,) = Z(G).

Under this equivalence, the associated map inyer(inn) becomes the homo-
morphism z¢ described in Section 12.2.

DeriniTION 9.7.2. The Aut(G)-set of outer automorphism, denoted out(G),
is the cokernel of inn. a1

LemMma 9.7.3. The Aut(G)-set out(G) can be identified with

Aut(G) — Set, G’ ||BG. = BG:||o
Proof. Simply recall the computation of the fibers of Binn above. Then,
for each G’: BAut(G), we have an element of

out(G)(G’) = ||(Binn)~"(G")llo = IIBG. = BG:|lo
O

DErINITION 9.7.4. The group Inn(G) of inner morphisms of G is the image
Im(inn) of inn. 4

Notice that, the classifying type BIm(inn) being the total type of the
cokernel of inn, the above identification of out(G) provides us with an
equivalence in

BInn(G)i><) IIBGfiBG;Ho)

G’ :Group
Lemma 9.7.5. The group Inn(G) is normal when seen as a subgroup of Aut(G).

Proof. The precise meaning of the statement is that there exists a depen-
dent function N : [T/: aut(c) Subaut(c)(G’) and a path in N(shauc)) =
E(im(inn)). Expanding the definition of Suba(c), our task in defining
N is to find for every G’ a transitive Aut(G)-set X together with a point
of X(G’). We suggest to define N(G’) to be the transitive Aut(G)-set

X: Aut(G) > Set, H — ||BG. = BH.||o
together with the point |reflgs|o : X(G').
Let us prove that N(shauc)) can be identified with the subgroup
E(im(inn)). Firstnotice that shayyc) = G and that E(im(inn)) = (out(G), |(G, reflzg)lo).

202

NORMAL SUBGROUPS AND QUOTIENTS 203

For simplicity, write X¢ for the first component N(G) and x¢: Xc(G)
for its second component. Lemma 9.7.3 provides us with a path
p:out(G) = Xg. Checking that trpp(l(G,reﬂBG)lo) can be identified
with |reflpg]o is just a matter of looking at the equivalence exhibited in
Lemma 9.7.3.

To be thorough, we actually need to prove that the first component
of each N(G’) (denoted X above) is transitive: being transitive is a
proposition and by connectedness of Aut(G), it suffices to prove it when
G’ = G, for which the first component of N(G’) has been identified with
out(G); however, out(G), as a cokernel, is known to be transitive. O

We make the abuse of denoting Inn(G) for the normal subgroup of
Aut(G) defined by Inn(G) as specified above.

DeriNtTION 9.7.6. The group of outer automorphisms of G, denoted Out(G),
is the group

Out(G) := Aut(G)/Inn(G) = Autayyg)-set(out(G))

ConstruCTION 9.7.7. There is an identification of groups
O: Aut”ﬂHl(lBG+|1) = Out(G)

Before going through the construction of @, let us describe its domain
in more details. The goal of this construction is to have a alternative
version of Out(G) with a more tractable classifying type. Because out(G)
is a transitive Aut(G)-set, and because the associated subgroup is normal,
then its type of symmetries should be equivalent to out(G)(G), which
we know can be identified with ||[BG. = BG.||o. The idea is then to find
a pointed groupoid for which the loop space is readily || BG. = BG-||o.
However, ||a =4 bl|o is equivalent to |a|; =4, |b|1 for any element
a and b of type A. Hence it becomes natural to try to establish an
equivalence between Out(G) and the group of symmetries of |BG.|; in
the groupoid ||U]||;.

Implementation of Construction 9.7.7. Notice that the function |_|;: U —
||11]|1 induces an isomorphism on connected components: indeed, | X|; =
|Y]1 if and only if |||| X = Y]|ol| if and only if X =Y. In other words,
BAutyq|, (| BG:|1) identifies with the 1-truncation of Ugg.).

As BOut(G) is a groupoid, every map BAut), (|BG:|1) —. BOut(G)
is indud by a map Ugg.) —+ BOut(G). Thus we define ® by setting the
pointed map B® to be the map induced by:

Q: (Z BG. = X) —. BOut(G)

X:U
(X,) > {BAut(G) — Set, G’ i ||BG. = X||o}

This map is well defined: given (X, w) is the domain, we are trying to
prove the proposition out(G) = ¢(X, w), so we can lift the propositional
truncation of w and assume that we have w : BG. = X. Then, we craft
an identification of type out(G) = ¢(X, w) by noticing that we have for
every G’': BAut(G) an identification

Here, |w]|g is not the element repre-
sented by w in ||BG. = X||o, butin
fact the equivalence || BG.||o = || X]lo
induced by w.

NORMAL SUBGROUPS AND QUOTIENTS

lwlo o _:|IBG. = BG-|lo = [IBG. = Xlo
We no proceed to prove that B® is an equivalence, to conclude that @
is an isomorphism of groups. As both the domain and codomain of B®
are connected, to prove that it is an equivalence, it is enough to show
that apgg, : (@ = a) — (B®a — Bda) for a chosen a in the domain. We
consider of course a = (|BG-|1, refljpc.|,). Then,

B®(a) = ¢(BG:, reflpc.) = (G’ + ||BG. = BG:|lo)
By path induction, one can show that for each p:|BG.|1 = |BG:|1, we

get paths of type
appy(p) = {G' > po_}
where " is the equivalence (|x|1 = |y|1) = [|x = yllo.

Because the subgroup associated with out(G) is normal, Lemma 9.5.7
povides us with an equivalence ev : (out(G) = out(G)) — out(G)(G).
Write ¢ for the path out(G) = G’ ||BG. = BG.||¢ of Lemma 9.7.3.
Then, for every p :|BG.|1 = |BG-|1, one get an identification

Ve (ev (Y~ -apgy(p) - ¢)) = p

Hence, composition of apgq, with equivalences is an equivalence, proving
that apy,, itself is an equivalence. o

9.8 The Weyl group

In Definition 9.5.8 defined the quotient group of a normal subgroup.
As commented in Definition 9.5.14, the definition itself never used that
the subgroup was normal (but the quotient homomorphism did) and is
important in this more general context.

Recall the equivalence E between the set Monog of monomorphisms
and the set Subg of of subgroups of G (pointed transitive G-sets): The
subgroup (X, pty,!): Subg where X : BG — Set is a transitive G-set and
pty : X(shg) corresponds to (H, iy, !) : Monog defined by

H:= AUtZy:BG X(y)(Sth th)

together with the first projection from }_,.3c X(y) to BG. Conversely,
if (H, ig,!): Monog, then the corresponding transitive G-set is G/H =
coker ig pointed at |shy, piy,| : cokerip(shg) = ||Xy. gy she = Bim(x)llo.

For the remainder of the section we’ll consider a fixed group G,
monomorphism iy : Hom(H, G) and (X, pty,!) will be the associated
pointed transitive G-set.

DeriNtTION 9.8.1. The Weyl group
WgH = Autgset(X)

is defined by the component BWgH of the groupoid of G-sets pointed
at X.
The normalizer subgroup

NgH = AUtZy:BG Subc(y)(ShG/ X, th)

is defined by the component BNGH of the groupoid), .pc Subg(y)
pointed at (shg, X, pty). a

204

NORMAL SUBGROUPS AND QUOTIENTS

Unpacking, we find that

BNGH.=) Y Y li(she, X,pty) > (v, Y, pty)ll.
y:BGY :BG—Set pti Y (y)

While the projection ((shg, X, pty) = (v, Y, pt{/)) — (X = Y) may not
be an equivalence, the transitivity of X tells us that forany : X = Y there
isa g:shg = y such that X(g) py = ‘Bglptx, and so the propositional
truncation ||(shg, X, pty) = (v, Y, pt¥)|| — [|X = Y|| is an equivalence.
Consequently, the projection

BNGH.—)},), Y(xIX>Yl
y:BGY :BG—Set

is an equivalence. With an innocent rewriting, we see that we have
provided an equivalence

e:BNcH. S 2 Y(y) e(y,Y, pti, N=(y,Y, pt%, .
(yxY):BGXBWcH

This formulation has the benefit of simplifying the analysis of the
monomorphism
iNoH : Hom(NgH, G)

given by Bin.u(y, Y, pty,!) := y, the “projection”
p2: Hom(NGH, WGH)
BpH(y,Y,pty,!) = (Y,!) and the monomorphism
ju : Hom(H, NgH)

given by Bj,(y,v) = (v, X, v,!)).
Lemma 9.8.2. The monomorphism il : Hom(NGgH, G) displays the normal-
izer as a subgroup of G and the projection pZ: Hom(NgH, WgH) is an
epimorphism.
The homomorphism ji : Hom(H, NgH) defines H as a normal subgroup of
the normalizer,
ker Pg = MonoNGHfar(H/ iy, !)

and iH = Hom(H,G)ig jH.
Proof. Immediate from (our rewriting of) the definitions. |

The Weyl group W H has an important interpretation. It is defined as
symmetries of the transitive G-set X, and so ptyy_p; = ptyy,y is nothing
but (X S gsetX) = IT,.86(X(y) = X(y)). On the other hand, BH. is
equivalent to), . 3c X(y) and

[[xy=>Xxw)= [] X,
y:BG Yy .56 X(y)
S0 pty.y — Pty 1S equivalent to the set [, py X Binx of fixed points
of X = G/H (regarded as an H-set through ip).
Summing up
Lemma 9.8.3. The map e: (X = X) — [1,.py X Bigx with e(f)(y,v) =
f (y) defines an equivalence

e:(Ptw.y = Ptwern) = (G/H)M.

205

NORMAL SUBGROUPS AND QUOTIENTS

9.9 The isomorphism theorems

Cf. Section 2.27

Group homomorphisms provide examples of forgetting stuff and
structure. For example, the map from cyclically ordered sets with
cardinality # to the type of sets with cardinality n forgets structure, and
represents an injective group homomorphism from the cyclic group of
order n to the symmetric group 2.

And the map from pairs of n-element sets to n-element sets that
projects onto the first factor clearly forgets stuff, namely, the other
component. It represents a surjective group homomorphism.

More formally, fix two groups G and H, and consider a homomorphism
@ from G to H, considered as a pointed map Bg : BG —p¢ BH. Then By
factors as

BG = Z Z (Bp(z) =w)

w:BH z:BG
R w;B:H ‘ch(B(p(z) - w)Ho
~n Lo HEG(B@(Z) =w)|_ =BH.

The pointed, connected type in the middle represents a group that is
called the image of @, Im(@).

(FIXME: Quotient groups as automorphism groups, normal sub-
groups/normalizer, subgroup lattice)

Lemma 9.9.1. The automorphism group of the G-set G/H is isomorphic to
Ng(H)/H.

THEOREM 9.9.2 (Fundamental Theorem of Homomorphisms). For any
homomorphism f: Hom(G, G’) the map TODO defines an isomorphism
G/ker f ~im f.*3

9.10 More about automorphisms

For every group G (which for the purposes of the discussion in this
section we allow to be a higher group) we have the automorphism group
Aut(G). This is of course the group of self-identifications G = G in the
type of groups, Group. If we represent G by the pointed connected
classifying type BG, then Aut(G) is the type of pointed self-equivalences
of BG.

We have a natural forgetful map from groups to the type of connected
groupoids. Define the type Bunch to be the type of all connected
groupoid. If X : Bunch, then all the elements of X are merely isomorphic,
that is, they all look alike, so it makes sense to say that X consists of a
bunch of alike objects.

For every group G we have a corresponding bunch, BG., i.e., the
collection of G-torsors, and if we remember the basepoint shg : BG., then
we recover the group G. Thus, the type of groups equivalent to the type
Y X .Bunch X of pairs of a bunch together with a chosen element. (This is
essentially our definition of the type Group.)

Sometimes we want to emphasize that we BG. is a bunch, so we define
bunch(G) := BG. : Bunch.

13TODO: Fix and move to Ch. 5

206

NORMAL SUBGROUPS AND QUOTIENTS

DerINITION 9.10.1 (The center as an abelian group). Let
Z2(G) = [](z=2)
z:BG
denote the type of fixed points of the adjoint action of G on itself.
This type is equivalent to the automorphism group of the identity on
bunch(G), and hence the loop type of
BZ(G)= Y. |If ~idl-.

f:BG—BG

This type is itself the loop type of the pointed, connected type

B°Z(G):=) |lbunch(G) = X|lo,
X :Bunch
and we use this to give Z(G) the structure of an abelian group, called the
center of G. a

There is a canonical homomorphism from Z(G) to G given by the
pointed map from BZ(G) to BG that evaluates at the point shg. The fiber
of the evaluation map e :BZ(G) —pt BG is

fiber,(shg) = Z I f ~id||-1 X (f shg = sh¢)
f:BG—BG

=~), lf~idla,

f:BG—ptBG
and this type is the loop type of the pointed, connected type

BInn(G) = 2 |[bunch(G) = bunch(H)||o,
H : Group
thus giving the homomorphism Z(G) to G a normal structure with
quotient group Inn(G), called the inner automorphism group.

Note that there is a canonical homomorphism from Inn(G) to Aut(G)
given by the pointed map i : BInn(G) — B Aut(G) that forgets the com-
ponent. On loops, i gives the inclusion into Aut(G) of the subtype of
automorphisms of G that become merely equal to the identity automor-
phism of bunch(G). The fiber of i is

fiber;(shg) = Z |[bunch(G) = bunch(H)||o X (H = G)
H :Group

=~ ||bunch(G) = bunch(G)||¢.

This is evidently the type of loops in the pointed, connected groupoid

7

BOut(G) = 2 [[bunch(G) = X||-1

X :Bunch

1
thus giving the homomorphism Inn(G) to Aut(G) a normal structure
with quotient group Out(G), called the outer automorphism group. Note
that Out(G) is always a 1-group, and that it is the decategorification of
Aut(bunch(G)).

THEOREM 9.10.2. Let two groups G and H be given. There is a canonical action
of Inn(H) on the set of homomorphisms from G to H, || BG —pt BH||o. This
gives rise to an equivalence

1BG. — BH-llo = || (1BG =51 BHl0) ;i |

between the set of maps from bunch(G) fo bunch(H) and the set of components
of the orbit type of this action.

207

NORMAL SUBGROUPS AND QUOTIENTS 208

Proof. We give the action by defining a type family X : BInn(H) — U as
follows
X (K, ¢) = [[Hom(G, K)llo = [IBG —pt BK]lo,

for (K, ¢) : BInn(H) = Yk Groupllbunch(H) = bunch(K)||o. Now we can
calculate

| Xmngipllo= || Y. Ilbunch(H) = bunch(K)||o X [[Hom(G, K)|
K:Group

0

1R

Z (bunch(H) = bunch(K)) x Hom(G, K)
K:Group

0

~ 2 E(bunch(H) = K) x 2 fpt=k

K:Bunch k: K f: bunch(G)—K)

R

Z (bunch(H) = K) x (bunch(G) — K)
K:Bunch 0
|[bunch(G) — bunch(H)||, = ||BG: — BH-||,. O

R

10

Finite groups

Objects having only a finite number of symmetries can be analyzed
through counting arguments. The strength of this approach is stunning.

The orbit-stabilizer theorem Construction 5.4.26 is at the basis of this
analysis: if G is a group and X : BG — Set is a G-set, then

X(shg) =~ I—[x:X/GOx

and each orbit set Oy is equivalent to the cokernel of the inclusion G, € G
of the stabilizer subgroup of x. Consequently, if X(shg) is a finite set,
then its cardinality is the sum of the cardinality of these cokernels. If
also the set UG is finite much more can be said and simple arithmetical
considerations often allow us to deduce deep statements like the size of
a certain subset of X(sh¢) and in particular whether or not there are any
fixed points.

ExaMmpLE 10.0.1. A typical application could go like this. If X(shg) is a
finite set with 13 elements and for some reason we know that all the
orbits have cardinalities dividing 8 — which we’ll see happens if UG has
8 elements — then we must have that some orbits are singletons (for a
sum of positive integers dividing 8 to add up to 13, some of them must
be 1). That is, X has fixed points. 4

The classical theory of finite groups is all about symmetries coupled
with simple counting arguments. Lagrange’s Exercise 5.3.27 gives the
first example: if H is a subgroup of G, then the cardinality “|G|” of UG
is divisible by |H|, putting severe restrictions on the possible subgroups.
For instance, if |G| is a prime number, then G has no nontrivial proper
subgroups! (actually, G is necessarily a cyclic group). To prove this
result we interpret G as an H-set.

Further examples come from considering the G-set Subg of subgroups

of G from Section 5.3. Knowledge about the G-set of subgroups is of vital
importance for many applications and Sylow’s theorems in Section 10.4
give the first restriction on what subgroups are possible and how they
can interact. The first step is Cauchy’s Theorem 10.3.2 which says that if
|G| is divisible by a prime p, then G contains a cyclic subgroup of order p.
Sylow’s theorems goes further, analyzing subgroups that have cardinality
powers of p, culminating in very detailed and useful information about
the structure of the subgroups with cardinality the maximal possible
power of p.
ExamrLE 10.0.2. For instance, for the permutation group X3, Sylow’s
theorems will deduce from the simple fact |Z3| = 6 that X3 contains
a unique subgroup |H| with |H| = 3. Since it is unique, H must be a
normal subgroup.

209

On the other hand, for X4 the information |Z4| = 24 only suffices to
tell us that there are either 1 or 4 subgroups K with |K| = 3, but that all
of them are conjugate. However, the inclusion of X3 in X4 shows that
the H C Y3 above (which is given by the cyclic permutations of three
letters) can be viewed as a subgroup of 4, and elementary inspection
gives that this subgroup is not normal. Hence there must be more than
one subgroup K with |K| = 3, pinning the number of such subgroups
down to 4.

Indeed, L, has n(n — 1)(n — 2)/6 subgroups of order 3 (for n > 2),
but when n > 5 something like a phase transformation happens: the
subgroups of order 3 are no longer all conjugate. This can either be
seen as a manifestation of the fact that 3> = 9 divides n! = |%,| for
n > 5 or more concretely by observing that there is room for “disjoint”
cyclic permutations. For instance the subgroup of cyclic permutations of
{1, 2,3} will not be conjugate to the subgroup of cyclic permutations of
{4,5, 6}. Together these two cyclic subgroups give a subgroup K with
|K| = 9 and there are 10 of these (one for each subset of {1,2,3,4,5, 6}
of cardinality 3). 4

ReEMARK 10.0.3. One should observe that the number of subgroups is
often very large and the structure is often quite involved, even for
groups with a fairly manageable size and transparent structure (for
instance, the number of subgroups of the group you get by taking the
product of the cyclic group C;, with itself n times grows approximately
as7-2m/4 - e.g., CX18 has 17741753171749626840952685 subgroups, see
https://oeis.org/A006116). 1

10.1 Brief overview of the chapter

We start by giving the above-mentioned counting version Lemma 10.2.3
of Lagrange’s theorem Exercise 5.3.27. We then moves on to prove
Cauchy’s Theorem 10.3.2 stating that any finite group whose cardinality
is divisible by a prime p has a cyclic subgroup of cardinality p. Cauchchy’s
theorem has many applications, and we use it already in Section 10.4 in
the proof of Sylow’s Theorems which give detailed information about
the subgroups of a given finite group G. Sylow’s theorems is basically a
study of the G-set of subgroups of G from a counting perspective. In
particular, if p" divides the cardinality of G, but p”“ does not, then
Sylow’s Third Theorem 10.4.5 gives valuable information about the
cardinality of the G-set of subgroups of G of cardinality p".

10.2 Lagrange’s theorem, counting version

We start our investigation by giving the version of Lagrange’s theorem
which has to do with counting, but first we pin down some language.

DerINITION 10.2.1. A finite group is a group such that the set UG is finite.
If G is a finite group, then the cardinality | G| is the cardinality of the finite
set UG (i.e., UG: FinSet(|G|)). g

ExamrLE 10.2.2. The trivial group has cardinality 1, the cyclic group C;, of
order n has cardinality # and the permutation group L, has cardinality
nl. 4

FINITE GROUPS

210

https://oeis.org/A006116

In the literature, “order” and “cardinality” are used interchangeably
for groups.

For finite groups, Lagrange’s Exercise 5.3.27 takes on the form of a
counting argument

Lemma 10.2.3 (Lagrange’s theorem: counting version). Let i : Hom(H, G)
be a subgroup of a finite group G. Then

|Gl =1G/H| - [HI.
If|H| = |G|, then H = G (as subgroups of G).

Proof. Consider the H action of H on G, i.e., the H-set i*G: BH — Set
with i*G(x) := (shg = Bi(x)), so that G/H is just another name for the
orbits i*G/H =} ,.py i"G(x). Note that composing with the structure
identity p; :shg = Bi(shy) gives an equivalence i*G(shy) = UG, so that
li*G(shu)| = |Gl

Lagrange’s Exercise 5.3.27 says that i*G is a free H-set * and so all
orbits O, are equivalent to the H-set H(x) = (shy = x). Consequently,
the equivalence

i"G(shy) ~) O«
x:i*G/H

of Section 5.4.22 gives that G/H and H are finite and that |G| = |G/H] -
|H|.2

Finally, since we are considering a subgroup, the preimage Bi~!(pt) is
equivalent to the set G/H. If |H| = |G|, then |G/H| = 1 and so the set
G/H is contractible. O

CoroLLARY 10.2.4. If p is a prime, then the cyclic group C, has no non-trivial
proper subgroups.

Proof. By Lagrange’s counting Lemma 10.2.3 a subgroup of C, has
cardinality dividing p = |C,|, i.e., either 1 or p. o

CoroLLARY 10.2.5. Let f: Hom(G, G’) be a surjective homomorphism with
kernel N and let H be a subgroup of G. If H and G’ are finite with coprime
cardinalities, then H is a subgroup of N.

Proof. Leti: Hom(H, G) be the inclusion. By Lemma 9.6.2 the intersec-
tion N N H is the kernel of the composite fi: Hom(H, G’). Let H' be
the image of fi. Now, Lagrange’s counting Lemma 10.2.3 gives that
|H| =|H’|-|INNH|and |G’| = |G’/H’|-|H’|. This means that|H’| divides
both |H| and |G’|, but since these numbers are coprime we must have
that |H’| =1, and finally that |H| = [N NH]|. Thisimplies that NNH = H,
or in other words, that H is a subgroup of N ((elaborate)).]

CoroLLARY 10.2.6. If G and G’ are finite groups, then the cardinality |G X G'|
of the product is the product |G| - |G’| of the cardinalities.

Remark 10.2.7. Hence the cardinality of the n-fold product of Remark 10.0.3
of C; with itself is (2" and so grows quickly, but is still) dwarfed by the
number of subgroups as 1 grows. 4

FINITE GROUPS 211

'Exercise 5.3.27 doesn't say this at
present: fix it

*somewhere: prove that if A is a
finite set and B(a) is a family of fi-
nite sets indexed over a: A, then
Y a4 B(a) is a finite set of cardinal-
ity Yi.n|B(f(i))| forany f:n = A,
hence if m = |B(a)| for all a then
|4 B@| = n-m.

10.3 Cauchy’s theorem

LEmMMA 10.3.1. Let p be a prime and G a group of cardinality p" for some
positive n:N. If X:BG — Set is a non-empty finite G-set such that the
cardinality of X(shg) is divisible by p, then the cardinality of the set of fixed
points XC :=[1,.pc X(z) is divisible by p.

Proof. Recall that the evaluation at shg gives an injection of sets X¢ —
X(shg) through which we identify X with the subset “X (shg)®” of all
trivial orbits of X(shg). The orbits of X(shg)3 all have cardinalities that
divide the cardinality p” of G. This means that all the the cardinalities of
the non-trivial orbits (as well as of X(shg)) are positive integers divisible
by p.

Burnside’s Lemma Section 5.7 states that X(shg) is the sum of its
orbits. Hence the cardinality of the set of all trivial orbits, i.e., of X G is
the difference of two numbers both divisible by p.]

THEOREM 10.3.2. Let p be a prime and let G be a finite group of cardinality
divisible by p. Then G has a subgroup which is cyclic of cardinality p.

Proof. Recall the cyclic group C, := Autcyc Z/p of cardinality p where
Z/p := (p, s) is the standard p-cycle. In other words, there is an identifi-
cation of pointed groupoids

BC, > (), Y 168)=2/pll.(Z/p, ")
S:Setj:55S

Informally, BC, consists of pairs (S, j), where S is a set of cardinality
pandj:S = S is a cyclic permutation in the sense that for 0 < k < p
we have that j* is not refl while j? = refl. Given a set A, a function
a:p — Aisan ordered p-tuple of elements of A: it suffices to write a; for
a(i) to retrieve the usual notations for tuples. Given (S, j) : BC, however,
functions S — A cannot really be thought the same because S is not
explicitely enumerated. But as soon as we are given q:Z/p — (S, j), then
functions S — A are just as good to model ordered p-tuples of A (just by
precomposing with the first projection of ¢). With this in mind, define
tp : (p — UG) — UG to be the p-ary multiplication, meaning u,(g) =
8081 - - - §p-1. Then, one can define u: [1s j).5c,(Z/p = (S,)) = (S —
UG) — UG by ws,j(q)(g) = (g9)o - -+ - (§9)p-1 (where we use gq
abusively to denote the composition of ¢ with the equivalence given by
applying the first projection to the identification g). We can now define
the C,-set X :BC), — Set as:

X6 p= Y Il wep@@ =ec
§:52UGq:Z[p=(S,))

In particular, an element of X(Z/p) is a tuple (o, . . ., gp-1) satisfying
that 50 .. 8s(p-1) = ec for every 0:UC,. Note that this is equiva-
lent to the set of tuples (go, ..., gp-1) satisfying that go ... g(,-1) = €G-
So, the map X(Z/p) — UGP™! that send an element (g0,---,8p-1) to
(g1,---,8p-1) is an equivalence (the condition g ...g(-1) = ec says
exactly that we can reconstruct go from (g1, ..., gy-1)). In particular, p
divides the cardinality of X(Z/p).

Now, a Cp-fixed point of X, that is an element f : H(S,j):BCn X(S, 7)),
will have f7;, being an element (go, . . ., §p-1) of X(Z/p) that satisfies (in

FINITE GROUPS 212

3or of X? Reference for identification
of orbits with quotients by stabilizers

particular) (go, ..., §p-1) = (81, .., §p-1,80), i.e., such that go = g1 =
g2 =+ = gp-1. In other words, a fixed point f is such that fz;, : X(Z/p)
is of the form (g, ..., g) where g satisfies g” = eg. So, there is a map
ev: X% — Y.¢:uc 8" = ec simply given by evaluation at Z/p. This map
is an equivalence. Indeed, each fiber of ev is already a proposition, and
we only need to show that each is inhabited. Given any g : UG such that
g7 = eg, and given (S, j) : BCp, one can consider the constant function
3:5 > UG givenby ¢(s) = g forall s:S. Then, forall g:Z/p = (S,),
3qis the tuple (g, ..., g), so that we have (§,!): X(S, j). In other words,
we just constructed a fixed point of X whose image through ev is g, that
is an element of the fiber of ev at g. In particular, X< is not empty as it
is equivalent to } .11 §” = eg, which contains at least eg.

Now, Lemma 10.3.1 claims that p divides the cardinality of X%, and
since there are fixed points, there must be at least p fixed points. One
of them is the trivial one (given by g := ec above), but the others are
nontrivial.

4]

LemMa 10.3.3. Let be G be a finite subgroup of cardinality p", where p is prime
and n a positive integer. Then the center Z(G) of G is nontrivial. (point to
center in the symmetry chapter)

Proof. Recall the G-set Adg : BG — Set given by Adg(z) = (z = z). Then
the map

€Vgh ° H (z=2z) > UG, evg(f)= f(she)
z:BG

has the structure of a (n abstract) inclusion of a subgroup; namely the
inclusion of the center Z(G) in G. The center thus represents the fixed
points of the G-set Adg. Since G has cardinality a power of p, all orbits but
the fixed points have cardinality divisible by p. Consequently, Burnside’s
lemma states that the number of fixed points, i.e., the cardinality of Z(G),
must be divisible by p. |

COROLLARY 10.3.4. If G is a noncyclic group of cardinality p?, then G of the
form Cp X C,.

Proof. The center Z(G) is by Lemma 10.3.3 of cardinality p or p2. Since
G is not cyclic we have that g = e for all g: UG. 5]

10.4 Sylow’s Theorems

THEOREM 10.4.1. If p is a prime, n : N and G a finite group whose cardinality is
divisible by p", then G has a subgroup of cardinality p”.

Proof. We prove the result by induction on n. If n = 0 we need to have a
subgroup of cardinality 1, which is witnessed by the trivial subgroup. If
n > 0, assume by induction that G contains a subgroup K of cardinality
p"~1. Now, K acts on the set G/K. The cardinality of G/K is divisible
by p (since p" divides the cardinality of G), and so by Lemma 10.3.1 the
fixed point set (G/K)X has cardinality divisible by p.

Recall the Weyl group WgK. By Lemma 9.8.3,

[WK]| = 1(G/K)"],

FINITE GROUPS 213

4Two slight variations commented
away. Have to choose one. The first
needs some background essentially
boiling down to BC;; being the trun-
cation of the nth Moore space.

5((To be continued: the classical proof
involves choosing nontrivial ele-
ments — see what can be done about
that. At present this corollary is not
used anywhere))

and so WK has cardinality divisible by p.

Recall the normalizer subgroup Ng(K) of G from Definition 9.8.1 and
Section 9.9 and the surjective homomorphism pH from NgH to WGH,
whose kernel may be identified with H so that [NgH| = |WgH]| - |H| by
Lagrange’s theorem.

By Cauchy’s Theorem 10.3.2 there is a subgroup L of WK of cardinality
p. Taking the preimage of L under the projection pZ : Hom(NgH, WgH),
or, equivalently, the pullback

BH := BL XBWcK BNGK,

we obtain a subgroup H of Ng(K) of cardinality p” (H is a free K-set
with p orbits). The theorem is proven by considering H as a subgroup
of G. O

DerINITION 10.4.2. Let p” be the largest power of p which divides the
cardinality of G. A subgroup of G of cardinality p” is called a p-Sylow
subgroup of G and Syl. is the G-subset of Subg of p-Sylow subgroups of
G. 4

LEmMMA 10.4.3. Let G be a finite group and P a p-Sylow subgroup. Then the
number of conjugates of P is not divisible by p.

Proof. Let X be the G-set of conjugates of P. Being a G-orbit, X is
equivalent G/Stabp, where P is the stabilizer subgroup of P. Now, P
is contained in the stabilizer so the highest power of p dividing the
cardinality of G also divides the cardinality of Stabp.]

THEOREM 10.4.4. © Let G be a finite group. Then any two p-Sylow subgroups
are conjugate, or in other words, the G-set Syl- is transitive.

Furthermore, if H a subgroup of G of cardinality p® and P a p-Sylow
subgroup of G. Then H is conjugate to a subgroup of P.

Proof. We prove the last claim first. Consider the set Op of conjugates of
P as an H-set. Since the cardinality of Op =~ G/Stabp is prime to p there
must be an H-fixed point Q. In other words, H C Stabg. By Lemma 9.6.4
there is a conjugate H’ of H with H’ C Stabp. Now, P C Stabp (ref) is a
normal subgroup and so by. 7

The first claim now follows, since if both H and P are p-Sylow subgroup,
then a conjugate of H is a subgroup of P, but since these have the same
cardinalities they must be equal.]

THEOREM 10.4.5. Let G be a finite group and let P be a p-Sylow subgroup of G.
Then the cardinality of Syll>

(1) divides |G|/|P| and
(2) is 1 modulo p.

Proof. Theorem 10.4.4 claims that Syl. is transitive, so as a G-set it is
equivalent to G/NgP (NgP is the stabilizer of P in Subg. Since P is a
subgroup of NgP we get that | P| divides NgP and so |Sy1’é| =|G|/|NgP|
divides |G|/|P]|.

Let i be the inclusion of P in G and consider the P-set i*Sylé obtained
by restricting to P. Since the cardinality only depends on the underlying

FINITE GROUPS 214

6((the approach below is on the ab-
stract G-sets which may be ok given
that this is what we’re counting, but
consider whether there is a more

typie approach))

7the end of the sentence appears to be
missing

set we have that |i*Syl%;| = |Syl%.| and we analyze the decomposition into
P-orbits to arrive at our conclusion.

Let Q: i*Syl’é be a fixed point, i.e., P € NgQ. Now, since NgQ is a
subgroup of G, we get that [NgQ| divides |G, so this proves that P is
a p-Sylow subgroup of NcQ. However, the facts that Q is normal in
N¢Q and that all Sylow subgroups being conjugates together conspire
to show that P = Q. That is, the number of fixed points in i*Syl’- is one.
Since P is a p-group, all the other orbits have cardinalities divisible by p,
and so

|Sy1}é| = |i*Sy1’Z;| =1 mod p.

O

((Should we include standard examples, or is this not really wanted in
this book?))

FINITE GROUPS

215

11

Group presentations

11.1 Brief overview of the chapter

TODO:

* Make a separate chapter on combinatorics? Actions and Burnside and
counting colorings?

¢ Cayley actions: G acts on I'(G, S): Action on vertices is the left action
of G onitself: t — (t =p¢ pt), on vertices, for s: S, have edge t = pt to
t=pt

¢ Recall universal property of free groups: If we have amap ¢:5 —
H, then we get a homomorphism ¢:F(S) — H, represented by
BF(S) —pt BH defined by induction, sending pt to pt and s to ¢(s).

* define different types of graphs (S-digraphs, S-graphs, (partial) func-
tional graphs, graph homomorphisms, quotients of graphs)

e define (left/right) Cayley graphs of f.g. groups — Aut(I'¢) = G (include
a:F(S) — G in notation?) — Cayley graphs are vertex transitive

¢ Cayley graphs and products, semi-direct products, homomorphisms

® Some isomorphisms involving semi-direct products — Exceptional
automorphism of X¢: — Exotic map X5 — X4. (Conjugation action of
X5 on 6 5-Sylow subgroups.) A set bundle X : By — BZX,.

® https://math.ucr.edu/home/baez/six.html Relating ¥4 to theicosa-
hedron. The icosahedron has 6 axes. Two axes determines a golden
rectangle (also known as a duad," so there are 15 such. A symmetry of These names come from Sylvester.
the icosahedron can be described by knowing where a fixed rectangle
goes, and a symmetry of that rectangle. Picking three rectangles not
sharing a diagonal gives a syntheme: three golden rectangles whose
vertices make up the icosahedron. Some synthemes (known as true
crosses have the rectangles orthogonal to each other, as in Figure 11.1.
Fact: The symmetries of the icosahedron form the alternating sym-
metries of the 5 true crosses. Of course, we get an action on the 6
axes, thus a homomorphism As — X4. Every golden rectangle lies
in one true cross and two skew crosses. The combinatorics of duads,
synthemes, and synthematic totals are illustrated in the Cremona-
Richardson configuration and the resulting Tutte-Coxeter graph. The

automorphism group of the latter is in fact Aut(X¢). If we color the

vertices according to duad/syntheme, we get ¥ itself.
ertices acco &1to /Sy €me, We get &6 115¢ FiGure 11.1: Icosahedron with an

e define (left/right) presentation complex of group presentation inscribed true cross

216

https://math.ucr.edu/home/baez/six.html

GROUP PRESENTATIONS 217

¢ define Stallings folding

¢ deduce Nielsen—Schreier and Nielsen basis

¢ deduce algorithms for generalized word problem, conjugation, etc.
* deduce Howson’s theorem

e think about 2-cell replacement for folding; better proofs in HoI'T?
¢ move decidability results to main flow

¢ include undecidability of word problem in general — doesn’t depend
on presentation (for classes closed under inverse images of monoid
homomorphisms)

e describe F(S)/H in the case where H has infinite index

¢ describe normal closure of R in F(S) —still f.g.? — get Cayley graph of
F(S)/(R). — Todd-Coxeter algorithm?

* in good cases we can recognize S(R) as a “fundamental domain” in
Cayley graph of (S | R).

RemMARK 11.1.1. In this chapter, we use letters from the beginning of the
alphabeta, b, c, ... to denote generators, and we use the corresponding
capital letters A, B, C to denote their inverses, so, e.g., aA = Aa = 1. This
cleans up the notational clutter significantly. 4

Do we fix S, a finite set S = {4, b, .. .}? Mostly F will denote the free
group on S. And for almost all examples, we take S = {a, b}.

11.2 Graphs and Cayley graphs

We have seen in the previous chapter how cyclic groups (those generated
by a single generator) have neatly described types of torsors. Indeed,
BC,, = Cyc,,, where Cyc,, is the type of n-cycles, and the classifying type
of the integers, BZ = S!, i.e., the circle, is equivalent to the type of infinite
cycles, Cyc,. In Chapter 3, we defined the types of (finite or infinite)
cycles as certain components of }_x.¢ (X = X), but we can equivalently
consider components of }_x.¢;(X — X), since the former is a subtype of
the latter. By thinking of functions in terms of their graphs, we might as
well look at components of }_x.;(X — X — U).

In this section we shall generalize this story to groups G generated by
a (finite or just decidable) set of generators S.

First recall from Cayley’s Theorem 5.6.1 that any group G can be
realized as a subgroup of the permutation group on the underlying set of
symmetries in G, UG. In this description, a G-shape is a set X equipped
a G-action that defines a G-torsor, which in turn can be expressed as the
structure of a map o : UG — X — X satisfying certain properties.

It may happen that already « restricted to a subset S of UG suffices to
specify the action. In that case we say that S generates G, though we’ll
take the following as the official definition.

DeriniTiON 11.2.1. Let G be a group and S be a subset of UG, given
by an inclusion (:S — UG. We say that S generates G if the induced
homomorphism from the free group on S,

Fs — G,

is an epimorphism. a
LemMa 11.2.2. Let G be a group and 1: S — UG an inclusion of a subset of the
elements of G. Then S generates G if and only if the map

ps:BG—) (S—> X —>X), pst)=(t>shg, s us))
X:Uu

is an embedding.”

In this case, then, G can be identified with the automorphism group
of ps(shg) in the type } x.¢;(S — X — X), or even in the larger type (of
which it’s a subtype), Y_x.¢;(S = X —- X — U).

Also note that S generates G if and only if the map on elements
UFs — UG is surjective, meaning every element of G can be expressed
as a product of the letters in a (reduced) word from Rg, interpreted
according to the inclusion of S into UG. This is the case for example
for S consisting of the transpositions (1 2), (2 3) in X3, as illustrated
in Figure 11.2, where the blue color represents (1 2) and the red color
represents (2 3).

Before we give the proof of Lemma 11.2.2, let us study these types
more closely.

DerINITION 11.2.3. An S-labeled graph is an element (V, E) of the type
Yv.u(§ =V — V — U). The first component V is called the type of
vertices of the graph, and the type E(s, x, y) is called the type of s-colored
edges from x (the source) to y (the target). 4

If for every vertex x : V and every color s : S there is unique s-colored
edgeoutof x,ie., thetype}., .y E(s, x,y) is contractible, then we say that
the graph is functional. This means that the graph lives in the subtype
Yv.u(S =V = V), as is the case for the graph ps(shg) for a group G.
This graph is called the Cayley graph of G with respect to the set S:

DeriniTiON 11.2.4. The Cayley graph of a group G with respect to a
generating subset S is the graph Cay(G; S) is the S-colored graph with
vertices UG and edges S X UG where the edge (s, g) has source g, target
sg, and color s. a

Convince yourself that this is really an equivalent description of
ps(shg) considered as an S-colored graph.

If S is contractible (so there’s only one color), then we just say graph,
and then we simplify the type of edgesto V. — V — U. Of course,
every S-labeled graph (V, E) gives rise to such an unlabeled label by

GROUP PRESENTATIONS 218

Ficure 11.2: Cayley graph for X3 with
respectto S = {(12),(2 3)}.

2We uset = shg rather than the
equivalent shg = f in order to
conform to the representation from
Cayley’s theorem.

summing over the colors, i.e., the type of edges from x to y in this graph
isY .5 E(s,x,v).

Another way to represent a graph is to sum over all the sources and
targets (and colors), via Lemma 2.25.3,i.e., asa tuple (V,E, s, t, c), where
V :U is the type of vertices, E is the (total) type of edges, s,t:E — V
give the source and target of an edge, while c: E — S gives the color
(if we're talking about S-colored graphs). In this description, to get the
unlabeled graph we simply drop the last component.

Every graph (V, E) (and thus every labeled graph) gives rise to a type
by “gluing the edges to the vertices” defined as follows.

DErINITION 11.2.5. Fix an unlabeled graph (V, E). The graph quotient3 V /E
is the higher inductive type with constructors:

(1) For every vertex x:V a point [x]: V/E.
(2) For every edge e:E(x, y) an identification ~, : [x] = [y].

Let A(z) be a type for every element z: V/E. The induction principle
for V /E states that, in order to define an element of A(z) forevery z: V/E,
it suffices to give elements a, : A([x]) for every vertex x : V together with
identifications g, : a, % ay for every e:E(x,y). The function f thus
defined satisfies f([x]) Eea x for x : V and we are provided identifications
apdf(r\ve) — g, foreach e:E(x, y). a
RemMark 11.2.6. Note the similarity with the classifying type of a free
group, cf. Definition 8.7.1. Indeed, if we form the (unlabeled!) graph
(1,S) on one vertex with S edges, then 1/S is essentially the same as
BFs. 4
ExERcisE 11.2.7. An equivalence relation R: A — A — Prop on a set A
can be regarded as a graph (A, R). Construct an equivalence between
set truncation of the graph quotient || A/R||p and the set quotient A/R
from Definition 2.22.10 in this case. (So in the world of sets, the two
notations agree.) 4

While we’re building up to the proof of Lemma 11.2.2 we need a
description of a sum type over a graph quotient. By the above remark,
this applies also to sum types over BFs.

ConstrucTioN 11.2.8. Given a graph (V, E) and a family of types X : V /E —
U. Define V' = },.v X([v]) and E'((v, x), (w, y)) = Ze:E(v,w) x m;> Y.
Then we have an equivalence*

flt ;(y X(z)) = V/E

z:V/E

Implementation of Construction 11.2.8. We define functions ¢ :V'/E’ —
Y..ve X(z)and ¢ : [1,.v /e (X(z) = V'/E’) using the induction princi-
ples:
e, 1)) =(0]x) (o) = (x = [@)
ap,,((gqu)) = (v, q) apdg()=h,

where we need to construct h: (x — [(v, x)]) — (y = [(w, y)]) for all

e:E(v, w). By transporting in families of functions, it suffices to give an

GROUP PRESENTATIONS 219

31f the graph is represented by source
and target maps s,t:E =3 V, then
the graph quotient is also called the
coequalizer of s and t.

4This is often called the flattening
construction (or flattening lemma),
as it “flattens” a sum over a graph
quotient into a single graph quotient.

X
trp,,

X([0]) ——— X([w])

w([v])\« p([w])

V'/E’

identification [(v, x)] = [(w, trpXme (x))] for all x : X([v]). We get this as
the identification constructor ~, 4) for V’/E’, where g : x Ti_) trpfW (x)is

the identification over ~, corresponding to the reflexivity identification
at trpX (x) via Definition 2.7.3. o

Exercisk 11.2.9. Complete the implementation by giving identifications
po¢ >idand ¢poy = id, where ¢ : (L,.y/p X(z)) — V’/E’ is defined
by 9((z, x)) := P(2)(x). -

Later on we'll need also need the following results about graph
quotients.

ExeRrcisk 11.2.10. Suppose the edges E of a graph (V, E) are expressed as
a binary sum Eg LI E;. (Here, it doesn’t matter whether E is expressed
as a type family E:V — V — U, in which case we have a family of
equivalences E(v, w) = Eo(v,w) 11 E1(v, w), or E is the total type of
edges.)

Then we can obtain the graph quotient V/E by first gluing in the
edges from Ey, and then gluing in the edges from E; to the resulting
type V/Eq. Using the description of graphs with a total type of edges
E S Eo LI E;, we have corresponding source and target maps expressed
as compositions:

E1‘—>E0HE11>E:§V—>V/E0

Construct an equivalence V/E = V/(Eg LI E1) = (V/Eo)/Ex. 4

ExEeRcIsE 11.2.11. Suppose we have any type X with an element x : X. We
can form a graph (X IT 1, 1) with vertex type X LI 1 and a single edge
from inl, to inrg. Construct an equivalence X = (X 11 1)/1.5 J

11.3 Examples

Proof of Lemma 11.2.2. TBD (perhaps put in graph quotients first) o

11.4 Subgroups of free groups

We now study subgroups of free groups. We'll eventually prove the

GROUP PRESENTATIONS 220

Ficure 11.3: Cayley graph for As
with respect to S = {a, b}, where a is
a 1/5-rotation about a vertex and b
is a 1/2-rotation about an edge in an
icosahedron.

5This equivalence can be visualized as
follows, where X “grows a whisker”
along the single edge.
X

Our discussion follows the work of
Swan®.

6 Andrew W. Swan. “On the Nielsen—
Schreier Theorem in Homotopy Type
Theory”. In: Log. Methods Comput.
Sci. 18.1 (2022). por: 10.46298/1mcs-
18(1:18)2022.

https://doi.org/10.46298/lmcs-18(1:18)2022
https://doi.org/10.46298/lmcs-18(1:18)2022

Nielsen—Schreier theorem, which states that a finite index subgroup H
of a free group Fs is itself a free group. Furthermore, when § is finite,
the set of free generators of H is itself finite.

Recall from Definition 5.3.2 that a subgroup is (or can be represented
by) a transitive G-set X : BG — Set along with an element of X (shg).

DErINITION 11.4.1. A subgroup of a group G has finite index m if the
underlying transitive G-set, X :BG — Set is a family of finite sets of
cardinality m. 4

The is the case, of course, if and only if the set acted on, X(shg), is
finite of cardinality m. Notice that the definition doesn’t depend on the
chosen element of X (sh¢), so applies equally to all conjugacy classes of
the subgroup.

Recall also that the classifying type of the subgroup is the total type
Y+.pc X(f) (which is pointed via the chosen point of X(shg)). We'll use
the Flattening Construction 11.2.8 to analyze this in case where G is the
free group on a set S, Fs, so we need to show that the quotient of the
resulting graph is equivalent to 1/T for some set T.

We do this by finding a “spanning tree” in the graph.

DEerFINITION 11.4.2. A graph (V, E) is connected if V /E is a connected type
and it’s a tree if V /E is contractible. J

DEFRINITION 11.4.3. A subgraph of a graph (V,E) consists of a subtype
h:U — V of the vertices along with, for every pair of vertices v, w in U,
a subtype D(v, w) of the edges E(v, w). 4

If we represent graphs by source and target maps, then this amounts
to embeddings i :U <= V and k: D < E along with witnesses that the
following squares commute:

D*sr D<ESE
S C A
U—m Vo U=V

DEFINITION 11.4.4. A spanning tree in a graph (V, E) is a subgraph (U, D)
such that (U, D) is a tree, and the embedding of the vertices U — V is
an equivalence. J

Equivalently, it’s given by subtypes of the edges (leaving the vertices
alone) such that the underlying graph is a tree. Very often we’ll require
that the edge embeddings are decidable, i.e., we can decide whether a
given edge e : E(v, w) is part of the tree.

LEMMA 11.4.5. Suppose we have a connected graph (V, E) whose type of vertices
decomposes as a binary sum V= Vy 11 Vy and we have vy : Vy and vy : V.
Then there merely exists an edge e either with source in Vy and target in V1 or
the other way round.

The situation is illustrated in Figure 11.4, where we assume there is
an edge relation on the binary sum that gives a connected graph, and
hence there must be a “crossing edge” e, going either from Vj to V; or
the other way.

Proof. We may assume V = Vj L1 V1 by path induction. The idea is then
to define a family of propositions P : V /E — Prop that, on one hand is

GROUP PRESENTATIONS 221

FIGURE 11.4: A connected graph with
a crossing edge

trivially true over Vp, and on the other hand expresses our desired goal,
the existence of a “crossing edge”, over V.

We now define P(z), for z:V/E, by the induction principle for the
graph quotient V /E. We set P([inl,]) := True for v: V and

P([inr,) :=

Y Y (E(uo, u1) 11 E(u1, uo)) ||

M(]:V[) u1:V1

for v: V1. We must then prove that the propositions P([v]) and P([v’])
are equivalent whenever there’s an edge from v to v’. This is the case
by definition when v, v’ lie in the same summand, and it’s also the case
when they lie in different summands, since then we get a witness for the
truth over V7.

Since V' /E is connected, P must have a constant truth value, and since
P([inly,]) = True, every P(z) is true. Hence also P([inry,]) is true, which
is exactly what we wanted. |

LeMMA 11.4.6. Fix a connected graph (V , E) where V has decidable equality and
E is a family of sets. For any subgraph (U, D), where the embedding U — V is
decidable, and with vertices u € U and v € V' \ U, there merely exists” a larger
subgraph with exactly one more vertex and one more edge, (U 11 1,D 11 1)
such that the induced map on graph quotients U /D — (UL 1)/(D LI 1) is an
equivalence.

Proof. Since the embedding U < V is decidable, we can write V' as the
binary sum U LT (V \ U). Apply Lemma 11.4.5 to find a “crossing edge”
e, and form the new subgraph (U L1 1, D L1 1) by adding the incident
vertex not in U as well as the edge e itself. The embedding ULl T — V
is still decidable, since V has decidable equality. Finally, we have

uUun/(put > (UL/1)/b>uU/p,
using Exercises 11.2.10 and 11.2.11, as desired. O

Lemma 11.4.7. Let (V, E) be a connected graph where V is an n-element set,
and E is a family of decidable sets. Then the graph merely has a spanning tree
with exactly n — 1 edges.

Proof. We show by induction on k, with 1 < k < n, that there merely
exists a subgraph (U, D) with k vertices, k—1 edges, and U /D contractible,
i.e,, the graph (U, D) is a tree.

For k = 1, we use that V/E is connected to get that V merely has a
vertex v. This then defines the desired subgraph on one vertex with no
edges, and this is clearly a tree.

Suppose we have such a desired subgraph (U, D) with k vertices and
k —1edges and k < n. Since V is finite, there exists vertices # € U and
v € V\ U. Now apply Lemma 11.4.6 to get the next subgraph.

Finally, the subgraph (U, D) with n vertices and n — 1 edges gives
the desired spanning tree, and any embedding of an n-element set in
another n-element set is an equivalence.® o

THEOREM 11.4.8 (Nielsen—Schreier Theorem). Suppose that S is a set with
decidable equality and X : BFs — Set defines a (conjugacy class of a) finite

GROUP PRESENTATIONS 222

7Keep in mind that subgraphs consist
not only of the vertices and edges,
but also of the corresponding embed-
dings into the supergraph. It’s for
the sake of these that we only prove
mere existence.
D——> DIl ——E

W W W
Ue—uiluil «——V
N N d

u/p S Uuun/Dil) — V/E

P

K\-;
0
FiGure 11.5: A connected graph

on 6 vertices with a spanning tree
indicated in red.

8 Assuming the Axiom of Choice, we
can show the mere existence of a
spanning tree in any graph (V, E)
with a sets of vertices and edges. See
the above work by Swan.

index subgroup of Fs. Then), . gg, X(2) is merely equivalent to BFr for some
set T.

Moreover, if S is a finite set of cardinality n and the subgroup has index m,
then T can be taken to be a finite set of cardinality m(n — 1) + 1.

Proof By the Flattening Construction 11.2.8, we have an equivalence
t:(X,.pr X(z)) > V/E, with V := X(*) and E(x, y) = ¥.5(x —> y).
By the finite index assumption, V is a finite set, say, of cardinality m >0,
and since both S and X(¢) are decidable, so is E.
By Lemma 11.4.7, the graph (V, E) merely contains a spanning tree
with m — 1 edges Eg, and complementary edge set E;. Hence, using
Exercise 11.2.10, we have a chain of equivalences:

V/E = (V/Ey)/E1 = 1/E1 = BF,

This establishes the first claim with T = E;.

If, furthermore, S has cardinality n, then the graph (V, E) has mn
edges, as there are precisely n outgoing edges from each vertex. Since
=mn-m+1l=mn-1)+1
edges in E1, as desired. |

Ep has m —1 edges, that leaves mn — (m — 1)

(This also has an automata theoretic proof, see below.)

11.5 Intersecting subgroups

Stallings folding?.

THEOREM 11.5.1. Let H be a finitely generated subgroup of F(S) and let u € S*
be a reduced word. Then u represents an element of H if and only if u is
recognized by the Stallings automaton S(H).
THEOREM 11.5.2. Let H be a finitely generated subgroup of F(S). Then H has
finite index if and only if S(H) is total.

Furthermore, in this case the index equals the number of vertices of S(H).
CoRrOLLARY 11.5.3. If H has index n in F(S), thentk H =1+ n(card S — 1).

THEOREM 11.5.4. Suppose H1, Hy are two subgroups of F with finite indices
h1, hy. Then the intersection Hy N Hy has finite index at most hy hy.

11.6 Connections with automata (*)

(S is still a fixed finite set.)

Let:: F(S) — S* map an element of the free group to the corresponding
reduced word. The kernel of 1 is the 2-sided Dyck language Ds.

The following theorem is due to Benois.

THEOREM 11.6.1. A subset X of F(S) is rational if and only if (X) C S* isa
regular language.

LemMA 11.6.2. Let p:S* — §* map a word to its reduction. Then p maps
reqular languages to reqular languages.

The following is due to Sénizergues:
THEOREM 11.6.3. A rational subset of F(S) is either disjunctive or recognizable.

Given a surjective monoid homomorphism « : 5* — G, we define the
corresponding matched homomorphism &:5* — G by (&(a™') = a(a)™L.

GROUP PRESENTATIONS 223

9John R. Stallings. “Foldings of G-
trees”. In: Arboreal group theory
(Berkeley, CA, 1988). Vol. 19. Math.
Sci. Res. Inst. Publ. Springer, New
York, 1991, pp. 355-368. por: 10 .
1007/978-1-4612-3142-4_14.

The qualitative part of Theo-

rem 11.5.4 is known as Howson’s theo-
rem, while the inequality is known as
Hanna Neumann’s inequality. Hanna’s
son, Walter Neumann, conjectured
that the 2 could be removed, and this
was later proved independently by
Joel Friedman and Igor Mineyev.

https://doi.org/10.1007/978-1-4612-3142-4_14
https://doi.org/10.1007/978-1-4612-3142-4_14

THEOREM 11.6.4 (?). Consider a f.g. group G with a surjective homomorphism
a:F(S) — G. Asubset X of G is recognisable by a finite G-action if and only
ifa1(X) c S* is rational (i.e., reqular).

THEOREM 11.6.5 (Chomsky-Schiitzenberger). A language L C T* is context-
free if and only if L = h(R N Ds) for some finite S, where h:T* — S* is a
homomorphism, R C S* is a regular language, and Dy is the Dyck language for
5'10

TureorEM 11.6.6 (Muller-Schupp, ?). Suppose @:S* — G is a surjective
matched homomorphism onto a group G. Then G is virtually free (i.e., G has
a normal free subgroup of finite index) if and only if ker(&) is a context-free
language.

THEOREM 11.6.7.

The Stallings automaton is an inverse automaton: it’s deterministic, and
there’s an edge (p, 4, q) if and only if there’s one (g, A, p). We can always
think of the latter as the reverse edge. (It’s then also deterministic in the
reverse direction.)

Two vertices p, q get identified in the Stallings graph/automaton if
and only if there is a run from p to g with a word w whose reduction is
1. (So a word like aAAaBBbb.)

THEOREM 11.6.8. Let X C F(S). Then Y is a coset Hw with H a finitely
generated subgroup, if and only if there is a finite state inverse automaton whose
language (after reduction) is Y.

CoROLLARY 11.6.9. The generalized word problem in F(S) is solvable: Given
a finitely generated subgroup H, and a word u : S*, we can decide whether u
represents an element of H.

As above, we get a basis for H as a free group from a spanning tree in
S(H).

THeEOREM 11.6.10. We can decide whether two f.g. subgroups of F(S) are
conjugate. Moreover, a f.g. subgroup H is normal if and only if S(H) is
vertex-transitive.

Proof. G, H are conjugate of and only if their cores are equal. o

There are other connections between group theory and language
theory:
THEOREM 11.6.11 (Anisimov and Seifert). A subgroup H of G is rational if
and only if H is finitely generated.

THEOREM 11.6.12. A subgroup H of G is recognizable if and only if it has finite
index.

GROUP PRESENTATIONS 224

1References TODO. The theorem
is also true if we replace Dg by its
one-sided variant, but in this case it
reduces to the well-known equiva-
lence between context-free languages
and languages recognizable by push-
down automata.

The Stallings automaton for H can
be constructed in time O(n log* n),
where 7 is the sum of the lengths of
the generators for H. [Cite: Touikan:
A fast algorithm for Stallings’ folding
process.] Once this has been con-
structed, we can solve membership
in H in linear time.

12

Abelian Groups

12.1 Brief overview of the chapter

12.2 Abelian groups

Recall that given a pointed type X, we coerce it silently to its underlying

unpointed type X. whenever this coercion can be inferred from context.

For example, given a group G, the type BG =~ BG can not possibly mean

“

anything but BG. =~ BG. as the operator acts on bare types. To
refer to the type of pointed equivalences (that is the pointed functions
whose underlying functions are equivalences), we shall use the notation

BG . BG.

12.2.1 Center of a group

DerINITION 12.2.2. Let G be a group. The center of G, denoted Z(G), is the
group Aut(pc. =pc.)(reflsc.). 4

There is a natural map evg,, :(BG. = BG.) — BG. defined by
eVshe (@) = @(shg), where the path ¢ is coerced to a function through
univalence. In particular, evg, (reflgg.) = shg. It makes the restriction
of this map to the connected component of reflgg, a pointed map. In
other words, it defines a group homomorphism

zg : Hom(Z(G), G).

such that Bz = evg,,. We will now justify the name center for Z(G),
and connect it to the notion of center for abstract groups in ordinary
mathematics. The homomorphism z¢ induces a homomorphism of
abstract groups from abs(Z(G)) to abs(G). By induction on p : reflg. =
¢ for ¢ : BG. = BG., one proves that apy, (p) = p(shg): indeed, this is
true when p = reflieq,.. . One proves furthermore, again by induction
on p:reflgc. = ¢, thatap,, = (9 = p(shc) ' qp(she)).

In particular, when ¢ = reflgg_, it shows that for every p :reflgc. =
reflpc., the following proposition holds:

11 p(she)g = gp(she)
g:UG

In other words, abs (zg) maps elements of abs(Z(G)) to elements of
abs(G) that commute with every other elements. (The set of these
elements is usually called the center of the group abs(G) in ordinary
group theory.)

LemMma 12.2.3. The map Bzg is a set bundle over BG.

225

We work transparently through the
equivalence

(BG. = BG.) ~ (BG = BG)

so that idpg, is freely used in place of
reflgg. when convenient.

shg +> shg
p(shc)lll ulp(shc)
¢(shg) W ¢(shg).

FIGURE 12.1:

Proof. One wants to prove the proposition isSet((Bzg)™(x)) for each
x : BG. By connectedness of BG, it reduces to showing the proposition
only at x = shg. However,

(Bz¢) (shg) = Y shg S ¢(shg)
¢:BZ(G)
Recall that BZ(G) is the connected component of reflgc. in BG. = BG..
In particular, if (@, p) and (1, q) are two elements of the type on the right
hand-side above, the characterization of identity types in sum types
gives an equivalence:

(p,p) > W, 9) >), n(sho)p =4
Q=Y

We shall prove that the type on the right is a proposition, and it goes as
follows:

(1) for m:p — 1, the type m(shg)p = g is a proposition; hence
Yn:p=y T(shg)p = q is a subset of the set ¢ = 1), so for elements
(r,!) and (7', !) of the subset, we have to prove = = 7/,

(2) because 7t = 7’ is a proposition, by connectedness of BG, it is enough
to prove n(shg) = 7'(shg),

(3) finally the propositional condition on 7w and 7’ allows us to conclude
that r(shg) = gp~! = 7'(shg).

O

CoROLLARY 12.2.4. The induced map abs (z¢) : abs(Z(G)) — abs(G) is injec-
tive.

The following result explains how every element of the “abstract
center” of G is picked out by abs (zg).

LemmMma 12.2.5. Let ¢ : UG and suppose that gh = hg for every h:UG. The
fiber (apBZG)‘l(Q) contains an element.

Proof. One must construct an element ¢ :reflpc. = reflpc. such that
g = 8(shg). We shall use function extensionality and produce an
element ¢(x):x = x for all x: BG instead. Note that x = x is a set, and
that connectedness of BG is not directly applicable here. We will use a
technique that has already proven useful in many situations in the book,
along the lines of the following sketch:

(1) fora given x:BG, if such a §(x):x = x existed, it would produce an
element of the type T(§(x)) for a carefully chosen type family T,

(2) aim to prove isContr(}_, .=, T(1)) for any x: BG,

(3) this is a proposition, so connectedness of BG can be applied and only
isContr(}_,, . yg T(#)) needs to be proven,

(4) hopefully, 3. ;g T(u) reduces to an obvious singleton type.

Here, for any x : BG, we define the type family T: (x = x) — U by

()= T (rg=qp.

p:shg>x

ABELIAN GROUPS

226

ABELIAN GROUPS 227

And we claim that }, . =,, T(q) is contractible for any x : BG. Because this
is a proposition, one only need to check that it holds on one point of the
connected type BG, say x = shg. We consider the following composition
of equivalences:

Y T@=) [](pg=ap

q:UG q:UGp:UG

=Y Ile=9

q:UGp:UG

=S)Y UG- (g=9)
q:UG

= Y UG — (g=9)
q:UG

= Y (g=9)

q:UG
1

e

In that composition, the first equivalence is using that ¢ commutes with
every other element p : UG, so that pgp~! = g. The second equivalence
acknowledges the fact that the codomain (g = gq) does not depend on
p anymore, so that the dependent function type inside the sum is a
simple function type. The third equivalence uses the universal property
of propositional truncation under the sum. The fourth equivalence is
the evaluation at |reflg, | under the sum. The last equivalence is the
contractibility of singleton types.

We have just shown that for all x: BG, the type }_;.,=, T(q) is con-
tractible. We define now §(x):x = x as the chosen center of contraction
of that type. More precisely, by connectedness of BG, the inverse ¢
of the exhibited equivalence ¢ : Y.y T(q) = 1 produces a dependent
function of type [1,.361 = Y.q:x>x T(q), and ¢ is the pointwise evalua-
tion at the unique element triv of 1. In particular, §(shg) = ¢~ }(triv) = ¢
as wanted.]

Together, Corollary 12.2.4 and Lemma 12.2.5 show that abs (z¢) estab-
lishes an equivalence

(12.2.1) UzG) >), [] gh=hg
g:UGh:UG

In yet other words, BZ(G) := (BG: = BG:) e, ..) is (equivalent to) the

7

classifying type of a group whose abstract group is the “abstract center”
of abs(G).
The following lemma is then immediate:

LeEmMA 12.2.6. A group G is abelian if and only if z¢ is an isomorphism of
groups.

Remark 12.2.7. In the style of this book, we could have used Lemma 12.2.6
directly as the definition of abelian groups. However, the definition of z¢
would have been too intricate to give properly as early as Definition 4.2.31. The definition of the universal set
4 bundle is reminiscent of the notion

of connected component: instead of
selecting elements that are merely

12.2.8 Universal set bundle and simple connectedness equal to a fixed element a, the uni-
. .. versal set bundle selects elements
Let us say that a pointed type (A, a) is simply connected when both A and together with mere witnesses of the

a = a are connected types. equality with a.

DerINITION 12.2.9. Let A be a type and 4 : A an element. The universal set
bundle of A at a is the type

A1) =) lla > xllo
x:A

together with the first projection A;)(1) — A.* 4

When needed, we will consider A(;)(1) as a pointed type, with distin-
guished point (a, |refl,|o). Note that when A is a groupoid, then the set
truncation is redundant and the universal set bundle of A at a is then
the singleton at a. In particular, groupoids have contractible universal
set bundles.

The identity types in A(;)(1) can be understood easily once we intro-
duce the following function for elements x, v,z : A:

——:lly = zllox1lx = yllo = llx = zllo.

It is defined as follows: given x: ||y = zl||o, we want to define y - _in
the set [[x = yllo = ||x = z||o, hence we can suppose x = |g|o for some
g:y = z;now given 1 :||x = yl|o, one want to define |g|o - 7 in the set
|lx = z||o, hence one can suppose 7 = |p|o for some p :x = y; finally,
we define
l9lo-Iplo =1q - plo.

Then one proves, by induction on p:x = y, that ’rrp‘r',“i’—”0 is equal to
the function « - |p|o - @. In particular, there exists an equivalence from
the type of path between two points (x, a) and (y,) of the universal set
bundle A(;)(1) to sum type, analagous to the identification of paths in
sum types:

(12.2.2) (x,0) > ,B) > Y, Iplo-a=8.

prx>y
This description allows us to prove the following lemma.

LemMa 12.2.10. Let A be a type and a : A an element. The universal set bundle
Aa)(1) is simply connected.

Proof. First, we prove that A(;)(1) is connected. It has a point (a, |refl,|o)
and, for every (x, a): A(;)(1), one wants ||(a, |refl;|o) = (x, a)||. This is
proposition, hence a set, so that one can suppose a = |p|o for a path
p:a = x. Now, the proposition |p|o - |refl;|o = |p|o holds. So one can
use the inverse of the equivalence of Equation (12.2.2) to produce a path
(a, |refla|o) = (x, @).

Next, we prove that (a, |refl,|o) = (a, |refl;|o) is connected. One uses
again the equivalence of Equation (12.2.2) to produce a composition of

equivalences:
((a, |reflalo) = (a,|reflalo)) = 3 (Iplo = Ireflao)
p:a=a
= L (lp = reflal)
p:a=a

In other words, (a, |refl,|o) = (a, |refl,|o) is equivalent to the connected
component of refl, in @ = a. In particular, it is connected. O

Lemma 12.2.11. Let A be a type pointed at a : A. The projection fst : A5 (1) —.
A is a universal set bundle in the sense of Definition 3.3.10.

ABELIAN GROUPS 228

'The number 1 indicates that A;)(1)
is the universal 1-connected cover of
A.

Proof. Let f:B —. Abe a pointed set bundle. We need to show that the
type of pointed functions ¢ : A(;)(1) —. B together with an identification
q: fst = fo is contractible. However, such a ¢ is uniquely determined
by the family of functions ¢y : ||a = x|[p — f~'(x)forx: A. Foreachx: A,
f~Y(x)isaset, so @y is uniquely determined by ¢y o|_|g:a = x — f~1(x).
By induction on p:a = x, we prove that ¢.(|p|o) = trp{,f-l (b, fo) where
b is the element pointing B and fy the path pointing f. Indeed, for
p = refl;, we get @, (|refl|o) = (¢(|refls|o), Grefi,),) = (b, fo) because q is
an indentification fst = f ¢ of pointed functions.]

12.2.12 Abelian groups and simply connected 2-types

We will now give an alternative characterization of the type of abelian
groups, more in line with the geometrical intuition we are trying to build
in this chapter. Recall that a type A is called a 2-truncated type, or 2-type
for short, when the identity type x = y is a groupoid for every x, y : A.

THEOREM 12.2.13. The type AbGroup of abelian groups is equivalent to the
type of pointed simply connected 2-types.

Proof. Define the map B?: AbGroup — U. by B*G = Ugc.)(1).> Prov-
ing that B>G is a 2-type is equivalent to proving the proposition
isSet(p = q) for all p,q:x = y and all x, y:B?G. One can then use
connectedness of B2G and restrict to only show that p = g is a set
for all path p, q: (BG-, |idgc.|0) = (BG-, |idgc.|o). Recall that there is a
canonical equivalence of type:

(12.2.3)

((BG., lidgc.lo) = (BG., lidgc.l0)) = Y, trp,(lidgc.lo) = lidsa.lo
r:BG.>BG.

Under that equivalence, p and g can be rewritten as (po,!) and (o, !)
with po, o : BG. = BG. and the elements ! are proofs of the proposition
trp,, (lidpg.lo) = lidpe.|o and trp, (lidpg. o) = |idgc.|o respectively. As
a consequence, the proposition isSet(p = ¢) is equivalent to the propo-
sition isSet(po = go). As part of the definition of the group G, the type
BG. is a 1-type, hence BG. = BG. is also a 1-type through univalence.
This means that isSet(pp = o) holds.
So one gets a map, denoted again B? abusively,

B?: AbGroup — U2

where the codomain 7/ is the type of pointed simply connected 2-types,
that is

U=) (isConn(A)xisConn(a = a) X isGrpd(a = a))
(A,a):U.

We shall now provide an inverse for this map. Given a pointed simply
connected 2-type (A, a), one can construct a group, denoted Aut*(A, a),
with classifying type:

BAut?(A, a) = (a = a, refl,).

Indeed, this pointed type is connected because (A,) is simply connected,
and it is a 1-type because A is a 2-type. Moreover, Aut*(A, a) is abelian.

ABELIAN GROUPS 229

2This is slightly misleading: If G is an
abelian group in universe U, then
this definition makes B?G a pointed
type in a successor universe, which
is not what we want. The solution is
to note that B?G is a locally U-small
type, which as a connected type is
the image of the base point map
pt:1 — B2G, so it’s an essentially -
small type by the Replacement Prin-
ciple 2.19.4. So really, B2G should
be the 7I-small type equivalent to
Upg. (D).

To see it, let us use the bare definition of abelian groups (cf. Defini-
tion 4.2.31). We shall then prove that for all elements g, i : refl, = refl,,
the proposition gh = hg holds. This property holds in even more
generality and is usually called “Eckmann-Hilton’s argument”. It goes as
follows: for x,y,z:A, forp,q:x > yandr,s:y > zandforg:p > g
and h:r = s, one prove

(12.2.4) ap__q(h) -ap,. (8) =ap;,. (8)- ap_,p(h).

This equality takes place in r - p = s - q and is better represented by
the diagram in Figure 12.2. One prove such a result by induction on

P r P r
x/H?]//—\Z x/\]//ﬂh\z
~1 2 ~=
q _ s
r p
ST DI T U

q s q

h. Indeed, when h = refl,, then both sides of the equation reduces
through path algebra to ap, (g). Now we are interested in this result
when x, y, z are all equal to aiby definition, and p, g, r, s are all equal to
refl, by definition. In that case, one has that AP, and ap refl, both act
trivially, and the equation becomes: h - g = g - h.))

One still has to prove that the function Aut? is an inverse for B?. Given
an abelian group G, the proof of Lemma 12.2.10 gives an equivalence
between BAut*(B>G) and the connected component of reflgg. in BG. =
BG.. By definition, this is the classifying type of Z(G). Being abelian, G
is isomorphic to its center (Lemma 12.2.6), and so it yields an element
of Autz(BzG) —croup G. Conversely, take a pointed simply connected
2-type (A, a). We want to produce a pointed equivalence @: (A, a) =
B2(Aut?*(A, a)). One should first notice that the function

ABELIAN GROUPS 230

FiGURE 12.2: Visual representation
of Equation (12.2.4). The vertical
dotted lines denotes composition.

If X . Y denote the type of pointed
equivalences between pointed types

X, Y :U., then the univalence axiom

implies that there is an equivalence

X=Y)=(X>.Y).

(12.2.5) eVief, BAut? (BZ(AutZ(A,a))) =(a>a)>@> ”))(reﬂu:a) — (a = a,refly).

that maps a path
(p,):(a = a,lrefl,=l0) = (@ = a, |refl,=,4]0)

to the evaluation p(refl,):a — a is an equivalence, because Aut?(A, a) is
an abelian group.

We will now define a pointed map @: (A, a) —. B2(Aut?(A, a)), and
prove subsequently that this is an equivalence. Let T: A — U be the
type family (of sets) define by

T(a') =)3 [T a=Ip-_lo

a:||(@a>a)=(a>a’)|op:a>a’

We claim that T(a’) is contractible for all a’: A. By connectedness of A, it

is equivalent to show that T(a) is contractible. However,

H a=lp-_lo

a:||(@a>a)>S@@>a)|op:a>a

T(a)

R

a = |ida:a|0
a:|[(a=a)>(a>a)llo

~1

Then, we define ®(a’) to be the element (2 = a’, k) : U(y5,4)(1) where
K is the first projection of the center of contraction of T(a’). In par-
ticular, following the chain of equivalences above, ®(a) is defined as
(a = a,|refl,=,]0), hence ®(a) is trivially pointed by a reflexivity path.
To verify that @, thus defined, is an equivalence, one can use connect-
edness of B(Aut’(A, a)) and only check that @~ 1(a = a,|refl,=,,|o) is
contractible. However, there is a canonical equivalence of type:

O a S a,|reflz4l0) > Y) [plo = xar.

a’ A g:(a>a)=(a>a’)

So we will show that the type on the right hand-side is contractible.
For an element a’: A together with ¢ : (2 = a) ~ (a = a’) such that the
proposition |@|g = k. holds, a path between (a,id,=,,,!) and (a’, @, !)
consists of a path p:a = a’ and a path g:(x — px) = ¢@. We have a
good candidate for p, namely p := @(refl;):a = a’. However we don't
have quite g yet. Consider, for any a’: A, the function

evgéﬂa : ((a i) a’ |reﬂgi>u|0) = (ﬂ i) a’, Ku’)) N (ﬂ i) a,)

defined as (¢, !) — y(refl,). Note that ev] g is precisely the equivalence
BAut?(B2Aut?*(A, 2)). = (a = a) described in Equation (12.2.5). Hence,
by connectedness of A, one gets that the proposition isEquiV(eV;’éﬂu)
holds for all a’: A. In particular, because the propositions |@|p =
and |p - _|o = k4 holds, one gets elements (¢, !) and (x — px,!) in the
domain of eréﬂ[7 . Their images ev?;ﬂﬂ (¢, and evféﬂa (x = px,!) are both
identifiable with p. By composition, we obtain a path (x — px,!) = (¢,!)
in the domain. The first component provide the path q: (x — px) = ¢
that we wanted. O

12.2.14 Higher deloopings

The function B? defined in the proof of Theorem 12.2.13 provides a
delooping of BG whenever G is abelian. That is, there is an identification
QB2G = BG. A systematic way of obtaining such deloopings has been
developed by David Wirn3, that can be applied here to give an alternative
definition of B>G, and to obtain further deloopings of it.

DerINITION 12.2.15 (Wérn). Given a pointed type X, the type of X-torsors
is

TX = Y |IY|l % <]’[(y, y) . x))
Y:Uu y:Y

The type of pointed X-torsors is TX. :=) ;.rx fstt. 4

The usefulness of these definitions in the context of deloopings comes
from the following proposition.

ABELIAN GROUPS 231

3David Warn. Eilenberg-MacLane
spaces and stabilisation in homotopy
type theory. 2023. arXiv: 2301.03685
[math.AT].

https://arxiv.org/abs/2301.03685
https://arxiv.org/abs/2301.03685

LemmMa 12.2.16 (Warn). Let X be a pointed type. If T X. is contractible, then
for any pointed X-torsors (¢, y), the pointed type (T X, t) is a delooping of X.

Proof. Suppose (t,y) is a center of contraction for TX.. By contracting
away (Lemma 2.9.10) in two different ways, we obtained a composition
of equivalences:

t>t)> Z fstu x (t > u) > fstt
u:TX
that maps refl; to y. In other words, this equivalence, trivially pointed,
presents (TX, t) as a delooping of (fstt, y). Moreover, the X-torsor ¢
comes by definition with an identification (fstf, y) =. X. So in the end,
we have an equivalence (TX, t) 5. X. O

Exercise 12.2.17. Recall that a section (see Definition 2.17.1 and its ac-
companying footnote) of a function f: A — B is a functions:B — A
together with an identification f o s = idg. Construct an equivalence
from the type sec f of sections of f to the type [T,.53;.40 = f(a). 2

Consider the evaluation function evy, y : (X: = Y) — Y (defined
by path-induction, sending reflx to the distinguished point of X). In
other words, the function evy. y takes an identification of X. with Y and
returns the point in Y corresponding to the distinguished point of X
under this identification. Applying Exercise 12.2.17 to evx, y we get an
equivalence of type

TX = Z IY|l % sec(evx, y).
Y:U

This alternative description of the type of X-torsors is the key ingredient
to compare Wirn’s delooping of the classifying type of an abelian group
with our.

Lemma 12.2.18. For any abelian group G, the type T(BG) can be identified with
B2G.

Proof. Let G be an abelian group. We first construct, for each type Y, a
function fy :||Y]|| X sec(evgg.,y) — ||BG: = Y]|o, and then prove that fy
is an equivalence. Given a type Y and an element (!, s) : || Y|| X sec(evx. v),
we can easily prove that Y is connected: being connected is a proposition,
so we can assume that we have an actual y: Y and then s(y):BG. = Y
proves that Y is as connected as BG. is. Consequently s must send Y
into one of the connected component of BG. = Y, that we choose to be
fr(!,s). With this definition, the fiber of fy at any given c:||BG. = Yl|o
can be identified with the type of sections s of evpg. y with values in
c. However, for any Z and p : BG. = Z the restriction of the evaluation
evpg.,z Ip :(BG: = Z)(p) — Z is an equivalence: indeed, by induction,
we only have to show it for p = reflpg., in which case evpg. pG. lreflys. 15
exactly the map Bz defined in Section 12.2.1, which is an equivalence
since G is abelian by Lemma 12.2.6. Thus, given any p, the fiber of fy at
|plo is contractible. Being contractible is a proposition, hence a set, so
it follows that the fiber of fy at any c:||BG. — Y]|o is contractible. In
other words, fy is an equivalence, as announced. We have thus a chain
of equivalences:*.

ABELIAN GROUPS 232

4Notice that the construction of an
equivalence TX 5 U(x,)(1) that we
carried for X = BG relies only on X.
being connected and evx. x. Irefly.
being an equivalence. Such types X
are called central and are studied in
details by Buchholtz et al.5.

5Ulrik Buchholtz et al. “Central H-
spaces and banded types”. 2023.
arXiv: 2301.02636.

https://arxiv.org/abs/2301.02636

T(BG) > Y ||Y|| x sec(evx.,y) = Y_IIBG. = Ylo = B’G
Y:U Y:U

O

Notice that where Warn’s method shines, compared to our, is in
producing further delooping B" G for n > 3.

12.3 Direct sums and reduced wreath products

Sketch: We saw in Section 8.6 how to produce sums of groups, and
noticed that a sum of abelian groups is rarely abelian. Indeed, the free
group on two generators F; is the sum of two copies of Z.

But a very similar construction works to produce sums of abelian
groups.
ExamriE 12.3.1 (Lamplighter group). C;:Z 4

12.4 Stabilization

ABELIAN GROUPS

233

13
Rings, fields and vector spaces

In this chapter we will extend the hierarchy of algebraic structures
from monoids (Definition 7.2.1) and groups (Definition 4.2.8) to rings
(Definition 13.1.2), fields (??), and vector spaces (??). Of all these
structures there are several varieties, satisfying additional properties,
such as abelian groups (Section 12.2), non-trivial rings (??), commutative
rings (??),

Quotients; subspaces (= ?). Bases and so. Dual space; orthogonality.
(all of this depends on good implementations of subobjects). Eigen-stuff.
Characteristic polynomials; Hamilton-Cayley.

13.1 Rings, abstract and concrete

A ring is an algebraic structure that consists of a group and a monoid that
share the same underlying set. The interaction between the respective
operations is governed by laws that are called the distributivity laws. The
standard example of a (commutative) ring is the ring with set of integers
as underlying set, with addition as group operation and multiplication
as monoid operation. Note that multiplication in a ring need not be
commutative." We start by defining rings abstractly.

13.1.1 Abstract rings

We follow the convention that the group data of an abstract group are
denoted by 0, +, — and the monoid databy 1, -.

DEFRINITION 13.1.2. An abstract ring R, consists of an abstract group
(R,0,+,-) and a monoid (R, 1, -) with the same underlying set R. More-
over, the following equations should hold for all 4, b, ¢ : R:

(1) a-(b+c)=a-b+a-c (the left distributive law)

(2) (a+b)-c=a-c+b-c (theright distributive law)

The latter two properties are together denoted by DistrLaws(R, -, +).

The abstract ring X, is called non-trivial if 0 # 1 and commutative if its
multiplication - is commutative, thatis,ifa-b =b-aforalla,b:R. .

The abstract group (R, 0, +, —) is called the (additive) group of X , and
the monoid (R, 1, -) the (multiplicative) monoid of ..

DeriNtTION 13.1.3. The type of abstract rings is defined as*
Ring = 2 Z Z
(R,0,4+,-): GroupabS e:R p:R—>R—-R

MonoidLaws(R, e, i) X DistrLaws(R, , +).

234

*In contrast, in Exercise 13.1.4 you
are asked to prove that the group
of a ring is always abelian, as a con-
sequence of the extra structure and
properties.

2See Section 7.2 for the monoid laws.

RINGS, FIELDS AND VECTOR SPACES 235

The type CRing of commutative rings is similar to the type of rings with
the additional property [, ;. p(a, b) = u(b, a). 4
ExErcisE 13.1.4. Let R be an abstract ring. Show that the additive group
of R is abelian. Hint: elaborate (a +1) - (b + 1). J

DermniTiON 13.1.5. Let &, S : Ring be abstract rings, with & consisting of
an abstract group R with underlying set R and a monoid (R, 1, ‘r), and
S consisting of an abstract group S with underlying set S and a monoid
(S,1s,+s). An abstract ring homomorphism from K to S is an abstract
homomorphism f : Hom®*(R, S) that is a monoid homomorphism from
(R,1g,r) t0 (S, 15, -5). a
ExamrLE 13.1.6. We elaborate the abstract ring of polynomials with
integer coefficients. 4

13.1.7 Mixed rings

Here we explore a definition of a ring that is based on a concrete group
G and left and right multiplications that are still half abstract.

We first note that, for any abstract ring X and elements a, b : R, the
left multiplication function (a - _) and the right multiplication function
(_- b) are abstract homomorphisms of the additive group (R,0,+,-)
of R to itself.3 There are two ways to compose them: (a - (_ - b))
and ((a - _) - b). Equality of the latter two functions is an elegant way
of expressing associativity. These observations lead to the following
alternative definition of a ring.

DEFINITION 13.1.8. An mixed ring R consists of a group# also denoted R
together with a symmetry 1z : UR and two maps ¢, r : UR — Hom(R, R)
from the set of symmetries in R to the set of homomorphisms from R
to R.5 Given g : UR, we write {; for the homomorphism {(g) and r, for
r(g). Moreover, the following equations should hold.

(1) b, =idg = r1, (the multiplicative unit laws)
(2) (Ulg)(h) = (Ury)(g), for all g, h: UR (the coherence law)
(3) € or =r ol (theassociativity law)

The ring R is called commutative if { = r, and non-trivial if 1 # reflg. .

The coherence law (2) allows us to abbreviate both (Ufg)(h) and
(Ury)(g) by g - h. We will do this when no confusion can occur. Then,
{ =ramountsto g-h =h-g, forall g, h:UG, as could be expected from
the abstract case.

We proceed by giving the standard example of the integers as a ring
in the sense of Definition 13.1.8.

ExampLE 13.1.9. Consider the group Z classified by the circle. Using
the same notation Z also for the ring, take 17 := O and £:(+ = *) —
Hom(Z, Z) defined as follows. For every g:+ = ¢, let {; be the homo-
morphism classified by the map Bl,(+) := ¢, B{;(O) = g, and pointed
by reﬂexivity.6 Take r := ¢. Now the unit laws, the coherence law and
the associativity law can easily be verified. It follows that (Z,1z,¢,!) is a
non-trivial commutative ring. a

3These functions provide two ways
to write the product a - b, see the
coherence law in Definition 13.1.8(2).

41t will follow as in Exercise 13.1.4
that the group R is abelian.

5We call these rings “mixed” since
they are based on a concrete group R
and data referring to abs(R).

®The reader may recognize the degree
m map from Definition 3.6.5 as a
special case.

RINGS, FIELDS AND VECTOR SPACES 236

DeriNtTION 13.1.10. The type of rings is defined as

Ring = Z
R:Group 1 : UR ¢,r : UR—Hom(R,R)

RingProperties(R, 1g, £, 7).

The type CRing of commutative rings is similar to the type of rings but
with RingProperties(R, 1g, ¢, 7) X (¢ = r). 4
Exercisk 13.1.11. Let (R, 1,, ¢, r) be an mixed ring. Show that UR is an

abstract ring with additive group abs(R) and multiplicative monoid
(UR, 1R, -). 4

13.1.12 Move to a better place (Ch. 11 or 2)

DeriniTiON 13.1.13. Let X and Y be pointed types and f,g:X —. Y
pointed maps from X to Y. Recall from Construction 2.21.8 the equiva-
lence ptw, of type (f = ¢) = H(f, g), where

H(f,g) =)
k:TTe.x(f:(x)>g:(x)

((k(th) : fpt) = gpt)~

Assume also h: X —. Y and let k:H(f, g) and k’:H(g, k). In line
with the notation for pointed maps, we denote the pair k by (k-, kpt), an
likewise for k’. Define the pointwise composition (k" -ptw k) of k" and k by7

(K ptw k) = (K. -ptw k=, ki - ap(kg(ptx)~_)(kpt))' where
(K% ptw k) = (x = KL(x) - k=(x)).

In Figure 13.1, the upper-right triangle represents the type of k¢, the
upper-left triangle is a reflexivity triangle, the lower triangle represents
the type of _kI’)t, and the outer diagram represents the type k’(pty) -
k(pty) - for = hpt of k. - ap(k;(ptx)-_)(kpt)- Thus we see that (k" -prw k) is
an element of H(f, h). a
ConsTRUCTION 13.1.14. Let conditions be as in Definition 13.1.13. Let
p:(f = g)and q:(g = h). Then we have an identification of ptw (qp) with
PtW.(q) ‘ptw Ptw. (p).

Implementation of Construction 13.1.14. By path induction on g, it suffices
to construct an identification of ptw,(p) and ptw,(refly) -prw ptw,(p).
Using Construction 2.21.8 and Principle 2.9.18 we can identify ptw (refl,)
with the pair ((x > reflg_(y)), reﬂgpt). For use in Figure 13.1 we write the
latter pair as (k’, kl’ot), noting that /1 = ¢ in this case. Writing also (-, kpt)
for ptw, (p), the goal is to identify (k” -ptw k) with k. This identification is
easily obtained by using that refl,(y) - 7 is definitionally equal to 7, for all
x:Xandr: f(x) = g(x). O

DeriniTION 13.1.15. Let A and B be pointed types. For any b:B and
p:pty = b, define the pointed constant map cst?(b, p): A —. Bat (b, p) by
setting cstl(b, p) = (cst?, p).8 Thus cst/! is a function from ¥, 3(pt; =
x)to A —. BS J
REmMARK 13.1.16. In case f and g in Construction 2.21.8 are both the point
of X —. Y, ie, f =g =pty_, y = (cstp,, reflpt), it is convenient to
work with a minor variant of ptw, of type Q(X —. Y) = (X —, QY).
The latter type is obtained by definitional simplifications and replacing

fot
pty — f(pty)
= N il k(pty)
pty g;pt> 8(pty)

N | k’(pty)

h(ptx)

FiGURE 13.1: Path for (k" -ptw k).

7We use k- to denote the first com-
ponent of k, as we do for non-
dependent pointed maps, but we
will often drop this subscript “+”.
We use the notation “pt” for point-
wise composition of k and k’, as well
as of k. and kZ.

8Here Cst? is from Definition 2.2.1.
We may omit superscripts A if A is
clear from the context.

90f course, L. p(pty — x) is con-

tractible. In Definition 13.1.21 we
will see why cst? is useful.

OBy laws of symmetry and right unit.

RINGS, FIELDS AND VECTOR SPACES 237

(h(pty) - reflp) = refl,y, in H(pty_, v, pty_, y) from Definition 13.1.13
by an equivalent type:*°

H(pty_, v, Ptx_.y) = <h XZQY(reﬂPty = h(th))) = (X —. QY).

Abusing notations, we denote this variant also by ptw,. 4

The following construction is useful since it will allow us to simplify
identifying two pointed maps to identifying their underlying unpointed
maps in some important cases. The construction is based on BCFR which
in turn uses a result by Cavallo.

CONSTRUCTION 13.1.17. Let A be a pointed type and let ev : (idy — ida) —
(pt, = pty) be the evaluation map that sends identifications i : (ida — ida)
to paths ptw(i)(pt,): (pt, — pty). Furthermore, let s:(pt, — pt,) —
(ida = ida) be a section of ev, that is, we are given identifications ev(s(p)) =
p forall p:(pt, = pt,). Let also B be a pointed type and consider pointed
maps f, f': B —. A with underlying unpointed maps f., f/:B — A.

Then we have a map (f- = f!) — (f = f/).

Implementation of Construction 13.1.17. By path induction on f. = f/ we
may take f. = f/, so that the goal is to identify™" (f, fpt) with (f, f},), for
two paths fpr, foi: (pty = f(ptp)).

Define r = (fg, - fp’tl) :(f(ptg) = f(ptg)). By Construction 2.21.8, it
suffices to give an element 1 : [],.3(f(b) = f(b)) and an identification
of h(pty) with r. By path induction on f,; we may take pt, = f(ptp), so
that the domain of s is f(pt;) = f(ptg), and so r is an element of this
domain. Now take h(b) := ptw(s(r))(f(b)) for any b:B. Then indeed
h(b):(f(b) = f(b)), and we can identify h(pty) = ptw(s(r))(f(pty)) =
ev(s(r)) with r since s is a section of ev.

|

ConsTrUCTION 13.1.18. Let A be a pointed type and QA its pointed loop type.
We use pt for pt, and refl for refly;, . Let ev :(idoa = idaa) — (refl =
refl) be the evaluation map that sends i : (idga — idqa) to ptw(i)(refl). Then
ev has a section, that is, a map s:(refl = refl) — (idaa = idoa) with
identifications ev(s(a)) = a for all a: (refl = refl).

Implementation of Construction 13.1.18. Recall from Principle 2.9.18 the
equivalence ptw identifying idoa = idaa with I],.0a(p = p). Since
(refl - p) and p are definitionally equal for any p : QA, any a : (refl = refl)
gives a path ap _ (@):(p = p).** Taking refl for p, ap _.q(@) can be
identified with a.'3 For any a: (refl = refl) and p:QA, define s, by
sa(p) =ap_,(a). Then ptw(sa): (idoa = idaa). Hence

s = (a > ptw(s4)): (refl = refl) — (idaa = idaa),

and we have ev(s(a)) = ptw(ptw~!(s,))(refl) = a by Principle 2.9.18
and Exercise 13.1.19. O

Exercise 13.1.19. Given a type A with elements a, x: Aand apathg:a =
x, define p, : (q - refl;) = q by induction on g. For any p:a = a and
B:(p = refly), define i(B): ap g (B) = B - pp by induction on . Now,
give an identification of ap <re;1,; (a) and « for any a : (refl, = refl,). .

""Henceforth we simply write f for f..

2In a picture:

refl —— (refl-p)=p

alu IIlaP; p(@)

refl —=2— (refl -p)=p

3As obvious as this may seem, it
requires a generalization of the type
of a to enable path induction, and
we delegate this to Exercise 13.1.19.

RINGS, FIELDS AND VECTOR SPACES 238

CoROLLARY 13.1.20. The combination of Construction 13.1.17 and Construc-
tion 13.1.18 yields a function from (f. = f!) to (f = f’) for all pointed maps
f,f:B =, QA.

Recall Q) from Definition 4.2.10 and Definition 4.4.3, which together
form a wild functor U. — U., cf. Section 6.4. In the following we will
define a closely related wild functor that is sometimes easier to use.
DEFINITION 13.1.21. For any pointed type A, define OA = (S! —. A).
Let A and B be pointed types and let f:A —. B be a pointed map.
Define O(f): O A —. O B to be composition with f, that s, for g : (S! —.
A), O(f)(g) = (f o g):(S' —. B).** We point O(f) as follows. First,
observe that pty = ptgi_, g = (cstpt,, reflpt,) and O(pty 4) = fopty, =
(cstfpt,), fpt)- So both ptyp and O(pty 4) are images of cstS’, and we
can obtain a path between them by applying cstS' to the unique path
(fot, pf,) between (pty, reflpt,) and (f(pt,), fpt) in the contractible type
Y x.5(pty = x).'> The situation is illustrated in the diagram below and
we define O(f)pt = ap g (fpts prt)- a

(ptB,reﬂptB) LN (CStptB/reﬂptB) =ptop

(fphpfpt)lll
t.

(F(Pta), fyr) = (Cstype,), fyr) = Opto 4)

Note that O(f)pt is a reflexivity path if fr = reflyy, .

"J]apcst* (fPt'pfpt)

Exercisk 13.1.22. Complete the structure of O as a wild functor, cf. Sec-
tion 6.4. Identify O(f)pt with ptwf(cst four P fp¢)~ a
RemARK 13.1.23. Given a pointed type A, recall from Corollary 3.1.3 the
equivalenceev fromS! —, Ato QA. This equivalencesends f :S! —, A
to Q(f)(Q) = fp_t1 - f(O) * fpt, and the inverse ev;x1 sends p: QA to the
pointed map f:S! —. A defined by f(*) := pt, and f(O) := p, pointed
by reflexivity.*®

The equivalence evy4 can itself be pointed as follows. The point of
S' —. Ais the constant map cstp, , pointed by reflexivity, which is sent
by eva to cstpt, (O) - reflpt, .'7 Define ea(p) :reflpt, = (cstpe, (p) - reflyt,),
forany z:S', p:+ = z, by path induction, setting e4(refl.) := reflen,, .'°
Now we define (eva)pt = €4(O). a

The following construction shows that Q) corresponds to O from Defi-
nition 13.1.21 under the equivalences ev, as illustrated in Figure 13.2."9

CONSTRUCTION 13.1.24. Let A and B be pointed types and let f : A —. B bea
pointed map. Then we have an identification of Q(f) o eva and evg o O(f), as
represented by Figure 13.2. Consequently, we have that e := (evg' o_oevy) is
an equivalence of type (QA —, QB) = (OA —. OB), and O = (e 0 Q).

Implementation of Construction 13.1.24. Wewillapply Construction2.21.8.
Elaborating the situation in Figure 13.3, we have to identify (1) =

fot f (Pt -p(O)-ppt)- forand (2) = (f (ppt) - for) - (f 0 p)(O)- (f (Ppt) - for)
by a path i(f, fot)(p, ppt), for all (p, ppt).>° Moreover, we must fill the

'4Here we mean composition as
pointed maps, so that the pointing
path O(f)(g)pt is defined in Defini-
tion 2.21.1 as f(gpt) * fpt-

15Here Pfot S fpt - reﬂptB = fptis
defined by induction on fpt, setting
preﬂptB = 1‘eﬂreﬂptB .

6When A is clear from the context we
may simply write ev. Similarly for
&4 defined next.

7Recall that reflexivity paths cancel
definitionally on the left.

8Note that cstpt, (p): QA for any p.

19
04 -2, 0B

eva | V| €evp

Ficure 13.2: Q(f) and O(f) corre-
spond.

2°We often leave out the “ap 's”.

RINGS, FIELDS AND VECTOR SPACES

VA, 0A oy OB

(S =, A)

(P, ppt) —— Ppt - P(O) - ppt ————— for' - f(ppt - P(O) - pp) - for (1)

O(f)

(8! -5, A) ———— (S! -, B) L

QB

(p,ppt) ——— (fop, fppt) - for) —— (f(ppt) - fpt)_l (fop)O) - (flppt) - for) (2)

Figure 13.3: Elaborating the two composites (S —. A) — QB.

following triangle:

fork - flestpr, (O) - reflot,)+ for
Q(f)((emy»pt Pty pty) " Jp
-1 =
I

reflp, i(f, for)(cstpt 4 reflpt,)

(eVB)pt

cstpt, (Q)- reﬂptB

evp(O(f)pt)

ot - st) (O) - fot

For defining i(f)(p, ppt) we apply path induction on p,: and on fpy,
setting pt, = p(*) and ppt = refl,(.), as well as pty = f(pt,) = f(p(*))
and fp = reflf(y(.)). Then identifying (1) and (2) reduces to the task of
identifying f(p(Q) - reﬂp(.)) -reflf(,(.) and (f op)O)- refl(y(.))-

The latter identity type stays well typed when we replace O by an
arbitrary ¢ :+ = z, z:S!. By induction on g, we define an element

(f 0, 8): ((f(p(g) - refly(.)) - refly(yy) = ((f 0 p)(g) - refly(y(ey)),

setting ((f, p, refl.) := refleq ., . We complete the definition of i(f, fo)(p, ppt)
by setting i(f, refl(,(.)))(p, refly(.)) = «(f, p, O).

Again applying path induction on f,, assuming that pt; = f(pt,) and
fpt = refl,, the triangle above reduces to the following triangle:

fcstpt, (O) - reflpt,) - reflpt,

Q(f)((%)

reflieq bt reﬂptB

reﬂptB i(frreﬂf(ptA))(CStptA lrEHPtA)

(evp)pt

cstpr, (O) - refly,

evp(O(f)pt)

CStptB (Q) . reﬂptB

Note thati(f, reﬂf(ptA))(cstptA , reﬂptA) = ((f, cstpt, ,). By Definition 13.1.21,
as fpt is a reflexivity path, we get that O(f),t and evp(O(f)pt) are also
reflexivity paths. Hence, recalling Remark 13.1.23 for the pointing paths

239

RINGS, FIELDS AND VECTOR SPACES 240

(eva)pt, (evp)pt, we have to fill the following triangle:

fcstpt, (O) - reflpy,) - reflp,

Q(f)(ea(0))
reﬂpt /
B =
m

cstpt, (O) - refly,

| e(f cstpey ,O)

This last triangle stays well typed when we replace O by an arbitrary
g:* © z,2:51.2 Then apply induction on g, setting ¢ = refl., which
boils down to the same triangle with O replaced by refl.. The whole
diagram has now become a reflexivity diagram, as also t(f, cstpt , refl.)
is reflexivity by definition, and we are done. o

Composition with O, i.e., (Oo_) := (g = O og), gives the map**
(O0): (8! —=. (A —. B) = (8" = ((8' —=. A) —. (S' —. B)).

ConstrUCTION 13.1.25. Let X, Y and Z be pointed types. We use T. to denote
the underlying type of a pointed type T. Then we have a pointed equivalence

swap: (X =, (Y —. Z)) =. (Y =, (X —. Z))
such that the totally unpointed map swap. ., defined by

swap_. = (f = (y = (x = f(x)(y))
(Xem (Y >Z) > (Y > (X > ZY)

can be identified with the map swapping the two arguments of any input map.

Implementation of Construction 13.1.25. (Do first the equivalence of (X —.
(Y —. Z)) with the sum type of totally unpointed maps with additional
structure, including coherence.) o

ReMARK 13.1.26. In Figure 13.4, X and Y are pointed types, and ptw, is
from Remark 13.1.16. The three occurrences of () in the labels of the
downward arrows are all instances of Definition 4.4.3. In Figure 13.4, we
have colored occurrences of Q) that come from the € in the left upper
corner. Note that () shifts position from first to second along the arrow
labelled (i o _), where i := (q: Q%Y +— g7!).

In order to formally define ()(Q), we need to define the pointing path
th of Q. Note that pty_, \ = (cstpt, , refl,t), ie., the point of X —, Y'is
the constant map x ~— pt, pointed by reflexivity. Likewise, the point of

QX —. QY is the pointed constant map (cstyef; reﬂreﬂptY). We want a

pty 7
path Qp of type (CStreﬂptY , reﬂreﬂpty) > Q(cstpt, , reflyt,), where?3

Q(cstpty, reﬂpty) =(p— APty (p)- reﬂpty, reﬂreﬂpty).

By induction on p: (pty = x), define h(p):refl,,, = (apcstpty (p) - reflp,)

setting h(reflyt,) := reflreq,, . Applying ptw, we can now define

pty

Q= ptw (h, reflreﬂreﬂlDtY): ((cstreﬂpty, reflee,,) = Q(cstpt, , reﬂpty)).

Now we can state the definition of Q(Q):

QQ)(q) = Qgtl apg(q) - Qe forall g: QX —.Y).

*ea(g) reflpt, = cstpt, (g) - reflpt,,
50 Q(f)(ea(g)) is a path from
Q(f)(reflpt,) = reflpy, to
Q(f)estpe, (g)-reflpt,) = flestpe, (8)-
reflpt,) - reflpt, , by the induction on
fpt- Also, t(f, cstpt " g) has the right
type.

22This map corresponds to a map of
type Q(X —. Y) —» Q(QX —. QY).

ptw,
QX >, Y) ——— X -, QY
QQ)
Q(QX —. QY)
tw ~
ptw, |2 (o)
QX —, QQY

Ficure 13.4: Complete and fill!

23Recall that Q(f) is pointed by path
algebra identifying reﬂpty with fp*tl .
reflpt, - fpt, by induction on fpt.

*4Thenp =qx p’and q =2, q’ are
proof-irrelevant.

QX —, QQY

RINGS, FIELDS AND VECTOR SPACES 241

We want to fill the diagram in Figure 13.4 in full generality, even
though we will only need it for X a pointed 1-type and Y a pointed
2-type.* 4
DeriniTION 13.1.27. Let A and B be pointed types. Define the map
map O/ z:((A —. B) = ((S' =« A) —. (S' —. B)) by O =
(Oa,poswap™to)25 y

ConstrucTION 13.1.28. Let X and Y be pointed types and consider the equiv-
alences ptw, :Q(X —. Y) — (X —. QY) from Remark 13.1.16, swap
from Construction 13.1.25, and ev from Remark 13.1.23. Then we have an
identification of ev oswap(_) and (ptw, o ev), as represented by Figure 13.5.

Implementation of Construction 13.1.28. Using function extensionality, it
suffices to identify ev o swap(f) and (ptw, o ev)(f) for every f:S! —.,
(X —. Y). The latter identifications are in the type X —. QY, which
means that we only have to identify the underlying functions, due to
Corollary 13.1.20. This greatly simplifies our task: given f:S! —, (X —.
Y), the pointing path of swap(f) plays no role in the underlying function
of evoswap(f). In contrast, the pointing path foi:pty_, , = f(*) is
important, but only in so far it applies to the underlying functions of
ptx_,y and f(*). Therefore we abbreviate frjt = ptw(fst(fpt)), so that
foe(x) = (pty = f(*)(x)) for x: X.

The underlying function of swap(f) maps any x: X to the function
(z:S') > f(z)(x), pointed by fh(x). Evaluating the latter pointed map
at O gives (ev o swap(f))(x) = fét(x)_1 - f(O)x) -fI;t(Jc).26 This is the
result of going first right and then down in Figure 13.5, applied to x : X.

Now we go first down and then right in Figure 13.5. Evaluating f
as above at O gives ev(f) = fp‘tl - f(O) - fpr- Applying ptw, and taking
the underlying function gives ptw(fst(f;' - f(O) - fpr)). Applying the
latter function to x : X gives a result that is easily identified with fp’t(x)‘l .
ptw(fst(f(O)))(x) - fi(x), as both fst and ptw preserve composition.?”

Finally, we complete the construction by identifying the results of the
last two paragraphs, for which it suffices to identify the elements as given
in the footnotes. We generalize them from O to an arbitrary p:+ = z,
z:S!, and note tha_t both ap,, f%(z))(x)(p) and ptw(fst(ap £ (p))(x) have
type fst(f.(*))(x) = fst(f.(z))(x). They are readily identified by induction
onp. o

Recall from Theorem 12.2.13 the equivalence B? from the type of
abelian groups to the type of pointed simply connected 2-types. Let
H : Group be a group and let G : AbGroup be an abelian group. Then
B2G and hence also BH —, B?G is a 2-type, pointed at the constant map
that sends any w : BH to the point ptg,; = (BG-, |idpg.|o) of B°G.?® In
fact, the type BG —. B?G is a 1-type, since the maps are pointed.

DeriNtTION 13.1.29. Let H : Group be a group and let G : AbGroup be an
abelian group. Define the group Hom(H, G) of homomorphisms from
H to G by

Hom(H, G) = Autgy_, prc((w — ptyg), reflpe,). 4

25 Again, we often write O’ for 0:4,3-
Swap
OX —-.Y) —— X —.0Y
ev | v|evo_
QX —-.Y) T X —. QY

Ficure 13.5: swap and ptw, corre-
spond.

26Here f(O)(x) is short for
APt £ (2))(0) (O)-

27Here ptw(fst(f(O)))(x) is in fact
ptw(fst(ap (O)))(x).

Btself pointed by reflexivity.

RINGS, FIELDS AND VECTOR SPACES 242

UHom(H, G)
ev R
SUX =, V) ——%, X -, SlY
x
Oo o’
lfst

1(gl 1 ~ 1 1(gl ~ 1 1(g!
S(SX—MSY)WSX—NS(SY)(STPOJ)SX—NS(SY)
Figure 13.6: Legenda: X := BH; Y := B?G; ev is from Corollary 3.1.3;
swap is from Construction 13.1.28; O is from Definition 13.1.21; O’
is from Definition 13.1.27; P(f) expresses that ev of o ev™! classifies a
homomorphism. Moreover, the colors track related occurrences of S!.

13.1.30 Concrete rings

We will now elaborate an approach to rings that is even more concrete
than mixed rings. For the latter rings we took the obvious first step
to replace the abstract additive group by a (concrete) group. Since
monoids have no concrete counterpart in our set up, we replaced
in Definition 13.1.8 the multiplicative monoid by the half abstract
{,r:UR — Hom(R, R).

The use of ¢, r was based on the observation that, for any abstract
ring X, left and right multiplication by a fixed but arbitrary element
of R are abstract homomorphisms from the additive group (R, 0, +, —)
of R to itself. Even more so, the map a4 +— (a - _) is an abstract
homomorphism from (R, 0, +, —) to the abstract group Hom;'f‘f‘v(R, R)
of abstract homomorphisms from (R, 0, +, —) to itself, with pointwise
operations induced by (R, 0, +,—).>

Given that we have replaced (R, 0, +, —) by an abelian group G : Group,
the plan is to deloop Homglt"fv(abs(G), abs(G)). Denoting the result of the
delooping by Hom(G, G),3° we can then define the multiplication as a
homomorphism p : Hom(G, Hom(G, G)).

One way of delooping Hom;'f‘i,(abs(G), abs(G)) would be to use the
inverse of abs in Lemma 7.5.1 which involves torsors. We prefer to use
Hom(G, G) from Definition 13.1.29, making direct use of the assumption

that G is abelian.

DerINITION 13.1.31. A ring R consists of the following data:
(1) An abelian group also denoted R;
(2) A homomorphism 1z : Hom(Z, R);

(3) A homomorphism p: Hom(R, Hom(R, R)), with Hom(R, R) the
group defined in Definition 13.1.29.

Moreover, the following equations should hold:
(1) evo(U(uo1r)(0V)) = Bidg = (the multiplicative unit laws)3*

(2) (the associative law).

Yf:s1xo.8151y) P(f) —— Hom?(abs(H), abs(G))

29H0m;tt’a,(R, R) is an abelian abstract
group by Exercise 7.3.6 and Exer-

cise 4.3.5.

3°This notation presupposes that G
is abelian and distinguishes the
set of homomorphisms from G to
G from the group with this set of
homomorphisms as underlying set.

31 U(u o 1g) is an abstract homomor-
phism from UZ to UHom(R, R)
and the latter type is equivalent to
(BR —. QB?R). Finally by postcom-
position with ev, we get equivalence
with (BR —. BR). The other unit law
is probably worse.

RINGS, FIELDS AND VECTOR SPACES 243

The properties (1)-(2) are together denoted by RingProperties(R, 1g, u).

The ring R is called commutative if , and non-trivial if 1g is not trivial 3> .

We proceed by giving the standard example of the integers as a ring
in the sense of Definition 13.1.31.

ExampLE 13.1.32. We take the group Z of the integers classified by
the circle as the abelian group for the ring of the integers. We take
1z := idz, the identity homomorphism. For defining u we first elaborate
Hom(Z, Z) as a group. Unfolding the definition we get (leaving the
points implicit) BHom(Z, Z) = (S! —. Yx.ullS! = X|lo). The shape
of Hom(Z, Z) is the constant map that sends any z:S! to (S!,|idgi|o),
pointed by reflexivity.

Recall that B°Z = Y x.¢||S! = X||o), pointed at shgz = (S!, |idgi|o)-
For u: Hom(Z,Hom(Z, Z)) we take,33 with ve from Theorem 3.1.2,

Bu = (z:S') > vepz(shpz, (e:,!)).

In this succint definition, veg:7(shg27, |e;|g) can be identified as the
function from S! to B?Z that sends * to S' and O to (e, !) wheree, : (S! =
Sh), 1:]le; = idgi||. In the following we focus on first components, that
is, on S! and e, analyzing how Bu applies to paths.

For any z:S! and k : Z we have that Bu(z, O) = ek : (S' = S!). Hence
for any j : Z we have that Bu(Q/, OF = e’:ﬂ =s/k:(idg = idg).

It follows that (Z, 1z, u) is a non-trivial commutative ring. a
Exercise 13.1.33. Let (R, 1,,) be a ring. Show that UR is an abstract ring
with additive group abs(R) and multiplicative monoid (UR, Ulr(0), Up.

-

DerINITION 13.1.34. Given a commutative ring R, an element e: R is
invertible if there exists an element a: R such thate-a =1landa-e =1:

isInvertible(e) =

Z(e-azl)X(a-e:l)
a:R

-

THEOREM 13.1.35. In any nontrivial commutative ring R, 0 is always a non-
invertible element.

isNonTrivial CRing(R) — —isInvertible(0)

Proof. Suppose that 0 is invertible. Then there exists an element a: R
such that a - 0 = 1. However, due to the absorption properties of 0
and the fact that R is a set, a - 0 = 0. This implies that 0 = 1, which
contradicts the fact that 0 # 1 in a nontrivial commutative ring. Thus, 0
is a non-invertible element in any nontrivial commutative ring R. O

DEerFINITION 13.1.36. A nontrivial commutative ring R is a field if and only
if the type of all non-invertible elements in R is contractible:

isField(R) := isNonTrivial CRing(R) x isContr (Z —dsInvertible(x))
x:R

Equivalently, R is a field if and only if every non-invertible element is
equal to zero. y

32A homomorphism is trivial if it
classified by the constant function
at the shape to the target group. Or,
equivalently, if it factors through the
trivial group.

33 Define s :idg1 = idg1 by function
extensionality, setting s(¢) = O,
s(Q) = !. Now define e, :S! 5 S!
by ex(+) i= 2, e2(0) 1= 5(2): (2 > 2).
Indeed, e. = idg1 and, by path
induction ey(s) = p forallp:¢ = z,
soey =Ss.

RINGS, FIELDS AND VECTOR SPACES

ReMARK 13.1.37. In other parts of the constructive mathematics literature,
such as in Peter Johnstone’s Rings, Fields, and Spectra, this is called a
"residue field". However, in this book we shall refrain from using the
term "residue field" for our definition, since that contradicts the usage
of "residue field" in other parts of mathematics, such as in algebraic
geometry. a1

DeriniTION 13.1.38. A field is discrete if every element is either invertible
or equal to zero.

isDiscreteField(R) := isField(R) x H ||(a = 0) LI isInvertible(a)||
a:R
.
DerINITION 13.1.39. A nontrivial commutative ring R is a local ring if for

every element a: R and b : R, if the sum a + b is invertible, then either a
is invertible or b is invertible.

isLocalRing(R) := isNonTrivialCRing(R)xH Hislnvertible(a +b) — ||isInvertible(a)LlisInvertible(b)||

a:Rb:R

DerINITION 13.1.40. A field R is Heyting if it is also a local ring.

isHeytingField(R) := isField(R) X isLocalRing(R)

References used in this section:

¢ Emmy Noether, Ideal Theory in Rings, Mathematische Annalen 83
(1921)

e Henri Lombardi, Claude Quitté, Commutative algebra: Constructive
methods (Finite projective modules)

® Peter Johnstone, Rings, Fields, and Spectra, Journal of Algebra 49 (1977)
238-260

13.2 vector spaces

DeriNiTION 13.2.1. Given a field K, a K-vector space is an abelian group V
with a bilinear function (—)(—): K X V — V called scalar multiplication
such that 1o = v and for all elements a:K, b:K, and v:V, (a - b)v =
a(bv). a
DeriniTION 13.2.2. A K-linear map between two K-vector spaces V and
W is a group homomorphism h:V — W which also preserves scalar
multiplication: for all elements a: K and v:V, f(av) = af(v). 4

DeriNtTION 13.2.3. Given a field K and a set S, the free K-vector space
on S is the homotopy initial K-vector space V with a functioni: S — V:
for every other K-vector space W with a function j: S — W, the type of
linear maps h:V — W such that for all elements s: S, h(i(s)) = j(s) is
contractible. 1

DeriNiTION 13.2.4. Given a field K and a natural number n, an n-
dimensional K-vector space is a free K-vector space on the finite type
Fin(n). a

244

13.3
13.4

13.5

13.6

13.7

RINGS, FIELDS AND VECTOR SPACES

the general linear group as automorphism group
determinants (1)

examples: rationals, polynomials, adding a root, field exten-
sions

ordered fields, real-closed fields, pythagorean fields, eu-
clidean fields

complex fields, quadratically closed fields, algebraically
closed fields

245

14
Geometry and groups

In this chapter we study Euclidean geometry. We assume some standard
linear algebra over real numbers, including the notion of finite dimen-
sional vector space over the real numbers and the notion of inner product.
In our context, the field of real numbers, R, is a set, and so are vector
spaces over it. Moreover, a vector space V has an underlying additive
abstract group, and we will feel free to pass from it to the corresponding

group.

14.1 Inner product spaces

DEFINITION 14.1.1. An inner product space V is a real vector space of finite
dimension equipped with an inner product H:V XV — R. a

Let V denote the type of inner product spaces. It is a type of pairs
whose elements are of the form (V, H). For n:N, let V, denote the type
of inner product spaces of dimension 7.

For each natural number n, we may construct the standard inner
product space V" := (V, H) of dimension 7 as follows. For V we take the
vector space R”, and we equip it with the standard inner product given
by the dot product

H(x,y)=x-y,

where the dot product is defined as usual as
XY= Zx,’yi.

THEOREM 14.1.2. Any inner product space V is merely equal to V"', where n is
dim V.

For the definition of the adverb “merely”, refer to Definition 2.16.13.
Proof. Since any finite dimensional vector space merely has a basis, we

may assume we have a basis for V. Now use Gram-Schmidt orthonor-
malization to show that V = V".]

Lemma 14.1.3. The type V is a 1-type.

Proof. Given two inner product spaces V and V’, we must show that the
type V = V' is a set. By univalence, its elements correspond to the linear
isomorphisms f: V >V’ that are compatible with the inner products.
Those form a set. o

246

DEFINITION 14.1.4. Given a natural number 711, we define the orthogonal
group O(n) as follows.
O(n) = QV,

Here V, is equipped with the basepoint provided by shq,) = V", and
with the proof that it is a connected groupoid provided by Theorem 14.1.2
and Lemma 14.1.3. a

The standard action (in the sense of Definition 5.2.28) of O(n) is an
action of it on its designated shape V". Letting Vectr denote the type
of finite dimensional real vector spaces, we may compose the standard
action with the projection map BO(n) — Vectr that forgets the inner
product to get an action of O(n) on the vector space R".

14.2 Euclidean spaces

In high school geometry courses, one encounters the Euclidean plane
(of dimension 2) and the Euclidean space of dimension 3. The vectors
and the points of Euclidean geometry are the basic ingredients, from
which the other concepts are derived. Those concepts include such

things as lines, line segments, triangles, tetrahedra, spheres, and so on.

Symmetries of those objects are also studied: for example, an isosceles
non-equilateral triangle has a total of 2 symmetries: the identity and the
reflection through the midline.

So, a Euclidean space will come with two sets: a set of points and a set
of vectors. The structure on the two sets includes the following items.

(1) If v and w are vectors, then there is a vector v + w called its sum.

(2) If vis a vector and r is a real number, then there is a vector rv called
the scalar multiple of v by r.

(3) If v is a vector, then there is a real nonnegative number called its
length.

(4) If P and Q are points, then there is a unique vector v which can be
“positioned” so its tail is “at” P and its head is “at” Q. It is called the
vector from P to Q. The distance from P to Q is the length of v.

(5) If P is a point and v is a vector, then there is a unique point Q so that
v which can be positioned so its tail is at P and its head is at Q. Itis
called the point obtained from P by translation along v.

We introduce the (new) notation v + P for the point Q obtained from
P by translation along v. Another fact from high school geometry is that
if w is a vector, too, then the associative rule v + (w + P) = (v + w) + P
holds. This suggests that the essential features of high school geometry
can be captured by describing the set of points as a torsor for the group
of vectors.

We use that idea now to give a precise definition of Euclidean space
of dimension n, together with its points and vectors. More complicated
geometric objects will be introduced in subsequent sections.

DerINITION 14.2.1. A Euclidean space E is an torsor A for the additive group
underlying an inner product space V. (For the definition of torsor, see
Definition 7.4.1.) J

GEOMETRY AND GROUPS

247

We will write V also for the additive group underlying V. Thus an
expression such as BV or Torsory will be understood as applying to the
underlying additive group® of V.

DEerINITION 14.2.2. We denote the type of all Euclidean spaces of dimension
nbyE, = Yy.y, Torsory. The elements of Pts E will be the points in
the geometry of E, and the elements of Vec E will be the vectors in the
geometry of E. We let £ denote the type of all Euclidean spaces; it is
equivalent to the sum), .y E,. a

The torsor Pts E is a nonempty set upon which V acts. Since V is an
additive group, we prefer to write the action additively, too: given v : V
and P: PtsE the action provides an element v + P: PtsE. Moreover,
given P,Q: PtsE, there is a unique v:V such v + P = Q; for it we
introduce the notation Q — P := v, in terms of which we have the identity
Q-P)+P=Q.

For each natural number 7, we may construct the standard Euclidean
space E" : E,, of dimension 7 as follows. For Vec E we take the standard
inner product space V", and for Pts E we take the corresponding principal
torsor Pypg, -

THEOREM 14.2.3. Any Euclidean space E is merely equal to E", where n is
dim E.

Proof. Since we are proving a proposition and any torsor is merely trivial,
by Theorem 14.1.2 we may assume Vec E is V"*. Similarly, we may assume
that Pts E is the trivial torsor.]

Lemma 14.2.4. The type E,, is a 1-type.

Proof. Observe using Theorem 5.5.7 that E,, ~ s v o) BV. The types
BO(n) and BV are 1-types, so the result follows from Item (4). O

DEerinITION 14.2.5. Given a natural number #n, we define the Euclidean

group by
E(n) = QE,.

Here we take the basepoint of £, to be E”, and we equip £, with the
proof that it is a connected groupoid provided by Theorem 14.2.3 and
Lemma 14.2.4. a

The standard action of E(n) (in the sense of Definition 5.2.28) is an action
of it on the Euclidean space E".

THEOREM 14.2.6. For each n, the Euclidean group E(n) is equivalent to a
semidirect product O(n) < R".

Proof. Recall Definition 8.2.1 and apply it to the standard action H : BO(n) —
Group of O(n) on the additive group underlying R", as defined in Def-
inition 14.1.4. The semidirect product O(n) =< R" has Yy .go) BV as
its underlying pointed type. Finally, observe that E(n) = ¥y .go() BV,
again using Theorem 5.5.7. O

GEOMETRY AND GROUPS 248

'We are careful not to refer to the
group as an Abelian group at this
point, even though it is one, because
the operator B may be used in some
contexts to denote a different con-
struction on Abelian groups.

14.3 Geometric objects

In this section, we discuss the notion of “object” in Euclidean space, but
much of what we say is more general and applies equally well to other
sorts of geometry, such as projective geometry or hyperbolic geometry.

Let E be a Euclidean space, as defined in Definition 14.2.1. The points
of E are the elements of Pts E, and intuitively, a geometric object in E
ought to come with a way to tell which points of E are inside the object.

For example, in the standard Euclidean plane with coordinates labelled
x and y, the x-axis is described by the equation y = 0. In other words,
we have a function of type g: Pts E — Prop defined by (x,y) — y = 0.
It’s the predicate that defines the line as a subset of the plane. More
complicated objects can also be specified as sets of points of E by other
functions Pts E — Prop. Now consider a typical Euclidean symmetry
of the line, for example, the symmetry given by the function ¢ : (x, y)
(x + 3, y). It is compatible with the action of Vec E on Pts E, and it sends
the line to itself. If we consider the pair (E, g) as an element of the type
Y r.g(Pts E — Prop), then, by univalence, we see that the translation ¢
gives rise to an identification of type (E, §) = (E, Q).

Now suppose the object to be described is a car, as an object in a
3-dimensional Euclidean space. Then presumably we would like to give
more information than just whether a point is inside the car: we may
wish to distinguish points of the car by the type of material found there.
For example, to distinguish the windshield (made of glass) from the
hood (made of steel). Thus, letting M denote the set of materials found
in the car, with one extra element for the points not in the car, we may
choose to model the car as a function of type PtsE — M.

In order to unify the two examples above into a general framework,
one may observe that Prop is a set (with 2 distinguished elements, True
and False). That motivates the following definition.

DEerINITION 14.3.1. Let M be a set. A geometric object is a pair (E, g) of type
EucObj :=)} p.z(Pts E — M). If one wishes to emphasize the role played
by the set M, we may refer to (E, g) as a geometric object with materials
drawn from the set M.> We may also say that (E, g) is a geometric object
in E. When M is Prop, we will think of the object as the subset of Pts E
consisting of those points P such that g(P) holds. 4

Exercisk 14.3.2. Show that EucObj is a groupoid. a

The exercise above allows us to speak of the symmetry group of a
geometric object.

Exercise 14.3.3. Show that the symmetry group of a geometric object in
E" is a subgroup of E(n). 4
Exercisk 14.3.4. Let E be a Euclidean space of dimension 7, and let P be
a point of E. The subset of Pts E containing just the point P is defined by
the predicate Q +— (Q = P). Show thatits symmetry group is isomorphic
to O(n). a

One often considers situations in geometry with multiple objects in
the same space. For example, one may wish to consider two lines in
the plane, or a point and a plane in space. This prompts the following
definitions.

GEOMETRY AND GROUPS 249

It would be a mistake to regard a geo-
metric object as a triple (E, M, g), for
then symmetries would be allowed
to permute the materials.

DErINITION 14.3.5. Suppose we are given an parameter type I and a set
M, for each i € I. A configuration of geometric objects relative to that
data is a Euclidean space E together with a function p; : Pts E — M; for
each i € I. Its consituents are the geometric objects of the form (E, p;), for
each i € I. If n is a natural number, and we let I be the finite type with n
elements, then we may refer to the configuration as a configuration of n
objects. J

DerINITION 14.3.6. Given an type I and a family of geometric objects
T; parametrized by the elements of I, an arrangement of the objects is
a configuration, also parametrized by the elements of I, whose i-th
consituent is merely equal to T;. 4

For example, suppose we consider arrangements consisting of a point
and a line in the plane. The arrangements where the point is at a distance
d from the line, where d > 0, are all merely equal to each other, because
there is a Euclidean motion that relates any two of them. Hence, in
some sense, the arrangements are classified by the set of nonnegative
real numbers d. This motivates the following definition.

DerNITION 14.3.7. Given an parameter type I and a collection of geometric
objects T; parametrized by the elements of I, then an incidence type between
them is a connected component of the type of all arrangements of the
objects. a

14.4 The icosahedron

DEFINITION 14.4.1. The icosahedron (with side length 2) is the regular solid
in standard euclidean three-space E> with vertices at cyclic permutations
of (0, £1, +¢), where ¢ = (1 + V5)/2 is the golden ratio. a

REMARK 14.4.2. The four vertices (0, 1, £¢) make up a golden rectangle
with short side length equal to 2. To check that the above vertices really
form a regular polyhedron, we just need to calculate the length between
to adjacent corners of golden rectangles:

10,1,9) = (1L, g, 0)l = \/1+(p - 12+ 92 = VA =2 .

14.5 Frieze patterns

See Figures 14.2 and 14.3

14.6 Incidence geometries and the Levi graph
14.7 Affine geometry

Barycentric calculus. Affine transformations. Euclidean / Hermitian
geometry (isometries, conformity...)

GEOMETRY AND GROUPS

250

coX

2200

2% 00

* 0000

00K

*2200

GEOMETRY AND GROUPS 251

Ficure 14.1: Icosahedron with its
golden rectangles.

Ficure 14.2: The seven frieze patterns
up to isometry, with their orbifold
symbols.

GEOMETRY AND GROUPS 252

0000 coX 2200 2 %00 %0000 cok *2200 FiGURE 14.3: The seven frieze patterns
up to isometry, with their orbifold
symbols and superimposed genera-

. . tors.
N o
L / o e .(\\7 o 3
o < o
L \ X e 'G o >
. ~_ 7 o
) ./ ¢ VS .(\\, ® & o
\ ~_ 7
¢l .G ") It
. / 1 U l
) .\ o e .(\\>’ [.)
~_ 7
. / .K\l ’O. . (]
L] \jl ®
| \ : i ‘\\)3
0\00 'X‘/_\/ﬂ ON\QO °\©o
. °\©0 '\QO '\Oo
(3 — (E S ——) D —— P ——

Figure 14.4: Tricycle on carpet.

14.7.1 affine planes and Pappus’ law
14.7.2 affine frames, affine planes
14.7.3 the affine group as an automorphism group
14.7.4 the affine group as a semidirect product
14.7.5 affine properties (parallelism, length ratios)

14.8 Inversive geometry (Mobius)

14.8.1 residue at a point is affine
14.8.2 Miquel’s theorem
14.9 Projective geometry

Projective spaces (projective invariance, cross ratio, harmonic range...).
Conics/quadrics. (Classification in low dimensions?)

GEOMETRY AND GROUPS 253

complex algebraic plane projective curves (tangent complexes, singular
points, polar, hessian, ...).
14.9.1 projective planes
14.9.2 projective frames
14.9.3 the projective group and projectivities
14.9.4 projective properties (cross-ratio)

14.9.5 fundamental theorem of projective geometry

15
Galois theory

The goal of Galois theory is to study how the roots of a given polynomial
can be distinguished from one another. Take for example X? + 1 as a
polynomial with real coefficients. It has two distincts roots in C, namely
i and —i. However, an observer, who is limited to the realm of R, can
not distinguish between the two. Morally speaking, from the point
of view of this observer, the two roots i and —i are pretty much the
same. Formally speaking, for any polynomial Q : R[X, Y], the equation
Q(i, —i) = 0 is satisfied if and only if Q(—i,i) = 0 also. This property
is easily understood by noticing that there is a automorphism of fields
0:C — C such that (i) = —i and o(—i) = i which also fixes R. The
goal of this chapter is to provide the rigourous framework in which this
statement holds. TODO: complete/rewrite the introduction

15.1 Covering spaces and field extensions

Recall that a field extension is simply a morphism of fields i : k — K from
a field k to a field K. Given a fixed field k, the type of fields extensions
of k is defined as

k\Fields:=) homgieas(k, K)
K:Fields

DerintTioN 15.1.1. The Galois group of an extension (K, i) of a field K,
denoted Gal(K, i) or Gal(K/k) when i is clear from context, is the group
AutyFielas (K, 7). 4
RemARK 15.1.2. The Structure Identity Principle holds for fields, which
means that for K, L : Fields, one has

(K=L)=~TIso(K,L)

where Iso(K, L) denotes the type of these equivalences that are homo-
morphisms of fields. Indeed, if one uses K and L also for the carrier
types of the fields, one gets:

(K=L)=)}, (trp,(+x) = +1) X (trp,(:x) = 1)
p:K=qL

X(trp, (Ox) = 0r) X (trp,(1k) = 1r)

Any p: K =¢ Lis the image under univalence of an equivalence ¢ : K ~ L,

254

and then:
trp,,(+x) = (x, 1) = G~ (x) +x ¢~ (1)
trp,, (k) = (x, 1) = (o7 (x) k ¢ ()
trp, (0x) = ¢(0k)
trp, (1x) = ¢(1k)
It follows that:
K=D)= Y, (@bxtiy) = ¢ +1 o)

X(P(x -k y) = ¢(x) L ¢(y))
X(p(0g) = 0r) X (¢(1x) = 11)

The type on the right hand side is the same as Iso(K, L) by definition.
In particular, given an extension (K, i) of K:

UGal(K, i)~), trpi=i=~) ogoi=i
p:K=K o :Iso(K,K)

This is how the Galois group of the extension (K, i) is defined in ordinary
mathematics. 4

Given an extension (K, i) of field k, there is a map of interest:
i*: K\Fields — k\Fields, (L)) (L, ji)
LemMA 15.1.3. The map i* is a set-bundle.

Proof. Given a field extension (K’, i") in k\Fields, one wants to prove that
the fiber over (K’,i’) is a set. Suppose (L, j) and (L’, ") are extensions

of K, together with paths p:(K’,i") = (L, ji) and p’: (K’, i) = (L', ’1).

Recall that p and p’ are respectively given by equivalences m: K’ = L
and 7’: K’ = L’ such that i’ = ji and 7’i’ = j’i. A path from ((L, j), p)
to (L', "), p’) in the fiber over (K’,i’) is given a path q:(L,j) = (L', ")
in K\Fields such that trp g P = p’. However, such a path g is the data
of an equivalence ¢ : L = L’ such that ¢j = j’, and then the condition
trp, p = p’ translates as 7 = 7. So it shows that ¢ is necessarily equal
to /™!, hence is unique. O

The fiber of this map at a given extension (L, j) of k is:

(L= Y, Y L=,

L’:Fields j’: K—L’

Y, Y X pi=ji

L’:Fields j: K—L’ p:L=L’
- Ny
~) j=ji

i/ K—>L
~ homy(K, L)

1

R

where the last type denotes the type of homomorphisms of k-algebra
(the structure of K and L being given by i and j respectively).

In particular, the map t:UGal(K,i) — (i*)"}(K,i) mapping ¢ to
trp g(idK) identifies with the inclusion of the k-automorphisms of K
into the k-endomorphisms of K.

TODO: write a section on polynomials in chapter 12

GALOIS THEORY

255

DeriNtTION 15.1.4. Given an extension i:k — K, an element a:K is
algebraic if @ is merely a root of a polynomial with coefficients in k. That
is if the following proposition holds:
1Y Y i) +i@a@)a+-- +i(a(m)a” = 0f
n:Na:n+l—k

|
DEFINITION 15.1.5. A field extension (K, i) is said to be algebraic when
each a: K is algebraic. 4

ReMARK 15.1.6. Note that when the extension (K, i) is algebraic, then ¢
is an equivalence. However, the converse is false, as shown by the non-
algebraic extension Q < R. We will prove that every Q-endomorphism
of R is the identity function. Indeed, any Q-endormorphism ¢ :R — R
is linear and sends squares to squares, hence is non-decreasing. Let
us now take an irrational number « :R. For any rational p, 4:Q such
thatp < a < g, thenp = ¢(p) < p(a) < ¢(9) = 9. Hence ¢(a) is in any
rational interval that « is. One deduces ¢(a) = a. a
DErINITION 15.1.7. A field extension i : k — K is said finite when K as a
k-vector space, the structure of which is given by 7, is of finite dimension.
In that case, the dimension is called the degree of i, denoted [(K, i)] or
[K: k] when i is clear from context. 4

15.2 Intermediate extensions and subgroups

Given two extensions i : k — K and j: K — L, the map i* can be seen as
a pointed map

i*:BGal(L, j) — BGal(L,ji), x> xoi.

Then, through Lemma 15.1.3, i* presents Gal(L, j) as a subgroup of
Gal(L, ji). One goal of Galois theory is to characterize those extensions
i’:k — L for which all subgroups of Gal(L, i") arise in this way.

Given any extension i : k — L, there is an obivous Gal(L, i)-set X given
by

(L",i")y— L.

For a pointed connected set-bundle g : B — BGal(L, i), one can consider
the type of fixed points of the QB-set X f:

K:=(Xg)?P = [X(g(x))
x:B

Itis a set, which can be equipped with a field structure, defined pointwise.
Morevover, if one denotes b for the distinguished point of B, and (L”, j”)
for g(b), then, because g is pointed, one has a path p: L = L” such that
pi’ = j”. There are fields extensions i": k — K and j’: K — L given by:

'(a) = x > snd(g(x)(a), j'(f)=p~ f(b)

In particular, for all a: k, j'i’(a) = p~' snd(g(b))(a) = p~1j"(a) = i'(a).
Galois theory is interested in the settings when these two contructions
are inverse from each other.

15.3 separable/normal/etc.

15.4 fundamental theorem

GALOIS THEORY

256

A

Historical remarks

Here we briefly sketch some of the history of groups. See the book by
Waussing® for a detailed account, as well as the shorter survey by Kleiner?.
There’s also the book by Yagloms3.

Some waypoints we might mention include:

¢ Early nineteenth century geometry, the rise of projective geometry,
Moébius and Pliicker

¢ Early group theory in number theory, forms, power residues, Euler
and Gauss.

¢ Permutation groups, Lagrange and Cauchy, leading (via Ruffini) to
Abel and Galois.

¢ Liouville and Jordan* ruminating on Galois.

¢ Cayley, Klein and the Erlangen Program>.

* Lie and differentiation.

¢ von Dyck and Holder.

e J.H.C. Whitehead and crossed modules.

® Artin and Schreier theory.

* Algebraic groups (Borel and Chevalley et al.)

¢ Feit-Thompson and the classification of finite simple groups.
¢ Grothendieck and the homotopy hypothesis.

® Voevodsky and univalence.

257

*Hans Wussing. The genesis of the
abstract group concept. A contribution
to the history of the origin of abstract
group theory, Translated from the
German by Abe Shenitzer and Hardy
Grant. MIT Press, Cambridge, MA,

1984, p- 331.

>Israel Kleiner. “The evolution of
group theory: a brief survey”. In:
Math. Mag. 59.4 (1986), pp. 195—215.
por: 10.2307/2690312.

31. M. Yaglom. Felix Klein and Sophus
Lie. Evolution of the idea of symmetry
in the nineteenth century. Transl. from
the Russian by Sergei Sossinsky. Ed.
by Hardy Grant and Abe Shenitzer.
Birkhduser Boston, Inc., Boston, MA,
1988, pp. xii+237.

4Camille Jordan. Traité des substitu-
tions et des équations algébriques. Les
Grands Classiques Gauthier-Villars.
Reprint of the 1870 original. Edi-
tions Jacques Gabay, Sceaux, 1989,
pPp- xvi+670.

5Felix Klein. “Vergleichende Betrach-
tungen {iber neuere geometrische
Forschungen”. In: Math. Ann. 43.1
(1893), pp. 63-100. Dor: 10. 1007/
BF01446615.

https://doi.org/10.2307/2690312
https://doi.org/10.1007/BF01446615
https://doi.org/10.1007/BF01446615

B

Metamathematical remarks

Metamathematics is the study of mathematical theories as mathematical
objects in themselves. This book is primarily a mathematical theory of
symmetries. Occasionally, however, we have made statements like “the
law of the excluded middle is not provable in our theory”. This is a
statement about, and not in, the type theory of this book. As such itis a
metamathematical statement.

Sometimes it is possible to encode statements about a theory in the
language of the theory itself. Even if true, the encoded metamathematical
statement can be unprovable in the theory itself. The most famous
example is Godel’s second incompleteness theorem.". Godel encoded,
for any theory T extending Peano Arithmetic and satisfying some general
assumptions, the statement that T is consistent as a statement Con(T') in
Peano Arithmetic. Then he showed that Con(T') is not provable in T.

We say that a metamathematical statement about a theory T is in-
ternally provable if its encoding is provable in T. For example, the
metamathematical statement “if P is unprovable in T, then T is consis-
tent” is internally provable in T, for any T that satisfies the assumptions
of Godel’s second incompleteness theorem.

The type theory in this book satisfies the assumptions of Godel’s second
incompleteness theorem, which include, of course, the assumption that
T is consistent. Thus there is no hope that we can prove the consistency
of our type theory internally. Moreover, by the previous paragraph,
we must be prepared that no unprovability statement can be proved
internally.

[TODO For consistency of UA, LEM, etc, refer to simplicial set model®.
For unprovability of LEM, refer to cubical set model”.]

One property of type theory that we will use is canonicity. We call an
expression closed if it does not contain free variables. One example of
canonicity is that every closed expression of type N is a numeral, that is,
either 0 or S(n) for some numeral n. Another example of canonicity is
that every closed expression of type L LI R is either of the form inl; for
some [: L or of the form inr, for some r: R.

Both examples of canonicity above are clearly related to the inductive
definitions of the types involved: they are expressed in terms of the
constructors of the respective types. One may ask what canonicity then
means for the empty type False, defined in Section 2.12.1 as the inductive
type with no constructors at all. The answer is that canonicity for False
means that there cannot be a closed expression of type False. But this
actually means that our type theory is consistent! Therefore we cannot
prove general canonicity internally.

258

We leave aside that this sometimes
can be done in different ways. His-
torically, the first way was by “Godel-
numbering”: encoding all bits of
syntax, including statements, as
natural numbers, so that the con-
structions and deductions of the
theory correspond to definable oper-
ations on the encoding numbers. In
type theory, there are usually much
more perspicacious ways of encod-
ing mathematical theories using
types and type families.

'The original reference is Godel?,
translated into English in van Hei-
jenoort3. For an accessible intro-
duction, see for instance Franzén#
or Smullyan>.

2Kurt Godel. “Uber formal un-
entscheidbare Sitze der Principia
Mathematica und verwandter Sys-
teme I”. in: Monatsh. Math. Phys. 38.1
(1931), pp. 173-198. por: 10. 1007/
BF01700692.

3Jean van Heijenoort. From Frege to
Gddel: A Source Book in Mathematical
Logic, 1879—1931. Source Books in
the History of the Sciences. Harvard
University Press, 2002, pp. xii+661.

4Torkel Franzén. Godel’s Theorem: An
Incomplete Guide to Its Use and Abuse.
A. K. Peters, 2005, pp. x+172.

5Raymond M. Smullyan. Gddel’s in-
completeness theorems. Vol. 19. Oxford
Logic Guides. The Clarendon Press,
Oxford University Press, New York,

1992, pp. Xvi+139.

6Krzysztof Kapulkin and Peter
LeFanu Lumsdaine. “The simpli-
cial model of Univalent Foundations
(after Voevodsky)”. In: Journal of
the European Mathematical Society
23.6 (Mar. 2021), pp. 2071—2126. DOIL:
10.4171/jems/1050.

7Marc Bezem, Thierry Coquand,
and Simon Huber. “A model of
type theory in cubical sets”. In: 19th
International Conference on Types for
Proofs and Programs. Vol. 26. LIPIcs.
Leibniz Int. Proc. Inform. Schloss
Dagstuhl. Leibniz-Zent. Inform.,
Wadern, 2014, pp. 107-128. por:
10.4230/LIPIcs.TYPES.2013.107.

https://doi.org/10.1007/BF01700692
https://doi.org/10.1007/BF01700692
https://doi.org/10.4171/jems/1050
https://doi.org/10.4230/LIPIcs.TYPES.2013.107

METAMATHEMATICAL REMARKS 259

[TODO no canonical forms: x: N, trpﬁa(id)(O) :N, with P := (p : True —
N) and (problematic) trp% (0):N with Q = (z:S! = N)/]

[TODO A second important property of our theory is that one can
compute canonical forms.]

B.1 Equality by definition
B.1.1 Basics

The concept of definition was introduced in Section 2.2, together with
what it means to be the same by definition. Being the same by definition
(NB appears for the first time on p. 26!) is a relationship between
syntactic expressions. In this section we provide more details about this
relationship.

There are four basic forms of equality by definition:

(1) Resulting from making an explicit definition, e.g., 1 := succ(0), after
which we have 1 = succ(0);8

(2) Resulting from making an implicit definition, like we do in inductive
definitions, e.g., n + 0 := n and n + succ(m) = succ(n + m), after
which we have n + 0 = n and n + succ(m) = succ(n + m);

(3) Simplifying the application of an explicitly defined function to an
argument, e.g., (x — ex)(a) = eg;

(4) Simplifying (x + ey) to f when e, is the application of the function
f to the variable x, e.g., (x — S(x)) = S.

Equality by definition is the congruence closure of these four basic
forms, that is, the smallest reflexive, symmetric, transitive and congruent
relation that contains all instances of the four basic forms. Here a
congruentrelation is a relation that is closed under all syntactic operations
of type theory. One such operation is substitution, so that we get
from the examples above that, e.g., 1 + 0 = 1 and n + succ(succ(m)) =
succ(n + succ(m)). Another important operation is application. For
example, we can apply succ to each of the sides of n + succ(m) =
succ(n + m) and get succ(n + succ(m)) = succ(succ(n + m)), and also
n + succ(succ(m)) = succ(succ(n + m)) by transitivity.

Let’s elaborate id o f = f claimed on page 12. The definitions used on
the left hand side are id := (y — y) and g o f = (x — g(f(x))). In the

latter definition we substitute id for ¢ and getid o f = (x — id(f(x))).

Unfolding id we get (x > id(f(x))) = (x = (y = y)(f(x))). Applying (3)
we can substitute f(x) for (y — y)(f(x))) and get (x — (y — y)(f(x))) =
(x = f(x)). By (4) the right hand side is equal to f by definition. Indeed
id o f = f by transitivity.

Equality by definition is also relevant for typing. For example, let A : U
and P:A — U. If B = A, then (B — U) = (A — U) by congruence, and
alsoP:B — U,and even [],.3 P(x) =[1;.4 P(x).

B.1.2 Deciding equality by definition (not updated yet)

By a decision procedure we mean a terminating algorithmic procedure
that answers a yes/no question. Although it is possible to enumerate

8The notation := tells the reader that
we make a definition (or reminds the
reader that this definition has been
made).

METAMATHEMATICAL REMARKS 260

all true equalities by definition, this does not give a test that answers
whether or not a given instance ¢ = ¢’ holds. In particular when e = ¢’
does not hold, such an enumeration will not terminate. A test of equality
by definition is important for type checking, as the examples in the last
paragraph of the previous section show.

A better approach to a test of equality by definition is the following.
First direct the four basic forms of equality by definition from left to
right as they are given.? For the first two forms this can be viewed as
unfolding definitions, and for the last two forms as simplifying function
application and (unnecessary) abstraction, respectively. This defines a
basic reduction relation, and we write e — e’ if ¢’ can be obtained by a
basic reduction of a subexpression in e. The reflexive transitive closure
of — is denoted by —*. The symmetric closure of —" coincides with =.

We mention a few important properties of the relations —, =" and =.
The first is called the Church—Rosser property, and states that, if e = ¢’,
then there is an expression ¢ such that e —* c and e’ —" c. The second
is called type safety and states that, if e: T and e — ¢’, then also e’: T.
The third is called termination and states that for well-typed expressions
e there is no infinite reduction sequence starting with e. The proofs
of Church—Rosser and type safety are long and tedious, but pose no
essential difficulties. For a non-trivial type theory such as in this book
the last property, termination, is extremely difficult and has not been
carried out in full detail. The closest come results on the Coq'® (TODO:
find good reference).

Testing whether or not two given well-typed terms e and ¢’ are equal
by definition can now be done by reducing them with — until one
reaches irreducible expressions n and n’ such thate —* n and e’ —* n’,
and then comparing n and n’. Now we have: ¢ = ¢’ iff n = n’ iff (by
Church—Rosser) there exists a ¢ such that n —* ¢ and n’ —" c. Since n
and n’ are irreducible the latter is equivalent to n and n’ being identical
syntactic expressions.

B.2 The Limited Principle of Omniscience

RemaRk B.2.1. Recall the Limited Principle of Omniscience (LPO), Princi-
ple 3.6.22: for any function P :N — 2, either there is a smallest number
ng: N such that P(np) = 1, or P is a constant function with value 0. We
will show that LPO is not provable in our theory.

The argument is based on the halting problem: given a Turing machine
M and an input 1, determine whether M halts on n. It is known that
the halting problem cannot be solved by an algorithm that can be
implemented on a Turing machine.™

We use a few more facts from computability theory. First, Turing
machines can be enumerated. We denote the nh Turing machine M,,, so
we can list the Turing machines in order: My, My, Secondly, there
exists a function T(e, n, k) such that T'(e, n, k) = 1 if M, halts on input n
in at most k steps, and T(e, n, k) = 0 otherwise. This function T can be
implemented in our theory.

Towards a contradiction, assume we have a closed proof t of LPO in
our theory. We assume as well that ¢t does not depend on any axiom.™* It
is clear that k +— T'(e, n, k) is a constant function with value 0 if and only

9TODO: think about the last, 7.

1°The Coq Development Team. The
Coq Proof Assistant. Available at
https://coq.inria.fr/.

It’s commonly accepted that every
algorithm can be thus implemented.

21t is possible to weaken the notion
of canonicity so that the argument
still works even if the proof t uses
the Univalence Axiom. Of course,
the argument must fail if we allow ¢
to use LEM!

https://coq.inria.fr/

METAMATHEMATICAL REMARKS 261

if M, does not halt on input n. Now consider t(k — T(e, n, k)), which is
an element of a type of the form L II R.

We now explain how to solve the halting problem. Let e and n be
arbitrary numerals. Then t(k — T(e, n, k)) is a closed element of L IT R.
Hence we can compute its canonical form. If t(k — T(e, n, k)) = inr,
for some 7 : R, then k — T(e, n, k) is a constant function with value 0,
and M, does not halt on input n. If t(k — T(e, n, k)) = inl; for some I : L,
then M, does halt on input n. Thus we have an algorithm to solve the
halting problem for all e and 7. Since this is impossible, we have refuted
the assumption that there is a closed proof t of LPO in our theory. 4

B.3 Topology

In this section we will explain how our intuition about types relates to
our intuition about topological spaces.

INSERT AN INTRODUCTORY PARAGRAPH HERE. [Intuitively, the
types of type theory can be modeled by topological spaces, and elements
as points thereof. However, this is not so easy to achieve, and the first
model of homotopy theory theory was in simplicial sets. Topological
spaces and simplicial sets are both models of homotopy types. And by a
lucky coincidence, it makes sense to say that homotopy type theory is
a theory of homotopy types.] Some references include: Hatcher, May,
and May and Ponto'3

RemaARk B.3.1. Our definitions of injections and surjections are lifted
directly from the intuition about sets. However, types need not be
sets, and thinking of types as spaces may at this point lead to a slight
confusion.

The real line is contractible and the inclusion of the discrete subspace
{0, 1} is, well, an inclusion (of sets, which is the same thing as an inclusion
of spaces). However, {0, 1} is not connected, seemingly contradicting
the next result.

This apparent contradiction is resolved once one recalls the myopic
nature of our setup: the contractibility of the real line means that “all real
numbers are identical”, and our “preimage of 3.25” is not a proposition:
it contains both 0 and 1. Hence “{0,1} € R” would not count as an
injection in our sense.

We should actually have been more precise above: we were referring
to the homotopy type of the real line, rather than the real line itself.’* We
shall later (in the chapters on geometry) make plenty of use of the latter,
which is as usual a set with uncountably many elements. 4

B.4 Choice for finite sets (1)

This section is a short overview of how group theory is involved in relating
different choice principles for families of finite sets. A paradigmatic case
is that if we have choice for all families of 2-element sets, then we have
choice for all families of 4-element sets.*®

The axiom of choice is a principle that we may add to our type theory
(it holds in the standard model), but there are many models where it
doesn’t hold.

3 Allen Hatcher. Algebraic Topology.
Cambridge University Press, 2001,
pp- Xii+551. ISBN: 978-0-521-79540-1.
URL: https://pi.math. cornell.
edu/~hatcher /AT /AT . pdf;]. P.
May. A concise course in algebraic
topology. Chicago Lectures in Mathe-
matics. University of Chicago Press,
Chicago, IL, 1999; J. P. May and K.
Ponto. More concise algebraic topology.
Chicago Lectures in Mathematics.
Localization, completion, and model
categories. University of Chicago
Press, Chicago, IL, 2012.

*4We don’t define this formally here,
see Shulman'5 for a synthetic ac-
count. The idea is that the homotopy
type h(X) of a type X has a map
from X, 1 : X — h(X), and any con-
tinuous function f :[0,1] — X gives
rise to a path ((f(0)) = «(f(1)) in
h(X).

*5Michael Shulman. “Brouwer’s fixed-
point theorem in real-cohesive ho-
motopy type theory”. In: Mathe-
matical Structures in Computer Sci-
ence 28.6 (2018), pp. 856—941. por:
10.1017/S0960129517000147. arXiv:
1509.07584.

16This is due to Tarski, see Jech?7,
p- 107.

7Thomas J. Jech. The axiom of choice.
Studies in Logic and the Foundations
of Mathematics, Vol. 75. North-
Holland Publishing Co., Amsterdam,
1973, pp. Xi+202.

https://pi.math.cornell.edu/~hatcher/AT/AT.pdf
https://pi.math.cornell.edu/~hatcher/AT/AT.pdf
https://doi.org/10.1017/S0960129517000147
https://arxiv.org/abs/1509.07584

METAMATHEMATICAL REMARKS 262

PrincipLe B.4.1 (The Axiom of Choice). For every set X and every family
of non-empty sets P: X — Set,p, there exists an dependent function of
type ['1,.x P(x). In other terms, for any set X and any family of sets
P: X — Set, we have

.]

(B.4.1) [TIP@)I —
x:X

[1P()
x:X

RemMARK B.4.2. We have an equivalence between the Pi-type]],. x P(x) and
the type of sections of the projection map pr; : }-,.x P(x) — X, under
which families of non-empty sets correspond to surjections between sets
(using that X is a set). Thus, the axiom of choice equivalently says that
any surjection between sets admits a section.

Because of this equivalence, we’ll sometimes also call elements of the
Pi-type sections. a

The following is usually called Diaconescu’s theorem*® or the Goodman-
Myhill theorem™?, but it was first observed in a problem in Bishop’s book
on constructive analysis®°.

TueoreM B.4.3. The axiom of choice implies the law of the excluded middle,
Principle 2.18.2.

Proof. Let P be a proposition, and consider the quotientmap g:2 — 2/~,
where ~ is the equivalence relation on 2 satisfying (0 ~ 1) = P. Like any
quotient map, g is surjective, so by the axiom of choice, and because our
goal is a proposition, it has a section s : 2/~— 2. That is, we also have
gos=id.

Using decidable equality in 2, check whether s([0]) and s([1]) are
equal or not.

If they are, then we get the chain of identifications [0] = g(s([0])) =
q(s([1])) = [1], so P holds.

If they aren’t, then assuming P leads to a contradiction, meaning —P
holds.]

We'll now define some restricted variants of the axiom of choice, that
however are not always true, and our goal is to see how they relate to
each other and to other principles.

DEeriniTION B.4.4. Let AC denote the full axiom of choice, as in Princi-
ple B.4.1. If we fix the set X, and consider (B.4.1) for arbitrary families
P: X — Set, we call this the X-local axiom of choice, denoted X-AC.

If we restrict P to take values in n-element sets, for some 7 :N, we
denote the resulting principle AC(n). (That is, here we consider families
P:X —» BL%,)

If we both fix X and restrict to families of n-element sets, we denote
the resulting principle X-AC(n). 4

Exercise B.4.5. Show that X-AC is always true whenever X is a finite
set. a

Lemma B.4.6. If X-AC holds for a set X, then || X — BG||¢ is contractible for
any group G.

Proof. Suppose we have a map f: X — BG. We need to show that f is
merely equal to the constant map. Consider the corresponding family
of sets consisting of the underlying sets of the G-torsors represented by

18Radu Diaconescu. “Axiom of choice
and complementation”. In: Proc.
Amer. Math. Soc. 51 (1975), pp- 176—
178.

N. Goodman and J. Myhill. “Choice
implies excluded middle”. In: Z.
Math. Logik Grundlagen Math. 24.5
(1978), p. 461. por: 10.1002/malq.
19780242514.

2OErrett Bishop. Foundations of construc-
tive analysis. McGraw-Hill Book Co.,
New York, 1967, pp. xiii+370.

In fancier language, this says that
the axiom of choice implies that all
cohomology sets H'(X, G) are trivial.

https://doi.org/10.1002/malq.19780242514
https://doi.org/10.1002/malq.19780242514

METAMATHEMATICAL REMARKS 263

f(x):BG, for x: X. That is, define P: X — Set by setting P(x) := (shg =
f(x)). Since BG is connected, this is a family of non-empty sets, so by
the axiom of choice for families over X, there exists a section. Since
we're proving a proposition, let s : [],.x(shg = f(x)) be a section. Then
s identifies f with the constant map, as desired.]

We might wonder what happens if we consider general co-groups G
in Lemma B.4.6. Then the underlying type of a G-torsor is no longer a set,
but can be any type. Correspondingly, we need an even stronger version
of the axiom of choice, where the family P is allowed to be arbitrary. Let
AC denote this untruncated axiom of choice, and let X-AC,, denote
the local version, fixing a set X. This is connected to another principle,
which is much more constructive, yet still not true in all models.

PrincipLE B.4.7 (Sets Cover). For any type A, there exists a set X together
with a surjection X — A. 4

We abbreviate this as SC.

Exercise B.4.8. Prove that the untruncated axiom of choice, ACq, is
equivalent to the conjunction of the standard axiom of choice, AC, and
the principle that sets cover, SC. a

Exercisk B.4.9. Prove that we cannot relax the requirement that X is a set
in the axiom of choice. Specifically, prove that S'-AC(2) is false 4

We now come to the analogue of Lemma B.4.6 for arbitrary co-groups.

Exercise B.4.10. Prove that if the untruncated X-local axiom of choice,
X-AC, holds for a set X, then || X — BG]||p is contractible for all
co-groups G. 4

We now discuss two partial converses to Lemma B.4.6, both due to
Blass®*.

TueoreM B.4.11 (Blass). Let X be a set such that || X — BGl|g is contractible
for all groups G. Then every family of non-empty sets over X, P: X — Set,
that factors through a connected component of Set, merely admits a section.

Proof. We suppose P : X — Setis such that all the sets P(x) have the same
size, i.e., the function P factors through BAut(S) for some non-empty set
S. This in turn means that we have a function /: X — BG, where G :=
Aut(S), with P = pr; o h, where pr; : BAut(S) = }_4.5ellS = All — Set is
the projection.

By assumption, & is merely equal to the constant family. But since we
are proving a proposition, we may assume that / is constant, so P is the
constant family at S. And this has a section since S is non-empty. |

Obviously, the same argument works if we consider all co-groups
G and families of types that are all equivalent. For the second partial
converse, we look at decidable sets.

TueoreM B.4.12 (Blass). Let X be a decidable set such that || X — BG||o is
contractible for all groups G. Then every family of non-empty decidable sets
over X merely admits a section.**

Proof. Equivalently, consider a surjection p:Y — X, where X and Y are
decidable sets, and let C be the higher inductive type with constructors
c:C, f:X - C,and k: I—[y:y(c = f(p(y)).>3 Using the same kind of

21 Andreas Blass. “Cohomology detects
failures of the axiom of choice”. In:
Trans. Amer. Math. Soc. 279.1 (1983),
pp- 257—269. por: 10.2307/1999384.

2?We might call this conclusion
X-ACdee,

23This kind of higher inductive type
is also known as a pushout, and its
constructors fit together to give a
commutative square:

P
—

[

- =

I

[

https://doi.org/10.2307/1999384

METAMATHEMATICAL REMARKS

argument as in Lemma 8.6.7 and Theorem 8.7.8, we can show, using
decidability of equality in X and Y, that the identity type c =¢ f(x) is
equivalent to a type of reduced words over Y I1 Y. In particular, C is a
groupoid, and it’s easy to check that it’s connected. Hence we can form
the group G := Q(C, ¢).

By assumption, the map f is merely equal to the constant map, so
since we're proving a proposition, we may assume we have a family
of elements hi(x):c = f(x), for x: X. Taking for each x the last y in the
corresponding reduced word, we get a family of elements s(x):Y such
that p(s(x)) = x, but this is precisely the section we wanted. O

It seems to be an open problem, whether we can do without the
decidability assumption, i.e., whether the converse of Lemma B.4.6 holds
generally.

Now we turn as promised to the connections between the various
local choice principles X-AC(n). The simplest example is the following.

TueoOREM B.4.13. Let X be any set. Then X-AC(4) follows from X-AC(2) and
X-AC(3).

Proof. Let P: X — BX4 be a family of 4-element sets over X. Consider
the map Bf : BX4 — BZ;3 that maps a 4-element set to the 3-element set
of its 2 + 2 partitions. Choose a section of Bf o P by X-AC(3). Now
use X-AC(2) twice to choose for each chosen partition first one of the
2-element parts, and secondly one of the 2 elements in each chosen
part. o

We now look a bit more closely at what happened in this proof, so as
to better understand the general theorem. The key idea is the concept of
“reduction of the structure group”.

[TODO, Elaborate: For a family of n-element sets over a base type X,
P:X — BEL,, there is a section if and only if there is a “ to a subgroup of
X, whose action on the standard n-element set, m, has a fixed point.]

Now we return to the local case, and we give the general sufficient
condition that ensures that X-AC(n) follows from X-AC(z) foreach z: Z,
where Z is a finite subset of N.

DeriNiTION B.4.14. The condition L(Z, n) is that for every finite subgroup
G of X, that acts on n without fixed points, there exists finitely many
proper, finite subgroups Ky, - - - , K, of G such that the sum of the indices,

|G:Hi|+---+|G: H,,

liesin Z. 1

We now turn to the global case, where we can change the base set.
Here the basic case is Tarski’s result alluded to above, which shows that
we don’t need choice for 3-element sets, in contrast to the local case,
Theorem B.4.13.

THeOREM B.4.15. AC(2) implies AC(4).

Proof. Let P: X — BX4 be a family of 4-element sets indexed by a set X.
Consider the new set Y consisting of all 2-element subsets of P(x), as x
runs over X,

Y= Y [P
x:X

264

METAMATHEMATICAL REMARKS 265

The set Y carries a canonical family of 2-element sets, so we may choose
an element of each. In other words, we have chosen an element of each
of the 6 different 2-element subsets of each of the 4-element sets P(x).

For every a: P(x), let q.(a) be the number of 2-element subsets {4, b}
of P(x) with b # a for which a is the chosen element.

Define the sets B(x) := {a:P(x)| gx(a) is a minimum of g, }, and re-
member that they are subsets of P(x). This determines a decomposition
of X into three parts X = X; + X, + X3, where

Xi = Z(B(x) has cardinality i), i=1,2,3.
x:X

Note that B(x) can't be all of P(x), since that would mean that g, is
constant, and that is impossible, since the sum of g, over the 4-element
P(x)is 6.

Over X;, we get a section of P by picking the unique element in B(x).

Over X3, we get a section of P by picking the unique element not in
B(x).

Over X3, we get a section of P by picking the already chosen element
of the 2-element set B(x). O

The following appears as Theorem 6 in Blass>4.

THeOREM B.4.16. Assume || X — BC,l|o is contractible for all sets X and
positive integers n. Then AC(n) holds for all n.

Proof. We use well-founded induction on 7, the case n = 1 being trivial.

Let P: X — BX, be a family of n-element sets, and let Y := } ... x P(x)
be the domain set of this set bundle. Consider the family Q:Y — BX,,_;
defined by

Q(x,y) ={y":Px)|ly 2y"} = P(x) \ {y},

where we use the fact that P(x) is an n-element set and thus has decidable
equality, so we can form the (n — 1)-element complement P(x) \ {y}.

By induction hypothesis, we get a section of Q, which we can express
as a family of functions

f: r}[{(P(x) — P(x))

where fi(y) # y for all x,y. Since P(x) is an n-element set, we can
decide whether f; is a permutation or not, and if so, whether it is a cyclic
permutation. We have thus obtained a partition X = X; + X, + X3, where

Xy = {x:X]| fx is not a permutation },
X5 = {x:X]| fx is anon-cyclic permutation },

X3 :={x:X]| fy is a cyclic permutation }.

We get a section of P over X; by induction hypothesis by considering
the family of the images of fx.

We get a section of P over X, by first choosing a cycle of f; (there are
tewer then n cycles because there are no 1-cycles), and then choosing an
element of the chosen cycle.

We get a section of P over X3 by the assumption applied to the
map X3 — BC, induced by equipping each P(x) with the cyclic order
determined by the cyclic permutation f.]

24Blass, “Cohomology detects failures
of the axiom of choice”.

25 Andrzej Mostowski. “Axiom of
choice for finite sets”. In: Fund. Math.

33 (1945), pp- 137-168. por: 10.4064/
fm-33-1-137-168.

https://doi.org/10.4064/fm-33-1-137-168
https://doi.org/10.4064/fm-33-1-137-168

METAMATHEMATICAL REMARKS 266

[TODO: State the general positive result due to Mostowski*>, maybe
as an exercise and give references to the negative results, due to Gauntt
(unpublished).]

METAMATHEMATICAL REMARKS 267

Bibliography

Ahrens, Benedikt, Krzysztof Kapulkin, and Michael Shulman. “Univalent categories and the Rezk
completion”. In: Math. Structures Comput. Sci. 25.5 (2015), pp. 1010-1039. ISSN: 0960-1295. DOIL
10.1017/50960129514000486 (page 147).

Atten, Mark van and Goran Sundholm. “L.E.]J. Brouwer’s ‘Unreliability of the Logical Principles A New
Translation, with an Introduction”. In: History and Philosophy of Logic 38.1 (2017), pp. 24—47. DOL:
10.1080/01445340.2016.1210986. arXiv: 1511.01113 (page 44).

Awodey, Steve. Category theory. Second. Vol. 52. Oxford Logic Guides. Oxford University Press, Oxford, 2010,
Pp- XVi+311. I1sBN: 978-0-19-923718-0 (page 147).

Baez, John C. and Michael Shulman. “Lectures on n-categories and cohomology”. In: Towards higher
categories. Vol. 152. IMA Vol. Math. Appl. Springer, New York, 2010, pp. 1-68. por:
10.1007/978-1-4419-1524-5_1. arXiv: math/0608420 (page 61).

Bezem, Marc, Thierry Coquand, and Simon Huber. “A model of type theory in cubical sets”. In: 19th
International Conference on Types for Proofs and Programs. Vol. 26. LIPIcs. Leibniz Int. Proc. Inform. Schloss
Dagstuhl. Leibniz-Zent. Inform., Wadern, 2014, pp. 107-128. por: 10.4230/LIPIcs.TYPES.2013.107
(page 258).

Bishop, Errett. Foundations of constructive analysis. McGraw-Hill Book Co., New York, 1967, pp. xiii+370
(page 262).

Blass, Andreas. “Cohomology detects failures of the axiom of choice”. In: Trans. Amer. Math. Soc. 279.1 (1983),
Pp- 257-269. por: 10.2307/1999384 (pages 263, 265).

Buchholtz, Ulrik, Tom de Jong, and Egbert Rijke. “On epimorphisms and acyclic types in univalent
mathematics”. In: The Journal of Symbolic Logic (2025), pp. 1-36. por: 10.1017/js1.2024.76. arXiv:
2401.14106 (page 153).

Buchholtz, Ulrik et al. “Central H-spaces and banded types”. 2023. arXiv: 2301.02636 (page 232).

Connes, Alain. “Cohomologie cyclique et foncteurs Ext"”. In: C. R. Acad. Sci. Paris Sér. I Math. 296.23 (1983),
Pp- 953-958 (page 80).

Coq Development Team, The. The Coq Proof Assistant. Available at https://coq.inria.fr/ (page 260).

Coquand, Thierry. “Type Theory”. In: The Stanford Encyclopedia of Philosophy. Ed. by Edward N. Zalta.
Metaphysics Research Lab, Stanford University, 2018. UrL:
https://plato.stanford.edu/archives/fall2018/entries/type-theory/ (page 13).

Diaconescu, Radu. “Axiom of choice and complementation”. In: Proc. Amer. Math. Soc. 51 (1975), pp. 176-178
(page 262).

Douglas, Jesse. “On finite groups with two independent generators. I-IV”. In: Proc. Nat. Acad. Sci. U.S.A. 37
(1951), pp. 604-610, 677-691, 749—760, 808-813. por: 10.1073/pnas.37.9.604 (page 117). por:
10.1073/pnas.37.10.677.
por: 10.1073/pnas.37.11.749.
por: 10.1073/pnas.37.12.808.

— “On the supersolvability of bicyclic groups”. In: Proc. Nat. Acad. Sci. U.S.A. 47 (1961), pp. 1493—1495. DOL
10.1073/pnas.47.9.1493 (page 117).

Escard6, Martin. UF-Factorial. Agda formalization. 2019. URL:
https://www.cs.bham.ac.uk/~mhe/TypeTopology/UF-Factorial.html (page 88).

Franzén, Torkel. Gddel’s Theorem: An Incomplete Guide to Its Use and Abuse. A. K. Peters, 2005, pp. x+172

(page 258).

268

https://doi.org/10.1017/S0960129514000486
https://doi.org/10.1080/01445340.2016.1210986
https://arxiv.org/abs/1511.01113
https://doi.org/10.1007/978-1-4419-1524-5_1
https://arxiv.org/abs/math/0608420
https://doi.org/10.4230/LIPIcs.TYPES.2013.107
https://doi.org/10.2307/1999384
https://doi.org/10.1017/jsl.2024.76
https://arxiv.org/abs/2401.14106
https://arxiv.org/abs/2301.02636
https://coq.inria.fr/
https://plato.stanford.edu/archives/fall2018/entries/type-theory/
https://doi.org/10.1073/pnas.37.9.604
https://doi.org/10.1073/pnas.37.10.677
https://doi.org/10.1073/pnas.37.11.749
https://doi.org/10.1073/pnas.37.12.808
https://doi.org/10.1073/pnas.47.9.1493
https://www.cs.bham.ac.uk/~mhe/TypeTopology/UF-Factorial.html

BIBLIOGRAPHY 269

Freyd, Peter. Abelian categories. An introduction to the theory of functors. Harper’s Series in Modern
Mathematics. Harper & Row, Publishers, New York, 1964, pp. xi+164 (page 154).

Furstenberg, Harry. “The inverse operation in groups”. In: Proc. Amer. Math. Soc. 6 (1955), pp. 991-997. DOL:
10.2307/2033124 (page 161).

Giraud, Jean. Cohomologie non abélienne. Die Grundlehren der mathematischen Wissenschaften, Band 179.
Springer-Verlag, Berlin-New York, 1971, pp. ix+467 (page 140).

Godel, Kurt. “Uber formal unentscheidbare Sétze der Principia Mathematica und verwandter Systeme 1. In:
Monatsh. Math. Phys. 38.1 (1931), pp- 173-198. por: 10.1007/BF01700692 (page 258).

Goodman, N. and J. Myhill. “Choice implies excluded middle”. In: Z. Math. Logik Grundlagen Math. 24.5
(1978), p. 461. por: 10.1002/malq.19780242514 (page 262).

Hatcher, Allen. Algebraic Topology. Cambridge University Press, 2001, pp. xii+551. ISBN: 978-0-521-79540-1.
URL: https://pi.math.cornell.edu/~hatcher/AT/AT.pdf (page 261).

Heijenoort, Jean van. From Frege to Godel: A Source Book in Mathematical Logic, 1879-1931. Source Books in the
History of the Sciences. Harvard University Press, 2002, pp. xii+661 (page 258).

Jech, Thomas J. The axiom of choice. Studies in Logic and the Foundations of Mathematics, Vol. 75.
North-Holland Publishing Co., Amsterdam, 1973, pp. xi+202 (page 261).

Jordan, Camille. Traité des substitutions et des équations algébriques. Les Grands Classiques Gauthier-Villars.
Reprint of the 1870 original. Editions Jacques Gabay, Sceaux, 1989, pp. xvi+670 (page 257).

Kapulkin, Krzysztof and Peter LeFanu Lumsdaine. “The simplicial model of Univalent Foundations (after
Voevodsky)”. In: Journal of the European Mathematical Society 23.6 (Mar. 2021), pp. 2071-2126. DOL:
10.4171/jems/1050 (page 258).

Klein, Felix. “Vergleichende Betrachtungen {iber neuere geometrische Forschungen”. In: Math. Ann. 43.1
(1893), pp- 63—-100. Do™: 10.1007/BF01446615 (page 257).

Kleiner, Israel. “The evolution of group theory: a brief survey”. In: Math. Mag. 59.4 (1986), pp. 195—215. DOI:
10.2307/2690312 (page 257).

Kuperberg, Greg. “Noninvolutory Hopf algebras and 3-manifold invariants”. In: Duke Math. J. 84.1 (1996),
pp- 83—129. por: 10.1215/S0012-7094-96-08403-3 (page 114).

Land, Markus. Introduction to infinity-categories. Compact Textbooks in Mathematics. Birkhduser/Springer,
Cham, 2021, pp. ix+296. 1sBN: 978-3-030-61523-9; 978-3-030-61524-6. por: 10.1007/978-3-030-61524-6
(page 151).

Lurie, Jacob. Higher topos theory. Vol. 170. Annals of Mathematics Studies. Princeton, NJ: Princeton University
Press, 2009, pp. xviii+925. 1sBN: 9781400830558. por: 10.1515/9781400830558 (page 151).

Mac Lane, Saunders. Categories for the working mathematician. Second. Vol. 5. Graduate Texts in Mathematics.
Springer-Verlag, New York, 1998, pp. xii+314. 1sBN: 0-387-98403-8 (page 147).

Mangel, Eléonore and Egbert Rijke. Delooping the sign homomorphism in univalent mathematics. 2023. arXiv:
2301.10011 [math.GR] (page 113).

May, J. P. A concise course in algebraic topology. Chicago Lectures in Mathematics. University of Chicago Press,
Chicago, IL, 1999 (page 261).

May, J. P. and K. Ponto. More concise algebraic topology. Chicago Lectures in Mathematics. Localization,
completion, and model categories. University of Chicago Press, Chicago, IL, 2012 (page 261).

Mostowski, Andrzej. “Axiom of choice for finite sets”. In: Fund. Math. 33 (1945), pp. 137-168. por:
10.4064/fm-33-1-137-168 (page 265).

Peano, Giuseppe. Arithmetices principia: nova methodo. See also https://github.com/mdnahas/Peano_Book/
for a parallel translation by Vincent Verheyen. Fratres Bocca, 1889. URL:
https://books.google.com/books?id=z80GAAAAYAA] (page 13).

Priifer, Heinz. “Theorie der Abelschen Gruppen”. In: Math. Z. 20.1 (1924), pp. 165-187. por:
10.1007/BF01188079 (page 170).

Recorde, Robert and John Kingston. The whetstone of witte: whiche is the seconde parte of Arithmetike, containyng
thextraction of rootes, the cossike practise, with the rule of equation, and the woorkes of surde nombers. Imprynted
at London: By Ihon Kyngstone, 1557. UrL: https://archive.org/details/TheWhetstoneOfWitte

(page 35)-

https://doi.org/10.2307/2033124
https://doi.org/10.1007/BF01700692
https://doi.org/10.1002/malq.19780242514
https://pi.math.cornell.edu/~hatcher/AT/AT.pdf
https://doi.org/10.4171/jems/1050
https://doi.org/10.1007/BF01446615
https://doi.org/10.2307/2690312
https://doi.org/10.1215/S0012-7094-96-08403-3
https://doi.org/10.1007/978-3-030-61524-6
https://doi.org/10.1515/9781400830558
https://arxiv.org/abs/2301.10011
https://doi.org/10.4064/fm-33-1-137-168
https://github.com/mdnahas/Peano_Book/
https://books.google.com/books?id=z80GAAAAYAAJ
https://doi.org/10.1007/BF01188079
https://archive.org/details/TheWhetstoneOfWitte

BIBLIOGRAPHY 270

Riehl, Emily. Category Theory in Context. Aurora: Modern Math Originals. Dover Publications, 2016. URL:
https://math. jhu.edu/~eriehl/context/ (pages 78, 147).

Rijke, Egbert. Introduction to Homotopy Type Theory. Forthcoming book with CUP. Version from 06/02/22.
2022 (page 61).

— The join construction. 2017. arXiv: 1701.07538 (pages 45, 61).

Russell, Bertrand. Introduction to mathematical philosophy. 2"d Ed. Dover Publications, Inc., New York, 1993,
pp- viii+208 (page 53).

Shulman, Michael. “Brouwer’s fixed-point theorem in real-cohesive homotopy type theory”. In: Mathematical
Structures in Computer Science 28.6 (2018), pp. 856—941. por: 10.1017/S0960129517000147. arXiv:
1509.07584 (page 261).

Smullyan, Raymond M. Gddel’s incompleteness theorems. Vol. 19. Oxford Logic Guides. The Clarendon Press,
Oxford University Press, New York, 1992, pp. xvi+139 (page 258).

Stallings, John R. “Foldings of G-trees”. In: Arboreal group theory (Berkeley, CA, 1988). Vol. 19. Math. Sci. Res.
Inst. Publ. Springer, New York, 1991, pp. 355—368. por: 10.1007/978-1-4612-3142-4_14 (page 223).
Swan, Andrew W. “On the Nielsen-Schreier Theorem in Homotopy Type Theory”. In: Log. Methods Comput.

Sci. 18.1 (2022). por: 10.46298/1mcs-18(1:18)2022 (pages 220, 222).

Trimble, Todd. Monomorphisms in the category of groups.
https://ncatlab.org/toddtrimble/published/monomorphisms+in+the+category+of+groups. Jan.
2020 (page 187).

Univalent Foundations Program, The. Homotopy Type Theory: Univalent Foundations of Mathematics. Institute
for Advanced Study: https://homotopytypetheory.org/book, 2013 (pages 24, 25, 48, 50, 51, 65, 147,
155).

Warn, David. Eilenberg-MacLane spaces and stabilisation in homotopy type theory. 2023. arXiv: 2301.03685
[math.AT] (page 231).

— Path spaces of pushouts. Preprint. 2023. UrL: https://dwarn.se/po-paths.pdf (page 183).

Waussing, Hans. The genesis of the abstract group concept. A contribution to the history of the origin of abstract
group theory, Translated from the German by Abe Shenitzer and Hardy Grant. MIT Press, Cambridge,
MA, 1984, p. 331 (page 257).

Yaglom, I. M. Felix Klein and Sophus Lie. Evolution of the idea of symmetry in the nineteenth century. Transl. from
the Russian by Sergei Sossinsky. Ed. by Hardy Grant and Abe Shenitzer. Birkh&user Boston, Inc., Boston,

MA, 1988, pp. xii+237 (page 257).

https://math.jhu.edu/~eriehl/context/
https://arxiv.org/abs/1701.07538
https://doi.org/10.1017/S0960129517000147
https://arxiv.org/abs/1509.07584
https://doi.org/10.1007/978-1-4612-3142-4_14
https://doi.org/10.46298/lmcs-18(1:18)2022
https://ncatlab.org/toddtrimble/published/monomorphisms+in+the+category+of+groups
https://homotopytypetheory.org/book
https://arxiv.org/abs/2301.03685
https://arxiv.org/abs/2301.03685
https://dwarn.se/po-paths.pdf

Glossary

! . placeholder for an element (proof) of a proposition, 76
0 - the empty type, Section 2.12.1, 29

-1
p

X* - list of elements of X, 31

- reverse identification, path inverse, Definition 2.5.1, 17

f - path obtained by univalence from f, 33

A. - underlying type of a pointed type A, 48

=P - negation of a proposition P, 35

—z - negation of an integer z, 67y

[x] - orbit through x: X(shg), 135

[u]o - orbit through u:Xyc, 134

A, - Atogether with a disjoint base point, 48

Nt - mth root function on cycles, 89

S - signed version of the set S, 183

1 - trivial group, Example 4.2.20(1), 103

p - transport between types along a path, 33

|t| - constructor for the propositional truncation || T|| applied tot:T, 40

IT|| - propositional truncation of a type T, 39
- element judgment, 9

= - identification in a definition, 65

:= . definition, 12

= . equality, 35

= . identity type, Item (E1), 15

- equality by definition, 12

y % y’ - path-over type, Definition 2.7.1, 20

IT - binary sum, 30

o - function composition, 12

p*q,9-p,qp,qop - path concatenation or composition, 17
4 - adjunction, 156

> - type of equivalences, 24

d,.x P(x) - proposition expressing existential quantification, 4o
— - function type, 10

— - “maps to”, function definition, 12

= - type of isomorphisms, 149

{t:T|P(t)} - set comprehension, 47

— - subtraction of integers, 67

x - cartesian product of two types, 28

V - disjunction of propositions, 40

G < H - semidirect product group, Definition 8.2.1, 172

¢ - the empty list, Definition 2.12.11, 31

n - n-rule, 12

t+ - embedding of N into Z, 67

(- - embedding of N~ into Z, 67

271

GLOSSARY

Il¢.x T(x) - product type of dependent functions, 10

Pm - formal mh root function, Definition 3.8.3, 89

Yo x Y(x) - sum type, of dependent pairs (x,y), 22

Y, - symmetric group of degree n, Example 4.2.20(2), 103
Ys - permutation group on a set S, Example 4.2.20(3), 103
Qk - loop map of pointed map, Definition 4.4.3, 108

QX - type of symmetries (loops) in pointed type, Definition 4.2.10, 101
Q - group constructor, Definition 4.2.8, 101

Q) - homomorphism constructor, Definition 4.4.2, 108

0 - the natural number zero, Peano’s rules, Item (P2), 13

1 - the natural number 1, 14

2 - the natural number 2, 14

3 - the natural number 3, 14

abs(G) - the abstract group of symmetries in a group G, Definition 4.3.4, 107
A, - alternating group of degree n, Definition 4.5.7, 115

ap, - application of f to a path, Definition 2.6.1, 19

f(p) - application of f to the path p, Definition 2.6.1, 19

apd, - application of a dependent function to a path, Definition 2.7.6, 21
f(p) - application of dependent f to the path p Definition 2.7.6, 21
Auta(a) - automorphism group of the element a in the type A, Definition 4.2.15, 102
Bicyc - the type of bicycles, Definition 4.6.1, 117

Cay(G;S) - Cayley graph of a group G with respect to S, 218

coker f - cokernel of a homomorphism f, 189

cstX - constant function att:T, 11

Cyc - the type of cycles, Definition 3.6.3, 8o

Cyc, - the type of infinite cycles, Definition 3.8.1, 88

Cyc,, - the type of cycles of order m > 0, Definition 3.8.1, 88

D, - dihedral group of degree n, 173

Do - infinite dihedral group, Definition 4.6.3, 117

E - equivalence from Mono(G) to Sub(G), 131

Epi; - type of epimorphisms from the group G, 186

False - the empty type, Section 2.12.1, 29

FinSet - the groupoid of finite sets, 57

FinSet, - the groupoid of sets of cardinality n, 57

Fs - free group on a decidable set of generators, 182

Group - type of groups, 101

Group®™® - type of abstract groups, 159

G-Set?bs . type of G-sets, 163

G-Set - type of G-sets, 123

Xp - underlying G-set of P, 124

Hom(G, H) - type of group homomorphisms, 108

Hom?®™(G,H) - type of abstract homomorphisms, 161

Hom¢(X,Y) - type of maps of G-sets, 124

id - identity function, 12

im(f) - the (propositional) image of f, 43

im,(f) - the n-imageof f, 93

in - inclusion into wrapped copy, 31

InfCyc - the type of infinite cycles, Definition 3.5.3, 77

Inj(T) - type of injections into T, 47

inl - inclusion of left summand, 30

inn - homomorphism from G to its inner automorphisms, Definition 4.4.21, 113

272

GLOSSARY

inr - inclusion of right summand, 30

isMono(i) - proposition stating that i is a monomorphism of groups, 130
Ker(f) - the kernel group of the homomorphism f, 188
ker(f) - the inclusion of the kernel group of f into its codomain, 188
Monog - G-set of monomorphisms into G, 194

Mono(G) - type of monomorphismsinto the group G, 130

N - the type of natural numbers, Peano’s rules, Item (P1), 13
N~ - the type of negated natural numbers, Example 2.12.9, 31
no - the denying boolean, Section 2.12.1, 29

ns - naturality square, Definition 2.6.5, 20

po, - convert path over path, Definition 2.7.3, 21

pty - base point of a pointed type X, 48

Qg - quaternion group, Definition 4.6.3, 117

refl, - reflexivity, identity type, Item (E2), 15

s - successor function on Z, 67

sgn - sign homomorphism, Definition 4.5.6, 114

Sub(G) - type of subgroups of G, 128

Subg(X) - set of G-subsets of X, 124

succ - the successor function on N, Peano’s rules, Item (P3), 13
swap - interchange the elements of Bool, Exercise 2.13.3, 33
Torsorg - the type of G-torsors, 140

tot(f) - totalization of f, 25

Tot(Y) - the total type }_,.x Y(x), 22

triv - the element of the unit type, Section 2.12.1, 29

trp! - transport function, Definition 2.5.4, 18

True - the unit type, Section 2.12.1, 29

uayy - postulated element of the univalence axiom, 33

P, - the type family b — (bg = b), 71

U - universe, 13

u=t . pointed, connected groupoids, Definition 4.2.5, 101

U. - universe of pointed types, Definition 2.21.1, 48

wdg - winding number function, 75

yes - the affirmative boolean, Section 2.12.1, 29

Z - the set of integers, Definition 3.2.1, 67

Z - group of integers, Example 4.2.18, 102

273

Index

cardinality, 210

abstract group, 107
abstract monomorphisms, 195
action
coinduced, 142
free, 137
induced, 141
of a group in a type, 127
of a group on an element, 127
restricted, 141
action type, 133
actions
of a group on a set, 125
alternating group, 115
automorphism
inner, 113
automorphism group, 102, 106

base point, 48

bicycle, 117

binary sum type, 30
binomial coefficient, 88
bound variable, 11

cardinality

of finite G-set, 125

of finite group, 102
category, 150

locally small, 151

of G-sets, 150

of groups, 150

of sets, 150

opposite, 152

precategory, 149

small, 151

wild category, 150

wild precategory, 148
classifying map, 108
classifying type, 101
cokernel, 189
composition

of functions, 12

274

of group homomorphisms, 109
of paths, 17
concatenation
of paths, 17
congruence, 16
conjugate, 194
conjugation, 113, 160, 162, 194
connected
graph, 221
connected set bundle, 68
currying, 26
cycle, 8o
infinite, 77, 88
of order m > 0, 88

decidable set bundle, 68
decidable proposition, 44
decidable set, 48
definition, 12
degree
function, 81
designated shape, 101
diagram, 38
commutative, 38
commutative by definition, 38
subtype, 70
tofill a, 39
dihedral group, 173
disjunction, 40
dummy variable, 11

element, 9
empty type, 29
epimorphism
of groups, 186
equation, 35
equivalence relation
induced by map, 54
even, 115
exists, 40

factorial function, 15
family

of elements, 10
of types, 9
fiber, 23
filler
of a diagram, 39
finite G-set, 125
finite set bundle, 68
finite group, 102, 210
fixed, 137
flattening construction, 219
forget, 62
higher structure, 62
properties, 62
structure, 62
free, 137
free group, 182
function, 10
n-connected, 93
n-truncated, 93
constant, 11
degree m, 81
factorial, 15
identity, 12
function extensionality, 20
functor, 153
functor category, 155

functor precategory, see functor category

graph
Cayley graph, 218
labeled, 218

group, 101
abstract, 107
acting on a set, 122
alternating group, 115
binary product, 105
dihedral group, 173
finite, 102

infinite dihedral group, 117, 173

Klein four-group, 105
of automorphisms, 102, 106
of integers, 102
permutation group, 103
quaternion group, 117
semidirect product, 172
stabilizer, 136
symmetric group, 103

group action
of G-set, 122

groupoid, 35

G-set (of group), 123

INDEX

G-set (of abstract group), 163
G-subset, 124

Hedberg's theorem, 48
homomorphism, 108
of abstract group, 161
of groups, 108

identification, 15
identity type, 15
image, 62
function, 193
projection to, 193
image group, 192
induced action, 141
induction principle, 14
infinite dihedral group, 117, 173
initial object, 152
injection, 42
into a type, 47
injective, 42
intersection
of monomorphisms, 178
of sets, 177
invariant map type, 134
isomorphism
in a (wild pre-)category, 149
of abstract groups, 160
of groups, 109
iteration, 67

kernel, 188
associated to, 199
group, 188

Klein four-group, 105

Law of Excluded Middle, 44
LEM, see Law of Excluded Middle
Limited Principle of Omniscience, 85
list
head, 31
tail, 31
list type, 31
loop type constructor, 101
LPO, see Limited Principle of Omniscience

map, 10
of G-sets, 124
mathematics
univalent, 9
merely, 41
monoid, 158

275

monomorphism, 130
of groups, 186

natural transformation, 155
naturality square, 20
negation

of integer, 67
neutral element, 107, 158
normal subgroup, 195
normalizer, 204

obelus, 48

odd, 115

orbit set, 134

ordering
local, 114
sign, 114

parameter type, 10, 19
partial order, 150
path over, 20
permutation

even, 115
permutation group, 103
Pi type, 19
pointed type, 48
pointing path, 48
poset, 150
predicate, 46
preimage, 23
preorder, 150
principle

induction, 14

recursion, 14
product type, 10, 19
proof

of a proposition, 34
proper monomorphism, 130
proper subgroup, 132
proposition, 34
Propositional resizing, 44
propositional truncation, 39
pullback

in types, 176

of groups, 178
pullback diagram, 177

quaternion group, 117
quotient group, 197
quotient homomorphism, 197

recursion principle, 14

INDEX

Replacement principle, 45
restriction, 141

semidirect product, 172
set, 35

of kernels, 196

comprehension, 47

of orbits, 134
shape, 101
sigma type, 22
sign, 115
sign ordering, 114
signed set, 183
sink

of a diagram, 38
source

of a diagram, 38
stabilizer, 136
substitution, 18
subtype, 46, 47
successor, 13
sum of groups, 179
sum type, 22
Sylow subgroup, 214
symmetric group, 103
symmetries in a group G, 101
symmetry

in a type, 64

of an element, 16
symmetry type constructor, 101

terminal object, 152
torsor, 140
total type, 22
totalization, 25
transitive G-set, 126
transport, 18
triple, 22
trivial group, 103
trivial monomorphism, 130
trivial subgroup, 132
truncation
propositional, 39
tuple, 23
type, 8
n-connected, 93
n-truncated, 36
of epimorphisms from a groups, 186
of monomorphisms into a group, 130
of normal subgroups, 195
binary product, 28

276

INDEX 277

binary sum, 30

cartesian product, 28

empty, 29

of abstract groups, 159

of abstract homomorphisms, 161
of booleans, 29

of groups, 101

of lists, 31

of subgroups of a group, 128
propositional truncation, 39
Sigma, 22

sum, 22

unary sum, 31

unit, 29

unary sum type, 31
underscore, 11
union of sets, 177
unit type, 29
univalence axiom, 33
univalent, 149
universe, 13

Vierergruppe, 105

wedge of pointed types, 179
Weyl group, 204
wrapped copy type, 31

Zero, 13

	Short contents
	Contents
	1 Introduction to the topic of this book
	1.0.1 Who is this book for?
	1.0.2 Outline of the book

	2 An introduction to univalent mathematics
	2.1 What is a type?
	2.2 Types, elements, families, and functions
	2.3 Universes
	2.4 The type of natural numbers
	2.5 Identity types
	2.6 Product types
	2.7 Identifying elements in members of families of types
	2.8 Sum types
	2.9 Equivalences
	2.10 Identifying pairs
	2.11 Binary products
	2.12 More inductive types
	2.12.1 Finite types
	2.12.3 Binary sums
	2.12.8 Unary sums
	2.12.10 Lists

	2.13 Univalence
	2.14 Heavy transport
	2.15 Propositions, sets and groupoids
	2.16 Propositional truncation and logic
	2.17 More on equivalences; surjections and injections
	2.18 Decidability, excluded middle and propositional resizing
	2.19 The replacement principle
	2.20 Predicates and subtypes
	2.21 Pointed types
	2.22 Operations that produce sets
	2.22.6 Weakly constant maps
	2.22.9 Set quotients

	2.23 More on natural numbers
	2.24 The type of finite sets
	2.25 Type families and maps
	2.26 Higher truncations
	2.27 Higher structure: stuff, structure, and properties

	3 The universal symmetry: the circle
	3.1 The circle and its universal property
	3.2 The integers
	3.3 Set bundles
	3.4 The symmetries in the circle
	3.5 A reinterpretation of the circle
	3.6 Connected set bundles over the circle
	3.7 Interlude: combinatorics of permutations
	3.8 The mᵗʰ root: set bundles over the components of Cyc
	3.9 Higher images
	3.10 Universal property of Cycn

	4 Groups, concretely
	4.1 Brief overview of the chapter
	4.2 The type of groups
	4.2.17 First examples

	4.3 Abstract groups
	4.4 Homomorphisms
	4.5 The sign homomorphism
	4.6 Bicycles
	4.7 Infinity groups (∞-groups)

	5 Group actions and subgroups
	5.1 Brief overview of the chapter
	5.2 Group actions (G-sets)
	5.2.18 Transitive G-sets
	5.2.26 Actions in a type

	5.3 Subgroups
	5.3.1 Subgroups through G-sets
	5.3.10 Subgroups as monomorphisms
	5.3.24 The Lagrange construction

	5.4 Invariant maps and orbits
	5.4.22 The Orbit–Stabilizer theorem

	5.5 The classifying type is the type of torsors
	5.5.8 Homomorphisms and torsors

	5.6 Any symmetry is a symmetry in Set
	5.7 The lemma that is not Burnside's

	6 A categorical interlude
	6.1 Brief overview of the chapter
	6.2 Categories
	6.3 Abstract notions and duality
	6.4 Functors and natural transformations
	6.5 Adjunctions
	6.6 Limits and Colimits
	6.7 The Yoneda Lemma
	6.8 Monoidal categories

	7 Groups, abstractly
	7.1 Brief overview of the chapter
	7.2 Monoids and abstract groups
	7.3 Abstract homomorphisms
	7.4 Groups: from abstract to concrete and back
	7.5 Homomorphisms, from abstract to concrete and back
	7.6 Actions, from abstract to concrete and back
	7.7 Heaps (†) red just moved from symmetry without proofreading BID211116

	8 Constructing groups
	8.1 Brief overview of the chapter
	8.2 Semidirect products
	8.3 Wreath products
	8.4 The pullback
	8.5 Pushouts of types
	8.6 Sums of groups
	8.7 Free groups

	9 Normal subgroups and quotients
	9.1 Brief overview of the chapter
	9.2 Epimorphisms
	9.3 Images, kernels and cokernels
	9.3.1 Kernels and cokernels
	9.3.10 The image

	9.4 The action on the set of subgroups
	9.5 Normal subgroups
	9.5.13 The associated kernel

	9.6 Intersecting with normal subgroups
	9.7 Automorphisms of groups
	9.8 The Weyl group
	9.9 The isomorphism theorems
	9.10 More about automorphisms

	10 Finite groups
	10.1 Brief overview of the chapter
	10.2 Lagrange's theorem, counting version
	10.3 Cauchy's theorem
	10.4 Sylow's Theorems

	11 Group presentations
	11.1 Brief overview of the chapter
	11.2 Graphs and Cayley graphs
	11.3 Examples
	11.4 Subgroups of free groups
	11.5 Intersecting subgroups
	11.6 Connections with automata (*)

	12 Abelian Groups
	12.1 Brief overview of the chapter
	12.2 Abelian groups
	12.2.1 Center of a group
	12.2.8 Universal set bundle and simple connectedness
	12.2.12 Abelian groups and simply connected 2-types
	12.2.14 Higher deloopings

	12.3 Direct sums and reduced wreath products
	12.4 Stabilization

	13 Rings, fields and vector spaces
	13.1 Rings, abstract and concrete
	13.1.1 Abstract rings
	13.1.7 Mixed rings
	13.1.12 Move to a better place (Ch. 11 or 2)
	13.1.30 Concrete rings

	13.2 vector spaces
	13.3 the general linear group as automorphism group
	13.4 determinants (†)
	13.5 examples: rationals, polynomials, adding a root, field extensions
	13.6 ordered fields, real-closed fields, pythagorean fields, euclidean fields
	13.7 complex fields, quadratically closed fields, algebraically closed fields

	14 Geometry and groups
	14.1 Inner product spaces
	14.2 Euclidean spaces
	14.3 Geometric objects
	14.4 The icosahedron
	14.5 Frieze patterns
	14.6 Incidence geometries and the Levi graph
	14.7 Affine geometry
	14.7.1 affine planes and Pappus' law
	14.7.2 affine frames, affine planes
	14.7.3 the affine group as an automorphism group
	14.7.4 the affine group as a semidirect product
	14.7.5 affine properties (parallelism, length ratios)

	14.8 Inversive geometry (Möbius)
	14.8.1 residue at a point is affine
	14.8.2 Miquel's theorem

	14.9 Projective geometry
	14.9.1 projective planes
	14.9.2 projective frames
	14.9.3 the projective group and projectivities
	14.9.4 projective properties (cross-ratio)
	14.9.5 fundamental theorem of projective geometry

	15 Galois theory
	15.1 Covering spaces and field extensions
	15.2 Intermediate extensions and subgroups
	15.3 separable/normal/etc.
	15.4 fundamental theorem

	A Historical remarks
	B Metamathematical remarks
	B.1 Equality by definition
	B.1.1 Basics
	B.1.2 Deciding equality by definition (not updated yet)

	B.2 The Limited Principle of Omniscience
	B.3 Topology
	B.4 Choice for finite sets (†)

	Bibliography
	Glossary
	Index

