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Model 1: Static Matrix-Vector Multiplication
•Given an n × n matrixM, preprocess it,•Support queries that for any vector v , returnsMv .
Model 2: Dynamic Matrix-Vector Multiplication
•Given an n × n matrixM, preprocess it.•Support the following queries:- For any vector v , returnMv- Update any row or column of the matrix
Can we perform queries in less than O(n2) operations?- Computing matrix-vector products is essential in optimization,computational geometry, online/dynamic algorithms (e.g. neuralnetwork inference and backpropagation)- Any complexity improvement has wide-ranging implications, andis thus a prevalent research topic in both theory and practice.
Substantial theoretical lower bounds:1) Any poly(n)-spaceMv algorithm over sufficiently large finitefields needs Ω(n2/ log n) time (Gronlund, Larsen, 2015),2) Ω(n2/ log n) for arithmetic circuits (Frandsen et. al., 2001),3) Also for average case matrices (Henzinger et. al., 2022)
The only non-trivial upper bounds are over the Booleansemiring where x ⊕ y = min(1, x + y). Here,Mv can be donein time O(n2−o(1)) (Williams 2007, Abboud et. al. 2024).
Hardness conjecture (OMv hypothesis) Even over the Booleansemiring, no truly subquadratic time algorithm exists.
Success of Practical Heuristics Tremendous progress in Mvmultiplication through heuristics that run in nnz(M)worst-casetime, but are much faster in practice (Alves et. al. 2024).
Beyond average-case analysis. Since the average-case (i.e.,random non-structured input) is hard, the efficiency of practicalalgorithms must stem from inherent structure in real-world data.
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Figure 1 a) StructuredMv , b) low VC-dimension matrix
VC-dimension parameterizes the structural complexity of a
Boolean matrix. M has VC-dimension d if the largest subsetof columns S that contains every string in {0, 1}|S| has size d .
Corrupted VC-dimension. A set system F on a ground set ofsize n has corrupted VC-dimension d if there is another setsystem F ′ of VC-dimension ≤ d such that F can be obtainedfrom F ′ by adding/removing at most O(n1−1/d) elements to orfrom each set.

If the corrupted VC-dimension of
M∈Zn×n is d , we can preprocess
M in Õ(n2) time such thatMv can
be computed in time O(n2−1/d).
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Caution!! Approximating the VC-dimension of a set-system is
ΣP3 -hard (Mossel & Umans, 2002), so any tractable matrix-vectormultiplication algorithm that exploits the VC-dimension must doso without knowing, computing, or approximating it!
Main Results

Thm1 (StaticMv ). If an n×nmatrixM has corruptedVC-dimension
d : after an Õ(n2) preprocessing, there is a data structureD that can
computeMv for any vector v ∈ Rn in time O(n2−1/d) time, w.h.p.

Thm 2 (Dynamic Mv ). If an n × n matrix M has corrupted
VC-dimension d : after an Õ(n2) preprocessing, there is a
data structure D that can support row and column updates
(insertions/deletions) to M in Õ(n) time. Upon querying D with a
vector v ∈ Rn, it outputs Mv in time O(n2−1/d∗), where d∗ is the
largest corrupted VC-dimension ofM throughout its update history.

Sauer-Shelah’s Lemma: If VC(M) = d , then VC(M⊤) ≤ 2d . Toavoid this blow-up, the query complexity of the algorithm actuallyonly depends on min{VC(M),VC(M⊤)}.
Pollard-pseudodimension is a popular extension of theVC-dimension to non-binary thresholds.
Thm3 (StaticMv ). If an n×nmatrixM has Pollard pseudodimension
d and the number of thresholds isA: after an Õ(An2) preprocessing,
there is a data structure that upon receiving a vector v ∈ Rn, returns
Mv in time O(Amn1−1/d), with high probability.

Applications
The following applications have Ω(n2)-time lower bounds,conditional on the OMv conjecture. For structured graphs, thislower bound can be beaten.
(1) High-accuracy dynamic Laplacian solver. Given a graph Gwith corrupt VC-dimension d , there is a dynamic algorithm thatmaintains a Laplacian system solver: it supports queries thatreceive a vector b ∈ Rn and ϵ > 0, and returns an ϵ-approx solnto Lx∗ = b in Õ(n2−1/d log 1ϵ) time, where L is the graph Laplacian.
(2) Dynamic Effective Resistance. Given a graph G with corruptVC-dimension d , there is a dynamic algorithm that maintainseffective resistances in G: it supports queries that receive u, v ∈
V and ϵ > 0 and returns a (1 ± ϵ)-approximation of effectiveresistance in Õ(n2−1/d log 1ϵ) time. Node updates take Õ(n) time.
(3) Dynamic Triangle Detection Given a graph G with corruptVC-dimension d , there is a dynamic algorithm that maintainswhether G has a triangle. Node updates take O(n2−1/d) time.
(4) Dynamic SSSP. If a dynamic unweighted undirected graph
G has corrupt VC-dimension d , there is a dynamic algorithmthat maintains (1+ϵ)-approximate single source distances on G.Node updates take Õ(kn2−1/2d/ϵ) time and querying the distancefor any source node takes O(n2−1/2d/ϵ) time.
(5) Dynamic Approx k-center. If G is an unweighted undirectedgraphwith corrupt VC-dimension d , there is a dynamic algorithmfor (2+ϵ)-approx k-center with node update timeO(kn2−1/2d/ϵ).


