The Structural Complexity of
Matrix Vector Multiplication

Emile Anand?, Jan van den Brand?, Rose McCarty!*
1 Georgia Tech 2 Princeton University

Model 1: Static Matrix-Vector Multiplication

e Given an n x n matrix M, preprocess it,
e Support queries that for any vector v, returns Mv.

Model 2: Dynamic Matrix-Vector Multiplication

e Given an n x n matrix M, preprocess it.
e Support the following queries:
- For any vector v, return Mv
- Update any row or column of the matrix

Can we perform queries in less than O(n?) operations?

- Computing matrix-vector products is essential in optimization,

computational geometry, online/dynamic algorithms (e.g. neural

network inference and backpropagation)

- Any complexity improvement has wide-ranging implications, and

Is thus a prevalent research topic in both theory and practice.

Substantial theoretical lower bounds:

1) Any poly(n)-space Myv algorithm over sufficiently large finite
fields needs ©2(n?/ log n) time (Gronlund, Larsen, 2015),

2) Q(n?/ log n) for arithmetic circuits (Frandsen et. al., 2001),
3) Also for average case matrices (Henzinger et. al., 2022)

The only non-trivial upper bounds are over the Boolean

semiring where x & y = min(1, x + y). Here, Mv can be done
in time O(n?~°W) (Williams 2007, Abboud et. al. 2024).

Hardness conjecture (OMv hypothesis) Even over the Boolean
semiring, no truly subquadratic time algorithm exists.

Success of Practical Heuristics Tremendous progress in Mv
multiplication through heuristics that run in nnz(M) worst-case
time, but are much faster in practice (Alves et. al. 2024).

Beyond average-case analysis. Since the average-case (i.e.,
random non-structured input) is hard, the efficiency of practical
algorithms must stem from inherent structure in real-world data.

OOOOO

OOOOO

OOOOO

Figure 1 a) Structured Myv, b) low VC-dimension matrix

' VC-dimension parameterizes the structural complexity of a |

Boolean matrix. M has VC-dimension d if the largest subset
of columns S that contains every string in {0, 1}/°! has size d.

| Corrupted VC-dimension. A set system F on a ground set of |

size n has corrupted VC-dimension d if there is another set

system F’ of VC-dimension < d such that F can be obtained

from F’ by adding/removing at most O(n'~1/9) elements to or
from each set.

If the corrupted VC-dimension of

M e Z"" Is d, we can preprocess
M in O(n?) time such that Mv can

be computed in time O(n?~1/9).

Real-world data has constant VC-dimension.
Coudert et. al. (2024) computed the VC-
dimension of families of real-world graph. Even
for graphs with millions of nodes, the VC-
dimension was between 3 to 8.

Matrices with constant VC-dimension:

- Adjacency matrices of H-minor free graphs
- Boolean kernel matrices

- Shortest-path structures

- Nontrivial classes of hereditary matrices

Methodology

- Differential compression: foreach x € {1,...,n}, write
M, =M, +6,,, where 6, is a “change” vector,

- Compute an approximate MST for a graph with edge
weights |6, ||,

- We use computational geometry to show that matrices
of VC-dimension d have MSTs of weight O(n>~1/9),

- The algorithm stores sparse representations of 5x,y and

uses the in-order traversal of the MST to compute M.

Take a picture to
download the full paper

Caution!! Approximating the VC-dimension of a set-system is
> £-hard (Mossel & Umans, 2002), so any tractable matrix-vector
multiplication algorithm that exploits the VC-dimension must do
so without knowing, computing, or approximating it!

Main Results

"Thm 1 (Static Mv). If an nx nmatrix M has corrupted VC-dimension |
d: after an O(n?) preprocessing, there is a data structure D that can
compute Mv for any vector v € R" in time O(n*~1/9) time, w.h.p.

Thm 2 (Dynamic Mv).If an n x n matrix M has corrupted
VC-dimension d: after an O(n?) preprocessing, there is a
data structure D that can support row and column updates
(insertions/deletions) to M in O(n) time. Upon querying D with a
vector v € R”, it outputs Mv in time O(n?>~1/9"), where d* is the
largest corrupted VC-dimension of M throughout its update history.

Sauer-Shelah’s Lemma: If VC(M) = d, then VC(M') < 29 To
avoid this blow-up, the query complexity of the algorithm actually
only depends on min{VC(M), VC(M")}.

'Pollard-pseudodimension is a popular extension of the
| VC-dimension to non-binary thresholds.

Thm 3 (Static Mv). If an nxn matrix M has Pollard pseudodimension
d and the number of thresholds is A: after an O(An?) preprocessing,
there is a data structure that upon receiving a vector v € R”, returns

My in time O(Amn'=%9), with high probability.

Applications

The following applications have Q(n?)-time lower bounds,
conditional on the OMv conjecture. For structured graphs, this
lower bound can be beaten.

(1) High-accuracy dynamic Laplacian solver. Given a graph G
with corrupt VC-dimension d, there is a dynamic algorithm that
maintains a Laplacian system solver: it supports queries that
receive a vector b € R" and € > 0, and returns an e-approx soln
to Lx* = bin O(n?* */9log 1) time, where L is the graph Laplacian.

(2) Dynamic Effective Resistance. Given a graph G with corrupt
VC-dimension d, there is a dynamic algorithm that maintains
effective resistances in G: it supports queries that receive u, v €
VV and € > 0 and returns a (1 + ¢)-approximation of effective

resistance in O(n?~'/9log1) time. Node updates take O(n) time.

(3) Dynamic Triangle Detection Given a graph G with corrupt
VC-dimension d, there is a dynamic algorithm that maintains
whether G has a triangle. Node updates take O(n*~1/9) time.

' (4) Dynamic SSSP. If a dynamic unweighted undirected graph |
G has corrupt VC-dimension d, there is a dynamic algorithm
that maintains (1 + ¢)-approximate single source distances on G.

Node updates take O(kn?~1/29 /¢) time and querying the distance
for any source node takes O(n>~1/29/¢) time.

(5) Dynamic Approx k-center. If G is an unweighted undirected
graph with corrupt VC-dimension d, there is a dynamic algorithm
for (2-+¢)-approx k-center with node update time O(kn?=1/29 /¢).

