

The Structural Complexity of Matrix Vector Multiplication

Emile Anand¹, Jan van den Brand¹, Rose McCarty^{1,2}

¹ Georgia Tech ² Princeton University

Model 1: Static Matrix-Vector Multiplication

- Given an $n \times n$ matrix \mathbf{M} , preprocess it,
- Support queries that for any vector v , returns $\mathbf{M}v$.

Model 2: Dynamic Matrix-Vector Multiplication

- Given an $n \times n$ matrix \mathbf{M} , preprocess it.
- Support the following queries:
 - For any vector v , return $\mathbf{M}v$
 - Update any row or column of the matrix

Can we perform queries in less than $\mathcal{O}(n^2)$ operations?

- Computing matrix-vector products is essential in optimization, computational geometry, online/dynamic algorithms (e.g. neural network inference and backpropagation)
- Any complexity improvement has wide-ranging implications, and is thus a prevalent research topic in both **theory** and **practice**.

Substantial theoretical lower bounds:

- Any poly(n)-space $\mathbf{M}v$ algorithm over sufficiently large finite fields needs $\Omega(n^2/\log n)$ time (Gronlund, Larsen, 2015),
- $\Omega(n^2/\log n)$ for arithmetic circuits (Frandsen et. al., 2001),
- Also for average case matrices (Henzinger et. al., 2022)

The **only** non-trivial upper bounds are over the Boolean semiring where $x \oplus y = \min(1, x + y)$. Here, $\mathbf{M}v$ can be done in time $\mathcal{O}(n^{2-o(1)})$ (Williams 2007, Abboud et. al. 2024).

Hardness conjecture (OMv hypothesis) Even over the Boolean semiring, no truly subquadratic time algorithm exists.

Success of Practical Heuristics Tremendous progress in $\mathbf{M}v$ multiplication through heuristics that run in $\text{nnz}(\mathbf{M})$ worst-case time, but are much faster in practice (Alves et. al. 2024).

Beyond average-case analysis. Since the average-case (i.e., random non-structured input) is hard, the efficiency of practical algorithms must stem from inherent structure in real-world data.

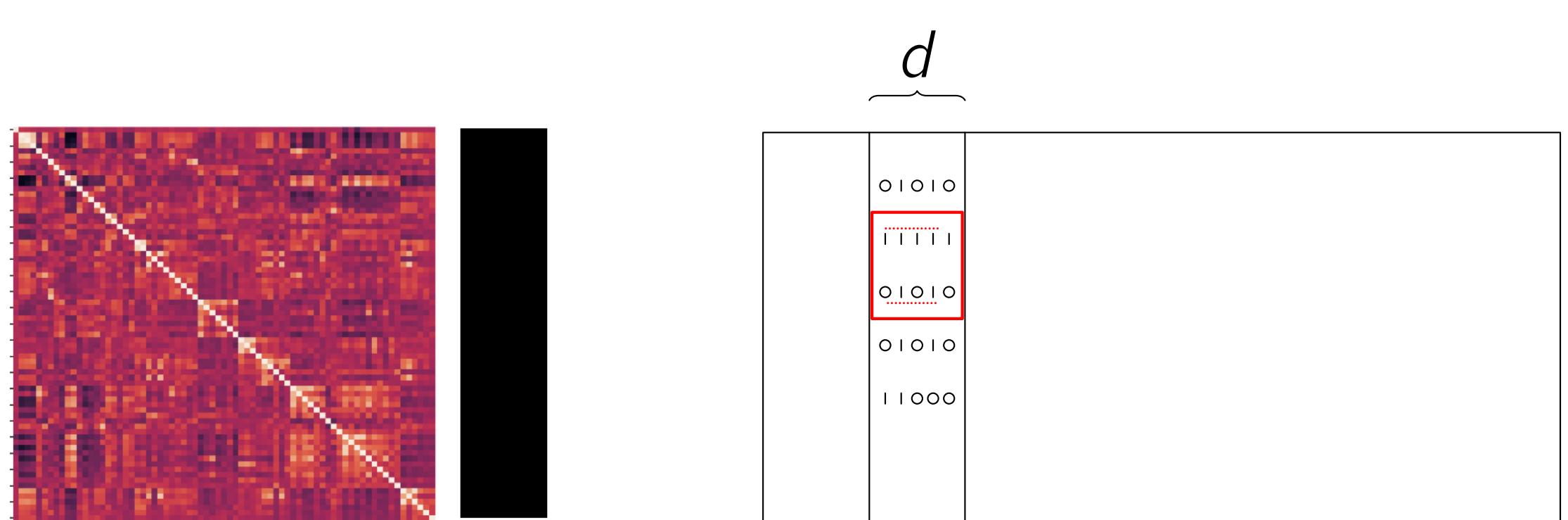


Figure 1 a) Structured $\mathbf{M}v$, b) low VC-dimension matrix

VC-dimension parameterizes the structural complexity of a Boolean matrix. \mathbf{M} has VC-dimension d if the largest subset of columns S that contains every string in $\{0, 1\}^{|S|}$ has size d .

Corrupted VC-dimension. A set system \mathcal{F} on a ground set of size n has corrupted VC-dimension d if there is another set system \mathcal{F}' of VC-dimension $\leq d$ such that \mathcal{F} can be obtained from \mathcal{F}' by adding/removing at most $\mathcal{O}(n^{1-1/d})$ elements to or from each set.

If the corrupted VC-dimension of $\mathbf{M} \in \mathbb{Z}^{n \times n}$ is d , we can **preprocess** \mathbf{M} in $\tilde{\mathcal{O}}(n^2)$ time such that $\mathbf{M}v$ can be computed in time $\mathcal{O}(n^{2-1/d})$.

Real-world data has constant VC-dimension.

Coudert et. al. (2024) computed the VC-dimension of families of real-world graph. Even for graphs with millions of nodes, the VC-dimension was between 3 to 8.

Matrices with constant VC-dimension:

- Adjacency matrices of H-minor free graphs
- Boolean kernel matrices
- Shortest-path structures
- Nontrivial classes of hereditary matrices

Methodology

- Differential compression: for each $x \in \{1, \dots, n\}$, write $\mathbf{M}_x = \mathbf{M}_y + \delta_{x,y}$, where $\delta_{x,y}$ is a “change” vector,
- Compute an approximate MST for a graph with edge weights $\|\delta_{x,y}\|_1$,
- We use computational geometry to show that matrices of VC-dimension d have MSTs of weight $\mathcal{O}(n^{2-1/d})$,
- The algorithm stores sparse representations of $\delta_{x,y}$ and uses the in-order traversal of the MST to compute $\mathbf{M}v$.

Caution!! Approximating the VC-dimension of a set-system is Σ_3^P -hard (Mossel & Umans, 2002), so any tractable matrix-vector multiplication algorithm that exploits the VC-dimension must do so **without** knowing, computing, or approximating it!

Main Results

Thm 1 (Static $\mathbf{M}v$). If an $n \times n$ matrix \mathbf{M} has corrupted VC-dimension d : after an $\tilde{\mathcal{O}}(n^2)$ preprocessing, there is a data structure \mathcal{D} that can compute $\mathbf{M}v$ for any vector $v \in \mathbb{R}^n$ in time $\mathcal{O}(n^{2-1/d})$ time, w.h.p.

Thm 2 (Dynamic $\mathbf{M}v$). If an $n \times n$ matrix \mathbf{M} has corrupted VC-dimension d : after an $\tilde{\mathcal{O}}(n^2)$ preprocessing, there is a data structure \mathcal{D} that can support row and column updates (insertions/deletions) to \mathbf{M} in $\tilde{\mathcal{O}}(n)$ time. Upon querying \mathcal{D} with a vector $v \in \mathbb{R}^n$, it outputs $\mathbf{M}v$ in time $\mathcal{O}(n^{2-1/d^*})$, where d^* is the largest corrupted VC-dimension of \mathbf{M} throughout its update history.

Sauer-Shelah’s Lemma: If $\text{VC}(\mathbf{M}) = d$, then $\text{VC}(\mathbf{M}^\top) \leq 2^d$. To avoid this blow-up, the query complexity of the algorithm actually only depends on $\min\{\text{VC}(\mathbf{M}), \text{VC}(\mathbf{M}^\top)\}$.

Pollard-pseudodimension is a popular extension of the VC-dimension to non-binary thresholds.

Thm 3 (Static $\mathbf{M}v$). If an $n \times n$ matrix \mathbf{M} has Pollard pseudodimension d and the number of thresholds is A : after an $\tilde{\mathcal{O}}(An^2)$ preprocessing, there is a data structure that upon receiving a vector $v \in \mathbb{R}^n$, returns $\mathbf{M}v$ in time $\mathcal{O}(Amn^{1-1/d})$, with high probability.

Applications

The following applications have $\Omega(n^2)$ -time lower bounds, conditional on the OMv conjecture. For structured graphs, this lower bound *can* be beaten.

(1) High-accuracy dynamic Laplacian solver. Given a graph G with corrupt VC-dimension d , there is a dynamic algorithm that maintains a Laplacian system solver: it supports queries that receive a vector $b \in \mathbb{R}^n$ and $\epsilon > 0$, and returns an ϵ -approx soln to $\mathbf{L}x^* = b$ in $\tilde{\mathcal{O}}(n^{2-1/d} \log \frac{1}{\epsilon})$ time, where \mathbf{L} is the graph Laplacian.

(2) Dynamic Effective Resistance. Given a graph G with corrupt VC-dimension d , there is a dynamic algorithm that maintains effective resistances in G : it supports queries that receive $u, v \in V$ and $\epsilon > 0$ and returns a $(1 \pm \epsilon)$ -approximation of effective resistance in $\tilde{\mathcal{O}}(n^{2-1/d} \log \frac{1}{\epsilon})$ time. Node updates take $\tilde{\mathcal{O}}(n)$ time.

(3) Dynamic Triangle Detection Given a graph G with corrupt VC-dimension d , there is a dynamic algorithm that maintains whether G has a triangle. Node updates take $\mathcal{O}(n^{2-1/d})$ time.

(4) Dynamic SSSP. If a dynamic unweighted undirected graph G has corrupt VC-dimension d , there is a dynamic algorithm that maintains $(1 + \epsilon)$ -approximate single source distances on G . Node updates take $\tilde{\mathcal{O}}(kn^{2-1/2d}/\epsilon)$ time and querying the distance for any source node takes $\mathcal{O}(n^{2-1/2d}/\epsilon)$ time.

(5) Dynamic Approx k -center. If G is an unweighted undirected graph with corrupt VC-dimension d , there is a dynamic algorithm for $(2 + \epsilon)$ -approx k -center with node update time $\mathcal{O}(kn^{2-1/2d}/\epsilon)$.

Take a picture to download the full paper