
Sample-Optimal Private Regression in Polynomial Time 
Prashanti Anderson, Ainesh Bakshi, Mahbod Majid, Stefan Tiegel

Input:  i.i.d. samples where

 and  

Output: Privately estimate  with small 
generalization error (equivalent to parameter 
recovery as follows:  , which is 
closeness in some unknown geometry) 
• -DP: one input point changes  probability of 

any subset of outputs changes by a 
multiplicative factor  (on worst-case input)

{(xi, yi)}i∈[n]

yi = ⟨θ, xi⟩ + ζi xi ∼ 𝒩(0,Σ) , ζi ∼ 𝒩(0,1)
̂θ
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Problem Setup

Sample-Optimal Pure DP Estimators:  
Exists an efficient -DP estimator for regression s.t.  
• Conditions:  and  
• Error:  
• Sample complexity: 

 

Lower Bounds:  
• SQ lower bounds for  (computational) 
• Info-theoretic lower bounds for  

 

Extensions: Approx DP estimators & DP 
estimators for mean estimation w/ unknown cov
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• Existing SoS estimators (with correct rate) need 
quasi poly sample complexity + runtime 

• Explicitly learning the closeness geometry 
privately is too expensive —  
samples

Ω (d2/(αε))

What is the optimal sample 
complexity for an efficient -DP 

estimator?
ε

Results

High Level Approach

• Robustness  Privacy reduction [HKMN23] 
• Output  
•  uses robust Sum-of-Squares estimators 

    

⇝
̂θ ∝ exp(−ε ⋅ score( ̂θ))

score

score( ̂θ) ≈

Challenges

“How many points do I have to change 
to make  close to the output of a 

robust estimator on the new input?”
̂θ

• “One shot” SoS algorithm for robust regression 
• Internal representation of the covariance in 

robust algorithm used as a proxy for the 
geometry of the space in score function

Technical Innovations

Motivation


