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1 Introduction 

1.1 About this manual 

This is the third in a series of five manuals: 
 

1. Optimizing software in C++: An optimization guide for Windows, Linux and Mac 
platforms. 
 

2. Optimizing subroutines in assembly language: An optimization guide for x86 
platforms. 
 

3. The microarchitecture of Intel, AMD and VIA CPUs: An optimization guide for 
assembly programmers and compiler makers. 
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4. Instruction tables: Lists of instruction latencies, throughputs and micro-operation 
breakdowns for Intel, AMD and VIA CPUs. 
 

5. Calling conventions for different C++ compilers and operating systems. 
 
The latest versions of these manuals are always available from www.agner.org/optimize. 
Copyright conditions are listed on page 277 below. 
 
The present manual describes the details of the microarchitectures of x86 microprocessors 
from Intel, AMD, and VIA. The Itanium processor is not covered. The purpose of this manual 
is to enable assembly programmers and compiler makers to optimize software for these 
microprocessors. The main focus is on details that are relevant to calculations of how much 
time a piece of code takes to execute, such as the latencies of different execution units and 
the throughputs of various parts of the pipelines. Branch prediction algorithms are also 
covered.  
 
This manual will also be interesting to students of microarchitecture. But it must be noted 
that the technical descriptions are mostly based on my own research, which is limited to 
what is measurable. The descriptions of the "mechanics" of the pipelines are therefore 
limited to what can be measured by counting clock cycles or micro-operations (µops) and 
what can be deduced from these measurements and from documents from the vendors. 
Mechanistic explanations in this manual should be regarded as a model which is useful for 
predicting microprocessor behavior. I have no way of knowing with certainty whether it is in 
accordance with the actual physical structure of the microprocessors. The main purpose of 
providing this information is to enable programmers and compiler makers to optimize their 
code. 
 
On the other hand, my method of deducing information from measurements rather than 
relying on information published by microprocessor vendors provides a lot of new informa-
tion that cannot be found anywhere else. Technical details published by microprocessor 
vendors is often superficial, incomplete, selective, and sometimes misleading. 
 
My findings are sometimes in disagreement with data published by microprocessor vendors. 
Reasons for this discrepancy might be that such data are theoretical while my data are 
obtained experimentally under a particular set of testing conditions. I do not claim that all 
information in this manual is exact. Some timings etc. can be difficult or impossible to 
measure exactly, and I do not have access to the inside information on technical 
implementations that microprocessor vendors base their technical manuals on. 
 
The tests are done mostly in 32-bit and 64-bit protected mode. Most timing results are 
independent of the processor mode. Important differences are noted where appropriate. Far 
jumps, far calls and interrupts have mostly been tested in 16-bit mode for older processors. 
Call gates etc. have not been tested. The detailed timing results are listed in manual 4: 
"Instruction tables". 
 
Most of the information in this manual is based on my own research. Many people have 
sent me useful information and corrections, which I am very thankful for. I keep updating the 
manual whenever I have new important information. This manual is therefore more detailed, 
comprehensive and exact than other sources of information, and it contains many details 
not found anywhere else. 
 
This manual is not for beginners. It is assumed that the reader has a good understanding of 
assembly programming and microprocessor architecture. If not, then please read some 
books on the subject and get some programming experience before you begin doing 
complicated optimizations. See the literature list in manual 2: "Optimizing subroutines in 
assembly language" or follow the links from www.agner.org/optimize. 
 

http://www.agner.org/optimize
http://www.agner.org/optimize/
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The reader may skip chapters describing old microprocessor designs unless you are using 
these processors in embedded systems or you are interested in historical developments in 
microarchitecture. 
 
Please do not send your programming questions to me. I am not doing your homework for 
you! There are various discussion forums on the Internet where you can get answers to 
your programming questions if you cannot find the answers in the relevant books and 
manuals. 
 

1.2 Microprocessor versions covered by this manual 

The following families of x86 microprocessors are discussed in this manual: 
 

Microprocessor name Microarchitecture 
code name 

Abbreviation 

Intel Pentium (no unique name) P5 P1 

Intel Pentium MMX P5 PMMX 

Intel Pentium Pro P6 PPro 

Intel Pentium II P6 P2 

Intel Pentium III P6 P3 

Intel Pentium 4 (NetBurst) Netburst P4 

Intel Pentium 4 with EM64T, 
Pentium D, etc. 

Netburst, Prescott P4E 

Intel Pentium M, Core Solo, 
Core Duo 

Dothan, Yonah PM 

Intel Core 2 Merom, Wolfdale Core2 

Intel Core i7 (no unique name) Nehalem Nehalem 

Intel 2nd generation Core Sandy Bridge Sandy Bridge 

Intel 3rd generation Core Ivy Bridge Ivy Bridge 

Intel 4th generation Core Haswell Haswell 

Intel 5th generation Core Broadwell Broadwell 

Intel 6th generation Core Skylake Skylake 

Intel 7th generation Core Skylake-X Skylake-X 

Intel 8th generation Core Cannon Lake Cannon Lake 

Intel 9th generation Core Coffee Lake Coffee Lake 

Intel 10th generation Core Ice Lake Ice Lake 

Intel 11th generation Core Tiger Lake Tiger Lake 

Intel 12th generation Core Alder Lake Alder Lake 

Intel Atom 330 Diamondville Atom 

Intel Bay Trail Silvermont Silvermont 

Intel Apollo Lake Goldmont Goldmont 

Intel Jasper Lake Tremont Tremont 

Intel Xeon Phi 7210 Knights Landing Knights Landing 

AMD Athlon K7 AMD K7 

AMD Athlon 64, Opteron, etc., 
64-bit 

K8 AMD K8 

AMD Family 0x10, Phenom, 
third generation Opteron 

K10 AMD K10 

AMD Family 0x15, Bulldozer Bulldozer Bulldozer 

AMD Family 0x15, Piledriver Piledriver Piledriver 

AMD Family 0x15, Steamroller Steamroller Steamroller 

AMD Family 0x15, Excavator Excavator Excavator 

AMD Family 0x17, Ryzen Zen 1 Zen 1 

AMD Fam. 0x17, Ryzen 3000 Zen 2 Zen 2 

AMD Fam. 0x19, Ryzen 5000 Ryzen 7 Zen 3 

AMD Fam. 0x19, Ryzen 7900 Ryzen 9 Zen 4 
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AMD Fam. 0x1A, Ryzen 9000 Ryzen 9 Zen 5 

AMD Bobcat Bobcat Bobcat 

AMD Kabini, Temash, etc. Jaguar Jaguar 

VIA Nano, 2000 series  Nano 2000 

VIA Nano, 3000 series Isaiah Nano 3000 

Table 1.1. Microprocessor families 

 
The abbreviations here are intended to distinguish between different kernel microarchitec-
tures, regardless of trade names. The commercial names of microprocessors often blur the 
distinctions between different kernel technologies. The name Celeron applies to P2 and 
later processors with less cache than the standard versions. The name Xeon applies to P2 
and later high end processors with more cache than the standard versions. The names 
Pentium D and Pentium Extreme Edition refer to P4E with multiple cores. The brand name 
Pentium was originally applied to the P5 and P6 microarchitectures, but the same name has 
later been reapplied to some processors with later microarchitectures. The name Centrino 
applies to Pentium M, Core Solo and Core Duo processors. Core Solo is rather similar to 
Pentium M. Core Duo is similar too, but with two cores.  
 
The P1 and PMMX processors represent the fifth generation in the Intel x86 series of 
microprocessors, and their processor kernels are very similar. PPro, P2 and P3 all have the 
sixth generation kernel (P6). These three processors are almost identical except for the fact 
that new instructions are added to each new model. P4 is the first processor in the seventh 
generation which, for obscure reasons, is not called seventh generation in Intel documents. 
Quite unexpectedly, the family number returned by the CPUID instruction in the P4 is not 7 
but 15. The subsequent Intel CPUs: Pentium M, Core, and later Intel processors all report 
family number 6, probably for reasons of compatibility with legacy Intel software. The 
confusion was complete when Intel restarted the numbering of generations with the Core 
processor. 
 
The name Sempron applies to a low-end version of Athlon 64 with less cache. Turion 64 is 
a mobile version. Opteron is a server version with more cache. Later generations of Intel 
and AMD processors are available in different versions with different number of cores. 
 
The reader should be aware that different generations of microprocessors behave very 
differently. Also, the Intel and AMD microarchitectures are very different. What is optimal for 
one generation or one brand may not be optimal for the others.  
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2 Out-of-order execution (All processors except P1, 
PMMX)  

The sixth generation of Intel microprocessors, beginning with the PPro, provided an 
important improvement in microarchitecture design, namely out-of-order execution. The idea 
is that if the execution of a particular instruction is delayed because the input data for the 
instruction are not available yet, then the microprocessor will try to find later instructions that 
it can do first, if the input data for the later instructions are ready. Obviously, the 
microprocessor has to check if the later instructions need the outputs from the earlier 
instruction. If each instruction depends on the result of the preceding instruction, then we 
have no opportunities for out-of-order execution. This is called a dependency chain. Manual 
2: "Optimizing subroutines in assembly language" gives examples of how to avoid long 
dependency chains. 
 
The logic for determining input dependences and the mechanisms for doing instructions as 
soon as the necessary inputs are ready, gives us the further advantage that the 
microprocessor can do several things at the same time. If we need to do an addition and a 
multiplication, and neither instruction depends on the output of the other, then we can do 
both at the same time, because they are using two different execution units. But we cannot 
do two multiplications at the same time if we have only one multiplication unit. 
 
Typically, everything in these microprocessors is highly pipelined in order to improve the 
throughput. If, for example, a floating point addition takes 4 clock cycles, and the execution 
unit is fully pipelined, then we can start one addition at time T, which will be finished at time 
T+4, and start another addition at time T+1, which will be finished at time T+5. The 
advantage of this technology is therefore highest if the code can be organized so that there 
are as few dependences as possible between successive instructions. 
 

2.1 Instructions are split into µops 

The microprocessors with out-of-order execution are translating all instructions into micro-
operations - abbreviated µops or uops. A simple instruction such as ADD EAX,EBX 

generates only one µop, while an instruction like ADD EAX,[MEM1] may generate two: one 

for reading from memory into a temporary (unnamed) register, and one for adding the 
contents of the temporary register to EAX. The instruction ADD [MEM1],EAX may 

generate three µops: one for reading from memory, one for adding, and one for writing the 
result back to memory. The advantage of this is that the µops can be executed out of order. 
Example: 

 

; Example 2.1. Out of order processing 

mov eax, [mem1] 

imul eax, 5 

add eax, [mem2] 

mov [mem3], eax 

 
Here, the ADD EAX,[MEM2] instruction is split into two µops. The advantage of this is that 

the microprocessor can fetch the value of [MEM2] at the same time as it is doing the 

multiplication. If none of the data are in the cache, then the microprocessor will start to fetch 
[MEM2] immediately after starting to fetch [MEM1], and long before the multiplication can 

start. The splitting into µops also makes the stack work more efficiently. Consider the 
sequence: 
 

; Example 2.2. Instructions split into µops 

push eax 

call func 

 
The PUSH EAX instruction may be split into two µops which can be represented as SUB 

ESP,4 and MOV [ESP],EAX. The advantage of this is that the SUB ESP,4 µop can be 
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executed even if the value of EAX is not ready yet. The CALL operation needs the new value 

of ESP, so the CALL would have to wait for the value of EAX if the PUSH instruction was not 

split into µops. Thanks to the use of µops, the value of the stack pointer almost never 
causes delays in normal programs. 
 

2.2 Register renaming 

Consider the example: 
 

; Example 2.3. Register renaming 

mov eax, [mem1] 

imul eax, 6 

mov [mem2], eax 

mov eax, [mem3] 

add eax, 2 

mov [mem4], eax 

 
This piece of code is doing two things that have nothing to do with each other: multiplying 
[MEM1] by 6 and adding 2 to [MEM3]. If we were using a different register in the last three 

instructions, then the independence would be obvious. And, in fact, the microprocessor is 
actually smart enough to do just that. It is using different temporary registers in the last three 
instructions so that it can do the multiplication and the addition in parallel. The IA32 
instruction set gives us only seven general-purpose 32-bit registers, and often we are using 
them all. So we cannot afford the luxury of using a new register for every calculation. But 
the microprocessor has plenty of temporal registers to use. The microprocessor can rename 
any of these temporary registers to represent a logical register such as EAX. 

 
Register renaming works fully automatically and in a very simple way. Every time an 
instruction writes to or modifies a logical register, the microprocessor assigns a new 
temporary register to that logical register. The first instruction in the above example will 
assign one temporary register to EAX. The second instruction is putting a new value into 

EAX, so a new temporary register will be assigned here. In other words, the multiplication 

instruction will use two different registers, one for input and another one for output. The next 
example illustrates the advantage of this: 
 

; Example 2.4. Register renaming 

mov eax, [mem1] 

mov ebx, [mem2] 

add ebx, eax 

imul eax, 6 

mov [mem3], eax 

mov [mem4], ebx 

 
Assume, now, that [MEM1] is in the cache, while [MEM2] is not. This means that the 

multiplication can start before the addition. The advantage of using a new temporary 
register for the result of the multiplication is that we still have the old value of EAX, which 

has to be kept until EBX is ready for the addition. If we had used the same register for the 

input and output of the multiplication, then the multiplication would have to wait until the 
loading of EBX and the addition was finished. 

 
After all the operations are finished, the value in the temporary register that represents the 
last value of EAX in the code sequence is written to a permanent EAX register. This process 

is called retirement (see e.g. page 83). 
 
All general purpose registers, stack pointer, flags, floating point registers, vector registers, 
and possibly segment registers can be renamed. Many processors do not allow the control 
words, and the floating point status word to be renamed, and this is the reason why code 
that modifies these registers is slow. 
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3 Branch prediction (all processors)  
The pipeline in a modern microprocessor contains many stages, including instruction fetch, 
decoding, register allocation and renaming, µop reordering, execution, and retirement. 
Handling instructions in a pipelined manner allows the microprocessor to do many things at 
the same time. While one instruction is being executed, the next instructions are being 
fetched and decoded. The biggest problem with pipelining is branches in the code. For 
example, a conditional jump allows the instruction flow to go in any of two directions. If there 
is only one pipeline, then the microprocessor does not know which of the two branches to 
feed into the pipeline until the branch instruction has been executed. The longer the 
pipeline, the more time does the microprocessor waste if it does not know which branch to 
feed into the pipeline. 
 
The microarchitecture tries to overcome this problem by feeding the most probable branch 
into the pipeline and execute it speculatively. Speculative execution means that the 
instructions are decoded and executed, but the results are not retired into the permanent 
register file, and memory writes are pending until the branch instruction is finally resolved. If 
it turns out that the guess was wrong and the wrong branch was executed speculatively, 
then the pipeline is flushed, the results of the speculative execution are discarded and the 
other branch is fed into the pipeline. This is called a branch misprediction, and the result is 
that  several clock cycles are wasted. The number of wasted clock cycles is approximately 
equal to the length of the pipeline. 
 
The designers are inventing more and more sophisticated mechanisms for predicting which 
way a branch will go, in order to minimize the frequency of branch mispredictions. The 
history of branch behavior is stored in order to use past history for predicting future 
behavior. This prediction has two aspects: predicting whether a conditional jump will be 
taken or not, and predicting the target address that a conditional or unconditional jump goes 
to. A cache called Branch Target Buffer (BTB) stores the target address of all jumps. The 
target address is stored in the BTB the first time an unconditional jump is executed and the 
first time a conditional jump is taken. The second time the same jump is executed, the target 
address in the BTB is used for fetching the predicted target into the pipeline, even though 
the true target is not calculated until the jump reaches the execution stage. The predicted 
target is very likely to be correct for unconditional jumps, but not certain, because the BTB 
may not be big enough to contain all jumps in a program, so different jumps may replace 
each other's entries in the BTB. The risk of misprediction is much higher for conditional 
jumps. 
 

3.1 Prediction methods for conditional jumps 

When a conditional jump is encountered, the microprocessor has to predict not only the 
target address, but also whether the conditional jump is taken or not taken. If the guess is 
right and the right target is loaded, then the flow in the pipeline goes smoothly and fast. But 
if the prediction is wrong and the microprocessor has loaded the wrong target into the 
pipeline, then the pipeline has to be flushed, and the time that was been spent on fetching, 
decoding and perhaps speculatively executing instructions in the wrong branch is wasted. 

Saturating counter 

A relatively simple method is to store information in the BTB about what the branch has 
done most in the past. This can be done with a saturating counter, as shown in the state 
diagram in figure 3.1. 
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Figure 3.1. Saturating 2-bit counter 

 
This counter has four states. Every time the branch is taken, the counter goes up to the next 
state, unless it already is in the highest state. Every time the branch is not taken, the 
counter goes down one step, unless it already is in the lowest state. When the counter is in 
one of the highest two states, it predicts that the branch will be taken the next time. When 
the counter is in one of the lowest two states, it predicts that the branch will not be taken the 
next time. If the branch has been not taken several times in a row, then the counter will be 
in the lowest state, called "strongly not taken". The branch then has to be taken twice for the 
prediction to change to taken. Likewise, if the branch has been taken several times in a row, 
it will be in state "Strongly taken". It has to be not taken twice before the prediction changes 
to not taken. In other words, the branch has to deviate twice from what it has done most in 
the past before the prediction changes. 
 
This method is good for a branch that does the same most of the time, but not good for a 
branch that changes often. The P1 uses this method, though with a flaw, as explained on 
page 19. 

Two-level adaptive predictor with local history tables 

Consider the behavior of the counter in figure 3.1 for a branch that is taken every second 
time. If it starts in state "strongly not taken", then the counter will alternate between state 
"strongly not taken" and "weakly not taken". The prediction will always be "not taken", which 
will be right only 50% of the time. Likewise, if it starts in state "strongly taken" then it will 
predict "taken" all the time. The worst case is if it happens to start in state "weakly taken" 
and alternates between "weakly not taken" and "weakly taken". In this case, the branch will 
be mispredicted all the time. 
 
A method of improving the prediction rate for branches with such a regularly recurring 
pattern is to remember the history of the last n occurrences of the branch and use one 
saturating counter for each of the possible 2n history patterns. This method, which was 
invented by T.-Y. Yeh and Y. N. Patt, is illustrated in figure 3.2. 
 

 

Figure 3.2. Adaptive two-level predictor 
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Consider the example of n = 2. This means that the last two occurrences of the branch are 
stored in a 2-bit shift register. This branch history register can have 4 different values: 00, 
01, 10, and 11; where 0 means "not taken" and 1 means "taken". Now, we make a pattern 
history table with four entries, one for each of the possible branch histories. Each entry in 
the pattern history table contains a 2-bit saturating counter of the same type as in figure 3.1. 
The branch history register is used for choosing which of the four saturating counters to use. 
If the history is 00 then the first counter is used. If the history is 11 then the last of the four 
counters is used. 
 
In the case of a branch that is alternately taken and not taken, the branch history register 
will always contain either 01 or 10. When the history is 01 we will use the counter with the 
binary number 01B in the pattern history table. This counter will soon learn that after 01 
comes a 0. Likewise, counter number 10B will learn that after 10 comes a 1. After a short 
learning period, the predictor will make 100% correct predictions. Counters number 00B and 
11B will not be used in this case. 
 
A branch that is alternately taken twice and not taken twice will also be predicted 100% by 
this predictor. The repetitive pattern is 0011-0011-0011. Counter number 00B in the pattern 
history table will learn that after 00 comes a 1. Counter number 01B will learn that after a 01 
comes a 1. Counter number 10B will learn that after 10 comes a 0. And counter number 
11B will learn that after 11 comes a 0. But the repetitive pattern 0001-0001-0001 will not be 
predicted correctly all the time because 00 can be followed by either a 0 or a 1. 
 
The mechanism in figure 3.2 is called a two-level adaptive predictor. The general rule for a 
two-level adaptive predictor with an n-bit branch history register is as follows: 
 

Any repetitive pattern with a period of n+1 or less can be predicted perfectly 
after a warm-up time no longer than three periods. A repetitive pattern with a 
period p higher than n+1 and less than or equal to 2n can be predicted perfectly 
if all the p n-bit subsequences are different. 

 
To illustrate this rule, consider the repetitive pattern 0011-0011-0011 in the above example. 
The 2-bit subsequences are 00, 01, 11, 10. Since these are all different, they will use 
different counters in the pattern history table of a two-level predictor with n = 2. With n = 4, 
we can predict the repetitive pattern 000011-000011-000011 with period 6, because the six 
4-bit subsequences: 0000, 0001, 0011, 0110, 1100, 1000, are all different. But the pattern 
000001-000001-000001, which also has period 6, cannot be predicted perfectly, because 
the subsequence 0000 can be followed by either a 0 or a 1. 
 
The PMMX, PPro, P2 and P3 all use a two-level adaptive predictor with n = 4. This requires 
36 bits of storage for each branch: two bits for each of the 16 counters in the pattern history 
table, and 4 bits for the branch history register. 
 
The powerful capability of pattern recognition has a minor drawback in the case of 
completely random sequences with no regularities. The following table lists the experimental 
fraction of mispredictions for a completely random sequence of taken and not taken: 
 

fraction of taken/not taken fraction of mispredictions 

0.001/0.999 0.001001 

0.01/0.99 0.0101 

0.05/0.95 0.0525 

0.10/0.90 0.110 

0.15/0.85 0.171 

0.20/0.80 0.235 

0.25/0.75 0.300 

0.30/0.70 0.362 
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0.35/0.65 0.417 

0.40/0.60 0.462 

0.45/0.55 0.490 

0.50/0.50 0.500 

Table 3.1. Probability of mispredicting random branch 

 
The fraction of mispredictions is slightly higher than it would be without pattern recognition 
because the processor keeps trying to find repeated patterns in a sequence that has no 
regularities. The values in table 3.1 also apply to a predictor with a global history table as 
well as an agree predictor, described below. 

Two-level adaptive predictor with global history table 

Since the storage requirement for the two-level predictor grows exponentially with the 
number of history bits n, there is a practical limit to how big we can make n. One way of 
overcoming this limitation is to share the branch history register and the pattern history table 
among all the branches rather than having one set for each branch. 
 
Imagine a two-level predictor with a global branch history register, storing the history of the 
last n branches, and a shared pattern history table. The prediction of a branch is made on 
the basis of the last n branch events. Some or all of these events may be occurrences of the 
same branch. If the innermost loop in a program contains m conditional jumps, then the 
prediction of a branch within this loop can rely on  floor(n/m)  occurrences of the same 
branch in the branch history register, while the rest of the entries come from other branches. 
If this is enough for defining the pattern of this branch, or if it is highly correlated with the 
other branches, then we can expect the prediction rate to be good. Many modern 
processors use variants of this method with values of n from 8 to 16. 

The agree predictor 

The disadvantage of using global tables is that branches that behave differently may share 
the same entry in the global pattern history table. This problem can be reduced by storing a 
biasing bit for each branch. The biasing bit indicates whether the branch is mostly taken or 
not taken. The predictors in the pattern history table now no longer indicate whether the 
branch is predicted to be taken or not, but whether it is predicted to go the same way or the 
opposite way of the biasing bit. Since the prediction is more likely to agree than to disagree 
with the biasing bit, the probability of negative interference between branches that happen 
to use the same entry in the pattern history table is reduced, but not eliminated. My 
research indicates that the P4 is using one version of this method, as shown in figure 3.3. 
 

 

Figure 3.3. Agree predictor 
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Each branch has a local predictor, which is simply a saturating counter of the same type as 
shown in figure 3.1. The global pattern history table, which is indexed by the global branch 
history register, indicates whether the branch is predicted to agree or disagree with the 
output of the local predictor. 
 
The global branch history register has 16 bits in the P4. Since, obviously, some of the 216 
different history patterns are more common than others, we have the problem that some 
entries in the pattern history table will be used by several branches, while many other 
entries will never be used at all, if the pattern history table is indexed by the branch history 
alone. In order to make the use of these entries more evenly distributed, and thus reduce 
the probability that two branches use the same entry, the pattern history table may be 
indexed by a combination of the global history and the branch address. The literature 
recommends that the index into the pattern history table is generated by an XOR 
combination of the history bits and the branch address. However, my experimental results 
do not confirm such a design. The indexing function in figure 3.3 may be a more complex 
hashing function of the history and the branch address, or it may involve the branch target 
address, BTB entry address or trace cache address. 
 
Since the indexing function is not known, it is impossible to predict whether two branches 
will use the same entry in the pattern history table. For the same reason, I have not been 
able to measure the size of the pattern history table, but must rely on rumors in the 
literature. 
 
(Literature: E. Sprangle, et. al.: The Agree Predictor: A Mechanism for Reducing Negative 
Branch History Interference. Proceedings of the 24th International Symposium on Computer 
Architecture, Denver, June 1997. J. Stokes: The Pentium 4 and the G4e: an Architectural 
Comparison: Part I. arstechnica.com, Mar. 2001). 

Loop counter 

The branch that controls a loop will typically go n-1 times one way and then one time the 
other way, where n is the period. For example the loop  for (i=0; i<6; i++)  will 

produce the branch pattern 000001-000001 or 111110-111110, depending on whether the 
branch instruction is at the top or the bottom of the loop code. A loop with a high period and 
several branches inside the loop body would require a very long history table and many 
entries in the pattern history table for making good predictions in a two-level predictor. The 
best solution to this problem is to use a different prediction method for loops, called a loop 
counter or switch counter. A counter counts the period n the first time the loop is executed. 
On subsequent executions, the repetition count is compared with n and the loop is predicted 
to exit when the count equals the period. The information that must be stored in the BTB for 
a loop counter includes: whether the branch has loop behavior or not, whether the branch is 
taken or not taken at loop exit, the period, the current repetition count, and the branch 
target. 
 
The PM and Core2 have a loop counter with 6 bits, allowing loops with a maximum period of 
64 to be predicted perfectly. 
 
(Literature: US Patent 5909573). 

Indirect jump prediction 

An indirect jump or call is a control transfer instruction that has more than two possible 
targets. A C++ program can generate an indirect jump or indirect call with a switch 

statement, a function pointer, or a virtual function. An indirect jump or call is generated in 

assembly by specifying a register or a memory variable or an indexed array as the 
destination of a jump or call instruction. Older processors make only one BTB entry for an 
indirect jump or call. This means that it will always be predicted to go to the same target as 
it did last time. 
 

http://www.arstechnica.com/
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As object oriented programming with polymorphous classes has become more common, 
there is a growing need for predicting indirect calls with multiple targets. This can be done 
by assigning a new BTB entry for every new jump target that is encountered. The history 
buffer and pattern history table must have space for more than one bit of information for 
each jump incident in order to distinguish more than two possible targets. 
 
The PM is the first x86 processor to implement this method. The prediction rule on p. 15 still 
applies with the modification that the theoretical maximum period that can be predicted 
perfectly is mn, where m is the number of different targets per indirect jump, because there 
are mn different possible n-length subsequences. However, this theoretical maximum cannot 
be reached if it exceeds the size of the BTB or the pattern history table. 
 
(Literature: Karel Driesen and Urs Hölzle: Accurate Indirect Branch Prediction. Technical 
Report TRCS97-19, 1998. Department of Computer Science, University of California). 

Subroutine return prediction 

A subroutine return is an indirect jump that goes to wherever the subroutine was called 
from. The prediction of subroutine returns is described on page 37. 

Hybrid predictors 

A hybrid predictor is an implementation of more than one branch prediction mechanism. A 
meta-predictor predicts which of the prediction mechanisms is likely to give the best 
predictions. The meta-predictor can be as simple as a two-bit saturating counter which 
remembers which of two prediction schemes has worked best in the past for a particular 
branch instruction. 
 
The PM uses a hybrid predictor consisting of a two level adaptive predictor with a global 
history table of length eight, combined with a loop counter. 

Future branch prediction methods 

It is likely that branch prediction methods will be further improved in the future as pipelines 
get longer. According to the technical literature and the patent literature, the following 
developments are likely: 
 

• Hybrid predictor. A hybrid predictor with a loop counter and a two-level predictor will 
probably be implemented in more processors in the future. 
 

• Alloyed predictor. The two-level predictor can be improved by using a combination of 
local and global history bits as index into the pattern history table. This eliminates the 
need for the agree predictor and improves the prediction of branches that are not 
correlated with any preceding branch. 
 

• Keeping unimportant branches out of global history register. In typical programs, a 
large proportion of the branches always go the same way. Such branches may be 
kept out of the global history register in order to increase its information contents. 
 

• Decoding both branches. Part or all of the pipeline may be duplicated so that both 
branches can be decoded and speculatively executed simultaneously. It may 
decode both branches whenever possible, or only if the prediction is uncertain. 
 

• Neural networks. The storage requirement for the two-level predictor grows 
exponentially with n, and the warm-up time may also grow exponentially with n. This 
limits the performance that can be achieved with the two-level predictor. Other 
methods with less storage requirements are likely to be implemented. Such new 
methods may use the principles of neural networks. 
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• Reducing the effect of context switches. The information that the predictors have 
collected is often lost due to task switches and other context switches. As more 
advanced prediction methods require longer warm-up time, it is likely that new 
methods will be implemented to reduce the loss during context switches. 

 

3.2 Branch prediction in P1  

The branch prediction mechanism for the P1 is very different from the other processors. 
Information found in Intel documents and elsewhere on this subject is misleading, and 
following the advices given in such documents is likely to lead to sub-optimal code. 
 
The P1 has a branch target buffer (BTB), which can hold information for up to 256 jump 
instructions. The BTB is organized as a 4-way set-associative cache with 64 entries per 
way. This means that the BTB can hold no more than 4 entries with the same set value. 
Unlike the data cache, the BTB uses a pseudo random replacement algorithm, which 
means that a new entry will not necessarily displace the least recently used entry of the 
same set-value. 
 
Each entry contains a saturation counter of the type shown in figure 3.1. Apparently, the 
designers couldn't afford to use an extra bit for indicating whether the BTB entry is used or 
not. Instead, they have equated state "strongly not taken" with "entry unused". This makes 
sense because a branch with no BTB entry is predicted to be not taken anyway, in the P1. A 
branch doesn't get a BTB entry until the first time it is taken. Unfortunately, the designers 
have decided that a branch that is taken the first time it is seen should go to state "strongly 
taken". This makes the state diagram for the predictor look like this: 
 

 

Figure 3.4. Branch predictor in P1. 

 
This is of course a sub-optimal design, and I have strong indications that it is a design flaw. 
In a tight loop with no more than four instruction pairs, where the loop control branch is seen 
again before the BTB has had the time to update, the output of the saturation counter is 
forwarded directly to the prefetcher. In this case the state can go from "strongly not taken" to 
"weakly not taken". This indicates that the originally intended behavior is as in figure 3.1. 
Intel engineers have been unaware of this flaw until I published my findings in an earlier 
version of this manual. 
 
The consequence of this flaw is that a branch instruction which falls through most of the 
time will have up to three times as many mispredictions as a branch instruction which is 
taken most of the time. You may take this asymmetry into account by organizing branches 
so that they are taken more often than not. 

BTB is looking ahead (P1) 

The BTB mechanism in the P1 is counting instruction pairs, rather than single instructions, 
so you have to know how instructions are pairing (see page 41) in order to analyze where a 
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BTB entry is stored. The BTB entry for any control transfer instruction is attached to the 
address of the U-pipe instruction in the preceding instruction pair. (An unpaired instruction 
counts as one pair). Example: 
 

; Example 3.1. Pentium 1 BTB mechanism 

shr eax,1 

mov ebx,[esi] 

cmp eax,ebx 

jb  L 

 
Here SHR pairs with MOV, and CMP pairs with JB. The BTB entry for JB L is thus attached to 

the address of the SHR EAX,1 instruction. When this BTB entry is met, and if it predicts the 

branch to be taken, then the P1 will read the target address from the BTB entry, and load 
the instructions following L into the pipeline. This happens before the branch instruction has 

been decoded, so the Pentium relies solely on the information in the BTB when doing this.  
 
Instructions are seldom pairing the first time they are executed (see page 41). If the 
instructions above are not pairing, then the BTB entry should be attached to the address of 
the CMP instruction, and this entry would be wrong on the next execution, when instructions 

are pairing. However, in most cases the P1 is smart enough to not make a BTB entry when 
there is an unused pairing opportunity, so you don't get a BTB entry until the second 
execution, and hence you won't get a prediction until the third execution. (In the rare case, 
where every second instruction is a single-byte instruction, you may get a BTB entry on the 
first execution which becomes invalid in the second execution, but since the instruction it is 
attached to will then go to the V-pipe, it is ignored and gives no penalty. A BTB entry is only 
read if it is attached to the address of a U-pipe instruction).  
 
A BTB entry is identified by its set-value which is equal to bits 0-5 of the address it is 
attached to. Bits 6-31 are then stored in the BTB as a tag. Addresses which are spaced a 
multiple of 64 bytes apart will have the same set-value. You can have no more than four 
BTB entries with the same set-value. 

Consecutive branches 

When a jump is mispredicted, then the pipeline gets flushed. If the next instruction pair 
executed also contains a control transfer instruction, then the P1 will not load its target 
because it cannot load a new target while the pipeline is being flushed. The result is that the 
second jump instruction is predicted to fall through regardless of the state of its BTB entry. 
Therefore, if the second jump is also taken, then you will get another penalty. The state of 
the BTB entry for the second jump instruction does get correctly updated, though. If you 
have a long chain of control transfer instructions, and the first jump in the chain is 
mispredicted, then the pipeline will get flushed all the time, and you will get nothing but 
mispredictions until you meet an instruction pair which does not jump. The most extreme 
case of this is a loop which jumps to itself: It will get a misprediction penalty for each 
iteration.  
 
This is not the only problem with consecutive control transfer instructions. Another problem 
is that you can have another branch instruction between a BTB entry and the control 
transfer instruction it belongs to. If the first branch instruction jumps to somewhere else, 
then strange things may happen. Consider this example:  
 

        ; Example 3.2. P1 consecutive branches 

        shr eax,1 

        mov ebx,[esi] 

        cmp eax,ebx 

        jb  L1 

        jmp L2 

L1:     mov eax,ebx 

        inc ebx 
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When JB L1 falls through, then we will get a BTB entry for JMP L2 attached to the address 

of CMP EAX,EBX. But what will happen when JB L1 later is taken? At the time when the 

BTB entry for JMP L2 is read, the processor doesn't know that the next instruction pair does 

not contain a jump instruction, so it will actually predict the instruction pair MOV EAX,EBX / 

INC EBX to jump to L2. The penalty for predicting non-jump instructions to jump is 3 clock 

cycles. The BTB entry for JMP L2 will get its state decremented, because it is applied to 

something that doesn't jump. If we keep going to L1, then the BTB entry for JMP L2 will be 

decremented to state 1 and 0, so that the problem will disappear until next time JMP L2 is 

executed. 
 
The penalty for predicting the non-jumping instructions to jump only occurs when the jump 
to L1 is predicted. In the case that JB L1 is mispredictedly jumping, then the pipeline gets 

flushed and we won't get the false L2 target loaded, so in this case we will not see the 

penalty of predicting the non-jumping instructions to jump, but we do get the BTB entry for 
JMP L2 decremented.  

 
Suppose, now, that we replace the INC EBX instruction above with another jump 

instruction. This third jump instruction will then use the same BTB entry as JMP L2 with the 

possible penalty of predicting a wrong target.  
 
To summarize, consecutive jumps can lead to the following problems in the P1: 
 

• Failure to load a jump target when the pipeline is being flushed by a preceding 
mispredicted jump. 

 

• A BTB entry being misapplied to non-jumping instructions and predicting them to 
jump. 

 

• A second consequence of the above is that a misapplied BTB entry will get its state 
decremented, possibly leading to a later misprediction of the jump it belongs to. 
Even unconditional jumps can be predicted to fall through for this reason. 

 

• Two jump instructions may share the same BTB entry, leading to the prediction of a 
wrong target. 

 
All this mess may give you a lot of penalties, so you should definitely avoid having an 
instruction pair containing a jump immediately after another poorly predictable control 
transfer instruction or its target in the P1. It is time for another illustrative example: 
 

        ; Example 3.3a. P1 consecutive branches 

        call P 

        test eax,eax 

        jz   L2 

L1:     mov  [edi],ebx 

        add  edi,4 

        dec  eax 

        jnz  L1 

L2:     call P 

 
First, we may note that the function P is called alternately from two different locations. This 

means that the target for the return from P will be changing all the time. Consequently, the 

return from P will always be mispredicted. 

 
Assume, now, that EAX is zero. The jump to L2 will not have its target loaded because the 

mispredicted return caused a pipeline flush. Next, the second CALL P will also fail to have 

its target loaded because JZ L2 caused a pipeline flush. Here we have the situation where 

a chain of consecutive jumps makes the pipeline flush repeatedly because the first jump 
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was mispredicted. The BTB entry for JZ L2 is stored at the address of P's return 

instruction. This BTB entry will now be misapplied to whatever comes after the second CALL 

P, but that doesn't give a penalty because the pipeline is flushed by the mispredicted 

second return.  
 
Now, let's see what happens if EAX has a nonzero value the next time: JZ L2 is always 

predicted to fall through because of the flush. The second CALL P has a BTB entry at the 

address of TEST EAX,EAX. This entry will be misapplied to the MOV/ADD pair, predicting it 

to jump to P. This causes a flush which prevents JNZ L1 from loading its target. If we have 

been here before, then the second CALL P will have another BTB entry at the address of 

DEC EAX. On the second and third iteration of the loop, this entry will also be misapplied to 

the MOV/ADD pair, until it has had its state decremented to 1 or 0. This will not cause a 

penalty on the second iteration because the flush from JNZ L1 prevents it from loading its 

false target, but on the third iteration it will. The subsequent iterations of the loop have no 
penalties, but when it exits, JNZ L1 is mispredicted. The flush would now prevent CALL P 

from loading its target, were it not for the fact that the BTB entry for CALL P has already 

been destroyed by being misapplied several times. We can improve this code by putting in 
some NOP's to separate all consecutive jumps: 

 
        ; Example 3.3b. P1 consecutive branches 

        call P 

        test eax,eax 

        nop 

        jz   L2 

L1:     mov  [edi],ebx 

        add  edi,4 

        dec  eax 

        jnz  L1 

L2:     nop 

        nop 

        call P 

 
The extra NOP's cost 2 clock cycles, but they save much more. Furthermore, JZ L2 is now 

moved to the U-pipe which reduces its penalty from 4 to 3 when mispredicted. The only 
problem that remains is that the returns from P are always mispredicted. This problem can 

only be solved by replacing the call to P by an inline macro.  

 

3.3 Branch prediction in PMMX, PPro, P2, and P3 

BTB organization 

The branch target buffer (BTB) of the PMMX has 256 entries organized as 16 ways * 16 
sets. Each entry is identified by bits 2-31 of the address of the last byte of the control 
transfer instruction it belongs to. Bits 2-5 define the set, and bits 6-31 are stored in the BTB 
as a tag. Control transfer instructions which are spaced 64 bytes apart have the same set-
value and may therefore occasionally push each other out of the BTB. Since there are 16 
ways per set, this won't happen too often.  
 
The branch target buffer (BTB) of the PPro, P2 and P3 has 512 entries organized as 16 
ways * 32 sets. Each entry is identified by bits 4-31 of the address of the last byte of the 
control transfer instruction it belongs to. Bits 4-8 define the set, and all bits are stored in the 
BTB as a tag. Control transfer instructions which are spaced 512 bytes apart have the same 
set-value and may therefore occasionally push each other out of the BTB. Since there are 
16 ways per set, this won't happen too often. 
 
The PPro, P2 and P3 allocate a BTB entry to any control transfer instruction the first time it 
is executed. The PMMX allocates it the first time it jumps. A branch instruction that never 
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jumps will stay out of the BTB on the PMMX. As soon as it has jumped once, it will stay in 
the BTB, even if it never jumps again. An entry may be pushed out of the BTB when another 
control transfer instruction with the same set-value needs a BTB entry. 

Misprediction penalty 

In the PMMX, the penalty for misprediction of a conditional jump is 4 clocks in the U-pipe, 
and 5 clocks if it is executed in the V-pipe. For all other control transfer instructions it is 4 
clocks. 
 
In the PPro, P2 and P3, the misprediction penalty is higher due to the long pipeline. A 
misprediction usually costs between 10 and 20 clock cycles. 

Pattern recognition for conditional jumps 

The PMMX, PPro, P2 and P3 all use a two-level adaptive branch predictor with a local 4-bit 
history, as explained on page 14. Simple repetitive patterns are predicted well by this 
mechanism. For example, a branch which is alternately taken twice and not taken twice, will 
be predicted all the time after a short learning period. The rule on page 15 tells which 
repetitive branch patterns can be predicted perfectly. All patterns with a period of five or less 
are predicted perfectly. This means that a loop which always repeats five times will have no 
mispredictions, but a loop that repeats six or more times will not be predicted. 
 
The branch prediction mechanism is also good at handling 'almost regular' patterns, or 
deviations from the regular pattern. Not only does it learn what the regular pattern looks like. 
It also learns what deviations from the regular pattern look like. If deviations are always of 
the same type, then it will remember what comes after the irregular event, and the deviation 
will cost only one misprediction. Likewise, a branch which switches back and forth between 
two different regular patterns is predicted well. 

Tight loops (PMMX) 

Branch prediction in the PMMX is not reliable in tiny loops where the pattern recognition 
mechanism doesn't have time to update its data before the next branch is met. This means 
that simple patterns, which would normally be predicted perfectly, are not recognized. 
Incidentally, some patterns which normally would not be recognized, are predicted perfectly 
in tight loops. For example, a loop which always repeats 6 times would have the branch 
pattern 111110 for the branch instruction at the bottom of the loop. This pattern would 
normally have one or two mispredictions per iteration, but in a tight loop it has none. The 
same applies to a loop which repeats 7 times. Most other repeat counts are predicted 
poorer in tight loops than normally. 
 
To find out whether a loop will behave as 'tight' on the PMMX you may follow the following 
rule of thumb: Count the number of instructions in the loop. If the number is 6 or less, then 
the loop will behave as tight. If you have more than 7 instructions, then you can be 
reasonably sure that the pattern recognition functions normally. Strangely enough, it doesn't 
matter how many clock cycles each instruction takes, whether it has stalls, or whether it is 
paired or not. Complex integer instructions do not count. A loop can have lots of complex 
integer instructions and still behave as a tight loop. A complex integer instruction is a non-
pairable integer instruction that always takes more than one clock cycle. Complex floating 
point instructions and MMX instructions still count as one. Note, that this rule of thumb is 
heuristic and not completely reliable. 
 
Tight loops on PPro, P2 and P3 are predicted normally, and take minimum two clock cycles 
per iteration. 

Indirect jumps and calls (PMMX, PPro, P2 and P3) 

There is no pattern recognition for indirect jumps and calls, and the BTB can remember no 
more than one target for an indirect jump. It is simply predicted to go to the same target as it 
did last time. 
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JECXZ and LOOP (PMMX) 

There is no pattern recognition for these two instructions in the PMMX. They are simply 
predicted to go the same way as last time they were executed. These two instructions 
should be avoided in time-critical code for PMMX. In PPro, P2 and P3 they are predicted 
using pattern recognition, but the LOOP instruction is still inferior to DEC ECX / JNZ. 

 

3.4 Branch prediction in P4 and P4E 

The organization of the branch target buffer (BTB) in the P4 and P4E is not known in detail. 
It has 4096 entries, probably organized as 8 ways * 512 sets. It is indexed by addresses in 
the trace cache which do not necessarily have a simple correspondence to addresses in the 
original code. Consequently, it is difficult for the programmer to predict or avoid BTB 
contentions. Far jumps, calls and returns are not predicted in the P4 and P4E. 
 
The processor allocates a BTB entry to any near control transfer instruction the first time it 
jumps. A branch instruction which never jumps will stay out of the BTB, but not out of the 
branch history register. As soon as it has jumped once, it will stay in the BTB, even if it 
never jumps again. An entry may be pushed out of the BTB when another control transfer 
instruction with the same set-value needs a BTB entry. All conditional jumps, including 
JECXZ and LOOP, contribute to the branch history register. Unconditional and indirect 

jumps, calls and returns do not contribute to the branch history. 
 
Branch mispredictions are much more expensive on the P4 and P4E than on previous 
generations of microprocessors. The time it takes to recover from a misprediction is rarely 
less than 24 clock cycles, and typically around 45 µops. Apparently, the microprocessor 
cannot cancel a bogus µop before it has reached the retirement stage. This means that if 
you have a lot of µops with long latency or poor throughput, then the penalty for a 
misprediction may be as high as 100 clock cycles or more. It is therefore very important to 
organize code so that the number of mispredictions is minimized. 

Pattern recognition for conditional jumps in P4 

The P4 uses an "agree" predictor with a 16-bit global history, as explained on page 16. The 
branch history table has 4096 entries, according to an article in Ars Technica (J. Stokes: 
The Pentium 4 and the G4e: an Architectural Comparison: Part I. arstechnica.com, Mar. 
2001). The prediction rule on page 15 tells us that the P4 can predict any repetitive pattern 
with a period of 17 or less, as well as some patterns with higher history. However, this 
applies to the global history, not the local history. You therefore have to look at the 
preceding branches in order to determine whether a branch is likely to be well predicted. I 
will explain this with the following example: 
 

    ; Example 3.4. P4 loops and branches 

    mov  eax, 100 

A:  ... 

    ... 

    mov  ebx, 16 

B:  ... 

    sub  ebx, 1 

    jnz  B 

    test eax, 1 

    jnz  X1 

    call EAX_IS_EVEN 

    jmp  X2 

X1: call EAX_IS_ODD 

X2: ... 

    mov  ecx, 0 

C1: cmp  ecx, 10 

    jnb  C2 

    ... 

    add  ecx, 1 
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    jmp  C1 

C2: ... 

    sub  eax, 1 

    jnz  A 

 
The A loop repeats 100 times. The JNZ A instruction is taken 99 times and falls through 1 

time. It will be mispredicted when it falls through. The B and C loops are inside the A loop. 

The B loop repeats 16 times, so without considering the prehistory, we would expect it to be 

predictable. But we have to consider the prehistory. With the exception of the first time, the 
prehistory for JNZ B will look like this: JNB C2: not taken 10 times, taken 1 time (JMP C1 

does not count because it is unconditional); JNZ A taken; JNZ B taken 15 times, not taken 

1 time. This totals 17 consecutive taken branches in the global history before JNZ B is not 

taken. It will therefore be mispredicted once or twice for each cycle. There is a way to avoid 
this misprediction. If you insert a dummy branch that always falls through anywhere 
between the A: and B: labels, then JNZ B is likely to be predicted perfectly, because the 

prehistory now has a not taken before the 15 times taken. The time saved by predicting JNZ 

B well is far more than the cost of an extra dummy branch. The dummy branch may, for 

example, be TEST ESP,ESP / JC B. 

 
JNZ X1 is taken every second time and is not correlated with any of the preceding 16 

conditional jump events, so it will not be predicted well. 
 
Assuming that the called procedures do not contain any conditional jumps, the prehistory for 
JNB C2 is the following: JNZ B taken 15 times, not taken 1 time; JNZ X1 taken or not 

taken; JNB C2: not taken 10 times, taken 1 time. The prehistory of JNB C2 is thus always 

unique. In fact, it has 22 different and unique prehistories, and it will be predicted well. If 
there was another conditional jump inside the C loop, for example if the JMP C1 instruction 

was conditional, then the JNB C2 loop would not be predicted well, because there would 

be 20 instances between each time JNB C2 is taken.  

 
In general, a loop cannot be predicted well on the P4 if the repeat count multiplied by the 
number of conditional jumps inside the loop exceeds 17. 

Alternating branches 

While the C loop in the above example is predictable, and the B loop can be made 

predictable by inserting a dummy branch, we still have a big problem with the JNZ X1 

branch. This branch is alternately taken and not taken, and it is not correlated with any of 
the preceding 16 branch events. Let's study the behavior of the predictors in this case. If the 
local predictor starts in state "weakly not taken", then it will alternate between "weakly not 
taken" and "strongly not taken" (see figure 3.1). If the entry in the global pattern history table 
starts in an agree state, then the branch will be predicted to fall through every time, and we 
will have 50% mispredictions (see figure 3.3). If the global predictor happens to start in state 
"strongly disagree", then it will be predicted to be taken every time, and we still have 50% 
mispredictions. The worst case is if the global predictor starts in state "weakly disagree". It 
will then alternate between "weakly agree" and "weakly disagree", and we will have 100% 
mispredictions. There is no way to control the starting state of the global predictor, but we 
can control the starting state of the local predictor. The local predictor starts in state "weakly 
not taken" or "weakly taken", according to the rules of static prediction, explained on page 
38 below. If we swap the two branches and replace JNZ with JZ, so that the branch is taken 

the first time, then the local predictor will alternate between state "weakly not taken" and 
"weakly taken". The global predictor will soon go to state "strongly disagree", and the branch 
will be predicted correctly all the time. A backward branch that alternates would have to be 
organized so that it is not taken the first time, to obtain the same effect. Instead of swapping 
the two branches, we may insert a 3EH prediction hint prefix immediately before the JNZ 

X1 to change the static prediction to "taken" (see p. 38). This will have the same effect. 
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While this method of controlling the initial state of the local predictor solves the problem in 
most cases, it is not completely reliable. It may not work if the first time the branch is seen is 
after a mispredicted preceding branch. Furthermore, the sequence may be broken by a task 
switch or other event that pushes the branch out of the BTB. We have no way of predicting 
whether the branch will be taken or not taken the first time it is seen after such an event. 
Fortunately, it appears that the designers have been aware of this problem and 
implemented a way to solve it. While researching these mechanisms, I discovered an 
undocumented prefix, 64H, which does the trick on the P4. This prefix doesn't change the 

static prediction, but it controls the state of the local predictor after the first event so that it 
will toggle between state "weakly not taken" and "weakly taken", regardless of whether the 
branch is taken or not taken the first time. This trick can be summarized in the following rule: 
 
A branch which is taken exactly every second time, and which doesn't correlate with any of 
the preceding 16 branch events, can be predicted well on the P4 if it is preceded by a 64H 

prefix. This prefix is coded in the following way: 
 

; Example 3.5. P4 alternating branch hint 

DB   64H         ; Hint prefix for alternating branch 

jnz  X1          ; Branch instruction 

 
No prefix is needed if the branch can see a previous instance of itself in the 16-bit 
prehistory. 
 
The 64H prefix has no effect and causes no harm on any previous microprocessor. It is an 

FS segment prefix. The 64H prefix cannot be used together with the 2EH and 3EH static 

prediction prefixes. 

Pattern recognition for conditional jumps in P4E 

Branch prediction in the P4E is simpler than in the P4. There is no agree predictor, but only 
a 16-bit global history and a global pattern history table. This means that a loop can be 
predicted well on the P4E if the repeat count multiplied by the number of conditional jumps 
inside the loop does not exceed 17. 
 
Apparently, the designers have decided that the improvement in prediction rate of the agree 
predictor is too small to justify the considerable complexity. However, it appears that the 
P4E has inherited a little peculiarity from the agree predictor of the P4. The 64H prefix 

influences the first few predictions of a branch in a way that might have been optimal for an 
alternating branch if there was an agree predictor. This has no useful purpose, but causes 
no serious harm either. 
 

3.5 Branch prediction in PM and Core2 

The branch prediction mechanism is the same in PM and Core2. 

Misprediction penalty 

The misprediction penalty is approximately 13 clock cycles in the PM and 15 clock cycles in 
the Core2, corresponding to the length of the pipeline. Far jumps, far calls and far returns 
are not predicted. 

Pattern recognition for conditional jumps 

The branch prediction mechanism is more advanced than on previous processors. 
Conditional jumps are handled by a hybrid predictor combining a two-level predictor and a 
loop counter. In addition, there is a mechanism for predicting indirect jumps and indirect 
calls. 
 
A branch instruction is recognized as having loop behavior if it goes one way n-1 times and 
then goes the other way one time. A loop counter makes it possible to predict branches with 
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loop behavior perfectly if the period n is no longer than 64. The loop counters are stored for 
each branch without using the global history table. Instead, the loop counters have their own 
buffer with 128 entries. Therefore, the prediction of a loop does not depend on the number 
of other branches inside the loop. Nested loops are predicted perfectly. 
 
Branches that do not have loop behavior are predicted using a two-level predictor with an 8-
bit global history buffer and a history pattern table of unknown size. The ability to predict a 
repetitive branch pattern, other than a simple loop pattern, depends on the number of 
branches in a loop according to the rules for a predictor with a global history table, 
explained on p. 16. 
 
A meta-predictor determines whether a branch has loop behavior or not and chooses the 
prediction mechanism accordingly. The mechanism of the meta predictor is not known. 

Pattern recognition for indirect jumps and calls 

Indirect jumps and indirect calls (but not returns) are predicted using the same two-level 
predictor principle as branch instructions. Branches without loop behavior and indirect 
jumps/calls share the same history buffer and history pattern table, but apparently not the 
same BTB. An indirect jump/call gets a new BTB entry every time it jumps to a new target. It 
can have more then four BTB entries even though the BTB has only four ways. The history 
buffer stores more than one bit for each entry, probably 6 or 7, in order to distinguish 
between more than two targets of an indirect jump/call. This makes it possible to predict a 
periodic jump pattern that switches between several different targets. The maximum number 
of different targets that I have seen predicted perfectly is 36, but such impressive 
predictions are rare for reasons explained below. A periodic pattern can be predicted if all 8-
length history sub-patterns are different. This also improves the prediction of subsequent 
conditional jumps because they share the same history buffer. A conditional jump can make 
a prediction based on the distinction between different jump targets of a preceding indirect 
jump. 
 
The above observations indicate that the history buffer must have at least 8*6 = 48 bits, but 
a history pattern table of 248 entries is physically impossible. The 48 or more bits must be 
compressed by some hashing algorithm into a key of x bits to index the 2x entries of the 
history pattern table. The value of x is not known, but it is probably between 10 and 16. The 
hashing algorithm may be a simple XOR combination of bits from the history buffer and the 
address or the BTB index of the branch instruction. A more complex hashing function is also 
possible. 
 
My experiments show that the PM and Core2 make more mispredictions than expected in 
programs where there are more than a few branches with non-loop behavior or indirect 
jumps/calls in the innermost loop. Test results were not always the same for identical 
experiments. There is evidently a dependence on the state of the BTB and the history 
pattern table prior to the experiment. 
 
The design gives three probable causes for poor predictions: The first cause is contention 
for entries in the BTB. The second cause is aliasing of keys generated by the hashing 
algorithm causing contention between history pattern table entries. It appears that this 
aliasing phenomenon occurs not only for indirect jumps/calls but also for conditional jumps 
predicted by the two-level predictor. The third possible cause is poor performance of the 
meta predictor. My guess is that an insufficient size of the history pattern table is the main 
reason for lower-than-expected prediction rates. 

BTB organization 

There appears to be different branch target buffers for different types of branches in the PM 
and Core2. My measurements on a Core2 indicate the following BTB organizations: 
 
For unconditional jumps and branches without loop behavior: 
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4 ways by 512 sets = 2048 entries. Each entry is identified by bits 0 - 21 of the address of 
the last byte of the control transfer instruction it belongs to. Bits 4 - 12 define the set, and 
the remaining bits are stored in the BTB as a tag. Entries that differ only by bits 22 - 31 will 
clash into the same BTB entry. A BTB entry is allocated the first time a control transfer 
instruction is met. 
 
For branches with loop behavior: 
2 ways by 64 sets = 128 entries. Each entry is identified by bits 0 - 13 of the address of the 
last byte of the control transfer instruction it belongs to. Bits 4 - 9 define the set. Entries that 
differ only by bits 14 - 31 will clash into the same BTB entry. 
 
For indirect jumps and indirect calls: 
4 ways by 2048 sets = 8192 entries. Each entry is identified by bits 0 - 21 of the address of 
the last byte of the control transfer instruction it belongs to. Bits 0 - 10 define the set, and 
the remaining bits are stored in the BTB as a tag. Entries that differ only by bits 22 - 31 will 
clash into the same BTB entry. 
 
For near returns: 
The return stack buffer has 16 entries. 
 
It should be noted that these figures are somewhat uncertain because my measurements 
on branches without loop behavior are inconsistent. The inconsistency is probably due to 
the fact that the hashing function for the history pattern table is not known. 
 
(Literature: S. Gochman, et al.: The Intel Pentium M Processor: Microarchitecture and 
Performance. Intel Technology Journal, vol. 7, no. 2, 2003). 
 

3.6 Branch prediction in Intel Nehalem 

Little has been published about the branch prediction mechanism in the Nehalem, and the 
test results have not been fully interpreted. 

Misprediction penalty 

The misprediction penalty is longer than on Core2 due to a longer pipeline. The measured 
misprediction penalty is at least 17 clock cycles. 

Pattern recognition for conditional jumps 

The branch prediction mechanism has been improved to compensate for the longer 
misprediction delay. Conditional jumps are handled by a hybrid predictor combining one or 
more two-level predictor mechanisms and a loop counter. In addition, there is a mechanism 
for predicting indirect jumps and indirect calls. 
 
A branch with loop behavior is predicted for loop counts up to 64. The loop counters are 
stored for each branch without using the global history table. Instead, the loop counters 
have their own buffer with 32 entries. The prediction of a loop does not depend on the 
number of other branches inside the loop. Nested loops are predicted perfectly. 
 
Branches that do not have loop behavior are predicted using a two-level predictor with an 
18-bit global history buffer and a history pattern table of unknown size. The ability to predict 
a repetitive branch pattern, other than a simple loop pattern, depends on the number of 
jumps in a loop according to the rules for a predictor with a global history table, explained on 
p. 16. Apparently, there are two 18-bit global history buffers. The first history buffer includes 
all jumps and branches including unconditional jumps but not including never-taken 
branches. The second history buffer includes only some branches, presumably the most 
important ones. This improves the prediction of some branches inside loops that contain up 
to nine jumps. I have not been able to fully interpret the test results. The criteria for which 
history buffer to use have not been found. The algorithm is asymmetric, so that the 
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maximum number of consecutive not-taken events is higher than the maximum number of 
consecutive taken events. Both numbers depend on the number of jumps inside the loop. 

Pattern recognition for indirect jumps and calls 

Indirect jumps and indirect calls (but not returns) are predicted using the same two-level 
predictor as branch instructions. Branches without loop behavior and indirect jumps/calls 
share the same history buffer, but perhaps not the same BTB. 

BTB organization 

The branch target buffer has two levels, like a two-level cache system. 
 
There may be different branch target buffers for different types of branches. I have not been 
able to measure the sizes of the branch target buffers. 

Prediction of function returns 

The return stack buffer has 16 entries for near returns. 
 
Literature: "A Method and apparatus for branch prediction using a second level branch 
prediction table". WO Patent 2000/014628. 
 

3.7 Branch prediction in Intel Sandy Bridge and Ivy Bridge 

The Sandy Bridge reverses the trend of ever more complicated branch prediction algorithms 
by not having a separate predictor for loops. The redesign of the branch prediction 
mechanism has probably been necessary in order to handle the new µop cache (see page 
124 below). A further reason for the simplification may be a desire to reduce the pipeline 
length and thereby the misprediction penalty. The Ivy Bridge appears to be very similar to 
the Sandy Bridge. 

Misprediction penalty 

The misprediction penalty is often shorter than on the Nehalem thanks to the µop cache 
(see page 124 below). The misprediction penalty was measured to 15 clock cycles or more 
for branches inside the µop cache and slightly more for branches in the level-1 code cache. 

Pattern recognition for conditional jumps 

There appears to be a two-level predictor with a 32-bit global history buffer and a history 
pattern table of unknown size. There is no specialized loop predictor. Nested loops and 
loops with branches inside are not predicted particularly well, though sometimes better than 
what follows from the rules on page 15. 

Pattern recognition for indirect jumps and calls 

Indirect jumps and indirect calls (but not returns) are predicted using the same two-level 
predictor as branch instructions.  

BTB organization 

The branch target buffer in Sandy Bridge is bigger than in Nehalem according to unofficial 
rumors. It is unknown whether it has one level, as in Core 2 and earlier processors, or two 
levels as in Nehalem. It can handle a maximum of four call instructions per 16 bytes of 
code. Conditional jumps are less efficient if there are more than 3 branch instructions per 16 
bytes of code. 

Prediction of function returns 

The return stack buffer has 16 entries for near returns. 
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3.8 Branch prediction in Intel Haswell, Broadwell, Skylake, and other Lakes 

The branch predictor appears to have been redesigned in the Haswell and later Intel 
processors, but the design is undocumented. 
 
Reverse engineering has revealed that the branch prediction is using several tables of local 
and global histories of taken branches [Yavarzadeh, 2023]. 
 
The measured throughput for jumps and branches varies between one branch per clock 
cycle and one branch per two clock cycles for jumps and predicted taken branches. 
Predicted not taken branches have an even higher throughput of up to two branches per 
clock cycle. 
 
The high throughput for taken branches of one per clock was observed for up to 128 
branches with no more than one branch per 16 bytes of code.  
 
The throughput is reduced to one jump per two clock cycles if there is more than one branch 
instruction per 16 bytes of code. If there are more than 128 branches in the critical part of 
the code, and if they are spaced by at least 16 bytes, then apparently the first 128 branches 
have the high throughput and the remaining have the low throughput. 
 
These observations may indicate that there are two branch prediction methods: a fast 
method tied to the µop cache and the instruction cache, and a slower method using a 
branch target buffer. 

Misprediction penalty 

The branch misprediction penalty varies a lot. It was measured to 15 - 20 clock cycles. 

Pattern recognition for conditional jumps 

The processor is able to predict very long repetitive jump patterns with few or no 
mispredictions. I found no specific limit to the length of jump patterns that could be 
predicted. One study found that it stores a history of at least 29 branches. Loops are 
successfully predicted up to a count of 32 or a little more. Nested loops and branches inside 
loops are predicted reasonably well. 

Pattern recognition for indirect jumps and calls 

Indirect jumps and indirect calls are predicted well. 

BTB organization 

The organization of the branch target buffer is unknown. It appears to be reasonably big. 

Prediction of function returns 

The return stack buffer has 16 entries for near returns in Haswell, Broadwell, and Skylake, 
and 22 in Ice Lake and Tiger Lake. 

Literature:  

Jann Horn: "News and updates from the Project Zero team at Google. Reading privileged 
memory with a side-channel". https://googleprojectzero.blogspot.dk/2018/01/reading-
privileged-memory-with-side.html Jan. 3, 2018. 
 
Hosein Yavarzadeh, et al.: Half&Half: Demystifying Intel’s Directional Branch Predictors 
for Fast, Secure Partitioned Execution. 2023 IEEE Symposium on Security and Privacy. 
https://doi.org/10.1109/SP46215.2023.10179415  
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3.9 Branch prediction in Intel Atom, Silvermont, Goldmont, and Knights 
Landing 

The branch prediction mechanism in the Intel Atom and Silvermont processors is a two-level 
adaptive predictor with a global history table, following the principles described on page 16. 
The branch history register has 12 bits. The pattern history table on the Atom has 4096 
entries and is shared between threads. The branch target buffer has 128 entries, organized 
as 4 ways by 32 sets. The size of these buffers on the Silvermont and Goldmont is 
unknown, but probably bigger, and not shared between threads. 
 
Unconditional jumps make no entry in the global history table, but always-taken and never-
taken branches do. 
 
The Silvermont and Goldmont have branch prediction both at the fetch stage and at the 
later decode stage in the pipeline, where the latter can correct errors in the former, 
according to the article by David Kanter: "Silvermont, Intel’s Low Power Architecture", May 
6, 2013, Realworldtech. 
 
Contrary to what some documents say, there is no special predictor for loops according to 
my tests. Loops are predicted in the same way as other branches, following the rules as 
described on page 16. 

Misprediction penalty 

The penalty for mispredicting a branch is 11-13 clock cycles.  
 
It often occurs that a branch has a correct entry in the pattern history table, but no entry in 
the branch target buffer, which is much smaller. If a branch is correctly predicted as taken, 
but no target can be predicted because of a missing BTB entry, then the penalty will be 
approximately 7 clock cycles. 

Prediction of indirect branches 

Some documents say that the Silvermont has a history predictor for indirect branches, but 
this is not confirmed in my tests. I have found pattern prediction for indirect branches on 
Knights Landing and Goldmont, but not on Silvermont. Indirect branches are predicted to go 
to the same target as last time on Silvermont. 

Return stack buffer 

There is a return stack buffer with 8 entries on the Atom and 16 entries on Silvermont, 
Goldmont and Knights Landing. 
 

3.10 Branch prediction in VIA Nano 

The VIA Nano processor has a hybrid prediction mechanism with several different branch 
predictors, a majority vote mechanism, and a meta predictor, according to G. Glenn Henry: 
"The VIA Isaiah Architecture", Centaur Technology, 2008 (www.via.com.tw).  
 
The branch target buffer has 4096 entries, 4-way set associative, according to the 
abovementioned document. 
 
The branch target buffer is connected to the code cache with two entries for each 16 bytes 
of code. If a 16-bytes block of code contains more than two branches then the excessive 
branches use a simpler, and slower, mechanism. This was confirmed by my tests. Branch 
prediction is slower if a 16-bytes block of code contains more than two jumps, branches, 
calls or returns. 
 
In my tests, the mechanism behaved almost like an alloyed two-level adaptive predictor with 
a history table that combines 12 bits of local history and 2 bits of global history. The local 

http://www.realworldtech.com/silvermont/2/
http://www.via.com.tw/en/downloads/whitepapers/processors/WP080124Isaiah-architecture-brief.pdf
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history information is stored in connection with the code cache with a certain amount of 
storage provided for each 16-bytes block of code.  
 
The goodness of the prediction depends on the number of jumps in the same 16-bytes 
block of code. The prediction is best if there is no more than one branch or jump in each 16-
bytes block of code. If there are two branches or jumps in one 16-bytes block of code then 
each branch has fewer bits for storing local history, even if one of the jumps is 
unconditional. The prediction is particularly bad if there are two jumps or branches, one of 
which is always taken. If there are more than two jumps or branches in the same 16-bytes 
block of code then the excessive jumps or branches will use a slower and inferior prediction 
method. 
 
Loop branches behave slightly differently. A loop with no jumps inside can be predicted up 
to a loop count of 15 - 20. A loop with one or more jumps inside can be predicted up to a 
count of 12 - 16. The behavior varies and is not always reproducible. 
 
Indirect jumps are predicted to go to the same target as last time. 
 
The return stack buffer appears to be very deep. All returns were predicted correctly even in 
very deeply nested subroutines in my tests. 
 
The misprediction penalty is typically 16 clock cycles, max. 20. 
 
The branch prediction mechanism fails if a branch is followed by a serializing instruction 
such as CPUID. This is not a performance problem, but it must be taken into account when 
testing. 
 

3.11 Branch prediction in AMD K8 and K10 

BTB organization 

The branch prediction mechanism of the K8 and K10 AMD processors is connected to the 
code cache. The level-1 code cache has 1024 lines of 4*16 bytes each, 2-way set 
associative. 
 
Each 16-bytes block in the code cache has an associated set of branch indicators. There 
are nine branch indicators, associated with byte number 0, 1, 3, 5, 7, 9, 11, 13 and 15 of the 
code block. Most branch instructions are two or more bytes long. A branch instruction that is 
two or more bytes long will have at least one branch indicator even when there are only 
indicators for the odd addresses and address 0. The extra indicator at byte 0 covers the 
case where a branch instruction crosses a 16-bytes boundary and ends at byte 0. 
 
Each branch indicator has two bits of information to cover the following cases: (0) no branch 
or never jump, (1) use branch selector 1, (2) use branch selector 2, (3) use branch selector 
3. There are three branch selectors in addition to the nine branch indicators. Each branch 
selector has an index into the branch target buffer as well as a local branch prediction 
information. The local branch prediction information can be "never jump", "always jump", 
"use dynamic prediction", or "use return stack buffer". There is also an indication of whether 
the branch is a call. This is used for pushing a return address on the return address stack 
(see page 37). 
 
The branch target addresses are saved in the branch target buffer (BTB), which has 2048 
entries. Return addresses are stored in the return address stack, which has 12 entries in K8 
and 24 entries in K10. 
 
The branch prediction mechanism works as follows: A branch that is never taken gets no 
branch indicator, no branch selector and no BTB entry. The first time a branch is taken, it 
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gets a branch selector which is set to "always jump" and a BTB entry to indicate the target 
address. If the branch is later not taken, then the branch selector is changed to "use 
dynamic prediction". It never goes back from "use dynamic prediction" to "always jump" or 
"never jump". The dynamic prediction mechanism is described below. The predictor bits can 
indicate at least the following values: "no jump", "always jump", "use dynamic prediction", 
"use return stack buffer". The K10 also has predictors for indirect jumps. 
 
Some documents say that return instructions occupy a branch target entry which is used 
when the return stack buffer is exhausted, but experiments seem to indicate that returns are 
always mispredicted when the return stack buffer is exhausted. 
 
The branch indicators and part of the local branch prediction information is copied to the 
level-2 cache when evicted from the level-1 cache. The index into the BTB is not copied to 
the level-2 cache due to lack of space. There is a branch target address calculator which 
can calculate the target address for direct jumps and calls in case a BTB entry is missing or 
the BTB index has been lost due to eviction to the level-2 cache. The calculation of a lost 
branch target address takes an extra 4 clock cycles, according to my measurements, which 
is less than the cost of a complete misprediction. This allows conditional and unconditional 
jumps and calls to be predicted correctly, even if they have been evicted from the BTB 
and/or the level-1 cache. The branch target address calculator cannot calculate the targets 
of indirect jumps and returns, of course. Returns are mispredicted if they have been evicted 
from the level-1 cache even they are still in the return stack buffer. 
 
A drawback of this design is that there can be no more than three control transfer 
instructions for every aligned 16-bytes block of code, except for branches that are never 
taken. If there are more than three taken branches in the same 16-bytes block of code then 
they will keep stealing branch selectors and BTB entries from each other and cause two 
mispredictions for every execution. It is therefore important to avoid having more than three 
jumps, branches, calls and returns in a single aligned 16-bytes block of code. Branches that 
are never taken do not count. The three branch limit can easily be exceeded if for example 
a switch/case statement is implemented as a sequence of dec / jz instructions. 

 
A further problem is that the design allows only one control transfer instruction for every two 
bytes of code. Most control transfer instructions use more than one byte of code, but return 
instructions can be coded as a single-byte instruction. This can cause two kinds of 
problems. This first kind of problem occurs if two branches share the same branch selector. 
If a branch instruction ending at an even address if followed by a single-byte return 
instruction at the following odd address, then the two instructions will share the same 
branch selector and will therefore be mispredicted most of the time. 
 
The second kind of problem relates to single-byte return instructions having no branch 
selector. This can happen when there is a jump directly to a single-byte return instruction or 
a single-byte return instruction follows immediately after a mispredicted branch. If the single-
byte return instruction is at an even address not divisible by 16 then the branch selector will 
not be loaded in these situations, and the return will be mispredicted. 
 
The first kind of problem can be avoided by placing the single-byte return instruction at an 
even address, the second kind of problem by placing it at an odd address (or an address 
divisible by 16). Both kinds of problem can be avoided by making the return instruction 
longer than one byte. This can be done by inserting a segment prefix or F3 prefix before the 
return instruction to make it two bytes long, or by coding the return instruction with an offset 
operand of zero, which makes it three bytes long. It is recommended to make return 
instructions longer than one byte if there is a conditional jump immediately before it, or if 
there is a jump directly to it. A call instruction immediately before a return should be 
replaced by a jump. 
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Misprediction penalty 

AMD manuals say that the branch misprediction penalty is 10 clock cycles if the code 
segment base is zero and 12 clocks if the code segment base is nonzero. In my 
measurements, I have found a minimum branch misprediction penalty of 12 and 13 clock 
cycles, respectively. The code segment base is zero in most 32-bit operating systems and 
all 64-bit systems. It is almost always nonzero in 16-bit systems (see page 207). 
 
The misprediction penalty corresponds to the length of the pipeline. Far jumps, calls and 
returns are not predicted. 

Pattern recognition for conditional jumps 

The AMD uses a two-level adaptive branch predictor with a global 8 or 12-bit history, as 
explained on page 16. Simple repetitive patterns and small loops with a repeat count up to 9 
or 13 can be predicted by this mechanism. The rule on page 15 tells which repetitive branch 
patterns can be predicted perfectly. 
 
The AMD optimization guide tells that the global pattern history table has 16k entries. This 
table is indexed by the 8 or 12 bits of the global history combined with part of the branch 
address. My tests on K8 indicate that it is indexed by an 8-bit history and bits number 4-9 of 
the address of the last byte of the branch instruction. This makes 16k entries if none of the 
bits are combined. It is possible that some of the bits are XOR'ed with each other and/or 
with part of the branch target address. 
 
Branches that always go the same way do not pollute the global branch history register. 
This is accomplished by the information stored in the branch selector block. A branch is 
assumed to be not taken until the first time it is taken. After a branch has been taken for the 
first time it is assumed always taken until next time it is not taken. After a branch has been 
taken and then not taken it is tagged as needing dynamic prediction. It is then predicted 
using the two-level adaptive algorithm with an 8 bit global history. 
 
This mechanism makes it possible to predict loops with repeat counts up to 9 or 13 even if 
they contain branches, as long as the branches always go the same way. 
 
My tests on K8 indicate that the dynamic branch prediction fails much more often than what 
can be expected from the design described above and that the pattern learning time can be 
quite long. I have no explanation for this, but it is possible that the branch pattern history 
table is smaller than indicated or that the mechanism is more complicated than described 
here. 

Prediction of indirect branches 

The K10 has a separate target buffer with 512 entries for indirect jumps and indirect calls. It 
probably shares the 12-bit history counter with the two-way branches. Indirect jumps with 
multiple target can thereby be predicted if they follow a regular pattern. Earlier processors 
predict indirect jumps to always go the same way, as described below. 

Return stack buffer 

The return stack buffer has 12 entries in K8 and 24 entries in K10. This is more than 
sufficient for normal applications except for recursive procedures. See page 37 for an 
explanation of the return stack buffer. 

Literature:  

The branch prediction mechanism is described in the following documents, though these 
may not be accurate: 
 
AMD Software Optimization Guide for AMD64 Processors, 2005, 2008. 
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Hans de Vries: Understanding the detailed Architecture of AMD's 64 bit Core, Chip 
Architect, Sept. 21, 2003. www.chip-architect.com. 
Andreas Kaiser: K7 Branch Prediction, 1999. 
www.agner.org/optimize/KaiserK7BranchPrediction.pdf. 
Talk at Stanford 2004 stanford-online.stanford.edu/courses/ee380/040107-ee380-100.asx. 
 

3.12 Branch prediction in AMD Bulldozer, Piledriver, Steamroller, and 
Excavator 

The AMD Bulldozer has a new branch prediction design which has no connection to the 
code cache, unlike previous models. The prediction mechanism is described as a hybrid 
with a local predictor and a global predictor. Most probably, the branch predictor is based on 
perceptrons. A perceptron is similar to a neuron, and it learns by tracking correlations in the 
branch history. Unlike the adaptive two-level predictor, the perceptron predictor can learn 
very long branch patterns. 
 
The branch target buffer (BTB) has two levels, according to AMD's software optimization 
guide. The level-1 BTB is organized as a set-associative cache with 128 sets of 4 ways = 
512 entries. The level-2 BTB has1024 sets of 5 ways = 5120 entries in the Bulldozer and 
Piledriver, and probably 10240 entries in the Steamroller. 
 
The BTB and predictor is shared between the two cores of a compute unit. 
 
My tests indicate that complex repetitive patterns are predicted well after a certain learning 
period. There appears to be no sharp limit to the length of branch patterns that can be 
predicted, and even very long patterns can be predicted. There seems to be no loop 
counter, and nested loops are not predicted particularly well. Indirect branches are predicted 
well. The prediction success rate is somewhat higher in the Steamroller than in the previous 
models. 

Misprediction penalty 

The misprediction penalty is specified as minimum 20 clock cycles for conditional and 
indirect branches and 15 clock cycles for unconditional jumps and returns. My 
measurements indicated up to 19 clock cycles for conditional branches and 22 clock cycles 
for returns. 

Return stack buffer 

The return stack buffer has 24 entries.  

Literature:  

Software Optimization Guide for AMD Family 15h Processors. AMD, January 2012. 
Daniel A. Jiménez, and Calvin Lin. "Dynamic branch prediction with perceptrons." The 
Seventh International Symposium on High-Performance Computer Architecture, 2001., pp. 
197-206. IEEE, 2001. 
 

3.13 Branch prediction in AMD Zen 

Branch prediction in Zen 1-4 is based on perceptrons. My tests show that loops with a 
repeat count of up to 12 are predicted very well in Zen 1 and 2. Zen 3 and 4 can predict 
loops with a count of up to 64. Zen 5 can predict loop counts up to 128. Loops with higher 
repeat counts usually have one misprediction after the last iteration. Nested loops and 
branches inside loops are predicted well. Repetitive patterns are predicted very well, with no 
apparent limit to the length of the period. Multiway branches in the form of indirect jumps or 
calls are also predicted, though not as efficiently as conditional jumps. 
 

http://www.chip-architect.com/
http://www.agner.org/optimize/AndreasKaiserK7BranchPrediction.pdf
http://stanford-online.stanford.edu/courses/ee380/040107-ee380-100.asx
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Branch information is no longer attached to the code cache in Zen 1 and 2, and there is no 
serious problem in having many branches in the same code cache line. This does not apply 
to the Zen 3, 4 and 5 which have lower throughput if there are more than 8, 12, or 16 jumps 
or taken branches, respectively, in a 64-bytes block of code. 
 
The Zen 2 has three levels of branch target buffer (BTB). The three levels of BTB have 16, 
512, and 7168 entries, respectively, with a latency of 0, 1, and 4 clock cycles, respectively.  
 
The Zen 3 has a level-1 BTB with 1024 entries and a level-2 BTB with 6656 entries. It has 
an additional predictor for indirect jumps with 1536 entries. The Zen 4 has a level-1 BTB 
with 2*1536 entries and a level-2 BTB with 2*7168 entries. 
 
The Zen 5 provides a major improvement with a predictor that looks two branches ahead 
and decodes both sides of a 2-way branch simultaneously. The Zen 5 has a level-1 BTB 
with 16k entries and a level-2 BTB with 8k entries as well as a separate array for indirect 
branches. I am not able to verify what goes on under the hood, but my tests show a very 
good branch prediction rate, even for complicated patterns, and an unprecedented 
throughput of 2 taken branches or 3 not-taken branches per clock cycle. This includes fused 
ALU-branch instructions. 
 
The average misprediction penalty was measured to approximately 18 clock cycles for Zen 
1-3. The misprediction penalty varies from 15 - 18 in Zen 4 and 15 - 25 in Zen 5. 
 
The return stack buffer has 32 entries in Zen 1-4, and 52 entries in Zen5. 
 
The details are given in AMD Software Optimization Guides and in the articles listed below. 

Literature:  

Mike Clark: "AMD and the new “Zen” High Performance x86 Core". Hot Chips Symposium, 
California. August 23, 2016. 
 
AMD: Software Optimization Guide for AMD Family 17h Models 30h and Greater 
Processors, 2020. 
 
AMD: Software Optimization Guide for AMD Family 19h Processors, 2020. 
 
Anonymous: "Zen 2 - Microarchitectures - AMD", WikiChip, n.d. 
https://en.wikichip.org/wiki/amd/microarchitectures/zen_2 
 
Smith, R. & Bonshor, G.: AMD Zen 4 Ryzen 9 7950X and Ryzen 5 7600X Review: Retaking 
The High-End. Anandtech, Sept. 2022. 
 
George Cozma and Camacho: Zen 5’s 2-Ahead Branch Predictor Unit: How a 30 Year Old 
Idea Allows for New Tricks. Chips and Cheese, 2024. 
 

3.14 Branch prediction in AMD Bobcat and Jaguar 

BTB organization 

The position of jumps and branches is stored in two arrays, a "sparse branch marker array" 
which can hold 2 branches for each 64-bytes cache line, and a "dense branch marker array" 
which can hold 2 branches for every 8 bytes of code, according to the article cited below. In 
my tests, the Bobcat could predict 2 branches per 64 bytes of code in the level-2 cache, 
which indicates that the sparse branch array, but not the dense branch array, is coupled to 
both levels of cache. If both arrays are used, we would expect a maximum of 18 branches 
per 64 bytes of level-1 cache. In my tests, the Bobcat and Jaguar were able to predict 16 or 

https://en.wikichip.org/wiki/amd/microarchitectures/zen_2
https://www.anandtech.com/show/17585
https://chipsandcheese.com/p/zen-5s-2-ahead-branch-predictor-unit-how-30-year-old-idea-allows-for-new-tricks
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17 branches per line of level-1 cache, depending on the position of the branches, but not 
18.  
 
There are many mispredictions when these number of branches are exceeded, as the 
branches keep evicting each other from the arrays. 
 
Branches that are never taken are included in the branch marker arrays. 

Misprediction penalty 

The article cited below indicates a misprediction penalty of 13 clock cycles. In my tests, 
however, the misprediction penalty ranged from 8 to 19 clock cycles depending on the 
subsequent instructions. There was no consistent difference between integer and floating 
point code in this respect. 

Pattern recognition for conditional jumps 

The branch predictor behaves approximately as a two-level adaptive branch predictor with a 
global 26-bit history (see page 16), or slightly better. There is no dedicated loop predictor. 
This means that loops with many branches or other loops inside are poorly predicted. I have 
no information on the size of the pattern history table, but we can surely assume that it is 
less than 226. 
 
Branches that are always taken are included in the history buffer, while unconditional jumps 
and branches never taken are not. 

Prediction of indirect branches 

The processor can predict indirect jumps with more than two different targets, but 
mispredictions are frequent. 

Return stack buffer 

There is a return stack buffer with 12 entries on Bobcat, and 16 entries on Jaguar, 
according to my measurements. 

Literature:  

Brad Burgess, et. al.: Bobcat: AMD's Low-Power x86 Processor. IEEE Micro, March/April 
2011, pp. 16-25. 
 

3.15 Indirect jumps on older processors 

Indirect jumps, indirect calls, and returns may go to a different address each time. The 
prediction method for an indirect jump or indirect call is, in processors older than PM and 
K10, simply to predict that it will go to the same target as last time it was executed. The first 
time an indirect jump or indirect call is seen, it is predicted to go to the immediately following 
instruction. Therefore, an indirect jump or call should always be followed by valid code. 
Don't place a list of jump addresses immediately after an indirect jump or call. Such a list 
should preferably be placed in the data segment, rather than the code segment. 
 
A multi-way branch (switch statement) is implemented either as an indirect jump using a 

list of jump addresses, or as a tree of branch instructions. The indirect jump has the 
disadvantage that it is poorly predicted on many processors, but the branch tree method 
has other disadvantages, namely that it consumes more BTB entries and that many 
processors have poor performance for dense or consecutive branches. 
 

3.16 Returns (all processors except P1) 

A better method is used for returns. A Last-In-First-Out buffer, called the return stack buffer, 
remembers the return address every time a call instruction is executed, and it uses this for 
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predicting where the corresponding return will go. This mechanism makes sure that return 
instructions are correctly predicted when the same subroutine is called from several 
different locations. 
 
The P1 has no return stack buffer, but uses the same method for returns as for indirect 
jumps. Later processors have a return stack buffer. The size of this buffer is 4 in the PMMX, 
8 in Atom, 12 in AMD k8, 16 in PPro, P2, P3, P4, P4E, PM, Core2 and Nehalem, and 24 in 
AMD k10. This size may seem rather small, but it is sufficient in most cases because only 
the innermost subroutines matter in terms of execution time. The return stack buffer may be 
insufficient, though, in the case of a deeply nesting recursive function. 
 
In order to make this mechanism work, you must make sure that all calls are matched with 
returns. Never jump out of a subroutine without a return and never use a return as an 
indirect jump. It is OK, however, to replace a CALL MYPROC / RET sequence with JMP 

MYPROC in 16 and 32 bit mode. In 64 bit mode, obeying the stack alignment standard, you 

can replace SUB RSP,8 / CALL MYPROC / ADD RSP,8 / RET with JMP MYPROC. 

 
On most processors, you must make sure that far calls are matched with far returns and 
near calls with near returns. This may be problematic in 16-bit code because the assembler 
will replace a far call to a procedure in the same segment with PUSH CS followed by a 

near call. Even if you prevent the assembler from doing this by hard-coding the far call, the 
linker is likely to translate the far call to PUSH CS and a near call. Use the 

/NOFARCALLTRANSLATION option in the linker to prevent this. It is recommended to use 
a small or flat memory model so that you don't need far calls, because far calls and returns 
are expensive anyway. 
 

3.17 Static prediction 

The first time a branch instruction is seen, a prediction is made according to the principles of 
static prediction. 

Static prediction in P1 and PMMX 

A control transfer instruction which has not been seen before or which is not in the branch 
target buffer (BTB) is always predicted to fall through on the P1 and PMMX. 
 
A branch instruction will not get a BTB entry if it always falls through. As soon as it is taken 
once, it will get into the BTB. On the PMMX, it will stay in the BTB no matter how many 
times it falls through. Any control transfer instruction which jumps to the address 
immediately following itself will not get a BTB entry and will therefore always have a 
misprediction penalty. 

Static prediction in PPro, P2, P3, P4, P4E 

On PPro, P2, P3, P4 and P4E, a control transfer instruction which has not been seen 
before, or which is not in the BTB, is predicted to fall through if it goes forwards, and to be 
taken if it goes backwards (e.g. a loop). Static prediction takes longer time than dynamic 
prediction on these processors. 
 
On the P4 and P4E, you can change the static prediction by adding prediction hint prefixes. 
The prefix 3EH will make the branch predicted taken the first time, and prefix 2EH will make 

it predicted not taken the first time. These prefixes can be coded in this way: 
 

; Example 3.6. P4/P4E static branch prediction hint 

DB  3EH    ; Prediction hint prefix 

JBE LL     ; Predicted taken first time 

 
The prediction hint prefixes are in fact segment prefixes, which have no effect and cause no 
harm on other processors. 
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It is rarely worth the effort to take static prediction into account. Almost any branch that is 
executed sufficiently often for its timing to have any significant effect is likely to stay in the 
BTB so that only the dynamic prediction counts. Static prediction only has a significant 
effect if context switches or task switches occur very often.  
 
Normally you don't have to care about the penalty of static mispredictions. It is more 
important to organize branches so that the most common path is not taken, because this 
improves code prefetching, trace cache use, and retirement.  
 
Static prediction does have an influence on the way traces are organized in a trace cache, 
but this is not a lasting effect because traces may be reorganized after several iterations. 

Static prediction in PM and Core2 

These processors do not use static prediction. The predictor simply makes a random 
prediction the first time a branch is seen, depending on what happens to be in the BTB entry 
that is assigned to the new branch. There is simply a 50% chance of making the right 
prediction of jump or no jump, but the predicted target is correct. Branch hint prefixes have 
no useful effect on PM and Core2 processors. 

Static prediction in AMD 

A branch is predicted not taken the first time it is seen. A branch is predicted always taken 
after the first time it has been taken. Dynamic prediction is used only after a branch has 
been taken and then not taken. Branch hint prefixes have no effect. 
 

3.18 Close jumps 

Close jumps on PMMX 

On the PMMX, there is a risk that two control transfer instructions will share the same BTB 
entry if they are too close to each other. The obvious result is that they will always be 
mispredicted. The BTB entry for a control transfer instruction is identified by bits 2-31 of the 
address of the last byte in the instruction. If two control transfer instructions are so close 
together that they differ only in bits 0-1 of the address, then we have the problem of a 
shared BTB entry. The RET instruction is particularly prone to this problem because it is only 

one byte long. There are various ways to solve this problem: 
 
1. Move the code sequence a little up or down in memory so that you get a DWORD 

boundary between the two addresses. 
 

2. Change a short jump to a near jump (with 4 bytes displacement) so that the end of the 
instruction is moved further down. There is no way you can force the assembler to use 
anything but the shortest form of an instruction so you have to hard-code the near jump 
if you choose this solution. 
 

3. Put in some instruction between the two control transfer instructions. This is the easiest 
method, and the only method if you don't know where DWORD boundaries are because 
your segment is not DWORD aligned or because the code keeps moving up and down 
as you make changes in the preceding code. 

 
There is a penalty when the first instruction pair following the target label of a call contains 
another call instruction or if a return follows immediately after another return.  
 
The penalty for chained calls only occurs when the same subroutines are called from more 
than one location. Chained returns always have a penalty. There is sometimes a small stall 
for a jump after a call, but no penalty for return after call; call after return; jump, call, or 
return after jump; or jump after return.  
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Chained jumps on PPro, P2 and P3 

A jump, call, or return cannot be executed in the first clock cycle after a previous jump, call, 
or return on the PPro, P2 and P3. Therefore, chained jumps will take two clock cycles for 
each jump, and you may want to make sure that the processor has something else to do in 
parallel. For the same reason, a loop will take at least two clock cycles per iteration on these 
processors. 

Chained jumps on P4, P4E and PM 

The retirement station can handle only one taken jump, call or return per clock cycle, and 
only in the first of the three retirement slots. Therefore, preferably, no more than every third 
µop should be a jump. 

Chained jumps on AMD 

Taken jumps have a throughput of one jump per two clock cycles. It is delayed another 
clock cycle if there is a 16-byte boundary shortly after the jump target. Not taken branches 
have a throughput of three per clock cycle. Avoid a one-byte return instruction immediately 
after a branch instruction. 
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4 Intel Pentium 1 and Pentium MMX pipeline 
The P1 and PMMX processors cannot do out-of-order processing. But they can execute two 
consecutive instructions simultaneously by an instruction pairing mechanism described 
below. 

4.1 Pairing integer instructions  

Perfect pairing  

The P1 and PMMX have two pipelines for executing instructions, called the U-pipe and the 
V-pipe. Under certain conditions it is possible to execute two instructions simultaneously, 
one in the U-pipe and one in the V-pipe. This can almost double the speed. It is therefore 
advantageous to reorder the instructions to make them pair.  
 
The following instructions are pairable in either pipe: 

• MOV register, memory, or immediate into register or memory 

• PUSH register or immediate, POP register 

• LEA, NOP 

• INC, DEC, ADD, SUB, CMP, AND, OR, XOR, 

• and some forms of TEST (See manual 4: "Instruction tables"). 

 
The following instructions are pairable in the U-pipe only: 

• ADC, SBB 

• SHR, SAR, SHL, SAL with immediate count 

• ROR, ROL, RCR, RCL with an immediate count of 1 

 
The following instructions can execute in either pipe but are only pairable when in the V-
pipe: 

• near call 

• short and near jump 

• short and near conditional jump. 
 
All other integer instructions can execute in the U-pipe only, and are not pairable. 
 
Two consecutive instructions will pair when the following conditions are met: 
 
1.  The first instruction is pairable in the U-pipe and the second instruction is pairable in the 
V-pipe. 
 
2.  The second instruction does not read or write a register which the first instruction writes 
to. 
 
Examples: 
 

; Example 4.1a. P1/PMMX pairing rules 

mov eax, ebx / mov ecx, eax     ; Read after write, do not pair 

mov eax, 1   / mov eax, 2       ; Write after write, do not pair 

mov ebx, eax / mov eax, 2       ; Write after read, pair ok 

mov ebx, eax / mov ecx, eax     ; Read after read, pair ok 

mov ebx, eax / inc eax          ; Read and write after read, pair ok 

 
3.  In rule 2, partial registers are treated as full registers. Example: 
 

; Example 4.1b. P1/PMMX pairing rules 

mov al, bl  /  mov ah, 0 

 
writes to different parts of the same register, do not pair. 
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4.  Two instructions which both write to parts of the flags register can pair despite rule 2  
and 3. Example: 
 

; Example 4.1c. P1/PMMX pairing rules 

shr eax, 4 / inc ebx            ; pair OK 

 
5. An instruction that writes to the flags can pair with a conditional jump despite rule 2. 
Example: 
 

; Example 4.1d. P1/PMMX pairing rules 

cmp eax, 2 / ja LabelBigger     ; pair OK 

 
6. The following instruction combinations can pair despite the fact that they both modify the 
stack pointer: 
 

; Example 4.1e. P1/PMMX pairing rules 

push + push,  push + call,  pop + pop 

 
7. There are restrictions on the pairing of instructions with prefixes. Many instructions which 
were not implemented on the 8086 processor have a two-byte opcode where the first byte is 
0FH. The 0FH byte behaves as a prefix on the P1. On PMMX and later processors the 0FH 

byte behaves as part of the opcode. The most common instructions with 0FH prefix are: 

MOVZX, MOVSX, PUSH FS, POP FS, PUSH GS, POP GS, LFS, LGS, LSS, SETcc, BT, BTC, 

BTR, BTS, BSF, BSR, SHLD, SHRD, and IMUL with two operands and no immediate operand. 

 
On the P1, a prefixed instruction can execute only in the U-pipe, except for conditional near 
jumps. 
 
On the PMMX, instructions with operand size or address size prefix can execute in either 
pipe, whereas instructions with segment, repeat, or lock prefix can execute only in the U-
pipe. 
 
8.  An instruction which has both a displacement and immediate data is not pairable on the 
P1 and only pairable in the U-pipe on the PMMX: 
 

; Example 4.1f. P1/PMMX pairing rules 

mov dword [ds:1000], 0    ; Not pairable or only in u-pipe 

cmp byte [ebx+8], 1       ; Not pairable or only in u-pipe 

cmp byte [ebx], 1         ; Pairable 

cmp byte [ebx+8], al      ; Pairable 

 
Another problem with instructions which have both a displacement and immediate data on 
the PMMX is that such instructions may be longer than 7 bytes, which means that only one 
instruction can be decoded per clock cycle.  
 
9.  Both instructions must be preloaded and decoded. This will not happen on the P1 unless 
the first instruction is only one byte long. 
 
10. There are special pairing rules for MMX instructions on the PMMX: 
 

• MMX shift, pack or unpack instructions can execute in either pipe but cannot pair with 
other MMX shift, pack or unpack instructions. 
 

• MMX multiply instructions can execute in either pipe but cannot pair with other MMX 
multiply instructions. They take 3 clock cycles and the last 2 clock cycles can overlap 
with subsequent instructions in the same way as floating point instructions can (see 
page 47). 
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• an MMX instruction that accesses memory or integer registers can execute only in the 
U-pipe and cannot pair with a non-MMX instruction. 

Imperfect pairing  

There are situations where the two instructions in a pair will not execute simultaneously, or 
only partially overlap in time. They should still be considered a pair, though, because the 
first instruction executes in the U-pipe, and the second in the V-pipe. No subsequent 
instruction can start to execute before both instructions in the imperfect pair have finished.  
 
Imperfect pairing will happen in the following cases: 
 
1.  If the second instruction suffers an AGI stall (see page 45). 
 
2. Two instructions cannot access the same DWORD of memory simultaneously. 
The following examples assume that ESI is divisible by 4: 

 
; Example 4.2a. P1/PMMX imperfect pairing 

mov al, [esi] / mov bl, [esi+1] 

 
The two operands are within the same DWORD, so they cannot execute simultaneously. 
The pair takes 2 clock cycles. 
 

; Example 4.2b. P1/PMMX perfect pairing 

mov al, [esi+3] / mov bl, [esi+4] 

 
Here the two operands are on each side of a DWORD boundary, so they pair perfectly, and 
take only one clock cycle. 
 
3. The preceding rule is extended to the case where bits 2 - 4 are the same in the two 
addresses (cache line conflict). For DWORD addresses this means that the difference 
between the two addresses should not be divisible by 32. 
 
Pairable integer instructions, which do not access memory, take one clock cycle to execute, 
except for mispredicted jumps. MOV instructions to or from memory also take only one clock 
cycle if the data area is in the cache and properly aligned. There is no speed penalty for 
using complex addressing modes such as scaled index registers. 
 
A pairable integer instruction that reads from memory, does some calculation, and stores 
the result in a register or flags, takes 2 clock cycles. (read/modify instructions). 
 
A pairable integer instruction that reads from memory, does some calculation, and writes 
the result back to the memory, takes 3 clock cycles. (read/modify/write instructions). 
 
4. If a read/modify/write instruction is paired with a read/modify or read/modify/write 
instruction, then they will pair imperfectly. 
 
The number of clock cycles used is given in the following table: 
 

First instruction Second instruction 

 MOV or register 
only 

read/modify read/modify/write 

MOV or register only 1 2 3 

read/modify 2 2 3 

read/modify/write 3 4 5 

Table 4.1. Pairing complex instructions 

 
Examples: 
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; Example 4.3. P1/PMMX pairing complex instructions 

add [mem1], eax / add ebx, [mem2] ; 4 clock cycles 

add ebx, [mem2] / add [mem1], eax ; 3 clock cycles 

 
5. When two paired instructions both take extra time due to cache misses, misalignment, or 
jump misprediction, then the pair will take more time than each instruction, but less than the 
sum of the two. 
 
6. A pairable floating point instruction followed by FXCH will make imperfect pairing if the 

next instruction is not a floating point instruction. 
 
In order to avoid imperfect pairing you have to know which instructions go into the U-pipe, 
and which to the V-pipe. You can find out this by looking backwards in your code and 
search for instructions which are unpairable, pairable only in one of the pipes, or cannot pair 
due to one of the rules above. 
 
Imperfect pairing can often be avoided by reordering instructions. Example: 
 

; Example 4.4. P1/PMMX reorder instructions to improve pairing 

L1:     mov     eax,[esi] 

        mov     ebx,[esi] 

        inc     ecx 

 
Here the two MOV instructions form an imperfect pair because they both access the same 

memory location, and the sequence takes 3 clock cycles. You can improve the code by 
reordering the instructions so that INC ECX pairs with one of the MOV instructions. 

 
; Example 4.5. P1/PMMX reorder instructions to improve pairing 

L2:     mov     eax,offset a 

        xor     ebx,ebx 

        inc     ebx 

        mov     ecx,[eax] 

        jmp     L1 

 
The pair INC EBX / MOV ECX,[EAX] is imperfect because the latter instruction has an AGI 

stall. The sequence takes 4 clocks. If you insert a NOP or any other instruction so that MOV 

ECX,[EAX] pairs with JMP L1 instead, then the sequence takes only 3 clocks. 

 
The next example is in 16-bit mode, assuming that SP is divisible by 4: 

 
; Example 4.6. P1/PMMX imperfect pairing, 16 bit mode 

L3:     push    ax 

        push    bx 

        push    cx 

        push    dx 

        call    Func 

 
Here the PUSH instructions form two imperfect pairs, because both operands in each pair go 

into the same DWORD of memory. PUSH BX could possibly pair perfectly with PUSH CX 

(because they go on each side of a DWORD boundary) but it doesn't because it has already 
been paired with PUSH AX. The sequence therefore takes 5 clocks. If you insert a NOP or 

any other instruction so that PUSH BX pairs with PUSH CX, and PUSH DX with CALL FUNC, 

then the sequence will take only 3 clocks. Another way to solve the problem is to make sure 
that SP is not divisible by 4. Knowing whether SP is divisible by 4 or not in 16-bit mode can 

be difficult, so the best way to avoid this problem is to use 32-bit mode. 
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4.2 Address generation interlock 

It takes one clock cycle to calculate the address needed by an instruction that accesses 
memory. Normally, this calculation is done at a separate stage in the pipeline while the 
preceding instruction or instruction pair is executing. But if the address depends on the 
result of an instruction executing in the preceding clock cycle, then we have to wait an extra 
clock cycle for the address to be calculated. This is called an AGI stall.  
 

; Example 4.7a. P1/PMMX AGI 

add ebx,4 

mov eax,[ebx] ; AGI stall 

 
The stall in this example can be removed by putting some other instructions in between 
these two, or by rewriting the code to:  
 

; Example 4.7b. P1/PMMX AGI removed 

mov eax,[ebx+4] 

add ebx,4 

 
You can also get an AGI stall with instructions that use ESP implicitly for addressing, such 

as PUSH, POP, CALL, and RET, if ESP has been changed in the preceding clock cycle by 

instructions such as MOV, ADD, or SUB. The P1 and PMMX have special circuitry to predict 

the value of ESP after a stack operation so that you do not get an AGI delay after changing 

ESP with PUSH, POP, or CALL. You can get an AGI stall after RET only if it has an immediate 

operand to add to ESP. Examples: 

 
; Example 4.8. P1/PMMX AGI 

add esp,4 / pop esi            ; AGI stall 

pop eax   / pop esi            ; no stall, pair 

mov esp,ebp / ret              ; AGI stall 

call F1 / F1: mov eax,[esp+8]  ; no stall 

ret / pop eax                  ; no stall 

ret 8 / pop eax                ; AGI stall 

 
The LEA instruction is also subject to an AGI stall if it uses a base or index register that has 

been changed in the preceding clock cycle. Example: 
 

; Example 4.9. P1/PMMX AGI 

inc esi / lea eax,[ebx+4*esi]  ; AGI stall 

 
PPro, P2 and P3 have no AGI stalls for memory reads and LEA, but they do have AGI stalls 

for memory writes. This is not very significant unless the subsequent code has to wait for 
the write to finish. 
 

4.3 Splitting complex instructions into simpler ones 

You may split up read/modify and read/modify/write instructions to improve pairing. 
Example: 
 

; Example 4.10a. P1/PMMX Imperfect pairing 

add [mem1],eax 

add [mem2],ebx 

 
This code may be split up into a sequence that reduces the clock count from 5 to 3 clock 
cycles: 
 

; Example 4.10b. P1/PMMX Imperfect pairing avoided 

mov ecx,[mem1] 

mov edx,[mem2] 

add ecx,eax 
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add edx,ebx 

mov [mem1],ecx 

mov [mem2],edx 

 
Likewise you may split up non-pairable instructions into pairable instructions: 
 

; Example 4.11a. P1/PMMX Non-pairable instructions 

push [mem1] 

push [mem2]      ; Non-pairable 

 
Split up into: 
 

; Example 4.11b. Split nonpairable instructions into pairable ones 

mov eax,[mem1] 

mov ebx,[mem2] 

push eax 

push ebx         ; Everything pairs 

 
Other examples of non-pairable instructions that may be split up into simpler pairable 
instructions: 
 
; Example 4.12. P1/PMMX Split non-pairable instructions 

CDQ split into: mov edx,eax / sar edx,31 

not eax change to xor eax,-1 

neg eax split into xor eax,-1 / inc eax 

movzx eax,byte [mem] split into xor eax,eax / mov al,byte [mem] 

jecxz L1 split into test ecx,ecx / jz L1 

loop L1 split into dec ecx, / jnz L1 

xlat change to mov al,[ebx+eax] 

 
If splitting instructions does not improve speed, then you may keep the complex or 
nonpairable instructions in order to reduce code size. Splitting instructions is not needed on 
later processors, except when the split instructions generate fewer µops. 
 

4.4 Prefixes  

An instruction with one or more prefixes may not be able to execute in the V-pipe and it may 
take more than one clock cycle to decode. 
 
On the P1, the decoding delay is one clock cycle for each prefix except for the 0FH prefix of 

conditional near jumps. 
 
The PMMX has no decoding delay for 0FH prefix. Segment and repeat prefixes take one 

clock extra to decode. Address and operand size prefixes take two clocks extra to decode. 
The PMMX can decode two instructions per clock cycle if the first instruction has a segment 
or repeat prefix or no prefix, and the second instruction has no prefix. Instructions with 
address or operand size prefixes can only decode alone on the PMMX. Instructions with 
more than one prefix take one clock extra for each prefix.  
 
Where prefixes are unavoidable, the decoding delay may be masked if a preceding 
instruction takes more than one clock cycle to execute. The rule for the P1 is that any 
instruction that takes N clock cycles to execute (not to decode) can 'overshadow' the 
decoding delay of N-1 prefixes in the next two (sometimes three) instructions or instruction 
pairs. In other words, each extra clock cycle that an instruction takes to execute can be 
used to decode one prefix in a later instruction. This shadowing effect even extends across 
a predicted branch. Any instruction that takes more than one clock cycle to execute, and 
any instruction that is delayed because of an AGI stall, cache miss, misalignment, or any 
other reason except decoding delay and branch misprediction, has such a shadowing effect.  
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The PMMX has a similar shadowing effect, but the mechanism is different. Decoded 
instructions are stored in a transparent first-in-first-out (FIFO) buffer, which can hold up to 
four instructions. As long as there are instructions in the FIFO buffer you get no delay. 
When the buffer is empty then instructions are executed as soon as they are decoded. The 
buffer is filled when instructions are decoded faster than they are executed, i.e. when you 
have unpaired or multi-cycle instructions. The FIFO buffer is emptied when instructions 
execute faster than they are decoded, i.e. when you have decoding delays due to prefixes. 
The FIFO buffer is empty after a mispredicted branch. The FIFO buffer can receive two 
instructions per clock cycle provided that the second instruction is without prefixes and none 
of the instructions are longer than 7 bytes. The two execution pipelines (U and V) can each 
receive one instruction per clock cycle from the FIFO buffer. Examples: 
 

; Example 4.13. P1/PMMX Overshadow prefix decoding delay 

cld 

rep movsd 

 
The CLD instruction takes two clock cycles and can therefore overshadow the decoding 

delay of the REP prefix. The code would take one clock cycle more if the CLD instruction 

were placed far from the REP MOVSD. 

 
; Example 4.14. P1 Overshadow prefix decoding delay 

cmp dword [ebx],0 

mov eax,0 

setnz al  

 
The CMP instruction takes two clock cycles here because it is a read/modify instruction. The 

0FH prefix of the SETNZ instruction is decoded during the second clock cycle of the CMP 

instruction, so that the decoding delay is hidden on the P1 (The PMMX has no decoding 
delay for the 0FH).  

 

4.5 Scheduling floating point code  

Floating point instructions cannot pair the way integer instructions can, except for one 
special case, defined by the following rules: 
 

• The first instruction (executing in the U-pipe) must be FLD, FADD, FSUB, FMUL, FDIV, 

FCOM, FCHS, or FABS. 

 

• The second instruction (in V-pipe) must be FXCH. 

 

• The instruction following the FXCH must be a floating point instruction, otherwise the 

FXCH will pair imperfectly and take an extra clock cycle. 

 
This special pairing is important, as will be explained shortly. 
 
While floating point instructions in general cannot be paired, many can be pipelined, i.e. one 
instruction can begin before the previous instruction has finished. Example: 
 

; Example 4.15. Pipelined floating point instructions 

    fadd st1,st0   ; Clock cycle 1-3 

    fadd st2,st0   ; Clock cycle 2-4 

    fadd st3,st0   ; Clock cycle 3-5 

    fadd st4,st0   ; Clock cycle 4-6 

 
Obviously, two instructions cannot overlap if the second instruction needs the result of the 
first one. Since almost all floating point instructions involve the top of stack register, ST0, 
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there are seemingly not very many possibilities for making an instruction independent of the 
result of previous instructions. The solution to this problem is register renaming. The FXCH 

instruction does not in reality swap the contents of two registers; it only swaps their names. 
Instructions that push or pop the register stack also work by renaming. Floating point 
register renaming has been highly optimized on the Pentiums so that a register may be 
renamed while in use. Register renaming never causes stalls - it is even possible to rename 
a register more than once in the same clock cycle, as for example when FLD or FCOMPP is 

paired with FXCH.  

 
By the proper use of FXCH instructions you may obtain a lot of overlapping in your floating 

point code. All versions of the instructions FADD, FSUB, FMUL, and FILD take 3 clock cycles 

and are able to overlap, so that these instructions may be scheduled. Using a memory 
operand does not take more time than a register operand if the memory operand is in the 
level 1 cache and properly aligned.  
 
By now you must be used to rules having exceptions, and the overlapping rule is no 
exception: You cannot start an FMUL instruction one clock cycle after another FMUL 

instruction, because the FMUL circuitry is not perfectly pipelined. It is recommended that you 

put another instruction in between two FMUL's. Example: 

 
; Example 4.16a. Floating point code with stalls 

    fld    qword [a1]    ; Clock cycle 1 

    fld    qword [b1]    ; Clock cycle 2 

    fld    qword [c1]    ; Clock cycle 3 

    fxch   st2           ; Clock cycle 3 

    fmul   qword [a2]    ; Clock cycle 4-6 

    fxch   st1           ; Clock cycle 4 

    fmul   qword [b2]    ; Clock cycle 5-7    (stall) 

    fxch   st2           ; Clock cycle 5 

    fmul   qword [c2]    ; Clock cycle 7-9    (stall) 

    fxch   st1           ; Clock cycle 7 

    fstp   qword [a3]    ; Clock cycle 8-9 

    fxch   st1           ; Clock cycle 10     (unpaired) 

    fstp   qword [b3]    ; Clock cycle 11-12 

    fstp   qword [c3]    ; Clock cycle 13-14 

 
Here you have a stall before FMUL [b2] and before FMUL [c2] because another FMUL 

started in the preceding clock cycle. You can improve this code by putting FLD instructions 

in between the FMUL's: 

 
; Example 4.16b. Floating point stalls filled with other instructions 

    fld    qword [a1]    ; Clock cycle 1 

    fmul   qword [a2]    ; Clock cycle 2-4 

    fld    qword [b1]    ; Clock cycle 3 

    fmul   qword [b2]    ; Clock cycle 4-6 

    fld    qword [c1]    ; Clock cycle 5 

    fmul   qword [c2]    ; Clock cycle 6-8 

    fxch   st2           ; Clock cycle 6 

    fstp   qword [a3]    ; Clock cycle 7-8 

    fstp   qword [b3]    ; Clock cycle 9-10 

    fstp   qword [c3]    ; Clock cycle 11-12 

 
In other cases you may put FADD, FSUB, or anything else in between FMUL's to avoid the 

stalls. 
 
Not all floating point instructions can overlap. And some floating point instructions can 
overlap more subsequent integer instructions than subsequent floating point instructions. 
The FDIV instruction, for example, takes 39 clock cycles. All but the first clock cycle can 

overlap with integer instructions, but only the last two clock cycles can overlap with floating 
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point instructions. A complete listing of floating point instructions, and what they can pair or 
overlap with, is given in manual 4: "Instruction tables". 
 
There is no penalty for using a memory operand on floating point instructions because the 
arithmetic unit is one stage later in the pipeline than the read unit. The tradeoff of this comes 
when a floating point value is stored to memory. The FST or FSTP instruction with a memory 

operand takes two clock cycles in the execution stage, but it needs the data one clock 
earlier so you will get a one-clock stall if the value to store is not ready one clock cycle in 
advance. This is analogous to an AGI stall. In many cases you cannot hide this type of stall 
without scheduling the floating point code into four threads or putting some integer 
instructions in between. The two clock cycles in the execution stage of the FST(P) 

instruction cannot pair or overlap with any subsequent instructions.  
 
Instructions with integer operands such as FIADD, FISUB, FIMUL, FIDIV, FICOM may be 

split up into simpler operations in order to improve overlapping. Example: 
 

; Example 4.17a. Floating point code with integer operands 

fild  dword [a] 

fimul dword [b] 

 
Split up into: 
 

; Example 4.17b. Overlapping integer operations 

fild dword [a] 

fild dword [b] 

fmul 

 
In this example, we save two clocks by overlapping the two FILD instructions. 
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5 Intel Pentium 4 (NetBurst) pipeline 
The Intel P4, which was introduced in 2000, and the later variant P4E were based on the 
so-called NetBurst microarchitecture, which was very different from the design of previous 
Intel processors. This architecture has turned out to be less efficient than expected and is 
no longer used in new designs. 
 
The primary design goal of the NetBurst microarchitecture was to obtain the highest 
possible clock frequency. This can only be achieved by making the pipeline longer. The 6'th 
generation microprocessors PPro, P2 and P3 (see next chapter) have a pipeline of ten 
stages. The PM, which is an improvement of the same design, has approximately 13 
stages. The 7'th generation microprocessor P4 has a 20 stage pipeline, and the P4E has 
even a few stages more. Some of the stages are just for moving data from one part of the 
chip to another. 
 
An important difference from previous processors was that the code cache was replaced by 
a trace cache which contained decoded µops rather than instructions. The advantage of a 
trace cache is that the decoding bottleneck is removed and the design can use RISC 
technology. The disadvantage is that the information in the trace cache is less compact and 
takes up more chip space. 
 
The out-of-order core in P4 is similar to the PPro design, but bigger. The reorder buffer can 
contain 126 µops in process. There is no limitation on register reads and renamings, but the 
maximum throughput is still limited to 3 µops per clock cycle, and the limitations in the 
retirement station are the same as in the PPro. 
 

5.1 Data cache 

The on-chip level-2 cache is used for both code and data. The size of the level-2 cache 
ranges from 256 kb to 2 MB for different models. The level-2 cache is organized as 8 ways, 
64 bytes per line. It runs at full speed with a 256 bits wide data bus to the central processor, 
and is quite efficient. 
 
The level-1 data cache is 8 or 16 kb, 8 ways, 64 bytes per line. The relatively small size of 
the level-1 data cache is compensated for by the fast access to the level-2 cache. The level-
1 data cache uses a  write-through mechanism rather than write-back. This reduces the 
write bandwidth. 
 
The level-1 code cache is a trace cache, as explained below. 

5.2 Trace cache 

Instructions are stored in the trace cache after being decoded into µops. Rather than storing 
instruction opcodes in a level-1 cache, it stores decoded µops. One important reason for 
this is that the decoding stage was a bottleneck on earlier processors. An opcode can have 
any length from 1 to 15 bytes. It is quite complicated to determine the length of an 
instruction opcode; and we have to know the length of the first opcode in order to know 
where the second opcode begins. Therefore, it is difficult to determine opcode lengths in 
parallel. The 6'th generation microprocessors could decode three instructions per clock 
cycle. This may be more difficult at higher clock speeds. If µops all have the same size, then 
the processor can handle them in parallel, and the bottleneck disappears. This is the 
principle of RISC processors. Caching µops rather than opcodes enables the P4 and P4E to 
use RISC technology on a CISC instruction set. A trace in the trace cache is a string of µops 
that are executed in sequence, even if they are not sequential in the original code. The 
advantage of this is that the number of clock cycles spent on jumping around in the cache is 
minimized. This is a second reason for using a trace cache. 
 
The µops take more space than opcodes on average. The following table shows the size of 
each trace cache entry: 
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Processor instruction 
encoding, 

bits 

immediate 
data or 

address, 
bits 

address 
tag, bits 

total bits 
per entry 

number of 
lines 

entries 
per line 

total 
entries 

P4 21 16 16 53 2048 6 12k 

P4E 16 32 16 64 2048 6 12k 
Table 5.1. Number of bits per trace cache entry and number of entries in trace cache. 
(These numbers are approximate and speculative. See www.chip-architect.com 2003-04-20) 

 
The trace cache is organized as 2048 lines of 6 entries each, 8-way set-associative. The 
trace cache runs at half clock speed, delivering up to 6 µops every two clock cycles. 

Economizing trace cache use on P4 

On the P4, 16 of the bits in each entry are reserved for data. This means that a µop that 
requires more than 16 bits of data storage must use two entries. You can calculate whether 
a µop uses one or two trace cache entries by the following rules, which have been obtained 
experimentally. 
 

1. A µop with no immediate data and no memory operand uses only one trace cache 
entry. 
 

2. A µop with an 8-bit or 16-bit immediate operand uses one trace cache entry. 
 

3. A µop with a 32-bit immediate operand in the interval from -32768 to +32767 uses 
one trace cache entry. The immediate operand is stored as a 16-bit signed integer. If 
an opcode contains a 32-bit constant, then the decoder will investigate if this 
constant is within the interval that allows it to be represented as a 16-bit signed 
integer. If this is the case, then the µop can be contained in a single trace cache 
entry. 
 

4. If a µop has an immediate 32-bit operand outside the ±215 interval so that it cannot 
be represented as a 16-bit signed integer, then it will use two trace cache entries 
unless it can borrow storage space from a nearby µop. 
 

5. A µop in need of extra storage space can borrow 16 bits of extra storage space from 
a nearby µop that doesn't need its own data space. Almost any µop that has no 
immediate operand and no memory operand will have an empty 16-bit data space 
for other µops to borrow. A µop that requires extra storage space can borrow space 
from the next µop as well as from any of the preceding 3 - 5 µops (5 if it is not 
number 2 or 3 in a trace cache line), even if they are not in the same trace cache 
line. A µop cannot borrow space from a preceding µop if any µop between the two is 
double size or has borrowed space. Space is preferentially borrowed from preceding 
rather than subsequent µops. 
 

6. The displacement of a near jump, call or conditional jump is stored as a 16-bit signed 
integer, if possible. An extra trace cache entry is used if the displacement is outside 
the ±215 range and no extra storage space can be borrowed according to rule 5 
(Displacements outside this range are rare). 
 

7. A memory load or store µop will store the address or displacement as a 16-bit 
integer, if possible. This integer is signed if there is a base or index register, 
otherwise unsigned. Extra storage space is needed if a direct address is ≥ 216 or an 
indirect address (i.e. with one or two pointer registers) has a displacement outside 
the ±215 interval. 
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8. Memory load µops can not borrow extra storage space from other µops. If 16 bits of 
storage is insufficient then an extra trace cache entry will be used, regardless of 
borrowing opportunities. 
 

9. Most memory store instructions generate two µops: The first µop, which goes to port 
3, calculates the memory address. The second µop, which goes to port 0, transfers 
the data from the source operand to the memory location calculated by the first µop. 
The first µop can always borrow storage space from the second µop. This space 
cannot be borrowed to any other µop, even if it is empty. 
 

10. Store operations with an 8, 16, or 32-bit register as source, and no SIB byte, can be 
contained in a single µop. These µops can borrow storage space from other µops, 
according to rule 5 above. 
 

11. Segment prefixes do not require extra storage space. 
 

12. A µop cannot have both a memory operand and an immediate operand. An 
instruction that contains both will be split into two or more µops. No µop can use 
more than two trace cache entries. 
 

13. A µop that requires two trace cache entries cannot cross a trace cache line 
boundary. If a double-space µop would cross a 6-entry boundary in the trace cache 
then an empty space will be inserted and the µop will use the first two entries of the 
next trace cache line. 

 
The difference between load and store operations needs an explanation. My theory is as 
follows: No µop can have more than two input dependences (not including segment 
registers). Any instruction that has more than two input dependences needs to be split up 
into two or more µops. Examples are ADC and CMOVcc. A store instruction like  MOV 

[ESI+EDI],EAX  also has three input dependences. It is therefore split up into two µops. 

The first µop calculates the address [ESI+EDI], the second µop stores the value of EAX to 

the calculated address. In order to optimize the most common store instructions, a single-
µop version has been implemented to handle the situations where there is no more than 
one pointer register. The decoder makes the distinction by seeing if there is a SIB byte in 
the address field of the instruction. A SIB byte is needed if there is more than one pointer 
register, or a scaled index register, or ESP as base pointer. Load instructions, on the other 

hand, can never have more than two input dependences. Therefore, load instructions are 
implemented as single-µop instructions in the most common cases. The load µops need to 
contain more information than the store µops. In addition to the type and number of the 
destination register, it needs to store any segment prefix, base pointer, index pointer, scale 
factor, and displacement. The size of the trace cache entries has probably been chosen to 
be exactly enough to contain this information. Allocating a few more bits for the load µop to 
indicate where it is borrowing storage space from would mean that all trace cache entries 
would have a bigger size. Given the physical constraints on the trace cache, this would 
mean fewer entries. This is probably the reason why memory load µops cannot borrow 
storage space. The store instructions do not have this problem because the necessary 
information is already split up between two µops unless there is no SIB byte, and hence less 
information to contain. 
 
The following examples will illustrate the rules for trace cache use (P4 only): 
 

; Example 5.1. P4 trace cache use 
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add eax,10000   ; The constant 10000 uses 32 bits in the opcode, but 

                ; can be contained in 16 bits in uop. uses 1 space. 

add ebx,40000   ; The constant is bigger than 215, but it can borrow 

                ; storage space from the next uop. 

add ebx,ecx     ; Uses 1 space. gives storage space to preceding uop. 

mov eax,[mem1]  ; Requires 2 spaces, assuming that address ≥ 216; 

                    ; preceding borrowing space is already used. 

mov eax,[esi+4] ; Requires 1 space. 

mov [si],ax                 ; Requires 1 space. 

mov ax,[si]                 ; Requires 2 uops taking one space each. 

movzx eax, word [si]        ; Requires 1 space. 

movdqa xmm1,es:[esi+100h]   ; Requires 1 space. 

fld qword [es:ebp+8*edx+16] ; Requires 1 space. 

mov [ebp+4], ebx            ; Requires 1 space. 

mov [esp+4], ebx            ; Requires 2 uops because sib byte needed. 

fstp dword [mem2]           ; Requires 2 uops. the first uop borrows 

                            ; space from the second one. 

 

No further data compression is used in the trace cache besides the methods mentioned 
above. A program that has a lot of direct memory addresses will typically use two trace 
cache entries for each data access, even if all memory addresses are within the same 
narrow range. In a flat memory model, the address of a direct memory operand uses 32 bits 
in the opcode. The assembler listing will typically show addresses lower than 216, but these 
addresses are relocated twice before the microprocessor sees them. The first relocation is 
done by the linker; the second relocation is done by the loader when the program is loaded 
into memory. When a flat memory model is used, the loader will typically place the entire 
program at a virtual address space beginning at a value > 216. You may save space in the 
trace cache by accessing data through pointers. In high-level languages like C++, local data 
are always saved on the stack and accessed through pointers. Direct addressing of global 
and static data can be avoided by using classes and member functions. Similar methods 
may be applied in assembly programs. 
 
You can prevent double-size µops from crossing 6-entry boundaries by scheduling them so 
that there is an even number (including 0) of single-size µops between any two double-size 
µops (A long, continuous 2-1-2-1 pattern will also do). Example: 
 

; Example 5.2a. P4 trace cache double entries 

mov eax, [mem1]   ; 1 uop, 2 TC entries 

add eax, 1        ; 1 uop, 1 TC entry 

mov ebx, [mem2]   ; 1 uop, 2 TC entries 

mov [mem3], eax   ; 1 uop, 2 TC entries 

add ebx, 1        ; 1 uop, 1 TC entry 

 

If we assume, for example, that the first µop here starts at 6-entry boundary, then the MOV 

[MEM3],EAX µop will cross the next 6-entry boundary at the cost of an empty entry. This 

can be prevented by re-arranging the code: 
 

; Example 5.2b. P4 trace cache double entries rearranged 

mov eax, [mem1]   ; 1 uop, 2 TC entries 

mov ebx, [mem2]   ; 1 uop, 2 TC entries 

add eax, 1        ; 1 uop, 1 TC entry 

add ebx, 1        ; 1 uop, 1 TC entry 

mov [mem3], eax   ; 1 uop, 2 TC entries 

 
We cannot know whether the first two µops are crossing any 6-entry boundary as long as 
we haven't looked at the preceding code, but we can be certain that the MOV [MEM3],EAX  

µop will not cross a boundary, because the second entry of the first µop cannot be the first 
entry in a trace cache line. If a long code sequence is arranged so that there is never an 
odd number of single-size µops between any two double-size µops then we will not waste 
any trace cache entries. The preceding two examples assume that direct memory operands 
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are bigger than 216, which is usually the case. For the sake of simplicity, I have used only 
instructions that generate 1 µop each in these examples. For instructions that generate 
more than one µop, you have to consider each µop separately. 

Trace cache use on P4E 

The trace cache entries on the P4E need to be bigger than on the P4 because the 
processor can run in 64 bit mode. This simplifies the design considerably. The need for 
borrowing storage space from neighboring entries has been completely eliminated. Each 
entry has 32 bits for immediate data, which is sufficient for all µops in 32 bit mode. Only a 
few instructions in 64 bit mode can have 64 bits of immediate data or address, and these 
instructions are split into two or three µops which contain no more than 32 data bits each. 
Consequently, each µop uses one, and only one, trace cache entry. 

Trace cache delivery rate 

The trace cache runs at half clock speed, delivering one trace cache line with six entries 
every two clock cycles. This corresponds to a maximum throughput of three µops per clock 
cycle. 
 
The typical delivery rate may be slightly lower on P4 because some µops use two entries 
and some entries may be lost when a two-entry µop crosses a trace cache line boundary. 
 
The throughput on P4E has been measured to exactly 8/3 or 2.667 µops per clock cycle. I 
have found no explanation why a throughput of 3 µops per clock cannot be obtained on 
P4E. It may be due to a bottleneck elsewhere in the pipeline. 

Branches in the trace cache 

The µops in the trace cache are not stored in the same order as the original code. If a 
branching µop jumps most of the time, then the traces will usually be organized so that the 
jumping µop is followed by the µops jumped to, rather than the µops that follows it in the 
original code. This reduces the number of jumps between traces. The same sequence of 
µops can appear more than once in the trace cache if it is jumped to from different places. 
 
Sometimes it is possible to control which of the two branches are stored after a branching 
µop by using branch hint prefixes (see page 38), but my experiments have shown no 
consistent advantage of doing so. Even in the cases where there is an advantage by using 
branch hint prefixes, this effect does not last very long because the traces are rearranged 
quite often to fit the behavior of the branch µops. You can therefore assume that traces are 
usually organized according to the way branches go most often. 
 
The µop delivery rate is usually less than the maximum if the code contains many jumps, 
calls and branches. If a branch is not the last entry in a trace cache line and the branch 
goes to another trace stored elsewhere in the trace cache, then the rest of the entries in the 
trace cache line are loaded for no use. This reduces the throughput. There is no loss if the 
branching µop is the last µop in a trace cache line. In theory, it might be possible to organize 
code so that branch µops appear in the end of trace cache lines in order to avoid losses. 
But attempts to do so are rarely successful because it is almost impossible to predict where 
each trace begins. Sometimes, a small loop containing branches can be improved by 
organizing it so that each branch contains a number of trace cache entries divisible by the 
line size (six). A number of trace cache entries that is slightly less than a multiple of the line 
size is better than a number slightly more than a multiple of the line size. 
 
Obviously, these considerations are only relevant if the throughput is not limited by any 
other bottleneck in the execution units, and the branches are predictable. 

Guidelines for improving trace cache performance 

The following guidelines can improve performance on the P4 if the delivery of µops from the 
trace cache is a bottleneck: 



 55 

 
1. Prefer instructions that generate few µops. 

 
2. Replace branch instructions by conditional moves if this does not imply extra 

dependences. 
 

3. Keep immediate operands in the range between -215 and +215 if possible. If a µop 
has an immediate 32-bit operand outside this range, then you should preferably 
have a µop with no immediate operand and no memory operand before or 
immediately after the µop with the big operand. 
 

4. Avoid direct memory addresses. The performance can be improved by using 
pointers if the same pointer can be used repeatedly and the addresses are within 
±215 of the pointer register. 
 

5. Avoid having an odd number of single-size µops between any two double-size µops. 
Instructions that generate double-size µops include memory loads with direct 
memory operands, and other µops with an unmet need for extra storage space. 

 
Only the first two of these guidelines are relevant to the P4E. 
 

5.3 Instruction decoding 

Instructions that are not in the trace cache will go directly from the instruction decoder to the 
execution pipeline. In this case, the maximum throughput is determined by the instruction 
decoder. 
 
In most cases, the decoder generates 1 - 4 µops for each instruction. For complex 
instructions that require more than 4 µops, the µops are submitted from microcode ROM. 
The tables in manual 4: "Instruction tables" list the number of decoder µops and microcode 
µops that each instruction generates. 
 
The decoder can handle instructions at a maximum rate of one instruction per clock cycle. 
There are a few cases where the decoding of an instruction takes more than one clock 
cycle: 
 
An instruction that generates micro-code may take more than one clock cycle to decode, 
sometimes much more. The following instructions, which may in some cases generate 
micro-code, do not take significantly more time to decode: moves to and from segment 
registers, ADC, SBB, IMUL, MUL, MOVDQU, MOVUPS, MOVUPD. 

 
Instructions with many prefixes take extra time to decode. The instruction decoder on P4 
can handle one prefix per clock cycle. An instruction with more than one prefix will thus take 
one clock cycle for each prefix to decode on the P4. Instructions with more than one prefix 
are rare in a 32-bit flat memory model where segment prefixes are not needed. 
 
The instruction decoder on P4E can handle two prefixes per clock cycle. Thus, an 
instruction with up to two prefixes can be decoded in a single clock cycle, while an 
instruction with three or four prefixes is decoded in two clock cycles. This capability was 
introduced in the P4E because instructions with two prefixes are common in 64 bit mode 
(e.g. operand size prefix and REX prefix). Instructions with more than two prefixes are very 
rare because segment prefixes are rarely used in 64 bit mode. 
 
Decoding time is not important for small loops that fit entirely into the trace cache. If the 
critical part of the code is too big for the trace cache, or scattered around in many small 
pieces, then the µops may go directly from the decoder to the execution pipeline, and the 
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decoding speed may be a bottleneck. The level-2 cache is so efficient that you can safely 
assume that it delivers code to the decoder at a sufficient speed. 
 
If it takes longer time to execute a piece of code than to decode it, then the trace may not 
stay in the trace cache. This has no negative influence on the performance, because the 
code can run directly from the decoder again next time it is executed, without delay. This 
mechanism tends to reserve the trace cache for the pieces of code that execute faster than 
they decode. I have not found out which algorithm the microprocessor uses to decide 
whether a piece of code should stay in the trace cache or not, but the algorithm seems to be 
rather conservative, rejecting code from the trace cache only in extreme cases. 
 

5.4 Execution units 

µops from the trace cache or from the decoder are queued when they are waiting to be 
executed. After register renaming and reordering, each µop goes through a port to an 
execution unit. Each execution unit has one or more subunits which are specialized for 
particular operations, such as addition or multiplication. The organization of ports, execution 
units, and subunits is outlined in the following two tables for the P4 and P4E, respectively. 
 

port execution 
unit 

subunit speed latency reciprocal 
throughput 

0 alu0 add, sub, mov double 0.5 0.5 

logic double 0.5 0.5 

store integer single 1 1 

branch single 1 1 

0 mov move and store 
fp, mmx, xmm 

single 6 1 

fxch single 0 1 

1 alu1 add, sub, mov double 0.5 0.5 

1 int misc. single   

borrows mmx shift single 4 1 

borrows fp mul single 14 > 4 

borrows fp div single 53 - 61 23 

1 fp fp add single 4 - 5 1 - 2 

fp mul single 6 - 7 2 

fp div single 23 - 69 23 - 69 

fp misc. single   

1 mmx mmx alu single 2 1 - 2 

mmx shift single 2 1 - 2 

mmx misc. single   

2 load all loads single  1 

3 store store address single  2 

Table 5.2. Execution units in P4 

 
 

port execution 
unit 

subunit speed latency reciprocal 
throughput 

0 alu0 add, sub, mov double 1 0.5 

logic double 1 0.5 

store integer single 1 1 

branch single 1 1 

0 mov move and store fp, 
mmx, xmm 

single 7 1 

fxch single 0 1 

1 alu1 add, sub, mov double 1 0.5 
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shift double 1 0.5 

multiply double 10 2.5 

1 int misc single   

borrows fp div single 63 - 96 34 

1 fp fp add single 5 - 6 1 - 2 

fp mul single 7 - 8 2 

fp div single 32 - 71 32 - 71 

fp misc. single   

1 mmx mmx alu single 2 1 - 2 

mmx shift single 2 1 - 2 

mmx misc. single   

2 load all loads single  1 

3 store store address single  2 

Table 5.3. Execution units in P4E 

 
Further explanation can be found in "Intel Pentium 4 and Intel Xeon Processor Optimization 
Reference Manual". The table above deviates slightly from diagrams in the Intel manual in 
order to account for various delays. 
 
A µop can be executed when the following conditions are met: 
 

• All operands for the µop are ready. 

• An appropriate execution port is ready. 

• An appropriate execution unit is ready. 

• An appropriate execution subunit is ready. 
 
Two of the execution units run at double clock speed. This is alu0 and alu1, which are used 
for integer operations. These units are highly optimized in order to execute the most 
common µops as fast as possible. The double clock speed enables these two units to 
receive a new µop every half clock cycle. An instruction like ADD EAX,EBX can execute in 

either of these two units. This means that the execution core can handle four integer 
additions per clock cycle. alu0 and alu1 are both pipelined in three stages. The lower half of 
the result (16 bits on P4, 32 bits on P4E) is calculated in the first half clock cycle, the upper 
half is calculated in the second half clock cycle, and the flags are calculated in the third half-
clock cycle. On the P4, the lower 16 bits are available to a subsequent µop already after a 
half clock cycle, so that the effective latency will appear to be only a half clock cycle. The 
double-speed execution units are designed to handle only the most common instructions in 
order to make them as small as possible. This is necessary for making the high speed 
possible. 
 
This so-called "staggered addition" in three pipeline stages in alu0 and alu1 is revealed in 
"The Microarchitecture of the Pentium 4 Processor", Intel Technology journal 2001. I haven't 
been able to confirm this experimentally, since there is no difference in latencies between 8-
bit, 16-bit, 32-bit and 64-bit additions. 
 
It is unknown whether the floating point and MMX units also use staggered addition, and at 
what speed. See page 59 for a discussion. 
 
The trace cache can submit approximately three µops per clock cycle to the queue. This 
sets a limit to the execution speed if all µops are of the type that can execute in alu0 and 
alu1. The throughput of four µops per clock cycle can thus only be obtained if µops have 
been queued during a preceding period of lower throughput (due to slow instructions or 
cache misses). My measurements show that a throughput of four µops per clock cycle can 
be obtained for a maximum of 11 consecutive clock cycles if the queue has been filled 
during a preceding period of lower throughput. 
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Each port can receive one µop for every whole clock tick. Port 0 and port 1 can each 
receive one additional µop at every half-clock tick, if the additional µop is destined for alu0 
or alu1. This means that if a code sequence consists of only µops that go to alu0 then the 
throughput is two µops per clock cycle. If the µops can go to either alu0 or alu1 then the 
throughput at this stage can be four µops per clock cycle. If all µops go to the single-speed 
execution units under port 1 then the throughput is limited to one µop per clock cycle. If all 
ports and units are used evenly, then the throughput at this stage may be as high as six 
µops per clock cycle. 
 
The single-speed execution units can each receive one µop per clock cycle. Some subunits 
have a lower throughput. For example, the FP-DIV subunit cannot start a new division 
before the preceding division is finished. Other subunits are perfectly pipelined. For 
example, a floating point addition may take 6 clock cycles, but the FP-ADD subunit can start 
a new FADD operation every clock cycle. In other words, if the first FADD operation goes 

from time T to T+6, then the second FADD can start at time T+1 and end at time T+7, and 

the third FADD goes from time T+2 to T+8, etc. Obviously, this is only possible if each FADD 

operation is independent of the results of the preceding ones. 
 
Details about µops, execution units, subunits, throughput and latencies are listed in manual 
4: "Instruction tables". The following examples will illustrate how to use this table for making 
time calculations. Timings are for P4E. 
 

; Example 5.3. P4E instruction latencies 

fadd st0, st1       ; 0 - 6 

fadd qword [esi]    ; 6 - 12 

  
The first FADD instruction has a latency of 6 clock cycles. If it starts at time T=0, it will be 

finished at time T=6. The second FADD depends on the result of the first one. Hence, the 

time is determined by the latency, not the throughput of the FP-ADD unit. The second 
addition will start at time T=6 and be finished at time T=12. The second FADD instruction 

generates an additional µop that loads the memory operand. Memory loads go to port 2, 
while floating point arithmetic operations go to port 1. The memory load µop can start at 
time T=0 simultaneously with the first FADD or perhaps even earlier. If the operand is in the 

level-1 or level-2 data cache then we can expect it to be ready before it is needed. 
 
The second example shows how to calculate throughput: 
 

; Example 5.4. P4E instruction throughput 

                      ; Clock cycle 

pmullw xmm1, xmm0     ; 0 - 7 

paddw  xmm2, xmm0     ; 1 - 3 

paddw  mm1,  mm0      ; 3 - 5 

paddw  xmm3, [esi]    ; 4 - 6 

 
The 128-bit packed multiplication has a latency of 7 and a reciprocal throughput of 2. The 
subsequent addition uses a different execution unit. It can therefore start as soon as port 1 
is vacant. The 128-bit packed additions have a reciprocal throughput of 2, while the 64-bit 
versions have a reciprocal throughput of 1. Reciprocal throughput is also called issue 
latency. A reciprocal throughput of 2 means that the second PADD can start 2 clocks after 

the first one. The second PADD operates on 64-bit registers, but uses the same execution 

subunit. It has a throughput of 1, which means that the third PADD can start one clock later. 

As in the previous example, the last instruction generates an additional memory load µop. 
As the memory load µop goes to port 0, while the other µops go to port 1, the memory load 
does not affect the throughput. None of the instructions in this example depend on the 
results of the preceding ones. Consequently, only the throughput matters, not the latency. 
We cannot know if the four instructions are executed in program order or they are 
reordered. However, reordering will not affect the overall throughput of the code sequence. 
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5.5 Do the floating point and MMX units run at half speed? 

Looking at the tables in manual 4: "Instruction tables", we notice that many of the latencies 
for 64-bit and 128-bit integer and floating point instructions are even numbers, especially for 
the P4. This has led to speculations that the MMX and FP execution units may be running at 
half clock speed. I have put up four different hypotheses in order to investigate this 
question: 

Hypothesis 1 

128-bit instructions are split into two 64-bit µops as in the P3. However, this hypothesis is 
not in accordance with the µop counts that can be measured with the performance monitor 
counters on the P4. 

Hypothesis 2 

We may assume that the P4 has two 64-bit MMX units working together at half speed. Each 
128-bit µop will use both units and take 2 clock cycles, as illustrated on fig 5.1. A 64-bit µop 
can use either of the two units so that independent 64-bit µops can execute at a throughput 
of one µop per clock cycle, assuming that the half-speed units can start at both odd and 
even clocks. Dependent 64-bit µops will have a latency of 2 clocks, as shown in fig 5.1. 
 

 
Figure 5.1 
 
The measured latencies and throughputs are in accordance with this hypothesis. In order to 
test this hypothesis, I have made an experiment with a series of alternating 128-bit and 64-
bit µops. Under hypothesis 2, it will be impossible for a 64-bit µop to overlap with a 128-bit 
µop, because the 128-bit µop uses both 64-bit units. A long sequence of n 128-bit µops 
alternating with n 64-bit µops should take 4·n clocks, as shown in figure 5.2. 
 

 
Figure 5.2 
 
However, my experiment shows that this sequence takes only 3·n clocks. (I have made the 
64-bit µops interdependent, so that they cannot overlap with each other). We therefore have 
to reject hypothesis 2. 

Hypothesis 3 

We may modify hypothesis 2 with the assumption that the internal data bus is only 64 bits 
wide, so that a 128-bit operand is transferred to the execution units in two clock cycles. If we 
still assume that there are two 64-bit execution units running at half speed, then the first 64-
bit unit can start at time T = 0 when the first half of the 128-bit operand arrives, while the 
second 64-bit unit will start one clock later, when the second half of the operand arrives (see 
figure 5.3). The first 64-bit unit will then be able to accept a new 64-bit operand at time T=2, 
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before the second 64-bit unit is finished with the second half of the 128-bit operand. If we 
have a sequence of alternating 128-bit and 64-bit µops, then the third µop, which is 128-bit, 
can start with its first half operand at time T=3, using the second 64-bit execution unit, while 
the second operand starts at T=4 using the first 64-bit execution unit. As figure 5.3 shows, 
this can explain the observation that a sequence of n 128-bit µops alternating with n 64-bit 
µops takes 3·n clocks. 
 

 
Figure 5.3 
 
The measured latency of simple 128-bit µops is not 3 clocks, but 2. In order to explain this, 
we have to look at how a dependency chain of 128-bit µops is executed. Figure 5.4 shows 
the execution of a chain of interdependent 128-bit µops. 
 

 
Figure 5.4 
 
The first µop handles the first half of its operand from time T = 0 to 2, while the second half 
of the operand is handled from time T = 1 to time 3. The second µop can start to handle its 
first half operand already at time T = 2, even though the second half operand is not ready 
until time T = 3. A sequence of n interdependent 128-bit µops of this kind will thus take 
2·n+1 clocks. The extra 1 clock in the end will appear to be part of the latency of the final 
instruction in the chain, which stores the result to memory. Thus, for practical purposes, we 
can calculate with a latency of 2 clocks for simple 128-bit µops.  

Hypothesis 4 

The assumption is now that there is only one 64-bit arithmetic unit running at full speed. It 
has a latency of 2 clocks and is pipelined in two stages, so that it can accept a new 64-bit 
operand every clock cycle. Under this assumption, the sequence of alternating 128-bit and 
64-bit µops will still be executed as shown in figure 5.3. 
 
There is no experimental way to distinguish between hypothesis 3 and 4 if the two units 
assumed under hypothesis 3 are identical, because all inputs and outputs to the execution 
units occur at the same times under both of these hypotheses. It would be possible to prove 
hypothesis 3 and reject hypothesis 4 if there were some 64-bit operations that could 
execute only in one of the two assumed 64-bit units. It is likely that some of the rarest 
operations would be supported only in one of the two units. And it would be possible to 
prove this by making an experiment where only the unit that does not support a particular 
operation is vacant when this operation is scheduled for execution. I have made a 
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systematic search for operations that might be supported only by one of the two 
hypothetical units. The only candidate I have found is the 64-bit addition PADDQ. My 

experiments show that the 64-bit PADDQ MM executes in the MMX-ALU unit, while the 128-

bit PADDQ XMM executes in the FP-ADD unit. However, further experiments show that if 

there are two 64-bit MMX-ADD units then they are both able to perform the PADDQ MM. This 

makes hypothesis 4 more likely than hypothesis 3. 
 
If hypothesis 4 is right, then we have a problem explaining why it needs two pipeline stages. 
If the MMX-ALU unit is able to do a staggered 64-bit addition in 2 clock cycles, then it would 
be possible to do a packed 32-bit addition in 1 clock cycle. It is difficult to believe that the 
designers have given all MMX instructions a latency of 2 rather than 1 just for the sake of 
the rare PADDQ MM instruction. A more likely explanation is that each adder is fixed at a 

particular pipeline stage. I therefore consider hypothesis 4 the most likely explanation. 
 
However, the following sentence may be read as support for hypothesis 3: "Intel NetBurst 
micro-architecture [...] uses a deeply pipelined design to enable high clock rates with 
different parts of the chip running at different clock rates, some faster and some slower than 
the nominally-quoted clock frequency of the processor" (Intel Pentium 4 and Intel Xeon 
Processor Optimization Reference Manual, 2001). Letting different units run at different 
speeds may actually be a better design decision than letting the slowest unit determine the 
overall clock frequency. A further reason for this choice may be to reduce power 
consumption and optimize the thermal design. It is possible that some parts of e. g. the 
floating point unit run at half speed, but the above citation may just as well refer to the trace 
cache running at half speed. 
 
Those 128-bit MMX µops where the two 64-bit halves are interdependent of each other all 
have a latency of 4 clocks. This is in accordance with hypothesis 3 and 4. 
 
Floating point addition and multiplication µops operating on 80-bit registers have latencies 
that are one clock cycle more than the latencies of similar µops in 128-bit registers. Under 
hypothesis 3, the extra clock cycle can be explained as the extra time it takes to transfer an 
80-bit operand over a 64-bit data bus. Under hypothesis 4, the extra clock cycle can be 
explained as the time needed to generate the extra 80-bit precision. 
 
Scalar floating point operations in 80-bit registers have a throughput of 1 µop per clock 
cycle, while scalar floating point operations in 128-bit registers have half throughput, even 
though they only use 32 or 64 of the 128 bits. This is probably because the remaining 96 or 
64 bits of the destination operand, which remain unchanged, are going through the 
execution unit to the new (renamed) destination register. 
 
Divisions behave differently. There is a separate division unit which uses iteration and is not 
pipelined. Divisions can have both odd and even latencies, so it is likely that the division unit 
runs at full speed. Division uses the FP-MUL unit, which implies that the FP-MUL unit 
probably also runs at full speed. 
 

5.6 Transfer of data between execution units 

The latency of an operation is in most cases longer if the next dependent operation is not 
executed in the same execution unit. Example (P4E): 
 

; Example 5.5. P4E transfer data between execution units 

                      ; clock      ex.unit   subunit 

paddw  xmm0, xmm1     ;  0 -  2    MMX       ALU 

psllw  xmm0, 4        ;  2 -  4    MMX       SHIFT 

pmullw xmm0, xmm2     ;  5 - 12    FP        MUL 

psubw  xmm0, xmm3     ; 13 - 15    MMX       ALU 

por    xmm6, xmm7     ;  3 -  5    MMX       ALU 

movdqa xmm1, xmm0     ; 16 - 23    MOV 
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pand   xmm1, xmm4     ; 23 - 25    MMX       ALU 

 
The first instruction PADDW runs in the MMX unit under port 1, and has a latency of 2. The 

shift instruction PSLLW runs in the same execution unit, though in a different subunit. There 

is no extra delay, so it can start at time T=2. The multiplication instruction PMULLW runs in a 

different execution unit, the FP unit, because there is no multiplication subunit in the MMX 
execution unit. This gives an extra delay of one clock cycle. The multiplication cannot start 
until T=5, even though the shift operation finished at T=4. The next instruction, PSUBW, goes 

back to the MMX unit, so again we have a delay of one clock cycle from the multiplication is 
finished till the subtraction can begin. The POR does not depend on any of the preceding 

instructions, so it can start as soon as port 1 and the MMX-ALU subunit are both vacant. 
The MOVDQA instruction goes to the MOV unit under port 0, which gives us another delay of 

one clock cycle after the PSUBW has finished. The last instruction, PAND, goes back to the 

MMX unit under port 1. However, there is no additional delay after a move instruction. The 
whole sequence takes 25 clock cycles.  
 
There is no delay between the two double-speed units, ALU0 and ALU1, but on the P4 
there is an additional delay of a half clock cycle from these units to any other (single-speed) 
execution unit. Example (P4): 
 

; Example 5.6a. P4 transfer data between execution units 

                    ;   clock        ex.unit   subunit 

and  eax, 0fh       ;  0.0 -  0.5    ALU0      LOGIC 

xor  ebx, 30h       ;  0.5 -  1.0    ALU0      LOGIC 

add  eax, 1         ;  0.5 -  1.0    ALU1      ADD 

shl  eax, 3         ;  2.0 -  6.0    INT       MMX SHIFT 

sub  eax, ecx       ;  7.0 -  7.5    ALU0/1    ADD 

mov  edx, eax       ;  7.5 -  8.0    ALU0/1    MOV 

imul edx, 100       ;  9.0 - 23.0    INT       FP MUL 

or   edx, ebx       ; 23.0 - 23.5    ALU0/1    MOV 

 

The first instruction, AND, starts at time T=0 in ALU0. Running at double speed, it is finished 

at time 0.5. The XOR instruction starts as soon as ALU0 is vacant, at time 0.5. The third 

instruction, ADD, needs the result of the first instruction, but not the second. Since ALU0 is 

occupied by the XOR, the ADD has to go to ALU1. There is no delay from ALU0 to ALU1, so 

the ADD can start at time T=0.5, simultaneously with the XOR, and finish at T=1.0. The SHL 

instruction runs in the single-speed INT unit. There is a half clock delay from ALU0 or ALU1 
to any other unit, so the INT unit cannot receive the result of the ADD until time T=1.5. 

Running at single speed, the INT unit cannot start at a half-clock tick so it will wait until time 
T=2.0 and finish at T=6.0. The next instruction, SUB, goes back to ALU0 or ALU1. There is a 

one-clock delay from the SHL instruction to any other execution unit, so the SUB instruction 

is delayed until time T=7.0. After the two double-speed instructions, SUB and MOV, we have 

a half clock delay again before the IMUL running in the INT unit. The IMUL, running again at 

single speed, cannot start at time T=8.5 so it is delayed until T=9.0. There is no additional 
delay after IMUL, so the last instruction can start at T=23.0 and end at T=23.5. 

 
There are several ways to improve this code. The first improvement is to swap the order of 
ADD and SHL (then we have to add (1 SHL 3) = 8): 

 
; Example 5.6b. P4 transfer data between execution units 

                    ;   clock        ex.unit   subunit 

and  eax, 00Fh      ;  0.0 -  0.5    ALU0      LOGIC 

xor  ebx, 0F0h      ;  0.5 -  1.0    ALU0      LOGIC 

shl  eax, 3         ;  1.0 -  5.0    INT       MMX SHIFT 

add  eax, 8         ;  6.0 -  6.5    ALU1      ADD 

sub  eax, ecx       ;  6.5 -  7.0    ALU0/1    ADD 

mov  edx, eax       ;  7.0 -  7.5    ALU0/1    MOV 

imul edx, 100       ;  8.0 - 22.0    INT       FP MUL 

or   edx, ebx       ; 22.0 - 22.5    ALU0/1    MOV 
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Here we are saving a half clock before the SHL and a half clock before the IMUL by making 

the data for these instructions ready at a half-clock tick so that they are available to the 
single-speed unit a half clock later, at an integral time. The trick is to reorder the instructions 
so that we have an odd number of double-speed µops between any two single-speed µops 
in a chain of interdependent instructions. We can improve the code further by minimizing the 
number of transitions between execution units. Even better, of course, is to keep all 
operations in the same execution unit, and preferably the double-speed units. SHL EAX,3 

can be replaced by 3 × (ADD EAX,EAX). 

 
If we want to know why there is an additional delay when going from one execution unit to 
another, there are three possible explanations: 

Explanation A 

The physical distance between the execution units on the silicon chip is quite large, and this 
may cause a propagation delay in the traveling of electrical signals from one unit to another 
because of the induction and capacity in the wires. 

Explanation B 

The "logical distance" between execution units means that the data have to travel through 
various registers, buffers, ports, buses and multiplexers to get to the right destination. The 
designers have implemented various shortcuts to bypass these delaying elements and 
forward results directly to execution units that are waiting for these results. It is possible that 
these shortcuts connect to only execution units under the same port. 

Explanation C 

If 128-bit operands are handled 64 bits at a time in staggered additions, as figure 5.4 
suggests, then we will have a 1 clock delay at the end of a chain of 128-bit instructions 
when the two halves have to be united. Consider, for example, the addition of packed 
double precision floating point numbers in 128-bit registers on P4. If the addition of the 
lower 64-bit operand starts at time T=0, it will finish at T=4. The upper 64-bit operand can 
start at time T=1 and finish at T=5. If the next dependent operation is also a packed 
addition, then the second addition can start to work on the lower 64-bit operand at time T=4, 
before the upper operand is ready. 
 

 
Figure 5.5 
 
The latency for a chain of such instructions will appear to be 4 clock cycles per operation. If 
all operations on 128-bit registers can overlap in this way, then we will never see the 128-bit 
operations having higher latency than the corresponding 64-bit operations. But if the 
transport of the data to another execution unit requires that all 128 bits travel together, then 
we get an additional delay of 1 clock cycle for the synchronization of the upper and lower 
operands, as figure 5.5 shows. In the same way, the double-speed units ALU0 and ALU1 on 
P4 handle 32-bit operations as two 16-bit operations taking a half-clock cycle each. But if all 
32 bits are needed together, then there is an extra delay of a half clock. It is not known 
whether the data buses between execution units are 32 bits, 64 bits or 128 bits wide. 
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5.7 Retirement 

The retirement of executed µops works in the same way in the P4 and P4E as in the 6'th 
generation processors. This process is explained on page 83. 
 
The retirement station can handle three µops per clock cycle. This may not seem like a 
problem because the throughput is already limited to 3 µops per clock in the trace cache. 
But the retirement station has the further limitation that taken jumps must retire in the first of 
the three slots in the retirement station. This sometimes limits the throughput of small loops. 
If the number of µops in the loop is not a multiple of 3, then the jump-back instruction in the 
bottom of the loop may go into the wrong retirement slot, at the penalty of one clock cycle 
per iteration. It is therefore recommended that the number of µops (not instructions) in small 
critical loops should be a multiple of 3. In some cases, you can actually save one clock 
cycle per iteration by adding one or two NOP's to the loop to make the number of µops 

divisible by 3. This applies only if a throughput of 3 µops per clock cycle is expected. 
 

5.8 Partial registers and partial flags 

Registers AL, AH, and AX are all parts of the EAX register. These are called partial registers. 

On 6'th generation microprocessors, the partial registers could be split into separate 
temporary registers, so that different parts could be handled independently of each other. 
This caused a serious delay whenever there was a need to join different parts of a register 
into a single full register. This problem is explained on page 84 and 101. 
 
The P4/P4E prevents this problem in a different way than the PM, namely by always 
keeping the whole register together. This solution has other drawbacks, however. The first 
drawback is that it introduces false dependences. Any read or write to AL will be delayed if a 

preceding write to AH is delayed. 

 
Another drawback is that access to a partial register sometimes requires an extra µop. 
Examples: 
 

; Example 5.7. Partial register access 

mov  eax, [mem32]       ; 1 uop 

mov  ax,  [mem16]       ; 2 uops 

mov  al,  [mem8]        ; 2 uops 

mov  ah,  [mem8]        ; 2 uops 

add  al,  bl            ; 1 uop 

add  ah,  bh            ; 1 uop 

add  al,  bh            ; 2 uops 

add  ah,  bl            ; 2 uops 

 

For optimal performance, you may follow the following guidelines when working with 8-bit 
and 16-bit operands: 
 

• Avoid using the high 8-bit registers AH, BH, CH, DH. 

 

• When reading from an 8-bit or 16-bit memory operand, use MOVZX to read the entire 

32-bit register, even in 16-bit mode. 
 

• When sign-extension is needed then use MOVSX with the largest possible 

destination register, i.e. 32-bit destination in 16 or 32-bit mode, and 64-bit 
destination in 64-bit mode. 
 

• Alternatively, use MMX or XMM registers to handle 8-bit and 16-bit integers, if they 
can be packed. 
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The problems with partial access also apply to the flags register when an instruction 
modifies some of the flags but leaves other flags unchanged. 
 
For historical reasons, the INC and DEC instructions leave the carry flag unchanged, while 

the other arithmetic flags are written to. This causes a false dependence on the previous 
value of the flags and costs an extra µop. To avoid these problems, it is recommended that 
you always use ADD and SUB instead of INC and DEC. For example, INC EAX should be 

replaced by ADD EAX,1. 

 
SAHF leaves the overflow flag unchanged but changes the other arithmetic flags. This 

causes a false dependence on the previous value of the flags, but no extra µop. 
 
BSF and BSR change the zero flag but leave the other flags unchanged. This causes a false 

dependence on the previous value of the flags and costs an extra µop. 
 
BT, BTC, BTR, and BTS change the carry flag but leave the other flags unchanged. This 

causes a false dependence on the previous value of the flags and costs an extra µop. Use 
TEST, AND, OR and XOR instead of these instructions. On P4E you can also use shift 

instructions efficiently. For example, BT RAX,40 / JC X can be replaced by SHR 

RAX,41 / JC X if the value of RAX is not needed again later. 

 

5.9 Store forwarding stalls 

The problems with accessing part of a memory operand are much bigger than when 
accessing part of a register. These problems are the same as for previous processors, see 
page 87. Example: 
 

; Example 5.8a. Store forwarding stall 

mov  dword [mem1], eax 

mov  dword [mem1+4], 0 

fild qword [mem1]             ; Large penalty 

 
You can save 10-20 clocks by changing this to: 
 

; Example 5.8b. Avoid store forwarding stall 

movd xmm0, eax 

movq qword [mem1], xmm0 

fild qword [mem1]             ; No penalty 

 

5.10 Memory intermediates in dependency chains 

The P4 has an unfortunate proclivity for trying to read a memory operand before it is ready. 
If you write 
 

; Example 5.9. Memory intermediate in dependency chain 

imul eax, 5 

mov  [mem1], eax 

mov  ebx, [mem1] 

add  ebx, ecx 

 
then the microprocessor may try to read the value of [MEM1] into EBX before the IMUL and 

the memory write have finished. It soon discovers that the value it has read is invalid, so it 
will discard EBX and try again. It will keep replaying the read instruction as well as the 

subsequent instructions until the data in [MEM1] are ready. There seems to be no limit to 

how many times it can replay a series of instructions, and this process steals resources from 
other processes. In a long dependency chain, this may typically cost 10 - 20 clock cycles! 
Using the MFENCE instruction to serialize memory access does not solve the problem 

because this instruction is even more costly. On other microprocessors, including P4E, the 
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penalty for reading a memory operand immediately after writing to the same memory 
position is only a few clock cycles.  
 
The best way to avoid this problem is, of course, to replace MOV EBX,[MEM1] with MOV 

EBX,EAX in the above example. Another possible solution is to give the processor plenty of 

work to do between the store and the load from the same address. 
 
However, there are two situations where it is not possible to keep data in registers. The first 
situation is the transfer of parameters in high-level language procedure calls in 16-bit and 
32-bit mode; the second situation is transferring data between floating point registers and 
other registers. 

Transferring parameters to procedures 

Calling a function with one integer parameter in C++ will typically look like this in 32-bit 
mode: 
 

; Example 5.10. Memory intermediate in function call (32-bit mode) 

push eax              ; Save parameter on stack 

call _ff              ; Call function _ff 

add esp,4             ; Clean up stack after call 

... 

_ff:                  ; Function entry 

push ebp              ; Save ebp 

mov ebp,esp           ; Copy stack pointer 

mov eax,[ebp+8]       ; Read parameter from stack 

... 

pop ebp               ; Restore ebp 

ret                   ; Return from function 

 
As long as either the calling program or the called function is written in high-level language, 
you may have to stick to the convention of transferring parameters on the stack. Most C++ 
compilers can transfer 2 or 3 integer parameters in registers when the function is declared 
__fastcall. However, this method is not standardized. Different compilers use different 

registers for parameter transfer. To avoid the problem, you may have to keep the entire 
dependency chain in assembly language. The problem can be avoided in 64-bit mode 
where most parameters are transferred in registers. 

Transferring data between floating point and other registers 

There is no way to transfer data between floating point registers and other registers, except 
through memory. Example: 
 

; Example 5.11. Memory intermediate in integer to f.p. conversion 

imul  eax,    ebx 

mov   [temp], eax      ; Transfer data from integer register to f.p. 

fild  [temp] 

fsqrt 

fistp [temp]           ; Transfer data from f.p. register to integer 

mov   eax,    [temp] 

 
Here we have the problem of transferring data through memory twice. You may avoid the 
problem by keeping the entire dependency chain in floating point registers, or by using XMM 
registers instead of floating point registers. 
 
Another way to prevent premature reading of the memory operand is to make the read 
address depend on the data. The first transfer can be done like this: 
 

; Example 5.12. Avoid stall in integer to f.p. conversion 

mov  [temp], eax 

and  eax,    0        ; Make eax = 0, but keep dependence 
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fild [temp+eax]       ; Make read address depend on eax 

 
The AND EAX,0 instruction sets EAX to zero but keeps a false dependence on the previous 

value. By putting EAX into the address of the FILD instruction, we prevent it from trying to 

read before EAX is ready. 

 
It is a little more complicated to make a similar dependence when transferring data from 
floating point registers to integer registers. The simplest way to solve the problem is: 
 

; Example 5.13. Avoid stall in f.p. to integer conversion 

fistp  [temp] 

fnstsw ax                ; Transfer status after fistp to ax 

and    eax, 0            ; Set to 0 

mov    eax, [temp+eax]   ; Make dependent on eax 

Literature 

A detailed study of the replay mechanism is published by Victor Kartunov, et. al.: "Replay: 
Unknown Features of the NetBurst Core", www.xbitlabs.com/articles/cpu/print/replay.html. 
See also US Patents 6,163,838; 6,094,717; 6,385,715. 
 

5.11 Breaking dependency chains 

A common way of setting a register to zero is  XOR EAX,EAX  or  SUB EBX,EBX.  The 

P4/P4E processor recognizes that these instructions are independent of the prior value of 
the register. So any instruction that uses the new value of the register will not have to wait 
for the value prior to the XOR or SUB instruction to be ready. The same applies to the PXOR 

instruction with a 64-bit or 128-bit register, but not to any of the following instructions: XOR or 

SUB with an 8-bit or 16-bit register, SBB, PANDN, PSUB, XORPS, XORPD, SUBPS, SUBPD, 

FSUB. 

 
The instructions XOR, SUB and PXOR are useful for breaking an unnecessary dependence, 

but it doesn't work on e.g. the PM processor. 
 
You may also use these instructions for breaking dependences on the flags. For example, 
rotate instructions have a false dependence on the flags in P4. This can be removed in the 
following way: 
 

; Example 5.14. Break false dependence on flags 

ror eax, 1 

sub edx, edx   ; Remove false dependence on the flags 

ror ebx, 1 

 
If you don't have a spare register for this purpose, then use an instruction that doesn't 
change the register, but only the flags, such as CMP or TEST. You cannot use CLC for 

breaking dependences on the carry flag. 
 

5.12 Choosing the optimal instructions 

There are many possibilities for replacing less efficient instructions with more efficient ones. 
The most important cases are summarized below. 

INC and DEC 

These instructions have a problem with partial flag access, as explained on page 65. 
Always replace INC EAX with ADD EAX,1, etc. 

8-bit and 16-bit integers 

Replace MOV AL,BYTE [MEM8] by  MOVZX EAX,BYTE [MEM8] 

http://www.xbitlabs.com/articles/cpu/print/replay.html
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Replace MOV BX,WORD [MEM16] by  MOVZX EBX,WORD [MEM16] 

 
Avoid using the high 8-bit registers AH, BH, CH, DH. 

 
If 8-bit or 16-bit integers can be packed and handled in parallel, then use MMX or XMM 
registers. 
 
These rules apply even in 16-bit mode. 

Memory stores 

Most memory store instructions use 2 µops. Simple store instructions of the type MOV 

[MEM],EAX use only one µop if the memory operand has no SIB byte. A SIB byte is 

needed if there is more than one pointer register, if there is a scaled index register, or if ESP 

is used as base pointer. The short-form store instructions can use a general purpose 
register (see page 52). Examples: 
 

; Example 5.15. uop counts for memory stores 

mov array[ecx], eax     ; 1 uop 

mov array[ecx*4], eax   ; 2 uops because of scaled index 

mov [ecx+edi], eax      ; 2 uops because of two index registers 

mov [ebp+8], ebx        ; 1 uop 

mov [esp+8], ebx        ; 2 uops because esp used 

mov [es:mem8], cl       ; 1 uop 

mov [es:mem8], ch       ; 2 uops because high 8-bit register used 

movq [esi], mm1         ; 2 uops because not a general purp.register 

fstp dword [mem32]      ; 2 uops because not a general purp.register 

 
The corresponding memory load instructions all use only 1 µop. A consequence of these 
rules is that a procedure which has many stores to local variables on the stack should use 
EBP as pointer, while a procedure which has many loads and few stores may use ESP as 

pointer, and save EBP for other purposes. 

Shifts and rotates 

Shifts and rotates on integer registers are quite slow on the P4 because the integer 
execution unit transfers the data to the MMX shift unit and back again. Shifts to the left may 
be replaced by additions. For example, SHL EAX,3 can be replaced by 3 times ADD 

EAX,EAX. This does not apply to the P4E, where shifts are as fast as additions. 

 
Rotates through carry (RCL, RCR) by a value different from 1 or by CL should be avoided. 

 
If the code contains many integer shifts and multiplications, then it may be advantageous to 
execute it in MMX or XMM registers on P4. 

Integer multiplication 

Integer multiplication is slow on the P4 because the integer execution unit transfers the data 
to the FP-MUL unit and back again. If the code has many integer multiplications then it may 
be advantageous to handle the data in MMX or XMM registers. 
 
Integer multiplication by a constant can be replaced by additions. Replacing a single 
multiply instruction by a long sequence of ADD instructions should, of course, only be done 

in critical dependency chains. 

LEA 

The LEA instruction is split into additions and shifts on the P4 and P4E. LEA instructions 

with a scale factor may preferably be replaced by additions. This applies only to the LEA 

instruction, not to any other instructions with a memory operand containing a scale factor. 
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In 64-bit mode, a LEA with a RIP-relative address is inefficient. Replace LEA RAX,[MEM] 

by MOV RAX, OFFSET MEM . 

Register-to-register moves with FP, mmx and xmm registers 

The following instructions, which copy one register into another, all have a latency of 6 
clocks on P4 and 7 clocks on P4E: MOVQ MM,MM, MOVDQA XMM,XMM, MOVAPS XMM,XMM, 

MOVAPD XMM,XMM, FLD ST(X), FST ST(X), FSTP ST(X). These instructions have no 

additional latency. A possible reason for the long latency of these instructions is that they 
use the same execution unit as memory stores (port 0, MOV). 
 
There are several ways to avoid this delay: 
 

• The need for copying a register can sometimes be eliminated by using the same 
register repeatedly as source, rather than destination, for other instructions. 
 

• With floating point registers, the need for moving data from one register to another 
can often be eliminated by using FXCH. The FXCH instruction has no latency. 

 

• If the value of a register needs to be copied, then use the old copy in the most critical 
dependence path, and the new copy in a less critical path. The following example 
calculates Y = (a+b)2.5 : 
    

   ; Example 5.16. Optimize register-to-register moves 

   fld  qword [a] 

   fadd qword [b]  ; a+b 

   fld st          ; Copy a+b 

   fxch            ; Get old copy 

   fsqrt           ; (a+b)0.5 

   fxch            ; Get new (delayed) copy 

   fmul st,st      ; (a+b)2 

   fmul            ; (a+b)2.5 

   fstp qword [y]  

 

The old copy is used for the slow square root, while the new copy, which is available 
6-7 clocks later, is used for the multiplication. 

 
If none of these methods solve the problem, and latency is more important than 
throughput, then use faster alternatives: 
 

• For 80-bit floating point registers: 
 
   fld st0           ; copy register 

 
can be replaced by 
 
   fldz              ; make an empty register 

   xor eax, eax      ; set zero flag 

   fcmovz st0, st1   ; conditional move 

 

• For 64-bit MMX registers: 
 
   movq mm1, mm0 

 
can be replaced by the shuffle instruction 
 
   pshufw mm1, mm0, 11100100B 
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• For 128-bit XMM registers: 
 
   movdqa xmm1, xmm0 

 
can be replaced by the shuffle instruction 
 
   pshufd xmm1, xmm0, 11100100B 

 

or even faster: 
 
   pxor xmm1, xmm1    ; Set new register to 0 

   por  xmm1, xmm0    ; OR with desired value 

 
These methods all have lower latencies than the register-to-register moves. However, a 
drawback of these tricks is that they use port 1 which is also used for all calculations on 
these registers. If port 1 is saturated, then it may be better to use the slow moves, which 
go to port 0. 

 

5.13 Bottlenecks in P4 and P4E 

It is important, when optimizing a piece of code, to find the limiting factor that controls 
execution speed. Tuning the wrong factor is unlikely to have any beneficial effect. In the 
following paragraphs, I will explain each of the possible limiting factors. You have to 
consider each factor in order to determine which one is the narrowest bottleneck, and then 
concentrate your optimization effort on that factor until it is no longer the narrowest 
bottleneck. 

Memory access 

If the program is accessing large amounts of data, or if the data are scattered around 
everywhere in the memory, then we will have many data cache misses. Accessing 
uncached data is so time consuming that all other optimization considerations are 
unimportant. The caches are organized as aligned lines of 64 bytes each. If one byte within 
an aligned 64-bytes block has been accessed, then we can be certain that all 64 bytes will 
be loaded into the level-1 data cache and can be accessed at no extra cost. To improve 
caching, it is recommended that data that are used in the same part of the program be 
stored together. You may align large arrays and structures by 64. Store local variables on 
the stack if you don't have enough registers. 
 
The level-1 data cache is only 8 kb on the P4 and 16 kb on P4E. This may not be enough to 
hold all the data, but the level-2 cache is more efficient on the P4/P4E than on previous 
processors. Fetching data from the level-2 cache will cost only a few clock cycles extra. 
 
Data that are unlikely to be cached may be prefetched before they are used. If memory 
addresses are accessed consecutively, then they will be prefetched automatically. You 
should therefore preferably organize the data in a linear fashion so that they can be 
accessed consecutively, and access no more than four large arrays, preferably less, in the 
critical part of the program. 
 
The PREFETCH instructions can improve performance in situations where you access 

uncached data and cannot rely on automatic prefetching. However, excessive use of the 
PREFETCH instructions can slow down program throughput on P4. If you are in doubt 

whether a PREFETCH instruction will benefit the program, then you may simply load the data 

needed into a spare register rather than using a PREFETCH instruction. If you have no spare 

register then use an instruction which reads the memory operand without changing any 
register, such as CMP or TEST. As the stack pointer is unlikely to be part of any critical 

dependency chain, a useful way to prefetch data is CMP ESP,[MEM], which will change 

only the flags. 
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When writing to a memory location that is unlikely to be accessed again soon, you may use 
the non-temporal write instructions MOVNTI, etc., but excessive use of non-temporal moves 

will slow down performance on P4. 
 
Further guidelines regarding memory access can be found in "Intel Pentium 4 and Intel 
Xeon Processor Optimization Reference Manual". 

Execution latency 

The executing time for a dependency chain can be calculated from the latencies listed in 
manual 4: "Instruction tables". Many instructions have an additional latency of 1 clock cycle 
when the subsequent instruction goes to a different execution unit. See page 61 for further 
explanation. 
 
If long dependency chains limit the performance of the program then you may improve 
performance by choosing instructions with low latency, minimizing the number of transitions 
between execution units, breaking up dependency chains, and utilizing all opportunities for 
calculating subexpressions in parallel. 
 
Always avoid memory intermediates in dependency chains, as explained on page 65. 

Execution unit throughput 

If your dependency chains are short, or if you are working on several dependency chains in 
parallel, then the program is most likely limited by throughput rather than latency. Different 
execution units have different throughputs. ALU0 and ALU1, which handle simple integer 
instructions and other common µops, both have a throughput of 2 instructions per clock 
cycle. Most other execution units have a throughput of one instruction per clock cycle. When 
working with 128-bit registers, the throughput is usually one instruction per two clock cycles. 
Division and square roots have the lowest throughputs. Each throughput measure applies to 
all µops executing in the same execution subunit (see page 58). 
 
If execution throughput limits the code then try to move some calculations to other execution 
subunits. 

Port throughput 

Each of the execution ports can receive one µop per clock cycle. Port 0 and port 1 can 
receive an additional µop at each half-clock tick if these µops go to the double-speed units 
ALU0 and ALU1. If all µops in the critical part of the code go to the single-speed units under 
port 1, then the throughput will be limited to 1 µop per clock cycle. If the µops are optimally 
distributed between the four ports, then the throughput may be as high as 6 µops per clock 
cycle. Such a high throughput can only be achieved in short bursts, because the trace 
cache and the retirement station limit the average throughput to less than 3 µops per clock 
cycle. 
 
If port throughput limits the code then try to move some µops to other ports. For example, 
MOV REGISTER,IMMEDIATE can be replaced by MOV REGISTER,MEMORY. 

Trace cache delivery 

The trace cache can deliver a maximum of approx. 3 µops per clock cycle. On P4, some 
µops require more than one trace cache entry, as explained on page 51. The delivery rate 
can be less than 3 µops per clock cycle for code that contains many branches and for tiny 
loops with branches inside (see page 54). 
 
If none of the abovementioned factors limit program performance, then you may aim at a 
throughput of approx. 3 µops per clock cycle. 
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Choose the instructions that generate the smallest number of µops. Avoid µops that require 
more than one trace cache entry on P4 (see page 51). 

Trace cache size 

The trace cache can hold less code than a traditional code cache using the same amount of 
physical chip space. The limited size of the trace cache can be a serious bottleneck if the 
critical part of the program doesn't fit into the trace cache. 

µop retirement 

The retirement station can handle 3 µops per clock cycle. Taken branches can only be 
handled by the first of the three slots in the retirement station. 
 
If you aim at an average throughput of 3 µops per clock cycle then avoid an excessive 
number of jumps, calls and branches. Small critical loops should preferably have a number 
of µops divisible by 3 (see page 64). 

Instruction decoding 

If the critical part of the code doesn't fit into the trace cache, then the limiting stage may be 
instruction decoding. The decoder can handle one instruction per clock cycle, provided that 
the instruction generates no more than 4 µops and no microcode, and does not have an 
excessive number of prefixes (see page 55). If decoding is a bottleneck, then you may try to 
minimize the number of instructions rather than the number of µops. 

Branch prediction 

The calculations of latencies and throughputs are only valid if all branches are predicted. 
Branch mispredictions can seriously slow down performance when latency or throughput is 
the limiting factor. The inability of the P4 to cancel bogus µops after a misprediction can 
seriously degrade performance. 
 
Avoid poorly predictable branches in critical parts of the code unless the alternative (e.g. 
conditional moves) outweighs the advantage by adding costly extra dependences and 
latency. See page 24 for details. 

Replaying of µops 

The P4 often wastes an excessive amount of resources on replaying bogus µops after 
cache misses, failed store-to-load forwarding, etc. This can result in a serious degradation 
of performance, especially when there are memory intermediates in long dependency 
chains. 
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6 Intel Pentium Pro, II, and III pipeline 

6.1 The pipeline in PPro, P2, and P3 

The Pentium Pro from 1995 was the first Intel processor with out-of-order execution. The 
microarchitecture design was quite successful. This design has been further developed 
through many generations to the processors that we have today - with a little detour to the 
less successful Pentium 4 or Netburst architecture. 
 
The pipeline of the PPro, P2 and P3 microprocessors is explained in various manuals and 
tutorials from Intel, which unfortunately are no longer available. I will therefore explain the 
pipeline here. 
 

 

Figure 6.1. Pentium Pro pipeline. 

 
The pipeline is illustrated in fig. 6.1. The pipeline stages are as follows: 
 
BTB0,1: Branch prediction. Tells where to fetch the next instructions from. 
IFU0,1,2: Instruction fetch unit. 
ID0,1:  Instruction decoder. 
RAT:  Register alias table. Register renaming. 
ROB Rd: µop re-ordering buffer read. 
RS:  Reservation station. 
Port0,1,2,3,4: Ports connecting to execution units. 
ROB wb: Write-back of results to re-order buffer. 
RRF:  Register retirement file. 
 
Each stage in the pipeline takes at least one clock cycle. The branch prediction has been 
explained on p. 22. The other stages in the pipeline will be explained below (Literature: Intel 
Architecture Optimization Manual, 1997). 
 

6.2 Instruction fetch 

Instruction codes are fetched from the code cache in aligned 16-byte chunks into a double 
buffer that can hold two 16-byte chunks. The purpose of the double buffer is to make it 
possible to decode an instruction that crosses a 16-byte boundary (i.e. an address divisible 
by 16). The code is passed on from the double buffer to the decoders in blocks which I will 
call IFETCH blocks (instruction fetch blocks). The IFETCH blocks are up to 16 bytes long. In 
most cases, the instruction fetch unit makes each IFETCH block start at an instruction 
boundary rather than a 16-byte boundary. However, the instruction fetch unit needs 
information from the instruction length decoder in order to know where the instruction 
boundaries are. If this information is not available in time then it may start an IFETCH block 
at a 16-byte boundary. This complication will be discussed in more detail below. 
 
The double buffer is not big enough for handling fetches around jumps without delay. If the 
IFETCH block that contains the jump instruction crosses a 16-byte boundary, then the 
double buffer needs to keep two consecutive aligned 16-bytes chunks of code in order to 
generate it. If the first instruction after the jump crosses a 16-byte boundary, then the double 
buffer needs to load two new 16-bytes chunks of code before a valid IFETCH block can be 
generated. This means that, in the worst case, the decoding of the first instruction after a 
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jump can be delayed for two clock cycles. There is a one clock penalty for a 16-byte 
boundary in the IFETCH block containing the jump instruction, and also a one clock penalty 
for a 16-byte boundary in the first instruction after the jump. The instruction fetch unit can 
fetch one 16-byte chunk per clock cycle. If it takes more than one clock cycle to decode an 
IFETCH block then it is possible to use this extra time for fetching ahead. This can 
compensate for the penalties of 16-byte boundaries before and after jumps. The resulting 
delays are summarized in table 6.1 below. 
 
If the double buffer has time to fetch only one 16-byte chunk of code after the jump, then the 
first IFETCH block after the jump will be identical to this chunk, that is, aligned to a 16-byte 
boundary. In other words, the first IFETCH block after the jump will not begin at the first 
instruction, but at the nearest preceding address divisible by 16. If the double buffer has had 
time to load two 16-byte chunks, then the new IFETCH block can cross a 16-byte boundary 
and begin at the first instruction after the jump. These rules are summarized in the following 
table: 
   

Number of decode 
groups in IFETCH 
block containing 

jump 

16-byte boundary 
in this IFETCH 

block 

16-byte boundary in 
first instruction after 

jump decoder delay 

alignment of first 
IFETCH after 

jump 

1 0 0 0 by 16 

1 0 1 1 to instruction 

1 1 0 1 by 16 

1 1 1 2 to instruction 

2 0 0 0 to instruction 

2 0 1 0 to instruction 

2 1 0 0 by 16 

2 1 1 1 to instruction 

3 or more 0 0 0 to instruction 

3 or more 0 1 0 to instruction 

3 or more 1 0 0 to instruction 

3 or more 1 1 0 to instruction 

Table 6.1. Instruction fetching around jumps 

 
The first column in this table indicates the time it takes to decode all instructions in an 
IFETCH block (Decode groups are explained below).  
 
Instructions can have any length from 1 to 15 bytes. Therefore, we cannot be sure that a 16-
byte IFETCH block contains a whole number of instructions. If an instruction extends past 
the end of an IFETCH block then it will go into the next IFETCH block, which will begin at 
the first byte of this instruction. Therefore, the instruction fetch unit needs to know where the 
last full instruction in each IFETCH block ends before it can generate the next IFETCH 
block. This information is generated by the instruction length decoder, which is in stage 
IFU2 in the pipeline (fig. 6.1). The instruction length decoder can determine the lengths of 
three instructions per clock cycle. If, for example, an IFETCH block contains ten instructions 
then it will take three clock cycles before it is known where the last full instruction in the 
IFETCH block ends and before the next IFETCH block can be generated. 
 

6.3 Instruction decoding 

Instruction length decoding 

The IFETCH blocks go to the instruction length decoder, which determines where each 
instruction begins and ends. This is a very critical stage in the pipeline because it limits the 
degree of parallelism that can be achieved. We want to fetch more than one instruction per 
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clock cycle, decode more than one instruction per clock cycle, and execute more than one 
µop per clock cycle in order to gain speed. But decoding instructions in parallel is difficult 
when instructions have different lengths. You need to decode the first instruction in order to 
know how long it is and where the second instruction begins before you can start to decode 
the second instruction. So a simple instruction length decoder would only be able to handle 
one instruction per clock cycle. The instruction length decoder in the PPro microarchitecture 
can determine the lengths of three instructions per clock cycle and even feed back this 
information to the instruction fetch unit early enough for a new IFETCH block to be 
generated for the instruction length decoder to work on in the next clock cycle. This is quite 
an impressive accomplishment, which I believe is achieved by tentatively decoding all 16 
possible start addresses in parallel. 

The 4-1-1 rule 

After the instruction length decoder comes the instruction decoders which translate 
instructions into µops. There are three decoders working in parallel so that up to three 
instructions can be decoded in every clock cycle. A group of up to three instructions that are 
decoded in the same clock cycle is called a decode group. The three decoders are called 
D0, D1, and D2.  D0 can handle all instructions and can generate up to 4 µops per clock 
cycle. D1 and D2 can only handle simple instructions that generate no more than one µop 
each and are no more than 8 bytes long. The first instruction in an IFETCH block always 
goes to D0. The next two instructions go to D1 and D2 if possible. If an instruction that 
would go into D1 or D2 cannot be handled by these decoders because it generates more 
than one µop or because it is more than 8 bytes long, then it has to wait until D0 is vacant. 
The subsequent instructions are delayed as well. Example: 
 

; Example 6.1a. Instruction decoding 

mov  [esi], eax    ; 2 uops, D0 

add  ebx, [edi]    ; 2 uops, D0 

sub  eax, 1        ; 1 uop,  D1 

cmp  ebx, ecx      ; 1 uop,  D2 

je   L1            ; 1 uop,  D0 

 
The first instruction in this example goes to decoder D0. The second instruction cannot go 
to D1 because it generates more than one µop. It is therefore delayed to the next clock 
cycle when D0 is ready. The third instruction goes to D1 because the preceding instruction 
goes to D0. The fourth instruction goes to D2. The last instruction goes to D0. The whole 
sequence takes three clock cycles to decode. The decoding can be improved by swapping 
the second and third instructions: 
 

; Example 6.1b. Instructions reordered for improved decoding 

mov  [esi], eax    ; 2 uops, D0 

sub  eax, 1        ; 1 uop,  D1 

add  ebx, [edi]    ; 2 uops, D0 

cmp  ebx, ecx      ; 1 uop,  D1 

je   L1            ; 1 uop,  D2 

 
Now the decoding takes only two clock cycles because of a better distribution of instructions 
between the decoders. 
 
The maximum decoding speed is obtained when instructions are ordered according to the 
4-1-1 pattern: If every third instruction generates 4 µops and the next two instructions 
generate 1 µop each then the decoders can generate 6 µops per clock cycle. A 2-2-2 
pattern gives the minimum decoding speed of 2 µops per clock because all the 2-µop 
instructions go to D0. It is recommended that you order instructions according to the 4-1-1 
rule so that every instruction that generates 2, 3 or 4 µops is followed by two instructions 
that generate 1 µop each. An instruction that generates more than 4 µops must go into D0. 
It takes two or more clock cycles to decode, and no other instructions can decode in 
parallel. 
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IFETCH block boundaries 

A further complication is that the first instruction in an IFETCH block always goes into D0. If 
the code has been scheduled according to the 4-1-1 rule and if one of the 1-µop instructions 
that was intended for D1 or D2 happens to be first in an IFETCH block, then that instruction 
goes into D0 and the 4-1-1 pattern is broken. This will delay the coding for one clock cycle. 
The instruction fetch unit cannot adjust the IFETCH boundaries to the 4-1-1 pattern because 
the information about which instruction generates more than 1 µop is only available, I 
suppose, two stages further down the pipeline. 
 
This problem is difficult to handle because it is difficult to guess where the IFETCH 
boundaries are. The best way to address this problem is to schedule the code so that the 
decoders can generate more than 3 µops per clock cycle. The RAT and RRF stages in the 
pipeline (fig. 6.1) can handle no more than 3 µops per clock. If instructions are ordered 
according to the 4-1-1 rule so that we can expect at least 4 µops per clock cycle then maybe 
we can afford to lose one clock cycle at every IFETCH boundary and still maintain an 
average decoder throughput of no less than 3 µops per clock.  
 
Another remedy is to make instructions as short as possible in order to get more instructions 
into each IFETCH block. More instructions per IFETCH block means fewer IFETCH 
boundaries and thus fewer breaks in the 4-1-1 pattern. For example, you may use pointers 
instead of absolute addresses to reduce code size. See manual 2: "Optimizing subroutines 
in assembly language" for more advices on how to reduce the size of instructions. 
 
In some cases it is possible to manipulate the code so that instructions intended for decoder 
D0 fall at the IFETCH boundaries. But it is usually quite difficult to determine where the 
IFECTH boundaries are and probably not worth the effort. First you need to make the code 
segment paragraph-aligned in order to know where the 16-byte boundaries are. Then you 
have to know where the first IFETCH block of the code you want to optimize begins. Look at 
the output listing from the assembler to see how long each instruction is. If you know where 
one IFETCH block begins then you can find where the next IFETCH block begins in the 
following way: Make the IFETCH block 16 bytes long. If it ends at an instruction boundary 
then the next block will begin here. If it ends with an unfinished instruction then the next 
block will begin at the beginning of this instruction. Only the lengths of the instructions count 
here, it doesn't matter how many µops they generate or what they do. This way you can 
work your way all through the code and mark where each IFETCH block begins. The 
biggest problem is to know where to start. Here are some guidelines:  
 

• The first IFETCH block after a jump, call, or return can begin either at the first 
instruction or at the nearest preceding 16-byte boundary, according to table 6.1. If you 
align the first instruction to begin at a 16-byte boundary then you can be sure that the 
first IFETCH block begins here. You may want to align important subroutine entries 
and loop entries by 16 for this purpose. 
 

• If the combined length of two consecutive instructions is more than 16 bytes then you 
can be certain that the second one doesn't fit into the same IFETCH block as the first 
one, and consequently you will always have an IFETCH block beginning at the second 
instruction. You can use this as a starting point for finding where subsequent IFETCH 
blocks begin. 
 

• The first IFETCH block after a branch misprediction begins at a 16-byte boundary. As 
explained on page 22, a loop that repeats more than 5 times will always have a 
misprediction when it exits. The first IFETCH block after such a loop will therefore 
begin at the nearest preceding 16-byte boundary. 

 
I am sure you want an example now: 
 

; Example 6.2. Instruction fetch blocks 
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address      instruction             length    uops  expected decoder 

--------------------------------------------------------------------- 

1000h        mov ecx, 1000             5         1       D0 

1005h   LL:  mov [esi], eax            2         2       D0 

1007h        mov [mem], 0             10         2       D0 

1011h        lea ebx, [eax+200]        6         1       D1 

1017h        mov byte [esi], 0         3         2       D0 

101Ah        bsr edx, eax              3         2       D0 

101Dh        mov byte [esi+1],0        4         2       D0 

1021h        dec edx                   1         1       D1 

1022h        jnz LL                    2         1       D2 

 
Let's assume that the first IFETCH block begins at address 0x1000 and ends at 0x1010. 
This is before the end of the MOV [MEM],0 instruction so the next IFETCH block will begin 

at 0x1007 and end at 0x1017. This is at an instruction boundary so the third IFETCH block 
will begin at 1017h and cover the rest of the loop. The number of clock cycles it takes to 
decode this is the number of D0 instructions, which is 5 per iteration of the LL loop. The last 

IFETCH block contained three decode blocks covering the last five instructions, and it has 
one 16-byte boundary (0x1020). Looking at table 6.1 above we find that the first IFETCH 
block after the jump will begin at the first instruction after the jump, that is the LL label at 

0x1005, and end at 0x1015. This is before the end of the LEA instruction, so the next 

IFETCH block will go from 0x1011 to 0x1021, and the last one from 0x1021 covering the 
rest. Now the LEA instruction and the DEC instruction both fall at the beginning of an 

IFETCH block which forces them to go into D0. We now have 7 instructions in D0 and the 
loop takes 7 clocks to decode in the second iteration. The last IFETCH block contains only 
one decode group (DEC ECX / JNZ LL) and has no 16-byte boundary. According to table 

6.1, the next IFETCH block after the jump will begin at a 16-byte boundary, which is 0x1000. 
This will give us the same situation as in the first iteration, and you will see that the loop 
takes alternately 5 and 7 clock cycles to decode. Since there are no other bottlenecks, the 
complete loop will take 6000 clocks to run 1000 iterations. If the starting address had been 
different so that you had a 16-byte boundary in the first or the last instruction of the loop, 
then it would take 8000 clocks. If you reorder the loop so that no D1 or D2 instructions fall at 
the beginning of an IFETCH block then you can make it take only 5000 clocks. 
 
The example above was deliberately constructed so that fetch and decoding is the only 
bottleneck. One thing that can be done to improve decoding is to change the starting 
address of the procedure in order to avoid 16-byte boundaries where you don't want them. 
Remember to make the code segment paragraph aligned so that you know where the 
boundaries are. It may be possible to manipulate instruction lengths in order to put IFETCH 
boundaries where you want them, as explained in the chapter "Making instructions longer 
for the sake of alignment" in manual 2: "Optimizing subroutines in assembly language". 

Instruction prefixes 

Instruction prefixes can also incur penalties in the decoders. Instructions can have several 
kinds of prefixes, as listed in manual 2: "Optimizing subroutines in assembly language". 
 
1.  An operand size prefix gives a penalty of a few clocks if the instruction has an immediate 
operand of 16 or 32 bits because the length of the operand is changed by the prefix. 
Examples (32-bit mode): 
 

; Example 6.3a. Decoding instructions with operand size prefix 

add bx, 9      ; No penalty because immediate operand is 8 bits signed 

add bx, 200    ; Penalty for 16 bit immediate. Change to ADD EBX, 200 

mov word [mem],9  ; Penalty because operand is 16 bits 

 
The last instruction may be changed to: 
 

; Example 6.3b. Decoding instructions with operand size prefix 

mov eax, 9 
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mov word [mem16], ax  ; No penalty because no immediate 

 
2.  An address size prefix gives a penalty whenever there is an explicit memory operand 
(even when there is no displacement) because the interpretation of the r/m bits in the 
instruction code is changed by the prefix. Instructions with only implicit memory operands, 
such as string instructions, have no penalty with address size prefix. 
 
3.  Segment prefixes give no penalty in the decoders. 
 
4.  Repeat prefixes and lock prefixes give no penalty in the decoders. 
 
5.  There is always a penalty if an instruction has more than one prefix. This penalty is  
usually one clock per extra prefix. 
 

6.4 Register renaming  

Register renaming is controlled by the register alias table (RAT) shown in figure 6.1. The 
µops from the decoders go to the RAT via a queue, and then to the ROB and the 
reservation station. The RAT can handle 3 µops per clock cycle. This means that the overall 
throughput of the microprocessor can never exceed 3 µops per clock cycle on average. 
 
There is no practical limit to the number of renamings. The RAT can rename three registers 
per clock cycle, and it can even rename the same register three times in one clock cycle. 
 
This stage also calculates IP-relative branches and send them to the BTB0 stage. 
 

6.5 ROB read 

After the RAT comes the ROB-read stage where the values of the renamed registers are 
stored in the ROB entry, if they are available. Each ROB entry can have up to two input 
registers and two output registers. There are three possibilities for the value of an input 
register: 
 

1. The register has not been modified recently. The ROB-read stage reads the value 
from the permanent register file and stores it in the ROB entry. 
 

2. The value has been modified recently. The new value is the output of a µop that has 
been executed but not yet retired. I assume that the ROB-read stage will read the 
value from the not-yet-retired ROB entry and store it in the new ROB entry. 
 

3. The value is not ready yet. The needed value is the coming output of a µop that is 
queued but not yet executed. The new value cannot be written yet, but it will be 
written to the new ROB entry by the execution unit as soon as it is ready. 

 
Case 1 appears to be the least problematic situation. But quite surprisingly, this is the only 
situation that can cause delays in the ROB-read stage. The reason is that the permanent 
register file has only two read ports. The ROB-read stage can receive up to three µops from 
the RAT in one clock cycle, and each µop can have two input registers. This gives a total of 
up to six input registers. If these six registers are all different and all stored in the permanent 
register file, then it will take three clock cycles to perform the six reads through the two read 
ports of the register file. The preceding RAT stage will be stalled until the ROB-read is ready 
again. The decoders and instruction fetch will also be stalled if the queue between the 
decoders and the RAT is full. This queue has only approximately ten entries so it will quickly 
be full. 
 
The limitation of permanent register reads applies to all registers used by an instruction 
except those registers that the instruction writes to only. Example:  
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; Example 6.4a. Register read stall 

mov [edi + esi], eax 

mov ebx, [esp + ebp] 

 
The first instruction generates two µops: one that reads EAX and one that reads EDI and 

ESI. The second instruction generates one µop that reads ESP and EBP. EBX does not 

count as a read because it is only written to by the instruction. Let's assume that these three 
µops go through the RAT together. I will use the word triplet for a group of three consecutive 
µops that go through the RAT together. Since the ROB can handle only two permanent 
register reads per clock cycle and we need five register reads, our triplet will be delayed for 
two extra clock cycles before it comes to the reservation station (RS). With 3 or 4 register 
reads in the triplet it would be delayed by one clock cycle. The same register can be read 
more than once in the same triplet without adding to the count. If the instructions above are 
changed to: 
 

; Example 6.4b. No register read stall 

mov [edi + esi], edi 

mov ebx, [edi + edi] 

 
then we will need only two register reads (EDI and ESI) and the triplet will not be delayed. 

 
Case 2 and 3 do not cause register read stalls. The ROB-read can read a register without 
stall if it has not yet been through the ROB-writeback stage. It takes at least three clock 
cycles to get from RAT to ROB-writeback, so you can be certain that a register written to in 
one µop-triplet can be read without delay in at least the next three triplets. If the write-back 
is delayed by reordering, slow instructions, dependency chains, cache misses, or by any 
other kind of stall, then the register can be read without delay further down the instruction 
stream. Example: 
 

; Example 6.5. Register read stall 

mov eax, ebx 

sub ecx, eax 

inc ebx 

mov edx, [eax] 

add esi, ebx 

add edi, ecx 

 
These 6 instructions generate 1 µop each. Let's assume that the first 3 µops go through the 
RAT together. These 3 µops read register EBX, ECX, and EAX. But since we are writing to 

EAX before reading it, the read is free and we get no stall. The next three µops read EAX, 

ESI, EBX, EDI, and ECX. Since both EAX, EBX and ECX have been modified in the 

preceding triplet and not yet written back then they can be read for free, so that only ESI 

and EDI count, and we get no stall in the second triplet either. If the SUB ECX,EAX 

instruction in the first triplet is changed to CMP ECX,EAX then ECX is not written to, and we 

will get a stall in the second triplet for reading ESI, EDI and ECX. Similarly, if the INC EBX 

instruction in the first triplet is changed to NOP or something else then we will get a stall in 

the second triplet for reading ESI, EBX and EDI.  

 
To count the number of register reads, you have to include all registers that are read by the 
instruction. This includes integer registers, the flags register, the stack pointer, floating point 
registers and MMX registers. An XMM register counts as two registers, except when only 
part of it is used, as e.g. in ADDSS and MOVHLPS. Segment registers and the instruction 

pointer do not count. For example, in SETZ AL you count the flags register but not AL. ADD 

EBX,ECX counts both EBX and ECX, but not the flags because they are written to only. PUSH 

EAX reads EAX and the stack pointer and then writes to the stack pointer.  
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The FXCH instruction is a special case. It works by renaming, but doesn't read any values so 

that it doesn't count in the rules for register read stalls. An FXCH instruction generates a µop 

that neither reads nor writes any registers with regard to the rules for register read stalls. 
 
Don't confuse µop triplets with decode groups. A decode group can generate from 1 to 6 
µops, and even if the decode group has three instructions and generates three µops there is 
no guarantee that the three µops will go into the RAT together. 
 
The queue between the decoders and the RAT is so short (10 µops) that you cannot 
assume that register read stalls do not stall the decoders or that fluctuations in decoder 
throughput do not stall the RAT. 
 
It is very difficult to predict which µops go through the RAT together unless the queue is 
empty, and for optimized code the queue should be empty only after mispredicted branches. 
Several µops generated by the same instruction do not necessarily go through the RAT 
together; the µops are simply taken consecutively from the queue, three at a time. The 
sequence is not broken by a predicted jump: µops before and after the jump can go through 
the RAT together. Only a mispredicted jump will discard the queue and start over again so 
that the next three µops are sure to go into the RAT together.  
 
A register read stall can be detected by performance monitor counter number 0A2H, which 
unfortunately cannot distinguish it from other kinds of resource stalls. 
 
If three consecutive µops read more than two different registers then you would of course 
prefer that they do not go through the RAT together. The probability that they do is one 
third. The penalty of reading three or four written-back registers in one triplet of µops is one 
clock cycle. You can think of the one clock delay as equivalent to the load of three more 
µops through the RAT. With the probability of 1/3 of the three µops going into the RAT 
together, the average penalty will be the equivalent of 3/3 = 1 µop. To calculate the average 
time it will take for a piece of code to go through the RAT, add the number of potential 
register read stalls to the number of µops and divide by three. You can see that it doesn't 
pay to remove the stall by putting in an extra instruction unless you know for sure which 
µops go into the RAT together or you can prevent more than one potential register read stall 
by one extra instruction that writes to a critical register. 
 
In situations where you aim at a throughput of 3 µops per clock, the limit of two permanent 
register reads per clock cycle may be a problematic bottleneck to handle. Possible ways to 
remove register read stalls are: 
 

• Keep µops that read the same register close together so that they are likely to go 
into the same triplet. 

 

• Keep µops that read different registers spaced so that they cannot go into the same 
triplet. 

 

• Place µops that read a register no more than 9-12 µops after an instruction that 
writes to or modifies this register to make sure it hasn't been written back before it is 
read (it doesn't matter if you have a jump between as long as it is predicted). If you 
have reason to expect the register write to be delayed for whatever reason then you 
can safely read the register somewhat further down the instruction stream. 

 

• Use absolute addresses instead of pointers in order to reduce the number of register 
reads. 

 

• You may rename a register in a triplet where it doesn't cause a stall in order to 
prevent a read stall for this register in one or more later triplets. This method costs 
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an extra µop and therefore doesn't pay unless the expected average number of read 
stalls prevented is more than 1/3. 

 
For instructions that generate more than one µop, you may want to know the order of the 
µops generated by the instruction in order to make a precise analysis of the possibility of 
register read stalls. I have therefore listed the most common cases below.  
 
Writes to memory: 
A memory write generates two µops. The first one (to port 4) is a store operation, reading 
the register to store. The second µop (port 3) calculates the memory address, reading any 
pointer registers. Example: 
 

; Example 6.6. Register reads 

fstp qword [ebx+8*ecx] 

 
The first µop reads ST0, the second µop reads EBX and ECX. 

 
Read and modify 
An instruction that reads a memory operand and modifies a register by some arithmetic or 
logic operation generates two µops. The first one (port 2) is a memory load instruction 
reading any pointer registers, the second µop is an arithmetic instruction (port 0 or 1) 
reading and writing to the destination register and possibly writing to the flags. Example: 
 

; Example 6.7. Register reads 

add eax, [esi+20] 

 
The first µop reads ESI, the second µop reads EAX and writes EAX and flags. 

 
Read / modify / write 
A read / modify / write instruction generates four µops. The first µop (port 2) reads any 
pointer registers, the second µop (port 0 or 1) reads and writes to any source register and 
possibly writes to the flags, the third µop (port 4) reads only the temporary result that doesn't 
count here, the fourth µop (port 3) reads any pointer registers again. Since the first and the 
fourth µop cannot go into the RAT together, you cannot take advantage of the fact that they 
read the same pointer registers. Example: 
 

; Example 6.8. Register reads 

or [esi+edi], eax 

 
The first µop reads ESI and EDI, the second µop reads EAX and writes EAX and the flags, 

the third µop reads only the temporary result, the fourth µop reads ESI and EDI again. No 

matter how these µops go into the RAT you can be sure that the µop that reads EAX goes 

together with one of the µops that read ESI and EDI. A register read stall is therefore 

inevitable for this instruction unless one of the registers has been modified recently, for 
example by MOV ESI,ESI.  

 
Push register 
A push register instruction generates 3 µops. The first one (port 4) is a store instruction, 
reading the register. The second µop (port 3) generates the address, reading the stack 
pointer. The third µop (port 0 or 1) subtracts the word size from the stack pointer, reading 
and modifying the stack pointer.  
 
Pop register 
A pop register instruction generates 2 µops. The first µop (port 2) loads the value, reading 
the stack pointer and writing to the register. The second µop (port 0 or 1) adjusts the stack 
pointer, reading and modifying the stack pointer.  
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Call 
A near call generates 4 µops (port 1, 4, 3, 01). The first two µops read only the instruction 
pointer which doesn't count because it cannot be renamed. The third µop reads the stack 
pointer. The last µop reads and modifies the stack pointer.  
 
Return 
A near return generates 4 µops (port 2, 01, 01, 1). The first µop reads the stack pointer. The 
third µop reads and modifies the stack pointer. 
 

6.6 Out of order execution  

The reorder buffer (ROB) can hold 40 µops and 40 temporary registers (fig. 6.1), while the 
reservation station (RS) can hold 20 µops. Each µop waits until all its operands are ready 
and there is a vacant execution unit for it. This makes out-of-order execution possible.  
 
Writes to memory cannot execute out of order relative to other writes. There are four write 
buffers, so if you expect many cache misses on writes or you are writing to uncached 
memory then it is recommended that you schedule four writes at a time and make sure the 
processor has something else to do before you give it the next four writes. Memory reads 
and other instructions can execute out of order, except IN, OUT and serializing instructions.  

 
If the code writes to a memory address and soon after reads from the same address, then 
the read may by mistake be executed before the write because the ROB doesn't know the 
memory addresses at the time of reordering. This error is detected when the write address 
is calculated, and then the read operation (which was executed speculatively) has to be re-
done. The penalty for this is approximately 3 clocks. The best way to avoid this penalty is to 
make sure the execution unit has other things to do between a write and a subsequent read 
from the same memory address.  
 
There are several execution units clustered around five ports. Port 0 and 1 are for arithmetic 
operations etc. Simple move, arithmetic and logic operations can go to either port 0 or 1, 
whichever is vacant first. Port 0 also handles multiplication, division, integer shifts and 
rotates, and floating point operations. Port 1 also handles jumps and some MMX and XMM 
operations. Port 2 handles all reads from memory and a few string and XMM operations, 
port 3 calculates addresses for memory write, and port 4 executes all memory write 
operations. A complete list of the µops generated by code instructions with an indication of 
which ports they go to is contained in manual 4: "Instruction tables". Note that all memory 
write operations require two µops, one for port 3 and one for port 4, while memory read 
operations use only one µop (port 2). 
 
In most cases, each port can receive one new µop per clock cycle. This means that we can 
execute up to 5 µops in the same clock cycle if they go to five different ports, but since there 
is a limit of 3 µops per clock earlier in the pipeline you will never execute more than 3 µops 
per clock on average.  
 
You must make sure that no execution port receives more than one third of the µops if you 
want to maintain a throughput of 3 µops per clock. Use the table of µops in manual 4: 
"Instruction tables" and count how many µops go to each port. If port 0 and 1 are saturated 
while port 2 is free then you can improve your code by replacing some MOV 

register,register or MOV register,immediate instructions with MOV 

register,memory in order to move some of the load from port 0 and 1 to port 2.  

 
Most µops take only one clock cycle to execute, but multiplications, divisions, and many 
floating point operations take more. Floating point addition and subtraction takes 3 clocks, 
but the execution unit is fully pipelined so that it can receive a new FADD or FSUB in every 

clock cycle before the preceding ones are finished (provided, of course, that they are 
independent).  
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Integer multiplication takes 4 clocks, floating point multiplication 5, and MMX multiplication 3 
clocks. Integer and MMX multiplication is pipelined so that it can receive a new instruction 
every clock cycle. Floating point multiplication is partially pipelined: The execution unit can 
receive a new FMUL instruction two clocks after the preceding one, so that the maximum 

throughput is one FMUL per two clock cycles. The holes between the FMUL's cannot be filled 

by integer multiplications because they use the same execution unit. XMM additions and 
multiplications take 3 and 4 clocks respectively, and are fully pipelined. But since each 
logical XMM register is implemented as two physical 64-bit registers, you need two µops for 
a packed XMM operation, and the throughput will then be one arithmetic XMM instruction 
every two clock cycles. XMM add and multiply instructions can execute in parallel because 
they don't use the same execution port. 
 
Integer and floating point division takes up to 39 clocks and is not pipelined. This means 
that the execution unit cannot begin a new division until the previous division is finished. 
The same applies to square root and transcendental functions.  
 
You should, of course, avoid instructions that generate many µops. The LOOP XX 

instruction, for example, should be replaced by DEC ECX / JNZ XX. 

 
If you have consecutive POP instructions then you may break them up to reduce the number 

of µops: 
 

; Example 6.9a. Split up pop instructions 

pop  ecx 

pop  ebx 

pop  eax 

 

Can be changed to: 
 

; Example 6.9b. Split up pop instructions 

mov  ecx, [esp] 

mov  ebx, [esp+4] 

mov  eax, [esp+8] 

add  esp, 12 

 
The former code generates 6 µops, the latter generates only 4 and decodes faster. Doing 
the same with PUSH instructions is less advantageous because the split-up code is likely to 

generate register read stalls unless you have other instructions to put in between or the 
registers have been renamed recently. Doing it with CALL and RET instructions will interfere 

with prediction in the return stack buffer. Note also that the ADD ESP instruction can cause 

an AGI stall on earlier processors. 
 

6.7 Retirement  

Retirement is a process where the temporary registers used by the µops are copied into the 
permanent registers EAX, EBX, etc. When a µop has been executed, it is marked in the ROB 

as ready to retire. 
 
The retirement station can handle three µops per clock cycle. This may not seem like a 
problem because the throughput is already limited to 3 µops per clock in the RAT. But 
retirement may still be a bottleneck for two reasons. Firstly, instructions must retire in order. 
If a µop is executed out of order then it cannot retire before all preceding µops in the order 
have retired. And the second limitation is that taken jumps must retire in the first of the three 
slots in the retirement station. Just like decoder D1 and D2 can be idle if the next instruction 
only fits into D0, the last two slots in the retirement station can be idle if the next µop to 
retire is a taken jump. This is significant if you have a small loop where the number of µops 
in the loop is not divisible by three.  
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All µops stay in the reorder buffer (ROB) until they retire. The ROB can hold 40 µops. This 
sets a limit to the number of instructions that can execute during the long delay of a division 
or other slow operation. Before the division is finished the ROB will possibly be filled up with 
executed µops waiting to retire. Only when the division is finished and retired can the 
subsequent µops begin to retire, because retirement takes place in order.  
 
In case of speculative execution of predicted branches (see page 22) the speculatively 
executed µops cannot retire until it is certain that the prediction was correct. If the prediction 
turns out to be wrong then the speculatively executed µops are discarded without 
retirement. 
 
The following instructions cannot execute speculatively: memory writes, IN, OUT, and 

serializing instructions. 
 

6.8 Partial register stalls 

Partial register stall is a problem that occurs when we write to part of a 32-bit register and 
later read from the whole register or a bigger part of it. Example: 
 

; Example 6.10a. Partial register stall 

mov al,  byte [mem8] 

mov ebx, eax              ; Partial register stall 

 
This gives a delay of 5 - 6 clocks. The reason is that a temporary register has been 
assigned to AL to make it independent of AH. The execution unit has to wait until the write to 

AL has retired before it is possible to combine the value from AL with the value of the rest of 

EAX. The stall can be avoided by changing to code to:  

 
; Example 6.10b. Partial register stall removed 

movzx ebx, byte [mem8] 

and   eax, 0ffffff00h 

or    ebx, eax 

 
Of course we can also avoid the partial stalls by putting in other instructions after the write 
to the partial register so that it has time to retire before you read from the full register. 
 
You should be aware of partial stalls whenever you mix different data sizes (8, 16, and 32 
bits): 
 

; Example 6.11. Partial register stalls 

mov bh, 0 

add bx, ax              ; Stall 

inc ebx                 ; Stall 

 
We don't get a stall when reading a partial register after writing to the full register, or a 
bigger part of it: 
 

; Example 6.12. Partial register stalls 

mov eax, [mem32] 

add bl, al              ; No stall 

add bh, ah              ; No stall 

mov cx, ax              ; No stall 

mov dx, bx              ; Stall 

 
The easiest way to avoid partial register stalls is to always use full registers and use MOVZX 

or MOVSX when reading from smaller memory operands. These instructions are fast on the 

PPro, P2 and P3, but slow on earlier processors. Therefore, a compromise is offered when 
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you want your code to perform reasonably well on all processors. The replacement for 
MOVZX EAX,BYTE [MEM8] looks like this:  

 
; Example 6.13. Replacement for movzx 

xor  eax, eax 

mov  al,  byte [mem8] 

 
The PPro, P2 and P3 processors make a special case out of this combination to avoid a 
partial register stall when later reading from EAX. The trick is that a register is tagged as 

empty when it is XOR'ed with itself. The processor remembers that the upper 24 bits of EAX 

are zero, so that a partial stall can be avoided. This mechanism works only on certain 
combinations:  
 

; Example 6.14. Removing partial register stalls with xor 

xor eax, eax 

mov al, 3 

mov ebx, eax            ; No stall 

 

xor ah, ah 

mov al, 3 

mov bx, ax              ; No stall 

 

xor eax, eax 

mov ah, 3 

mov ebx, eax            ; Stall 

 

sub ebx, ebx 

mov bl, dl 

mov ecx, ebx            ; No stall 

 

mov ebx, 0 

mov bl, dl 

mov ecx, ebx            ; Stall 

 

mov bl, dl 

xor ebx, ebx            ; No stall 

 
Setting a register to zero by subtracting it from itself works the same as the XOR, but setting 

it to zero with the MOV instruction doesn't prevent the stall. 

 
We can set the XOR outside a loop: 

 
; Example 6.15. Removing partial register stalls with xor outside loop 

      xor eax, eax 

      mov ecx, 100 

LL:   mov al, [esi] 

      mov [edi], eax          ; no stall 

      inc esi 

      add edi, 4 

      dec ecx 

      jnz LL 

 
The processor remembers that the upper 24 bits of EAX are zero as long as you don't get an 

interrupt, misprediction, or other serializing event. 
 
You should remember to neutralize any partial register you have used before calling a 
subroutine that might push the full register: 
 

; Example 6.16. Removing partial register stall before call 

add  bl, al 

mov  [mem8], bl 
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xor  ebx, ebx             ; neutralize bl 

call _highLevelFunction 

 
Many high-level language procedures push EBX at the start of the procedure, and this would 

generate a partial register stall in the example above if you hadn't neutralized BL. 

 
Setting a register to zero with the XOR method doesn't break its dependence on earlier 

instructions on PPro, P2, P3 and PM (but it does on P4). Example: 
 

; Example 6.17. Remove partial register stalls and break dependence 

div ebx 

mov [mem], eax 

mov eax, 0              ; Break dependence 

xor eax, eax            ; Prevent partial register stall 

mov al, cl 

add ebx, eax 

 
Setting EAX to zero twice here seems redundant, but without the MOV EAX,0 the last 

instructions would have to wait for the slow DIV to finish, and without XOR EAX,EAX you 

would have a partial register stall. 
 
The FNSTSW AX instruction is special: in 32-bit mode it behaves as if writing to the entire 

EAX. In fact, it does something like this in 32-bit mode: 

 
; Example 6.18. Equivalence model for fnstsw ax 

and    eax, 0ffff0000h 

fnstsw [temp] 

or     eax, [temp] 

 
hence, you don't get a partial register stall when reading EAX after this instruction in 32 bit 

mode: 
 

; Example 6.19. Partial register stalls with fnstsw ax 

fnstsw ax / mov ebx,eax         ; Stall only if 16 bit mode 

mov ax,0  / fnstsw ax           ; Stall only if 32 bit mode 

Partial flags stalls  

The flags register can also cause partial register stalls: 
 

; Example 6.20. Partial flags stall 

cmp  eax, ebx 

inc  ecx 

jbe  xx          ; Partial flags stall 

 
The JBE instruction reads both the carry flag and the zero flag. Since the INC instruction 

changes the zero flag, but not the carry flag, the JBE instruction has to wait for the two 

preceding instructions to retire before it can combine the carry flag from the CMP instruction 

and the zero flag from the INC instruction. This situation is likely to be a bug in the assembly 

code rather than an intended combination of flags. To correct it, change INC ECX to ADD 

ECX,1. A similar bug that causes a partial flags stall is SAHF / JL XX. The JL instruction 

tests the sign flag and the overflow flag, but SAHF doesn't change the overflow flag. To 

correct it, change JL XX to JS XX.  

 
Unexpectedly (and contrary to what Intel manuals say) we also get a partial flags stall after 
an instruction that modifies some of the flag bits when reading only unmodified flag bits: 
 

; Example 6.21. Partial flags stall when reading unmodified flag bits 

cmp eax, ebx 

inc ecx 
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jc  xx          ; Partial flags stall 

 
but not when reading only modified bits: 
 

; Example 6.22. No partial flags stall when reading modified bits 

cmp eax, ebx 

inc ecx 

jz  xx          ; No stall 

 
Partial flags stalls are likely to occur on instructions that read many or all flags bits, i.e. 
LAHF, PUSHF, PUSHFD. The following instructions cause partial flags stalls when followed by 

LAHF or PUSHF(D): INC, DEC, TEST, bit tests, bit scan, CLC, STC, CMC, CLD, STD, CLI, 

STI, MUL, IMUL, and all shifts and rotates. The following instructions do not cause partial 

flags stalls: AND, OR, XOR, ADD, ADC, SUB, SBB, CMP, NEG. It is strange that TEST and AND 

behave differently while, by definition, they do exactly the same thing to the flags. You may 
use a SETcc instruction instead of LAHF or PUSHF(D) for storing the value of a flag in order 

to avoid a stall.  
 
Examples: 
 

; Example 6.23. Partial flags stalls 

inc eax   / pushfd      ; Stall 

add eax,1 / pushfd      ; No stall 

 

shr eax,1 / pushfd      ; Stall 

shr eax,1 / or eax,eax / pushfd   ; No stall 

 

test ebx,ebx / lahf     ; Stall 

and  ebx,ebx / lahf     ; No stall 

test ebx,ebx / setz al  ; No stall 

 

clc / setz al           ; Stall 

cld / setz al           ; No stall 

 
The penalty for partial flags stalls is approximately 4 clocks. 

Flags stalls after shifts and rotates  

You can get a stall resembling the partial flags stall when reading any flag bit after a shift or 
rotate, except for shifts and rotates by one (short form): 
 

; Example 6.24. Partial flags stalls after shift and rotate 

shr eax,1 / jz xx                ; No stall 

shr eax,2 / jz xx                ; Stall 

shr eax,2 / or eax,eax / jz xx   ; No stall 

 

shr eax,5 / jc xx                ; Stall 

shr eax,4 / shr eax,1 / jc xx    ; No stall 

 

shr eax,cl / jz xx               ; Stall, even if cl = 1 

shrd eax,ebx,1 / jz xx           ; Stall 

rol ebx,8 / jc xx                ; Stall 

 
The penalty for these stalls is approximately 4 clocks. 
 

6.9 Store forwarding stalls  

A store forwarding stall is somewhat analogous to a partial register stall. It occurs when you 
mix data sizes for the same memory address: 
 

; Example 6.25. Store-to-load forwarding stall 
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mov byte [esi], al 

mov ebx, dword [esi]        ; Stall. Big read after small write 

 
The large read after a small write prevents store-to-load forwarding, and the penalty for this 
is approximately 7 - 8 clock cycles. 
 
Unlike the partial register stalls, you also get a store forwarding stall when you write a bigger 
operand to memory and then read part of it, if the smaller part doesn't start at the same 
address: 
 

; Example 6.26. Store-to-load forwarding stall 

mov dword [esi], eax 

mov bl, byte [esi]          ; No stall 

mov bh, byte [esi+1]        ; Stall. Not same start address 

 
We can avoid this stall by changing the last line to MOV BH,AH, but such a solution is not 

possible in a situation like this: 
 

; Example 6.27. Store-to-load forwarding stall 

fistp qword [edi] 

mov eax, dword [edi] 

mov edx, dword [edi+4]      ; Stall. Not same start address 

 
Interestingly, you can get a get a bogus store forwarding stall when writing and reading 
completely different addresses if they happen to have the same set-value in different cache 
banks: 
 

; Example 6.28. Bogus store-to-load forwarding stall 

mov byte [esi], al 

mov ebx, dword [esi+4092]   ; No stall 

mov ecx, dword [esi+4096]   ; Bogus stall 

 

6.10 Bottlenecks in PPro, P2, P3 

When optimizing code for these processors, it is important to analyze where the bottlenecks 
are. Spending time on optimizing away one bottleneck doesn't make sense if another 
bottleneck is narrower. 
 
If you expect code cache misses, then you should restructure your code to keep the most 
used parts of code together. 
 
If you expect many data cache misses, then forget about everything else and concentrate 
on how to restructure the data to reduce the number of cache misses (page 10), and avoid 
long dependency chains after a data read cache miss. 
 
If you have many divisions, then try to reduce them as described in manual 1: "Optimizing 
software in C++" and manual 2: "Optimizing subroutines in assembly language", and make 
sure the processor has something else to do during the divisions. 
 
Dependency chains tend to hamper out-of-order execution. Try to break long dependency 
chains, especially if they contain slow instructions such as multiplication, division, and 
floating point instructions. See the manual 1: "Optimizing software in C++" and manual 2: 
"Optimizing subroutines in assembly language". 
 
If you have many jumps, calls, or returns, and especially if the jumps are poorly predictable, 
then try if some of them can be avoided. Replace poorly predictable conditional jumps with 
conditional moves if it doesn't increase dependencies. Inline small procedures. (See manual 
2: "Optimizing subroutines in assembly language"). 
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If you are mixing different data sizes (8, 16, and 32 bit integers) then look out for partial 
stalls. If you use PUSHF or LAHF instructions then look out for partial flags stalls. Avoid 

testing flags after shifts or rotates by more than 1 (page 84). 
 
If you aim at a throughput of 3 µops per clock cycle then be aware of possible delays in 
instruction fetch and decoding (page 74), especially in small loops. Instruction decoding is 
often the narrowest bottleneck in these processors, and unfortunately this factor makes 
optimization quite complicated. If you are making a modification in the beginning of your 
code in order to improve it, then this modification may have the side effect of moving the 
IFETCH boundaries and 16-byte boundaries in the subsequent code. This change of 
boundaries can have unpredicted effects on the total clock count which obfuscates the 
effect of the change you made. 
 
The limit of two permanent register reads per clock cycle may reduce your throughput to 
less than 3 µops per clock cycle (page 78). This is likely to happen if you often read 
registers more than 4 clock cycles after they last were modified. This may, for example, 
happen if you often use pointers for addressing your data but seldom modify the pointers. 
 
A throughput of 3 µops per clock requires that no execution port gets more than one third of 
the µops (page 82). 
 
The retirement station can handle 3 µops per clock, but may be slightly less effective for 
taken jumps (page 83). 
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7 Intel Pentium M pipeline 

7.1 The pipeline in PM 

This chapter applies to the Intel Pentium M, Core Solo and Core Duo, but not to Core 2. The 
abbreviation PM in this manual includes Pentium M, Core Solo and Core Duo. 
 
The PM builds on the same basic microarchitecture as PPro, P2 and P3, while the 
P4/NetBurst design has been discontinued. The main stages in the pipeline are: branch 
prediction, instruction fetch, instruction decoding, register renaming, reorder buffer read, 
reservation station, execution ports, reorder buffer write-back, and retirement. 
 
Several minor modifications have been made, but the overall functioning is almost identical 
to the PPro pipeline, as shown in figure 6.1 page 73. The exact structure of the PM pipeline 
has not been revealed by Intel. The only thing they have told is that the pipeline is longer, so 
the following discussion is mainly guesswork based on my own measurements. 
 
The total length of the pipeline can be estimated from the branch misprediction penalty (p. 
12). This penalty is 3-4 clock cycles more than for the P2 and P3. This indicates that the 
pipeline may have 3 or 4 extra stages. We may try to guess what these extra stages are 
used for.  
 
The branch prediction mechanism is much more complicated in PM than in previous 
processors (p. 26), so it is likely that this mechanism requires three pipeline stages instead 
of two. 
 
Instruction fetching has also been improved so that 16-byte boundaries or cache line 
boundaries do not cause delays in jumps (p. 91 below). This may require an extension of 
the instruction fetch unit from 3 to 4 stages.  
 
The new stack engine (p. 95) is implemented near the instruction decoding, according to the 
Intel publication mentioned below. It is almost certain that at least one extra pipeline stage is 
required for the stack engine and for inserting stack synchronization µops (p. 95). This claim 
is based on my observation that an instruction that is decoded by D1 or D2 can generate a 
synchronization µop without adding to the decode time even though these decoders can 
only generate one µop. The extra synchronization µop must therefore be generated at a 
pipeline stage that comes after the stage that contains decoders D0-2. 
 
One may wonder if the µop fusion mechanism (explained below, p. 93) requires extra 
stages in the pipeline. The number of stages from the ROB-read to the ROB-writeback 
stage can be estimated by measuring register read stalls (p. 78). My measurements indicate 
that this distance is still only 3 clocks. We can therefore conclude that no extra pipeline 
stage is used for splitting fused µops before the execution units. The two parts of a fused 
µop share the same ROB entry, which is submitted to two different ports, so there is 
probably not any extra pipeline stage for joining the split µops before the retirement station, 
either. 
 
The RAT, ROB-read, and RS stages have all been modified in order to handle fused µops 
with three input dependences. It is possible that an extra pipeline stage has been added to 
the RAT because of the extra workload in this stage, but I have no experimental evidence 
supporting such a hypothesis. The RS still needs only one clock according to my 
measurements of the distance from ROB-read to ROB-writeback mentioned above. There 

have been speculations that the RS and ROB might be smaller than in previous processors, 
but this is not confirmed by my measurements. The RS and ROB can probably hold 20 and 
40 fused µops respectively. 
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The conclusion is that the PM pipeline probably has 3 or 4 stages more than the PPro 
pipeline, including one extra stage for branch prediction, one extra stage for instruction 
fetching, and one extra stage for the stack engine. 
 
The PM has many power-saving features that turn off certain parts of the internal buses, 
execution units, etc. when they are not used. Whether any of these new features require 
extra pipeline stages is unknown. These power-saving features have the positive side effect 
that the maximum clock frequency we can have without overheating the chip is increased. 
 
The µop fusion, stack engine and complicated branch prediction are improvements which 
not only lower the power consumption but also speed up execution. 
 
(Literature: S. Gochman, et al.: The Intel Pentium M Processor: Microarchitecture and 
Performance. Intel Technology Journal, vol. 7, no. 2, 2003). 
 

7.2 The pipeline in Core Solo and Duo 

I have not had the chance to do a thorough testing of the Core Solo and Core Duo yet, but a 
preliminary testing shows that its kernel is very similar to the Pentium M. The Core Solo/Duo 
have more advanced power saving features than the Pentium M, including the "SpeedStep" 
technology that enables it to lower the CPU voltage and clock frequency when the workload 
is small. The Core Duo has two processor cores with separate level-1 caches and a shared 
level-2 cache. 
 
 (Literature: S. Gochman, et al.: Introduction to Intel Core Duo Processor Architecture. Intel 
Technology Journal, vol. 10, no. 2, 2006). 
 

7.3 Instruction fetch 

Instruction fetching in the PM works the same way as in PPro, P2 and P3 (see p. 73) with 
one important improvement. Fetching of instructions after a predicted jump is more efficient 
and is not delayed by 16-byte boundaries. The delays in table 6.1 (p. 74) do not apply to the 
PM and it is possible to have one jump per clock cycle. For this reason, it is no longer 
important to align subroutine entries and loop entries. The only reason for aligning code on 
the PM is to improve cache efficiency. 
 
Instructions are still fetched in IFETCH blocks (p. 73) which are up to 16 bytes long. The PM 
can fetch a maximum of one IFETCH block per clock cycle. The first IFETCH block after a 
predicted jump will normally begin at the first instruction. This is different from the previous 
processors where the placement of the first IFETCH block was uncertain. The next IFETCH 
block will begin at the last instruction boundary that is no more than 16 bytes away. Thus, 
you can predict where all IFETCH blocks are by looking at the output listing of the 
assembler. Assume that the first IFETCH block starts at a label jumped to. The second 
IFETCH block is found by going 16 bytes forward. If there is no instruction boundary there 
then go backwards to the nearest instruction boundary. This is where the second IFETCH 
block starts. Knowing where the IFETCH boundaries are can help improve decoding speed, 
as explained below.  
 

7.4 Instruction decoding 

Instruction decoding on the PM works the same way as on PPro, P2 and P3, as explained 
on page 74. There are three parallel decoders: D0, D1 and D2. Decoder D0 can handle any 
instruction. D1 and D2 can handle only instructions that generate no more than one µop, are 
no more than 8 bytes long, and have no more than one prefix. 
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It is possible to decode three instructions in the same clock cycle if they are contained in the 
same IFETCH block and the second and third instruction satisfy the criteria for going into 
decoders D1 and D2. 
 
Some complex instructions take more than one clock cycle to decode: 
 

• Instructions that generate more than four µops take more than one clock cycle to 
decode. 
 

• Instructions with more than one prefix take 2+n clock cycles to decode, where n is 
the total number of prefixes. See manual 2: "Optimizing subroutines in assembly 
language" for an overview of instruction prefixes. Instructions with more than one 
prefix should be avoided. 
 

• An operand size prefix causes problems if the size of the rest of the instruction is 
changed by the prefix. Decoder D0 will need an extra clock cycle to re-interpret the 
instruction. D1 and D2 are stalled in the meantime because the instruction length is 
re-adjusted. This problem happens when an instruction has a 16-bit immediate 
operand in 32-bit mode or a 32-bit immediate operand in 16-bit mode. See p. 77 for 
examples. 
 

• The same problem occurs if an address size prefix changes the length of the rest of 
the instruction, for example LEA EAX,[BX+200] in 32-bit mode or 

LEA AX,[EBX+ECX] in 16-bit mode. 

 
The maximum output of the decoders is six µops per clock cycle. This speed is obtained if 
the abovementioned problems are avoided and instructions are scheduled according to a 
4-1-1 pattern so that every third instruction generates 4 µops and the next two instructions 
generate 1 µop each. The instruction that generates 4 µops will go into decoder D0, and the 
next two instructions will go into D1 and D2. See manual 4: "Instruction tables" for a list of 
how many µops each instruction generates, and use the values listed under "µops fused 
domain". The first instruction in an IFETCH block must go to decoder D0. If this instruction 
was intended for D1 or D2 according to the 4-1-1 pattern, then the pattern is broken and a 
clock cycle is lost. 
 
It is superfluous to schedule the code for a decoding output of six µops per clock cycle 
because the throughput in later stages is only three µops per clock cycle. For example, a 
2-1-2-1 pattern will generate three µops per clock cycle. But it is recommended to aim at an 
average output somewhat higher than three µops per clock cycle because you may lose a 
clock cycle when an instruction intended for decoder D1 or D2 falls at the beginning of an 
IFETCH block. 
 
If decoding speed is critical then you may reduce the risk of single-µop instructions falling in 
the beginning of IFETCH blocks by reducing instruction sizes. See manual 2: "Optimizing 
subroutines in assembly language" about optimizing for code size. A possibly more effective 
strategy is to determine where each IFETCH block begins according to the method 
explained on p. 91 and then adjust instruction lengths so that only instructions intended for 
decoder D0 fall at the beginnings of IFETCH blocks. See the chapter "Making instructions 
longer for the sake of alignment" in manual 2: "Optimizing subroutines in assembly 
language" for how to make instruction codes longer. This method is tedious and should only 
be used if decoding is a bottleneck. Example: 
 

; Example 7.1. Arranging IFETCH blocks 

LL:  movq   mm0,[esi+ecx]   ; 4 bytes long 

     paddd  mm0,[edi+ecx]   ; 4 bytes long 

     psrld  mm0,1           ; 4 bytes long 

     movq   [esi+ecx],mm0   ; 4 bytes long 

     add    ecx,8           ; 3 bytes long 
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     jnz    LL              ; 2 bytes long 

 
This loop calculates the average of two lists of integers. The loop has six instructions which 
generate one µop each. The first four instructions are all four bytes long. If we assume that 
the first IFETCH block starts at LL:, then the second IFETCH block will start 16 bytes after 

this, which is at the beginning of ADD ECX,8. The first three instructions will be decoded in 

one clock cycle. The fourth instruction will be decoded alone in the second clock cycle 
because there are no more instructions in the first IFETCH block. The last two instructions 
will be decoded in the third clock cycle. The total decoding time is three clock cycles per 
iteration of the loop. We can improve this by adding a DS segment prefix, for example to the 
fourth instruction. This makes the instruction one byte longer, so that the first IFETCH block 
now ends before the end of the fourth instruction. This causes the second IFETCH block to 
be moved up to the beginning of the fourth instruction. Now the last three instructions are in 
the same IFETCH block so that they can be decoded simultaneously in D0, D1 and D2, 
respectively. The decoding time is now only two clock cycles for the six instructions. The 
total execution time has been reduced from three to two clock cycles per iteration because 
nothing else limits the speed, except possibly cache misses. 
 

7.5 Loop buffer 

The PM has a loop buffer of 4x16 bytes storing predecoded instructions. This is an 
advantage in tiny loops where instruction fetching is a bottleneck. The decoders can reuse 
the fetched instructions up to 64 bytes back. This means that instruction fetching is not a 
bottleneck in a loop that has no more than 64 bytes of code and is aligned by 16. Alignment 
of the loop is not necessary if the loop has no more than 49 bytes of code because a loop of 
this size will fit into the 4*16 bytes even in the worst case of misalignment. 
 

7.6 Micro-op fusion 

The register renaming (RAT) and retirement (RRF) stages in the pipeline are bottlenecks 
with a maximum throughput of 3 µops per clock cycle. In order to get more through these 
bottlenecks, the designers have joined some operations together that were split in two µops 
in previous processors. They call this µop fusion. The fused operations share a single µop in 
most of the pipeline and a single entry in the reorder buffer (ROB). But this single ROB entry 
represents two operations that have to be done by two different execution units. The fused 
ROB entry is dispatched to two different execution ports but is retired as a single unit. 
 
The µop fusion technique can only be applied to two types of combinations: memory write 
operations and read-modify operations. 
 
A memory write operation involves both the calculation of the memory address and transfer 
of the data. On previous processors, these two operations have been split into two µops, 
where port 3 takes care of the address calculation and port 4 takes care of the data transfer. 
These two µops are fused together in most PM instructions that write to memory. A memory 
read operation requires only one µop (port 2), as it does in previous processors. 
 
The second type of operations that can be fused is read-modify operations. For example, 
the instruction  ADD EAX,[mem32]  involves two operations: The first operation (port 2) 

reads from [mem32], the second operation (port 0 or 1) adds the value that has been read 

to EAX. Such instructions have been split into two µops on previous processors, but can be 

fused together on the PM. This applies to many read-modify instructions that work on 
general purpose registers, floating point stack registers and MMX registers, but not to read-
modify instructions that work on XMM registers. 
 
A read-modify-write operation, such as  ADD [mem32],EAX  does not fuse the read and 

modify µops, but it does fuse the two µops needed for the write. 
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Examples of µop fusion: 
 

; Example 7.2. Uop fusion 

mov    [esi], eax          ; 1 fused uop 

add    eax, [esi]          ; 1 fused uop 

add    [esi], eax          ; 2 single + 1 fused uop 

fadd   qword [esi]         ; 1 fused uop 

paddw  mm0,  qword [esi]   ; 1 fused uop 

paddw  xmm0, xword [esi]   ; 4 uops, not fused 

addss  xmm0, dword [esi]   ; 2 uops, not fused 

movaps xword [esi], xmm0   ; 2 fused uops 

 
As you can see, the packed addition (PADDW) read-modify instruction can be fused in the 

Pentium M if the destination is a 64-bit MMX register, but not if the destination is a 128-bit 
XMM register. The latter instruction requires two µops for reading 64 bits each, and two 
more µops for adding 64 bits each. The ADDSS instruction cannot be fused, even though it 

uses only the lower part of the XMM register. No read-modify instruction that involves an 
XMM register can be fused, but the XMM memory write instructions can be fused, as the 
last example shows. 
 
The Core Solo/Duo has more opportunities for µop fusion of XMM instructions. A 128-bit 
XMM instruction is handled by two or more 64-bit µops in the 64-bit execution units. Two 64-
bit µops can be "laminated" together in the decoders and early pipeline stages, according to 
the article cited in chapter 7.2. It is not clear whether there is any significant difference 
between "fusion" and "lamination" of µops. The consequence of this mechanism is that the 
throughput of XMM instructions is increased in the decoders, but not in the execution units 
of the Core Solo/Duo. 
 
The reorder buffer (ROB) of PM has been redesigned so that each entry can have up to 
three input dependences, where previous designs allowed only two. For example, the 
instructions MOV [ESI+EDI],EAX and ADD EAX,[ESI+EDI] both have three input 

dependences, in the sense that both EAX, ESI and EDI have to be ready before all parts of 

the instructions can be executed. The unfused µops that go to the execution units still have 
only two input dependences. MOV [ESI+EDI],EAX is split into an address calculation 

µop that depends on ESI and EDI, and a store µop that depends on the output of the 

address calculation µop and on EAX. Similarly, ADD EAX,[ESI+EDI] is split into a read 

µop that depends on ESI and EDI, and an ADD µop that depends on the output of the read 

µop and on EAX. µops that are not fused can only have two input dependences. For 

example, the instructions ADC EAX,EBX and CMOVE EAX,EBX both have three input 

dependences: EAX, EBX and the flags. Since neither of these instructions can be fused, they 

must generate two µops each. 
 
µop fusion has several advantages: 
 

• Decoding becomes more efficient because an instruction that generates one fused 
µop can go into any of the three decoders while an instruction that generates two 
µops can go only to decoder D0. 
 

• The load on the bottlenecks of register renaming and retirement is reduced when 
fewer µops are generated. 
 

• The capacity of the reorder buffer (ROB) is increased when a fused µop uses only 
one entry. 
 

If a program can benefit from these advantages then it is preferred to use instructions that 
generate fused µops over instructions that don't. If one or more execution unit is the only 
bottleneck, then µop fusion doesn't matter because the fused µops are split in two when 
sent to the execution units. 
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The table in manual 4: "Instruction tables" shows the fused and unfused µops generated by 
each instruction in the PM. The column "µops fused domain" indicates the number of µops 
generated by the decoders, where a fused µop counts as one. The columns under "µops 
unfused domain" indicates the number of µops that go to each execution port. The fused 
µops are split at the execution units so that a fused memory write µop is listed both under 
port 3 and 4, and a fused read-modify µop is listed both under port 2 and port 0 or 1. The 
instructions that generate fused µops are the ones where the number listed under "µops 
fused domain" is less than the sum of the numbers listed under "µops unfused domain". 
 

7.7 Stack engine 

Stack instructions such as PUSH, POP, CALL and RET all modify the stack pointer ESP. 

Previous processors used the integer ALU for adjusting the stack pointer. For example, the 
instruction PUSH EAX generated three µops on the P3 processor, two for storing the value 

of EAX, and one for subtracting 4 from ESP. On PM, the same instruction generates only 

one µop. The two store µops are joined into one by the mechanism of µop fusion, and the 
subtraction of 4 from ESP is done by a special adder that is dedicated for the stack pointer 

only, called the stack engine. The stack engine is placed immediately after the instruction 
decoders in the pipeline, before the out-of-order core. The stack engine can handle three 
additions per clock cycle. Consequently, no instruction will have to wait for the updated 
value of the stack pointer after a stack operation. One complication by this technique is that 
the value of ESP may also be needed or modified in the out-of-order execution units. A 

special mechanism is needed for synchronizing the value of the stack pointer in the stack 
engine and the out-of-order core. The true logical value of the stack pointer ESPP is 
obtained as a 32-bit value ESPO stored in the out-of-order core or the permanent register file 
and a signed 8-bit delta-value ESPd stored in the stack engine:  
 

ESPP = ESPO + ESPd. 
 

The stack engine puts the delta value ESPd into the address syllable of every stack 
operation µop as an offset so that it can be added to ESPO in the address calculation 
circuitry at port 2 or 3. The value of ESPd cannot be put into every possible µop that uses 
the stack pointer, only the µops generated by PUSH, POP, CALL and RET. If the stack engine 

meets a µop other than these that needs ESP in the out-of-order execution units, and if 

ESPd is not zero, then it inserts a synchronization µop that adds ESPd to ESPO and sets 
ESPd to zero. The following µop can then use ESPO as the true value of the stack pointer 
ESPP. The synchronization µop is generated after the instruction has been decoded, and 
does not influence the decoders in any way. 
 
The synchronization mechanism can be illustrated by a simple example: 
 

; Example 7.3. Stack synchronization 

push  eax  

push  ebx  

mov   ebp, esp 

mov   eax, [esp+16] 

 
This sequence will generate four µops. Assuming that ESPd is zero when we start, the first 
PUSH instruction will generate one µop that writes EAX to the address [ESPO-4] and sets 

ESPd = -4. The second PUSH instruction will generate one µop that writes EBX to the 

address [ESPO-8] and sets ESPd = -8. When the stack engine receives the µop for MOV 

EBP,ESP from the decoders, it inserts a synchronization µop that adds -8 to ESPO. At the 

same time, it sets ESPd to zero. The synchronization µop comes before the MOV EBP,ESP 

µop so that the latter can use ESPO as the true value of ESPP. The last instruction, MOV 

EAX,[ESP+16], also needs the value of ESP, but we will not get another synchronization 
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µop here because the value of ESPd is zero at this point, so a synchronization µop would be 
superfluous. 
 
Instructions that require synchronization of ESPO include all instructions that have ESP as 

source or destination operand, e.g. MOV EAX,ESP,  MOV ESP,EAX  and  ADD ESP,4, as 

well as instructions that use ESP as a pointer, e.g. MOV EAX,[ESP+16]. It may seem 

superfluous to generate a synchronization µop before an instruction that only writes to ESP. 

It would suffice to set ESPd to zero, but it would probably complicate the logic to make the 
distinction between, say, MOV ESP,EAX and ADD ESP,EAX. 

 
A synchronization µop is also inserted when ESPd is near overflow. The 8-bit signed value 
of ESPd would overflow after 32 PUSH EAX or 64 PUSH AX instructions. In most cases, we 

will get a synchronization µop after 29 PUSH or CALL instructions in order to prevent 

overflow in case the next clock cycle gives PUSH instructions from all three decoders. The 

maximum number of PUSH instructions before a synchronization µop is 31 in the case that 

the last three PUSH instructions are decoded in the same clock cycle. The same applies to 

POP and RET instructions (Actually, you can have one more POP than PUSH because the 

value stored is -ESPd and the minimum of a signed 8-bit number is -128, while the 
maximum is +127). 
 
The synchronization µops are executed at any one of the two integer ALU's at port 0 and 1. 
They retire as any other µops. The PM has a recovery table that is used for undoing the 
effect of the stack engine in mispredicted branches. 
 
The following example shows how synchronization µops are generated in a typical program 
flow: 
 

; Example 7.4. Stack synchronization 

      push 1 

      call FuncA 

      pop  ecx 

      push 2 

      call FuncA 

      pop  ecx 

... 

... 

FuncA: 

      push ebp 

      mov  ebp, esp       ; Synch uop first time, but not second time 

      sub  esp, 100 

      mov  eax, [ebp+8] 

      mov  esp, ebp 

      pop  ebp 

      ret 

 

The MOV EBP,ESP instruction in FuncA comes after a PUSH, a CALL, and another PUSH. If 

ESPd was zero at the start, then it will be -12 here. We need a synchronization µop before 
we can execute MOV EBP,ESP. The SUB ESP,100 and MOV ESP,EBP don't need 

synchronization µops because there have been no PUSH or POP since the last 

synchronization. After this, we have the sequence POP / RET / POP / PUSH / CALL / PUSH 

before we meet MOV EBP,ESP again in the second call to FUNCA. ESPd has now been 

counted up to 12 and back again to 0, so we don't need a synchronization µop the second 
time we get here. If POP ECX is replaced by ADD ESP,4 then we will need a 

synchronization µop at the ADD ESP,4 as well as at the second instance of MOV 

EBP,ESP. The same will happen if we replace the sequence POP ECX / PUSH 2 by MOV 

DWORD [ESP],2 but not if it replaced by MOV DWORD [EBP],2. 
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We can make a rule for predicting where the synchronization µops are generated by 
dividing instructions into the following classes: 
 

1. Instructions that use the stack engine: PUSH, POP, CALL, RET, except RET n. 

 
2. Instructions that use the stack pointer in the out-of-order core, i.e. instructions that 

have ESP as source, destination or pointer, and CALL FAR, RETF, ENTER. 

 
3. Instructions that use the stack pointer both in the stack engine and in the out-of-

order core, e.g. PUSH ESP, PUSH [ESP+4], POP [ESP+8], RET n. 

 
4. Instructions that always synchronize ESPO: PUSHF(D), POPF(D), PUSHA(D), 

POPA(D), LEAVE. 

 
5. Instructions that don't involve the stack pointer in any way. 

 
A sequence of instructions from class 1 and 5 will not generate any synchronization µops, 
unless ESPd is near overflow. A sequence of instructions from class 2 and 5 will not 
generate any synchronization µops. The first instruction from class 2 after an instruction 
from class 1 will generate a synchronization µop, except if ESPd is zero. Instructions from 
class 3 will generate synchronization µops in most cases. Instructions from class 4 generate 
a synchronization µop from the decoder rather than from the stack engine, even if ESPd = 0. 
 
You may want to use this rule for reducing the number of synchronization µops in cases 
where the throughput of 3 µops per clock is a bottleneck and in cases where execution port 
0 and 1 are both saturated. You don't have to care about synchronization µops if the 
bottleneck is elsewhere. 
 
(Literature: S. Gochman, et al.: The Intel Pentium M Processor: Microarchitecture and 
Performance. Intel Technology Journal, vol. 7, no. 2, 2003). 
 

7.8 Register renaming 

Register renaming is controlled by the register alias table (RAT) and the reorder buffer 
(ROB), shown in figure 6.1. The µops from the decoders and the stack engine go to the 
RAT via a queue that can hold approximately 10 µops, and then to the ROB-read and the 
reservation station. The RAT can handle 3 µops per clock cycle. This means that the overall 
throughput of the microprocessor can never exceed 3 fused µops per clock cycle on 
average. 
 
The RAT can rename three registers per clock cycle, and it can even rename the same 
register three times in one clock cycle. 
 
A code with many renamings can sometimes cause stalls, which are difficult to predict. My 
hypothesis is that these stalls occur in the RAT when it is out of temporary registers. The 
PM has 40 temporary registers. 
 
The Core Solo/Duo can rename the floating point control word in up to four temporary 
registers, while the Pentium M cannot rename the floating point control word. This is 
important for the performance of floating point to integer conversions in C/C++ code. 
 

7.9 Register read stalls 

The PM is subject to the same kind of register read stalls as the PPro, P2 and P3, as 
explained on page 78. The ROB-read stage can read no more than three different registers 
from the permanent register file per clock cycle. This applies to all general purpose 
registers, the stack pointer, the flags register, floating point registers, MMX registers and 
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XMM registers. An XMM register counts as two, because it is stored as two 64-bit registers. 
There is no limitation on registers that have been modified recently by a preceding µop so 
that the value has not yet passed through the ROB-writeback stage. See page 78 for a 
detailed explanation of register read stalls. 
 
Previous processors allowed only two permanent register reads per clock cycle. This value 
may have been increased to three in the PM, though this is uncertain. Three register read 
ports may not be sufficient for preventing register read stalls, because many instructions 
generate fewer µops on PM than on previous processors, thanks to µop fusion and the 
stack engine, but not fewer register reads. This makes the µop stream more compact and 
therefore increases the average number of register reads per µop. A fused µop can have up 
to three input registers, while previous processors allowed only two inputs per µop. If three 
fused µops with three input registers each go into the ROB-read stage in the same clock 
cycle then we can have a maximum of nine inputs to read. If these nine input registers are 
all different and all in the permanent register file, then it will take three clock cycles to read 
them all through the three register read ports. 
 
The following example shows how register read stalls can be removed: 
 

; Example 7.5. Register read stalls 

inc  eax            ; (1) read eax, write eax 

add  ebx, eax       ; (2) read ebx eax, write ebx 

add  ecx, [esp+4]   ; (3) read ecx esp, write ecx 

mov  edx, [esi]     ; (4) read esi, write edx 

add  edi, edx       ; (5) read edi edx, write edi 

 
These instructions generate one µop each through the ROB-read. We assume that none of 
the registers have been modified in the preceding three clock cycles. The µops go three by 
three, but we do not know which three go together. There are three possibilities: 
 

A. (1), (2) and (3) go together. We need four register reads: EAX, EBX, ECX, ESP. 

 
B. (2), (3) and (4) go together. We need four register reads: EBX, ECX, ESP, ESI. (EAX 

doesn't count because it has been written to in the preceding triplet) 
 

C. (3), (4) and (5) go together. We need four register reads: ECX, ESP, ESI, EDI. (EDX 

doesn't count because it is written to before it is read). 
 
All three possibilities involve a stall in the ROB-read for reading more than three registers 
that have not been modified recently. We can remove this stall by inserting a 
MOV ECX,ECX before the first instruction. This will refresh ECX so that we need only three 

permanent register reads, both in situation A, B and C. If we had chosen to refresh, for 
example, EBX instead then we would remove the stall in situation A and B, but not in 

situation C. So we would have a 2/3 probability of removing the stall. Refreshing EDI would 

have a 1/3 probability of removing the stall, because it works only in situation C. Refreshing 
ESP would also remove the stall in all three situations, but this would delay the fetching of 

the memory operands by approximately two clock cycles. In general, it doesn't pay to 
remove a register read stall by refreshing a register used as pointer for a memory read 
because this will delay the fetching of the memory operand. If we refresh ESI in the above 

example then this would have a 2/3 probability of removing a register read stall, but it would 
delay the fetching of EDX. 

 
If ESP has been modified by a stack operation, e.g. PUSH, prior to the code in the above 

example so that ESPd is not zero (see p. 95) then the stack engine will insert a stack 
synchronization µop between (2) and (3). This will remove the register read stall but delay 
the fetching of the memory operand. 
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7.10 Execution units 

Unfused µops are submitted from the reservation station to the five execution ports which 
connect to all the execution units. Port 0 and 1 receive all arithmetic instructions. Port 2 is 
for memory read instructions. Memory write instructions are unfused into two µops which go 
to port 3 and 4, respectively. Port 3 calculates the address, and port 4 does the data 
transfer. 
 
The maximum throughput of the execution units is five unfused µops per clock cycle, one at 
each port. On previous processors, such a high throughput could only be obtained in short 
bursts when the reservation station was full because of the limitation of three µops per clock 
cycle in the RAT and retirement station. The PM, however, can maintain the throughput of 
five µops per clock cycle for unlimited periods of time because three fused µops in the RAT 
can generate five unfused µops at the execution ports. The maximum throughput can be 
obtained when one third of the µops are fused read-modify instructions (port 2 and port 0/1), 
one third is fused store instructions (port 3 and 4), and one third is simple ALU or jump 
instructions (port 0/1). 
 
The execution units are well distributed between port 0 and 1, and many instructions can go 
to either of these two ports, whichever is vacant first. It is therefore possible to keep both 
ports busy most of the time in most cases. Port 0 and 1 both have an integer ALU, so that 
both can handle the most common integer instructions like moves, addition and logic 
instructions. Two such µops can be executed simultaneously, one at each port. Packed 
integer ALU instructions can also go to any of the two ALU's.  
 
Integer and floating point instructions share the same multiplication unit and the same 
division unit, but not the same ALU (addition and logic). This means that the PM can do 
floating point additions and integer additions simultaneously, but it cannot do floating point 
multiplications and integer multiplications simultaneously. 
 
Simple instructions such as integer additions have a latency of one clock cycle. Integer 
multiplications and packed integer multiplications take 3-4 clock cycles. The multiplication 
unit is pipelined so that it can start a new multiplication every clock cycle. The same applies 
to floating point addition and single precision floating point multiplication. Double precision 
floating point multiplications use part of the multiplier unit twice so that it can start a new 
multiplication every second clock cycle, and the latency is 5. 
 
128-bit XMM operations are split into two 64-bit µops, except if the output is only 64 bits. For 
example, the ADDPD instruction generates two µops for the two 64-bit additions, while 

ADDSD generates only one µop. 

 

7.11 Execution units that are connected to both port 0 and 1 

Some execution units are duplicated as mentioned above. For example, two integer vector 
addition µops can execute simultaneously, one at each ALU going through port 0 and 1, 
respectively. 
 
Some other execution units are accessible through both port 0 and 1 but are not duplicated. 
For example, a floating point addition µop can go through either port 0 or port 1. But there is 
only one floating point adder so it is not possible to execute two floating point addition µops 
simultaneously. 
 
This mechanism was no doubt implemented in order to improve performance by letting 
floating point addition µops go through whichever port is vacant first. But unfortunately, this 
mechanism is doing much more harm than good. A code where most of the µops are 
floating point additions or other operations that can go through either port takes longer time 
to execute than expected, typically 50% more time. 
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The most likely explanation for this phenomenon is that the scheduler will issue two floating 
point add µops in the same clock cycle, one for each of the two ports. But these two µops 
cannot execute simultaneously because they need the same execution unit. The 
consequence is that one of the two ports is stalled and prevented from doing something 
else for one clock cycle. 
 
This applies to the following instructions: 
 

• All floating point additions and subtractions, including single, double and long double 
precision, in ST() and XMM registers with both scalar and vector operands, e.g. 

FADD, ADDSD, SUBPS. 

 

• xmm compare instructions with xmm result, e.g. CMPEQPS. 

 

• xmm max and min instructions, e.g. MAXPS. 

 

• xmm vector multiplications with 16 bit integers, e.g. PMULLW, PMADDWD. 

 
Any code that contains many of these instructions is likely to take more time than it should. 
It makes no difference whether the instructions are all of the same type or a mixture of the 
types listed above. 
 
The problem does not occur with µops that can go through only one of the ports, e.g. 
MULPS, COMISS, PMULUDQ. Neither does the problem occur with µops that can go through 

both ports where the ALU's are duplicated, e.g. MOVAPS, PADDW. 

 
A further complication which has less practical importance but reveals something about the 
hardware design is that instructions such as PMULLW and ADDPS cannot execute 

simultaneously, even though they are using different execution units. 
 
The poor performance of code that contains many instructions of the types listed above is a 
consequence of a bad design. The mechanism was no doubt implemented in order to 
improve performance. Of course it is possible to find examples where this mechanism 
actually does improve performance, and the designers may have had a particular example 
in mind. But the improvement in performance is only seen in code that has few of the 
instructions listed above and many instructions that occupy port 1. Such examples are rare 
and the advantage is limited because it applies only to code that has few of these 
instructions. The loss in performance is highest when many, but not all, of the instructions 
are of the types listed above. Such cases are very common in floating point code. The 
critical innermost loop in floating point code is likely to have many additions. The 
performance of floating point code is therefore likely to suffer quite a lot because of this poor 
design. 
 
It is very difficult for the programmer to do anything about this problem because you cannot 
control the reordering of µops in the CPU pipeline. Using integers instead of floating point 
numbers is rarely an option. A loop which does nothing but floating point additions can be 
improved by unrolling because this reduces the relative cost of the loop overhead 
instructions, which suffer from the blocked ports. A loop where only a minority of the 
instructions are floating point additions can sometimes be improved by reordering the 
instructions so that no two FADD µops are issued to the ports in the same clock cycle. This 
requires a lot of experimentation and the result can be sensitive to the code that comes 
before the loop. 
 
The above explanation of the poor performance of code that contains many floating point 
additions is based on systematic experimentation but no irrefutable evidence. My theory is 
based on the following observations: 
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• The phenomenon is observed for all instructions that generate µops which can go to 
either port 0 or port 1, but have only one execution unit. 
 

• The phenomenon is not observed for µops that can go to only one of the two ports. 
For example, the problem disappears when ADDPS instructions are replaced by 

MULPS. 

 

• The phenomenon is not observed for µops that can go to both ports where the 
execution unit is duplicated so that two µops can execute simultaneously. 
 

• Tests are performed with two nested loops where the inner loop contains many 
floating point additions and the outer loop measures the number of clock cycles used 
by the inner loop. The clock count of the inner loop is not always constant but often 
varies according to a periodic pattern. The period depends on small details in the 
code. Periods as high as 5 and 9 have been observed. These periods cannot be 
explained by any of the alternative theories I could come up with.  
 

• All the test examples are of course designed to be limited by execution port 
throughput rather than by execution latencies. 
 

• The information about which µops go to which ports and execution units is obtained 
by experiments where a particular port or execution unit is saturated. 

 

7.12 Retirement 

The retirement station on the PM works exactly the same way as on PPro, P2 and P3. The 
retirement station can handle three fused µops per clock cycle. Taken jumps can only retire 
in the first of the three slots in the retirement station. The retirement station will therefore 
stall for one clock cycle if a taken jump happens to fall into one of the other slots. The 
number of fused µops in small loops should therefore preferably be divisible by three. See 
p. 83 for details. 
 

7.13 Partial register access 

The PM can store different parts of a register in different temporary registers in order to 
remove false dependences. For example: 
 

; Example 7.6. Partial registers 

mov  al, [esi] 

inc  ah 

 
Here, the second instruction does not have to wait for the first instruction to finish because 
AL and AH can use different temporary registers. AL and AH are stored into each their part 

of the permanent EAX register when the µops retire. 

 
A problem occurs when a write to a part of a register is followed by a read from the whole 
register: 
 

; Example 7.7. Partial register problem 

mov  al,  1 

mov  ebx, eax 

 
On PM model 9, the read from the full register (EAX) has to wait until the write to the partial 

register (AL) has retired and the value in AL has been joined with whatever was in the rest 

of EAX in the permanent register. This is called a partial register stall. The partial register 

stalls on PM model 9 are the same as on PPro. See p. 84 for details. 
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On the later PM model D, this problem has been solved by inserting extra µops to join the 
different parts of the register. I assume that the extra µops are generated in the ROB-read 
stage. In the above example, the ROB-read will generate an extra µop that combines AL 

and the rest of EAX into a single temporary register before the MOV EBX,EAX instruction. 

This takes one or two extra clock cycles in the ROB-read stage, but this is less than the 5-6 
clock penalty of partial register stalls on previous processors. 
 
The situations that generate extra µops on PM model D are the same as the situations that 
generate partial register stalls on the earlier processors. Writes to the high 8-bit registers 
AH, BH, CH, DH generate two extra µops, while writes to the low 8-bit or 16-bit part of a 

register generate one extra µop. Example: 
 

; Example 7.8a. Partial register access 

mov  al, [esi] 

inc  ax            ; 1 extra uop for read ax after write al 

mov  ah, 2 

mov  bx, ax        ; 2 extra uops for read ax after write ah 

inc  ebx           ; 1 extra uop for read ebx after write ax 

 
The best way to prevent the extra µops and the stalls in ROB-read is to avoid mixing 
register sizes. The above example can be improved by changing it to: 
 

; Example 7.8b. Partial register problem avoided 

movzx  eax, byte [esi] 

inc    eax 

and    eax, 0ffff00ffh 

or     eax, 000000200h 

mov    ebx, eax 

inc    ebx 

 
Another way avoid the problem is to neutralize the full register by XOR'ing it with itself: 
 

; Example 7.8c. Partial register problem avoided 

xor    eax, eax 

mov    al,  [esi] 

inc    eax         ; No extra uop 

 
The processor recognizes the XOR of a register with itself as setting it to zero. A special tag 

in the register remembers that the high part of the register is zero so that EAX = AL. This 

tag is remembered even in a loop: 
 

; Example 7.9. Partial register problem avoided in loop 

      xor eax, eax 

      mov ecx, 100 

LL:   mov al, [esi] 

      mov [edi], eax          ; No extra uop 

      inc esi 

      add edi, 4 

      dec ecx 

      jnz LL 

 
The rules for preventing extra µops by neutralizing a register are the same as the rules for 
preventing partial register stalls on previous processors. See p. 85 for details. 
 
(Literature: Performance and Power Consumption for Mobile Platform Components Under 
Common Usage Models. Intel Technology Journal, vol. 9, no. 1, 2005). 
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Partial flags stall 

Unfortunately, the PM doesn't generate extra µops to prevent stalls on the flags register. 
Therefore, there is a stall of 4-6 clock cycles when reading the flags register after an 
instruction that modifies part of the flags register. Examples: 
 

; Example 7.10. Partial flags stalls 

inc     eax     ; Modifies zero flag and sign flag, but not carry flag 

jz      L1      ; No stall, reads only modified part 

jc      L2      ; Stall, reads unmodified part 

lahf            ; Stall, reads both modified and unmodified bits 

pushfd          ; Stall, reads both modified and unmodified bits 

 
The above stalls can be removed by replacing INC EAX by ADD EAX,1 (modifies all 

flags) or LEA EAX,[EAX+1] (modifies no flags). Avoid code that relies on the fact that 

INC or DEC leaves the carry flag unchanged. 

 
There is also a partial flags stall when reading the flags after a shift instruction with a count 
different from 1: 
 

; Example 7.11. Partial flags stalls after shift 

shr    eax, 1 

jc     l1          ; No stall after shift by 1 

shr    eax, 2 

jc     l2          ; Stall after shift by 2 

test   eax, eax 

jz     l3          ; No stall because flags have been rewritten 

 
See p. 86 for details about partial flags stalls. 
 

7.14 Store forwarding stalls 

Store forwarding stalls in the PM are the same as in previous processors. See p. 87 for 
details. 
 

; Example 7.12. Store forwarding stall 

mov byte [esi], al 

mov ebx, dword [esi]        ; Stall 

 

7.15 Bottlenecks in PM 

It is important, when optimizing a piece of code, to find the limiting factor that controls 
execution speed. Tuning the wrong factor is unlikely to have any beneficial effect. In the 
following paragraphs, I will explain each of the possible limiting factors. You have to 
consider each factor in order to determine which one is the narrowest bottleneck, and then 
concentrate your optimization effort on that factor until it is no longer the narrowest 
bottleneck. As explained before, you have to concentrate on only the most critical part of the 
program - usually the innermost loop. 

Memory access 

If the program is accessing large amounts of data, or if the data are scattered around 
everywhere in the memory, then you will have many data cache misses. Accessing 
uncached data is so time consuming that all other optimization considerations are 
unimportant. The caches are organized as aligned lines of 64 bytes each. If one byte within 
an aligned 64-byte block has been accessed, then you can be certain that all 64 bytes will 
be loaded into the level-1 data cache and can be accessed at no extra cost. To improve 
caching, it is recommended that data that are used in the same part of the program be 
stored together. You may align large arrays and structures by 64. Store local variables on 
the stack if you don't have enough registers. The PM has four write ports. Having more than 
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four writes immediately after each other can slow down the process by a few clock cycles, 
especially if there are memory reads simultaneously with the writes. Non-temporal writes to 
memory are efficient on PM. You may use MOVNTI, MOVNTQ and MOVNTPS for scattered 

writes to memory if you don't expect to read again soon from the same cache line. 
 
The Core Solo/Duo has an improved data prefetching mechanism that predicts future 
memory reads. 

Instruction fetch and decode 

The instructions should be organized according to the 4-1-1 rule if you aim at a throughput 
of 3 µops per clock cycle. Remember that the 4-1-1 pattern can be broken at IFETCH 
boundaries. Avoid instructions with more than one prefix. Avoid instructions with 16-bit 
immediate operand in 32-bit mode. See p. 91. 

Micro-operation fusion 

µop fusion and the stack engine makes it possible to get more information into each µop. 
This can be an advantage if decoding or the 3 µops/clock limit is a bottleneck. Floating point 
registers allow µop fusion for read-modify instructions, but XMM registers do not. Use 
floating point registers instead of XMM registers for floating point operations if you can take 
advantage of µop fusion. 

Register read stalls 

Be aware of register read stalls if a piece of code has more than three registers that it often 
reads but seldom writes to. See p. 97.  
 
There is a tradeoff between using pointers and absolute addresses. Object oriented code 
typically accesses most data through frame pointers and 'this' pointers. The pointer 

registers are possible sources of register read stalls because they are often read but seldom 
written to. Using absolute addresses instead of pointers has other disadvantages, however. 
It makes the code longer so that the cache is used less efficiently and the problem with 
IFETCH boundaries is increased. 

Execution ports 

The unfused µops should be distributed evenly between the five execution ports. Port 0 and 
1 are likely to be bottlenecks in a code that has few memory operations. You may move 
some of the load from port 0 and 1 to port 2 by replacing move-register-register and move 
register-immediate instructions by move-register-memory instructions if this can be done 
without cache misses. 
 
Instructions using the 64-bit MMX registers are no less efficient than instructions using the 
32-bit integer registers on PM. You may use the MMX registers for integer calculations if 
you are out of integer registers. The XMM registers are slightly less efficient because they 
do not use µop fusion for read-modify instructions. MMX and XMM instructions are slightly 
longer than other instructions. This may increase the problem with IFETCH boundaries if 
decoding is a bottleneck. Remember that you cannot use floating point registers and MMX 
registers in the same code. 
 
Code with many floating point additions is likely to stall port 0 and 1 because of the design 
problem discussed on page 99. 
 
Stack synchronization µops go to port 0 or 1. The number of such µops can sometimes be 
reduced by replacing MOV instructions relative to the stack pointer by PUSH and POP 

instructions. See page 95 for details. 
 
Partial register access generates extra µops, see page 102. 
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Execution latencies and dependency chains 

The execution units have reasonably low latencies on the PM, and many operations are 
faster than on P4.  
 
The performance is likely to be limited by execution latencies when the code has long 
dependency chains with slow instructions.  
 
Avoid long dependency chains and avoid memory intermediates in dependency chains. A 
dependency chain is not broken by an XOR or PXOR of a register with itself. 

Partial register access 

Avoid mixing register sizes and avoid using the high 8-bit registers AH, BH, CH, DH. Be 

aware of partial flags stalls when reading the flags after instructions that modify some of the 
flag bits and leave other flag bits unchanged, and after shifts and rotates. See p. 103. 

Branch prediction 

Branch prediction is more advanced in PM than in other processors. Loops with a constant 
repeat count of up to 64 are predicted perfectly. Indirect jumps and calls with varying targets 
can be predicted if they follow a regular pattern or if they are well correlated with preceding 
branches. But the branch target buffer (BTB) is much smaller than on other processors. 
Therefore, you should avoid unnecessary jumps in order to reduce the load on the BTB. 
Branch prediction will be good if most of the processor time is spent in a small piece of code 
with relatively few branches. But branch prediction will be poor if the processor time is 
distributed over large sections of code with many branches and no particular hot spot. See 
p. 26. 

Retirement 

The retirement of taken branches can be a bottleneck in small loops with many branches. 
See p. 83. 
 



 106 

8 Intel Core 2 and Nehalem pipeline  
The microarchitecture named "Intel Core 2" is a further development of the PM design. The 
pipeline has been expanded to handle four micro-operations per clock cycle and the 
execution units have been expanded from 64 bits to 128 bits. A 45 nm version introduced in 
2008 differs from the previous 65 nm version by faster division and shuffling operations. 
 
The Core microarchitecture and its derivatives now form the basis of all Intel's x86 
processors, including portable, desktop and server processors. The Intel Core 2 processors 
have two or more CPU cores with separate level-1 caches and a shared level-2 cache. The 
Nehalem has separate level-1 and level-2 caches and a shared level-3 cache. 
 
The Nehalem is capable of running two threads in each of its four CPU cores, totaling eight 
threads. 
 
The x64, SSE3 and Supplementary SSE3 instruction sets are supported in all Core 2 
processors. SSE4.1 is supported in the 45 nm versions. SSE4.2 is supported in Nehalem. 
 
The Core has the same power-saving features as the PM. It can turn off certain parts of the 
internal buses, execution units, etc. when they are not used. The clock frequency is reduced 
when the workload is small. These power-saving features have the positive side effect that 
the maximum clock frequency can be increased without overheating the chip. The Nehalem 
can increase the clock frequency in one core when other cores are idle. 
 

8.1 Pipeline 

The Core pipeline is very similar to the Pentium M, but with more of everything in order to 
increase the throughput from 3 to 4 µops per clock cycle. The advanced power saving 
technology makes it possible to use a high clock frequency without overheating the chip. 
The trace cache of the Netburst architecture has been trashed in favor of a traditional code 
cache.  
 
The Core 2 microarchitecture allegedly has a pipeline of only fourteen stages in order to 
reduce power consumption, speculative execution and branch misprediction penalty. 
However, my measurements indicate that the pipeline is approximately two stages longer in 
the Core2 than in PM. This estimate is based on the fact that the branch misprediction 
penalty is measured to at least 15, which is 2 clock cycles more than on PM. The time a 
register stays in the ROB, as measured by register read stalls (p. 78), is approximately 2 
clock cycles more than on PM, and partial flags stalls are at least one clock cycle longer on 
Core2 than on PM. These measurements are in accordance with the observation that 
instruction fetching and retirement have been improved. It is likely that one extra pipeline 
stage has been used for improving instruction fetch and predecoding, and one for improving 
retirement. The pipeline of the Nehalem is at least 2 stages longer with a branch 
misprediction penalty of at least 17. 
 
The reorder buffer has 96 entries in Core 2 and 128 entries in Nehalem. The reservation 
station has 32 entries in Core 2 and 36 entries in Nehalem, according to Intel publications. 
 

8.2 Instruction fetch and predecoding 

Instruction fetching has been improved over previous Intel processors by adding a queue 
between branch prediction and instruction fetching. This can remove the delay bubble at 
taken branches in many cases. Unfortunately, the fetch bandwidth is still limited to 16 bytes 
per clock cycle. The limiting bottleneck is the predecoder, as explained below. 
 
The instruction decoding machinery is split between a predecoder and a decoder, with a 
queue in between. This queue has an effective size of 64 bytes in Core 2. The main 
purpose of the predecoder is to detect where each instruction begins. This is quite difficult 



 107 

because each instruction can have any length from one to fifteen bytes and it can be 
necessary to inspect several bytes of an instruction in order to determine its length and 
know where the next instruction begins. The predecoders also identify instruction prefixes 
and other components of each instruction. 
 
The maximum throughput of the predecoders is 16 bytes or 6 instructions per clock cycle, 
whichever is smallest. The throughput of the rest of the pipeline is typically 4 instructions per 
clock cycle, or 5 in case of macro-op fusion (see below, page 110). The throughput of the 
predecoders is obviously less than 4 instructions per clock cycle if there are less than 4 
instructions in each 16-bytes block of code. The average instruction length should therefore 
preferably be less than 4 bytes on average. 
 
The predecoder throughput can also be reduced if there are more than 6 instructions in a 
16-bytes block of code. The reason for this is that the predecoder will not load a new 16-
bytes block of code until the previous block is exhausted. If there are 7 instructions in a 16-
bytes block then the predecoders will process the first 6 instructions in the first clock cycle 
and 1 instruction in the next clock cycle. This gives an average predecoder throughput of 
3.5 instructions per clock cycle, which is less than desired. The optimal number of 
instructions per 16-bytes block of code is therefore 5 or 6, corresponding to an average 
instruction length of approximately 3. Any instruction that crosses a 16-bytes boundary will 
be left over until the next 16-bytes block is processed. It may be necessary to adjust 
instruction lengths in order to obtain the optimal number of instructions per 16-bytes block. 
See manual 2: "Optimizing subroutines in assembly language" for a discussion of how to 
make instructions shorter or longer. 

Loopback buffer 

The decoder queue in the Core2 can be used as a 64-bytes, 18 instructions, loop buffer. 
The predecoded instructions in the decoder queue can be reused in case a branch 
instruction loops back to an instruction that is still contained in the buffer. Predecoding is 
therefore not a bottleneck for a small loop that is completely contained in the 64-bytes 
buffer. 
 
The Core2 loop buffer works almost as a 64 bytes level-0 code cache, organized as 4 lines 
of 16 bytes each. A loop that can be completely contained in four aligned blocks of 16 bytes 
each can execute at a rate of up to 32 bytes of code per clock cycle. The four 16-bytes 
blocks do not even have to be consecutive. A loop that contains jumps (but not calls and 
returns) can still exceed the predecoder throughput if all the code in the loop can be 
contained in four aligned 16-bytes blocks. 
 
The Nehalem design is slightly different. The Core2 has the loop buffer between the 
predecoders and the decoders, while the Nehalem has the loop buffer after the decoders. 
The Nehalem loop buffer can hold 28 (possibly fused) µops. The size of the loop code is 
limited to 256 bytes of code, or up to 8 blocks of 32 bytes each. A loop containing more than 
256 bytes of code cannot use the loop buffer. There is a one-clock delay in this loop 
process, so that a loop containing 4*N (possibly fused) µops will take N+1 clock cycles to 
execute if there are no other bottlenecks elsewhere. The Core2 does not have this one-
clock delay. 
 
The loop buffer can speed up execution considerably in cases where predecoding or 
decoding is a bottleneck, i.e. where instructions are longer than 4 bytes on average or 
contain length-changing prefixes. Critical loops should therefore preferably be aligned by 16 
and be no bigger than 64 bytes or 18 instructions on the Core 2 and 256 bytes or 28 
instructions on Nehalem. 
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Length-changing prefixes 

The instruction length decoder has a problem with certain prefixes that change the meaning 
of the subsequent opcode bytes in such a way that the length of the instruction is changed. 
This is known as length-changing prefixes. 
 
For example, the instruction MOV AX,1 has an operand size prefix (66H) in 32-bit and 64-

bit mode. The same code without operand size prefix would mean MOV EAX,1. The MOV 

AX,1 instruction has 2 bytes of immediate data to represent the 16-bit value 1, while MOV 

EAX,1 has 4 bytes of immediate data to represent the 32-bit value 1. The operand size 

prefix therefore changes the length of the rest of the instruction. The predecoders are 
unable to resolve this problem in a single clock cycle. It takes 6 clock cycles to recover from 
this error. It is therefore very important to avoid such length-changing prefixes. The Intel 
documents say that the penalty for a length-changing prefix is increased to 11 clock cycles if 
the instruction crosses a 16-bytes boundary, but I cannot confirm this. My measurements 
show a penalty of 6 clock cycles in this case as well. The penalty may be less than 6 clock 
cycles if there are more than 4 instructions in a 16-bytes block. 
  
There are two prefixes that can cause this problem. This is the operand size prefix (66H) 

and the seldom used address size prefix (67H). The operand size prefix will change the 

length of an instruction and cause a delay in 32-bit and 64-bit mode in the following cases: 
 

• If a MOV or TEST instruction has a 16-bit destination and an immediate constant as 

source. For example MOV AX,1. This should be replaced by MOV EAX,1. 

 

• If any other instruction has a 16-bit destination and an immediate constant as source 
and the constant cannot be represented as an 8-bit sign-extended integer. For 
example ADD AX,200. This should be replaced by ADD EAX,200.  But ADD 

AX,100 does not have a length-changing prefix because 100 is within the range of 

8-bit signed integers. 
 

• If one of the instructions NEG, NOT, DIV, IDIV, MUL and IMUL with a single operand 

has a 16-bit operand and there is a 16-bytes boundary between the opcode byte and 
the mod-reg-rm byte. These instructions have a bogus length-changing prefix 
because these instructions have the same opcode as the TEST instruction with a 16-

bit immediate operand, and the distinction between the TEST instruction and the 

other instructions is contained in the reg bits of the mod-reg-rm byte. Therefore, the 
decoder cannot determine if the prefix is length-changing or not until it has read the 
next 16-bytes block of code. You may want to avoid using the 16-bit versions of 
these instructions if you cannot control where the 16-bytes boundaries are.  

 
These rules also apply to 32-bit operands in 16-bit mode. The disassembler in the objconv 

utility can be used for detecting these length-changing prefixes. 
 
The address size prefix (67H) will always cause a delay in 16-bit and 32-bit mode on any 

instruction that has a mod/reg/rm byte, even if it doesn't change the length of the instruction. 
The only instructions on which the 67H prefix makes sense and does not cause a stall are 

JCXZ/JECXZ/JRCXZ, string instructions and XLAT. The address size prefix is not length-

changing in 64-bit mode in these cases and causes no delay in this mode, except for 
instructions with absolute addresses. Address size prefixes are generally regarded as 
obsolete and should be avoided. 
 
The REX.W prefix (48H) can also change the length of an instruction in the case of a MOV 

instruction with a 64-bit immediate operand, but the predecoder can resolve this case 
without penalty. 
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The penalty for length-changing prefixes occurs only the first time in a loop that fits into the 
loopback buffer because this buffer contains predecoded or decoded instructions. 
 

8.3 Instruction decoding 

Instruction decoding in the Core2 and Nehalem is very similar to previous processors, as 
explained on page 74, but extended from three to four decoders so that it can decode four 
instructions per clock cycle. The first decoder can decode any instruction that generates up 
to 4 µops in one clock cycle. The other three decoders can handle only instructions that 
generate no more than one µop each. There are no other restrictions on which instructions 
these decoders can handle. The maximum output of the decoders is 7 µops per clock cycle 
if instructions are organized in a 4-1-1-1 pattern so that the first decoder generates four 
µops and the other three decoders generate one µop each. The output from the decoders is 
a minimum of 2 µops per clock cycle if all the instructions generate 2 µops each. In this 
case, only the first decoder is active because the other three decoders cannot handle 
instructions that generate more than one µop. If the code contains many instructions that 
generate 2-4 µops each then these instructions should be spaced with two or three single-
µop instructions between in order to optimize decoder throughput. Instructions that generate 
more than 4 µops use microcode ROM and take multiple clock cycles to decode. The 
number of µops generated by each instruction is listed in manual 4: "Instruction tables". The 
figure that is relevant to decoder throughput is the number listed under "µops fused 
domain". 
 
The decoders can read two 16-bytes blocks of code per clock cycle from the 64-bytes buffer 
so that a total of 32 bytes can be decoded in one clock cycle. But the output of the 
predecoders is limited to 16 bytes or less per clock cycle so that the decoders can only 
receive more than 16 bytes in one clock cycle in linear code if they processed less than 16 
bytes in the preceding clock cycle.  
 
Previous processors had a limitation on the number of instruction prefixes that the decoders 
can handle per clock cycle. The Core2 and Nehalem have no such limitation. Instructions 
with any number of prefixes can be decoded by any of the four decoders in one clock cycle. 
The only limitation is set by the instruction set definition which limits the length of instruction 
plus prefixes to 15 bytes. Thus, it is possible to decode a one-byte instruction with 14 
prefixes in a single clock cycle. No instruction needs so many prefixes, of course, but 
redundant prefixes can be used instead of NOP's as fillers for aligning a subsequent loop 

entry. See manual 2: "Optimizing subroutines in assembly language" for a discussion of 
redundant prefixes. 
 

8.4 Micro-op fusion 

The Core2 and Nehalem use µop fusion in the same way as the PM, as described on page 
93. Some instructions that need two µops in the execution units can use the µop fusion 
technique to keep these two µops together as one through most of the pipeline in order to 
save pipeline bandwidth. The fused µop is treated as two µops by the scheduler and 
submitted to two different execution units, but it is treated as one µop in all other stages in 
the pipeline and uses only one entry in the reorder buffer. The decoding throughput is also 
increased by µop fusion because a fused µop can be generated by those decoders that can 
handle only single-µop instructions. 
 
There are two cases of µop fusion: read-modify instructions and write instructions. A read-
modify instruction needs one µop for reading a memory operand and another µop for doing 
a calculation with this operand. For example, ADD EAX,[MEM] needs one µop for reading 

MEM and one for adding this value to EAX. These two µops can be fused into one. A write 

instruction needs one µop for calculating the address and one for writing to that address. 
For example, MOV [ESI+EDI],EAX needs one µop for calculating the address 

[ESI+EDI] and one for storing EAX to this address. These two µops are fused together. 
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The Core2 and Nehalem can use µop fusion in more cases than the PM can. For example, 
read-modify-write instructions can use both read-modify fusion and write fusion. Most XMM 
instructions can use µop fusion, but not all. 
 
A fused µop can have three input dependencies, while an unfused µop can have only two. A 
write instruction may have three input dependencies, for example MOV [ESI+EDI],EAX. 

This is the reason why write instructions are split into two µops, while read instructions have 
only one µop. 
 
Instructions that have both a rip-relative address and immediate data cannot use µop fusion. 
For example, CMP BYTE [RIP+m],AL can fuse, but CMP BYTE [RIP+m],1 cannot. 

 
You can see which instructions use µop fusion by looking at the tables in manual 4: 
"Instruction tables". Instructions with µop fusion have a higher number of µops listed under 
"unfused domain" than under "fused domain". 
 

8.5 Macro-op fusion 

The Core2 and Nehalem can also fuse two instructions into one µop in a few cases. This is 
called macro-op fusion. The decoders will fuse a compare or test instruction with a 
subsequent conditional jump instruction into a single compare-and-branch µop in certain 
cases. The compare-and-branch µop is not split in two at the execution units but executed 
as a single µop by the branch unit at execution port 5. This means that macro-op fusion 
saves bandwidth in all stages of the pipeline from decoding to retirement. Macro-op fusion 
does not help, however, if predecoding is the bottleneck. 
 
Macro-op fusion is possible only if all of the following conditions are satisfied: 
 

• The first instruction is a CMP or TEST instruction and the second instruction is a 

conditional jump instruction except JECXZ and LOOP. 

   

• The CMP or TEST instruction can have two register operands, a register and an 

immediate operand, a register and a memory operand, but not a memory and an 
immediate operand. 
 

• Core2 can do macro-op fusion only in 16-bit and 32-bit mode. Core Nehalem can 
also do this in 64-bit mode.  
 

• Branches that test the zero flag and/or the carry flag (JE, JNE, JB, JBE, JA, JAE) 

can fuse with a preceding CMP or TEST. This includes all unsigned comparisons. 

Branches for signed comparisons (JL, JLE, JG, JGE) can fuse with a preceding CMP 

or TEST on Core Nehalem but only with TEST on Core2. 

Branches that test the overflow, parity or sign flag only (JO, JNO, JP, JNP, JS, JNS) 

can fuse with TEST but not with CMP. 

 

• There can be no other instructions between the two instructions (branch hint prefixes 
are allowed, but ignored). 
 

• The branch instruction should not start at a 16-bytes boundary or cross a 16-bytes 
boundary.  
 

• If more than one such instruction pair reaches the four decoders in the same clock 
cycle then only the first pair is macro-fused. 
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Any one of the four decoders can make a macro-op fusion, but not simultaneously. Thus, 
we see that the four decoders can handle a maximum of five instructions in a single clock 
cycle in case of macro-op fusion. 
 
It is possible to have both micro-op fusion and macro-op fusion at the same time. A CMP or 

TEST instruction with a memory operand and a register operand followed by a branch 

instruction can generate a single micro-macro-fused µop containing all the three operations: 
read, compare, and branch. However, there is a limit to how much information a µop can 
contain. This limit is probably defined by the size of a reorder-buffer (ROB) entry. There is 
not enough space for storing both an immediate operand, the address of a memory 
operand, and the address of a branch target in the same ROB entry. My guess is that this is 
the reason why we can't have macro-op fusion with both a memory operand and an 
immediate operand. This may also be the reason why macro-op fusion doesn't work in 64-
bit mode on Core2: 64-bit branch addresses take more space in the ROB entry. 
 
The programmer should keep CMP or TEST instructions together with the subsequent 

conditional jump rather than scheduling other instructions in-between; and there should 
preferably be at least three other instructions between one compare-branch pair and the 
next compare-branch pair in order to take advantage of macro-op fusion. The branch 
instruction after a CMP should preferably be of an unsigned type if it can be verified that 

none of the operands can be negative. 
 
The fact that macro-op fusion doesn't work in 64-bit mode on Core2 should not make any 
programmer refrain from using 64-bit mode. The performance gain due to macro-op fusion 
is unlikely to be more than a few percent, and only if µop throughput is a bottleneck. Macro-
op fusion has no effect in the much more likely case that the bottleneck lies elsewhere. 
 

8.6 Stack engine 

The Core2 and Nehalem has a dedicated stack engine which works the same way as on the 
PM, as described on page 95, with necessary adjustments for the larger pipeline. 
 
The modification of the stack pointer by PUSH, POP, CALL and RET instructions is done by a 

special stack engine, which is placed immediately after the decoding stage in the pipeline 
and before the out-of-order core. This relieves the pipeline from the burden of µops that 
modify the stack pointer. This mechanism saves two copies of the stack pointer: one in the 
stack engine and another one in the register file and the out-of-order core. These two stack 
pointers may need to be synchronized if a sequence of PUSH, POP, CALL and RET 

instructions is followed by an instruction that reads or modifies the stack pointer directly, 
such as ADD ESP,4 or MOV EAX,[ESP+8]. The stack engine inserts an extra stack-

synchronization µop in every case where synchronization of the two stack pointers is 
needed. See page 95 for a more detailed explanation. 
 
The stack synchronization µops can sometimes be avoided by not mixing instructions that 
modify the stack pointer through the stack engine and instructions that access the stack 
pointer in the out-of-order execution units. A sequence that contains only instructions from 
one of these two categories will not need stack synchronization µops, but a sequence that 
mixes these two categories will need these extra µops. For example, it is advantageous to 
replace an ADD ESP,4 instruction after a function call by POP ECX if the preceding 

instruction was a RET and the next instruction touching the stack pointer is a PUSH or CALL. 

 
It may be possible to avoid stack synchronization µops completely in a critical function if all 
function parameters are transferred in registers and all local variables are stored in registers 
or with PUSH and POP. This is most realistic with the calling conventions of 64-bit Linux. Any 

necessary alignment of the stack can be done with a dummy PUSH instruction in this case. 
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8.7 Register renaming 

All integer, floating point, MMX, XMM, flags and segment registers can be renamed. The 
floating point control word can also be renamed. 
 
Register renaming is controlled by the register alias table (RAT) and the reorder buffer 
(ROB), shown in figure 6.1. The µops from the decoders and the stack engine go to the 
RAT via a queue and then to the ROB-read and the reservation station. The RAT can 
handle 4 µops per clock cycle. The RAT can rename four registers per clock cycle, and it 
can even rename the same register four times in one clock cycle. 
 

8.8 Register read stalls 

The Core2 and Nehalem are subject to the same kind of register read stalls as the PM and 
earlier processors, as explained on page 78. The permanent register file has three read 
ports on the Core2 and Nehalem for reading instruction operands. 
 
The ROB-read stage can read no more than three different registers from the permanent 
register file per clock cycle. This applies to all general purpose registers, the stack pointer, 
the flags register, floating point registers, MMX registers and XMM registers. An XMM 
register counts as one on the Core, while it counts as two 64-bit registers on previous 
processors. 
 
The first two of the three register read ports can read registers for instruction operands, 
base pointers, and index pointers. The third read port can read only registers used as index 
pointers on the Core2. On Core Nehalem, all three read ports can be used for any 
operands. The same register can be read any number of times in the same clock cycle 
without causing stalls.  
 
Registers that have been written to recently can be read directly from the ROB if they have 
not yet passed the ROB-writeback stage. Registers that can be read directly from the ROB 
do not need the read ports on the register file. My measurements indicate that it takes 
approximately 5 clock cycles for a µop to pass from the ROB-read stage to the ROB-
writeback stage. This means that a register can be read without problems if it has been 
modified within the last 5 clock cycles. With a throughput of 4 µops per clock cycle, you can 
assume that a register can be read without using the register read ports if it has been 
modified within the last 20 µops unless the pipeline has been stalled for any reason in the 
meantime. 
 
A unfused µop can contain up to two register reads, and a fused µop can contain up to three 
register reads. For example, the instruction ADD EAX,[EBX+ECX] reads register EAX, 

EBX and ECX, and then writes register EAX. The decoders can send up to four fused µops to 

the ROB-read stage in one clock cycle. The maximum number of register reads in a µop 
quartet is therefore twelve. The ROB-read stage may need four clock cycles to read these 
twelve registers in the worst case where all registers are in the permanent register file. 
 

; Example 8.1a. Register read stall on Core2 

L:  mov  eax, [esi+ecx] 

    mov  [edi+ecx], ebx 

    add  ecx, 4 

    js   L 

 
This loop has a register read stall because there are three registers that are read inside the 
loop, but not written to: ESI, EDI and EBX.  ECX does not need a read port because it has 

been modified recently. There are three register read ports, but on Core2 the third read port 
can only be used for index registers, and none of the three read-only registers are used as 
index registers. Note that the SIB byte of the instruction code makes a distinction between 
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base and index register. ESI and EDI are base registers in example 8.1a, while ECX is 

index register. An index register can have a scale factor, while a base register cannot. 
 
A slight modification of the code can make EDI an index register so that the third read port 

can be used: 
 

; Example 8.1b. Register read stall removed 

L:  mov  eax, [ecx+esi*1] 

    mov  [ecx+edi*1], ebx 

    add  ecx, 4 

    js   L 

 
Here, we have applied the scale factor *1 to ESI and EDI to make sure the assembler uses 

ESI and EDI rather than ECX as the index register. ESI or EDI can now be read by the 

third register read port so that the stall disappears. Example 8.1b takes 1 clock cycle per 
iteration, while example 8.1a takes two clock cycles on Core2. 
 
It is difficult to predict which µops will go into the ROB-read stage together. The µops arrive 
in order, but you don't know where each quartet begins unless the decoders have been 
stalled. A register read stall can therefore occur if more than two or three registers are read 
in any four consecutive µops and these registers have not been written to recently. 
 
Removing register read stalls often requires some experimentation. The Core2 and 
Nehalem have performance monitor counters that you can use for detecting register read 
stalls. 
 
It is possible to change a base pointer to an index register in instructions like 
mov eax,[ebx]. But this should be done only if there is experimental evidence that it 

prevents a register read stall, because the instruction mov eax,[ebx*1] is five bytes 

longer than mov eax,[ebx] (four bytes for a base address of zero, and one SIB byte).  

 
Other methods for removing register read stalls are to minimize the number of registers that 
are often read from but rarely written to, replacing read-only registers by constants or 
memory operands, and to organize the code so as to limit the distance between writing to a 
register and subsequently reading from the same register. The stack pointer, frame pointer 
and 'this' pointer are common examples of registers that are often read but rarely modified. 

 

8.9 Execution units 

The execution units of the Core2 have been expanded a lot over previous processors. 
There are six execution ports. Port 0, 1 and 5 are for arithmetic and logic operations (ALU), 
port 2 for memory read, port 3 for write address calculation, and port 4 for memory write 
data. This gives a maximum throughput of six unfused µops per clock cycle. 
 
All execution ports support full 128 bit vectors. Most ALU operations have a latency of 1 
clock cycle. The different units are listed in table 8.1 below. All three ALU ports can handle 
128-bit moves and Boolean operations. All three ports can handle additions on general 
purpose registers. Port 0 and 5 can also handle integer vector additions.  
 
There are separate units for integer multiplication and floating point multiplication. The 
integer multiplier on port 1 is fully pipelined with a latency of 3 and a throughput of 1 full 
vector operation per clock cycle. The floating point multiplier on port 0 has a latency of 4 for 
single precision and 5 for double and long double precision. The throughput of the floating 
point multiplier is 1 operation per clock cycle, except for long double precision on Core2. 
The floating point adder is connected to port 1. It has a latency of 3 and is fully pipelined. 
 
Integer division uses the floating point division unit. This is the only unit that is not pipelined. 
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The jump unit on port 5 handles all jump and branch operations, including the macro-fused 
compare-and-branch operations. 
 
The floating point unit connected to port 0 and 1 handles all operations on the floating point 
stack registers and most floating point calculations on XMM registers. The Core2 makes no 
distinction between integer and floating point operands, while the Core Nehalem does. For 
example, MOVAPS, MOVAPD and MOVDQA are identical and all carried out by the integer unit 

on Core2. On Core Nehalem, MOVAPS and MOVAPD are different from MOVDQA and executed 

on port 5 only. Floating point XMM move, Boolean, and most floating point shuffle 
operations are done by the integer units on Core2 but use a dedicated unit on port 5 on the 
Core Nehalem. 
  
The arithmetic/logic execution units are well distributed between port 0, 1 and 5. This makes 
it possible to execute three vector instructions per clock cycle, for example floating point 
vector multiplies on port 0, floating point vector additions on port 1, and a floating point 
moves on port 5. 
 
 

Execution 
port 

Execution 
unit 

Subunit Max data 
size, bits 

Latency, 
clocks 

Processor 

0 int move 128 1  

1 int move 128 1  

5 int move 128 1  

0 int add 128 1  

1 int add 64 1 Core 2 only 

5 int add 128 1  

0 int Boolean 128 1  

1 int Boolean 128 1  

5 int Boolean 128 1  

1 int multiply 128 3  

0 int shift 128 1 Core 2 only 

1 int shift 128 1 Nehalem only 

5 int shift 64 1 Core 2 only 

0 int pack 128 1  

1 int pack 64 1 Nehalem only 

5 int pack 128 1 Nehalem only 

1 int shuffle 128 1 Nehalem only 

5 int shuffle 128 1  

5 int jump 64 1  

      

0 float fp stack move 80 1  

1 float fp add 128 3  

0 float fp mul 128 4-5  

0 float fp div and sqrt 128 > 5  

0 float fp convert 128 1  

1 float fp convert 128 3  

5 float fp mov, shuffle 128 1 Nehalem only 

5 float fp boolean 128 1 Nehalem only 

      

2 int memory read 128 2  

3 store store address 64 1  

4 store store data 128 3  

Table 8.1. Execution units in Core2 and Nehalem 

 



 115 

The latency for integer vector operations is the same as for operations in general purpose 
registers. This makes it convenient to use MMX registers or XMM registers for simple 
integer operations when you are out of general purpose registers. The vector operations are 
supported by fewer execution ports, though. 

Data bypass delays on Core2 

On the Core2, there is an extra latency of one clock cycle when the output of a µop in the 
integer unit is used as input for a µop in the floating point unit, or vice versa. This is 
illustrated in the following example. 
 

; Example 8.2a. Bypass delays in Core 2 

.data 

align 16 

signbits label xmmword       ; Used for changing sign 

dq 2 dup (8000000000000000H) ; Two qwords with sign bit set 

 

.code 

movaps   xmm0, [a]           ; Unit = int,   Latency = 2 

mulpd    xmm0, xmm1          ; Unit = float, Latency = 5 + 1 

xorps    xmm0, [signbits]    ; Unit = int,   Latency = 1 + 1  

addpd    xmm0, xmm2          ; Unit = float, Latency = 3 + 1 

 
In example 8.2a there are three additional latencies for moving data back and forth between 
the integer and floating point units. This code can be improved by reordering the instructions 
so that the number of switches between the integer and floating point units is reduced: 
 

; Example 8.2b. Bypass delays in Core 2 

.code 

movaps   xmm0, [a]           ; Unit = int,   Latency = 2 

xorps    xmm0, [signbits]    ; Unit = int,   Latency = 1 

mulpd    xmm0, xmm1          ; Unit = float, Latency = 5 + 1 

addpd    xmm0, xmm2          ; Unit = float, Latency = 3 

 
In example 8.2b, we are changing the sign of XMM0 before multiplying with XMM1. This 

reduces the number of transitions between the integer and floating point units from three to 
one, and the total latency is reduced by 2. (We have used MOVAPS and XORPS instead of 

MOVAPD and XORPD because the former instructions are shorter but have the same 

functionality). 
 
The load/store unit is closely connected with the integer unit, so that there is no additional 
latency when transferring data between the integer unit and the load/store unit. There is a 
one clock latency when transferring data from memory (load unit) to the floating point unit, 
but there is no additional latency when transferring data from the floating point unit to 
memory (store unit). The execution units are listed in the tables in manual 4: "Instruction 
tables" where appropriate. 

Data bypass delays on Nehalem 

On the Nehalem, the execution units are divided into five "domains":  
 

• The integer domain handles all operations in general purpose registers. 

• The integer vector (SIMD) domain handles integer operations in vector registers. 

• The FP domain handles floating point operations in XMM and x87 registers. 

• The load domain handles all memory reads. 

• The store domain handles all memory stores. 
 
There is an extra latency of 1 or 2 clock cycles when the output of an operation in one 
domain is used as input in another domain. These so-called bypass delays are listed in 
table 8.2. 
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 To domain 

From domain integer integer vector FP store 

integer 0 1 2 0 

integer vector 1 0 2 1 

FP 2 2 0 1 

load 0 1 2 0 
Table 8.2. Bypass delays in Nehalem  

 
Several XMM instructions have multiple versions for the integer vector domain and the FP 
domain respectively. For example, for a register-to-register move, there is MOVDQA in the 

integer vector domain, and MOVAPS and MOVAPD in the FP domain. The extra latency for 

using an instruction in the wrong domain is considerable, as shown in the following 
example. 
 

; Example 8.3a. Bypass delays in Nehalem 

movaps   xmm0, [a]           ; Load domain,   Latency = 2 

mulps    xmm0, xmm1          ; FP domain,     Latency = 4 + 2 

pshufd   xmm2, xmm0, 0       ; int vec. dom., Latency = 1 + 2 

addps    xmm2, xmm3          ; FP domain,     Latency = 3 + 2 

pxor     xmm2, xmm4          ; int vec. dom., Latency = 1 + 2 

movdqa   [b],  xmm1          ; Store domain,  Latency = 3 + 1 

 
The bypass delays in this example can be reduced by using only instructions in the same 
domain as far as possible: 
 

; Example 8.3b. Bypass delays in Nehalem 

movaps   xmm0, [a]           ; Load domain,   Latency = 2 

mulps    xmm0, xmm1          ; FP domain,     Latency = 4 + 2 

movaps   xmm2, xmm0          ; FP domain,     Latency = 1 + 0 

shufps   xmm2, xmm2, 0       ; FP domain,     Latency = 1 + 0 

addps    xmm2, xmm3          ; FP domain,     Latency = 3 + 0 

xorps    xmm2, xmm4          ; FP domain,     Latency = 1 + 0 

movaps   [b],  xmm1          ; Store domain,  Latency = 3 + 1 

 
Replacing PSHUFD with SHUFPS in example 8.3b requires an extra MOVAPS with a latency of 

1 (if the value in XMM0 is needed later), but it saves 4 clock cycles in bypass delays. 

Replacing PXOR with XORPS is straightforward because these two instructions are 

functionally identical. Replacing the last MOVDQA with MOVAPS has no influence on latencies, 

but it may have on future processors. 
 
The important conclusion here is that there is a penalty in terms of latency to using an XMM 
instruction of the wrong type on the Nehalem. On previous Intel processors there is no 
penalty for using move and shuffle instructions on other types of operands than they are 
intended for.  
 
The bypass delay is important in long dependency chains where latency is a bottleneck, but  
not where it is throughput rather than latency that matters. In fact, the throughput may 
actually be improved by using the integer vector versions of the move and Boolean 
instructions, which have a throughput of 3 instructions per clock cycle, where the FP move 
and Boolean instructions have a throughput of only 1 instruction per clock cycle. 
 
There is still no extra bypass delay for using load and store instructions on the wrong type of 
data. For example, it can be convenient to use MOVHPS on integer data for reading or writing 

the upper half of an XMM register. 
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Mixing µops with different latencies 

There is a problem when µops with different latencies are issued to the same execution 
port. For example: 
 

; Example 8.4. Mixing uops with different latencies on port 0 

mulpd xmm1,xmm2   ; Double precision multiply has latency 5 

mulps xmm3,xmm4   ; Single precision multiply has latency 4 

 
Assume that the double precision multiplication with a latency of 5 starts at time T and ends 
at time T+5. If we attempt to start the single precision multiplication with a latency of 4 at 
time T+1 then this would also end at time T+5. Both instructions use port 0. Each execution 
port has only one write-back port, which can handle only one result at a time. It is therefore 
not possible to end two instructions at the same time. The scheduler will predict and avoid 
this write-back conflict by delaying the latter instruction to time T+2 so that it ends at time 
T+6. The cost is one wasted clock cycle. 
 
This kind of conflict can occur when two or more µops issued to the same execution port 
have different latencies. The maximum throughput of one µop per clock cycle in each port 
can only be obtained when all µops that go to the same port have the same latency. In the 
example of floating point multiplications we can maximize the throughput by using the same 
precision for all floating point calculations, or by keeping floating point multiplications with 
different precisions apart from each other rather than mixing them. 
 
The designers have tried to reduce this problem by standardizing µop latencies. Port 0 can 
handle only µops with a latency of 1 or ≥ 4. Port 1 can handle only µops with a latency of 1 
or 3. Port 5 can handle only latency 1. Port 2, 3 and 4 handle memory operations and 
almost nothing else. There are no µops that use 2 clock cycles in any execution unit. 
(Instructions like MOVD EAX,XMM0 have a latency of 2, but this in 1 clock cycle in the 

execution unit and 1 extra cycle for bypass delay between units). 
 
The problem with mixing latencies can also occur at port 1, but less frequently: 
 

; Example 8.5. Mixing uops with different latency on port 1 (Nehalem) 

imul eax,10       ; Port 1. Latency 3 

lea  ebx,[mem1]   ; Port 1. Latency 1 

lea  ecx,[mem2]   ; Port 1. Latency 1 

 
In example 8.5, we cannot issue the last LEA µop to port 1 two clock cycles after the IMUL 

µop because they would both finish at the same time on Nehalem (Core 2 has the LEA on 

port 0). This problem occurs only rarely on port 1 because most of the single-clock µops that 
can go to port 1 can also go to port 0 or 5. 
 

8.10 Retirement 

The retirement station seems to be more efficient than in the PM. I have not detected any 
delays due to bottlenecks in the retirement station on the Core2 or Nehalem. 
 

8.11 Partial register access 

There are three different ways that the Core2 and Nehalem uses for resolving writes to part 
of a register. These three different ways are used for general purpose registers, the flags 
register, and XMM registers, respectively. 

Partial access to general purpose registers 

Different parts of a general purpose register can be stored in different temporary registers in 
order to remove false dependences. For example: 
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; Example 8.6. Partial registers 

mov  al, [esi] 

inc  ah 

 
Here, the second instruction does not have to wait for the first instruction to finish because 
AL and AH can use different temporary registers. AL and AH are stored into each their part 

of the permanent EAX register when the µops retire. 

 
A problem occurs when a write to a part of a register is followed by a read from the whole 
register: 
 

; Example 8.7. Partial register problem 

mov  al,  1 

mov  ebx, eax 

 
This problem is solved by inserting an extra µop to join the different parts of the register. I 
assume that the extra µops are generated in the ROB-read stage. In the above example, 
the ROB-read will generate an extra µop that combines AL and the rest of EAX into a single 

temporary register before the MOV EBX,EAX instruction. This takes 2 - 3 extra clock cycles 

in the ROB-read stage, but this is less than the 5-6 clock penalty of partial register stalls on 
processors that don't have this mechanism. 
 
Writes to the high 8-bit registers AH, BH, CH, DH generate two extra µops, while writes to the 

low 8-bit or 16-bit part of a register generate one extra µop. See page 102 for examples. 

Partial flags stall 

Unfortunately, the Core2 and Nehalem don't generate extra µops to prevent stalls on the 
flags register. Therefore, there is a stall of approximately 7 clock cycles when reading the 
flags register after an instruction that modifies part of the flags register. See page 103 for 
examples. 
 
There is also a partial flags stall when reading the flags after a rotate instruction or a shift 
instruction with a count of CL. See page 103 for details. 

Partial access to XMM registers 

An XMM register is never split into its parts in the reorder buffer. Therefore, no extra µops 
are needed and there is no partial access stall when writing to part of an XMM register. But 
the write has a false dependence on the previous value of the register. Example: 
 

; Example 8.8. Partial access to XMM register 

mulss xmm0,   xmm1 

movss [mem1], xmm0  

movss xmm0,   xmm2  ; has false dependence on previous value 

addss xmm0,   xmm3 

 
The MOVSS and MOVSD instructions with register operands write to part of the destination 

register and leave the rest of the register unchanged. In example 8.8, the 
MOVSS XMM0,XMM2 instruction has a false dependence on the preceding MULSS 

instruction because the lower 32 bits of the register cannot be separated from the unused 
upper part of the register. This prevents out-of-order execution. The false dependence in 
example 8.8 can be removed by replacing MOVSS XMM0,XMM2 with MOVAPS 

XMM0,XMM2. Do not use the MOVSS and MOVSD instructions with two register operands 

unless it is necessary to leave the rest of the register unchanged. 
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8.12 Store forwarding stalls 

The processor can forward a memory write to a subsequent read from the same address 
under certain conditions. This store forwarding will fail in most cases of misaligned or partial 
memory references as in previous processors (p. 87), but certain special cases have been 
dealt with to allow store forwarding of partial memory operands. A failed store forwarding 
will delay the subsequent read by approximately 10 clock cycles. 
 
Store forwarding works if a write to memory is followed by a read from the same address 
when the read has the same operand size and the operand has its natural alignment: 
 

; Example 8.9. Successful store-to-load forwarding  

mov dword [esi], eax        ; esi aligned by 4 

mov ebx, dword [esi]        ; No stall 

 
The store forwarding also works with misaligned memory operands if the operand is less 
than 16 bytes and does not cross a 64-bytes boundary on 45 nm Core2, or an 8-bytes 
boundary on 65 nm Core2. Store forwarding works in all cases of misaligned memory 
operands on Nehalem. 
 

; Example 8.10. Failed store forward because of misalignment on Core2 

mov dword [esi-2], eax     ; esi divisible by 64 

mov ebx, dword [esi-2]     ; Stall because 64 B boundary crossed 

 
Store forwarding never works if the read has a bigger operand size than the preceding write: 
 

; Example 8.11. Failed store forwarding when read bigger than write 

mov dword [esi], eax       ; Write lower 4 bytes 

mov dword [esi+4], edx     ; Write upper 4 bytes 

movq mm0, qword [esi]      ; Read 8 bytes. Stall 

 
Store forwarding is possible if the read has a smaller operand size than the write and starts 
at the same address, and the write operand does not cross a 64-bytes boundary on 45 nm 
Core2 or the read operand does not cross an 8 bytes boundary on 65 nm Core2. On 
Nehalem there is no restriction on boundary crossing here. 
 

; Example 8.12. Store forwarding to smaller read 

mov dword [esi], eax       ; Write 4 bytes 

mov bx, word [esi]         ; Successful store forwarding 

mov cx, word [esi+2]       ; Stall because not same start address 

 
There are a few special cases where store forwarding is possible to a smaller read with a 
different start address. These special cases are: 
 
(1) An 8-byte write can be followed by 4-byte reads of each of its halves if the read does not 
cross an 8-bytes boundary on 65 nm Core2 or the write does not cross a 64-bytes boundary 
on 45 nm Core2. On Nehalem there is no restriction on boundary crossing here. 
 
(2) A 16-byte write can be followed by 8-byte reads of each of its halves and/or 4-byte reads 
of each of its quarters if the write is aligned by 16. On Nehalem there is no restriction on 
alignment or boundary crossing here. 
 

; Example 8.13. Store forwarding in special case 

movapd xword [esi], xmm0 ; Write 16 bytes 

fld qword [esi]            ; Read lower half. Success 

fld qword [esi+8]          ; Read upper half. Success 

mov eax, dword [esi+12]    ; Read last quarter. Success 

mov ebx, dword [esi+2]     ; Not a quarter operand. Fail 

 
The mechanism for detecting whether store forwarding is possible does not distinguish 
between different memory addresses with the same set-value in the cache. This can cause 
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stalls for failed bogus store forwardings when addresses are spaced a multiple of 4 kb 
apart: 
 

; Example 8.14. Bogus store forwarding stall 

mov word [esi], ax 

mov ebx, dword [esi+800h]  ; No stall 

mov ecx, dword [esi+1000h] ; Bogus stall 

 
In example 8.14 there is a stall when reading ecx after writing ax because the memory 

addresses have the same set-value (the distance is a multiple of 0x1000) and a large read 
after a small write would give a stall if the addresses were the same. 
 

8.13 Cache and memory access 

 

Cache Core 2 Nehalem 

Level 1 code 32 kB, 8 way, 64 B line size, 
latency 3, per core 

32 kB, 8 way, 64 B line size, 
latency 4, per core 

Level 1 data 32 kB, 8 way, 64 B line size, 
latency 3, per core 

32 kB, 8 way, 64 B line size, 
latency 4, per core 

Level 2 2, 4 or 6 MB, 16 or 24 way, 
64 B line size, latency 15, 
shared 

256 kB, 8 way, 
64 B line size, latency 11, 
per core 

Level 3 none 8 MB, 16 way, 64 B line size, 
latency 38, shared 

Table 8.3. Cache sizes on Core 2 and Nehalem 

 
There is one cache on each core, except for the last-level cache. All caches are shared 
between threads where a core can run two threads. It is likely that there will be more 
versions in the future with different last-level cache sizes. There is a 256 bit data path 
between the level-1 and level-2 caches. 
 
The capability of reordering memory accesses is allegedly improved so that a memory read 
can be executed speculatively before a preceding write that is expected to go to a different 
address before the address is known with certainty. 
 
The data prefetchers are able to automatically prefetch two data streams with different 
strides for both level-1 and level-2 caches. 

Cache bank conflicts 

Each 64-bytes line in the data cache is divided into 4 banks of 16 bytes each. It is not 
possible to do a memory read and a memory write in the same clock cycle if the two 
memory addresses have the same bank number, i.e. if bit 4 and 5 in the two addresses are 
the same on Core2. Example: 
 

; Example 8.15. Core2 cache bank conflict 

mov  eax, [esi]        ; Use bank 0, assuming esi is divisible by 40H 

mov  [esi+100H], ebx   ; Use bank 0. Cache bank conflict 

mov  [esi+110H], ebx   ; Use bank 1. No cache bank conflict 

 
The Nehalem doesn't have these conflicts, but Core 2 and Nehalem both have a false 
dependence between memory addresses with the same set and offset, i.e. with a distance 
that is a multiple of 4 kB. 

Misaligned memory accesses 

The Core2 has a penalty for misaligned memory access when a cache line boundary (64 
bytes) is crossed. The penalty is approximately 12 clock cycles for a misaligned read and 10 
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clock cycles for a misaligned write. The Nehalem has hardly any penalty for misaligned 
memory access. 
 

8.14 Breaking dependency chains 

A common way of setting a register to zero is  XOR EAX,EAX  or  SUB EBX,EBX.  The 

Core2 and Nehalem processors recognize that certain instructions are independent of the 
prior value of the register if the source and destination registers are the same. 
 
This applies to all of the following instructions: XOR, SUB, PXOR, XORPS, XORPD, and all 

variants of PSUBxxx and PCMPxxx except PCMPEQQ. 

 
The following instructions are not recognized as being independent when source and 
destination are the same: SBB, CMP, PANDN, ANDNPS, ANDNPD. 

 
Floating point subtract and compare instructions are not truly independent when source and 
destination are the same because of the possibility of NAN's etc. 
 
These instructions are useful for breaking an unnecessary dependence, but only on 
processors that recognize this independence. 
 

8.15 Multithreading in Nehalem 

Thread synchronization primitives, e.g. the LOCK XCHG instruction, are considerably faster 

than on previous processors. 
 
The Nehalem can run two threads in each of its four cores. This means that each thread 
gets only half of the resources. The resources are shared in the following way between two 
threads running in the same core: 
 
Cache: All cache resources are shared competitively between the threads. The more one 
thread uses the less the other thread can use. 
 
Branch target buffer and branch history pattern table: These are shared competitively 
between threads. 
 
Instruction fetch and decoding: The instruction fetcher and decoders are shared evenly 
between the two threads so that each thread gets every second clock cycle. 
 
Loop buffer: There is one loop buffer for each thread. 
 
Register renaming and register read ports. These are shared evenly so that each thread 
gets every second clock cycle. Register read stalls in one thread are independent of register 
reads in the other thread. 
 
Reorder buffer and reservation station. These are shared competitively. 
 
Execution ports and execution units. These are shared competitively. One thread can use 
one execution port while another thread uses another port. 
 
Read and write buffers: These are shared competitively. 
 
Permanent register file: There is one for each thread. 
 
It is clear that there is no advantage to running two threads per core if any of the shared 
resources are limiting factors for the performance. In many cases, however, the execution 
resources are more than sufficient for a single thread. It can be particularly advantageous to 
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run two threads per core in situations where a large fraction of the time goes to cache 
misses and branch misprediction. However, if any of the shared resources are bottlenecks 
then it is not advantageous to run two threads per core. On the contrary, each thread is 
likely to run at less than half the single-thread speed because of evictions in the cache and 
branch target buffers and other resource conflicts. There is no way to give one thread higher 
priority than the other in the CPU.  
 
 

8.16 Bottlenecks in Core2 and Nehalem 

Instruction fetch and predecoding 

All parts of the pipeline in the Core2 and Nehalem design have been improved over the PM 
design so that the total throughput is increased significantly. The part that has been 
improved the least is instruction fetch and predecoding. This part cannot always keep up 
with the speed of the execution units. Instruction fetch and predecoding is therefore the 
most likely bottleneck in CPU-intensive code. 
 
It is important to avoid long instructions in order to optimize instruction fetch and 
predecoding. The optimal average instruction length is approximately 3 bytes, which can be 
impossible to obtain. 
 
Instruction fetch and predecoding is not a bottleneck in a loop that fits into the loop buffer. 
The performance of a program can therefore be improved if the innermost loop is sufficiently 
small for fitting into the loop buffer, or if it can be split into multiple smaller loops that each fit 
into the loop buffer. 

Instruction decoding 

The decoders can handle four instructions per clock cycle, or five in the case of macro-op 
fusion. Only the first one of the four decoders can handle instructions that generate more 
than one µop. The minimum output of the decoders is therefore 2 µops per clock cycle in 
the case that all instructions generate 2 µops each so that only the first decoder can be 
used. Instructions may be ordered according to the 4-1-1-1 pattern for optimal decoder 
throughput. 
 
Fortunately, most of the instructions that generated multiple µops in previous designs 
generate only a single µop on the Core2 and Nehalem thanks to improved µop fusion, the 
stack engine, and the 128-bit width of buses and execution units. The decoders will 
generate four µops per clock cycle in an instruction stream where all of the instructions 
generate only a single µop each. This matches the throughput of the rest of the pipeline. 
Decoder throughput is therefore only critical if some of the instructions generate two µops 
each. 
 
Length-changing prefixes cause long delays in the decoders. These prefixes should be 
avoided at all costs, except in small loops that fit into the loop buffer. Avoid instructions with 
16-bit immediate operands in 32-bit and 64-bit mode. 

Register read stalls 

The number of register read ports on the permanent register file is insufficient in many 
situations. Register read stalls is therefore a very likely bottleneck.  
 
Avoid having more than two or three registers that are often read but seldom written to in 
the code. The stack pointer, frame pointer, 'this' pointer, and loop-invariant expressions 

that are stored in a register are likely contributors to register read stalls. Loop counters and 
other registers that are modified inside a loop may also contribute to register read stalls if 
the loop uses more than 5 clock cycles per iteration. 
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Execution ports and execution units 

The capacity of the execution ports and execution units is quite high. Many µops have two 
or three execution ports to choose between and each unit can handle one full 128-bit vector 
operation per clock cycle. The throughput of the execution ports is therefore less likely to be 
a bottleneck than on previous designs. 
 
Execution ports can be a bottleneck if the code generates many µops that all go to the same 
execution port. Memory operations can be a bottleneck in code that contains many memory 
accesses because there is only one memory read port and one memory write port. 
 
Most execution units are pipelined to a throughput of one µop per clock cycle. The most 
important exceptions are division and square root. 

Execution latency and dependency chains 

Execution latencies on the Core2 and Nehalem are generally low. Most integer ALU 
operations have a latency of only one clock cycle, even for 128-bit vector operations. There 
is an additional latency of 1-2 clock cycles for moving data between the integer unit and the 
floating point unit. The execution latencies are critical only in long dependency chains. Long 
dependency chains should be avoided. 

Partial register access 

There is a penalty for reading a full register after writing to a part of the register. Use MOVZX 

or MOVSX to read 8-bit or 16-bit memory operands into a 32-bit register rather than using a 

smaller part of the register. 

Retirement 

The retirement of µops has not been observed to be a bottleneck in any of my experiments. 

Branch prediction 

The branch prediction algorithm is good, especially for loops. Indirect jumps can be 
predicted. Unfortunately, the branch history pattern table on the Core2 is so small that 
branch mispredictions are quite common. 
 
A special branch target buffer for branches with loop behavior has only 128 entries which 
may be a bottleneck for a program with many critical loops. 

Memory access 

The cache bandwidth, memory bandwidth and data prefetching are significantly better than 
on previous processors.  
 
Memory bandwidth is still a likely bottleneck, of course, for memory-intensive applications. 
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9 Intel Sandy Bridge and Ivy Bridge pipeline  
Intel's microarchitecture code named Sandy Bridge is a further development of the Core 2 
and Nehalem design. A new µop cache has been added after the decoders, and the floating 
point execution units have been expanded from 128 bits to 256 bits. 
 
The Sandy Bridge has 2 - 8 cores, and some versions are capable of running two threads in 
each core. 
 
The new AVX instruction set is supported. This expands the sixteen 128-bit XMM registers 
to 256-bit YMM registers for floating point vector operations. Most XMM and YMM 
instructions have non-destructive three-operand versions in the AVX instruction set. 
 

9.1 Pipeline 

The Sandy Bridge and Ivy Bridge pipeline is very similar to the Core2 and Nehalem, but with 
an added µop cache after the decoders.  
 
The reorder buffer has 168 entries on Sandy Bridge and 192 entries on Haswell. The 
reservation station has 54 entries on Sandy Bridge and 60 on Haswell. The Sandy Bridge 
has 160 integer registers and 144 vector registers; the Haswell has 168 of each, according 
to Intel publications. 
 

9.2 Instruction fetch and decoding 

The pre-decoders and decoders can handle 16 bytes or 4 instructions per clock cycle, or 5 
instructions in case of macro-op fusion. It appears to be almost identical to the decoders in 
the Core2 and Nehalem. 
  
Instructions with any number of prefixes are decoded in a single clock cycle.  
 
The penalty for length-changing prefixes (see page 108) has been removed in some cases, 
while a few cases remain: 
 

• Move instructions with an immediate operand using an operand size prefix,  
e.g. mov ax,1234 has no penalty. 

• Arithmetic and logic instructions with an immediate operand using an operand size 
prefix, e.g. add ax,1234 has a penalty of 2-3 clock cycles in the decoders, 

regardless of alignment. This applies to all arithmetic and logic instructions with a 16-
bit immediate constant as operand in 32-bit or 64-bit mode.  

• The instructions NEG, NOT, DIV, IDIV, MUL and IMUL with a single 16-bit operand 

no penalty. 

• An address size prefix does not cause a penalty, even if it changes the length of the 
instruction (instructions with absolute memory addresses have not been tested). 

 
There are four decoders, which can handle instructions generating one or more µops 
according to certain patterns. The following instruction patterns were successfully decoded 
in a single clock cycle in my experiments: 
 

• 1-1-1-1 

• 2-1-1 

• 3 

• 4 
 
Instructions that generate 3 or 4 µops are decoded alone. Instructions that generate more 
than four µops are handled by microcode which is less efficient. 
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The multi-byte NOP instruction with opcode 0F 1F can only be decoded at the first of the 

four decoders on Sandy Bridge, while a simple NOP with extra prefixes (opcode 66 66 90) 

can be decoded at any of the four decoders. The Ivy Bridge does not have this limitation. 
Both types of long NOPs are decoded at a rate of four per clock on Ivy Bridge. 
 

9.3 µop cache 

The Sandy Bridge and Ivy Bridge have a cache for decoded µops after the decoders. This is 
useful because the limitation of 16 bytes per clock cycle in the fetch/decode units is a 
serious bottleneck if the average instruction length is more than four bytes. The throughput 
is doubled to 32 bytes per clock for code that fits into the µop cache. 
 

The µop cache is organized as 32 sets  8 ways  6 µops, totaling a maximum capacity of 
1536 µops. It can allocate a maximum of 3 lines of 6 µops each for each aligned and 
contiguous 32-bytes block of code.  
 
Code that runs out of the µop cache are not subject to the limitations of the fetch and 
decode units. It can deliver a throughput of 4 (possibly fused) µops or the equivalent of 32 
bytes of code per clock cycle. 
 
The µop cache is rarely used to the maximum capacity of 1536 µops. The utilization is often 
less than optimal for the following reasons: 
 

• A µop cache line is assigned to a specific 32-bytes block of code. A new µop cache 
line will be started every time a 32-bytes boundary in the code is passed, even if the 
previous µop cache line is only partially filled. 
   

• Instructions that generate multiple µops cannot be split between two µop cache 
lines. If an instruction cannot be fully contained in the current line then the rest of this 
line will be unused and the instruction will be placed at the start of a new line. 
   

• Instructions that generate more than 4 µops use microcode ROM. Such instructions 
use an entire µop cache line. 
     

• An unconditional jump or call always ends a µop cache line 
   

• The same piece of code can have multiple entries in the µop cache if it has multiple 
jump entries. 
   

• Instructions that require more than 32 bits of storage may take up two entries in the 
µop cache and may take an extra clock cycle to load. The details are given below. 
   

• It cannot load more than one µop cache line per clock cycle. This may be a 
bottleneck if many instructions use two entries each. 
   

• A 32-bytes block of code which generates more than 18 µops or which would require 
more than 18 entries in the µop cache will not be allocated in the µop cache. 
     

• The pipeline switches frequently between taking µops from the decoders and from 
the µop cache. Each switch may cost one clock cycle. 

 
Each entry in the µop cache has 32 bits of storage space for address and data bits. A µop 
may need more than 32 bits of storage space, for example if it has both a memory operand 
and an immediate data operand. The system uses various methods for dealing with this 
problem. The 32 bits of storage space may be split into two 16-bit fields, one for address 
bits and one for immediate data bits. A 32-bit address may be stored as a 16-bit sign-
extended number if it is in the range from -215 to +215. Likewise, a 32-bit immediate data 
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value may be stored as a 16-bit sign-extended number if it is in the range from -215 to +215, 
and a 64-bit immediate data value may be stored as a 32-bit sign-extended number if it is in 
the range from -231 to +231. However, a 64-bit address field cannot be converted to a 32-bit 
sign-extended number. 
 
If the necessary data cannot be squeezed into a 32-bit number or two 16-bit numbers, then 
it will borrow unused data space from another entry in the same µop cache line if possible. If 
this is not possible, then it will use two entries in the µop cache. 
 
A µop cache line takes an extra clock cycle to load if it has one or more entries that use 
extra data space, regardless of whether the extra storage space is borrowed from another 
entry or uses an extra entry, except for instructions with RIP-relative addresses. 
 
Instructions with RIP-relative addresses behave slightly differently from other instructions. A 
disadvantage is that the 32-bits storage space cannot be split into two 16-bit fields. On the 
other hand, it has the advantage that it does not take an extra clock cycle to load if it uses 
extra data space for storing an immediate operand. 
 
The details are given in table 9.1 below, according to my tests. 
 

Address mode Address or 
offset bits 

Immediate 
data bits 

µop 
cache 
entries 

µop 
cache 

load time 

no memory operand 0 0, 8, 16, 32 1 1 

no memory operand 0 64small 1 1 

no memory operand 0 64 2 2 

32 bit absolute 32small 0, 8, 16, 32small 1 1 

32 bit absolute 32small 32 2 2 

32 bit absolute 32 0 1 1 

32 bit absolute 32 8, 16, 32 2 2 

pointer, index or both 0, 8, 16, 32small 0, 8, 16, 32small 1 1 

pointer, index or both 0, 8, 16, 32small 32 2 2 

pointer, index or both 32 0 1 1 

pointer, index or both 32 8, 16, 32 2 2 

rip relative 32small, 32 0 1 1 

rip relative 32small, 32 8, 16, 32 2 1 

64 bit absolute 64small, 64 0 2 2 

Table 9.1. Size of different instructions in µop cache 
Note: 32small means a 32-bit number in the range from -215 to +215, 64small means a 64-
bit number in the range from -231 to +231. 

 
Examples: 
 

; Example 9.1. Instructions in µop cache 

mov dword [rsi+4], 1000H        ; one entry 

mov dword [rsi+4], 10000H       ; two entries 

mov dword [rsi+40000H], 0       ; two entries 

mov dword [rsi+40000H], eax     ; one entry 

cmp dword [fs:8], 2             ; one entry 

cmp dword [fs:8], 20000H        ; two entries 

cmp dword [fs:80000H], 2        ; two entries 

mov rax,-10000000H              ; one entry (even if long form) 

mov rax,-100000000H             ; two entries 

vinsertf128 ymm0,ymm1,[rip+x],1 ; two entries 

 
The gain in performance due to the µop cache can be quite considerable if the average 
instruction length is more than 4 bytes. The following methods of optimizing the use of the 
µop cache may be considered: 
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• Make sure that critical loops are small enough to fit into the µop cache. 
   

• Align the most critical loop entries and function entries by 32. 
   

• Avoid unnecessary loop unrolling. 
   

• Avoid instructions that have extra load time according to table 9.1. 
 

• Instructions that require extra data space according to table 9.1 may be mixed with 
instructions that use no data space so that the vacant data space can be borrowed. 
   

• If a 32-bytes block of code that is part of a critical loop generates more than 18 µops 
or does not fit into three µop cache lines then it may be useful to reorganize the code 
or make some instructions longer if this can make it fit into three µop cache lines. 
This will avoid the cost of switching between µop cache and decoder. 

 

9.4 Loopback buffer 

The 28 µop loop buffer of the Nehalem (see page 107) is preserved in Sandy Bridge and Ivy 
Bridge. The loop buffer is placed after the µop cache, but it can also receive µops from the 
decoders in case of misses in the µop cache. The loop buffer increases the performance of 
tiny loops that do not perform well in the µop cache for whatever reason. The loop buffer 
has no measurable effect in the cases where the µop cache is not a bottleneck, which is, in 
fact, most cases. 
 
It is advantageous to make loops smaller than 28 µops in order to take advantage of the 
loop buffer. 
 

9.5 Micro-op fusion 

The processor uses µop fusion in the same way as previous processors. Some instructions 
that need two µops in the execution units can use the µop fusion technique to keep these 
two µops together as one through most of the pipeline in order to save pipeline bandwidth. 
See page 93 and 109.  
 
You can see which instructions use µop fusion by looking at the tables in manual 4: 
"Instruction tables". Instructions with µop fusion has a higher number of µops listed under 
"unfused domain" than under "fused domain". 
 

9.6 Macro-op fusion 

The Sandy Bridge and Ivy Bridge can fuse two instructions into one µop in more cases than 
previous processors can (see page 110).  
 
The decoders will fuse an arithmetic or logic instruction and a subsequent conditional jump 
instruction into a single compute-and-branch µop in certain cases. The compute-and-branch 
µop is not split in two at the execution units but executed as a single µop by the branch unit 
at execution port 5. 
 
The CMP, ADD and SUB instructions can fuse with signed and unsigned branch instructions. 

INC and DEC can fuse with signed branch instructions, and TEST and AND instructions can 

fuse with all branch instructions (including useless combinations), as indicated in the 
following table: 
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First instruction can pair with these 
(and the inverse) 

cannot pair with 

cmp jz, jc, jb, ja, jl, jg js, jp, jo 

add, sub jz, jc, jb, ja, jl, jg js, jp, jo 

adc, sbb none  

inc, dec jz, jl, jg jc, jb, ja, js, jp, jo 

test all  

and all  

or, xor, not, neg none  

shift, rotate none  
Table 9.2. Instruction fusion 

 
The first instruction can have an immediate operand or a memory source operand, but not 
both. It cannot have a memory destination operand. It cannot have a RIP-relative memory 
operand. Examples: 
 

; Example 9.2. Instruction fusion 

dec ecx 

jnz L1                ; Fusion is possible 

cmp dword [esi], 0 

je  L2                ; No fusion. Both memory operand and immediate 

dec dword [esi] 

jnz L3                ; No fusion. Memory destination operand 

add eax, ebx 

jo  L4                ; No fusion. See table 9.2 

cmp eax,[mem]         ; Will use RIP-relative address in 64-bit mode 

jg  L5                ; Fusion only in 32 bit mode 

 
The JECXZ and LOOP instructions cannot be fused. The instruction fusion works even if 

instructions cross a 16-bytes boundary on the Ivy Bridge. It is uncertain whether this also 
applies to the Sandy Bridge. The instruction fusion does not work if the two instructions are 
separated by a cache line boundary. 
 
If more than one fuseable instruction pair reaches the four decoders in the same clock cycle 
then only the first pair is macro-fused. 
 
The programmer should keep fuseable arithmetic instructions together with a subsequent 
conditional jump rather than scheduling other instructions in-between; and there should 
preferably be at least three other instructions between one fuseable pair and the next 
fuseable pair in order to take advantage of macro-op fusion. 
 
Instruction fusion can increase the throughput to a maximum of five instructions per clock 
cycle. Unfortunately, it can also decrease the throughput. The fuseable arithmetic/logic 
instructions (ADD, SUB, INC, DEC, CMP, AND, TEST) decode at a lower rate than similar non-

fuseable instructions (e.g. OR). The probable explanation is this: If any of the fuseable 

arithmetic/logic instructions get into the last of the four decoders then the decoding will be 
postponed and the instruction will go into the first decoder in the next clock cycle in order to 
check if the next instruction is a fuseable branch. This means that the decoding throughput 
is lowered for these instructions for code that doesn't fit into the µop cache, even if the code 
contains no branches. 
 

9.7 Stack engine 

The Sandy Bridge has a dedicated stack engine which works the same way as on previous 
processors, as described on page 95. 
 
The modification of the stack pointer by PUSH, POP, CALL and RET instructions is done by a 

special stack engine, which is placed immediately after the decoding stage in the pipeline 
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and probably before the µop cache. This relieves the pipeline from the burden of µops that 
modify the stack pointer. This mechanism saves two copies of the stack pointer: one in the 
stack engine and another one in the register file and the out-of-order core. These two stack 
pointers may need to be synchronized if a sequence of PUSH, POP, CALL and RET 

instructions is followed by an instruction that reads or modifies the stack pointer directly, 
such as ADD ESP,4 or MOV EAX,[ESP+8]. The stack engine inserts an extra stack-

synchronization µop in every case where synchronization of the two stack pointers is 
needed. See page 95 for a more detailed explanation. 
 

9.8 Register allocation and renaming 

All integer, floating point, MMX, XMM, YMM, flags and probably also segment registers can 
be renamed. The floating point control word can also be renamed. 
 
Register renaming is controlled by the register alias table (RAT) and the reorder buffer 
(ROB), shown in figure 6.1. The µops from the decoders and the stack engine go to the 
RAT via a queue and then to the ROB-read and the reservation station. The RAT can 
handle 4 µops per clock cycle. The RAT can rename four registers per clock cycle, and it 
can even rename the same register four times in one clock cycle.  

Special cases of independence 

A common way of setting a register to zero is by XOR'ing it with itself or subtracting it from 
itself, e.g.  XOR EAX,EAX. The processor recognizes that certain instructions are 

independent of the prior value of the register if the two operand registers are the same.  
 
This applies to all of the following instructions: XOR, SUB, PXOR, XORPS, XORPD, VXORPS, 

VXORPD and all variants of PSUBxxx and PCMPGTxx, but not CMP, SBB, PANDN etc. 

 
This register is set to zero at the rename stage by these instructions. The throughput is four 
of these zeroing instructions per clock cycle, because no execution unit is used. 
 
The PCMPEQxx instructions set all bits to 1 if the two registers are the same. This instruction 

is recognized as being independent of the prior value of the register, but it does need an 
execution unit. A zeroing instruction with a 64-bit mmx register also uses an execution unit 
because of the overlap with the x87 style floating point stack registers. 

Instructions that need no execution unit 

The abovementioned special cases where registers are set to zero by instructions such as 
XOR EAX,EAX  are handled at the register rename/allocate stage without using any 

execution unit. This makes the use of these zeroing instructions extremely efficient, with a 
throughput of four zeroing instructions per clock cycle. The carry flag can be zeroed with 
CLC in the same efficient way.  

 
Previous processors can handle only the FXCH instruction at the register renaming stage. 

The Sandy Bridge can handle these special cases of zeroing instructions as well as NOP 

instructions at the register rename/allocate stage too.  
 
NOP instructions, including multi-byte NOPs are therefore very efficient with a throughput of 4 

NOPs per clock cycle. For reasons of efficiency, it is much better to use multi-byte NOPs than 

the commonly used pseudo-NOPs such as MOV EAX,EAX  or  LEA RAX,[RAX+0]. 

Elimination of move instructions 

The Ivy Bridge (but not the Sandy Bridge) can eliminate register-to-register moves at the 
register allocation stage. The following example illustrates this: 
 

; Example 9.3. Move elimintaion 
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add eax,4 

mov ebx,eax     ; this move can be eliminated 

sub ebx,ecx 

 
In this example, the mov ebx,eax instruction is likely to be eliminated by register 

renaming. The physical register that represents the ebx input in the third instruction is 

simply the same as the register that represents the eax output value in the first instruction. 

Register renaming is explained on page 12. 
 
Move elimination is not always successful. It fails when the necessary operands are not 
ready. But typically, move elimination succeeds in more than 80% of the possible cases. 
Chained moves can also be eliminated. 
 
Move elimination is possible with all 32-bit and 64-bit general purpose registers and all 128-
bit and 256-bit vector registers. 
 
A zero-extended move from an 8-bit register to a 32-bit or 64-bit register can also be 
eliminated, e.g. MOVZX EAX,BL. Zero-extended moves from 16-bit registers cannot be 

eliminated. No move to 8-bit registers,16-bit registers or mmx registers can be eliminated. 
Sign-extended moves cannot be eliminated. 
 
A move of a register to itself will never be eliminated. For example mov eax,eax is not 

eliminated. 
 
An eliminated move has zero latency and does not use any execution port. But is does 
consume bandwidth in the decoders. 
 

9.9 Register read stalls 

Register read stalls has been a serious, and often neglected, bottleneck in previous 
processors since the Pentium Pro. All Intel processors based on the P6 microarchitecture 
and its successors, the Pentium M, Core and Nehalem microarchitectures have a limitation 
of two or three reads from the permanent register file per clock cycle. 
 
This bottleneck has now finally been removed in the Sandy Bridge and Ivy Bridge. In my 
experiments, I have found no practical limit to the number of register reads. 
 

9.10 Execution units 

The Sandy Bridge and Ivy Bridge have six execution ports. Port 0, 1 and 5 are for arithmetic 
and logic operations (ALU). There are two identical memory read ports on port 2 and 3 
where previous processors had only one. Port 4 is for memory write. The memory write unit 
on port 4 has no address calculation. All write operations use port 2 or 3 for address 
calculation. The maximum throughput is one unfused µop on each port per clock cycle. 
 
Port 0, 1 and 5 support full 256 bit vector operations. Port 2, 3 and 4 use two clock cycles 
for 256 bit read and write operations. The different units are listed in table 9.3 and 9.4 
below.  
 
There are separate ports for multiplication in general purpose registers and vector registers. 
The general purpose register multiplier on port 1 has a latency of 3. The integer and floating 
point vector multiplier on port 0 has a latency of 5 for all precisions. These two multipliers 
can run simultaneously and both are fully pipelined with a throughput of 1 vector operation 
per clock cycle. 
 
Integer division uses the floating point division unit on port 0. This is the only unit that is not 
pipelined. 
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The jump unit on port 5 handles all jump and branch operations, including the macro-fused 
compute-and-branch operations. 
 
The processor has different execution units for integer and floating point vector operands. 
For example, the floating point vector moves (MOVAPS and MOVAPD) are executed on port 5 

only, while integer vector moves (MOVDQA) can execute on port 0, 1 or 5.  

 
The execution units are well distributed between port 0, 1 and 5. This makes it possible to 
execute three vector instructions per clock cycle, for example floating point vector multiplies 
on port 0, floating point vector additions on port 1, and a floating point shuffles on port 5. 
 
 

Execution 
port 

Data type Operation Max data 
size, bits 

Latency, 
clocks 

0 gp and ivec move 128 1 

1 gp and ivec move 128 1 

5 gp and ivec move 128 1 

0 gp and ivec add 128 1 

1 gp add 64 1 

5 gp and ivec add 128 1 

0 gp and ivec Boolean 128 1 

1 gp and ivec Boolean 128 1 

5 gp and ivec Boolean 128 1 

0 ivec multiply 128 5 

1 gp multiply 64 3 

0 gp shift 64 1 

1 ivec shift 128 1 

5 gp shift 64 1 

0 ivec shuffle, pack 128 1 

5 ivec shuffle, pack 128 1 

5 gp jump 64 1 

     

5 float fp mov, shuffle 256 1 

1 float fp add 256 3 

0 float fp mul 256 5 

0 float fp div and sqrt 128 10-22 

5 float fp boolean 256 1 

     

2 all memory read 128  

3 all memory read 128  

4 all memory write 128  

Table 9.3. Execution ports in Sandy Bridge 
Data types: gp = general purpose registers, ivec = integer vectors, float = floating 
point registers and floating point vectors. 

 
 

Execution 
port 

Data type Operation Max data 
size, bits 

Latency, 
clocks 

0 gp and ivec move 128 1 

1 gp and ivec move 128 1 

5 gp and ivec move 128 1 

0 gp add 64 1 

1 gp and ivec add 128 1 

5 gp and ivec add 128 1 

0 gp and ivec Boolean 128 1 
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1 gp and ivec Boolean 128 1 

5 gp and ivec Boolean 128 1 

0 ivec multiply 128 5 

1 gp multiply 64 3 

0 gp and ivec shift 128 1 

5 gp shift 64 1 

1 ivec shuffle, pack 128 1 

5 ivec shuffle, pack 128 1 

5 gp jump 64 1 

     

5 float fp mov, shuffle 256 1 

1 float fp add 256 3 

0 float fp mul 256 5 

0 float fp div and sqrt 128 10-20 

5 float fp boolean 256 1 

     

2 all memory read 128  

3 all memory read 128  

4 all memory write 128  

Table 9.4. Execution ports in Ivy Bridge  
Data types: gp = general purpose registers, ivec = integer vectors, float = floating 
point registers and floating point vectors. 

 
The latency for integer vector operations is the same as for operations in general purpose 
registers. This makes it convenient to use MMX registers or XMM registers for simple 
integer operations if there are not enough general purpose registers. The vector operations 
are supported by fewer execution ports, though. 

Read and write bandwidth 

The processor has two identical memory read ports (port 2 and 3) where previous Intel 
processors have only one read port. Port 2 and 3 are also used for address calculation. 
There is one write port (port 4). Port 4 has no address calculation unit. Instead, all write 
operations use port 2 or 3 for address calculation. All memory write operations require two 
µops: one µop for address calculation on port 2 or 3, and one µop for writing on port 4. 
 
Memory operations of 128 bits or less have a throughput of two reads or one read and one 
write per clock cycle. It is not possible to do two reads and one write per clock cycle 
because there are only two address calculation units (port 2 and 3). 
 
The situation is different for 256-bit operands in the new YMM registers. Each read port 
uses two clock cycles for a 256-bit read (but only one µop), and the write port uses two 
clock cycles for a 256-bit write. Obviously, a read port cannot execute another read µop in 
the second clock cycle of a 256-bit read, but it can execute an address calculation µop in 
the second clock cycle, which can be used by the write port. Therefore, it is possible to 
obtain a throughput of two 256-bit reads and one 256-bit write per two clock cycles.  
 
The risk of cache bank conflicts (see below) is quite high when reading and writing at the 
maximum memory bandwidth. 

Data bypass delays 

The execution units are divided into domains in the same way as on the Nehalem, as 
described on page 115, and there are different register files for integer and floating point 
values. However, the delays for passing data between the different domains or different 
types of registers are smaller on the Sandy Bridge and Ivy Bridge than on the Nehalem, and 
often zero. 
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Instructions such as MOVD that move data between general purpose registers and vector 

registers have a latency of only 1 clock and no extra bypass delay. Likewise, instructions 
that move data from vector registers to the integer flags, such as COMISS and PTEST have 

no extra bypass delay. 
 
There is often a data bypass delay of 1 clock cycle when passing data from a floating point 
instruction to an integer shuffle instruction, and 1 more clock cycle for passing the data back 
again to a floating point instruction, for example when PSHUFD is used between two ADDPS 

instructions. The same happens when using a floating point blend instruction on integer 
data, for example PADDD followed by BLENDPS. In some cases, there is no bypass delay 

when using the wrong type of shuffle or Boolean instruction. For example, I found no delay 
when mixing PADDD and SHUFPS. There is only rarely a bypass delay when using the wrong 

type of move instruction, for example MOVAPS instead of MOVDQA.  

 
There is no extra bypass delay for using load and store instructions on the wrong type of 
data. For example, it can be convenient to use MOVHPS on integer data for reading or writing 

the upper half of an XMM register. 
 
There is always a data bypass delay of 1 extra clock cycle on instructions that can move 
data between the upper 128 bits and the lower 128 bits of the YMM registers. For example, 
the VINSERTF128 instruction has a latency of 2 clock cycles while other shuffle and blend 

instructions that do not cross the 128 bits boundary have a latency of 1 clock. The latency of 
the VINSERTF128 instruction is independent of whether the data are actually inserted in the 

lower half or the upper half of the YMM register.  

Mixing µops with different latencies 

Previous processors have a write-back conflict when µops with different latencies are issued 
to the same execution port, as described on page 117. This problem is largely solved on the 
Sandy Bridge. Execution latencies are standardized so that all µops with a latency of 3 are 
issued to port 1 and all µops with a latency of 5 go to port 0. µops with a latency of 1 can go 
to port 0, 1 or 5. No other latencies are allowed, except for division and square root.  
 
The standardization of latencies has the advantage that write-back conflicts are avoided. 
The disadvantage is that some µops have higher latencies than necessary. 

256-bit vectors 

The execution units on port 0, 1 and 5 have full 256-bit throughput. There appears to be two 
128-bit data busses, one for the lower 128 bits and one for the upper 128 bits. There is a 
delay of one clock cycle for moving data between the upper and the lower 128 bits. The two 
halves of a 256-bit register are not treated as independent, except in the undesired "saved 
state", as explained below in chapter 9.12. Apparently the two halves are always transmitted 
simultaneously when in the "modified state". 

Underflow and subnormals 

Subnormal numbers (also called denormal) occur when floating point operations are close 
to underflow. The handling of subnormal numbers is very costly in some cases because the 
subnormal results are handled by microcode exceptions. 
 
Some of these penalties have been removed by handling underflow and subnormal 
numbers in hardware rather than in microcode exceptions in some cases. 
 
The processor has a penalty of approximately 140 - 150 clock cycles in all cases where an 
operation on normal numbers gives a subnormal result. There is a similar penalty for a 
multiplication between a normal and a subnormal number, regardless of whether the result 
is normal or subnormal. There is no penalty for adding a normal and a subnormal number, 
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regardless of the result. There is no penalty for overflow, underflow, infinity or not-a-number 
results. 
 
The penalties for subnormal numbers are avoided if the "flush-to-zero" mode and the 
"denormals-are-zero" mode are both set in the MXCSR register. 
 

9.11 Partial register access 

Different parts of a general purpose register can be stored in different temporary registers in 
order to remove false dependences. A problem occurs when a write to a part of a register is 
followed by a read from the whole register: 
 

; Example 9.4. Partial register problem 

mov  al,  1 

mov  ebx, eax 

 
This problem is solved in the Sandy Bridge by inserting an extra µop to join the different 
parts of the register. I assume that the extra µops are generated in the ROB-read stage. In 
the above example, the ROB-read will generate an extra µop that combines AL and the rest 

of EAX into a single temporary register before the MOV EBX,EAX instruction. There is no 

penalty for writing to a partial register unless there is a later read from a larger part of the 
same register. See page 102 for examples. 
 
The Ivy Bridge inserts an extra µop only in the case where a high 8-bit register (AH, BH, CH, 

DH) has been modified, not in cases like example 9.4. 

Partial flags stall 

The Sandy Bridge and Ivy Bridge use the method of an extra µop to join partial registers not 
only for general purpose registers but also for the flags register, unlike previous processors 
which used this method only for general purpose registers. This occurs when a write to a 
part of the flags register is followed by a read from a larger part of the flags register. The 
partial flags stall of previous processors (See page 103) is therefore replaced by an extra 
µop. The Sandy Bridge also generates an extra µop when reading the flags after a rotate 
instruction, the Ivy Bridge does not.  

Partial access to vector registers 

An XMM register is never split into its parts in the reorder buffer. Therefore, no extra µops 
are needed and there is no partial access stall when writing to part of an XMM register. But 
a write to part of a vector register has a dependence on the previous value of the register. 
See example 8.8, on page 118. 
 
The two halves of a YMM register are never treated as independent in VEX instructions, but 
the two halves can be separated when switching between VEX and non-VEX modes, as 
described below. 
 

9.12 Transitions between VEX and non-VEX modes 

The AVX instruction set defines three processor modes, as described in manual 2: 
"Optimizing subroutines in assembly language", chapter 13.6 "Using AVX instruction set 
and YMM registers". The three states are: 
 

A. (Clean state) The upper half of all YMM registers is unused and known to be zero. 
   

B. (Modified state) The upper half of at least one YMM register is used and contains 
data. 
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C. (Saved state) All YMM registers are split in two. The lower half is used by legacy 
XMM instructions which leave the upper part unchanged. All the upper-part halves 
are stored in a scratchpad. The two parts of each register will be joined together 
again if needed by a transition to state B. 

 
State C is an undesired state. It appears when code that uses YMM registers is mixed with 

code that uses XMM registers in non-VEX instructions. The transitions B → C, C → B and C 

→ A  take approximately 70 clock cycles each on the Sandy Bridge, according to my 

measurements. The transitions A → B and B → A take zero or one clock cycle. The slow 
transitions to and from state C are best avoided by not mixing VEX and non-VEX 
instructions and by inserting a VZEROUPPER instruction after any sequence of code that 

uses the VEX-coded instructions. 
 

9.13 Cache and memory access 

 

Cache Sandy Bridge and Ivy Bridge 

µop cache 1536 µops, 8 way, 6 µop line size, 
per core 

Level 1 code 32 kB, 8 way, 64 B line size, 
latency 4, per core 

Level 1 data 32 kB, 8 way, 64 B line size, 
latency 4, per core 

Level 2 256 kB, 8 way, 64 B line size, 
latency ca. 11, per core. 

Level 3 up to 16 MB, 12 way, 64 B line 
size, latency ca. 28, shared 

Table 9.5. Cache sizes on Sandy Bridge 

 
There is one cache on each core, except for the last-level cache. All caches are shared 
between threads where a core can run two threads. It is likely that there will be more 
versions in the future with different last-level cache sizes. 

Cache bank conflicts 

Each consecutive 128 bytes, or two cache lines, in the data cache is divided into 8 banks of 
16 bytes each. It is not possible to do two memory reads in the same clock cycle if the two 
memory addresses have the same bank number, i.e. if bit 4  - 6 in the two addresses are 
the same. Example: 
 

; Example 9.5. Sandy bridge cache bank conflict 

mov  eax, [rsi]        ; Use bank 0, assuming rsi is divisible by 40H 

mov  ebx, [rsi+100H]   ; Use bank 0. Cache bank conflict 

mov  ecx, [rsi+110H]   ; Use bank 1. No cache bank conflict 

 
In addition, there is a false dependence between memory addresses with the same set and 
offset, i.e. with a distance that is a multiple of 4 Kbytes: 
 

; Example 9.6. Sandy bridge false memory dependence 

mov  [rsi], eax   

mov  ebx, [rsi+1000H]       ; False memory dependence 

 

Misaligned memory accesses 

There is hardly any penalty for misaligned memory access with operand sizes of 64 bits or 
less, except for the effect of using multiple cache banks. 
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Prefetch instructions 

The Ivy Bridge has a problem with the prefetch instructions. It appears that the Ivy Bridge is 
wasting time on prefetching data that are already in the cache. The measured throughput 
for repeated prefetch from the same address is one prefetch per 43 clocks on Ivy Bridge 
while the Sandy Bridge has a throughput of two prefetch instructions per clock cycle. 
 

9.14 Store forwarding stalls 

The processor can forward a memory write to a subsequent read from the same address 
under certain conditions. This store forwarding works in more cases than on previous 
processors, including misaligned cases. Store forwarding works in the following cases: 
 

• When a write of 64 bits or less is followed by a read of the same size and the same 
address, regardless of alignment. 
   

• When a write of 128 or 256 bits is followed by a read of the same size and the same 
address, aligned by 16. 
   

• When a write of 64 bits or less is followed by a read of a smaller size which is fully 
contained in the write address range, regardless of alignment. 
   

• When an aligned write of any size is followed by two reads of the two halves, or four 
reads of the four quarters, etc. with their natural alignment within the write address 
range. 
   

• When an aligned write of 128 bits or 256 bits is followed by a read of 64 bits or less 
that does not cross an 8 bytes boundary. 

 
There is no penalty for crossing a cache line boundary for store forwarding of 64 bits or less. 
 
Store forwarding never works if the read has a bigger operand size than the preceding write 
or is partially overlapping the write address: 
 

; Example 9.7. Failed store forwarding when read bigger than write 

mov dword [esi], eax       ; Write lower 4 bytes 

mov dword [esi+4], edx     ; Write upper 4 bytes 

movq xmm0, qword [esi]     ; Read 8 bytes. Stall 

 
The penalty for a failed store forwarding is approximately 12 clock cycles in most cases. 
 
The penalty can be exceptionally large for 128 bits or 256 bits store forwarding when writes 
are not aligned by at least 16. In this case I have measured a delay on the Ivy Bridge of 
approximately 50 clock cycles for 16 bytes read/write and 210 clock cycles for 32 bytes 
read/write. 
 

9.15 Multithreading 

Some versions of Sandy Bridge and Ivy Bridge can run two threads in each of its cores. 
This means that each thread gets only half of the resources. The resources are shared in 
the following way between two threads running in the same core: 
 
Cache: All cache resources are shared competitively between the treads. The more one 
thread uses the less the other thread can use. 
 
Branch target buffer and branch history pattern table: These are shared competitively 
between threads. 
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Instruction fetch and decoding: The instruction fetcher and decoders are shared evenly 
between the two threads so that each thread gets every second clock cycle. 
 
Loop buffer: There is one loop buffer for each thread. 
 
Register allocation and renaming resources are shared evenly so that each thread gets 
every second clock cycle. 
 
Reorder buffer and reservation station. These are shared competitively. 
 
Execution ports and execution units. These are shared competitively. One thread can use 
one execution port while another thread uses another port. 
 
Read and write buffers: These are shared competitively. 
 
Permanent register file: There is one for each thread. 
 
It is clear that there is no advantage to running two threads per core if any of the shared 
resources are limiting factors for the performance. In many cases, however, the execution 
resources are more than sufficient for a single thread. It can be particularly advantageous to 
run two threads per core in situations where a large fraction of the time goes to cache 
misses and branch misprediction. However, if any of the shared resources are bottlenecks 
then it is not advantageous to run two threads per core. On the contrary, each thread is 
likely to run at less than half the single-thread speed because of evictions in the cache and 
branch target buffers and other resource conflicts. There is no way to give one thread higher 
priority than the other in the CPU.  
 

9.16 Bottlenecks in Sandy Bridge and Ivy Bridge 

Instruction fetch and predecoding 

The instruction fetch and decoders are very similar to previous processors and continue to 
be a bottleneck. Fortunately, the new µop cache reduces the pressure on the decoders. 

µop cache 

The new µop cache is a very significant improvement because it removes the bottleneck of 
instruction fetch and decoding in cases where the critical part of the code fits into the µop 
cache. The maximum throughput of 4 instructions per clock (or 5 in case of macro-fusion) is 
now easily obtained even for longer instructions. 
 
The programmer should be careful to economize the use of the µop cache in CPU-intensive 
code. The difference in performance between loops that fit into the µop cache and loops 
that do not can be quite remarkable if the average instruction length is more than four bytes.  
 
The µop cache has some similarities with the trace cache in the old P4/NetBurst processor 
(see p. 50) and some of the same weaknesses. Instructions that need more than 32 bits of 
storage for address and data operands may use extra space in the µop cache and take an 
extra clock cycle to load. It is possible to optimize code to avoid these weaknesses, but it is 
unlikely that this will be done by anybody but the most dedicated assembly programmers. 
 
It is a mystery to me why the processor is not marking instruction boundaries in the code 
cache. This would remove the bottleneck of instruction length decoding and thereby 
eliminate the need for the µop cache. AMD processors are doing this and the old Pentium 
MMX did the same. 
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Register read stalls 

This old bottleneck, which has bothered Intel processors since the Pentium Pro, has finally 
been removed. No such stall was detected in my measurements. 

Execution ports and execution units 

The capacity of the execution ports and execution units is quite high. Many µops have two 
or three execution ports to choose between and each unit can handle one full 256-bit vector 
operation per clock cycle. The throughput of the execution ports is therefore not a serious 
bottleneck if instructions are evenly distributed between the ports. 
 
Execution ports can be a bottleneck if the code generates many µops that all go to the same 
execution port. 

Execution latency and dependency chains 

Execution latencies are generally low. Most integer ALU operations have a latency of only 
one clock cycle, even for 256-bit vector operations. The execution latencies are critical only 
in long dependency chains. 

Partial register access 

There is a penalty for reading a full register after writing to a part of the register. Use MOVZX 

or MOVSX to read 8-bit or 16-bit memory operands into a 32-bit register rather than using a 

smaller part of the register. 

Retirement 

The retirement of µops has not been observed to be a bottleneck in any of my tests. 

Branch prediction 

The branch predictor does not have a special recognition of loops. Prediction of loops with 
many branches inside is inferior to the previous processors. The branch history pattern 
tables and branch target buffer may be bigger than on previous processors, but 
mispredictions are still common. The misprediction penalty is shorter for code that fits into 
the µop cache. 

Memory access 

The Sandy Bridge has two memory read ports where previous processors have only one. 
This is a significant improvement. Cache bank conflicts are quite common when the 
maximum memory bandwidth is utilized. 
 
The Ivy Bridge has a serious problem with prefetch instructions, which are extremely slow. 

Multithreading 

Most of the critical resources are shared between threads. This means that the bottlenecks 
become even more critical in multithreaded applications. 

Literature 

"Intel 64 and IA-32 Architectures Optimization Reference Manual". Intel 2011. 
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10 Intel Haswell and Broadwell pipeline  
The Haswell has several important improvements over previous designs. The bandwidth to 
the data cache has been doubled to two reads and one write per clock cycle, of up to 32 
bytes each. The number of execution units is increased from six to eight. Most execution 
units have a bandwidth of one full 256-bit vector per clock cycle. 
 
The Haswell is currently available with 2 - 18 cores, and most versions are capable of 
running two threads in each core. Most of the critical resources are shared between the two 
threads running in the same core, as described on page 136 for the Sandy Bridge and Ivy 
Bridge processors. 
 
The Haswell is the first processor to support the AVX2 instruction set, which can handle 
integer instructions on 256-bit vectors. It is also the first Intel processor to support fused 
multiply-and-add (FMA) instructions. 
 
The Broadwell is a 14 nm die shrink of the Haswell, with just a few improvements in the 
execution units. 
 

10.1 Pipeline 

The pipeline is similar to previous designs, but improved with more of everything. It is 
designed for a throughput of four instructions per clock cycle. 
 
Each core has a reorder buffer with 192 entries, the reservation station has 60 entries, and 
the register file has 168 integer registers and 168 vector registers, according to the literature 
listed on page 149 below. 
 
All parts of the pipeline are shared between two threads in those CPU models that can run 
two threads in each core. Each thread gets half of the total throughput when two threads are 
running in the same core. 
 

10.2 Instruction fetch and decoding 

The instruction fetch unit can fetch a maximum of 16 bytes of code per clock cycle in single 
threaded applications. 
  
There are four decoders, which can handle instructions generating up to four µops per clock 
cycle in the way described on page 124 for Sandy Bridge. 
 
Instructions with any number of prefixes are decoded in a single clock cycle. There is no 
penalty for redundant prefixes. 
 
The penalty for length-changing prefixes is the same as for Sandy Bridge (see page 124). 
Arithmetic and logic instructions with an immediate operand using an operand size prefix, 
e.g. add ax,1234 has a penalty of 2-3 clock cycles in the decoders, regardless of 

alignment. This applies to all arithmetic and logic instructions with a 16-bit immediate 
constant as operand in 32-bit or 64-bit mode. Move instructions have no penalty for length-
changing prefixes. (Instructions with absolute memory addresses have not been tested). 
 

10.3 µop cache 

The µop cache from the Sandy Bridge (see p. 125) has been preserved in the Haswell and 
Broadwell with the same size and organization. The most important effect of the µop cache 
is that the throughput is no longer limited by a fetch rage of 16 bytes per clock cycle for 
small code loops. A piece of code that fits into the µop cache can be delivered at a rate 
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corresponding to up to a maximum of 32 bytes per clock cycle. This is a big advantage 
when the average instruction length is more than four bytes.  
 
The limitations and weaknesses of the Sandy Bridge µop cache also apply to the Haswell 
and Broadwell. See page 125 for details. 
 

10.4 Loopback buffer 

The processor has a loop buffer which simply recycles µops from the µop queue. The loop 
buffer will rarely use all 56 entries of the queue, but small loops of up to 30 µops, or 
sometimes up to 40, will benefit from the loop buffer. The µop queue is dynamically shared 
between threads so that you get only half the size if two threads are running in the same 
core. The loop buffer gives a stable throughput of 4 µops per clock, regardless of instruction 
length for tiny loops. 
 
To recapitulate, the pipeline can be fed from three different sources, depending on the size 
of critical loops: 

• The loop buffer is used for tiny loops of up to 30 - 40 instructions. The throughput is 
4 µops per clock cycle with no restriction on instruction length. 

• The µop cache is used for loops up to approximately 1000 instructions. The 
throughput is up to 4 instructions or 32 bytes of code per clock cycle. 

• The fetch and decode units are used for instructions that are not in the µop cache. 
The throughput is up to 4 instructions or 16 bytes of code per clock cycle. 

 
Fused instruction pairs (see below) count as one in the µop cache and the loop buffer. With 
two fused not-taken branches per clock, it is possible to obtain a maximum throughput of six 
instructions per clock cycle from the loop buffer or µop cache. 
 
There may be a difference in branch misprediction penalty between the three sources of 
µops, but I have not been able to verify such a difference because the variance in the 
measurements is high. The measured misprediction penalty varies between 16 and 20 clock 
cycles in all three cases. 
 

10.5 Micro-op fusion 

µop fusion is used in the same way as on previous processors. Some instructions that need 
two µops in the execution units can use the µop fusion technique to keep these two µops 
together as one from the decoders to the reservation station in order to save pipeline 
bandwidth. The reservation station will then submit two µops to two different ports. Most 
memory write instructions and most arithmetic and logic instructions with a memory operand 
use µop fusion, regardless of register size. See page 93 and 109 for further explanation. 
 
The decoders can handle four µop-fused instructions per clock cycle. 
 
You can see which instructions use µop fusion by looking at the tables in manual 4: 
"Instruction tables". Instructions with µop fusion has a higher number of µops listed under 
"unfused domain" than under "fused domain". 
 

10.6 Macro-op fusion 

The Haswell and Broadwell can fuse two instructions into one µop in the same way that 
previous processors can (see page 110 and 127).  
 
The decoders will fuse an arithmetic or logic instruction and a subsequent conditional jump 
instruction into a single compute-and-branch µop in certain cases. The compute-and-branch 
µop is not split in two at the execution units but executed as a single µop by the branch unit 
at execution port 0 or 6.  
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The CMP, ADD and SUB instructions can fuse with signed and unsigned branch instructions. 

INC and DEC can fuse with signed branch instructions, and TEST and AND instructions can 

fuse with all branch instructions (including useless combinations), as indicated in table 9.2 
page 128. 
 
The first instruction can have an immediate operand or a memory source operand, but not 
both. It cannot have a memory destination operand. It cannot have a RIP-relative memory 
operand. 
 
The JECXZ and LOOP instructions cannot be fused.  

 
Unlike previous processors, it can make fusion even if a 16-bytes code boundary is crossed. 
 
Two fuseable pairs can be decoded in the same clock cycle. 
 
The programmer should keep any fuseable arithmetic instruction together with a 
subsequent conditional jump rather than scheduling other instructions in-between in order to 
take advantage of macro-op fusion. All four decoders support macro-op fusion. 
 

10.7 Stack engine 

The Haswell and Broadwell have a stack engine similar to the Sandy Bridge, as described 
on page 128. An extra stack synchronization µop is inserted automatically when stack 
operations such as push, pop, call or return are interspersed by instructions that access the 
stack pointer explicitly, such as add rsp, 8 or mov eax,[rsp+16]. 

 

10.8 Register allocation and renaming 

All integer, floating point, MMX, XMM, YMM, flags and perhaps also segment registers can 
be renamed. The floating point control word can also be renamed. 
 
Register renaming is controlled by the reorder buffer and the scheduler. Register allocation 
and renaming has not been observed to be a bottleneck. 

Special cases of independence 

A common way of setting a register to zero is by xor'ing it with itself or subtracting it from 
itself, e.g.  XOR EAX,EAX. The processor recognizes that certain instructions are 

independent of the prior value of the register if the two input operands are the same 
register. This register is set to zero at the register allocation stage without using any 
execution unit and without waiting for the previous value of the register to be available. 
 
The following instructions can set a register to zero in this way if xor'ed with or subtracted 
from itself: XOR, SUB, PXOR, XORPS, XORPD and all variants of PSUBxxx and PCMPGTxx. 

Instructions with V-prefix behave the same. No execution unit is used, and the throughput is 

four zeroing operations per clock cycle. 
 
This works with all 32-bit and 64-bit general purpose registers and all 128-bit and 256-bit 
vector registers. It does not work with 8-bit and 16-bit registers, because only part of the 
register is set to zero. It works partially with 64-bit mmx registers: The register is set to zero 
without waiting for the previous value, but it does use an execution unit (in order to resolve 
the dual use as floating point stack register and mmx register). 
 
All variants of the PCMPEQxx instruction can set a register to all ones without waiting for the 

previous value of the register. It does, however, use an execution unit. 
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The following instructions have no special case for the two input operands being the same 
register: CMP, SBB, ANDN, PANDN, ANDNPS, ANDNPD, CMPEQPS, CMPEQPD. 

Instructions that need no execution unit 

The abovementioned special cases where registers are set to zero by instructions such as 
XOR EAX,EAX  are handled at the register allocation stage without using any execution unit.  

 
A few other instructions are also handled without using any execution unit. These are CLC, 

FXCH, NOP (including long nops), but not FNOP. 

Elimination of move instructions 

Most register-to-register moves are eliminated at the register allocation stage in the same 
way as in the Ivy Bridge, as explained on page 129. 
 
Move elimination typically succeeds in more than 80% of the possible cases. Chained 
moves can also be eliminated. 
 
Move elimination is possible with all 32-bit and 64-bit general purpose registers and all 128-
bit and 256-bit vector registers. It is not possible with 8-bit and 16-bit registers, and it is not 
possible with 64-bit mmx registers. 
 
Unlike the Ivy Bridge, the Haswell and Broadwell cannot eliminate a zero-extended moves. 
But moves with implicit zero-extension can be eliminated, e.g. MOV EAX,EBX (zero-extends 

into RAX), and VMOVAPS XMM0,XMM1 (zero-extends into YMM0). 

 
A move of a register to itself will never be eliminated. For example mov eax,eax is not 

eliminated. 
 
An eliminated move has zero latency and does not use any execution port. But is does 
consume bandwidth in the decoders. 
 

10.9 Execution units 

The processor has a number of execution units accessed through eight execution ports. 
This gives a theoretical maximum throughput of eight µops per clock cycle in the execution 
units. However, the typical throughput of the whole design is four instructions per clock. 
Thus, even with µop fusion it is impossible to keep all execution ports busy more than in 
temporary bursts. 
 
Many of the execution units are duplicated so that there is always high probability that a 
vacant unit can be found that is applicable for a particular µop. There are four integer ALUs 
so that the most common integer operations can execute with a throughput of four 
instructions per clock cycle. There are three ports that can handle integer vector operations. 
Two ports can handle floating point vector operations. Two ports can handle branches. Two 
ports can handle memory read operations, and one port can handle memory writes. 
 
It is strange that there is only one port for floating point addition, but two ports for floating 
point multiplication. 
 
The eight ports and their common operations are listed in table 10.1. 
 

Port Operations Latency 

0 integer and vector arithmetic, logic, shift 1 

0 floating point multiplication Haswell: 5 
Broadwell: 3 

0 floating point FMA and long double multiplication 5 
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0 integer vector multiplication 5 

0 division variable 

0 branch 1-2 

1 integer and vector arithmetic, logic 1 

1 floating point addition 3 

1 integer multiplication 3 

1 bit scan and other complex integer operations 3 

1 floating point multiplication Haswell: 5 
Broadwell: 3 

1 floating point FMA 5 

2 load, address generation  

3 load, address generation  

4 store  

5 integer and vector arithmetic, logic 1 

5 vector permute 1 (3 if lane crossed) 

5 AES encryption 7 

6 integer arithmetic, logic, shift 1 

6 branch 1-2 

7 store address generation  

Table 10.1. Execution units in Haswell and Broadwell 

 
All vector execution units have full 256-bit capacity, except for division, square root and 
encryption. A 256-bit unit cannot be split up and used for two 128-bit operations 
simultaneously. 
 
The latency for integer vector operations is the same as for operations in general purpose 
registers. This makes it possible to use XMM registers for simple integer operations when 
you are out of general purpose registers. The vector operations are supported by fewer 
execution ports, though. 

Fused multiply and add 

The Haswell and Broadwell have two execution units that can handle fused multiply-and-
add (FMA) instructions of the type a = b * c + d. 
 
An FMA instruction does a multiplication and an addition or subtraction with a single 
instruction and a single µop. This can improve performance in floating point code where the 
combination of multiplication and addition often occurs. The throughput is two FMA 
instructions per clock cycle and the latency is 5. 
 
Intel initially designed the FMA instructions with four operands (FMA4) but later changed 
their plans to a design with three operands (FMA3) where it is necessary to reuse one of the 
three input registers as output register, e.g.  a = b * c + a. 

How many input dependencies can a µop have? 

All previous Intel processors with out-of-order capabilities had the design limitation that no 
µop can have more than two input dependencies. I am concluding this from the fact that all 
instructions with more than two input dependencies are split into at least two µops. The 
most common examples are: 
 

; Example 10.1. Instructions with three input dependencies 

mov [eax+ebx],ecx  ; depends on 3 registers 

adc eax,ebx        ; depends on 2 registers and carry flag 

cmovz eax,ebx      ; depends on 2 registers and zero flag 

pblendvb xmm1,xmm2,xmm0 ; depends on 3 registers 

 
All of these instructions are split into two µops on the Haswell and all previous Intel 
processors. The introduction of fused multiply-and-add (FMA) instructions in the Haswell 
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made it necessary to get rid of the limitation of two input dependencies for a µop. Thus, the 
FMA instructions are the first instructions to use a µop with more than two input 
dependencies on an Intel processor. It has probably required a redesign of the out-of-order 
mechanism to allow µops with three input dependencies.  
 
The Broadwell takes this redesign a little step further by using a single µop with three input 
dependencies for add-with-carry, subtract-with-borrow, and conditional moves on general 
purpose registers. All memory stores and blend instructions are still split into two µops on 
the Broadwell. 

Read and write bandwidth 

There are two identical memory read ports (port 2 and 3) and one write port (port 4). These 
ports have all been expanded to 256 bits. This makes it possible to make two memory reads 
and one memory write per clock cycle, all with any register size up to 256 bits. All write 
operations need an address calculation on port 2, 3 or 7. 

Data bypass delays 

The execution units are divided into domains as described on page 115, and there are 
sometimes a delay of one clock cycle when the output of an instruction in the integer 
domain is used as input for an instruction in the floating point domain or vice versa. For 
example: 
 

; Example 10.2. Data bypass delays 

addps xmm0, xmm1 

por   xmm0, xmm2   ; 1 clock delay 

mulps xmm0, xmm3   ; 1 clock delay 

 
The delays in example 10.2 can be avoided by replacing the POR instruction with the more 

appropriate ORPS. 

 
However, there are fewer such delays on Haswell and Broadwell than on previous 
processors. I found no such delays in the following cases: 
 

• when a floating point Boolean instruction, such as ORPS is used with integer data 

• when a wrong type of move instruction is used, e.g. MOVPS or MOVDQA  

• when a wrong type of shuffle instruction is used, e.g. SHUFPS or PFHUFD 

 
I did, however, find delays when a floating point blend instruction, such as BLENDPS is used 

with integer data. 
 
Instructions such as MOVD that move data between general purpose registers and vector 

registers have a latency of only 1 clock and no extra bypass delay. Likewise, instructions 
that move data from vector registers to the integer flags, such as COMISS and PTEST have 

no extra bypass delay. 

256-bit vectors 

All vector execution units have full 256-bit throughput, except for division, square root and 
encryption.  
 
The 256-bit data path that is used for all operations on YMM registers is divided into two 
lanes of 128 bits each. All instructions that can move data between these two lanes have a 
latency of 3 clock cycles, while other move instructions have a latency of only one clock 
cycle. For example: 
 

; Example 10.3. Moving data between 128-bit lanes 

vextracti128 xmm0,ymm1,1   ; move from upper to lower lane, 3 clocks 

vextracti128 xmm0,ymm1,0   ; move in lover lane only, still 3 clocks 
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vmovdqa xmm0,xmm1          ; same operation in 0 - 1 clocks 

 
The second instruction in example 10.3 has a latency of 3 clock cycles, even though all data 
stay in the lower lane, because the VEXTRACTI128 instruction has the potential for moving 

data between lanes. This delay can be avoided by using the VMOVDQA instruction which 

does the same in this case, but has no potential for moving data across lanes. 
 
There is a severe penalty for mixing 256-bit VEX code with 128-bit non-VEX code as 
explained in chapter 9.12. All transitions between state B (modified) and state C (saved) 
have a delay of 70 clock cycles. This delay is the same in 32-bit mode and 64-bit mode 
even though the number of registers to save is different. The delay should be avoided either 
by replacing all non-VEX vector instructions with the V-prefix version, or by issuing a 
VZEROUPPER instruction whenever a function containing 256-bit vector code calls another 

function that may use non-VEX code or returns to a function that may use non-VEX code. 
 
The two halves of a 256-bit register are not treated as independent, except in the undesired 
state C (saved), as explained in chapter 9.12. It is not possible to split a 256-bit execution 
unit into two 128-bit units to do two 128-bit operations simultaneously. 

Mixing µops with different latencies 

Some older processors have a write-back conflict when µops with different latencies are 
issued to the same execution port, as described on page 117. I found no evidence of such a 
problem on Haswell and Broadwell. The problem has been solved partly by standardizing 
latencies, as is evident from table 10.1, and partly, perhaps, by having multiple write-back 
paths. 

Underflow and subnormals 

Subnormal numbers occur when floating point operations are close to underflow. The 
handling of subnormal numbers is very costly in some cases because the subnormal results 
are handled by microcode exceptions. 
 
The Haswell and Broadwell have a penalty of approximately 124 clock cycles in all cases 
where an operation on normal numbers gives a subnormal result. There is a similar penalty 
for a multiplication between a normal and a subnormal number, regardless of whether the 
result is normal or subnormal. There is no penalty for adding a normal and a subnormal 
number, regardless of the result. There is no penalty for overflow, underflow, infinity or not-
a-number results. 
 
The penalties for subnormal numbers are avoided if the "flush-to-zero" mode and the 
"denormals-are-zero" mode are both set in the MXCSR register. 
 

10.10 Partial register access 

Different parts of a general purpose register can be stored in different temporary registers in 
order to remove false dependences. A problem occurs when a write to a part of a register is 
followed by a read from a larger part of the same register: 
 

; Example 10.4. Partial register access 

mov  al,  1 

mov  ebx, eax 

 
The Haswell and Broadwell solve this problem without any visible performance penalties. 
Perhaps it makes dual bookkeeping of both the partial register and the full register. 
 
The situation is different if one of the high 8-bit registers (AH, BH, CH, DH) are modified, and 

a larger part of the register is read afterwards: 
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; Example 10.5. Partial register problem with AH 

mov  ah,  1 

mov  ebx, eax 

 
Here, an extra µop is inserted to combine AH and the rest of EAX into a single temporary 

register before the MOV EBX,EAX instruction. This causes an extra latency of one clock 

cycle. 

Partial flags access 

A similar situation occurs when part of the flags register is modified and a larger part of the 
same register is read afterwards. Some of these cases require an extra µop like example 
10.5. 
 

; Example 10.6. Partial flags access 

inc eax         ; modifies zero flag but not carry flag 

jbe L1          ; reads both sero flag and carry flag 

 
; Example 10.7. Partial register access 

bt eax,2        ; modifies carry flag but not zero flag 

cmovbe eax,ebx  ; reads both carry flag and zero flag 

 
The processor will insert an extra µop to join the two parts of the flags register in these 
cases. 
 
In cases like this, you may consider whether it is a programming error or a deliberate testing 
of two different conditions with a single instruction. 
 
There is no penalty or extra µop when reading the flags after a shift or rotate instruction. 

Partial access to vector registers 

An XMM register is never split into its parts in the reorder buffer. Therefore, no extra µops 
are needed and there is no partial access stall when writing to part of an XMM register. But 
a write to part of a vector register has a dependence on the previous value of the register. 
See example 8.8, on page 118. 
 
The two halves of a YMM register are never treated as independent in VEX instructions, but 
the two halves can be separated when switching between VEX and non-VEX modes. There 
is a penalty of 70 clock cycles when mixing VEX and non-VEX code as described in chapter 
9.12. 
 

10.11 Cache and memory access 

 

Cache Haswell and Broadwell 

µop cache 1536 µops, 8 way, 6 µop line size, per core 

Level 1 code 32 kB, 8 way, 64 sets, 64 B line size, 
latency 4, per core 

Level 1 data 32 kB, 8 way, 64 sets, 64 B line size, 
latency 4, per core 

Level 2 256 kB, 8 way, 512 sets, 64 B line size, 
latency 12, per core. 

Level 3 2 - 45 MB, 12-16 way, 64 B line size, latency 34, 
shared 

Table 10.2. Cache sizes on Haswell and Broadwell 

 
There is one cache on each core, except for the last-level cache. All caches are shared 
between two threads where a core can run two threads. It is likely that there will be more 
versions in the future with different level 3 cache sizes. Some versions have a level 4 cache. 
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The 256-bit read and write bandwidth (see p. 144) makes it advantageous to use 256-bit 
registers for copying or zeroing large blocks of memory. The REP MOVS instruction has full 

efficiency only if the source and destination are both aligned by 32. In all other cases, it is 
better to use a function library that uses 256-bit registers. 
 

Cache bank conflicts 

The phenomenon of cache bank conflicts has been a performance problem in previous 
processors. This problem has been removed now. It is always possible to do two cache 
reads in the same clock cycle without causing a cache bank conflict. 
 
However, the problem with false dependence between memory addresses with the same 
set and offset remains. It is not possible to read and write simultaneously from addresses 
that are spaced by a multiple of 4 Kbytes: 
 

; Example 10.8. False memory dependence 

mov  [rsi], eax   

mov  ebx, [rsi+1000H]       ; False memory dependence 

 

Misaligned memory accesses 

There is hardly any penalty for misaligned memory access, except for the effect of using 
multiple cache lines. 
 

10.12 Store forwarding stalls 

The processor can forward a memory write to a subsequent read from the same address 
under certain conditions. Store forwarding works in the following cases: 
 

• When a write of 64 bits or less is followed by a read of the same size and the same 
address, regardless of alignment. 
   

• When a write of 128 or 256 bits is followed by a read of the same size and the same 
address, fully aligned. 
   

• When a write of 64 bits or less is followed by a read of a smaller size which is fully 
contained in the write address range, regardless of alignment. 
   

• When an aligned write of any size is followed by two reads of the two halves, or four 
reads of the four quarters, etc. with their natural alignment within the write address 
range. 
   

• When an aligned write of 128 bits or 256 bits is followed by a read of 64 bits or less 
that does not cross an 8 bytes boundary. 

 
A delay of 2 clocks occur if the memory block crosses a 64-bytes cache line boundary. This 
can be avoided if all data have their natural alignment. 
 
Store forwarding fails in the following cases: 
 

• When a write of any size is followed by a read of a larger size 
   

• When a write of any size is followed by a partially overlapping read 
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• When a write of 128 bits is followed by a smaller read crossing the boundary 
between the two 64-bit halves 
   

• When a write of 256 bits is followed by a 128 bit read crossing the boundary 
between the two 128-bit halves 
   

• When a write of 256 bits is followed by a read of 64 bits or less crossing any 
boundary between the four 64-bit quarters 

 
A failed store forwarding takes 10 clock cycles more than a successful store forwarding. The 
penalty is much higher - approximately 50 clock cycles - after a write of 128 or 256 bits 
which is not aligned by at least 16. 
 

10.13 Multithreading 

Some versions of Haswell and Broadwell can run two threads in each of its cores. This 
means that each thread gets only half of the resources.  
 
The resources are shared between two threads running in the same core in the same way 
as in Sandy Bridge (see p. 136). A small difference is that there is one loop buffer shared 
between the two threads. 
 
There is no advantage to running two threads per core if any of the shared resources are 
limiting factors for the performance. There are so many execution ports and execution units 
that execution is rarely a limiting factor. If the code aims at more than two instructions per 
clock cycle, or if cache size is a limiting factor, then there is no advantage in running two 
threads in each core. 
 
There is no way to give one thread higher priority than the other in the CPU.  
 

10.14 Bottlenecks in Haswell and Broadwell 

Instruction fetch and predecoding 

The instruction fetch rate is still limited to 16 bytes per clock cycle, which is likely to be a 
bottleneck for code that doesn't fit well into the µop cache. 

µop cache 

The µop cache is efficient for loops of up to approximately a thousand instructions. 
 
It is important to economize the use of the µop cache in CPU-intensive code. The difference 
in performance between loops that fit into the µop cache and loops that do not can be quite 
significant if the average instruction length is more than four bytes. 
 
The µop cache has the same weaknesses as in the Sandy Bridge, as explained on page 
125 and 137. 

Execution ports and execution units 

The capacity of the execution ports and execution units is quite high. The most common 
integer instructions have four execution units to choose between, and most floating point 
and vector instructions have two or three execution unit to choose between. Therefore, it is 
realistic to obtain a throughput of four instructions per clock cycle if the code has no long 
dependency chains. 
 
Almost all vector execution units and data paths have full 256 bit width. This makes it very 
advantageous to use the 256-bit vector registers and the AVX or AVX2 instruction set. 
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The new AVX2 gather instructions are efficient for gathering non-contiguous data into 
vectors, and for vectorizing table-based lookup functions. Gather instructions are more 
efficient in Broadwell than in Haswell. 
 
The fused multiply-and-add (FMA) instructions are useful for improving the performance of 
floating point code. 
 
Register-to-register moves are eliminated to zero latency in most cases. 

Floating point addition has lower throughput than multiplication 

The throughput for floating point vector multiplications and FMA operations is two vector 
operations per clock cycle, but the throughput for floating point vector addition is only one 
vector operation per clock cycle. It is odd that there are two multiplication/FMA units and 
only one addition unit since additions are typically more common than multiplications in 
floating point code. The floating point performance will be sub-optimal if the code contains 
more additions than multiplications or FMA instructions. In my opinion, this is not the best 
design decision for typical floating point code, but at least it enables Intel to boast a floating 
point performance of 32 FLOPS per cycle. 
 
For a code that contains mostly floating point additions, you can actually improve the 
throughput by replacing additions by FMA instructions with a multiplier of 1.0. The FMA 
instructions have a latency of 5 and a throughput of two instructions per clock, which means 
that you may need 10 accumulator registers to get the maximum throughput. 

Execution latency and dependency chains 

Execution latencies are generally low. Most integer ALU operations have a latency of only 
one clock cycle, even for 256-bit vector operations. Floating point addition has a latency of 
3, and floating point multiplication has a latency of 3 on Broadwell and 5 on Haswell. These 
execution latencies are critical in long dependency chains. 

Branch prediction 

The size of the branch target buffer and the construction of the branch predictor is unknown, 
but at least the prediction rate seems good.  
 
The throughput for taken branches is one jump per clock or one jump per two clocks, 
depending on the density of branches. Predicted not taken branches have a higher 
throughput of two per clock. Therefore, it is advantageous to organize branches so that they 
are most often not taken. 

Memory access 

The width of the memory ports has been doubled relative to previous processors. The 
maximum throughput to the level-1 cache is now two 32-byte reads and one 32-byte write 
per clock. This makes it possible to copy a block of memory at a speed of 32 bytes per clock 
cycle. The throughput for the level-2 cache is much lower than this. 
 
Cache bank conflicts were a quite common performance problem on previous processors. 
This problem has been completely removed on Haswell and Broadwell. 

Multithreading 

Most of the critical resources are shared between threads. This means that the bottlenecks 
become even more critical in multithreaded applications. 
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11 Intel Skylake pipeline  
The Skylake represents a further development of the Haswell and Broadwell design. The 
cache and decoder front end is basically the same as in Haswell with somewhat more 
bandwidth, while the execution engine has been reorganized somewhat to improve the 
throughput. 
 
Several subsequent processor models named Kaby Lake, Cannon Lake, Coffee Lake, etc. 
are based on the same design. They differ mainly in processing technology, number of 
cores, and cache sizes. These are also known as 7'th, 8'th, and 9'th generation Intel Core 
processors. 
 
Some versions of Skylake named Skylake-X have support for the AVX512 instruction set, 
defining 512-bit vector registers and masked instructions. This includes the instruction 
subsets AVX512F, AVX512BW, AVX512DQ, AVX512VL, and AVX512CD. The 
implementation of AVX512 instructions is very efficient. Cannon Lake also supports 
AVX512, while Kaby Lake and Coffee Lake do not. 
 
The Skylake is available with 2 - 18 cores. Larger versions are capable of running two 
threads in each core. Most of the critical resources are shared between the two threads 
running in the same core, as described on page 136. 
 
The Skylake, Kaby Lake, and Coffee Lake use 14 nm technology like Broadwell, but 
supports the faster DDR4 RAM. Cannon Lake uses 10 nm technology. 
 

11.1 Pipeline 

The pipeline is very similar to previous designs, but the execution units have been 
reorganized somewhat to provide more than one execution port for nearly all important 
instructions. It is designed for a throughput of four instructions per clock cycle. 
 
The resources for out-of-order execution have been increased. The reorder buffer has 224 
entries on Skylake. The reservation station has 97 entries. The number of temporary 
registers in Skylake is 180 integer registers and 168 vector registers, according to Intel 
publications. It is unknown whether these vector registers are 128, 256, or 512 bits. 
 
All parts of the pipeline are shared between two threads in those CPU models that can run 
two threads in each core. Each thread gets half of the total throughput when two threads are 
running in the same core. 
 

11.2 Instruction fetch and decoding 

The instruction fetch unit can fetch a maximum of 16 bytes of code per clock cycle in single 
threaded applications. 
  
There are four decoders. The first decoder can decode instructions that generate up to four 
µops. The other three decoders can decode only simple instructions that generate a single 
µop. The maximum throughput from the decoders is four instructions or five µops per clock 
cycle. The minimum throughput is seen in a sequence where all instructions generate two 
µops each so that only the first decoder is active. Fused ALU and branch instructions (see 
page 153) count as one. Instructions with any number of prefixes are decoded in a single 
clock cycle. There is no penalty for redundant prefixes. 
 
The penalty for length-changing prefixes is the same as for Sandy Bridge (see page 124). 
Arithmetic and logic instructions with an immediate operand using an operand size prefix, 
e.g. add ax,1234 have a penalty of 2-3 clock cycles in the decoders, regardless of 

alignment. This applies to all arithmetic and logic instructions with a 16-bit immediate 
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constant as operand in 32-bit or 64-bit mode. Move instructions have no penalty for length-
changing prefixes. 
 

11.3 µop cache 

The µop cache has the same size and organization as in the Sandy Bridge (see p. 125). It is 

organized as 32 sets  8 ways  6 µops, totaling a maximum capacity of 1536 µops. It can 
allocate a maximum of 3 lines of 6 µops each for each aligned and contiguous 32-bytes 
block of code. 
 
Code that runs out of the µop cache are not subject to the limitations of the fetch and 
decode units. It can deliver one cache line per clock, but the average throughput cannot 
exceed 4 (possibly fused) µops or the equivalent of 32 bytes of code per clock cycle. The 
µop cache is a big advantage when the average instruction length is more than four bytes. 
The limitations and weaknesses of the Sandy Bridge µop cache still apply. See page 125 for 
details. 
 

11.4 Loopback buffer 

The processor has a loop buffer which simply recycles µops from the µop queue, which has 
64 entries per thread. The loop buffer will rarely use all 64 entries of the queue, but small 
loops of up to 30 µops, or sometimes up to 40, will benefit from the loop buffer. The loop 
buffer gives a stable throughput of 4 µops per clock, regardless of instruction length for tiny 
loops, according to my measurements. 
 
To recapitulate, the pipeline can be fed from three different sources, depending on the size 
of critical loops: 

• The loop buffer is used for tiny loops of up to 30 - 40 instructions. The throughput is 
4 µops per clock cycle with no restriction on instruction length. 

• The µop cache is used for loops up to approximately 1000 instructions. The 
throughput is up to 4 instructions or 32 bytes of code per clock cycle. 

• The fetch and decode units are used for instructions that are not in the µop cache. 
The throughput is up to 4 instructions or 16 bytes of code per clock cycle. 

 
Fused instruction pairs (see below) count as one in the µop cache and the loop buffer. With 
two fused not-taken branches per clock, it is possible to obtain a maximum throughput of six 
instructions per clock cycle from the loop buffer or µop cache. 
 
There may be a difference in branch misprediction penalty between the three sources of 
µops, but I have not been able to verify such a difference because the variance in the 
measurements is high. The measured misprediction penalty varies between 16 and 20 clock 
cycles in all three cases. 
 

11.5 Micro-op fusion 

µop fusion is used in the same way as on previous processors. Some instructions that need 
two µops in the execution units can use the µop fusion technique to keep these two µops 
together as one from the decoders to the reservation station in order to save pipeline 
bandwidth. The reservation station will then submit two µops to two different ports. Most 
memory write instructions and most arithmetic and logic instructions with a memory operand 
use µop fusion, regardless of register size. See page 93 and 109 for further explanation. 
 
The decoders can handle four µop-fused instructions per clock cycle. You can see which 
instructions use µop fusion by looking at the tables in manual 4: "Instruction tables". 
Instructions with µop fusion have a higher number of µops listed under "unfused domain" 
than under "fused domain". 
 



 153 

11.6 Macro-op fusion 

The processor can fuse two instructions into one µop in the same way that previous 
processors can (see page 110 and 127).  
 
The decoders will fuse an arithmetic or logic instruction and a subsequent conditional jump 
instruction into a single compute-and-branch µop in certain cases. The compute-and-branch 
µop is not split in two at the execution units but executed as a single µop by the branch unit 
at execution port 0 or 6. 
 
The CMP, ADD and SUB instructions can fuse with signed and unsigned branch instructions. 

INC and DEC can fuse with signed branch instructions, and TEST and AND instructions can 

fuse with all branch instructions (including useless combinations), as indicated in table 9.2 
page 128. 
 
The first instruction can have an immediate operand or a memory source operand, but not 
both. It cannot have a memory destination operand. It cannot have a RIP-relative memory 
operand. 
 
The JECXZ and LOOP instructions cannot be fused.  

 
Unlike previous processors, it can make fusion even if a 16-bytes code boundary is crossed. 
 
Two fuseable pairs can be decoded in the same clock cycle. 
 
The programmer should keep any fuseable arithmetic instruction together with a 
subsequent conditional jump rather than scheduling other instructions in-between in order to 
take advantage of macro-op fusion. All four decoders support macro-op fusion. 
 

11.7 Stack engine 

The processor has a stack engine similar to the Sandy Bridge, as described on page 128. 
An extra stack synchronization µop is inserted automatically when stack operations such as 
push, pop, call or return are interspersed by instructions that access the stack pointer 
explicitly, such as add rsp,8 or mov eax,[rsp+16]. 

 

11.8 Register allocation and renaming 

All integer, floating point, vector registers, flags and perhaps also segment registers can be 
renamed. The floating point control word can also be renamed. 
 
Register renaming is controlled by the reorder buffer and the scheduler. Register allocation 
and renaming has not been observed to be a bottleneck. 

Special cases of independence 

A common way of setting a register to zero is by xor'ing it with itself or subtracting it from 
itself, e.g.  XOR EAX,EAX. The processor recognizes that certain instructions are 

independent of the prior value of the register if the two input operands are the same 
register. This register is set to zero at the register allocation stage without using any 
execution unit and without waiting for the previous value of the register to be available. 
 
The following instructions can set a register to zero in this way if both source operands are 
the same register: XOR, SUB, PXOR, XORPS, XORPD, PANDN, ANDNPS, ANDNPD and all 

variants of PSUBxxx and PCMPGTxx. Instructions with V-prefix behave the same. No 

execution unit is used, and the throughput is four zeroing operations per clock cycle. 
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This works with all 32-bit and 64-bit general purpose registers and all 128, 256, and 512-bit 
vector registers. It does not work with 8-bit and 16-bit registers, because only part of the 
register is set to zero. It works partially with 64-bit mmx registers: The register is set to zero 
without waiting for the previous value, but it does use an execution unit (in order to resolve 
the dual use as floating point stack register and mmx register). 
 
All variants of the PCMPEQxx instruction can set a register to all ones without waiting for the 

previous value of the register. It does, however, use an execution unit. 
 
The following instructions have no special case for the two input operands being the same 
register: CMP, SBB, CMPEQPS, CMPEQPD. 

Instructions that need no execution unit 

The abovementioned special cases where registers are set to zero by instructions such as 
XOR EAX,EAX  are handled at the register allocation stage without using any execution unit.  

 
A few other instructions are also handled without using any execution unit. These are CLC 

and NOP (including long nops), but not FNOP. 

Elimination of move instructions 

Most register-to-register moves are eliminated at the register allocation stage in the same 
way as on the Ivy Bridge, as explained on page 129. Move elimination typically succeeds in 
more than 80% of the possible cases. Chained moves can also be eliminated. 
 
Move elimination is possible with all 32-bit and 64-bit general purpose registers and all 
vector registers of 128 bits or more. It is not possible with 8-bit and 16-bit registers, and it is 
not possible with 64-bit mmx registers. 
 
The Skylake cannot eliminate zero-extended moves (MOVZX), but moves with implicit zero-

extension can be eliminated, e.g. MOV EAX,EBX (zero-extends into RAX), and VMOVAPS 

XMM0,XMM1 (zero-extends into YMM0 or ZMM0). 

 
A move of a register to itself will never be eliminated. For example mov eax,eax is not 

eliminated. 
 
An eliminated move has zero latency and does not use any execution port. But is does 
consume bandwidth in the decoders. 
 

11.9 Execution units 

The Skylake has a number of execution units accessed through eight execution ports. This 
gives a theoretical maximum throughput of eight µops per clock cycle in the execution units. 
However, the throughput of the whole design rarely exceeds four instructions per clock. 
Thus, even with µop fusion it is impossible to keep all execution ports busy more than in 
temporary bursts. 
 
Most of the execution units are duplicated so that a µop will rarely have to wait for a vacant 
unit. There are four integer ALUs so that the most common integer operations can execute 
with a throughput of four instructions per clock cycle. There are three ports that can handle 
integer vector operations of up to 256 bits. Two ports can handle floating point vector 
operations. Two ports can handle branches. Two ports can handle memory read operations, 
and one port can handle memory writes. The Skylake can handle more different latencies at 
the same port than on previous processors. 
 
The eight ports and their common operations are listed in table 11.1. 
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Port Operations Latency 

0 integer and vector arithmetic, logic, shift 1 

0 vector  string instructions 3 

0 floating point add, multiply, FMA 4 

0 AES encryption 4 

0 integer vector multiplication 5 

0 integer and floating point division, squareroot variable 

0 branch 1-2 

1 integer and vector arithmetic, logic, shift 1 

1 integer multiplication, bit scan 3 

1 floating point add, multiply, FMA 4 

1 integer vector multiplication 5 

5 integer and vector arithmetic, logic 1 

5 vector permute 1 (3 if lane crossed) 

5 x87 floating point add, SADBW 3 

5 PCLMUL 7 

6 integer arithmetic, logic, shift 1 

6 jump and branch 1-2 

2 load, address generation  

3 load, address generation  

4 store  

7 load and store address generation  

Table 11.1. Execution units in Skylake 

 
All vector execution units have at least 256-bit capability, except for division, square root 
and encryption. A 256-bit unit cannot be split up and used for two 128-bit instructions 
simultaneously. 
 
The latency for integer vector operations is mostly the same as for operations in general 
purpose registers. This makes it possible to use XMM registers for simple integer operations 
if you are out of general purpose registers. 

512-bit vector instructions 

The Skylake-X and Cannon Lake support the AVX512 instruction set. There are two 256-bit 
vector execution units at port 0 and 1, respectively. These two units can be combined into 
one 512-bit unit when 512-bit vector instructions are executed. This combined 512-bit unit is 
accessed through port 0, while port 1 can be used for other purposes simultaneously.  
 
There is an additional 512-bit vector unit under port 5. Floating point vector instructions of 
256 bits or less go through port 0 or 1, while 512-bit floating point instructions go through 
port 0 or 5. Permute instructions and other instructions that may cross the 128-bit lane 
boundaries are always handled by port 5. 
 
Early versions of Skylake-X with less than ten cores do not have the extra 512-bit floating 
point unit at port 5. These versions have a throughput of one 512-bit floating point vector 
operation or two 256-bit floating point vector operations per clock cycle. Later Skylake-X 
processors have a throughput of two 512-bit floating point vector operations per clock cycle, 
including floating point addition, multiplication, and fused multiply-and-add. It is difficult to 
see whether a particular Skylake-X processor has the extra 512-bit floating point unit or not, 
because processors with and without this unit may have the same CPUID model and 
stepping number and the same number of cores. You may check the version name at 
ark.intel.com for clarification. 
 
Some common integer vector instructions have a throughput of three instructions per clock 
for up to 256 bits, using port 0, 1, and 5. The 512-bit versions of the same instructions have 
a throughput of two instructions per clock, going through port 0 and 5. All versions of 
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Skylake-X have a throughput of two 512-bit integer vector additions or three 256-bit integer 
vector additions per clock. 
 
Most 512-bit vector instructions have the same latency as similar instructions with 256 bits 
or less. Exceptions are division and square root. 
 
All vector units are divided into two or four lanes of 128 bits each. All instructions that can 
move data between these lanes have a latency of at least 3 clock cycles, as explained on 
page 144. 

Masked instructions 

The AVX512 instruction set includes support for masked vector instructions. Each element 
in the vector is enabled or disabled depending on a bit in a mask register. Mask register k1 - 
k7 can be used for masking. 
 
In general, there is no extra cost to masking. The latencies and throughputs of masked 
instructions is the same as without masking, except for memory read and write instructions 
and register-to-register moves. 
 
Masked register-to-register moves cannot be eliminated. Masked memory read instructions 
have an extra µop at port 0 or 5 and an extra latency of one clock cycle. Masked memory 
write instructions have an extra latency of approximately 10 clock cycles. 
 
A masked instruction depends on the previous value of the destination register unless the 
zeroing option is also applied. Therefore, it is recommended to use the zeroing option on 
masked instructions if it is acceptable that the disabled elements of the result vector are set 
to zero rather than unchanged. 

How many input dependencies can a µop have? 

Until the Ivy Bridge, all Intel processors with out-of-order capabilities had the design 
limitation that no µop could have more than two input dependencies. The introduction of 
fused multiply-and-add (FMA) instructions in the Haswell made it necessary to get rid of the 
limitation of two input dependencies for each µop. Thus, the FMA instructions were the first 
instructions to use µops with more than two inputs on an Intel processor. A few more 
instructions with three inputs in a single µop have later been added: add-with-carry, 
subtract-with-borrow, and conditional moves in Broadwell, and a blend instruction in 
Skylake. An FMA instruction with a mask has four input dependencies with just a single µop. 

Read and write bandwidth 

There are two identical memory read ports (port 2 and 3) and one write port (port 4). These 
ports all have the full width of 256 or 512 bits. This makes it possible to make two memory 
reads and one memory write per clock cycle, with any register size. The measured 
throughput is a little lower than this due to cache effects. All write operations need an 
address calculation on port 2, 3 or 7. The Skylake has 72 read buffers and 56 write buffers. 

Data bypass delays 

The execution units are divided into domains as described on page 115, and there is 
sometimes a delay of one clock cycle when the output of an instruction in the integer 
domain is used as input for an instruction in the floating point domain. For example: 
 

; Example 11.1. Data bypass delays 

addps xmm0, xmm1 

por   xmm0, xmm2 

mulps xmm0, xmm3   ; 1 clock delay 

 
The delays in example 11.1 can be avoided by replacing the POR instruction with the more 

appropriate ORPS. 
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However, such delays are few on the Skylake processor. I found no such delays in the 
following cases: 
 

• when a floating point Boolean instruction, such as ORPS is used with integer data 

• when a wrong type of move instruction is used, e.g. MOVPS or MOVDQA  

• when a wrong type of shuffle instruction is used, e.g. SHUFPS or PFHUFD 

• when a wrong type of blend instruction is used, e.g. VPBLENDD or BLENDPS  

 
Instructions such as MOVD that move data between general purpose registers and vector 

registers have a latency of 2 clock cycles. 

Warm-up period for YMM and ZMM vector instructions 

The processor turns off the upper parts of the vector execution units when it is not used, in 
order to save power. Instructions with 256-bit vectors have a throughput that is 
approximately 4.5 times slower than normal during an initial warm-up period of 
approximately 56,000 clock cycles or 14 µs. A sequence of code containing 256-bit vector 
operations will run at full speed after this warm-up period. The processor returns to the 
mode of slow 256-bit execution 2.7 million clock cycles, or 675 µs, after the last 256-bit 
instruction (These times were measured on a 4 GHz processor). Similar times apply to 512-
bit vectors. 
 
It is possible to prepare the processor for executing YMM or ZMM instructions by giving it a 
dummy YMM or ZMM instruction at least 56,000 clock cycles before a critical sequence of 
vector instructions. You may insert a YMM or ZMM vector instruction such as, for example,  
vxorps zmm0,zmm0,zmm0  somewhere before a piece of code that contains time-

consuming YMM or ZMM operations. Any instruction with YMM or ZMM registers will start 
the warmup process, except vzeroupper and vzeroall. The first YMM or ZMM 

instruction takes 150 - 250 clock cycles - probably to start a power-up process. 
 
The processor simply turns off power for the upper parts of the 256-bit and 512-bit units 
when they are not used, rather than just gating the clock. It is using the 128-bit lane twice 
when executing a 256-bit instruction during the warm-up period. The performance of 256-bit 
instructions is mostly limited by throughput rather than by latency during this period. 

Underflow and subnormals 

Subnormal numbers occur when floating point operations are close to underflow. The 
handling of subnormal numbers is very costly in some cases because the subnormal results 
are handled by microcode exceptions. 
 
The processor has a penalty of approximately 129 clock cycles in all cases where an 
operation on normal numbers gives a subnormal result. There is a similar penalty for a 
multiplication or division between a normal and a subnormal number, regardless of whether 
the result is normal or subnormal. There is no penalty for adding a normal and a subnormal 
number, regardless of the result. There is no penalty for overflow, underflow, infinity or not-
a-number results. 
 
The penalties for subnormal numbers are avoided if the "flush-to-zero" mode and the 
"denormals-are-zero" mode are both set in the MXCSR register. 
 

11.10 Transitions between VEX and non-VEX modes 

The severe penalty for mixing 256-bit VEX code with 128-bit non-VEX code in previous 
processors (see chapter 9.12 page 134) is no longer found in the Skylake.  
 
Instead of the three states in the Sandy Bridge processor, the Skylake has two states:  
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A. (Clean state) The upper parts of YMM0-15 or ZMM0-15 are all unused and known to 

be zero. 
   

B. (Dirty state) The upper part of at least one of these registers is used and contains 
data. 

 
There is little or no cost to transitions between these states. The vector registers are never 
separated into upper and lower parts. Instead, the processor will combine the upper and 
lower parts when writing a 128-bit vector register with a non-VEX instruction in state D. This 
creates a false dependence on the previous value of the register. For example, the 
instruction MOVDQA XMM1,XMM2 will have to wait for any previous value of XMM1. This 

can slow down a sequence of SSE code that follows after a sequence of VEX code. 
 
There are two ways to avoid this problem. The first method, which is compatible with 
previous processors, is to insert a VZEROUPPER instruction after any sequence of VEX code 

before a call or return to a code that may use non-VEX vector code. 
 
The second method, which requires AVX512 support, is to use only registers ZMM16-
ZMM31 in VEX code. These registers are not accessible to non-VEX code and do not 
influence the VEX state. 
 

11.11 Partial register access 

Different parts of a general purpose register can be stored in different temporary registers in 
order to remove false dependences. A problem occurs when a write to a part of a register is 
followed by a read from a larger part of the same register: 
 

; Example 11.2. Partial register access 

mov  al,  1 

mov  ebx, eax 

 
The processor solves this problem without any visible performance penalties. Perhaps it 
makes dual bookkeeping of both the partial register and the full register. 
  
The situation is different if one of the high 8-bit registers (AH, BH, CH, DH) are modified, and 

a larger part of the register is read afterwards: 
 

; Example 11.3. Partial register problem with AH 

mov  ah,  1 

mov  ebx, eax 

 
Here, an extra µop is inserted to combine AH and the rest of EAX into a single temporary 

register before the MOV EBX,EAX instruction. This causes an extra latency of one clock 

cycle. 

Partial flags access 

A similar situation occurs in a few situations where part of the flags register is modified and 
a larger part of the same register is read afterwards. A few of these cases require an extra 
µop like example 11.3. 
 

; Example 11.4. Partial register access 

bt eax,2        ; modifies carry flag but not zero flag 

cmovbe eax,ebx  ; reads both carry flag and zero flag 

 
The processor may insert an extra µop to join the two parts of the flags register in these 
examples. There is no extra µop when reading the flags after INC and DEC instructions. 
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In cases like this, you may consider whether it is a programming error or a deliberate testing 
of two different conditions with a single instruction. 
 
There is no penalty or extra µop when reading the flags after a shift or rotate instruction. 
 

11.12 Cache and memory access 

 

Cache Skylake 

µop cache 1536 µops, 8 way, 6 µop line size, per core 

Level 1 code 32 kB, 8 way, 64 sets, 64 B line size, 
latency 4, per core 

Level 1 data 32 kB, 8 way, 64 sets, 64 B line size, 
latency 4, per core 

Level 2 256 kB - 1MB, 4 - 16 ways, 1024 sets, 64 B line 
size, latency 14, per core. 

Level 3 3-24 MB, 64 B line size, latency 34-85, shared 
Table 11.2. Cache sizes on Skylake 

 
There is a level-1 data cache and a level-1 code cache on each core. These caches are 
shared between two threads running in the same core. There is a level-3 cache shared 
between all cores.  
 
Different processors with Lake names are quite similar, but the sizes of level 2 and 3 caches 
differ between different versions and different models. Some versions also have a level-4 
cache. 
 
The 256-bit or 512-bit read and write bandwidth (see p. 144) makes it advantageous to use 
YMM or ZMM registers for copying or zeroing large blocks of memory. The REP MOVS 

instruction has full efficiency only if the source and destination are both aligned by 32. In all 
other cases, it is better to use a function library that uses YMM or ZMM registers. 

Cache bank conflicts 

The phenomenon of cache bank conflicts has been a performance problem in some 
previous processors. This problem has been removed now. It is always possible to do two 
cache reads in the same clock cycle without causing a cache bank conflict. 
 
However, the problem with false dependence between memory addresses with the same 
set and offset remains. It is not possible to read and write simultaneously from addresses 
that are spaced by a multiple of 4 Kbytes: 
 

; Example 11.5. False memory dependence 

mov  [rsi], eax   

mov  ebx, [rsi+1000H]       ; False memory dependence 

 
The theoretical maximum throughput is two cache reads and one write per clock cycle. 
However, this throughput cannot be maintained continuously because of limited cache 
ways, read and write buffers, etc. Some of the memory writes may use port 2 or 3 for 
address calculation, rather than port 7, and thereby delaying a read. 
 

11.13 Store forwarding stalls 

The Skylake processor can forward a memory write to a subsequent read from the same 
address under certain conditions. Store forwarding is one clock cycle faster than on 
previous processors. A memory write followed by a read from the same address takes 4 
clock cycles in the best case for operands of 32 or 64 bits, and 5 clock cycles for other 
operand sizes. 
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Store forwarding has a penalty of up to 3 clock cycles extra when an operand of 128 bits or 
more is misaligned.  
 
A store forwarding usually takes 4 - 5 clock cycles extra when an operand of any size 
crosses a cache line boundary, i.e. an address divisible by 64 bytes. 
 
A write followed by a smaller read from the same address has little or no penalty. 
 
A write of 64 bits or less followed by a smaller read has a penalty of 1 - 3 clocks when the 
read is offset but fully contained in the address range covered by the write.  
 
An aligned write of 128 bits or more followed by a read of one or both of the two halves or 
the four quarters, etc., has little or no penalty. A partial read that does not fit into the halves 
or quarters can take 11 clock cycles extra. 
 
A read that is bigger than the write, or a read that covers both written and unwritten bytes, 
takes approximately 11 clock cycles extra. 
 

11.14 Multithreading 

Larger versions of the processor can run two threads in each of its cores. This means that 
each thread gets only half of the resources.  
 
Level-1 cache, instruction fetch, decoding and execution units are shared between two 
threads running in the same core in the same way as in previous processors. 
 
There is no advantage to running two threads per core if any of the shared resources are 
limiting factors for the performance. There are so many execution ports and execution units 
that execution is rarely a limiting factor. If the code aims at more than two instructions per 
clock cycle, then there is no advantage in running two threads in each core. Some of the 
most common performance bottlenecks are cache size and instruction fetching. It is 
preferred to run only one thread in each core if cache or instruction fetching is a limiting 
factor. There is no way to give one thread higher priority than the other in the CPU.  
 

11.15 Bottlenecks in Skylake, Kaby Lake, Cannon Lake, and Coffee Lake  

The pipelines and execution units in Skylake and other "Lake" models are quite efficient. 
Memory access is the most common bottleneck. 

Instruction fetch and predecoding 

The instruction fetch rate is still limited to 16 bytes per clock cycle, which is likely to be a 
bottleneck for code that does not fit well into the µop cache. 

µop cache 

The µop cache is efficient for loops of up to approximately a thousand instructions. 
 
It is important to economize the use of the µop cache in CPU-intensive code. The difference 
in performance between loops that fit into the µop cache and loops that do not can be quite 
significant if the average instruction length is more than four bytes. Avoid unnecessary loop 
unrolling. The µop cache has the same weaknesses as earlier processors. 

Execution ports and execution units 

The capacity of the execution ports and execution units is high. The most common integer 
instructions have four execution units to choose between, and most floating point and vector 
instructions have two or three execution units to choose between. It is realistic to obtain a 
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throughput of close to four instructions per clock cycle if the code has a mixture of general 
purpose register and vector instructions and no long dependency chains. 
 
The vector execution units and data paths have full 256 or 512 bit width. This makes it very 
advantageous to use the YMM or ZMM registers. 
 
The gather instructions are efficient for gathering non-contiguous data into vectors, and for 
vectorizing table-based lookup functions. Gather instructions are more efficient than in 
previous processors. Conflict detection instructions are slow. 
 
The fused multiply-and-add (FMA) instructions are useful for improving the performance of 
floating point code. Floating point vector additions, multiplications and FMA instructions all 
have a throughput of one or two instructions per clock cycle and a latency of 4 clock cycles. 

Execution latency and dependency chains 

Execution latencies are generally low. Most integer ALU operations have a latency of only 
one clock cycle, even for 512-bit vector operations, and floating point arithmetic operations 
have a latency of 4. These execution latencies are critical mainly in long dependency 
chains.  
 
Register-to-register moves are eliminated to zero latency in many cases. 

Branch prediction 

The size of the branch target buffer and the construction of the branch predictor is unknown, 
but at least the prediction rate seems good.  
 
The throughput for taken branches is one jump per clock or one jump per two clocks, 
depending on the density of branches. Predicted not taken branches have a higher 
throughput of two per clock. Therefore, it is advantageous to organize branches so that they 
are most often not taken. 

Memory access 

The theoretical maximum throughput to the level-1 cache is two 512-bit reads and one 512-
bit write per clock. This makes it possible to copy a block of memory at a speed of 64 bytes 
per clock cycle. However, the continuous cache throughput is always lower than the 
theoretical maximum because of limitations of cache ways, read and write buffers, etc. 
 
The throughput for the level-2 cache is much lower than for the level-1 cache. Different 
versions of "Lake" processors have different number of level-2 cache ways. Cache bank 
conflicts is no longer a problem. 

Multithreading 

Most of the critical resources are shared between threads. This means that the bottlenecks 
become more critical in multithreaded applications. 
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12 Intel Ice Lake and Tiger Lake pipeline  
Intel's Ice Lake represents a further development of previous designs. It is based on the 
Sunny Cove architecture with a 10 nm process. This processor is also known as 10'th 
generation Intel Core processors. The 11'th generation is called Tiger Lake or Willow Cove 
architecture. The Tiger lake has several improvements in peripherals, but the CPU core is 
quite similar to the Ice Lake. 
 
Important improvements over previous designs include larger caches and more execution 
units. The maximum throughput is improved to five instructions per clock cycle, where 
Skylake has four. 
 
Ice Lake and Tiger Lake have support for the AVX512 instruction set, defining 512-bit vector 
registers and masked instructions. This includes the general subsets AVX512BW, 
AVX512DQ, AVX512VL, as well as several extensions for particular purposes. 
 
The Ice Lake and Tiger Lake are available with 2 or more cores, capable of running two 
threads in each core. Most of the critical resources are shared between two threads running 
in the same core, as described on page 136. 
 

12.1 Pipeline 

The pipeline is very similar to previous designs, but the number of execution units has been 
increased to improve the throughput from four to five instructions per clock cycle. The 
number of output ports is doubled so that the processor can do two memory reads and two 
memory writes per clock cycle under favorable circumstances. The size of the µop cache 
has been increased by 50%. 
 
The resources for out-of-order execution have been increased further. The reorder buffer 
has 352 entries. The reservation station has 160 entries. The number of temporary registers 
in Ice Lake is 280 integer registers and 224 vector registers, according to Intel publications. 
It is unknown whether these vector registers are 128, 256, or 512 bits. 
 
All parts of the pipeline are shared between two threads running in the same core. Each 
thread gets half of the total throughput when two threads are running in the same core. 
 

12.2 Instruction fetch and decoding 

The instruction fetch unit can fetch a maximum of 16 bytes of code per clock cycle in single 
threaded applications. 
  
There are four decoders as in the Skylake (see page 151). Instruction pairs with µop fusion 
(see below) count as two instructions in the decoders, unlike in previous CPU models. 
Instructions with macro-op fusion count as one. 
 
Instructions with any number of prefixes are decoded in a single clock cycle. There is no 
penalty for redundant prefixes, but there is a penalty for length-changing prefixes in most 
cases (see page 124). Arithmetic and logic instructions with an immediate operand using an 
operand size prefix, e.g. add ax,1234 take 3 clock cycles in the decoders. This applies to 

all instructions with a 16-bit immediate constant as operand in 32-bit or 64-bit mode. 16-bit 
move instructions, but not 64-bit move instructions, have a penalty for length-changing 
prefixes. 
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12.3 µop cache 

The µop cache has a maximum capacity of 2304 µops. It is probably organized as 48 sets  

8 ways  6 µops. 
 
Code that runs out of the µop cache are not subject to the limitations of the fetch and 
decode units. It can deliver one cache line per clock, but the average throughput cannot 
exceed 5 µops or the equivalent of 64 bytes of code per clock cycle. The µop cache is a big 
advantage when the average instruction length is more than four bytes. The limitations and 
weaknesses of the Sandy Bridge µop cache may still apply. See page 125 for details. 
 

12.4 Loopback buffer 

The processor has a loop buffer which recycles µops from the µop queue. The size of this 
queue is variously reported as 50 or 70 entries. My tests on a Tiger Lake indicate that loops 
with up to 50 µops can run from the loop buffer. 
 
The loop buffer gives a stable throughput of 5 µops per clock, regardless of instruction 
length for tiny loops. 
 
To recapitulate, the pipeline can be fed from three different sources, depending on the size 
of critical loops: 

• The loop buffer is used for tiny loops of up to 50 instructions. The maximum 
throughput is 5 µops per clock cycle with no restriction on instruction length. 

• The µop cache is used for loops up to approximately 2000 instructions. The 
throughput is up to 5 instructions or 32 bytes of code per clock cycle. 

• The fetch and decode units are used for instructions that are not in the µop cache. 
The throughput is up to 4 instructions or 16 bytes of code per clock cycle. 

 
Fused instruction pairs (see below) count as two in the µop cache and the loop buffer, 
unlike on previous CPU models. The maximum throughput of five instructions per clock 
cannot be increased by instruction fusion, according to my measurements. 
 
There may be a difference in branch misprediction penalty between the three sources of 
µops, but I have not been able to verify such a difference because the variance in the 
measurements is high. The measured misprediction penalty varies between 16 and 20 clock 
cycles. 

12.5 Micro-op fusion 

Most instructions with a memory operand are split into multiple µops at the allocation stage. 
Read-modify instructions, such as add eax,[rbx], are split into two µops, one for 

address calculation and memory read, and one for the addition. Read-modify-write 
instructions, such as add [rbx],eax, are split into four µops. Memory write instructions 

are split into two µops, one for address calculation and one for the store operation. Memory 
read instructions with an operand size of 32 bits or more generate only one µop. 
 
The split into multiple µops happens later in the pipeline at the allocation stage so that the 
maximum throughput is not limited by the decoder or the µop cache. A throughput of up to 
nine unfused µops per clock cycle has been observed with five instructions, four of which 
are split into two µops each. It is unknown whether an instruction with fusion occupies one 
or more entries in the reorder buffer. 
 
You can see which instructions use µop fusion by looking at the tables in manual 4: 
"Instruction tables". Instructions with µop fusion have a higher number of µops listed under 
"unfused domain" than under "fused domain". 
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12.6 Macro-op fusion 

The processor can fuse an arithmetic or logic instruction and a subsequent conditional jump 
instruction into a single compute-and-branch µop in certain cases. This works slightly 
different from previous processors. The fusion is not done by the decoders but immediately 
after the decode stage. The compute-and-branch µop is not split in two at the execution 
units but executed as a single µop by the branch unit. 
 
The CMP, ADD, SUB, AND, and TEST instructions can be fused with several different 
branch instructions. The possible combinations are listed in table 12.1. 
 
Instructions with a memory operand cannot fuse, unlike previous CPU models. Instructions 
with an immediate operand can fuse. The JECXZ and LOOP instructions cannot be fused. 
16-bytes boundaries in the instructions does not prevent fusion. 
 
The programmer should keep any fuseable arithmetic instruction together with a 
subsequent conditional jump rather than scheduling other instructions in-between in order to 
take advantage of macro-op fusion. 
 

First instruction can pair with these,  
and the inverse 

cannot pair with 

cmp jz, jc, jb, ja, jl, jg js, jo, jp 

add, sub, inc, dec jz, jc, jb, ja, jl, jg js, jo, jp 

adc, sbb none  

neg, not none  

test all  

and all  

or, xor none  

shift, rotate none  

Table 12.1. Instruction fusion 

 
 

12.7 Stack engine 

The processor has a stack engine similar to the Sandy Bridge, as described on page 128. 
An extra stack synchronization µop is inserted automatically when stack operations such as 
push, pop, call or return are interspersed by instructions that access the stack pointer 
explicitly, such as add rsp,8 or mov eax,[rsp+16]. 

 

12.8 Register allocation and renaming 

All integer, floating point, vector registers, flags, and perhaps also segment registers can be 
renamed. The floating point control word can also be renamed. 
 
Register renaming is controlled by the reorder buffer and the scheduler. Register allocation 
and renaming has not been observed to be a bottleneck. 

Special cases of independence 

A common way of setting a register to zero is by xor'ing it with itself or subtracting it from 
itself, e.g. XOR EAX,EAX. The scheduler recognizes that certain instructions are 

independent of the prior value of the register if the two input operands are the same 
register. The instruction does not have to wait for the previous value of the register to be 
available. 
 
The following instructions can set a register to zero in this way if both source operands are 
the same register: XOR, SUB, PXOR, XORPS, XORPD, PANDN, ANDNPS, ANDNPD and 
all variants of PSUBxxx and PCMPGTxx. Instructions with V-prefix behave the same. 
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This works with all 32-bit and 64-bit general purpose registers and all 64, 128, 256, and 
512-bit vector registers. It does not work with 8-bit and 16-bit registers, because only part of 
the register is set to zero. 
 
All variants of the PCMPEQxx instruction can set a register to all ones without waiting for 
the previous value of the register. 
 
The following instructions have no special case for the two input operands being the same 
register: CMP, SBB, CMPEQPS, CMPEQPD. 
 
The abovementioned special cases where registers are set to zero by instructions such as 
XOR EAX,EAX are useful for eliminating dependence on previous instructions, but these 

instructions use an execution unit, unlike on previous models. 

Elimination of move instructions 

Vector register-to-register moves are eliminated at the register allocation stage in the same 
way as on the Ivy Bridge, as explained on page 129. Chained moves can also be 
eliminated. Moves with general purpose registers are not eliminated, unlike on previous 
models. 
 
Move elimination is possible with all vector registers of 128 bits or more. It is not possible 
with 64-bit mmx registers. 
 
A move of a register to itself will never be eliminated. For example movaps xmm1,xmm1 is 

not eliminated. 
 
An eliminated move has zero latency and does not use any execution port. But is does 
consume bandwidth in the decoders. 
 

12.9 Execution units 

The Ice Lake and Tiger Lake have a number of execution units accessed through ten 
execution ports. This gives a theoretical maximum throughput of ten µops per clock cycle in 
the execution units. However, the average throughput of the whole design cannot exceed 
five instructions per clock. Thus, even with µop fusion it is impossible to keep all execution 
ports busy more than in temporary bursts. 
 
Most of the execution units are duplicated so that a µop will rarely have to wait for a vacant 
unit. There are four integer ALUs so that the most common operations on general purpose 
registers can execute with a throughput of four instructions per clock cycle.  
 
There are three ports that can handle integer vector arithmetic and logic operations, port 0, 
1, and 5. Port 0 and 1 have 256 bit width, while port 5 has 512 bit width. A 512 bit vector 
operation can use either port 5 or port 0 and 1 combined. For example, integer vector 
addition with a vector size of up to 256 bits has a throughput of three instructions per clock 
cycle, while addition of 512 bit vectors has a throughput of two instructions per clock cycle 
because port 0 and 1 need to be combined to make a 512-bit operation.  
 
Only port 0 and 1 can handle floating point vector operations. Both have 256 bit width. The 
throughput is two floating point operations per clock cycle with scalars and vectors of 128 or 
256 bits, while the throughput is one floating point vector operation per clock cycle with 512 
bit vectors, using port 0 and 1 combined. 
 
Two ports can handle branches, port 0 and 6. The throughput for predicted not taken 
branches is two branches per clock cycle, while the throughput for predicted taken branches 
is one branch per clock cycle, or less. The throughput is lower if there are more than two 
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branches per 16 bytes block of code. Mispredicted branches take approximately 20 clock 
cycles extra. 
 
Memory reads are handled by ports 2 and 3. Both have 512 bit width so it can do two 
memory reads of any size per clock cycle.  
 
Memory writes are split into two µops, one for address calculation and one for the store. 
Address calculation for memory writes are done by port 7 and 8, while the stores are done 
by port 4 and 9. Both have 256 bit width. This gives a throughput of two memory writes per 
clock cycle for integers and vectors of up to 256 bits under the requirement that both writes 
must go to the same cache line. 512-bit writes have a throughput of one aligned write per 
clock cycle, using port 4 and 9 combined.  
 
There are separate address calculation units and data ports for memory reads and writes so 
that there are no restrictions on doing reads and writes simultaneously. 
 
The ten execution ports and their operations are listed in table 12.2. 
 

Port Operations Latency 

0 integer arithmetic, logic, shift 1 

0 vector arithmetic, logic, shift. 256 bits 1 

0 vector  string instructions  

0 floating point add, multiply, FMA. 256 bits 4 

0 integer vector multiplication. 256 bits 5 

0 floating point division, square root. 256 bits 11-16 

0 AES encryption 3 

0 jump and branch 1+ 

1 integer arithmetic, logic 1 

1 integer vector arithmetic, logic, shift. 256 bits 1 

1 integer multiplication, bit scan 3 

1 floating point add, multiply, FMA. 256 bits 4 

1 integer vector multiplication. 256 bits 5 

1 integer division variable 

1 AES encryption 3 

5 integer arithmetic, logic, shift 1 

5 integer vector arithmetic, logic. 512 bits 1 

5 vector permute 1 (3 if lane crossed) 

6 integer arithmetic, logic 1 

6 jump and branch 1+ 

2 address generation and read. 512 bits  

3 address generation and read. 512 bits  

7 address generation for write  

8 address generation for write  

4 memory write. 256 bits  

9 memory write. 256 bits  

Table 12.2. Execution units in Ice Lake 

 
Most 512-bit vector instructions have the same latency as similar instructions with 256 bits 
or less. Exceptions are division and square root. 
 
All vector units are divided into two or four lanes of 128 bits each. All instructions that can 
move data between these lanes have a latency of at least 3 clock cycles, as explained on 
page 144. 
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Masked instructions 

The AVX512 instruction set includes support for masked vector instructions. Each element 
in the vector is enabled or disabled depending on a bit in a mask register. Mask register k1 - 
k7 can be used for masking. 
 
In general, there is no extra cost to masking. The latencies and throughputs of masked 
instructions with register operands are the same as without masking, with few exceptions.  
 
Masked register-to-register moves cannot be eliminated. Masked memory read instructions 
have an extra µop at port 0 or 5 and an extra latency of one clock cycle. Masked memory 
write instructions have an extra latency of approximately 13 clock cycles. 
 
A masked instruction depends on the previous value of the destination register unless the 
zeroing option is also applied. Therefore, it is recommended to use the zeroing option on 
masked instructions if it is acceptable that the disabled elements of the result vector are 
zero rather than unchanged. 

Data bypass delays 

The execution units are divided into domains as described on page 115, and there is 
sometimes a delay of one clock cycle when the output of an instruction in the integer 
domain is used as input for an instruction in the floating point domain. See example 11.1  
page 156. 
 
Instructions such as MOVD that move data between general purpose registers and vector 
registers have a latency of 2 clock cycles. 

Warm-up period for ZMM vector instructions 

The processor puts the upper parts of the 512 bit vector execution units into a low power 
mode when they are not used.  
 
Instructions with 512-bit vectors have a throughput that is approximately 4.5 times slower 
than normal during an initial warm-up period of approximately 50,000 clock cycles.  

Underflow and subnormals 

Subnormal numbers occur when floating point operations are close to underflow. The 
handling of subnormal numbers is very costly in some cases because the subnormal results 
are handled by microcode exceptions. 
 
The processor has a penalty of approximately 120 clock cycles in all cases where an 
operation on normal numbers gives a subnormal result. There is a similar penalty for a 
multiplication or division between a normal and a subnormal number, regardless of whether 
the result is normal or subnormal. There is no penalty for adding a normal and a subnormal 
number, regardless of the result. There is no penalty for overflow, underflow, infinity or not-
a-number results. 
 
The penalties for subnormal numbers are avoided if the "flush-to-zero" mode and the 
"denormals-are-zero" mode are both set in the MXCSR register. 
 

12.10 Transitions between VEX and non-VEX modes 

The severe penalty for mixing 256-bit VEX code with 128-bit non-VEX code in early 
processors (see chapter 9.12 page 134) is no longer found in the Ice Lake.  
 
Instead of the three states in the Sandy Bridge processor, the Skylake has two states:  
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C. (Clean state) The upper parts of YMM0-15 or ZMM0-15 are all unused and known to 
be zero. 
   

D. (Dirty state) The upper part of at least one of these registers is used and contains 
data. 

 
There is little or no cost to transitions between these states. The vector registers are never 
separated into upper and lower parts. Instead, the processor will combine the upper and 
lower parts when writing a 128-bit vector register with a non-VEX instruction in state D. This 
creates a false dependence on the previous value of the register. For example, the 
instruction MOVDQA XMM1,XMM2 will have to wait for any previous value of XMM1. This can 

slow down a sequence of SSE code that follows after a sequence of VEX code. 
 
There are two ways to avoid this problem. The first method, which is compatible with 
previous processors, is to insert a VZEROUPPER instruction after any sequence of VEX 
code before a call or return to a code that may use non-VEX vector code. 
 
The second method is to use only registers ZMM16-ZMM31 in VEX code. These registers 
are not accessible to non-VEX code and do not influence the VEX state. 
 

12.11 Partial register access 

Different parts of a general purpose register can be stored in different temporary registers in 
order to remove false dependences. The functionality is similar to the Skylake as explained 
on page 158. The same applies to partial access to the flags register, as explained on page 
158. 
 

12.12 Cache and memory access 

 

Cache Ice Lake and Tiger Lake 

µop cache 2304 µops, 8 way, 6 µop line size, per core 

Level 1 code 32 kB, 8 way, 64 sets, 64 B line size, 
latency 4, per core 

Level 1 data 48 kB, 12 way, 64 sets, 64 B line size, 
latency 4, per core 

Level 2 512 - 1280 kB, 8 - 20 ways, 1024 sets, 64 B line 
size, latency 14, per core. 

Level 3 4 - 8 MB, 64 B line size, latency 50-100, shared 

Table 12.3. Cache sizes on Ice Lake and Tiger Lake 

 
There is a level-1 data cache and a level-1 code cache on each core. These caches are 
shared between two threads running in the same core. There is a level-3 cache shared 
between all cores.  
 
Different processors based on the Ice Lake and Tiger Lake architectures are quite similar, 
but the sizes of level 2 and level 3 caches differ between different versions and different 
models.  
 
The translation lookaside buffer (TLB) is increased with five levels of paging to support 57 
bits virtual addresses. 
 
The REP MOVS instruction is more efficient than in previous models, but in most cases it is 

more efficient to use a function library that uses ZMM registers. 
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Cache bank conflicts 

There are no problems with cache bank conflicts, but there is a problem with false 
dependence between memory addresses with the same set and offset, as explained on 
page 147. 
 

12.13 Store forwarding stalls 

The processor can forward a memory write to a subsequent read from the same address 
under certain conditions. A memory write followed by a read from the same address takes 5 
clock cycles in the best case for operands of up to 128 bits, and 7 or more clock cycles for 
larger operands. 
 
Store forwarding has a penalty of typically 2 clock cycles extra when an operand of 128 bits 
or more is misaligned. 
 
A store forwarding usually takes 2 clock cycles extra when an operand of any size crosses a 
cache line boundary, i.e. an address divisible by 64 bytes. 
 
A write followed by a smaller read from the same address has little or no penalty. 
 
A write of 64 bits or less followed by a smaller read has little or no penalty when the read is 
offset but fully contained in the address range covered by the write.  
 
An aligned write of 128 bits or more followed by a read of one or both of the two halves or 
the four quarters, etc., has little or no penalty. A partial read that does not fit into the halves 
or quarters fails to forward. The write-to-read latency is 19-20 clock cycles when forwarding 
fails. 
 
A read that is bigger than the write, or a read that covers both written and unwritten bytes, 
fails to forward. The write-to-read latency is 19-20 clock cycles. 

Fast forwarding 

A particularly fast write-to-read forwarding with zero latency has been observed on the Ice 
Lake and Tiger Lake in certain cases. It is currently unknown how this mechanism works 
and I cannot find any description of it in any literature from Intel or elsewhere (August 2021). 
It may be somewhat similar to the mechanism in the AMD Zen2 that stores copies of written 
data in temporary registers, as described on page 236. There are important differences 
between these Intel processors and the AMD Zen2, however. The Zen2 tries to predict 
whether memory operands have the same address, and forwards data accordingly. The 
Zen2 has a penalty if the prediction turns out to be wrong. No such misprediction penalties 
have been observed on the Ice Lake and Tiger Lake in connection with operand forwarding. 
It is likely that the fast forwarding on the Intel processors is based on calculated addresses 
rather than on prediction. Write operations on Intel processors are split into two µops, where 
the first µop calculates the address while the second µop stores data to the calculated 
address. This may allow the processor to detect matching addresses before the data to 
write are available. We do not know whether the written data are mirrored in temporary 
registers or forwarded directly to read instructions in flight. 
 
The fast forwarding with zero latency has been observed with operand sizes of 8, 32, and 
64 bits, but not with 16 bits and not with vector registers. It works with memory addresses 
that have a pointer and/or an offset. It also works if the write address and the subsequent 
read address are calculated in different ways. The fast forwarding does not work in the 
following cases, according to my tests: 
 

• The address is not divisible by 4 

• The address range is crossing a cache line boundary 

• The address is rip-relative 
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• The address has an index register 

• Read-modify-write instructions 
 

12.14 Multithreading 

Most versions of the processor can run two threads in each of its cores. This means that 
each thread gets only half of the resources.  
 
Level-1 cache, instruction fetch, decoding and execution units are shared between two 
threads running in the same core in the same way as in previous processors. 
 
There is no advantage to running two threads per core if any of the shared resources are 
limiting factors for the performance. There are so many execution ports and execution units 
that execution is rarely a limiting factor. If the code aims at more than two instructions per 
clock cycle, then there is no advantage in running two threads in each core. Some of the 
most common performance bottlenecks are cache size and instruction fetching. It is 
preferred to run only one thread in each core if cache or instruction fetching is a limiting 
factor. There is no way to give one thread higher priority than the other in a CPU core.  
 

12.15 Bottlenecks in Ice Lake and Tiger Lake 

The pipelines and execution units in Ice Lake and Tiger Lake processors are quite powerful 
and the throughput has been increased to a maximum of five instructions per clock cycle.  

Instruction fetch and decoding 

The instruction fetch rate is still limited to 16 bytes per clock cycle while the throughput of 
almost everything else has been improved. This makes instruction fetch and decoding a 
very serious bottleneck for code that does not fit well into the µop cache. 

µop cache 

The size of the µop cache has been increased in order to mitigate the bottleneck of fetch 
and decoding. 
 
It is important to economize the use of the µop cache in CPU-intensive code. The difference 
in performance between loops that fit into the µop cache and loops that do not can be quite 
high. It is recommended to avoid unnecessary loop unrolling and to make sure that the most 
critical hot spots in the code have less than 2000 instructions. 

Execution ports and execution units 

The capacity of the execution ports and execution units is high. The most common integer 
instructions have four execution units to choose between, and most floating point and vector 
instructions have two or three execution units to choose between. It is possible to obtain a 
throughput of close to five instructions per clock cycle if the code has a mixture of general 
purpose register instructions, vector instructions, and memory read/write instructions. 
 
Such a high throughput is of course not possible if the code has long dependency chains 
where each instruction must wait for the result of the previous instruction. Breaking up 
dependency chains has become increasingly important as the throughput of the execution 
units is increased. 
 
The vector execution units and data paths have 256 or 512 bit width. The latencies of 512-
bit vector instructions are the same as for smaller vectors in most cases. The throughput of 
512-bit vector instructions is one or two vectors per clock cycle, while the throughput for 
vectors of 256 bits or less is two or three vectors per clock cycle. This makes it advantage-
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ous to use the longest possible vector registers in most cases. The higher power consump-
tion of 512-bit vector instructions may reduce the clock frequency somewhat, but not 
enough to outweigh the advantage of using 512-bit vectors. 
 
The gather instructions are efficient for gathering non-contiguous data into vectors, and for 
vectorizing table-based lookup functions. Gather instructions are more efficient than in older 
processors. 
 
The fused multiply-and-add (FMA) instructions are useful for improving the performance of 
floating point code. Floating point vector additions, multiplications, and FMA instructions all 
have a throughput of one or two instructions per clock cycle and a latency of 4 clock cycles. 

Execution latency and dependency chains 

Execution latencies are generally low. Most integer ALU operations have a latency of only 
one clock cycle, even for 512-bit vector operations, and floating point arithmetic operations 
have a latency of 4. These execution latencies are critical mainly in long dependency 
chains.  
 
The latency of integer division has been improved. 

Branch prediction 

The branch prediction mechanism is quite complicated and allegedly improved over 
previous models. The size of the branch target buffer and the construction of the branch 
predictor is unknown, but at least the prediction rate seems good.  
 
The throughput for taken branches is one jump per clock or one jump per two clocks, 
depending on the density of branches. Predicted not taken branches have a higher 
throughput of two per clock. Therefore, it is advantageous to organize branches so that they 
are most often not taken. 

Memory access 

The theoretical maximum throughput to the level-1 cache is two 512-bit reads and two 256-
bit writes per clock. This makes it possible to copy a block of memory at a speed of 64 bytes 
per clock cycle. However, the continuous cache throughput is always lower than the 
theoretical maximum because of limitations of cache ways, read and write buffers, etc. 

Multithreading 

Most of the critical resources are shared between two threads running in the same core, 
including instruction fetching, decoders, µop cache, and level-1 caches. This means that the 
bottlenecks become more critical in multithreaded applications. It is not recommended to 
run two threads in each core (hyperthreading) if any of these resources are limiting the 
performance. 
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13 Intel Alder Lake 
The Alder Lake is a hybrid design with two different kinds of CPU cores: P cores for 
performance, and E cores for efficiency. The P cores are based on the Golden Cove 
microarchitecture, while the E cores are based on the Gracemont architecture that belongs 
to the Atom series of low-power processors. 
 
The first Alder Lake processors on the market had different CPUID model numbers for the P 
cores and E cores, but this caused problems with DRM software that failed to recognize the 
two kinds of cores as belonging to the same computer. A microcode update changed this so 
that both kinds of cores had the CPUID family number 6 model 0x9A. 
 
The two architectures support different instruction set extensions. Golden Cove supports 
several AVX512 extensions while Gracemont is limited to AVX2. Instructions that are not 
supported by both architectures are disabled in order to avoid incompatibilities when a 
running thread jumps from a P core to an E core. The hybrid design is actually sacrificing 
support for the latest instruction set extensions for the sake of compatibility between P cores 
and E cores.  
 
The hardware for the disabled instructions is actually present in the P cores. It is possible to 
disable the E cores and enable the additional P core instructions with early versions of the 
microcode on certain motherboards that have BIOS options for this. The CPUID model 
number is changed to 0x97 when only the P cores are enabled. Enabling the P core 
instructions is not endorsed by Intel and it is not possible with later microcode updates. I 
have verified that all the P-core-only instructions are working. This includes the AVX512-
FP16 instruction set extension for half-precision floating point operations. Alder Lake is the 
first processor to implement this instruction set extension. 
 
The throughput sets a new record with a maximum of six instructions per clock cycle with six 
decoders and twelve execution ports. Only the first decoder can handle instructions that 
generate more than one µop. 
 
Instruction timings for the P cores are mostly the same as for Ice Lake and Tiger Lake with 
some improvements. Floating point addition of vectors up to 256 bits has a latency of only 2 
clock cycles when followed by another addition instruction, and 3 clock cycles otherwise. 
Integer addition with a small immediate constant has zero latency in some cases. Simple 
integer instructions have a throughput of 5 instructions per clock cycle. Memory reads have 
a throughput of three reads or two writes per clock cycle for sizes up to 256 bits, and two 
reads or one write per clock cycle with 512 bits size.  
 
The half-precision floating point additions and multiplications have latencies of 4 clock 
cycles and throughputs of 1-2 instructions per clock cycle, except for division and square 
root which have latencies of typically 31 clock cycles. 
 
I have not included instruction timings for the Alder Lake in my instruction tables and I am 
not describing all details here because there are two different kinds of cores with different 
timings and because many of the instructions are not normally accessible. The reader is 
referred to the timings for Tiger Lake and Gracemont. 
 
The AVX512-FP16 instruction set includes new instructions for calculations with complex 
numbers with half precision. The complex number multiplication and FMA instructions are 
using the multiplication hardware twice while each instruction is issued as a single µop. The 
latency is 8 clock cycles for complex number multiplication where real number multiplication 
takes 4 clock cycles. 
 
The complex number multiplication instructions have the restriction that the destination 
register must be different from the source registers. This restriction is weird since the 



 173 

processor has register renaming so that the destination register is always renamed to a 
different physical register. No other x86 instructions have this restriction.  
 
The precision of complex number multiplication is reduced. A complex number multiplication 
is calculated as a multiplication followed by a fused multiply-and-add (FMA) operation. FMA 
operations are normally calculated with extended precision on the intermediate 
multiplication result, but this would give rise to an asymmetry in complex number 
multiplication because the two intermediate multiplication results would have different 
precisions. This would have the undesired consequence that A*B and B*A might give 
slightly different results. The hardware implementation avoids this asymmetry by rounding 
all intermediate results to half precision. It would be more expensive to calculate all 
intermediate results with extended precision. The cost of the desired symmetry is that the 
precision of complex number multiplication is reduced. 
 
The µop cache has been improved while other caches are similar to previous models: 
 

Cache Alder Lake P core 

µop cache 4096 µops, 8 µop line size, per core 

Level 1 code 32 kB, 8 way, 64 sets, 64 B line size, 
per core 

Level 1 data 48 kB, 12 way, 64 sets, 64 B line size, 
latency 5, per core 

Level 2 1280 kB, 10 ways, 2048 sets, 64 B line size, 
latency 15, per core. 

Level 3 4 - 30 MB, 10 ways, 64 B line size, latency 65, 
shared 

Table 13.1. Cache sizes on Alder Lake P core 

 
 

Cache Alder Lake E core 

Level 1 code 64 kB, 8 way, 128 sets, 64 B line size, 
per core 

Level 1 data 32 kB, 8 way, 64 sets, 64 B line size, 
latency 3, per core 

Level 2 2048 kB, 16 ways, 2048 sets, 64 B line size, 
latency 20, per core. 

Level 3 4 - 30 MB, 10 ways, 64 B line size, shared 

Table 13.2. Cache sizes on Alder Lake E core 

 
 

13.1 Bottlenecks in Alder Lake 

It is difficult to optimize software for a hybrid architecture. The performance of a thread 
depends on whether it runs in an E core, alone in a P core, or in a P core shared with 
another thread. Intel has published a complicated guide for how to optimize software for the 
hybrid design. However, I think it is completely unrealistic that application software can 
make specific optimizations for every microprocessor model and take into account new 
peculiarities every time a new processor comes on the market. This is far too expensive for 
software developers in terms of development, verification, updating, maintenance, and 
support. Instead, we have to rely on the operating system for optimizing the distribution of 
programs and threads between the different types of cores. The Alder Lake has 
implemented a special hardware solution to this problem called the 'Intel Thread Director'. 
The Intel Thread Director is an embedded microcontroller that monitors all threads and 
measures the resource use of each thread. The operating system can use this information 
to calculate the optimal allocation of P cores and E cores to the different threads. A problem 
with this approach is that the operating system has little knowledge about which threads are 
most critical in a program or which tasks are most important to the user. In my opinion, it is 
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unrealistic that the operating system can solve this task optimally. Hybrid systems are 
simply too difficult to optimize for. 
 
The Alder Lake P core sets a new record for instruction throughput. This is the first 
microprocessor that can maintain a steady throughput of six instructions per clock cycle per 
core. Cache throughput is up to three memory reads and one write or two reads and two 
writes per clock cycle for sizes up to 128 bits, and somewhat less for 256 bits and 512 bits 
vectors. 
 
A throughput of six instructions per clock cycle can of course only be obtained if instructions 
are independent. A long dependency chain can only execute one instruction at a time. This 
makes dependency chains a serious bottleneck. Programmers and compilers should do 
everything possible to avoid long dependency chains in critical parts of the program. 
 
The penalty for branch misprediction is high, sometimes exceeding 20 clock cycles in my 
measurements. An improved branch prediction mechanism may compensate for this, but 
some branches are simply not predictable no matter how advanced the prediction 
mechanism. 
 
Instruction decoding has been a serious bottleneck through many generations of Intel 
processors. The P cores are finally addressing this problem efficiently. The decoders in the 
P cores are now so efficient that the µop cache is less important, yet the µop cache has 
been increased to 4096 µops. This helps making a high instruction throughput possible for 
code with no long dependency chains. 
 
The data caches have hardly been improved over previous models. This makes memory 
access the most likely bottleneck for many applications.  
 
The new half-precision floating point instructions are almost doubling the throughput of 
floating point calculations in cases where a low precision is acceptable, such as graphics 
and artificial intelligence. A 512-bit vector can hold 32 half-precision floats to give a 
maximum throughput of 32 fused multiply-and-add instructions per clock cycle per core.  
 
Unfortunately, the 512-bit vector instructions and the half-precision instructions have been 
disabled for the sake of compatibility with the E cores that support only the AVX2 instruction 
set. It is a strange decision to disable these top-performance instructions for the sake of 
compatibility with a few extra E cores with lower capabilities. There are up to eight P cores 
that can run two threads each, and up to eight E cores that can run one thread each. It was 
possible on early versions of the Alder Lake to disable the E cores and enable all the P-core 
instructions, but this trick is not endorsed by Intel and it is prevented by a microcode update. 
The AVX512 instructions are not even enabled on those Alder Lake models that have no E 
cores. Hackers may be able to inject the old microcode, but ordinary users will have to wait 
for the forthcoming Sapphire Rapids processor to get this record-breaking performance. 
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14 Intel Atom pipeline  
The Intel Atom processor has a simpler design where power saving has the highest priority. 
It has almost no out-of-order capabilities. It has one or two cores, where each core can run 
two threads, totaling up to four simultaneous threads. The caches, decoders, and execution 
units are all shared between two threads. It supports the Supplementary SSE3 instruction 
set. Some versions support x64. 
 
The pipeline has sixteen stages: three stages for instruction fetch, three stages for 
instruction decoding, two for instruction dispatch, one for reading register operands, one for 
calculating the address of a memory operand, two for reading the data cache, one for 
execution, two for exception handling and multithreading, and one for committing the result. 
Instructions of the read-modify or read-modify-write type are handled as a single µop. Only 
more complex instructions are split into µops. 
 
The pipeline can handle two instructions per clock cycle. There are two execution ports, 
each of which is connected to an integer unit and a floating point/SIMD unit. 
 
This description is based on the limited information available from second hand sources in 
addition to my own test results (Scott Wasson: Intel's Atom processor unveiled. 
http://techreport.com/articles.x/14458/1, April 2008. Anand Lal Shimpi: Intel's Atom 
Architecture: The Journey Begins. http://www.anandtech.com/showdoc.aspx?i=3276&p=1, 
April 2008). 
 

14.1 Instruction fetch 

The instruction fetch rate is approximately 8 bytes per clock cycle on average when running 
a single thread. The fetch rate can get as high as 10.5 bytes per clock cycle in rare cases, 
such as when all instructions are 8 bytes long and aligned by 8, but in most situations the 
fetch rate is slightly less than 8 bytes per clock when running a single thread. The fetch rate 
is lower when running two threads in the same core. 
 
The instruction fetch rate is likely to be a bottleneck when the average instruction length is 
more than 4 bytes. The instruction fetcher can catch up and fill the instruction queue in case 
execution is stalled for some other reason. 
 

14.2 Instruction decoding 

The two instruction decoders are identical. Instructions with up to three prefixes can be 
decoded in a single clock cycle. There are severe delays for instructions with more than 
three prefixes (which would almost never occur unless prefixes are used for padding). Most 
instructions generate only a single µop. There is no penalty for length-changing prefixes. 
 
Decoded instructions go into a queue with 16 entries per thread. The two 16-entry queues 
can be combined to a single 32 entries queue if one thread is disabled. 
 

14.3 Execution units 

There are two clusters of execution units: an integer cluster which handles all instructions 
on general purpose registers, and a floating point and SIMD cluster which handles all 
instructions on floating point registers and SIMD vector registers. A memory access cluster 
is connected to the integer unit cluster. Moving data between the clusters is slow. 
 
The µops from the decoders can be dispatched to two execution ports, which I will call port 
0 and port 1. Each execution port has access to part of the integer cluster and part of the 
floating point/SIMD cluster. I will call the two parts of the integer cluster ALU0 and ALU1 and 
the two parts of the floating point/SIMD cluster FP0 and FP1, respectively. The two 

http://techreport.com/articles.x/14458/1
http://www.anandtech.com/showdoc.aspx?i=3276&p=1
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execution ports can thus handle two parallel streams of µops, with the work divided as 
follows: 
 
Instructions that can be handled by both port 0 and port 1: 

• Register-to-register moves 

• Integer addition in general purpose or SIMD registers 

• Boolean operations in general purpose or SIMD registers 
 
Instructions that can be handled only by port 0: 

• Memory read or write 

• Integer shift, shuffle, pack in general purpose or SIMD registers 

• Multiply 

• Divide 

• Various complex instructions 
 
Instructions that can be handled only by port 1: 

• Floating point addition 

• Jumps and branches 

• LEA instruction 
 
The four units ALU0, ALU1, FP0 and FP1 probably have one integer ALU each, though it 
cannot be ruled out that there are only two integer ALUs, which are shared between ALU0 
and FP0 and between ALU1 and FP1, respectively. There is one multiply unit in FP0, and 
one division unit in FP0. Integer multiplication and integer division go through port 0. 
 
The SIMD integer adders and shift units have full 128-bit widths and a one clock latency. 
The floating point adder has full 128-bit capability for single precision vectors, but only 64-bit 
capability for double precision. The multiplier and the divider are 64-bits wide. 
 
The floating point adder has a latency of 5 clock cycles and is fully pipelined to give a 
throughput of one single precision vector addition per clock cycle. The multiplier is partially 
pipelined with a latency of 4 clocks and a throughput of one single precision multiplication 
per clock cycle. Double precision and integer multiplications have longer latencies and a 
lower throughput. The time from one multiplication starts till the next multiplication can start 
varies from 1 clock cycle in the most favorable cases, to 2 clock cycles or more in less 
favorable cases. Double precision vector multiplication and some integer multiplications 
cannot overlap in time. 
 
Division is slow and not pipelined. A single precision scalar floating point division takes 30 
clock cycles. Double precision takes 60 clock cycles. A 64-bit integer division takes 207 
clock cycles. 
 
The list of instructions in manual 4: "Instruction tables" tell which instructions use which 
units. 
 

14.4 Instruction pairing 

The maximum throughput of two instructions per clock cycle can only be obtained when 
instructions are ordered so that they can execute two at a time. Two instructions can 
execute simultaneously when the following rules are obeyed: 
 

• The core runs only one thread. The other thread, if any, must be idle or stalled by a 
cache miss etc. 
   

• The two instructions must be consecutive with no other instructions between.  
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• The two instructions do not have to be contiguous. A predicted taken branch 
instruction can pair with the first instruction at the branch target. 
   

• The second instruction does not read a register that the first instruction writes to. 
This rule has one exception: A branch instruction that reads the flags can pair with a 
preceding instruction that modifies the flags. 
   

• The two instructions do not write to the same register, except for the flags register. 
For example: INC EAX / MOV EAX,0 cannot pair because both modify EAX. 

INC EAX / INC EBX pair OK even though both modify the flags. 

   

• The two instructions do not use the same execution port. The first instruction goes to 
port 0 and the second instruction to port 1; or the first instruction goes to port 1 and 
the second instruction to port 0. 
   

• An instruction that uses resources from both ports or pipelines cannot pair with any 
other instruction. For example, a floating point add instruction with a memory 
operand uses FP1 under port 1 for floating point addition and the memory unit under 
port 0 for the memory operand. 

 
It follows from these rules that it is not possible to do a memory read and a memory write at 
the same time because both use the memory unit under port 0. But it is possible to do a 
floating point addition (without memory operand) and a floating point multiplication 
simultaneously because they use FP1 and FP0 respectively. 
 

14.5 X87 floating point instructions 

Instructions that use the x87-style floating point registers are handled in a very unfortunate 
way by the Atom processor. Whenever there are two consecutive x87 instructions, the two 
instructions fail to pair and instead cause an extra delay of one clock cycle due to problems 
in the decoders. This gives a throughput of only one instruction every two clock cycles, 
while a similar code using XMM registers would have a maximum throughput of two 
instructions per clock cycle. 
 
This applies to all x87 instructions (names beginning with F), even the FNOP. For example, 
a sequence of 100 consecutive FNOP instructions takes 200 clock cycles to execute in my 
tests. If the 100 FNOPs are interspersed by 100 NOPs then the sequence takes only 100 
clock cycles. It is therefore important to avoid consecutive x87 instructions. If you have 
nothing else to put in between two x87 instructions then put in a NOP. Making every second 
instruction a NOP obviously takes half the bandwidth, but this is still better than the quarter 
bandwidth that you would have without the NOPs. 
 
The FXCH instruction has a latency of one clock cycle, while many other processors give a 
zero latency for FXCH. This is a further disadvantage of running x87-style floating point 
code on the Atom because the floating point register stack structure makes it necessary to 
use many FXCH instructions. 
 
It is therefore advantageous to replace any x87-style floating point code with SSE2-style 
code using XMM registers. The SSE2 instructions are often more than 4 bytes long while 
x87 instructions are shorter. With a maximum instruction fetch rate of 8 bytes per clock cycle 
we are likely to make instruction fetching a bottleneck, but the shorter length of the x87 
instructions does not outweigh the severe disadvantages explained above. 
 

14.6 Instruction latencies 

Simple integer instructions have a latency of one clock cycle. Multiplications, divisions and 
floating point instructions have longer latencies. 
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Unlike most other processors, I have found no delays in the Atom processor when mixing 
instructions with different latencies in the same pipeline. 
 
The LEA instruction uses the address generation unit (AGU) rather than the ALU. This 
causes a latency of 4 clock cycles when dependent on a pointer register or index register 
because of the distance between the AGU and the ALU. It is therefore faster to use addition 
and shift instructions than to use the LEA instruction in most cases. 
 
Instructions that move data between a SIMD vector register and a general purpose register 
or flag have a latency of 4-5 clock cycles because the integer execution cluster and the 
floating point/SIMD cluster have separate register files. 
 
There is no penalty for using XMM move, shuffle and Boolean instructions for other types of 
data than they are intended for. For example, you may use PSHUFD for floating point data or 

MOVAPS for integer data. 

 

14.7 Memory access 

Each core has three caches: 
 

• Level 1 instruction cache. 32 kB, 8 way, set associative, 64 B line size 

• Level 1 data cache. 24 kB, 6 way, set associative, 64 B line size 

• Level 2 cache. 512 kB or 1 MB, 8 way, set associative, 64 B line size 
 
Each cache is shared between two threads, but not between cores. All caches have a 
hardware prefetcher. 
 
An instruction with a memory operand takes no more time to execute than a similar 
instruction with a register operand, provided that the memory operand is cached. It is not 
totally "free" to use memory operands, though, for two reasons. Firstly, the memory operand 
uses the memory unit under port 0 so that the instruction cannot pair with another 
instruction that would require port 0. And secondly, the memory operand may make the 
instruction code longer, especially if it has a full 4-bytes address. This can be a bottleneck 
when instruction fetching is limited to 8 bytes per clock cycle. 
 
Cache access is fast for instructions running in the integer execution cluster, but slower for 
instructions running in the floating point/SIMD cluster because the memory unit is connected 
to the integer cluster only. Instructions using floating point or XMM registers typically take 4-
5 clock cycles to read or write memory while integer instructions have only 1 clock cycle of 
effective cache latency thanks to store forwarding, as described below. The latency for a 
memory read that depends on a recently changed pointer register is 3 clock cycles. 
 
Store forwarding is very efficient. A memory operand that is written in one clock cycle can 
be read back in the next clock cycle. Unlike most other processors, the Atom can do store 
forwarding even if the read operand is larger than the preceding write operand or differently 
aligned. The only situation I have found where store forwarding fails is when a cache line 
boundary is crossed. 
 
Misaligned memory accesses are very costly when a cache line boundary is crossed. A 
misaligned memory read or write that crosses a 64 bytes boundary takes 16 clock cycles. 
The performance monitor counters indicate that the misaligned memory access involves 
four accesses to the level-1 cache, where two accesses would suffice. There is no cost to 
misaligned memory accesses when no 64 bytes boundary is crossed. 
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14.8 Branches and loops 

The throughput for jumps and taken branches is one jump per two clock cycles. Not-taken 
branches go at one per clock cycle. The minimum execution time for a loop is thus 2 clock 
cycles if the loop contains no 16 bytes boundary, and 3-4 clock cycles if a 16 bytes 
boundary is crossed inside the loop. 
 
Branch prediction uses a 12 bits global history register, as explained on page 31. This gives 
reasonably good predictions, but the branch target buffer (BTB) has only 128 entries. In 
some of my tests, there were more BTB misses than hits. A branch misprediction costs up 
to 13 clock cycles, sometimes a little less. If a branch is correctly predicted taken, but it fails 
to predict a target because the BTB entry has been evicted, then the penalty is 
approximately 7 clock cycles. This happens very often because the pattern history table has 
4096 entries while the BTB has only 128. 
 

14.9 Multithreading 

Each processor core can run two threads. The two treads are competing for the same 
resources so that both threads run slower than they would when running alone. 
 
The caches, decoders, ports and execution units are shared between the two threads of the 
core, while the prefetch buffers, instruction queues and register files are separate. 
 
The maximum throughput for the whole core is still two instructions per clock cycles, which 
gives one instruction per clock cycle in each thread on average.  
 
If both threads need the same resource, for example memory access, then each thread will 
get the contested resource half of the time. In other words, you will have one memory 
access every two clock cycles in each thread if there are no cache misses. 
 
Interestingly, I found that the instruction fetch rate for each thread when running two threads 
is more than half the fetch rate for a single thread but less than the full single-thread rate. 
The instruction fetch rate per thread when running two threads is between 4 and 8 bytes per 
clock cycle, but never more than eight. The numbers depend heavily on instruction lengths 
and alignment. These findings indicate that there may be two instruction fetchers that are 
capable, to a limited extent, of serving the same thread when the other thread is idle. 
 
The branch target buffer (BTB) and the pattern history table are shared between the two 
threads. If the two threads are running the same code (with different data) then we might 
expect the two threads to share identical entries in these two tables. However, this doesn't 
happen. The two tables are apparently indexed by some simple hash function of the branch 
address and the thread number, so that identical entries in the two threads don't use the 
same table index. My tests indicate that two threads running the same code have slightly 
more branch mispredictions and significantly more BTB misses than a single thread running 
alone. In the worst case of a code with many branches, each thread may run at less than 
half the speed of a single thread running alone. 
 
These resource conflicts apply only to the case where two threads are running in the same 
processor core, of course. Some versions of the Atom processor have two cores capable of 
running two threads each, giving a maximum of four threads running simultaneously. If each 
core runs only one thread then there are no resource conflicts. Fortunately, most operating 
systems will preferably put two threads in two different cores rather than in the same core. 
But if there are more than two threads running then you will have some threads sharing the 
same processor core. 
 
It is impossible to assign different priorities to two threads running in the same core. Thus, a 
low priority thread may take resources from a high priority thread running in the same core, 
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with the unfortunate result that the high priority thread runs at only half the maximum 
possible speed. This has happened several times during my tests. 
 

14.10 Bottlenecks in Atom 

Some of the execution units in the Atom processor are quite powerful. It can handle two full 
128-bit integer vector ALU instructions per clock cycle, though this capacity would rarely be 
fully utilized because of bottlenecks elsewhere in the system. The floating point addition unit 
is also reasonably good, while multiplication and division are slower. 
 
The execution is likely to be limited by other factors than the execution units in most cases. 
The most likely bottlenecks are: 
 

• In order execution. The processor can do nothing while it is waiting for a cache miss 
or a long-latency instruction, unless another thread can use its resources in the 
meantime. 
   

• The instruction fetch rate is less than 8 bytes per clock cycle in most cases. This is 
insufficient if the average instruction length is more than 4 bytes. 
   

• Memory access is limited to one read or one write per clock cycle. It cannot read and 
write simultaneously. 
   

• Memory access has long latencies for floating point and SIMD instructions. 
   

• The branch target buffer is rather small. 
   

• x87 style floating point code executes much slower than SSE style code. 
   

• The maximum throughput of two instructions per clock cycle can only be achieved if 
the code is optimized specifically for the Atom and instructions are ordered in a way 
that allows pairing. 
   

• The throughput is halved if two threads are running simultaneously in the same core. 
The resources most likely to be bottlenecks, such as cache, memory port and 
branch target buffer, are shared between two threads.  

 
The conclusion is that the Atom may be insufficient for highly CPU-intensive and memory 
intensive applications, such as games, graphics processing and floating point math. The low 
price and low power consumption makes it useful for less demanding purposes, such as 
office applications and embedded applications. The ability to run four threads makes the 
Atom useful for server applications with limited traffic. 
 
 

15 Intel Silvermont pipeline  
The low-power Atom design has finally moved a major step forward after several years of 
only small improvements. The Silvermont processor is now a serious competitor for the 
ARM processors. It has limited out-of-order execution capabilities for integer instructions, 
but not for floating point and vector instructions. It supports SSE4.2 instructions, but not 
AVX. 
 
The pipeline has 14 stages where the previous Atom design had 16. There are three stages 
for instruction fetch, three stages for instruction decoding, two for register allocation and 
renaming, one for scheduling, one for execution, and four for retirement and commitment. 
The shorter pipeline should allegedly reduce the branch misprediction penalty to 10 clock 



 182 

cycles, but my measurements show approximately 12 clock cycles, which is almost the 
same as for the Atom. 
 
The chip has one to four units with two execution cores in each for a total of up to eight 
threads. The two cores in a unit share the level-2 cache, but no pipeline or execution 
resources. 
 

15.1 Pipeline 

The Silvermont has five pipelines: One for memory read and write operations, two for 
integer operations, and two for floating point and vector operations. The maximum average 
throughput is two instructions per clock cycle, which can be achieved when the two 
instructions are going to two different pipelines.  
 
The two integer pipelines have out-of-order execution. Each integer pipe has a reservation 
station which can hold 8 instructions in queue. Memory operations can also operate out of 
order with a 6-entry reservation station, while floating point and vector operations cannot be 
reordered within their respective pipelines. 
 

15.2 Instruction fetch and decoding 

Instruction boundaries are marked in the code cache. This is a simple technique for 
removing the bottleneck of instruction length decoding that Intel hasn’t used since the 
Pentium MMX, while AMD has been doing it all the time. 
 
The Silvermont has two decoders, and it can fetch and decode two simple instructions per 
clock cycle. Instructions longer than 8 bytes have a throughput of only one instruction per 
clock cycle. 
 
Most instructions generate only 1 µop from the decoders. Read-modify, and read-modify-
write instructions generate a single µop from the decoders, which is sent to both the 
memory unit and the execution unit. Instructions that generate more than one µop are using 
microcode ROM, except for the POP register and FXCH instructions. All instructions that 
use microcode ROM take at least 4 clock cycles to decode if they go into decoder 0. If such 
an instruction goes into decoder 1 first then it is redirected to decoder 0 with a further delay 
of 2 clocks. This means that the decoding process takes 6 clock cycles for an instruction 
that generates 2 µops and happens to go into decoder 1 first. 
 
Instructions with more than three prefixes and escape bytes cause significant delays in the 
decoders. Unlike most other processors from Intel and AMD, the Silvermont includes not 
only the standard prefixes in this limitation, but also escape bytes such as 0F. Therefore, 
this limitation can easily be exceeded. All xmm instructions belonging to the SSSE3 and 
later instruction sets have one prefix byte (66) and two escape bytes (0F 38 or 0F 3A) in the 
instruction code. If any of the registers r8 – r15 or xmm8 – xmm15 is used in such an 
instruction then we need an extra REX prefix whereby the limit of three prefix and escape 
bytes is exceeded. For example: 
 

; Example 15.1. Prefix limitation in Silvermont 

pblendw xmm1, xmm2, 2  ; 1 prefix + 2 escape bytes 

pblendw xmm1, xmm8, 2  ; 2 prefixes + 2 escape bytes 

 
The first instruction in this example can decode normally in a single clock cycle, while the 
second instruction takes 4 clock cycles to decode if it goes into the first decoder, or 6 clock 
cycles if it goes into the second decoder. There is no penalty for length-changing prefixes. 
 
The two decoders cannot handle two branch instructions simultaneously. Consecutive 
branch instructions should be avoided for this reason. 
 



 183 

15.3 Loop buffer 

The Silvermont has a loop buffer that recycles decoded µops. It can improve the 
performance of loops with up to 29 instructions by removing the bottleneck of decoding. 
 

15.4 Macro-op fusion 

The Silvermont has no fusion of multiple instructions into a single µop. 
 

15.5 Register allocation and out of order execution 

Instructions on general purpose registers can execute out of order to a limited degree. 
Apparently, no more than eight instructions can be pending at the same time. Instructions 
on floating point and vector registers cannot execute out of order with other instructions 
going to the same execution port and pipeline. But a floating point instruction in one pipeline 
can bypass a floating point instruction in the other pipeline. For example, a floating point 
multiply instruction (in FP0) can execute before a preceding floating point add instruction (in 
FP1). 
 
The same logical register can be allocated to different physical registers in order to remove 
false dependencies. This also applies to floating point and vector registers, even though 
they cannot execute out of order in the same pipeline. 
 

15.6 Special cases of independence 

A common way of setting a register to zero is by xor'ing it with itself or subtracting it from 
itself, e.g.  XOR EAX,EAX. The Silvermont processor recognizes that certain instructions are 

independent of the prior value of the register if the two input operands are the same 
register. This works only in a few cases. The XOR of a 32-bit register with itself is recognized 

as independent of the previous value, but this does not work with 8-, 16- or 64-bit registers. 
Thus, the best way to clear a general purpose register is to xor the 32-bit version of the 
register with itself. This will clear all 64 bits. SUB, SBB and CMP instructions are not 

recognized in this way. A vector register can be cleared of its dependence on previous 
values by xor’ing it with itself using the PXOR, XORPS or XORPD instructions, but not by any 

subtract, compare or other instructions. 
 

15.7 Execution units 

The Silvermont has five execution ports with each their scheduler: 
 

Port Operations 

Memory memory read and write 

Integer port 0 ALU, multiply, shift 

Integer port 1 ALU, jump 

F.P. port 0 multiply, divide, shift, pack, convert 

F.P. port 1 add 

Table 15.1. Execution units in Silvermont 

 
 
The execution units are partially pipelined. The integer multiplier as well as the floating point 
adder and multiplier all have a throughput of one instruction per clock for smaller data and 
one instruction per two clocks or less for larger data:  
 

Port and unit Data size Latency Reciprocal 
throughput 

IP0 multiply 32 bit integer 3 1 

IP0 multiply 64 bit integer 5 2 
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FP0 multiply 64 bit vector of 4 16-bit integers 4 1 

FP0 multiply 128 bit vector of 8 16-bit 
integers 

5 2 

FP0 multiply single prec. float 4 1 

FP0 multiply 128 bit vector of 4 single prec.  5 2 

FP0 multiply double precision 5 2 

FP0 multiply 128 bit vector of 2 double prec. 7 4 

FP0/1 add vectors of 8-, 16-, 32 bit 
integers 

1 0.5 

FP0/1 add vectors of 64 bit integers 4 ? 

FP1 add single prec. float 3 1 

FP1 add 128 bit vector of 4 single prec.  3 1 

FP1 add double precision 3 1 

FP1 add 128 bit vector of 2 double prec. 4 2 

Table 15.2. Partially pipelined execution units in Silvermont 

 
There is one division unit which is shared between integer port 0 and floating point port 0. It 
has latencies from 19 to 69 and is not pipelined. Floating point division has fixed latencies. 

Read and write bandwidth 

The memory bandwidth is one 128-bit read or write instruction per clock cycle. It is possible 
to do one read operation and one write operation per clock cycle, but only when the two 
operations are part of the same instruction, i.e. a read-modify-write instruction. In all other 
cases, the maximum bandwidth is one memory operation per clock cycle. 

Data bypass delays 

Instructions that move data between the integer units and the floating point/vector units 
have a latency of 3-4 clock cycles. Otherwise, there is no extra delay for moving data 
between different execution units, and there is no penalty for using integer vector 
instructions on floating point data or vice versa.  

Underflow and subnormals 

Operations that have subnormal numbers as input or output or generate underflow take 
approximately 160 clock cycles unless the flush-to-zero mode and denormals-are-zero 
mode are both used. 
 

15.8 Partial register access 

A write to a partial register has a false dependence on the rest of the register. The different 
parts of a general purpose register or vector register are never treated as independent. 
 
The flags register may be treated as different parts. A read of any flag after writing to part of 
the flags has an extra delay of one clock cycle. 
 

15.9 Cache and memory access 

 

Cache Silvermont 

Level 1 code 32 kB, 8 way, 64 sets, 64 B line size, per core 

Level 1 data 24 kB, 6 way, 64 sets, 64 B line size, 
latency 3, per core 

Level 2 1 MB, 16 way, 1024 sets, 64 B line size, 
latency 19. Shared between two threads 

Table 15.3. Cache sizes on Silvermont 
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Cache bank conflicts have not been observed. There is a false dependence between 
memory addresses spaced a multiple of 4 kB apart. 
 

15.10 Store forwarding 

A memory write can be forwarded to a subsequent read of the same size or a smaller size 
with the same start address. The latency of the write + subsequent read is 7 clock cycles. 
There is an extra delay of 3 clock cycles if an unaligned store forwarding is crossing a cache 
line boundary. 
 
Store forwarding fails when the read is bigger than the write or does not start at the same 
address. It is not possible to forward a store to two reads of the two halves. A failed store 
forwarding has an extra delay of 5 clock cycles. 
 

15.11 Multithreading 

The Silvermont has one or more units with two cores each. The two cores in a unit share 
the same level-2 cache. The two threads running in the same unit do not compete for any 
resources other than the level-2 cache. 
 

15.12 Bottlenecks in Silvermont 

Instruction fetch and decoding 

Decoding is definitely the weakest part of the Silvermont design. Instructions that generate 
more than one µop take at least 4 clock cycles to decode, and quite often more (with few 
exceptions). The same applies to instructions that need an extra prefix. All xmm instructions 
that belong to the SSSE3 and later instruction sets take 4 or 6 clock cycles to decode if they 
use any of the registers r8 – r15 or xmm8 – xmm15. Instructions that take extra time in the 
decoders should be avoided at all costs in code designed for the Silvermont. 

Execution ports and execution units 

Most of the execution units have full 128-bit capabilities, but some execution units are only 
partially pipelined and take an extra clock cycle for full vectors or double precision data.  
 
The capacity of the execution units seems to be satisfactory for a small low-power 
processor. 
 
The disastrous performance of the Atom on legacy x87 code has finally been repaired. 

Out of order execution 

The Silvermont has register renaming, but only very little capacity for out-of-order execution. 
Scheduling by the compiler may be necessary for best performance. 

Branch prediction 

The size of the branch target buffer is unknown. The prediction rate is fair. The 
misprediction penalty is relatively low. Indirect branches have no pattern prediction 
according to my tests. 

Memory access 

The throughput is one read/write instruction per clock cycle. Cache performance is good. 

Multithreading 

No critical resources are shared between threads other than the level-2 cache. This makes 
multithreading efficient. 
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16 Intel Goldmont and Tremont pipeline  
The low-power Goldmont processor is a further development of the Silvermont. It has full 
out-of-order processing capabilities and a maximum throughput of three instructions per 
clock cycle. The Goldmont Plus has only few improvements over Goldmont in the 
executions units. The Tremont has further improvements in decoders, branch prediction, 
and some execution units. The graphics unit has not been tested. 
 
The vector instruction set is limited to 128-bit vectors. These processors support vector 
instructions up to SSE4.2, but not any of the AVX instruction sets. Encryption instructions 
such as AES and SHA are also supported. 
 
The Goldmont and Tremont have more execution units than the Silvermont. The length of 
the pipeline is not known, but it is approximately the same as in Silvermont. 
 
The processor has 2–24 execution cores running one thread in each. 
 

16.1 Pipeline 

The Goldmont has six execution pipelines, the Tremont has ten. These are described below 
under execution units. The pipelines have full out-of-order execution. The reorder buffer has 
78 entries on Goldmont, 95 on Goldmont plus, and 208 on Tremont.  
 
The maximum average throughput is three instructions per clock cycle, or slightly more 
when executing instructions out of the loop buffer.  
 

16.2 Instruction fetch and decoding 

Instruction boundaries are marked in the code cache. 
  
The Goldmont has three decoders. It can fetch and decode three simple instructions or 15-
16 bytes per clock cycle. The Tremont has two sets of three decoders so that it can decode 
two branches simultaneously. This is useful for reducing branch misprediction delays, but 
the maximum throughput of a linear code stream is only slightly more than three instructions 
per clock cycle. 
 
Most instructions generate only 1 µop from the decoders. Read-modify, and read-modify-
write instructions generate a single µop which is sent to both the memory unit and the 
execution unit. Instructions that generate three or more µops are using microcode ROM. 
Apparently, some instructions that generate two µops are using microcode ROM as well. All 
instructions that use microcode ROM take at least 4 clock cycles to decode. 
 
Instructions with more than four prefixes and escape bytes cause significant delays in the 
decoders. A few combinations of three prefixes and escape bytes also cause high delays, 
including the combination of F3 with 66 or REX prefixes. 
 
There is no penalty for length-changing prefixes. 
 

16.3 Jumps 

The branch target buffer is connected to the code cache in aligned 16-bytes blocks of code. 
The reciprocal throughput (issue latency) for taken jumps depends on the number of jumps 
in the same 16-bytes block of code. The Goldmont Plus and Tremont are faster than the 
Goldmont for sparse jumps but slower for dense jumps. Conditional jumps that are 
predicted and not taken have a throughput of one branch per clock cycle in these 
processors. 
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Jump instructions per 
16 bytes code block 

Goldmont Goldmont Plus Tremont 

1 2 1 1 

2 2 2.5 2 

3 2 4 4 

4 2 5 5 

5 3 6 7 

6 4 6 7 

8 5 6 7 
Table 16.1. Reciprocal throughput of taken jumps depending on jump density 

  

16.4 Loop buffer 

The Goldmont has a loop buffer that recycles decoded µops. It can improve the 
performance of loops with up to 29 instructions by removing the bottleneck of fetch and 
decoding. The loop buffer is bigger on Tremont, but the size is unknown. 
 

16.5 Macro-op fusion 

The Goldmont and Tremont have no fusion of multiple instructions into a single µop. 
 

16.6 Special cases of independence 

A common way of setting a register to zero is by xor'ing it with itself or subtracting it from 
itself, e.g.  XOR EAX,EAX. The processor recognizes that xor instructions are independent 

of the prior value of the register if the two input operands are the same register. This works 
with 32- and 64-bit registers, mmx, and xmm registers. It does not work for subtract, 
compare, or other instructions. 
 

16.7 Execution units 

The Goldmont has an integer execution unit consisting of three ALUs, one address 
generation unit, and one jump execution unit. In addition, there is a floating point / vector 
unit with two ALUs. All units are fully pipelined, except for division. 
 
The Tremont has ten execution units: Three for integer operations, one for branches, two for 
address generation, one for integer store, one for vector store, and two for floating point and 
vector operations. 

Move elimination 

Register-to-register moves can be eliminated be register renaming for 32- and 64-bit 
registers and xmm registers, but not for mmx registers. No more than one move can be 
eliminated per clock cycle. Only the first of a chain of moves can be eliminated. Move 
elimination often fails. 

Read and write bandwidth 

The memory bandwidth is one 128-bit read and one 128-bit write instruction per clock cycle 
on Goldmont. The Tremont can do two memory reads or one read and one write per clock 
cycle. 

Data bypass delays 

Instructions that move data between the integer units and the floating point/vector units 
have a latency of 4 clock cycles. Otherwise, there is no extra delay for moving data between 
different execution units, and there is no penalty for using integer vector instructions on 
floating point data or vice versa. 
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Underflow and subnormals 

Operations that have subnormal numbers as input or output or generate underflow take 
100–200 clock cycles unless the flush-to-zero mode and denormals-are-zero mode are both 
used. 
 

16.8 Partial register access 

A write to a partial register has a false dependence on the rest of the register. The different 
parts of a general purpose register or vector register are never treated as independent. 
 
The flags register may be treated as different parts. A read of any flag after writing to part of 
the flags has an extra delay of one clock cycle. 
 

16.9 Cache and memory access 

 

Cache Goldmont Goldmont Plus Tremont 

Level 1 
code 

32 kB, 8 way, 64 sets, 
64 B line size 

32 kB, 8 way, 64 sets, 
64 B line size 

32 kB, 8 way, 64 sets, 
64 B line size 

Level 1 
data 

24 kB, 6 way, 64 sets, 
64 B line size, 
latency 3 

24 kB, 6 way, 64 sets, 
64 B line size, 
latency 3 

24 kB, 6 way, 64 sets, 
64 B line size, 
latency 3 

Level 2 1 MB, 16 way, 1024 
sets, 64 B line size, 
latency 18 

4 MB, 16 way, 1024 
sets, 64 B line size, 
latency 18 

1.5MB, 12 way, 2048 
sets, 64 B line size, 
latency 20 

Level 3   0 – 4 MB, 16 way, 
latency 46 

Table 16.2. Cache sizes on Goldmont, Goldmont Plus, and Tremont 

 
Cache bank conflicts have not been observed. There is a false dependence between 
memory addresses spaced a multiple of 4 kB apart. 
 

16.10 Store forwarding 

A memory write can be forwarded to a subsequent read of the same size or a smaller size 
with the same start address. The latency of the write + subsequent read is 5-6 clock cycles. 
There is an extra delay of 6 clock cycles if an unaligned store forwarding is crossing a cache 
line boundary. 
 
Store forwarding fails when the read is bigger than the write or does not start at the same 
address. It is possible to forward a store to two reads of the two halves on Tremont, but not 
on earlier processors. A failed store forwarding has an extra delay of 3–7 clock cycles. 
 

16.11 Bottlenecks in Goldmont and Tremont 

The Goldmont and Tremont are well-designed lightweight processors with a reasonable 
performance in all units.  
 
Vector instructions are supported only up to instruction set SSE4.2 with 128-bit vectors. The 
AVX instruction sets with 256 and 512 bit vectors are not supported. AES and SHA 
encryption instructions are supported. 
 
This processors are suitable for all but the most demanding CPU-intensive applications. 
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Instruction fetch and decoding 

Instruction fetch and decoding can be a bottleneck if instructions are long or complex. Many 
of the more complex instructions take 4 or more clock cycles to decode. 

Execution ports and execution units 

The capacity of the execution units seems to be satisfactory for a small low-power 
processor. The processors have full out-of-order capabilities. There is no support for 256- 
and 512-bit vector instructions. 

Branch prediction 

The size of the branch target buffer is unknown. The prediction rate is fair. The 
misprediction penalty is relatively low. Jumps and taken branches are particularly slow if 
there are multiple jump instructions in the same 16-bytes block of code. 

Memory access 

The throughput on the Goldmont is one read and one write instruction per clock cycle. The 
Tremont can do two memory reads or one read and one write per clock cycle. Cache 
performance is good. 

Multithreading 

No critical resources are shared between threads other than the level-2 and level-3 cache. 
This makes multithreading efficient. 
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17 Intel Knights Corner pipeline  
The Xeon Phi / Knights Corner is the first processor in Intel's Many Integrated Core (MIC) 
series, produced from 2012-2014 with a 22 nm process. It is a coprocessor with 57-61 cores 
that can run four threads in each core, with a clock frequency of 1.1-1.2 GHz. 
 
The instruction set of the Knights Corner had no name and no CPUID bit when it was 
introduced. This was a forerunner of the AVX512 instruction set with 32 vector registers of 
512 bits each. The Knights Corner instruction set is very similar to the later AVX512 
instruction set, but not binary compatible with the latter. A single bit is distinguishing Knights 
Corner vector instructions from otherwise identical AVX512 instructions. Legacy x86 and 
x87 instructions are supported. Intel has later given the Knights Corner instruction set the 
name "Initial Many Core Instructions" (IMCI) after it had become obsolete and replaced with 
AVX512. 
 
The pipeline has no out-of-order processing. The basic pipeline design is an in-order dual 
pipeline based on the old Pentium 1 design (see page 41) which is extended to support the 
new vector instructions. 
 
The decoder can handle 16 bytes or two instructions per clock cycle. When four threads are 
running in the same core, each thread will get a quarter of this throughput. 
 
The two pipes, named pipe 0 and pipe 1, are similar to pipe U and V in the Pentium 1. Pipe 
0 can execute vector and floating point instructions, while both pipes can execute integer 
instructions on general purpose registers.  
 
The Knights Corner has 32 kB L1 code cache, 32 kB L1 data cache, and 512 kB L2 cache 
per core, and 6-16 GB of on-board RAM. 
 
I have not tested the Knights Corner, but other researchers have measured a latency of 4 
clock cycles for floating point vector addition, multiplication and FMA instructions, and a 
throughput of 1 vector instruction per clock cycle per core. It may be difficult to reach the 
theoretical maximum throughput because the Knights Corner lacks out-of-order processing 
capabilities. 
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18 Intel Knights Landing pipeline  
The Xeon Phi / Knights Landing is the second generation of Intel's "Many Integrated Core" 
(MIC) series. It has 64-72 cores that can run four threads each. It is built with a 14 nm 
process and runs at a clock frequency of 1.3-1.5 GHz. 
 
Each core has 32 kB L1 code cache and 32 kB L1 data cache. 1 MB of L2 cache is shared 
between every two cores. 16 GB of MCDRAM inside the package is shared between all 
cores. 
 
The Knights Landing was the first microprocessor to support the AVX512 instruction set 
extension. This instruction set extension doubles the number of vector registers from 16 to 
32 (in 64 bit mode only) and increases the size of vector registers to 512 bits, versus 256 
bits in AVX and 128 bits in SSE. AVX512 also adds eight mask registers which are used for 
conditional operations on vector elements. Some desktop and laptop processors are now 
supporting AVX512 as well, which makes the MIC processors binary compatible with 
standard PC processors. 
 
The pipeline design is based on the Silvermont microarchitecture with improved out-of-order 
processing capabilities. The maximum throughput is two instructions per clock cycle. 
 

18.1 Pipeline 

The Knights Landing has a better out-of-order pipeline than the Knights Corner which can 
execute only in order, and the Silvermont that cannot execute floating point and vector 
instructions out of order. Memory operations are dispatched in order and executed out of 
order. All other operations are dispatched and executed out of order. 
  
The throughput is limited to two instructions per clock cycle in the decode and register 
rename stages. The dual pipeline in the decode and rename stages is split into six lines with 
each their reservation stations: two lines for integer instructions on general purpose 
registers, two lines for floating point and vector operations, and two for memory operations. 
This makes it possible to execute six µops per clock cycle in short bursts, while the average 
throughput is limited to two µops per clock cycle. 
 
The exact length of the pipeline is not known, but an approximate length can be estimated 
based on the branch misprediction penalty. The pipeline of the Knights Landing appears to 
be the same length, or slightly longer, than on the Silvermont. 
 
The register rename and reorder buffer has 72 entries. The reservation stations have 2x12 
entries for the integer lines, 2x20 entries for the floating point and vector lines, and 12 
entries shared for the two memory lines. 
 

18.2 Instruction fetch and decoding 

Instruction boundaries are marked in the code cache in order to remove the bottleneck of 
instruction length decoding. 
 
The Knights Landing has two decoders. The maximum throughput is two instructions or 16 
bytes per clock cycle on average. A small buffer allows it to decode isolated bursts of up to 
24 bytes in a single clock cycle, but not in multiple consecutive clock cycles. Function 
entries and important loop entries may be aligned by 16 in order to optimize instruction 
decoding. 
 
There is no fusion of multiple instructions into a single µop. 
 
Simple instructions generate only 1 µop from the decoders. Read-modify, and read-modify-
write instructions generate a single µop from the decoders, which is sent to both the 
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memory unit and the execution unit. Instructions that generate more than one µop are using 
microcode ROM, except for the POP register instruction. Instructions that use microcode 
ROM have poor performance, taking typically 7 clock cycles or more to decode. 
 
Instructions with more than three byte prefixes and escape bytes cause a significant delay 
of 5-6 clock cycles in the decoders. This limitation applies to standard prefixes as well as 0F 
escape byte sequences. This limitation can easily be exceeded. All xmm instructions 
belonging to the SSSE3 and later instruction sets have one prefix byte (66) and two escape 
bytes (0F 38 or 0F 3A) in the instruction code. If any of the registers r8 – r15 or xmm8 – 
xmm15 is used in such an instruction then we need an extra REX prefix whereby the limit of 
three prefix and escape bytes is exceeded. For example: 
 

; Example 18.1. Prefix limitation in Knights Landing 

pblendw xmm1, xmm2, 2     ; 1 prefix + 2 escape bytes. no penalty 

pblendw xmm1, xmm8, 2     ; 2 prefixes + 2 escape bytes = penalty 

vpblendw xmm1,xmm1,xmm8,2 ; 3-bytes VEX prefix. no penalty 

 
There is no penalty for the 2- and 3-byte VEX prefixes and 4-byte EVEX prefixes unless 
there are additional prefixes before these. A segment prefix before a VEX or EVEX prefix 
generates a penalty. There is no penalty for length-changing prefixes. 
 
The two decoders cannot handle two branch instructions simultaneously. Consecutive 
branch instructions should be avoided for this reason. 
 

18.3 Loop buffer 

The Knights Landing has no loop buffer, unlike the Silvermont. This means that the 
decoding of instructions is a very likely bottleneck, even for small loops. 
 

18.4 Execution units 

The pipeline has two lines in the instruction decode, register allocate, and rename stages. 
These are forked after the register allocate and renaming stages into three units with two 
lines each: the integer unit, the floating point unit, and the memory unit. The integer unit 
handles instructions on general purpose registers. The floating point unit handles all 
instructions on floating point registers, vector registers, and mask registers. The memory 
unit handles memory reads and writes. The integer unit, the floating point unit, and the 
memory unit each has two lines so that it is possible to execute two integer instructions or 
two vector instructions or two memory instructions simultaneously. All operations on mask 
registers use the floating point unit. 
 

Unit/line Operations 

Memory 0 integer and f.p./vector read and write 

Memory 1 integer and f.p./vector read 

Integer 0 ALU, multiply, shift 

Integer 1 ALU, jump, lea 

F.P. 0 vector add, multiply, div, logic, shift, convert 

F.P. 1 vector add, multiply, logic 

Table 18.1. Execution units/lines in Knights Landing 

 
 
There is one division unit which is shared between integer unit 0 and floating point unit 0. 
Floating point divisions have fixed latencies of 27-42 clock cycles. Integer divisions have 
variable latencies. 
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Latencies of the f.p./vector unit 

All instructions in the floating point unit have latencies of at least two clock cycles, while 
simple instructions in the integer unit have latencies of one clock cycle. Most other Intel 
processors, including the Silvermont, have single-clock latencies in the floating point / vector 
unit. A possible explanation for the double latency in the floating point / vector unit is that the 
integer reservation station can hold source data, while the floating point reservation station 
cannot. This means that an integer ALU can write its result directly to any subsequent µop 
in the reservation station that needs it, while results in the floating point unit have to go via 
the floating point register file. A floating point µop can have three input operands of 512 bits 
each and a 16-bit mask, to a total of 1552 data bits. This would probably take up too much 
space in the reservation station. An integer µop can have no more than two input operands 
of 64 bits each and a flag. 
 
Even simple operations on mask registers have latencies of two clock cycles, while identical 
operations in the integer unit have single-clock latencies. 

Mask operations 

Vector operations can have a mask so that each bit in the mask register determines 
whether the operation on the corresponding vector element is carried out or not. Masking is 
a simple operation in hardware that does not take extra time. All instructions have the same 
latencies and throughputs with or without masking. The timing is also independent of the 
value of the mask (even for gather and scatter instructions). The mask register is read at the 
same time as the other input operands. The scheduler cannot save time when a mask 
register is all zeroes, because the value of the mask is not available at the time the µop is 
scheduled from the reservation station. 
 
The timings of mask operations can be illustrated by the following example: 
 

; Example 18.2. Masked read in Knights Landing 

vmovdqa32 zmm1{k1}, [rsi] 

 
This instruction reads 512 bits from the memory operand pointed to by rsi and stores it in 

the 512 bit vector register zmm1. The operation is masked with 32-bit granularity, so that 

each 32-bit vector element in zmm1 is unchanged if the corresponding bit in mask register 

k1 is zero. 

 
Here, the latency from the memory operand to the destination register, zmm1, is approxi-

mately 5 clock cycles. The latency from the mask register, k1, to the destination is 2 clock 

cycles. There is also a dependency on the previous value of zmm1 because the previous 

value will be retained for elements where the mask bit is zero. The latency from zmm1 input 

to zmm1 output is 2 clock cycles. In other words, the output zmm1 is available on the latest of 

these three events: 5 clock cycles after the memory operand, or 2 clock cycles after the 
mask register k1, or 2 clock cycles after the zmm1 input is available. 

 
The dependency on the previous value of the destination register can be eliminated by 
adding a zeroing option:  
 

; Example 18.3. Masked read without dependence on prior value 

vmovdqa32 zmm1{k1}{z}, [rsi] 

 
The {z} option makes the elements in the destination vector zero, rather than unchanged, 

when the corresponding mask bit is zero. It is recommended to use the zeroing option when 
possible to avoid the dependence on the previous value of the destination register on 
masked instructions. There is no dependence on the previous value of the destination 
register if there is no mask. 
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Data bypass delays 

Instructions that move data between the integer units and the floating point/vector units 
have a latency of 4-5 clock cycles. There is no penalty for using integer vector instructions 
on floating point data or vice versa. 
 
Permute, shuffle, and a few other instructions are implemented in a separate unit at a 
distance from the other execution units. There is a delay of up to 2 clock cycles for moving 
data to or from this unit. For example, the PALIGNR instruction has a latency of 2 clock 

cycles when measured in a chain of similar instructions, but 6 clock cycles when the input 
comes from another type of instruction and the output goes to another type of instruction, 
e.g. move or add. The extra 4 clock cycles are 2 clock for moving data to the distant unit 
and 2 clock cycled for moving the result back again to the general unit. Some shuffle 
instructions, such as VPSHUFB, have multiple µops and very long latencies. 

Underflow and subnormals 

A division that has subnormal numbers as input or output, or generates underflow, takes 
approximately 300 clock cycles unless the flush-to-zero mode and the denormals-are-zero 
mode are both used. There is no penalty for subnormal numbers on addition and 
multiplication. 

Mathematical functions 

The Knights Landing supports a special instruction set extension, AVX512ER, that includes 
some powerful mathematical functions. VRCP28PS calculates reciprocals on a single 

precision vector in 8 clock cycles. VRSQRT28PS calculates a reciprocal square root in 7 

clock cycles. And VEXP2PS calculates a base-2 exponential function on a single precision 

vector in just 10 clock cycles. The Intel manual has somewhat confusing descriptions of the 
precision of these instructions, but they were all precise to the last bit in my tests on single 
precision vectors. They are only approximate on double precision vectors. 
 
AVX512ER makes the Knights Landing very suitable for mathematical calculations with 
large amounts of parallel data where single precision is sufficient, for example neural 
networks. 
 
The legacy x87 instructions have poor performance. Especially the FXCH instruction can 

cause performance problems because this instruction is heavily used in most x87 code, and 
it takes 9 clock cycles. x87 instructions should not be used, unless the long double precision 
is needed. 
 

18.5 Partial register access 

A write to a partial register has a false dependence on the rest of the register. The different 
parts of a general purpose register are never treated as independent. 
 
The flags register may be treated as different parts. A read of multiple flag bits after writing 
to only some of the flag bits has an extra delay of one clock cycle. 
 

18.6 Partial access to vector registers and VEX / non-VEX transitions 

The Knights Landing does not have separate VEX modes like the Sandy Bridge (see 
chapter 9.12). Instead, it has a partial register stall (see chapter 6.8) when a non-VEX 
instruction that modifies the lower 128 bits of a vector register is followed by a VEX 
instruction that reads 256 or 512 bits of the vector.  
 
The VZEROALL or VZEROUPPER instructions are not only superfluous here, they are actually 

harmful for the performance. A VZEROALL or VZEROUPPER instruction takes 36 clock cycles 

in 64 bit mode or 30 clock cycles in 32 bit mode. Note that this breaks with the previous ABI 
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recommendations. The recommendation for previous processors was that VEX code should 
be followed by a VZEROUPPER before any call or return to non-VEX code or code with 

unknown VEX status. 
 

18.7 Special cases of independence 

A common way of setting a register to zero is by xor'ing it with itself or subtracting it from 
itself, e.g.  XOR EAX,EAX. The Knights Landing processor recognizes that certain 

instructions are independent of the prior value of the register, but only in the following 
cases: 

• xor of a 32-bit register with itself 

• vpxor, vpxord, vpxorq, vxorps, vxorpd of a vector register with itself 

It does not recognize independence for 64-bit registers, mmx registers or mask registers. It 
does not recognize independence for subtract and compare instructions, and not for vector 
instructions without VEX prefix. A 64-bit register can be cleared by xor'ing the corresponding 
32-bit register with itself. 
 

18.8 Cache and memory access 

 

Cache Silvermont 

Level 1 code 32 kB, 8 way, 64 sets, 64 B line size, per core 

Level 1 data 32 kB, 8 way, 64 sets, 64 B line size, 
latency 4, per core. 

Level 2 1 MB, 16 way, 1024 sets, 64 B line size, 
latency 17. Shared between two cores. 

In package MCDRAM 16 GB, latency ~200. Can optionally be 
configured as cache. Shared between all cores. 

Table 18.2. Cache sizes on Knights Landing 

 
Cache bank conflicts have not been observed. There is a false dependence between 
memory addresses spaced a multiple of 4 kB apart. 
 
There is a penalty for jumps, calls and returns that cross a 4GB boundary. 

Read and write bandwidth 

The processor can do two memory reads per clock cycle or one read and one write with 
vector registers of up to 512 bits. It cannot do two reads with general purpose registers in 
the same clock cycle, but it can do one read and one write simultaneously with any register 
type. 
 
The size of the vector registers (512 bits) is the same as the size of a cache line (64 bytes). 
Thus, it is possible to read or write an entire cache line in one operation. The maximum read 
and write throughput for 512-bit vectors can only be obtained when the memory operands 
are aligned to cache lines, i.e. to addresses divisible by 64. 
 

18.9 Store forwarding 

A memory write can be forwarded to a subsequent read of the same size or half the size 
with the same start address. The latency of the write + subsequent read is 6-7 clock cycles 
for general purpose registers and 9-10 clock cycles for vector registers. 
 
Store forwarding fails in the following cases 
 

• The address crosses a cache line boundary 

• The read starts at a different address than the write 
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• The size of the read is not the same as the write or half the write 

• A vector write/read is unaligned 

• Forwarding from vector register to integer register, or vice versa 

• The store uses a mask 
 
It is not possible to forward a store to two reads of the two halves. A failed store forwarding 
takes 16-20 clock cycles. 
 

18.10 Multithreading 

The Knights Landing can run four threads in each core. Each thread gets a share of the 
pipeline and execution resources as follows: 
 

• 1 thread running in a core: full resources 

• 2 threads running in a core: half resources 

• 3 or 4 threads running in a core: a quarter of the resources 
 
The level-2 cache is shared between two cores, i.e. up to eight threads. 
 
It is no advantage to run multiple threads in each core for CPU-intensive tasks where the 
performance is limited by instruction fetch, decoding, or execution resources. 
 
The only situations where it is advantageous to run multiple threads in each core are when 
the performance is limited by memory access, branch mispredictions, or long dependency 
chains. 
 
Unfortunately, it is difficult to control the number of threads per core in a multi-user or multi-
process environment. A large number of low priority threads can easily consume most of the 
CPU resources so that high priority threads are running at a quarter of the possible speed. 
Current operating systems are not good at preventing this problem. The best solution in 
such cases may be to turn off hyper-threading in the BIOS setup. 
 

18.11 Bottlenecks in Knights Landing 

Instruction fetch and decoding 

Decoding is definitely the weakest part of the design. The throughput of the decoders is less 
than the maximum throughput of the execution units. This is likely to be the limiting 
bottleneck in CPU-intensive code. 

Microcode 

Instructions that generate more than one µop are implemented in microcode, except for the 
pop register instruction. All microcoded instructions take 7 clock cycles or more to decode. It 
is important to avoid microcoded instructions in critical code. For example, it is 
recommended to replace a call with a memory operand (function pointer) with a load of the 
memory operand into a register, followed by a call to the register. 
 
Some microcoded instructions are very inefficient. See manual 4 "Instruction tables". It is 
important to avoid the most inefficient instructions in critical code. 

Execution ports and execution units 

The vector execution units have full 512 bit bandwidth. It is advantageous to use 512-bit 
vector instructions. 
 
All instructions in the floating point/vector unit have latencies of 2 clock cycles or more, 
while simple instructions on general purpose registers have latencies of 1 clock. 
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The performance of legacy x87-style floating point code is poor. Shuffle and permute 
instructions have poor performance - some of them very poor. 
 
The VZEROUPPER and VZEROALL instructions take 36 clock cycles. This is a problem 

because previous AVX code contains lots of these instructions. The ABI recommendations 
for the use of these instructions have to be revised. 

Out of order execution 

The Knights Landing can execute instructions out of order, but the buffers used for 
reordering instructions are much smaller than on current desktop processors. It will not be 
able to handle long dependency chains optimally unless these are divided into multiple  
threads. 

Branch prediction 

The size of the branch target buffer is unknown. The prediction rate is fair. The 
misprediction penalty is relatively low.  
 
Branches in vector code can be avoided by using masks. 

Memory access 

The processor can do two memory reads into vector registers per clock cycle, but only one 
read per clock cycle into general purpose registers. Store forwarding works only in simple 
cases. Memory operations are scheduled in order, even if they are executed out of order. 
 
Cache performance is good. 

Multithreading 

The processor can run four threads in each core. However, this is no advantage for CPU 
intensive code because the decoders are not even big enough to keep the execution units 
busy on a single thread. It is a serious problem that critical or high-priority threads will run at 
a quarter of the maximum speed if low priority threads are running in the same cores. This 
can be difficult to avoid in a multi-user or multi-process environment unless hyper-threading 
is turned off in the BIOS setup. 
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19 VIA Nano pipeline  
Despite their small low-power design, the VIA Nano processors have a complete out-of-
order microarchitecture with a functionality and performance not far from the more power-
hungry desktop processors from Intel and AMD. It has a few weak spots, though, where the 
performance is inferior. The versions presently available have one, two or four cores 
running a single thread each. The Supplementary SSE3 and x64 instruction sets are 
supported in the Nano 2000 series. The Nano 3000 series also supports the SSE4.1 
instruction set and virtualization instructions. 
 
The microarchitecture is described by G. Glenn Henry in: "The VIA Isaiah Architecture", 
Centaur Technology, 2008 (www.via.com.tw). 
 

19.1 Performance monitor counters 

My research on the other processors described in the present manual has relied heavily on 
the use of performance monitor counters. The Nano also has performance monitor 
counters, but these are completely undocumented and intended only for internal use. I have 
found several counters for branch prediction, µops etc., but these counters are somewhat 
unreliable, especially on the 2000 series. The findings presented below are therefore based 
mainly on clock count measurements. 
 
The counters I have found are listed in the source code for my test program at 
www.agner.org/optimize. 
 

19.2 Instruction fetch 

The maximum instruction fetch rate is 16 bytes per clock cycle, which is likely to be 
sufficient in most cases. 
 

19.3 Instruction decoding 

The decoders can handle three instructions per clock cycle, including instructions that 
generate multiple µops. Instructions with any number of prefixes are decoded without delay. 
There is no penalty for length-changing prefixes. 
 

19.4 Instruction fusion 

The decoders can fuse an integer ALU instruction and a branch instruction into a single µop. 
The instruction fusion works only if the following conditions are satisfied: 
 

• The first instruction is one of the following: CMP, ADD, SUB, INC, DEC, TEST, AND, OR, 

XOR. 

   

• The first instruction has one or two register operands, no immediate operand, and no 
memory operand. 
   

• On the Nano 2000 series, the second instruction can only be JE or JNE (same as JZ 

and JNZ). 

   

• On the Nano 3000 series, the second instruction can be any conditional jump. A 
conditional jump that reads the carry flag (i.e. unsigned comparisons such as JA, 

JB) cannot fuse with an ALU instruction that doesn't use the carry flag (i.e. INC, 

DEC). 

   

• There can be no other instructions in between (except a NOP on the 3000). 

http://www.via.com.tw/en/downloads/whitepapers/processors/WP080124Isaiah-architecture-brief.pdf
http://www.agner.org/optimize/#testp
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For example, instruction fusion works for the combination DEC ECX / JNZ LOOP1, but not 

for CMP ECX,1000 / JNE LOOP2 because there is an immediate operand. 

 
On the Nano 3000 series, a NOP can be fused with a preceding instruction so that it uses no 

resources in the execution units. A NOP can fuse with many common instructions, including 

SIMD instructions, but not with all instructions. This applies to the single-byte NOP (opcode 

90) and the multi-byte NOP (opcode 0F 1F xxx), but not to FNOP and not to other instructions 

used as NOPs (e.g. LEA, MOV). 

 

19.5 Out of order system 

Register renaming, reservation station and µop dispatch work well with a throughput of 
three instructions per clock cycle. 
 

19.6 Execution ports 

There are seven clusters of execution units, each served by its own execution port. These 
are named as follows: 
 

Port Nano 2000 Nano 3000 

I1 Integer add, Boolean, shift, rotate Integer add, Boolean, shift, rotate, 
move 

I2 Integer add, Boolean, move, jump Integer add, Boolean, move, shift, 
multiply (32 bit), jump 

MA Multiplication, division, square root on 
all operand types 

Multiplication of F.P., SIMD and 64-bit 
integer operands. Division and square 
root. 

MB All other operations on F.P. and SIMD 
operands 

All other operations on F.P. and SIMD 
operands 

SA Address calculation for memory store 
and LEA 

Address calculation for memory store 
and LEA 

ST Memory store Memory store 

LD Memory load Memory load 

Table 19.1. Execution units in VIA Nano 

 
Each execution port can handle one µop per clock cycle. The latency is one clock cycle for 
most integer operations. 32 bit integer multiplication takes 2 clock cycles on the 3000 series, 
4-6 clock cycles on the 2000 series. Floating point addition takes 2 clock cycles. Floating 
point multiplication takes 3-4 clock cycles. These operations are pipelined to a throughput of 
one operation per clock cycle. Floating point multiplication with double precision has half the 
throughput. Division is not pipelined. 
 
A memory store instruction uses both the SA and the ST ports, apparently using a fused 
µop that goes to both ports. A LEA instruction uses the SA port. Memory read instructions 

use the LD port only. Read-modify instructions generate two µops, one for the LD port and 
one for an execution port. The maximum throughput is one µop per clock cycle for each 
port. 
 
Manual 4: "Instruction tables" lists the latencies and port use of each instruction. The table 
entries do not include the additional latencies described below. 
 
There is no penalty for mixing µops with different latencies on the same execution port. 
 
There is an inefficiency when the code contains mainly instructions for port I1 and I2 that 
modify general purpose registers. When the queues for both of these ports are full then the 
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scheduler will submit all subsequent I1/I2 instructions for port I1. This leads to suboptimal 
use of port I2. This can be avoided by making sure that no more than 2/3 of the instructions 
use port I1 and I2. 
 
The NOP instruction is quirky on the Nano 2000 series. It appears to block all execution 

ports so that no other instructions can execute in parallel. This applies only to the single-
byte NOP instruction (opcode 90). The multi-byte NOP (opcode 0F 1F xxx) and the FNOP do 

not have this problem. The Nano 3000 series does not have this problem. 
 

19.7 Latencies between execution units 

There is often an extra latency when the output of one instruction is needed as input for a 
subsequent instruction in a different execution unit or subunit. The measured delays for 
moving data from one unit to another are listed in table 19.2. 
 

 
To port 

From port I1 / I2 MA MB MB-fadd LD, ST SA 

I1 / I2 
0 1-2   0 0 

MA 
1 0 1 1 0 0-1 

MB 
 0-1 0 0-1 1-2 0-1 

MB-fadd 
 0-1 0-1 0 1 0-1 

LD, ST 
0 0-1 1 1 0 0 

SA 
2 1-2   0 0 

Table 19.2. Latencies between execution units 

 
The missing entries in table 19.2 are impossible operations or cannot be measured. The 
latencies listed in manual 4: "Instruction tables" do not include the additional latencies in 
table 19.2, except for instructions that move data between XMM and general purpose 
registers. The latencies between units are sometimes higher in the Nano 3000 series than 
in the 2000 series. 
 
The floating point adder under MB is named MB-fadd here. Note that there are additional 
latencies between the floating point adder under MB and other units under MB when XMM 
registers are used, but not when x87 registers are used.  
 
The latencies between units are illustrated in the following examples. 
 

; Example 19.1a. Latencies between units 

                         ; Unit    Latency 

mov  rax,  [m1]          ; LD       2 

add  rax,  2             ; I12      1 

imul rax,  10            ; MA       3+2 

add  rax,  rbx           ; I12      1+1 

mov  [m2], rax           ; ST       2 

                         ; Total:  12 expected, 12-13 measured 

 
; Example 19.1b. Instructions reordered 

                         ; Unit    Latency 

mov  rax,  [m1]          ; LD       2 

imul rax,  10            ; MA       3 

add  rax,  2*10          ; I12      1+1 

add  rax,  rbx           ; I12      1 
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mov  [m2], rax           ; ST       2 

                         ; Total:  10 expected, 10-11 measured 

 
; Example 19.1c. Using I12 unit only 

                         ; Unit    Latency 

mov  rax,  [m1]          ; LD       2 

add  rax,  2             ; I12      1 

mov  rcx,  rax           ; I2      (1) 

shl  rax,  3             ; I1       1 

add  rcx,  rcx           ; I12     (1) 

add  rax,  rbx           ; I12      1 

add  rax,  rcx           ; I12      1 

mov  [m2], rax           ; ST       2 

                         ; Total:   8 expected, 9 measured 

 

; Example 19.1d. Using SA unit only 

                         ; Unit    Latency 

mov  rax,  [m1]          ; LD       2 

lea  rax,  [rax+4*rax+10]; SA       1 

lea  rax,  [rbx+2*rax]   ; SA       1 

mov  [m2], rax           ; ST       2 

                         ; Total:   6 expected, 6 measured 

 

Examples 19.1 a-d are all doing the same thing. In 19.1a we are wasting 3 clock cycles on 
moving data from I12 to MA and back again. In 19.1b we have avoided a delay by 
reordering the instructions. In 19.1c we are using shifts instead of multiplication to avoid the 
transition to the MA unit. In 19.1d we are using LEA for both multiplication and addition. We 

are avoiding delays by keeping all the calculations in the SA unit. We would have an extra 2 
clock delay if there was a mixture of LEA and ADD instructions (SA and I1/I2 unit 

respectively). 
 
These transportation delays are likely to occur in dependency chains in the following 
situations: 
 

• Instructions in general purpose registers mix multiplication (MA), division (MA) or 
LEA instructions (SA) with any other integer instructions (I1/I2). (On 3000 series, MA 
is used for 64-bit multiplication, but not for multiplication with 32-bits or less). 
   

• Integer instructions in XMM registers mix multiplication (MA) with any other 
instructions (MB). 
   

• Floating point instructions in XMM registers mix multiplication, division or square root 
(MA), addition (MB-fadd) and any other instructions (MB). 
   

• Floating point instructions in x87 registers mix multiplication, division or square root 
(MA) with addition and other instructions (MB).  

 
The number of transitions between these units should be minimized. Transitions between 
different units are unavoidable when reading and writing to memory and when transferring 
data between general purpose registers and SIMD registers. 
 

Latencies between integer and floating point type XMM instructions 

There is a considerable delay when mixing XMM instructions intended for integer data with 
XMM instructions intended for floating point data. Several XMM instructions have three 
different versions, one for integer data, one for single precision floating point, and one for 
double precision. For example MOVDQA, MOVAPS, MOVAPD and POR, ORPS, ORPD. There is a 

serious penalty on the Nano processor for mixing instructions with different types. The 
penalty can be up to 2 clock cycles for a transition from an integer-type instruction to a 
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floating point-type instruction, and 3 clock cycles for a transition from a floating point-type 
instruction to an integer-type instruction. The most probable explanation is that integer and 
floating point XMM instructions use different execution units, different registers or different 
data buses. 
 
The use of instructions of the wrong type commonly occurs in the following situations: 
 

• The single precision versions of the instructions are one byte shorter than the integer 
or double precision versions. For example, some compilers use MOVAPS instead of 

MOVDQA to make the code shorter. This should be avoided because instruction 

fetching is rarely a bottleneck on the Nano. 
   

• Some integer XMM instructions have no floating point equivalent, for example shift 
instructions and PSHUFD. The penalty for using these instructions in a floating point 

context is typically 3 clock cycles. Use SHUFPS or SHUFPD instead if possible. 

   

• Some floating point instructions have no integer equivalent, for example MOVSS, 

MOVSD and SHUFPS. The penalty for using these instructions in an integer context is 

typically 5 clock cycles. 
 
These penalties are independent of what kind of data the registers actually contain, only the 
transition between differently typed instructions matter. For example, there is no penalty for 
using MOVAPS to move integer data as long as no calculation is done on these data. 

 

19.8 Partial registers and partial flags 

There are no partial register stalls when modifying part of a general purpose register or 
XMM register. The register is always treated as a whole, which can cause false 
dependences. For example, a move to AX will have to wait until any preceding write to EAX 

has finished because it cannot split out AX as an independent register. Replace MOV 

AX,[mem] by MOVZX EAX,word [mem] to avoid this. It is not necessary to extend the 

write to RAX because a write to EAX will neutralize the upper part of RAX. 

 
The flags register is treated in the opposite way. The flags register can be split into parts to 
avoid false dependences for instructions that modify part of the flags (e.g. INC). 

Consequently, there is a stall of approximately 7 clock cycles in case the partial flags 
registers have to be combined together. Example:  
 

; Example 19.2. Partial flags stall 

add eax, 2     ; modifies all flags 

inc ebx        ; modifies all flags except carry 

setbe cl       ; needs carry flag from add and zero flag from inc 

 
The partial flags stall is unavoidable in the PUSHF instruction. 

 

19.9 Breaking dependence 

The processor recognizes that a register is cleared when XOR'ed with itself, for example 
XOR EAX,EAX is recognized as independent of the prior value of EAX. The same applies to 

the following instructions: 
 

Instruction Nano 2000 Nano 3000 

XOR x x 

SUB - x 

SBB - - 

PXOR, XORPS, XORPD x x 
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PANDN, ANDNPS, ANDNPD - - 

PSUBB/W/D/Q - x 

PCMPEQW/D - x 

PCMPEQQ - - 

PCMGTW/D/Q - - 

 

19.10 Memory access 

Caches: 
 

• Level 1 instruction cache. 64 kB, 16 way, set associative, 64 bytes line size 

• Level 1 data cache. 64 kB, 16 way, set associative, 64 bytes line size 

• Level 2 cache. 1 MB, 16 way, set associative, 64 bytes line size 
 
Misaligned memory accesses are very expensive if a 32-bytes boundary is crossed on the 
Nano 2000 series or a 64-bytes boundary on the 3000 series. The latency is approximately 
18 clock cycles for a misaligned read and 37 clock cycles for a misaligned write. There is no 
penalty if no 32/64-bytes boundary is crossed. 
 
Store forwarding works efficiently only in simple cases: 
 

Read size Address offset Extra delay 
Nano 2000 

Extra delay 
Nano 3000 

= write size 0 0 0 

< write size 0 0 0 

> write size 0 11 9 

< write size 1 33 7 

< write size 2-4 7 7 

< write size > 4 33 7 

any size only partial overlap 21-33 18 

 

19.11 Branches and loops 

The throughput for jumps, calls and taken branches is one jump per three clock cycles. Not-
taken branches have a throughput of 1 per clock cycle. The minimum execution time for a 
loop is 3 clock cycles if the loop contains no 16 bytes boundary, and 4 clock cycles if a 16 
bytes boundary is crossed inside the loop. Tight loops should therefore be aligned by 16 to 
keep the clock count at 3. 
 
The branch target buffer can address only two jumps in each 16-bytes line of code. If an 
aligned 16-bytes block of code contains more than two taken jumps, calls or returns then 
the excess jumps have a latency of 8 clock cycles each. 
 
Branch prediction works best if there is no more than one branch or jump in each 16-bytes 
block of code, but prediction is also reasonably good when there are two branches in a 16-
bytes block of code. See page 31 for details. Returns are predicted well. 
 

19.12 VIA specific instructions 

The processor has special instructions for encryption, decryption and hashing. These 
complex instructions run at a speed of 1-4 clock cycles per byte of data. 
 
There is also an instruction for random number generation based on electrical noise. This 
instruction takes between 1300 and 19200 clock cycles to generate 8 bytes of random bits, 
depending on the desired quality and the processor version. Random bits are sampled 
continuously into an 8-bytes buffer while the processor is doing other tasks. The XSTORE 
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instruction gets 8 random bytes only if the buffer is full, while the REP XSTORE instruction 

waits until enough random data have been sampled. 
 
This instruction is too slow for generating a long sequence of random numbers for Monte 
Carlo applications, but it is sufficient for generating the seed for a pseudo random number 
generator or a cryptographic key. 
 
I have tested the quality of the generated random numbers with the DIEHARD battery of 
tests (en.wikipedia.org/wiki/Diehard_tests). The random numbers generated by the REP 

XSTORE instruction fail many of the tests when the quality factor is set to the lowest value. 

This was expected because physical generators of randomness are known to be imperfect. 
With a higher value of the quality factor, it passes all the tests. The higher quality is obtained 
by sampling noise over a longer time interval and by manipulating the random data with a 
"whitener" with an undisclosed algorithm. 
 
A programming reference for these instructions can be found in: "VIA PadLock 
Programming Guide", www.via.com.tw, May 2005. 
 

19.13 Bottlenecks in Nano 

The execution units in the Nano are quite powerful for such a small processor, and the 
execution latencies are very low. There are, however, a number of weak points: 
 

• Misaligned memory accesses are very costly. 
   

• Store forwarding works only in relatively simple cases. 
   

• Data cache access is limited to one read or one write per clock cycle. Only rarely 
can it read and write simultaneously. 
   

• Branch density limit. There is a limit of only two jumps or branches per 16 bytes of 
code. Performance is decreased when this limit is exceeded. 
   

• Branch throughput. The Nano can make no more than one taken branch or jump 
every three clock cycles. 
   

• There is suboptimal queueing when most instructions go to the I1 and I2 execution 
ports. 
     

• There are many extra latencies for moving data between different execution units or 
subunits. 
   

The main differences between the Nano 2000 and Nano 3000 series lie in the execution 
units. The Nano 3000 has two execution units for most integer instructions. It has a new 
integer multiplication unit with a 2-clock latency. Division is improved, and there are several 
minor improvements in SIMD instructions. Misaligned memory access and store forwarding 
is somewhat improved, but still less efficient than in bigger processors. 
 
The conclusion is that the single-core Nano may be insufficient for the most demanding and 
memory intensive applications. The low price and low power consumption makes it useful 
for many common purposes, such as office applications, embedded applications and low 
traffic servers. 

http://en.wikipedia.org/wiki/Diehard_tests
http://www.via.com.tw/
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20 AMD K8 and K10 pipeline  

20.1 The pipeline in AMD K8 and K10 processors 

The AMD microprocessors are based on the same principles of out-of-order execution and 
register renaming as Intel desktop processors.  
 
Instructions are split up as little as possible and as late as possible in the pipeline. Each 
read-modify macro-instruction is split into a read and a modify micro-instruction in the 
execution stage and joined together into the macro-operation before retirement. A macro-
operation in AMD terminology is somewhat similar to a fused micro-operation in Intel 
terminology. The K8 microarchitecture has no execution units bigger than 64 or 80 bits, 
while the K10 microarchitecture has 128-bit execution units in the floating point pipeline so 
that 128-bit XMM instructions can be handled in a single macro-instruction. 
 
The most important difference from Intel's microarchitecture is that the AMD micro-
architecture contains three parallel pipelines. The instructions are distributed between the 
three pipelines right after the fetch stage. In simple cases, the instructions stay in each their 
pipeline all the way to retirement. 
 
The exact length of the pipelines is not known but it can be inferred that it has approximately 
twelve stages, based on the fact that the branch misprediction penalty is measured to 12 
clock cycles. 
 
The following list of stages is based on publications from AMD as well as an independent 
analysis published by Chip Architect. 
 

1. Instruction fetch 1. 32 bytes per clock cycle on K10, 16 bytes on K7 and K8. 
 

2. Instruction fetch 2 and branch prediction. 
 

3. Pick/Scan. Can buffer up to 7 instructions. Distributes three instructions into the 
three decoder pipelines. The following stages are all split into three parallel pipes. 
 

4. Decode 1. Splits the instruction codes into their components. 
 

5. Decode 2. Determines input and output registers. 
 

6. Pack. Up to six macro-operations generated from the decoders are arranged into 
lines of three macro-operations for the three execution pipelines. 
 

7. Pack/Decode. Register renaming. Integer registers are read from the "Integer Future 
File and Register File". Submits integer macro-operations to the three integer pipes. 
Submits floating point macro-operations to the floating point pipes. 
 
Integer pipes: 
 

8. Dispatch. Sends macro-operations to a reservation station with 3x8 entries. 
 

9. Schedule. Schedules macro-operations out of order. Read-modify and read-modify-
write macro-operations are split into micro-operations which are submitted to the 
arithmetic logic units (ALU), the address generation units (AGU), and the load/store 
units. 
 

10. Execution units and address generation units. Each of the three integer pipes has 
one ALU and one AGU. Integer arithmetic, logic and shift operations are executed in 
this stage. Integer multiplication can only be handled in pipe 0. All other integer 
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instructions can be handled by any of the three integer pipes. 
 

11. Data cache access. Submits a read or write request to the data cache. 
 

12. Data cache response. The data cache returns a hit or miss response for read 
operations. 
 

13. Retirement. Macro-operations are retired in order. The data cache stages are 
skipped if there is no memory operation. 
 
Floating point pipes: 
 

8. Stack map. Maps floating point stack registers to virtual registers. 
 

9. Register renaming. 
 

10. Dispatch. Scheduler write. 
 

11. Scheduler. Uses a reservation station with 3x12 entries to schedule instructions out 
of order. Micro-operations are targeted for one of the three floating point execution 
units. 
 

12. Register read. Reads source operand register values. 
 

13. Execution units. The three execution units in the floating point pipes are named 
FADD, FMUL and FMISC. These units are specialized for each their purpose. The 
floating point execution units are fully pipelined in three stages to handle floating 
point operations with latencies longer than one. Integer vector operations are 
handled by the floating point units, not the integer ALU's. 
 

14. - 16. The processes of address generation, cache access and retirement are 
probably shared with the integer pipelines. 

 
The floating point pipeline is longer than the integer pipeline because of the extra stages for 
stack map, register renaming, and register read. The minimum measured latency of floating 
point instructions is 2 clock cycles because of the extra register read stage. The maximum 
latency of floating point instructions is 4 clock cycles. 
 
The length of the floating point pipeline is difficult to measure, because the branch 
misprediction penalty measures only the length of the integer pipeline. 
 
You may think of the pipeline structure as consisting of an in-order front end, an out-of-order 
execution core, and an in-order retirement unit. However, the linear picture of the pipeline 
as sketched above is somewhat misleading, because some processes take place in 
parallel, more or less independently of each other. Address generation takes several clock 
cycles and may start before the ALU operation. Read-modify and read-modify-write macro-
operations are split into micro-operations that go to different units and at different times in 
the out-of-order core. The in-order front end, the branch prediction unit, address-generation 
units, load-store units, integer arithmetic-logic units, and floating point units are all separate 
structures with each their pipeline. The integer ALU units and the floating point units can do 
operations out of order. The load-store units are doing all memory reads in order and all 
memory writes in order, while a read can be executed before a subsequent write. The other 
units are doing all operations in order. 
 
The time it takes to calculate an address and read from that address in the level-1 cache is 
3 clock cycles if the segment base is zero and 4 clock cycles if the segment base is 
nonzero, according to my measurements. Modern operating systems use paging rather than 
segmentation to organize memory. You can therefore assume that the segment base is 
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zero in 32-bit and 64-bit operating systems (except for the thread information block which is 
accessed through FS or GS). The segment base is almost always nonzero in 16-bit systems 

in protected mode as well as real mode. 
 
Complex instructions that require more than two macro-operations are so-called vector path 
instructions. These instructions make exclusive use of all three slots in a decode line, a 
reorder buffer line, etc. so that no other instructions can go in parallel. The macro-
operations are generated from microcode ROM in stage 3 - 5 in the pipeline. 
 
The K7 processor does not have double instructions. It uses the vector path process for all 
instructions that require more than one macro-operation. Otherwise, the microarchitecture of 
the K7 processor is very similar to the 64-bit architecture of K8 and K10, as outlined above. 
Earlier AMD processors have a different microarchitecture which will not be treated here. 
 
Literature:  
AMD Athlon™ Processor x86 Code Optimization Guide, Feb. 2002. 
AMD Software Optimization Guide for AMD64 Processors, 2005, 2008. 
Fred Weber: AMD’s Next Generation Microprocessor Architecture. Oct. 2001. 
Hans de Vries: Understanding the detailed Architecture of AMD's 64 bit Core, 2003. 
www.chip-architect.com. 
Yury Malich: AMD K10 Micro-Architecture. 2007. www.xbitlabs.com. 
 
The research on the AMD pipeline has been carried out with the help of Andreas Kaiser and 
Xucheng Tang. 
 

20.2 Instruction fetch 

The instruction fetcher can fetch 32 bytes of code per clock cycle from the level-1 code 
cache on K10. On K7 and K8, it can fetch 16 bytes of code per clock cycle into a 32 bytes 
buffer. Instruction fetching can therefore be a bottleneck on the older processors if the code 
contains many long instructions or many jumps. The delivery bandwidth of code from the 
level-2 cache has been measured to 4.22 bytes per clock on average for K10, and 2.56 
bytes per clock on K8. 
 
The fetched packets are aligned by 32 on K10 and by 16 on K7 and K8. This has 
implications for code alignment. Critical subroutine entries and loop entries should not start 
near the end of a 16 byte block. You may align critical entries by 16 or at least make sure 
there is no 16-byte boundary in the first three instructions after a critical label. 
 
Branch information stored in the code cache and the branch target buffer is used for 
fetching code after predicted branches. The throughput for jumps and taken branches is one 
jump per two clock cycles. I take this as an indication that the fetch buffer can only contain 
contiguous code. It cannot span across a predicted branch. 
 

20.3 Predecoding and instruction length decoding 

An instruction can have any length from 1 to 15 bytes. The instruction boundaries are 
marked in the code cache and copied into the level-2 cache. Instruction length decoding is 
therefore rarely a bottleneck, even though the instruction length decoder can handle only 
one instruction per clock cycle. 
 
The level-1 code cache contains a considerable amount of predecode information. This 
includes information about where each instruction ends, where the opcode byte is, as well 
as distinctions between single, double and vector path instructions and identification of 
jumps and calls. Some of this information is copied to the level-2 cache, but not all. The low 
bandwidth for instructions coming from the level-2 cache may be due to the process of 
adding more predecode information. 

http://www.chip-architect.com/
http://www.xbitlabs.com/articles/cpu/display/amd-k10.html
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My experiments show that it is possible to decode three instructions in one clock cycle on 
K8 even if the third instruction starts more than 16 bytes after the first one, provided that 
there are enough bytes left in the 32 byte buffer. 
 
The throughput of the microprocessor is three instructions per clock cycle, even for an 
instruction stream that contains predicted jumps. We know that a jump incurs a delay 
bubble in the instruction fetch process, but there is a buffer between fetch and decoding 
which enables it to catch up after this delay.  
 
A recommendation in some versions of AMD's Optimization Guide says that decoding can 
be improved by aligning groups of three instructions by eight. This is done by inserting 
dummy prefixes to make each group of three instructions exactly eight bytes long. This 
recommendation is obsolete, according to my measurements. The decoders can always 
handle three relatively short instructions per clock cycle regardless of alignment. There is no 
advantage in making instructions longer. Only in rare cases with relatively long instructions 
have I observed an improvement by making instructions longer to make groups of 
instructions a multiple of 8 bytes long (regardless of alignment). But making instructions 
longer is more likely to have a negative effect. 
 
Each of the instruction decoders can handle three prefixes per clock cycle. This means that 
three instructions with three prefixes each can be decoded in the same clock cycle. An 
instruction with 4 - 6 prefixes takes an extra clock cycle to decode. 
 

20.4 Single, double and vector path instructions 

 

• Instructions that generate one macro-operation are called direct path single 
instructions. 
 

• Instructions that generate two macro-operations are called direct path double 
instructions (K8 only). 
 

• Instructions that generate more than two macro-operations are called vector path 
instructions. 

 
The number of macro-operations generated by each instruction is listed in manual 4: 
"Instruction tables". 
 
There is no difference in throughput between using one double instruction or two single 
instructions, except for the reduction in code size. The throughput is still limited to three 
macro-operations per clock cycle, not three instructions per clock cycle. The source of this 
bottleneck is most probably the retirement stage. If the bottleneck was in the schedulers 
then we would not expect a double instruction in the floating point scheduler to limit the 
throughput of the integer schedulers, or vice versa. 
 
Vector path instructions are less efficient than single or double instructions because they 
require exclusive access to the decoders and pipelines and do not always reorder optimally. 
For example: 
 

; Example 20.1. AMD instruction breakdown 

xchg  eax, ebx   ; Vector path, 3 ops 

nop              ; Direct path, 1 op 

xchg  ecx, edx   ; Vector path, 3 ops 

nop              ; Direct path, 1 op 

 
This sequence takes 4 clock cycles to decode because the vector path instructions must 
decode alone. 
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Most read-modify and read-modify-write instructions generate only one macro-operation. 
These instructions are therefore more efficient than using separate read and modify 
instructions. 
 
The latency from the memory operand to the result of a read-modify instruction is the same 
as the latency of a read plus the latency of the arithmetic operation. For example, the 
instruction ADD EAX,[EBX] has a latency of 1 from EAX input to EAX output, and a latency 

of 4 from EBX to EAX output in 32 bit mode. An 8-bit or 16-bit memory read behaves like a 

read-modify instruction. For example, MOV AX,[EBX] takes one clock cycle more than 

MOV EAX,[EBX]. 

 
A macro-operation can have any number of input dependencies. This means that 
instructions with more than two input dependencies, such as MOV [EAX+EBX],ECX,  ADC 

EAX,EBX and CMOVBE EAX,EBX, generate only one macro-operation, while they require 

two micro-operations on Intel processors. 
 

20.5 Stack engine 

The K10 has a stack engine very similar to the one on Intel processors (p. 95). This makes 
stack operations (PUSH, POP, CALL, RET) more efficient on K10 than on earlier processors. 

 

20.6 Integer execution pipes 

Each of the three integer execution pipes has its own ALU (Arithmetic Logic Unit) and its 
own AGU (Address Generation Unit). Each of the three ALU's can handle any integer 
operation except multiplication. This means that it is possible to do three single integer 
instructions in the same clock cycle if they are independent. The three AGU's are used for 
memory read, write and complex versions of the LEA instruction. It is possible to do two 

memory operations and one LEA in the same clock cycle. It is not possible to do three 

memory operations because there are only two ports to the data cache. 
 
The K10 can do a LEA instructions with no more than two operands in the ALU's, even if it 

has a SIB byte. A LEA instruction with a scale factor or with both base register, index 

register and addend is executed in the AGU. It is unknown whether a LEA with a RIP-

relative address is executed in the AGU. A LEA executed in the AGU has a latency of 2 

clock cycles. If the AGU and ALU are at the same stage in the pipeline, as the model 
suggests, then the extra latency is most likely explained by assuming that there is no fast 
data forwarding path between these two units. 
 
Integer multiplication can only be done in ALU0. A 32 bit integer multiplication takes 3 clock 
cycles and is fully pipelined so that a new multiplication can begin every clock cycle. Integer 
multiplication instructions with the accumulator as an implicit operand and only one explicit 
operand generate a double sized result in DX:AX, EDX:EAX or RDX:RAX. These instructions 

use ALU1 for the high part of the result. It is recommended to use multiplication instructions 
that do not produce a double sized result in order to free ALU1 and EDX for other purposes. 

For example, replace MUL EBX with IMUL EAX,EBX if the result can fit into 32 bits. 

 

20.7 Floating point execution pipes 

The three execution units in the floating point pipes are named FADD, FMUL and FMISC. 
FADD can handle floating point addition. FMUL can handle floating point multiplication and 
division. FMISC can handle memory writes and type conversions. All three units can handle 
memory reads. The floating point units have their own register file and their own 80-bits data 
bus. 
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The latency for floating point addition and multiplication is 4 clock cycles. The units are fully 
pipelined so that a new operation can start every clock cycle. Division takes 11 clock cycles 
and is not fully pipelined. The latency for move and compare operations is 2 clock cycles. 
 
The 3DNow instructions have the same latency as the XMM instructions. There is hardly 
any advantage in using 3DNow instructions rather than XMM instructions unless you need 
the approximate reciprocal instruction which is more accurate and efficient in the 3DNow 
version than in the XMM version. The 3DNow instruction set is obsolete and not available 
on newer microprocessors. 
 
SIMD integer operations in MMX and XMM registers are handled in the floating point 
pipelines, not the integer pipelines. The FADD and FMUL pipes both have an integer ALU 
that can handle addition, Boolean and shift operations. Integer multiplications are handled 
only by FMUL. 
 
The minimum latency for the floating point units is 2 clock cycles. This latency is caused by 
the pipeline design, not by lower clock frequency or staggered addition. Most SIMD integer 
ALU operations have a latency of 2 clocks. Integer multiplication has a latency of 3 clocks. 
The units are fully pipelined so that a new operation can start every clock cycle. 
 
Macro-operations for the floating point units can be divided into five categories according to 
which execution unit they are going to. I will designate these categories as follows: 
 

macro-operation 
category 

Handled by unit 

FADD FMUL FMISC 

FADD X   

FMUL  X  

FMISC   X 

FA/M X X  

FANY X X X 

Table 20.1.  AMD floating point macro-operation categories 

 
The floating point scheduler sends each macro-operation to a unit that can handle it. A 
macro-operation in the FA/M category can go to either the FADD or the FMUL unit. A 
macro-operation in the FANY category can go to any of the three units. The categories for 
all floating point instructions are listed under "Instruction timings and µop breakdown for 
AMD" in manual 4: "Instruction tables". 
 
Unfortunately, the scheduler does not distribute the macro-operations optimally among the 
three units. Macro-operations in the FA/M category are scheduled according to the simplest 
possible algorithm: FA/M macro-operations go alternately to FADD and FMUL. This 
algorithm makes sure that two FA/M macro-operations submitted in the same clock cycle do 
not go to the same unit. A status bit is remembering which of the two units was used last, 
and this bit can be remembered indefinitely. I have found no way to reset it. 
 
The scheduling algorithm for macro-operations in the FANY category is only slightly more 
sophisticated. A macro-operation in the FANY category goes preferentially to the unit that is 
determined by which of the three pipelines it happens to come from. The first FANY macro-
operation after a series of integer macro-operations goes to FMISC. A second FANY macro-
operation in the same clock cycle goes to FMUL, and a possible third FANY macro-
operation goes to FADD. If other macro-operations submitted in the same clock cycle need 
a particular floating point unit then the FANY macro-operations can be redirected to a 
different unit. 
 
The floating point scheduler does not check whether a particular unit is vacant or has a long 
queue when deciding where to send a macro-operation of category FA/M or FANY. If, for 
example, an instruction stream generates ten macro-operations of category FADD and then 
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one macro-operation of category FA/M, then there is a 50% probability that the FA/M 
macro-operation will go to the FADD unit although it could save a clock cycle by sending it 
to FMUL. 
 
This suboptimal scheduling of macro-operations can significantly slow down the execution 
of code with many floating point instructions. This problem can be diagnosed by testing a 
small critical piece of code with a performance monitor counter set up for each of the three 
floating point units. The problem is difficult to solve, however. Sometimes it is possible to 
improve the distribution of macro-operations by changing the instruction order, by using 
different instructions, or by inserting NOPs. But there is no general and reliable way to solve 

the problem. 
 
Another scheduling problem which can have even worse consequences is explained in the 
next paragraph. 
 

20.8 Mixing instructions with different latency 

There is a scheduling problem when mixing instructions with different latencies. The floating 
point execution units are pipelined so that if a macro-operation with latency 4 starts at 
time=0 and finishes at time=3, then a second macro-operation of the same kind can start at 
time=1 and end at time=4. However, if the second macro-operation has latency 3 then it 
cannot start at time=1 because it would end at time=3, simultaneously with the preceding 
macro-operation. There is only one result bus for each execution unit and this prevents 
macro-operations from delivering their results simultaneously. The scheduler prevents a 
clash between two results by not dispatching a macro-operation to an execution unit if it can 
be predicted that the result bus will not be vacant when the macro-operation is finished. It is 
not able to redirect the macro-operation to another execution unit. 
 
This problem is illustrated by the following example: 
 

; Example 20.2. AMD mixing instruction with different latencies (K8) 

                     ; Unit     time op 1   time op 2 

mulpd  xmm0, xmm1    ; FMUL        0-3        1-4 

mulpd  xmm0, xmm2    ; FMUL        4-7        5-8 

movapd xmm3, xmm4    ; FADD/FMUL   0-1        8-9 

addpd  xmm3, xmm5    ; FADD        2-5       10-13 

addpd  xmm3, xmm6    ; FADD        6-9       14-17 

 

Each instruction in this example generates two macro-operations, one for each of the 64-bit 
parts of the 128-bit register. The first two macro-operations are multiplications with a latency 
of 4 clock cycles. They start at time=0 and 1, and end at time=3 and 4, respectively. The 
second two multiplication macro-operations need the results of the preceding macro-
operations. Therefore they cannot start until time=4 and 5, and end at time=7 and 8, 
respectively. So far so good. The MOVAPD instruction generates two macro-operations of 

category FA/M with latency 2. One of these macro-operations goes to the FADD pipe which 
is vacant so that this macro-operation can start immediately. The other macro-operation 
from MOVAPD goes to the FMUL pipe because macro-operations in the FA/M category 

alternate between the two pipes. The FMUL pipe is ready to start executing a new macro-
operation at time=2, but the MOVAPD macro-operation can't start at time=2 because then it 

would end at time=3 where the first MULPD macro-operation finishes. It can't start at time=3 

because then it would end at time=4 where the second MULPD macro-operation finishes. It 

can't start at time=4 or 5 because the next two MULPD macro-operations start there. It can't 

start at time=6 or 7 because then the result would clash with the results of the next two 
MULPD macro-operations. So time=8 is the first possible start time for this macro-operation. 

The consequence is that the subsequent additions, which are dependent on the MOVAPD, 

will be delayed 7 clock cycles even though the FADD unit is vacant. 
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There are two ways to avoid the problem in the above example. The first possibility is to 
reorder the instructions and put the MOVAPD before the two MULPD instructions. This would 

make the two macro-operations from MOVAPD both start at time=0 in the FADD and the 
FMUL unit, respectively. The subsequent multiplications and additions will then run in the 
two pipes without interfering with each other. 
 
The second possible solution is to replace XMM4 by a memory operand. The 

MOVAPD XMM3,[MEM] instruction generates two macro-operations for the FMISC unit 

which is vacant in this example. There is no conflict between macro-operations in different 
execution pipes, regardless of differences in latency. 
 
The throughput is of course higher on K10 than on K8, but the deadlock problem can still 
occur for all instructions that use floating point registers, MMX registers or XMM registers. 
As a general guideline, it can be said that the deadlock can occur when a macro-operation 
with latency 2 follows after at least two macro-operations with a longer latency scheduled for 
the same floating point execution unit and the macro-operations are independent in the 
sense that one doesn't have to wait for the result of another. The deadlock can be avoided 
by putting the instructions with short latency first or by using instructions that go to different 
execution units. 
 
The latencies and execution units of the most common macro-operations are listed below. A 
complete list can be found in manual 4: "Instruction tables". Remember that a 128-bit 
instruction typically generates one macro-operation on K10 and two macro-operations on 
K8. 
 

Macro-operation type Latency Execution unit 

register-to-register move 2 FADD/FMUL alternate 

register-to-memory move 2 FMISC 

memory-to-register 64 bit 4 any 

memory-to-register 128 bit 4 FMISC 

integer addition 2 FADD/FMUL alternate 

integer Boolean 2 FADD/FMUL alternate 

shift, pack, unpack, shuffle 2 FADD/FMUL alternate 

integer multiplication 3 FMUL 

floating point addition 4 FADD 

floating point multiplication 4 FMUL 

floating point division 11 FMUL (not pipelined) 

floating point compare 2 FADD 

floating point max/min 2 FADD 

floating point reciprocal 3 FMUL 

floating point Boolean 2 FMUL 

type conversion 2-4 FMISC 

Table 20.2. Execution units in AMD 

 

20.9 64 bit versus 128 bit instructions 

It is a big advantage to use 128-bit instructions on K10, but not on K8 because each 128-bit 
instruction is split into two 64-bit macro-operations on the K8. 
  
128 bit memory write instructions are handled as two 64-bit macro-operations on K10, while 
128 bit memory read is done with a single macro-operation on K10 (2 on K8). 
 
128 bit memory read instructions use only the FMISC unit on K8, but all three units on K10. 
It is therefore not advantageous to use XMM registers just for moving blocks of data from 
one memory position to another on the k8, but it is advantageous on K10. 
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20.10 Data delay between differently typed instructions 

XMM instructions come in three different types according to the types of operands they are 
intended for: 
 

1. Integer instructions. Most of these instructions have a name that begins with P for 

Packed, for example POR. 

 
2. Single precision floating point instructions. These instructions have a name that ends 

with SS (Scalar Single precision) or PS (Packed Single precision), for example ORPS. 

 
3. Double precision floating point instructions. These instructions have a name that 

ends with SD (Scalar Double precision) or PD (Packed Double precision), for 

example ORPD. 

 
The three instructions POR, ORPS and ORPD are doing exactly the same thing. They can be 

used interchangeably, but there is a delay when the output from an integer instruction is 
used as input for a floating point instruction, or vice versa. There are two possible 
explanations for this delay: 
 
Explanation 1: The XMM registers have some tag bits that are used for remembering 
whether floating point values are normal, subnormal or zero. These tag bits have to be set 
when the output of an integer instruction is used as input for a single or double precision 
floating point instruction. This causes a so-called reformatting delay. 
 
Explanation 2: There is no fast data forwarding path between the integer and floating point 
SIMD units. This gives a delay analogously to the delay between execution units on the P4. 
 
Explanation 2 is supported by the fact that there is no delay between single precision and 
double precision floating point instructions, but there is a delay from floating point to integer 
instructions. 
 
There is no difference in delay after instructions that read from memory and do no 
calculation. And there is no delay before instructions that write to memory and do no 
calculation. Therefore, you may use the MOVAPS instruction rather than the one byte longer 

MOVAPD or MOVDQA instructions for reading and writing memory. 

 
There is often a two clock cycle delay when the output of a memory read instruction 
(regardless of type) is used as input to a floating point instruction. This is in favor of 
explanation 1. 
 
It does not make sense to use the wrong type of instruction for arithmetic operations, but for 
instructions that only move data or do Boolean operations there may be advantages in 
using the wrong type in cases where no delay is incurred. The instructions with names 
ending in PS are one byte shorter than other equivalent instructions. 

 

20.11 Partial register access 

The processor always keeps the different parts of an integer register together. Thus, AL and 

AH are not treated as independent by the out-of-order execution mechanism. This can 

cause false dependences in a code that writes to part of a register. For example: 
 

; Example 20.3. AMD partial register access 

imul  ax, bx 

mov   [mem1], ax 

mov   ax, [mem2] 
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In this case the third instruction has a false dependence on the first instruction caused by 
the high half of EAX. The third instruction writes to the lower 16 bits of EAX (or RAX) and 

these 16 bits have to be combined with the rest of EAX before the new value of EAX can be 

written. The consequence is that the move to AX has to wait for the preceding multiplication 

to finish because it cannot separate the different parts of EAX. This false dependence can 

be removed by inserting an XOR EAX,EAX instruction before the move to AX, or by 

replacing MOV AX,[MEM2] by MOVZX EAX,[MEM2]. 

 
The above example behaves the same regardless of whether it is executed in 16 bit mode, 
32 bit mode or 64 bit mode. To remove the false dependence in 64 bit mode it is sufficient to 
neutralize EAX. It is not necessary to neutralize the full RAX because a write to the lower 32 

bits of a 64 bit register always resets the high half of the 64 bit register. But a write to the 
lower 8 or 16 bits of a register does not reset the rest of the register. 
 
This rule does not apply to the XMM registers on K8. Each 128-bit XMM register is stored 
as two independent 64-bit registers on K8.  
 

20.12 Partial flag access 

The processor splits the arithmetic flags into at least the following groups: 
 

1. Zero, Sign, Parity and Auxiliary flags 
 

2. Carry flag 
 

3. Overflow flag 
 

4. Non-arithmetic flags 
 
This means that an instruction that modifies only the carry flag has no false dependence on 
the zero flag, but an instruction that modifies only the zero flag has a false dependence on 
the sign flag. Examples: 
 

; Example 20.4. AMD partial flags access 

add  eax,1      ; Modifies all arithmetic flags 

inc  ebx        ; Modifies all except carry flag. No false dependence 

jc   L          ; No false dependence on EBX 

bsr  ecx,edx    ; Modifies only zero flag. False depend. on sign flag 

sahf            ; Modifies all except overflow flag 

seto al         ; No false dependence on AH 

 

20.13 Store forwarding stalls 

There is a penalty for reading from a memory position immediately after writing to the same 
position if the read is larger than the write, because the store-to-load forwarding mechanism 
doesn't work in this case. Examples: 
 

; Example 20.5. AMD store forwarding 

mov    [esi],eax    ; Write 32 bits 

mov    bx,[esi]     ; Read 16 bits. No stall 

movq   mm0,[esi]    ; Read 64 bits. Stall 

movq   [esi],mm1    ; Write after read. No stall 

 
There is also a penalty if the read doesn't start at the same address as the write: 
 

; Example 20.6. Store forwarding stall 

mov    [esi],eax    ; Write 32 bits 

mov    bl,[esi]     ; Read part of data from same address. No stall 
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mov    cl,[esi+1]   ; Read part of data from different address. Stall 

 
There is also a penalty if the write originates from AH, BH, CH or DH: 

 
; Example 20.7. Store forwarding stall for AH 

mov    [esi],al     ; Write 8 bits 

mov    bl,[esi]     ; Read 8 bits. No stall 

mov    [edi],ah     ; Write from high 8-bit register 

mov    cl,[edi]     ; Read from same address. Stall 

 

20.14 Loops 

The branch prediction mechanism for the AMD K8 and K10 processors is described on 
page 32. 
 
The speed of small loops is often limited by instruction fetching on the AMD. A small loop 
with no more than 6 macro-operations can execute in 2 clock cycles per iteration if it 
contains no more than one jump and no 32-byte boundary on K10 or 16-byte boundary on 
K8. It will take one clock extra per iteration if there is a 32-byte boundary in the code 
because it needs to fetch an extra 32-byte block on K10, or 16-byte boundary on K7 or K8. 
 
The maximum fetching speed can be generalized by the following rule: 
 

The minimum execution time per iteration for a loop is approximately equal to the 
number of 32-byte boundaries on K10, or 16-byte boundaries on K8, in the code 
plus 2 times the number of taken branches and jumps. 

 
Example: 
 

; Example 20.8. AMD branch inside loop 

     mov ecx,1000 

L1:  test bl,1 

     jz L2 

     add eax,1000 

L2:  dec ecx 

     jnz L1 

 
Assume that there is a 32-byte boundary at the JNZ L1 instruction. Then the loop will take 

3 clocks if the JZ L2 doesn't jump, and 5 clocks if the JZ jumps. In this case, we can 

improve the code by inserting a NOP before L1 so that the 32-byte boundary is moved to L2. 

Then the loop will take 3 and 4 clocks respectively. We are saving one clock count in the 
case where JZ L2 jumps because the 32-byte boundary has been moved into the code that 

we are bypassing. 
 
These considerations are only important if instruction fetching is the bottleneck. If something 
else in the loop takes more time than the computed fetching time then there is no reason to 
optimize instruction fetching. 
 

20.15 Cache 

The level-1 code cache and the level-1 data cache are both 64 Kbytes, 2 way set 
associative and a line size of 64 bytes. The data cache has two ports which can be used for 
either read or write. This means that it can do two reads or two writes or one read and one 
write in the same clock cycle. Each read port is 128 bits wide on K10, 64 bits on K8. The 
write ports are 64 bits on both K8 and K10. This means that a 128-bit write operation 
requires two macro-operations. 
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Each 64 byte line in the code cache line is split into 4 blocks of 16 bytes each. Each 64 byte 
line in the data cache is split into 8 banks of 8 bytes each. The data cache cannot do two 
memory operations in the same clock cycle if they use the same bank, except for two reads 
from the same cache line: 
 

; Example 20.9. AMD cache bank conflicts 

mov eax,[esi]      ; Assume ESI is divisible by 40H 

mov ebx,[esi+40h]  ; Same cache bank as EAX. Delayed 1 clock 

mov ecx,[esi+48h]  ; Different cache bank 

 

mov eax,[esi]      ; Assume ESI is divisible by 40H 

mov ebx,[esi+4h]   ; Read from same cache line as EAX. No delay 

 

mov [esi],eax      ; Assume ESI is divisible by 40H 

mov [esi+4h],ebx   ; Write to same cache line as EAX. Delay 

 
(See Hans de Vries: Understanding the detailed Architecture of AMD's 64 bit Core, Chip 
Architect, Sept. 21, 2003. www.chip-architect.com. Dmitry Besedin: Platform Benchmarking 
with Right Mark Memory Analyzer, Part 1: AMD K7/K8 Platforms. www.digit-life.com.) 
 
Operations with memory access are executed with the use three different units with each 
their pipeline: (1) An Arithmetic Logic Unit (ALU) or one of the floating point units, (2) an 
Address Generation Unit (AGU), (3) a Load Store Unit (LSU). The ALU is used for read-
modify and read-modify-write instructions, but not for instructions that only read or write. The 
AGU and LSU are used for all memory instructions. The LSU is used twice for read-modify-
write instructions. While the ALU and AGU micro-operations can be executed out of order, 
the LSU micro-operations are processed in order in most cases. The rules are as follows, as 
far as I am informed: 
 

1. Level-1 data cache hit reads are processed in order. 
 

2. Level-1 data cache miss reads proceed in any order. 
 

3. Writes must proceed in order. 
 

4. A read can go before a preceding write to a different address. 
 

5. A read depending on a prior write to the same address can proceed as soon as the 
forwarded data is available. 
 

6. No read or write can proceed until the addresses of all prior read and write 
operations are known. 

 
It is recommended to load or calculate the values of pointer and index registers as early as 
possible in the code in order to prevent the delaying of subsequent memory operations. 
 
The fact that memory operations must wait until the addresses of all prior memory 
operations are known can cause false dependences, for example: 
 

; Example 20.10. AMD memory operation delayed by prior memory 

operation 

imul eax, ebx       ; Multiplication takes 3 clocks 

mov  ecx, [esi+eax] ; Must wait for EAX 

mov  edx, [edi]     ; Read must wait for above 

 
This code can be improved by reading EDX before ECX so that the reading of EDX doesn't 

have to wait for the slow multiplication. 
 

http://www.chip-architect.com/
http://www.digit-life.com/
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There is a stall of one clock cycle for misaligned memory references if the data crosses an 
8-bytes boundary. The misalignment also prevents store-to-load forwarding. Example: 
 

; Example 20.11. AMD misaligned memory access 

mov [ds:10001h],eax  ; No penalty for misalignment 

mov [ds:10005h],ebx  ; 1 clock penalty when crossing 8-byte boundary 

mov ecx,[ds:10005h]  ; 9 clock penalty for store-to-load forwarding 

Level-2 cache 

The level-2 cache has a size of 512 Kbytes or more, 16 ways set-associative with a line size 
of 64 bytes and a bus size of 16 bytes. Lines are evicted by a pseudo-LRU scheme. 
 
Data streams can be prefetched automatically with positive or negative strides. Data are 
prefetched only to the level-2 cache, not to the level-1 cache. 
 
The level-2 cache includes bits for automatic error correction when used for data, but not 
when used for code. The code is read-only and can therefore be reloaded from RAM in 
case of parity errors. The bits that have been saved by not using error correction for code 
are used instead for copying the information about instruction boundaries and branch 
prediction from the level-1 cache. 

Level-3 cache 

The K10 has a level-3 cache of 2 MB. It is likely that versions with different level-3 cache 
sizes will become available. The level-3 cache is shared between all cores, while each core 
has its own level-1 and level-2 caches. 
 

20.16 Bottlenecks in AMD K8 and K10 

It is important, when optimizing a piece of code, to find the limiting factor that controls 
execution speed. Tuning the wrong factor is unlikely to have any beneficial effect. In the 
following paragraphs, I will explain each of the possible limiting factors in the AMD 
microarchitecture. 

Instruction fetch 

The instruction fetch is limited to 16 bytes of code per clock cycle on K8 and earlier 
processors. This can be a bottleneck when the rest of the pipeline can handle three 
instructions per clock cycle. Instruction fetch is unlikely to be a bottleneck on K10. 
 
The throughput for taken jumps is one jump per two clock cycles. Instruction fetch after a 
jump is delayed even more if there is a 16-byte boundary in the first three instructions after 
the jump. It is recommended to align the most critical subroutine entries and loop entries by 
16 or at least make sure the critical jump targets are not near the end of an aligned 16-byte 
block. The number of jumps and 16-byte boundaries in small loops should be kept as small 
as possible. See above, page 216. 

Out-of-order scheduling 

The maximum reordering depth is 24 integer macro-operations plus 36 floating point macro-
operations. Memory operations cannot be scheduled out of order. 

Execution units 

The execution units have a much larger capacity than it is possible to utilize. It is alleged 
that the nine execution units can execute nine micro-operations simultaneously, but it is 
virtually impossible to verify this claim experimentally since the retirement is limited to three 
macro-operations per clock cycle. All three integer pipelines can handle all integer 
operations except multiplication. The integer execution units can therefore not be a 
bottleneck except in code with an extraordinary high number of multiplications. 
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A throughput of 3 macro-operations per clock cycle can be obtained when no execution unit 
receives more than one third of the macro-operations. For floating point code, it is difficult to 
obtain a perfectly equal distribution of macro-operations between the three floating point 
units. Therefore, it is recommended to mix floating point instructions with integer 
instructions. 
 
The floating point scheduler does not distribute macro-operations optimally between the 
three floating point execution units. A macro-operation may go to a unit with a long queue 
while another unit is vacant. See page 211. 
 
All floating point units are pipelined for a throughput of one macro-operation per clock cycle, 
except for division and a few other complex instructions. 

Mixed latencies 

Mixing macro-operations with different latencies scheduled for the same floating point unit 
can seriously prevent out-of-order execution. See page 212. 

Dependency chains 

Avoid long dependency chains and avoid memory intermediates in dependency chains. A 
false dependence can be broken by writing to a register or by the following instructions on 
the register with itself: XOR, SUB, SBB, PXOR, XORPS, XORPD. For example, XOR EAX,EAX, 

PXOR XMM0,XMM0, but not XOR AX,AX, PANDN XMM0,XMM0, PSUBD XMM0,XMM0 or 

compare instructions. Note that SBB has a dependence on the carry flag. 

 
Accessing part of a register causes a false dependence on the rest of the register, see page 
214. Accessing part of the flag register does not cause a false dependence, except in rare 
cases, see page 215. 

Jumps and branches 

Jumps and branches have a throughput of one taken branch every two clock cycles. The 
throughput is lower if there are 16-byte boundaries shortly after the jump targets. See page 
216. 
 
The branch prediction mechanism allows no more than three taken branches for every 
aligned 16-byte block of code. Jumps and branches that always go the same way are 
predicted very well if this rule is obeyed. See page 32. 
 
Dynamic branch prediction is based on a history of only 8 or 12 bits. Furthermore, the 
pattern recognition often fails for unknown reasons. Branches that always go the same way 
do not pollute the branch history register. 

Retirement 

The retirement process is limited to 3 macro-operations per clock cycle. This is likely to be a 
bottleneck if any instructions generate more than one macro-operation.  
 

21 AMD Bulldozer, Piledriver, Steamroller, and Excavator 
pipeline  

21.1 The pipeline in AMD Bulldozer, Piledriver, Steamroller and Excavator 

The AMD Bulldozer, Piledriver, Steamroller and Excavator processors can have from one to 
eight compute units with two execution cores per unit. It can run one thread per core or two 
threads per unit. 
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Instruction cache and fetching is shared between the two cores in an execution unit. The 
instruction decoder is also shared between two cores in Bulldozer, Piledriver, and 
Excavator, while the Steamroller has one decoder for each core. 
 
Integer execution units and level-1 data cache is separate for each core. The floating point 
and vector execution units and level-2 cache are also shared between the two cores of an 
execution unit. A possible level-3 cache is shared between all compute units. Some 
versions have an integrated graphics processing unit. 
 
Each core contains four parallel pipelines and can execute up to four instructions per clock 
cycle. Instructions are split up as little as possible and as late as possible in the pipeline. A 
read-modify or read-modify-write instruction generates only one macro-operation at the 
decode stage. The length of the pipeline is not known. 
 
The design has more focus on power saving than previous designs. It saves power quite 
aggressively by slowing down the clock speed most of the time. Some versions also lower 
the voltage to the CPU when the clock speed is reduced. The maximum clock speed is only 
obtained after a long sequence of CPU-intensive code.  
 

21.2 Instruction fetch 

The instruction fetcher is shared between the two cores of an execution unit. The instruction 
fetcher can fetch 32 aligned bytes of code per clock cycle from the level-1 code cache. The 
measured fetch rate was up to 16 bytes per clock per core when two cores were active, and 
up to 21 bytes per clock in linear code when only one core was active. The fetch rate is 
lower than these maximum values when instructions are misaligned. 
 
Critical subroutine entries and loop entries should not start near the end of a 32-bytes block. 
You may align critical entries by 16 or at least make sure there is no 16-bytes boundary in 
the first four instructions after a critical label. 
 

21.3 Instruction decoding 

Instruction boundaries are marked in the code cache. Each decoder can handle four 
instructions per clock cycle. The Bulldozer, Piledriver and Excavator have one decoder in 
each unit, which is shared between two cores. When both cores are active, the decoders 
serve each core every second clock cycle, so that the maximum decode rate is two 
instructions per clock cycle per core. Instructions that belong to different cores cannot be 
decoded in the same clock cycle. The decode rate is four instructions per clock cycle when 
only one thread is running in each execution unit. 
 
The Steamroller has one decoder per core so that it can decode four instructions per core 
per clock, even when running two threads in each unit. Therefore, the bottleneck is most 
likely to be instruction fetching rather than decoding on the Steamroller.  
 
Instructions that generate two macro-ops are called double instructions. The decoders in the 
Piledriver, Steamroller, and Excavator can handle four single instructions (1-1-1-1) or one 
double instruction and two single instructions (2-1-1) or two double instructions (2-2) in one 
clock cycle. The Bulldozer can handle (1-1-1-1) and (2-1-1), but not (2-2). 
 
Instructions that generate more than two macro-ops are using microcode. The decoders 
cannot do anything else while microcode is generated. This means that a decoder can stop 
decoding for several clock cycles after meeting an instruction that generates more than two 
macro-ops. On the Steamroller, this will affect only the thread that has the complex 
instruction, but on the other models it will delay both threads in a unit because they share 
the same decoder. The number of macro-ops generated by each instruction is listed in 
manual 4: "Instruction tables". 



 221 

  
Instructions with up to three prefixes can be decoded in one clock cycle. There is a very 
large penalty for instructions with more than three prefixes. Instructions with 4-7 prefixes 
take 14-15 clock cycles extra to decode. Instructions with 8-11 prefixes take 20-22 clock 
cycles extra, and instructions with 12-14 prefixes take 27 - 28 clock cycles extra. It is 
therefore not recommended to make NOP instructions longer with more than three prefixes. 
The prefix count for this rule includes operand size, address size, segment, repeat, lock, 
REX and XOP prefixes. A three-bytes VEX prefix counts as one, while a two-bytes VEX 
prefix does not count. Escape codes (0F, 0F38, 0F3A) do not count. 
 

21.4 Loop buffer 

The Steamroller and Excavator have a queue of decoded macro-ops after the decoder. 
There is one queue for each core. The queue can hold up to 40 macro-ops, though 
sometimes a little less. Small loops can bypass the decoder and run from the macro-op 
queue. This saves power and removes the bottleneck of instruction fetching for tiny loops. A 
loop with no more than 4 instructions can execute in just one clock cycle per iteration on 
these processors because it bypasses the decoder. 
 

21.5 Instruction fusion 

A CMP or TEST instruction immediately followed by a conditional jump can be fused into a 

single macro-op. This applies to all versions of the CMP and TEST instructions and all 

conditional jumps except if the CMP or TEST has a rip-relative address or both a 

displacement and an immediate operand. Examples: 
 

; Example 21.1. Instruction fusion on Bulldozer 

test eax,4 

jnz L1                 ; fused into one op 

cmp [Mydata],eax       ; rip-relative address in 64 bit mode 

jb L2                  ; not fused if rip-relative address 

cmp dword [rsi+8],2    ; both displacement and immediate operand 

jl  L3                 ; not fused 

cmp [Mydata+rbx*4],eax ; 32-bit absolute address + scaled index 

jg L3                  ; fused 

dec ecx 

jnz L4                 ; not fused. Only cmp and test can fuse 

 

(The AMD software optimization guide 3.06, Jan 2012 is inaccurate here) 
 
No other ALU instruction can fuse with a conditional jump. The maximum decode rate is not 
increased by instruction fusion. 
 

21.6 Stack engine 

The processor has an efficient stack engine that renames the stack pointer, but we do not 
know exactly where it is placed in the pipeline. 
 
Push, pop and return instructions use only a single macro-op. These instructions have zero 
latency with respect to the stack pointer, so that subsequent instructions that depend on the 
stack pointer, either as operand or as pointer, are not delayed. No extra stack synchro-
nization µops of the type seen in Intel processors have been observed. 
 

21.7 Out-of-order schedulers 

Each core has an out-of-order Integer scheduler with 40 entries and a physical register file 
of 96 registers of 64-bit. 
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The shared floating point unit has its own out-of-order scheduler with 60 entries and a 
physical register file of 160 registers of 128-bit. 
 
These numbers may be bigger for the Steamroller and Excavator, but exact details are not 
available. 
 

21.8 Integer execution pipes 

There are four integer execution pipes: 
 

Integer pipe Used for 

EX0 Most ALU operations, division 

EX1 Most ALU operations, multiplication, jump 

AGLU0 Memory read 

AGLU1 Memory read 

Table 21.1. Integer execution pipes 

 
The execution pipes EX0 and EX1 are used for most integer and general purpose 
instructions. Memory read instructions use AGLU0 and AGLU1. Memory write instructions 
use both AGLU0/1 and EX0/1 simultaneously. AGLU0 and 1 can also handle simple 
register-to-register moves with 32-bit and 64-bit general purpose registers, except on early 
versions of Bulldozer. AGLU0 and 1 can also handle the most common integer operations 
such as addition and logical operations on Excavator. AGLU0 and 1 cannot handle register 
move instructions with 8-bit or 16-bit registers or an immediate operand on Bulldozer, 
Piledriver and Steamroller.  
 
LEA instructions are executed as ALU operations in EX0 and EX1. Simple LEA instructions 
take one clock cycle. If shifting or more than one addition is involved then it takes two 
clocks. If the operand size or address size is 16 bits then it takes an extra clock. 
 
Integer multiplication of operands up to 32 bits takes 4 clock cycles with a throughput or one 
multiplication per 2 clocks. Integer division is not pipelined. 
 

21.9 Floating point execution pipes 

There are four floating point/vector execution pipes on Bulldozer and Piledriver, but only 
three on Steamroller and Excavator. 
 

Floating point pipe Used for 

P0 f.p. addition, multiplication, division, 
integer vector multiplication 

P1 f.p. addition, multiplication, division,  
shuffle, shift, pack 

P2 integer vector addition, boolean, move 

P3 integer vector addition, boolean, move,  
store 

Table 21.2. Bulldozer and Piledriver floating point execution pipes 
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Floating point pipe Used for 

P0 f.p. addition, multiplication, division, boolean, 
integer vector addition, multiplication 

P1 f.p. addition, multiplication, division, 
shuffle, shift, pack 

P2 integer vector addition, 
vector boolean, 
store 

Table 21.3. Steamroller and Excavator floating point execution pipes 

 
All these units can handle 128-bit operands. 256-bit operations are split into two macro-ops. 
 
All floating point additions and multiplications take 5 clock cycles on Bulldozer, Piledriver 
and Steamroller if the next dependent instruction is also an addition or multiplication, 
otherwise possibly 6 clock cycles. A fused multiply-and-add instruction also takes 5 or 6 
clock cycles. It is unknown how the execution unit saves one clock cycle when the result is 
used in the same unit. It might be due to a shorter data path, or it might be that the 
execution unit can save one pipeline stage of normalization, formatting or categorization of 
the floating point number. Floating point latencies are one clock shorter on Excavator. 
 
The latency for move and compare operations and for simple integer vector instructions is 2 
clock cycles. 
 
Most execution units are doubled, as table 21.2 and 21.3 show, so that the throughput is 
two 128-bit operations or one 256-bit operation per clock cycle. Normally, a macro-op goes 
to the unit that is vacant first. 
 
The store unit is not doubled, and 256-bit stores always take more than one clock cycle. 
The Bulldozer has a throughput of at most one 256-bit store per 3 clock cycles if aligned, 
and one per 10 clock cycles if unaligned. The Piledriver is particularly bad on 256-bit stores 
with a throughput of one aligned 256-bit store per 17 clock cycles in my measurements. The 
Steamroller and Excavator are much better, with a throughput of one 256-bit store per 2 
clock cycles if aligned, 4 clock cycles if unaligned. 
 
The Steamroller has lower throughput than expected for floating point addition. The 
throughput is only one 128-bit vector per clock cycle in single-threaded applications, even 
though there are two 128-bit execution units for floating point addition. It is sometimes 
possible to use both add units simultaneously when running two threads. 
 
Mixing instructions with different latency on the same pipe rarely causes problems. 
 
The 3DNow instructions are no longer supported, except for the prefetch instructions. 

Subnormal operands 

The Bulldozer and Piledriver have a penalty of approximately 175 extra clock cycles when 
the result of a floating point operation is a subnormal or underflow, unless the flush-to-zero 
mode is activated. There is no penalty for overflow. The Steamroller and Excavator have 
none of these penalties. 

Fused multiply and add 

The floating point units can do fused multiply-and-add (FMA) instructions of the type 
d = a * b + c. The Bulldozer supports FMA4 instructions, where the four operands can be 
different registers. The Piledriver, Steamroller and Excavator support both FMA3 and FMA4. 
The FMA3 instructions have three operands, where the destination d must use the same 
register as one of the input operands a, b or c. The Piledriver has only half the expected 
throughput for FMA3, namely one 128-bit vector per clock, but full throughput for FMA4, i.e. 
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two 128-bit vectors per clock. The Steamroller and Excavator have full throughput for both 
FMA3 and FMA4. 
 

21.10 AVX instructions 

The throughput of 256-bit AVX instructions is generally one 256-bit vector per clock cycle 
while the throughput of 128-bit instructions is two 128-bit vectors per clock cycle for the 
most common instructions. Therefore, the overall throughput is roughly the same regardless 
of whether we are using 128-bit or 256-bit instructions. The Bulldozer, Piledriver, and 
Steamroller support the AVX instruction set, which contains 256-bit floating point 
instructions. The Excavator also supports the AVX2 instruction set, which contains 256-bit 
integer instructions. 
 
There are a few disadvantages of using 256-bit instructions on Bulldozer and Piledriver: 
 

• The instruction decoders cannot handle two double instructions per clock cycle on 
the Bulldozer. 

• The throughput of 256-bit store instructions is less than half the throughput of 128-bit 
store instructions on Bulldozer and Piledriver. It is particularly bad on the Piledriver, 
which has a throughput of one 256-bit store per 17 - 20 clock cycles. 

• 128-bit register-to-register moves have zero latency, while 256-bit register-to-register 
moves have a latency of 2 clocks plus a penalty of 2-3 clocks for using a different 
domain (see below) on Bulldozer and Piledriver. Register-to-register moves can be 
avoided in most cases thanks to the non-destructive 3-operand instructions. 

 
Therefore, there is no advantage in using 256-bit instructions on Bulldozer and Piledriver 
when the bottleneck is execution unit throughput or instruction decoding. The poor 
throughput of 256-bit stores makes it a disadvantage to use 256-bit registers on the 
Piledriver. These problems have been fixed on the Steamroller and Excavator. 
  
While Intel processors have a large penalty for mixing 256-bit AVX instructions with non-
AVX XMM instructions due to a mode switch (see page 134), there is no such penalty and 
apparently no mode switch on these AMD processors. 
 
The AVX instruction set gives three-operand versions of most XMM instructions, both 
integer and floating point. This has the advantage that no operand register is overwritten so 
that most register-to-register moves can be avoided. There is no disadvantage of using the 
three-operand instructions other than incompatibility with older processors. 
 

21.11 Data delay between different execution domains 

There is often a delay when output data from one execution unit is used as input in another 
execution unit. The different execution units can be divided into six domains, where there is 
a transport delay when data are moved from one domain to another: 
 

1. int domain. This includes all operations on general purpose registers. 
2. ivec domain. This includes all integer vector operations as well as floating point 

move, pack, shuffle, blend and boolean operations. 
3. fma domain. This includes all floating point add, subtract and multiply operations, 

including fused multiply-and-add instructions. 
4. fp domain. This includes other floating point instructions, such as division, square 

root, round, etc. 
5. load. This includes all memory read instructions. 
6. store. This includes memory write instructions. 

 
The transport delays between these domains have been measured as follows: 
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From 
domain 

To domain 

int ivec fp fma store 

int 0 (8-10) n.a. n.a. (4) 

ivec (7-8) 0 1 1 (5) 

fp n.a. 1 0 0 1(+5) 

fma n.a. 1 0 -1 1(+5) 

load (4) (6) (6) (6) n.a. 

Table 21.4. Data transport delays, clock cycles. Numbers in parenthesis are included in the 
latency counts listed in manual 4: "Instruction tables". 

 
Note that many floating point instructions belong to the integer vector (ivec) domain. For 
example, there are no special floating point versions of the boolean instructions. The POR, 

ORPS and ORPD instructions are all identical. Example: 

 
; Example 21.2a. Data transport delays on Bulldozer 

movaps  xmm0, [mem1]  ; 6   clock 

mulps   xmm0, xmm1    ; 6+1 clock 

xorps   xmm0, xmm2    ; 2+1 clock 

addps   xmm0, xmm3    ; 6+1 clock 

movaps  [mem2], xmm0  ; 5   clock 

                      ; 28  clock total 

 
This can be improved by reordering the instructions so that the number of transitions 
between domains is reduced (the xorps instruction is used for changing sign here, so that 

this reordering is allowed). 
 

; Example 21.2b. Data transport delays on Bulldozer, improved 

movaps  xmm0, [mem1]  ; 6   clock 

xorps   xmm0, xmm2    ; 2+1 clock 

mulps   xmm0, xmm1    ; 6-1   clock 

addps   xmm0, xmm3    ; 6+1 clock 

movaps  [mem2], xmm0  ; 5   clock 

                      ; 26  clock total 

 
The transport delays between the integer unit and the floating point/vector unit are much 
longer in my measurements than specified in AMD's Software Optimization Guide. 
Nevertheless, I cannot confirm that it is faster to move data from a general purpose register 
to a vector register through a memory intermediate, as recommended in that guide. 
 
There is a large penalty when the output of a floating point calculation is input to a floating 
point calculation with a different precision, for example if the output of a double precision 
floating point addition is input to a single precision addition. This has hardly any practical 
significance since such a sequence is most likely to be a programming error, but it indicates 
that the processor stores extra information about floating point numbers beyond the 128 bits 
in an XMM register. This effect is not seen on Intel processors. 
 

21.12 Instructions that use no execution units 

The NOP, FNOP and FWAIT instructions are resolved without being sent to any execution 

unit. They have a throughput of 4 instructions per clock cycle. 
 
128 bit register-to-register moves are implemented as register renaming without being sent 
to any execution unit. Therefore, they have a latency of zero and a throughput of four 
instructions per clock cycle. The same register can even be moved/renamed four times in 
one clock cycle. The instructions MOVDQA, MOVDQU, MOVAPS, MOVUPS, MOVAPD and MOVUPD 

are all identical when used with register operands. 
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256 bit register-to-register moves are different. The low half of the YMM register is renamed 
in the same way as with 128-bit register moves with zero latency, but the high half is moved 
by an execution unit with a latency of 2 clock cycles. In addition to this latency comes a 
possible transport delay in floating point code because the move is executed in the integer 
vector domain (see table 21.4). Example: 
 

; Example 21.3a. YMM move with transport delays on Bulldozer 

vaddps  ymm0, ymm0, ymm1   ; 6   clock 

vmovaps ymm2, ymm0         ; 2+2 clock 

vmulps  ymm2, ymm2, ymm3   ; 6   clock 

                           ; 16  clock total 

                                                      
Here, we can eliminate the move and save 5 clock cycles by taking advantage of the non-
destructive 3-operand instructions: 
 

; Example 21.3b. YMM move eliminated 

vaddps  ymm0, ymm0, ymm1   ; 6-1 clock 

vmulps  ymm2, ymm0, ymm3   ; 6   clock 

                           ; 11  clock total 

 
The x87 floating point instructions FINCSTP, FDECSTP and FFREE are also resolved by 

renaming without using any execution unit. The FXCH instruction is only partly resolved by 

renaming: It has zero latency, but uses an execution unit at pipe P0 or P1.  
 
All other register moves use execution units, including general purpose register moves. 
 

21.13 Partial register access 

The processor always keeps the different parts of an integer register together. For example, 
AL and AH are not treated as independent by the out-of-order execution mechanism. An 

instruction that writes to part of a register will therefore have a false dependence on any 
previous write to the same register or any part of it. 
 
An instruction that writes to a 32-bit register will not have any false dependence on the 
corresponding 64-bit register because the upper part of the 64-bit register is set to zero. 
 
A write to a part of an XMM register has a false dependence on the whole register, but this 
does not apply to the two halves of a YMM registers. A 256 bit YMM register is treated as 
two independent 128 bit XMM registers. However, this rarely has any practical 
consequences because the instructions VEXTRACTF128 and VINSERTF128 are treated by 

the sequencer as if they read/write both halves of the register. 
 
The processor treats certain parts of the arithmetic flags as independent. For example, an 
instruction that modifies only the carry flag has no false dependence on the zero flag. 
 

21.14 Dependency-breaking instructions 

A common way of setting a register to zero is  XOR EAX,EAX  or  SUB EBX,EBX.  The 

processor recognizes that certain instructions are independent of the prior value of the 
register if the two input registers are the same. The following instructions are recognized as 
independent of the input when both operands are the same register: 
XOR, SUB, SBB (depends on carry flag only), CMP, PXOR, PANDN, PSUBx, PCMPEQB, 

PCMPEQW, PCMPEQD, PCMPGTB, PCMPGTW, PCMPGTD, XORPS, XORPD, ANDNPS, ANDNPD. 

 
This does not work with 8-bit and 16-bit registers due to the treatment of partial registers, 
but it works with 32-bit registers and larger. 
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The instructions PCMPEQQ, PCMPGTQ are recognized as independent on Steamroller and 

Excavator, but not on Bulldozer and Piledriver.  
 
Floating point subtractions and compares are never recognized as independent because 
they have to treat special cases such as NAN and INF. 
 
The XOP instructions VPCOMB, VPCOMW, VPCOMD, VPCOMQ are recognized as independent 

of the input only when the immediate operand is 6 (set to 0) or 7 (set to all 1s). 
 
The zeroing instructions are using the same execution units as when the two operands are 
different. 
 

21.15 Branches and loops 

The branch prediction mechanism is described on page 35. There is no longer any 
restriction on the number of branches per 16 bytes of code that can be predicted efficiently. 
The misprediction penalty is quite high because of a long pipeline. 
 
The speed of small loops is most often limited by instruction fetching. On Bulldozer and 
Piledriver, a small loop takes at least 2 clock cycles per iteration if it contains no more than 
one taken jump and no 32-bytes boundary. Larger loops are limited by the instruction fetch 
rate or by the instructions they contain. 
 
Tiny loops with up to four instructions can execute in just 1 clock cycle per iteration on the 
Steamroller and Excavator. 
 

21.16 Cache and memory access 

 

Cache Bulldozer Piledriver Steamroller Excavator 

Level 1 
code 

64 kB, 2-way, 64 
B line size, shared 
between two 
cores. 

64 kB, 2-way, 64 
B line size, shared 
between two 
cores. 

96 kB, 3-way, 64 
B line size, shared 
between two 
cores. 

96 kB, 3-way, 64 
B line size, shared 
between two 
cores. 

Level 1 
data 

16 kB, 4-way, 64 
B line size, per 
core. Latency 3-4 
clocks. 

16 kB, 4-way, 64 
B line size, per 
core. Latency 3-4 
clocks. 

16 kB, 4-way, 64 
B line size, per 
core. Latency 3-4 
clocks. 

32 kB, 8-way, 64 
B line size, per 
core. Latency 3 
clocks. 

Level 2 1 - 2 MB, 16-way, 
64 B line size, 
shared between 
two cores. 
Latency 21 clocks. 
Read throughput 
1 per 4 clock. 
Write throughput 1 
per 12 clock. 

2 MB, 16-way, 64 
B line size, shared 
between two 
cores. Latency 20 
clocks. Read 
throughput 1 per 4 
clock. Write 
throughput 1 per 
12 clock. 

2 MB, 16-way, 64 
B line size, shared 
between two 
cores. Latency 19 
clocks. 
Read throughput 
1 per 4 clock. 
Write throughput 1 
per 6 clock. 

1 MB, 16-way, 64 
B line size, shared 
between two 
cores. Latency 17 
clocks. 
Read throughput 
1 per 4 clock. 
Write throughput 1 
per 6 clock. 

Level 3 0 - 8 MB, 64-way, 
64 B line size, 
shared between 
all cores. Latency 
87 clock. Read 
throughput 1 per 
15 clock. Write 
throughput 1 per 
21 clock. 

0 - 8 MB, 64-way, 
64 B line size, 
shared between 
all cores. Latency 
87 clock. Read 
throughput 1 per 
15 clock. Write 
throughput 1 per 
21 clock.  

None None 

Table 21.5. Cache sizes on AMD Bulldozer, Piledriver, Steamroller and Excavator 
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The data cache has two 128-bit ports which can be used for either read or write. This 
means that it can do two reads or one read and one write in the same clock cycle.  
 
The measured throughput is two reads or one read and one write per clock cycle when only 
one thread is active. We would not expect the throughput to be less when multiple threads 
are active because each core has separate load/store units and level-1 data cache. But my 
measurements indicate that level-1 cache throughput is several times lower when multiple 
threads are running, even if the threads are running in different units that do not share any 
level-1 or level-2 cache. This phenomenon is seen on both Bulldozer, Piledriver, Steamroller 
and Excavator. No explanation for this effect has been found. Level-2 cache throughput is 
shared between two threads running in the same unit, but not affected by threads running in 
different units. 
 
Unaligned reads and writes have a throughput of one read or write per clock cycle. The 
throughput is one read or write in 2 or 3 clock cycles when a cache line boundary is 
crossed, and one in 21 clock cycles when a memory page boundary is crossed. 
 
The processor can do a read before a pending write to a different address. 
 
The level-2 cache has a disappointingly poor performance on the Bulldozer in certain 
benchmark tests for unknown reasons. The Piledriver, Steamroller and Excavator has a 
much more efficient cache system. The Steamroller and Excavator appear to have more 
write buffers than the previous models. 
 
The level-1 data cache is organized as 16 or 32 banks of 16 bytes each. The data cache 
cannot do two memory operations in the same clock cycle if they use banks that are spaced 
by a multiple of 0x100 bytes, except for two reads from the same cache line. This kind of 
cache bank conflict occurs very often: 
 

; Example 21.4. Cache bank conflicts 

mov eax,[rsi]      ; Assume rsi is divisible by 100H 

mov ebx,[rsi+200h] ; Cache bank conflict. Delayed 1 clock 

 

mov eax,[rsi]      ; Assume rsi is divisible by 100H 

mov ebx,[rsi+210h] ; Different cache bank, no conflict 

 

mov eax,[rsi]      ; Assume rsi is divisible by 100H 

mov ebx,[rsi+10h]  ; Same cache line, no conflict 

 
There is a false dependence when the address of a memory read is spaced a multiple of 
0x1000 bytes from a preceding write: 
 

; Example 21.5. False memory dependence 

mov [rsi],eax 

mov ebx,[rsi+2000h] ; False dependence on previous write 

mov ecx,[rsi+2004h] ; No false dependence 

 

21.17 Store forwarding stalls 

There is a penalty of 25-26 clock cycles for reading from a memory position immediately 
after writing to the same position if the read is larger than the write, because the store-to-
load forwarding mechanism doesn't work in this case. Examples: 
 

; Example 21.6. AMD store forwarding 

mov     [esi],eax    ; Write 32 bits 

mov     bx,[esi]     ; Read 16 bits. No stall 

movq    mm0,[esi]    ; Read 64 bits. Stall 

movq    [esi],mm1    ; Write after read. No stall 
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On Bulldozer and Piledriver, there is a similar penalty if the read doesn't start at the same 
address as the write: 
 

; Example 21.7. Bulldozer and Piledriver store forwarding stall 

mov     [esi],eax    ; Write 32 bits 

mov     bl,[esi]     ; Read part of data from same address. No stall 

mov     cl,[esi+1]   ; Read part of data from different address. Stall 

 
On the Steamroller and Excavator, there is no penalty for reading part of the address written 
to: 
 

; Example 21.8. Steamroller store forwarding stall 

movdqa  [esi],xmm0   ; Write 128 bits 

mov     eax,[esi+8]  ; Read part of the data. No stall 

vmovaps [esi],ymm0   ; Write 256 bits as 2*128 bits 

vmovaps xmm1,[esi+8] ; Crossing between two 128 bit writes. Stall 

 

21.18 Bottlenecks in AMD Bulldozer, Piledriver, Steamroller and Excavator 

The AMD Bulldozer is a major redesign of previous microarchitectures. Some of the most 
important improvements are: 
 

• Four pipelines giving a maximum throughput of 4 instructions per clock cycle. 

• Improved floating point unit with high throughput 

• Better scheduling of macro-ops to the first vacant execution unit 

• Some register-to-register moves are translated into register renaming 

• Branch prediction is no longer tied to the code cache and there is no limitation on the 
number of branches per code cache line 

• AVX instruction set with non-destructive 3-operand instructions 

• Efficient fused multiply-and-add instructions 
 
The Piledriver, Steamroller and Excavator are similar, with some improvements. Various 
possible bottlenecks are discussed in the following paragraphs. 

Power saving 

The power saving features are reducing the clock frequency most of the time. This often 
gives inconsistent results in performance tests because the clock frequency is varying. It is 
sometimes necessary to turn off the power saving features or put a long sequence of CPU-
intensive code before the code under test in order to measure the maximum performance. 

Shared resources 

The instruction fetch is shared between the two cores that make a compute unit. The branch 
predictor and the floating point units are also shared. The instruction decoder is shared on 
the Bulldozer, Piledriver and Excavator, while the Steamroller has one decoder per thread. 
Some operating systems do not have enough information about resource sharing so that 
they may put two threads into the same compute unit while another compute unit is idle. 

Instruction fetch 

The shared instruction fetch unit can fetch up to approximately 20 bytes per clock in single-
threaded applications and 16 bytes per clock in multi-threaded applications. This is very 
likely to be a bottleneck when the average instruction length is more than 4 bytes or when 
frequent jumps produce bubbles in the pipeline. 

Instruction decoding 

On Bulldozer, Piledriver and Excavator, the shared decode unit can handle four instructions 
per clock cycle. It is alternating between the two threads so that each thread gets up to four 
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instructions every second clock cycle, or two instructions per clock cycle on average. This is 
a serious bottleneck because the rest of the pipeline can handle up to four instructions per 
clock. 
 
The situation gets even worse for instructions that generate more than one macro-op each. 
All instructions that generate more than two macro-ops are handled with microcode. The 
microcode sequencer blocks the decoders for several clock cycles so that the other thread 
is stalled in the meantime. 

Out-of-order scheduling 

On Bulldozer and Piledriver, the integer out-of-order scheduler has 40 entries, the shared 
floating point scheduler probably has somewhat more. This is a significant improvement 
over previous designs. The Steamroller and Excavator have more entries and physical 
registers, according to some rumors, but this has not been independently confirmed. 

Execution units 

The integer execution units are poorly distributed between the four pipes on Bulldozer and 
Piledriver. Two of the pipes have all the integer execution units while the other two pipes are 
used only for memory read instructions and address generation (not LEA). The Steamroller 

has two additional units for simple register moves, while the Excavator has four units for the 
most common integer ALU operations. This means that the Bulldozer and Piledriver can 
execute only two integer ALU instructions per clock cycle, where previous models can 
execute three. This is a likely bottleneck for pure integer code. The single-core throughput 
for integer code can actually be doubled by doing half of the instructions in vector registers, 
even if only one element of each vector is used. 
 
The floating point execution units are better distributed so that all three or four pipes can be 
used. The most commonly used units are all doubled, including floating point addition, 
multiplication and division, as well as integer addition and boolean operations. All units are 
128 bits wide. This gives a high throughput for 128-bit vector code which is likely sufficient 
to serve two threads simultaneously in many cases. All 256-bit vector instructions are split 
into two 128-bit operations so that there is generally no advantage in using 256-bit vectors. 
Bulldozer and Piledriver have four pipes for floating point and vector operations, while 
Steamroller and Excavator have only three. 
 
The fused multiply-and-add instructions are very efficient. They are doing one addition and 
one multiplication in the same time that it otherwise takes to do one addition or one 
multiplication. This effectively doubles the throughput of floating point code that has an 
equal number of additions and multiplications. The incompatibility of the Bulldozer's FMA4 
instructions with Intel's FMA3 instructions is actually not AMD's fault, as discussed on my 
blog. 

256-bit memory writes 

256-bit memory write operations are exceptionally slow on the Piledriver. So slow, indeed, 
that it is better to not use 256-bit registers at all on the Piledriver. This problem has been 
fixed in the Steamroller and Excavator. 

Mixed latencies 

Mixing operations with different latencies will cause less problems than on previous 
processors. 

Dependency chains 

Latencies for floating point instructions and integer vector instructions are relatively long. 
Long dependency chains should therefore be avoided. Accessing part of a register causes a 
false dependence on the rest of the register. 

http://www.agner.org/optimize/blog/read.php?i=25
http://www.agner.org/optimize/blog/read.php?i=25
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Jumps and branches 

Jumps and branches have a throughput of one taken branch every two clock cycles. The 
throughput is lower if there are 32-byte boundaries shortly after the jump targets. Branch 
prediction is reasonably good, even for indirect jumps. The branch misprediction penalty is 
quite high because of a long pipeline. 

Memory and cache access 

The level-2 cache has rather poor performance on the Bulldozer, while it is much better on 
the Piledriver, Steamroller and Excavator. Cache bank conflicts are very frequent and often 
impossible to avoid. Cache bank conflicts turned out to be a serious bottleneck in some of 
my tests. The code cache has only two or three ways which is quite low when we consider 
that it has to service two threads. 

Retirement 

There is no evidence that retirement can be a bottleneck. 
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22 AMD Zen 1-2 pipeline  

22.1 The pipeline in AMD Ryzen 

The Zen microarchitecture is a complete redesign of the AMD processor, and a quite 
successful one. The first generation with the Zen architecture is the Ryzen 1000 series. It 
has four or eight cores which can run two threads each. 
 
The second generation, Zen+ or Ryzen 2000, has not been tested here. 
 
The third generation, Zen 2 or Ryzen 3000, is an improvement of the previous generations. 
It has from 4 to 64 cores capable of running two threads each. 
 

22.2 Instruction fetch 

The instruction fetcher can fetch 32 aligned bytes of code per clock cycle from the level-1 
code cache, according to AMD documents, but the maximum measured throughput is only 
16 bytes per clock for a single thread. The bottleneck is probably an "instruction byte queue" 
between the fetch unit and the decoder. 
 
The maximum measured fetch rate for two threads per core is 12 bytes per clock per 
thread. This maximum is obtained when all instructions are 8 bytes long. The fetch rate is 
lower for other instruction sizes. 
 

http://www.realworldtech.com/page.cfm?ArticleID=RWT082610181333&p=1
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22.3 Instruction decoding 

Instruction boundaries are not marked in the code cache, unlike in previous AMD proces-
sors. The decoders can handle four instructions per clock cycle, including instructions that 
generate two µops each. The rest of the pipeline can handle five or six µops per clock cycle.  
 
The maximum throughput of six µops per clock cycle can be obtained only if half of the 
instructions generate two µops each. 
 
Instructions that generate more than two µops are using microcode. These instructions take 
at least two clock cycles to decode so that the throughput can be no higher than one 
complex instruction every two clock cycles. The number of µops generated by each 
instruction is listed in manual 4: "Instruction tables". 
 
There is no penalty for decoding instructions with many prefixes. This includes all kinds of 
prefixes. 
 

22.4 Instruction fusion 

A CMP or TEST instruction immediately followed by a conditional jump can be fused into a 

single µop. This applies to all versions of the CMP and TEST instructions and all conditional 

jumps, except if the CMP or TEST instruction has a rip-relative address or both a displace-

ment and an immediate operand. See example 21.1 page 221. No other ALU instruction 
can fuse with a conditional jump.  
 
The fused branch instructions can execute at a throughput of two such branches per clock 
cycle if they are not taken, or one branch per two clock cycles if taken. 
 

22.5 µop cache 

The processor has an extra cache for decoded instructions. The size is indicated as 2048 
µops for Zen 1 and 4096 µops for Zen 2, with a line size of 8 µops, but the effective size 
was measured to only slightly more than half or this number when running a single thread. 
The effective size is almost doubled when running two threads in the same core. The size of 
the µop cache is big enough for holding most critical loops. 
 
The measured throughput is 5 instructions per clock cycle for loops that fit into the µop 
cache when running a single thread. Double instructions can still be delivered from the µop 
cache at this throughput so that it is possible to execute µops at a throughput of 6 µops per 
clock, which is the limit of the µop queue. Double instructions probably use only one entry in 
the µop cache in Zen 1 if the two µops are similar. 
 

22.6 µop queue 

A queue of unknown size is placed before the register rename and scheduler. The queue 
receives decoded µops from either the µop cache or directly from the decoder. 
 

22.7 Stack engine 

The processor has an efficient stack engine that renames the stack pointer. It is placed after 
the µop queue. 
 
Push, pop and return instructions use only a single µop. These instructions have zero 
latency with respect to the stack pointer, so that subsequent instructions that depend on the 
stack pointer, either as operand or as pointer, are not delayed. No extra stack synchro-
nization µops of the type seen in Intel processors have been observed. 
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22.8 Register renaming and out-of-order schedulers 

The µops are separated into two units after the µop queue. An integer unit handling 
instructions on general purpose registers, and a floating point unit handling floating point 
and vector instructions. Each of these units has its own register file with register renaming, 
scheduling, and several execution units. 
 
The integer register file has 168 physical registers of 64 bits each for Zen 1 and 180 
registers for Zen 2. The floating point register file has 160 vector registers of 128 bits each 
in Zen 1 and 256 bits each in Zen 2. 
 
The schedulers can hold a total of 192 or 224 µops in flight for Zen 1 and Zen 2, 
respectively, according to AMD documentation. Eight µops can retire in one clock cycle. 
 

22.9 Integer execution pipes 

The integer unit has four ALUs so that it can execute four integer instructions per clock 
cycle. Simple integer instructions can be handled by any of these four ALUs, while some of 
the more costly operations such as multiplication and division can only be handled by one of 
the ALUs. 
 
The integer unit has two address generation units on Zen 1, and three on Zen 2. 
Instructions with a memory operand use an AGU in addition to the ALU. Read-modify and 
read-modify-write instructions are not split into multiple µops, but the same µop goes to both 
the ALU and the AGU.  
 
The Zen 1 can do two memory read operations or one read and one write operation, but not 
two write operations, in the same clock cycle. The Zen 2 can do two memory read and one 
write operation per clock cycle. 
 

22.10 Floating point execution pipes 

There are four floating point/vector execution pipes. Each of these pipes contain execution 
units for the following purposes: 
 

Operation P0 P1 P2 P3 

Integer addition x x  x 

Integer multiplication x    

Floating point addition   x x 

Floating point multiplication and FMA x x   

Floating point division and square root    x 

Boolean logic x x x x 

Shift  x x  

Pack, permute  x x  

Blend x x  x 

Encryption x x   

Conversion    x 

Memory write   x  

Table 22.1. Zen 1-2 floating point and vector execution pipes 

 
Simple integer vector instructions such as addition, shift, and boolean operations, have a 
latency of only one clock cycle, versus two clock cycles on previous AMD processors. 
Floating point addition has a latency of 3. Multiplication latency is 3 in Zen 2. Zen 1 has a 
multiplication latency of 3 for single precision and 4 for double precision. Fused multiply-
and-add (FMA) has a latency of 5 clocks.  
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The throughput is two vector additions and two multiplications per clock cycle. The FMA 
instructions use the same pipes as multiplication instructions and they also partially occupy 
the addition units. 
 
The execution units have 128 bit width on Zen 1 and 256 bits in Zen 2. This means that a 
typical 256-bit vector instruction generates two µops on Zen 1, but only one µop on Zen 2. 
Most instructions have two or more execution pipes to choose between, as table 22.1 
shows, so that most 256-bit instructions can execute with a throughput of at least one 
instruction per clock cycle on Zen 1. The Zen 2 doubles this throughput for 256-bit vectors.  
 
There is one store unit of 128 bits on Zen 1 and 256 bits on Zen 2. Therefore, the Zen 2 has 
a memory write throughput of one 256-bit vector per clock, while the Zen 1 has only half this 
throughput. 
 
The FMA4, XOP, TBM, and 3DNow instructions are no longer supported. The FMA4 
instructions actually work correctly on Zen 1 (but not on Zen 2) though they are not officially 
supported and not reported by the CPUID instruction. 

Subnormal operands 

Floating point operations that give a subnormal result may take a few clock cycles extra. 
The same is the case when a multiplication or division underflows to zero. This is far less 
than the high penalty on the Bulldozer and Piledriver. There is no penalty when flush-to-zero 
mode and denormals-are-zero mode are both on. 
 

22.11 AVX instructions 

256-bit vector instructions are implemented differently on Zen 1 and Zen 2: 
 
Zen 1: 256-bit AVX and AVX2 instructions are split into two µops that do 128 bits each. It is 
still more efficient to use 256-bit vector instructions than 128-bit instructions on Zen 1, due 
to efficient fetch and decoding.  
 
There is no penalty for mixing AVX and non-AVX vector instructions on the Zen 1 because 
256-bit registers are split into two 128-bit registers. 
 
Zen 2: The Zen 2 has full 256-bit execution units and data paths. This effectively doubles 
the throughput for 256-bit vector instructions on Zen 2 over Zen 1. 
 
The Zen 2 has penalties similar to the Intel Sandy Bridge processor when mixing 256-bit 
VEX instructions with 128-bit non-VEX code as explained on page 134. The transitions from 
modified to saved state, saved to modified state, or modified to clean state, take approxi-
mately 130 clock cycles each. It is important to obey the rules for using VZEROUPPER or 

VZEROALL to avoid these penalties. 

 

22.12 Data delay between different execution domains 

The execution units in the vector unit are divided into two domains, an integer vector 
domain and a floating point vector domain. There is an extra latency of one clock cycle 
when the output of a µop in the integer vector domain goes to the input of a µop in the 
floating point domain, or vice versa.  
 
For example, there is an extra delay of one clock cycle if the output of an ADDPS instruction 

goes to the input of a POR instruction. This delay can be avoided by replacing the POR 

instruction with the otherwise identical ORPS instruction. Most floating point instructions 

reside in the floating point domain, with the exception of shuffle instructions, etc. 
 
See manual 4: "Instruction tables" for information about the domain of each instruction. 



 235 

 

22.13 Instructions with no latency 

Register-to-register move instructions are resolved at the register rename stage without 
using any execution units. These instructions have zero latency. It is possible to do six such 
register renamings per clock cycle, and it is even possible to rename the same register 
several times in one clock cycle. 
 
The following instructions have zero latency when used with register operands: MOV, XCHG, 

FXCH, (V)MOVDQA, (V)MOVDQU, (V)MOVAPS, (V)MOVUPS, (V)MOVAPD, and (V)MOVUPD. 

 
This applies to 32-bit and 64-bit general purpose registers and 128-bit xmm registers. It also 
works for 256-bit ymm registers on Zen 2. The Zen 1 will rename only the lower half of a 
256-bit register, while the upper part uses an execution unit for the move. The zero latency 
move does not work with 8-bit and 16-bit partial registers and mmx registers.  
 
The processor always keeps the different parts of an integer register together. For example, 
AL and AH are not treated as independent by the out-of-order execution mechanism. An 

instruction that writes to part of a register will therefore have a false dependence on any 
previous write to the same register or any part of it. 
 
An instruction that writes to a 32-bit register will not have any false dependence on the 
corresponding 64-bit register because the upper part of the 64-bit register is set to zero. 
 
A write to a part of an XMM register has a false dependence on the whole register, but this 
does not apply to the two halves of a YMM register in the Zen 1. 
  
The processor treats certain parts of the arithmetic flags as independent. For example, an 
instruction that modifies only the carry flag has no false dependence on the zero flag. 
 

22.14 Dependency-breaking instructions 

A common way of setting a register to zero is  XOR EAX,EAX  or  SUB EBX,EBX.  The 

processor recognizes that certain instructions are independent of the prior value of the 
register if the two input registers are the same. The following instructions are recognized as 
independent of the input when both input operands are the same register: 
XOR, SUB, SBB (depends on carry flag only), CMP, PXOR, PANDN, PSUBx, PCMPEQx, 

PCMPGTx, XORPS, XORPD, ANDNPS, ANDNPD, but not ANDN. 

 
This does not work with 8-bit and 16-bit registers due to the treatment of partial registers, 
but it works with 32-bit and 64-bit general purpose registers, as well as vector registers of all 
sizes. 
 
Floating point subtractions and compares of a register with itself are never recognized as 
independent of the input because the result depends on whether the input is NAN. 
 

22.15 Branches and loops 

The branch prediction mechanism is described on page 35. There is no restriction on the 
number of branches per 16 bytes of code that can be predicted efficiently.  
 
Jumps generally have a throughput of one taken jump per two clock cycles. This includes 
direct jumps, indirect jumps, calls, returns, and taken branches. However, tiny loops with a 
maximum of five instructions and no 64-bytes boundary in the loop can execute in a single 
clock cycle per iteration. Fused compare and branch instructions count as one here. 
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Branches that are not taken have a throughput of two not taken branches per clock cycle. 
 

22.16 Cache and memory access 

 

Cache Zen 1 

µop 2k, 8 way, 32 sets, 8 µop line size, per core 

Level 1 code 64 kB, 4 way, 256 sets, 64 B line size, per core. Latency 4 clocks 

Level 1 data 32 kB, 8 way, 64 sets, 64 B line size, per core. Latency 4 clocks 

Level 2 512 kB, 8 way, 1024 sets, 64 B line size, per core. Latency 17 
clocks 

Level 3 16 MB, 16 way, 8192 sets, 64 B line size, one per 4 cores. Latency 
40 - 90 clocks 

Table 22.2. Cache sizes on AMD Zen 1 

 
 

Cache Zen 2 

µop 4k, 8 way, 32 sets, 8 µop line size. per core 

Level 1 code 32 kB, 8 way, 64 sets, 64 B line size, per core. 

Level 1 data 32 kB, 8 way, 64 sets, 64 B line size, per core. Latency 4 clocks 

Level 2 512 kB, 8 way, 1024 sets, 64 B line size, per core. Latency 12 clocks 

Level 3 4 - 32 MB, 16 - 24 way, 64 B line size, one per 4 cores. Latency 40 
clocks 

Table 22.3. Cache sizes on AMD Zen 2 

 
The data cache an Zen 1 has two 128-bit ports which can be used for either read or write. It 
can do two reads or one read and one write in the same clock cycle. The data bandwidth is 
256 bits (32 bytes) to all cache levels. There are 72 read buffers and 44 write buffers. 
 
The data cache an Zen 2 has two 256-bit read ports and one 256-bit write port. It can do 
two reads and one write in the same clock cycle. The data bandwidth is 256 bits (32 bytes) 
to all cache levels. There are 44 read buffers and 48 write buffers. 
 
There is a false dependence when the address of a memory read is spaced a multiple of 
0x1000 bytes from a preceding write. This effect is rarely seen on Zen 2, possibly because 
of an extra read port. 
 
Automatic hardware prefetching is more efficient than explicit software prefetching in most 
cases. 
 

22.17 Store forwarding 

Store forwarding of a write to a subsequent read works very well in all cases, including 
reads from a part of the written data. There is little or no penalty for unaligned reads and 
writes, except when crossing a memory page boundary. A read that has a partial overlap 
with a preceding write has a penalty of 6-7 clock cycles. 
 

22.18 Mirroring memory operands 

The Zen 2 can mirror memory operands inside the CPU so that memory operands have no 
latency at all in some cases. The following example illustrates this: 
 

; Example 22.1. Mirroring memory operand in Zen 2 

mov dword [rsi], eax 

add dword [rsi], 5 

mov ebx, dword [rsi] 
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This sequence of three instructions has a total latency of only two clock cycles on Zen 2 
versus 15 clock on Zen 1. This mechanism is currently not documented by AMD, but it 
works under the following conditions, according to my experiments: 
 

• The instructions must use general purpose registers. 

• The memory operands must have the same address. 

• The operand size must be 32 or 64 bits. 

• You may have a 32 bit read after a 64 bit write to the same address, but not vice 
versa. 

• The memory operand cannot have an absolute address or rip-relative address. 

• The address must have a base pointer. The memory address may have an index 
register, a scale factor, and an offset. 

• The offset must be in the range -128 to +127 to fit into an 8-bit signed integer. The 
offset must be divisible by 4 in 32 bit mode, and by 8 in 64 bit mode. The final 
address does not have to be aligned. 

• The memory operand must be specified in exactly the same way with the same 
unmodified pointer and index registers in all the instructions involved. For example, 
[rax+rbx] and [rbx+rax] are not recognized as the same address. 

• The instructions can be simple MOV instructions, read-modify instructions, or read-

modify-write instructions. It also works with PUSH and POP instructions. 

• Complex instructions with multiple µops cannot be used. 
 
The performance is down to normal if these conditions are not satisfied. For example, the 
code in example 22.1 takes 15 clock cycles when the operand size is changed to 8 or 16 
bits. While the latency of memory operations is improved by this mechanism, the throughput 
is still limited to one instruction per clock because there is only one memory write port. 
 
This mechanism is useful in situations where there are not enough registers to store all local 
variables. The mechanism is coupled with the stack engine so that it can trace addresses 
on the stack. This is useful when function parameters are transferred on the stack, as in this 
example: 
 

; Example 22.2. Tracing stack parameters in Zen 2 

push eax     ; push function parameter on stack 

call SomeFunction 

pop  ecx 

... 

 

SomeFunction: 

mov eax, [esp+4] ; read the parameter from the stack 

ret 

 

; This also works: 

sub  esp, 4 

mov  [esp], eax 

call SomeFunction 

add  esp, 4 

 
This feature is useful in 32-bit mode where function parameters are normally transferred on 
the stack. It is less useful in 64-bit mode where function parameters are mostly transferred 
in registers. The tracing of stack addresses works when the following conditions are 
satisfied: 
 

• Variables can be written and read with push and pop or with addresses relative to 
the stack pointer. 

• The system compensates for changes in the stack pointer by push, pop, call, and 
return instructions. 
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• The stack pointer is not modified by anything else than push, pop, call, and return 
between a write and a subsequent read from the same address. It does not work if 
you set up a stack frame by subtracting the frame size from the stack pointer. 

• The system does not work if you copy the stack pointer to a frame pointer (EBP or 
RBP) and use the frame pointer for addressing. 

• Addresses on the stack can be expressed as stack pointer plus an offset. The offset 
must be in the range -128 to +127 to fit into an 8-bit signed integer. 

 
You may read the stack parameters before setting up a stack frame, but it is rarely 
necessary to make special efforts to make this mechanism work in a big function with a 
stack frame because the time it takes to call the function and set up the stack frame may be 
sufficient to allow access to the parameters in the data cache anyway. 
 
The ability to mirror memory operands in the Zen 2 is an impressive feature, but it also has 
a downside. It tries to predict whether memory addresses are the same before the 
addresses have actually been calculated. Memory addresses are recognized as the same 
only under the conditions listed above. Addresses that are coded in different ways are 
assumed to be different. Pointer aliasing can cause serious problems if the code is writing to 
same address by two instructions that are falsely assumed to have different addresses, as 
this example illustrates: 
 

; Example 22.3. Memory operand with pointer aliasing in Zen 2 

mov rdi, rsi         ; copy pointer register 

mov [rsi], eax       ; store through first pointer 

mov [rdi], ebx       ; store through second pointer 

mov ecx, [rsi]       ; false forwarding from mov [rsi],eax 

 
The code in example 22.3 takes 20 clock cycles in my test. The CPU makes the false 
assumption that [rsi] and [rdi] are different addresses, and makes a bypass from mov 

[rsi],eax to mov ecx,[rsi]. After detecting that the assumption was wrong, it has to 

undo the operations and redo the right operations. The correction takes a long time because 
it is using microcode. To avoid this penalty, do not make multiple writes to the same 
address using different pointers or different addressing modes if there is a read from the 
same address shortly after. Read-modify-write instructions can have this penalty both on the 
read side and the write side. 
 
Another quirk is that the CPU ignores scale factors when checking whether addresses look 
the same. For example, it assumes that [rsi+rcx*2] and [rsi+rcx*4] are identical 

addresses. This causes a penalty if rcx is not zero. This situation is unlikely to occur in 

compiler-generated code, but it gives a hint about how the mechanism works. 
 
A description of how this mechanism works is given in a Wikichips article: 
 

"A temporary register is assigned to each store. When the store is later executed, 
the data is copied into this register as well as being sent to the store queue. Loads 
are compared to recorded stores. A load predicted to match a previous store is 
modified to speculatively read the data from the store's temporary register." 

 
The speculative loads are active as long as the store is in the store queue, which has 48 
entries in Zen 2. A store operation can stay in the store queue for a considerable number of 
clock cycles if it is executed speculatively due to preceding branch prediction or potential 
floating point traps. 
 
This feature for mirroring memory operands is probably quite expensive in terms of 
hardware resources. It is not implemented in the successor, Zen 3, but in Zen 4 and 5. 
 

https://en.wikichip.org/wiki/amd/microarchitectures/zen_2
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22.19 Simultaneous multithreading 

The processor can run two threads in each core. This makes sense because the throughput 
of each core is so high that it will rarely be fully utilized by a single thread.  
 
In general, each thread will get half of the resources when two threads are running in the 
same core. The queueing of µops is equally distributed between the two threads so that 
each thread gets half of the maximum throughput. The caches, branch predictors, execution 
units, and most other resources are shared competitively between the two threads. 
 
The CPU cores are organized into subunits of four cores each, called CPU complexes or 
core complex dies. Inter-thread communication is faster within the same core complex than 
between core complexes. 
 

22.20 Power saving and frequency boosting 

The Zen processor is aggressively saving power by clock gating execution units that are not 
in use. The clock frequency is varied automatically depending on the work load and the chip 
temperature. The clock frequency was often as low as 8% of the nominal frequency in my 
tests when disk access was the limiting factor. The clock frequency was increased to as 
much as 114% on Zen 1 and 120 % on Zen 2 after a very long sequence of CPU-intensive 
code in my tests. The maximum clock frequency cannot be maintained when all cores are 
active because of the increased temperature. 
 
It is difficult to get consistent performance measurements because the clock frequency is 
varying so dramatically. It helps to warm up the processor with a long sequence of dummy 
calculations, but the clock counts are still somewhat inaccurate. The Time Stamp Counter 
(TSC), which is used for measuring the execution time of small pieces of code, is counting 
at the nominal frequency. The processor has another counter called Actual Performance 
Frequency Clock Counter (APERF) which is similar to the Core Clock Counter in Intel 
processors. Unfortunately, the APERF counter can only be read in kernel mode, unlike the 
TSC which is accessible to the test program running in user mode. The present report is 
based on clock counts calculated in the following way: The TSC and APERF counters are 
both read in a device driver immediately before and after a run of the test sequence. The 
ratio between the TSC count and the APERF count obtained in this way is then used as a 
correction factor which is applied to all TSC counts obtained during the running of the test 
sequence. This method is awkward, but the results appear to be quite precise, except in the 
cases where the frequency is varying considerably during the test sequence. The clock 
counts listed in manual 4: "Instruction tables" were obtained in the same way. The test 
program used for this is available at www.agner.org/optimize/#testp. 
 

 

22.21 Bottlenecks in AMD Zen 

The maximum throughput of each core in the Zen microarchitecture is higher than on any 
previous AMD or Intel x86 processor when measured as µops per clock cycle, while the 
clock frequency is around 4 GHz.  
 
Code that does not fit into the µop cache can have a throughput of four instructions or 
approximately 16 bytes of code per clock cycle, whichever is smaller. 
 
Loops that fit into the µop cache can have a throughput of five instructions per clock cycle. 
 
The throughput can be up to 6 µops per clock cycle if some instructions generate two µops 
each. 
 
The execution units have a maximum throughput of four general purpose register µops and 
four vector µops per clock. It is impossible to keep all execution units busy for any period of 

http://www.agner.org/optimize/#testp
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time because this would imply a total throughput of 8 µops per clock. Most instructions are 
supported by two, three, or four execution units so that it is possible to execute multiple 
instructions of the same kind simultaneously. This means that execution unit throughput is 
rarely a bottleneck.  
 
Execution unit latency is a potential bottleneck in code with long dependency chains, but the 
latencies are generally low. The latency of floating point vector addition or multiplication is 3 
clock cycles (4 for double precision multiplication on Zen 1). Integer vector addition has a 
latency of 1 clock cycle. 
 
The maximum throughput of 6 µops per clock may be obtained with 256-bit vectors on Zen 
1 where each 256-bit vector instruction generates two µops. The same code on Zen 2 will 
generate fewer µops because there are few 2-µop instructions on Zen 2. In other words, the 
Zen 2 has larger execution units than Zen 1, but they are less likely to be utilized to their 
maximum possible throughput. We may speculate that a future model with AVX512 support 
may split each 512-bit vector instruction into two 256-bit µops so that the 6 µop throughput 
again becomes useful. 
 
The limiting fetch rate of up to 16 bytes per clock is a very likely bottleneck for CPU-
intensive code with large loops. Short loops that fit into the µop cache are limited to 5 
instructions per clock. This is still a more likely bottleneck than execution unit throughput.  
 
The utilization of the execution units can hardly be increased by running two threads in each 
execution unit because the decode and fetch resources are shared between the two threads 
so that each thread gets half the throughput on average. Inter-thread communication should 
be kept within the same 4-core core complex if possible. It may be useful to turn off 
simultaneous multithreading in the Zen processor if running CPU-intensive code or if the 
processor has more cores than the software can utilize. 
 
The very high throughput of the Zen core places an extra burden on the programmer and 
the compiler if you want optimal performance. Obviously, you cannot execute two instruc-
tions simultaneously if the second instruction depends on the output of the first one. It is 
important to avoid long dependency chains if you want to even get close to the maximum 
throughput of five instructions or six µops per clock cycle. 
 
The caches are fairly big with a high throughput. This is a significant advantage because 
cache and memory access is the most likely bottleneck in data intensive code. 
 
The Zen 2 has a new advanced feature that has never been seen before: the ability to 
mirror a memory operand inside the CPU as explained on page 236. This can speed up 
execution when a general purpose register is stored to a memory operand and read back 
shortly after. This is most useful in 32-bit code where there are only 7 general purpose 
registers available. Some local variables may be stored in memory if there are not enough 
registers. These memory variables may be almost as efficient as register variables on the 
Zen 2 if they are accessed through the same pointer all the time. This may be a stack 
pointer, frame pointer, structure pointer, or 'this' pointer. Function parameters are mostly 
stored on the stack in 32-bit mode. These parameters can be read back into registers in the 
called function with zero latency in small functions without a stack frame. The feature gives 
less advantage in 64-bit mode because there are 15 available general purpose registers so 
that there is less need for short-term storage in memory operands. Function parameters are 
mostly transferred in registers rather than on the stack in 64-bit mode so that they can be 
accessed without delay without the need for the new feature. 
 
The conclusion for the Zen 1 and Zen 2 microarchitecture is that this is a quite efficient 
design with big caches, a big µop cache, and large execution units with a high throughput 
and low latencies. This is a good choice of microprocessor, except when running software 
that is utilizing the AVX512 instruction set. 
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23 AMD Zen 3 pipeline  

23.1 The pipeline in AMD Zen 3 

The Zen 3 microarchitecture is an extension of Zen 1 and Zen 2 with more execution units, 
higher throughput and improved caches.  
 
The Zen 3 or Ryzen 5000 has from 4 to 16 cores capable of running two threads each. 
 

23.2 Instruction fetch 

The instruction fetch rate is measured to 16 bytes per clock for a single thread and also 16 
bytes per clock per thread when running two threads in the same core. 
 

23.3 Instruction decoding 

Instruction boundaries are not marked in the code cache. The decoders can handle four 
instructions per clock cycle. The rest of the pipeline can handle six µops per clock cycle.  
 
The number of µops generated by each instruction is listed in manual 4: "Instruction tables". 
Most instructions generate one µop only. The information in the AMD optimization guide that 
instructions with complex addressing modes generate two µops cannot be confirmed, and 
no degradation in throughput for such instructions has been measured.  
 
There is no penalty for decoding instructions with many prefixes. This includes all kinds of 
prefixes. 
 

23.4 Instruction fusion 

An arithmetic or logic instruction immediately followed by a conditional jump can be fused 
into a single µop. This applies to CMP, TEST, ADD, SUB, AND, OR, XOR, INC, DEC and 
all conditional jumps, except if the arithmetic or logic instruction has a rip-relative address or 
both an address displacement and an immediate operand.  
 
The fused branch instructions can execute at a throughput of two such branches per clock 
cycle if they are not taken, or one branch per clock cycle if taken. 
 

23.5 µop cache 

The processor has an extra cache for decoded instructions. The size is 4096 µops. The µop 
cache can deliver up to 8 µops per clock cycle, but the throughput is limited to 6 µops per 

https://en.wikichip.org/wiki/amd/microarchitectures/zen_2
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clock in the subsequent dispatcher. The size of the µop cache is big enough for holding 
most critical loops. 
 
The µop cache is shared between threads when two threads are running in the same core.  
If two threads are running the same code in the same core, they can both use the same 
entries in the µop cache, but they only get a throughput of 3 µops per clock each. 
 

23.6 µop queue 

A queue of unknown size is placed before the register rename and scheduler. The queue 
receives decoded µops from either the µop cache or directly from the decoder. 
 

23.7 Stack engine 

The processor has an efficient stack engine that renames the stack pointer. It is placed after 
the µop queue. 
 
Push and pop instructions use only a single µop. These instructions have zero latency with 
respect to the stack pointer, so that subsequent instructions that depend on the stack 
pointer, either as operand or as pointer, are not delayed. 
 

23.8 Register renaming and out-of-order schedulers 

The µops are separated into two units after the µop queue. An integer unit handling 
instructions on general purpose registers, and a floating point unit handling floating point 
and vector instructions. Each of these units has its own register file with register renaming, 
scheduling, and several execution units. 
 
The integer register file has 192 physical registers of 64 bits each. The floating point register 
file has probably 160 vector registers of 256 bits each. 
 
The schedulers include a reorder buffer of 256 µops, according to AMD documentation. 
Eight integer µops and six floating point/vector µops can be scheduled per clock cycle. 
 

23.9 Integer execution pipes 

The integer unit has four ALUs, two branch units, and three address generation units.  
Simple integer instructions can be handled by any of the four ALUs, while some of the more 
costly operations such as multiplication and division can only be handled by one of the 
ALUs. 
 
It is possible to execute six integer instructions per clock cycle on average as long as they 
are different types. 
 
Instructions with a memory operand use an AGU in addition to the ALU. Read-modify and 
read-modify-write instructions are not split into multiple µops, but the same µop goes to both 
the ALU and the AGU.  
 
The Zen 3 can do three memory operations per clock cycle, with at most two memory 
writes, i.e. three reads, or two reads and one write, or one read and two writes. This 
includes instructions with complex addressing modes. 
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23.10 Floating point execution pipes 

There are six floating point/vector execution pipes, including two multiply/add pipes and two 
further add pipes. It is possible to execute six vector instructions per clock cycle, for 
example two additions, two multiplications, and two memory operations. 
 
Simple integer vector instructions such as addition, shift, and boolean operations have a 
latency of only one clock cycle. Floating point addition has a latency of 3. Integer or floating 
point multiplication latency is 3. Fused multiply-and-add (FMA) has a latency of 4 clocks.  
The throughput is two floating point vector additions and two multiplications or FMA 
instructions per clock cycle. Simple integer vector instructions have a throughput of four 
instructions per clock cycle. 
 
There are two address generation units in the floating point/vector pipelines. These are 
capable of two vector reads or one vector read and one vector write per clock cycle. It is not 
possible to do an integer write and a vector write in the same clock cycle, and it is not 
possible to do more than three memory operations per clock cycle by mixing integer and 
vector instructions. 
 
The FMA4, XOP, TBM, and 3DNow instructions are no longer supported.  
 
Subnormal operands 
Floating point operations that give a subnormal result may take a few clock cycles extra. 
The same is the case when a multiplication or division underflows to zero. This is far less 
than the high penalty on the Bulldozer and Piledriver. There is no penalty when flush-to-zero 
mode and denormals-are-zero mode are both on. 
 

23.11 AVX instructions 

The Zen 3 has full 256-bit execution units and data paths so that 256-bit vector instructions 
are not slower than 128-bit instructions. 
 
The Zen 3 has penalties similar to the Intel Sandy Bridge processor when mixing 256-bit 
VEX instructions with 128-bit non-VEX code as explained on page 134. The transitions from 
modified to saved state, saved to modified state, or modified to clean state, take approxi-
mately 130 clock cycles each. It is important to obey the rules for using VZEROUPPER or 
VZEROALL to avoid these penalties. 
 

23.12 Data delay between different execution domains 

The execution units in the vector unit are divided into two domains, an integer vector 
domain and a floating point vector domain. There is an extra latency of one clock cycle 
when the output of a µop in the integer vector domain goes to the input of a µop in the 
floating point domain, or vice versa.  
 
For example, there is an extra delay of one clock cycle if the output of an ADDPS instruction 
goes to the input of a POR instruction. This delay can be avoided by replacing the POR 
instruction with the otherwise identical ORPS instruction. Most floating point instructions 
reside in the floating point domain, with the exception of shuffle instructions, etc. 
 
See manual 4: "Instruction tables" for information about the domain of each instruction. 
 

23.13 Instructions with no latency 

Register-to-register move instructions are resolved at the register rename stage without 
using any execution units. These instructions have zero latency. It is possible to do six such 
register renamings per clock cycle, and it is even possible to rename the same register 
multiple times in one clock cycle. 
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The following instructions have zero latency when used with register operands: MOV, 
XCHG, FXCH, (V)MOVDQA, (V)MOVDQU, (V)MOVAPS, (V)MOVUPS, (V)MOVAPD, and 
(V)MOVUPD. 
 
This applies to 32-bit and 64-bit general purpose registers, 128-bit xmm registers, and 256-
bit ymm registers, but not to 64-bit mmx registers. 
 
The processor always keeps the different parts of an integer register together. For example, 
AL and AH are not treated as independent by the out-of-order execution mechanism. An 
instruction that writes to part of a register will therefore have a false dependence on any 
previous write to the same register or any part of it. 
 
An instruction that writes to a 32-bit register will not have any false dependence on the 
corresponding 64-bit register because the upper part of the 64-bit register is set to zero. 
 
A write to a part of a vector register has a false dependence on the whole register. 
  
The processor treats certain parts of the arithmetic flags as independent. For example, an 
instruction that modifies only the carry flag has no false dependence on the zero flag. 
 

23.14 Dependency-breaking instructions 

A common way of setting a register to zero is  XOR EAX,EAX  or  SUB EBX,EBX.  The 
processor recognizes that certain instructions are independent of the prior value of the 
register if the two input registers are the same. The following instructions are recognized as 
independent of the input when both input operands are the same register: 
XOR, SUB, SBB (depends on carry flag only), CMP, PXOR, PANDN, PSUBx, PCMPEQx, 
PCMPGTx, XORPS, XORPD, ANDNPS, ANDNPD, but not ANDN. 
 
This does not work with 8-bit and 16-bit registers due to the treatment of partial registers, 
but it works with 32-bit and 64-bit general purpose registers, as well as vector registers of all 
sizes. 
 
Floating point subtractions and compares of a register with itself are never recognized as 
independent of the input because the result depends on whether the input is NAN. 
 

23.15 Branches and loops 

The behavior of jumps and branches in Zen 3 is different from the previous Zen designs. 
The throughput for jumps and taken branches is now one taken jump per clock where 
previous AMD processors had one taken jump per two clocks in most cases. The 
throughput for predicted not taken branches is two not taken branches per clock cycle. The 
throughput for calls and returns is one call or return per two clocks. 
 
The performance is inferior if there is more than two jump instructions or taken branches in 
an aligned 16 bytes block of code. This is similar to the old K10 and earlier AMD 
processors. The average throughput is measured to 3 clocks per jump if there are three 
jumps or taken branches in an aligned 16-bytes block of code. The delay per jump is 
increased to 4 clocks per jump if there are 4 - 6 jumps in 16 bytes of code, and 10 - 12 
clocks in case of the maximum density of one jump per 2 bytes of code. These numbers are 
approximately the same for unconditional jumps and taken conditional jumps. 
 
Branch prediction is quite good. Long and complicated repetitive patterns can be predicted 
after a certain learning period. Loops with a count of up to 64 can be fully predicted. Indirect 
jumps can be predicted. 
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The branch prediction mechanism is described on page 35. 
 

23.16 Cache and memory access 

 

Cache Zen 3 

µop 4k, 8 way, 64 sets, 8 µop line size, per core 

Level 1 code 32 kB, 8 way, 64 sets, 64 B line size, per core. Latency 4 clocks 

Level 1 data 32 kB, 8 way, 64 sets, 64 B line size, per core. Latency 4 clocks 

Level 2 512 kB, 8 way, 1024 sets, 64 B line size, per core. Latency 14 clocks 

Level 3 8 - 32 MB, 16 way, 32k sets, 64 B line size, one per 8 cores. Latency 
47 clocks 

Table 23.1. Cache sizes on AMD Zen 3 

 
There is a false dependence when the address of a memory read is spaced a multiple of 
0x1000 bytes from a preceding write. 
 
Automatic hardware prefetching is more efficient than explicit software prefetching in most 
cases. 
 
Instructions with complex addressing modes have a latency that is one clock cycle longer. 
 

23.17 Store forwarding 

Store forwarding of a write to a subsequent read works very well in all cases, including 
reads from a part of the written data. There is little or no penalty for unaligned reads and 
writes, except when crossing a memory page boundary. A read that has a partial overlap 
with a preceding write has a penalty of approximately 10 clock cycles. 
 

23.18 Simultaneous multithreading 

The processor can run two threads in each core. This makes sense because the throughput 
of each core is so high that it will rarely be fully utilized by a single thread.  
 
In general, each thread will get half of the resources when two threads are running in the 
same core. The queueing of µops is equally distributed between the two threads so that 
each thread gets half of the maximum throughput. The caches, branch predictors, execution 
units, and most other resources are shared competitively between the two threads. 
Simultaneous multithreading is not advantageous if a shared resource is a bottleneck that 
limits performance, for example instruction decoding or cache. 
 
The CPU cores are organized into subunits of eight cores each, called core complex dies. 
Inter-thread communication is faster within the same core complex than between core 
complexes. 
 

23.19 Power saving and frequency boosting 

The Zen processor is aggressively saving power by clock gating execution units that are not 
in use. The clock frequency is varied automatically depending on the work load and the chip 
temperature. The maximum clock frequency is close to 5 GHz. 
 
It is difficult to get consistent performance measurements because the clock frequency is 
varying so dramatically, as explained on page 239. 
 



 246 

23.20 Bottlenecks in AMD Zen 3 

The maximum throughput of each core in the Zen 3 microarchitecture is higher than on any 
previous AMD or Intel x86 processor when measured as µops per clock cycle, while the 
clock frequency is around 4 - 5 GHz.  
 
Code that does not fit into the µop cache can have a maximum throughput of four 
instructions or 16 bytes of code per clock cycle, whichever is smaller. 
 
Loops that fit into the µop cache can have a throughput of six instructions per clock cycle. A 
fused arithmetic and branch instruction counts as one. 
 
The execution units have a maximum average throughput of six general purpose register 
µops or six vector µops per clock or any mixture of these. It is impossible to keep all 
execution units busy for any period of time because this would exceed the maximum total 
average throughput. Most common instructions are supported by two, three, or four 
execution units so that it is possible to execute multiple instructions of the same kind 
simultaneously. This means that execution unit throughput is rarely a bottleneck.  
 
Execution unit latency is a potential bottleneck in code with long dependency chains, but the 
latencies are generally low. The latency of floating point vector addition or multiplication is 3 
clock cycles. Integer vector addition has a latency of 1 clock cycle. 
 
The limiting fetch rate of up to 16 bytes per clock is a very likely bottleneck for CPU-
intensive code with large loops. Smaller loops that fit into the µop cache can execute up to 
six instructions per clock.  
 
The utilization of the execution units can hardly be increased by running two threads in each 
execution unit if instruction fetch and decoding is a bottleneck because these resources are 
shared between the two threads so that each thread gets half the throughput on average.  
 
Inter-thread communication should be kept within the same 8-core core complex if possible. 
It may be useful to turn off simultaneous multithreading in the processor if running CPU-
intensive code or if the processor has more cores than the software can utilize. 
 
The very high throughput of the Zen 3 core places an extra burden on the programmer and 
the compiler if you want optimal performance. Obviously, you cannot execute two instruc-
tions simultaneously if the second instruction depends on the output of the first one. It is 
important to avoid long dependency chains if you want to even get close to the maximum 
throughput of six instructions per clock cycle. 
 
The caches are fairly big with a high throughput. This is a significant advantage because 
cache and memory access is the most likely bottleneck in data intensive code. 
 
The advanced feature of mirroring memory operands inside the CPU that we saw in the Zen 
2 (page 236) is no longer implemented in the Zen 3. This feature was probably very 
expensive in terms of hardware complexity and temporary registers. The feature was mostly 
useful in 32-bit mode where memory operands are more common. It is less valuable in 64-
bit mode where temporary variables and function parameters are mostly stored in registers. 
Therefore, it makes sense to prioritize the hardware budget for other improvements instead. 
 
The conclusion for the Zen microarchitecture is that this is a quite efficient design with big 
caches, a big µop cache, and large execution units with a very high throughput and low 
latencies. This may be the most efficient microprocessor of its time, except when running 
software that can utilize the AVX512 instruction set, which is not supported in this AMD 
processor. 
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24 AMD Zen 4 pipeline  

24.1 The pipeline in AMD Zen 4 

The Zen 4 microarchitecture is an extension of Zen 3 with various improvements. It is 
produced with a 5 nm process which enables it to run at clock frequencies from 4.5 to 5.7 
GHz. The Zen 4 or Ryzen 7000 has from 6 to 16 cores capable of running two threads 
each.  
 
The Zen 4 is the first AMD processor to support the AVX512 instruction set. The following 
extensions are also supported: AVX512F, BW, DQ, VL, CD, VBMI, VBMI2, IFMA, VNNI, 
BITALG, POPCNTDQ, BF16, GFNI. 

24.2 Instruction fetch 

The instruction fetch rate is measured to 16 bytes per clock for a single thread and 8 - 10 
bytes per clock per thread when running two threads in the same core. 
 

24.3 Instruction decoding 

Instruction boundaries are not marked in the code cache. The decoders can handle four 
instructions per clock cycle.  
 
The number of µops generated by each instruction is listed in manual 4: "Instruction tables". 
Most instructions generate one µop only.  
 
There is no penalty for decoding instructions with many prefixes. This includes all kinds of 
prefixes. 
 

24.4 Instruction fusion 

An arithmetic or logic instruction immediately followed by a conditional jump can be fused 
into a single µop. This applies to CMP, TEST, ADD, SUB, AND, OR, XOR, INC, DEC and 
all conditional jumps, except if the arithmetic or logic instruction has a memory operand with 
a rip-relative address or both an address displacement and an immediate operand.  
 
The fused branch instructions can execute at a throughput of two such branches per clock 
cycle if they are predicted not taken, or one branch per clock cycle if taken. 
 
A NOP can fuse with a preceding instruction so that it consumes no resources in the rest of 
the pipeline. The preceding instruction must be an instruction that uses general purpose 
registers and produces no more than 1 µop. A NOP can also fuse with a preceding NOP. A 
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long sequence of NOPs will fuse together into pairs and generate 1 µop for every two 
NOPs. The throughput of a sequence of NOPs is 6 µops corresponding to 12 NOPs per 
clock cycle. This includes long NOPs. 
 

24.5 µop cache 

The processor has an extra cache for decoded instructions. The size is 6912 µops. The µop 
cache can deliver up to 9 µops per clock cycle, but the throughput is limited to 6 µops per 
clock in the subsequent pipeline. The size of the µop cache is big enough for holding most 
critical loops. 
 
The µop cache is shared between threads when two threads are running in the same core.  
If two threads are running the same code in the same core, they can both use the same 
entries in the µop cache, but they only get a throughput of 3 µops per clock each. 
 

24.6 µop queue 

A queue of unknown size is placed before the register rename and scheduler. The queue 
receives decoded µops from either the µop cache or directly from the decoder. 
 

24.7 Stack engine 

The processor has an efficient stack engine that renames the stack pointer. It is placed after 
the µop queue. 
 
Push and pop instructions use only a single µop. These instructions have zero latency with 
respect to the stack pointer, so that subsequent instructions that depend on the stack 
pointer, either as operand or as pointer, are not delayed. 
 
The return stack buffer has 32 entries. 
 

24.8 Register renaming and out-of-order schedulers 

The µops are separated into two units after the µop queue. An integer unit handling 
instructions on general purpose registers, and a floating point unit handling floating point 
and vector instructions. Each of these units has its own register file with register renaming, 
scheduling, and several execution units. 
 
The integer register file has 224 physical registers of 64 bits each. The floating point register 
file has 192 vector registers of probably 256 bits each. 
 
The schedulers include a reorder buffer of 320 µops. Eight integer µops and six floating 
point/vector µops can be scheduled in the same clock cycle. 
 

24.9 Integer execution pipes 

The integer unit has four ALUs, two branch units, and three address generation units.  
Simple integer instructions can be handled by any of the four ALUs, while some of the more 
costly operations such as multiplication and division can only be handled by one of the 
ALUs. 
 
It is possible to execute six integer instructions per clock cycle on average as long as they 
are different types. 
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Instructions with a memory operand use an AGU in addition to the ALU. Read-modify and 
read-modify-write instructions are not split into multiple µops, but the same µop goes to both 
the ALU and the AGU.  
 
The Zen 4 can do up to three memory operations per clock cycle with the following limits. 
The maximum read throughput is three memory reads of general purpose registers up to 64 
bits, or two vector reads of up to 256 bits each, or one read of 512 bits. The write throughput 
is two writes of general purpose up to 64 bits, or one vector write of up to 256 bits per clock 
cycle. 512-bit writes have a throughput of one write per two clock cycles. The maximum 
throughput of mixed read and write operations is two reads and one write of 256 bits each 
per clock cycle. This includes instructions with complex addressing modes. 
 

24.10 Floating point execution pipes 

There are six floating point/vector execution pipes: two multiply pipes, two add pipes, and 
two memory read/write pipes. The multiply pipes can also handle simple integer 
instructions. It is possible to execute six vector instructions per clock cycle, for example two 
additions, two multiplications, and two memory operations. Each pipe can handle 256 bits.  
 
512-bit vector instructions are executed with a single µop using two 256-bit pipes 
simultaneously.  
 
The throughput for vector instructions of 256 bits or less is two floating point vector additions 
and two multiplications or FMA (fused multiply-and-add) instructions per clock cycle. Simple 
integer vector instructions have a throughput of four instructions per clock cycle. The 
throughput for 512-bit vector instructions is half of this, i.e. one multiplication or FMA and 
one floating point addition per clock cycle, or two integer additions per clock cycle. 
 
Simple integer vector instructions such as addition, shift, and boolean operations have a 
latency of one clock cycle. Floating point addition has a latency of 3. Integer or floating point 
multiplication latency is 3. Fused multiply-and-add (FMA) has a latency of 4 clocks.  
 
There are two address generation and read/write units in the floating point/vector pipelines. 
These are capable of two 256-bit vector reads or one vector read and one vector write per 
clock cycle. The throughput for 512-bit vectors is half of this: one 512-bit read per clock 
cycle and one 512-bit write per two clock cycles. 
 
It is not possible to do an integer write and a vector write in the same clock cycle, and it is 
not possible to do more than three memory operations per clock cycle by mixing integer and 
vector instructions. 
 
The AVX512 vector compare instructions are storing the result in a mask register. These 
compare instructions have latencies of 3, 4, and 5 clock cycles for 128, 256, and 512 bit 
vectors, respectively. The legacy SSE and AVX2 compare instructions have lower latencies 
of 1 clock for integer compare and 2 clock for floating point compare. 
 
AMD’s FMA4, XOP, TBM, and 3DNow instructions are no longer supported.  
 
Subnormal operands 
Floating point operations that give a subnormal result may take a few clock cycles extra. 
The same is the case when a multiplication or division underflows to zero. This is far less 
than the high penalty on the Bulldozer and Piledriver. There is no penalty when flush-to-zero 
mode and denormals-are-zero mode are both on. 
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24.11 AVX instructions 

The Zen 4 has little or no transition penalty when mixing VEX and non-VEX code, unlike 
previous AMD processors (see page 134). Instead, non-VEX vector instructions have a 
false dependence on the upper part of a vector register if it is not in the clean state. This is 
similar to the Intel Ice Lake (see page 167).  
 
It is recommended to obey the rules for using VZEROUPPER or VZEROALL to assure 
optimal execution. 
 

24.12 Data delay between different execution domains 

Unlike previous processors, the Zen 4 has no extra delay when the output of a µop in the 
integer vector domain goes to the input of a µop in the floating point domain, or vice versa.  
 

24.13 Instructions with no latency 

Register-to-register move instructions are resolved at the register rename stage without 
using any execution units. These instructions have zero latency. It is possible to do six such 
register renamings per clock cycle, and it is even possible to rename the same register 
multiple times in one clock cycle. 
 
The following instructions have zero latency when used with register operands: MOV, 
XCHG, FXCH, (V)MOVDQA, (V)MOVDQU, (V)MOVAPS, (V)MOVUPS, (V)MOVAPD, 
(V)MOVUPD, and the AVX512 versions VMOVDQA32/64 etc. 
 
This applies to 32-bit and 64-bit general purpose registers, 128-bit xmm registers, 256-bit 
ymm registers, and 512-bit zmm registers. It does not apply to 64-bit mmx registers and to 
8-bit and 16-bit registers. 
 
The processor always keeps the different parts of an integer register together. For example, 
AL and AH are not treated as independent by the out-of-order execution mechanism. An 
instruction that writes to part of a register will therefore have a false dependence on any 
previous write to the same register or any part of it. 
 
An instruction that writes to a 32-bit register will not have a false dependence on the 
corresponding 64-bit register because the upper part of the 64-bit register is set to zero. 
 
A write to a part of a vector register has a false dependence on the whole register. 
  
The processor treats certain parts of the arithmetic flags as independent. For example, an 
instruction that modifies only the carry flag has no false dependence on the zero flag. 
 

24.14 Dependency-breaking instructions 

A common way of setting a register to zero is  XOR EAX,EAX  or  SUB EBX,EBX.  The 
processor recognizes that certain instructions are independent of the prior value of the 
register if the two input registers are the same. The following instructions are recognized as 
independent of the input when both input operands are the same register: 
XOR, SUB, SBB (depends on carry flag only), CMP, PXOR, PANDN, PSUBx, PCMPEQx, 
PCMPGTx, XORPS, XORPD, ANDNPS, ANDNPD, but not ANDN. 
 
This does not work with 8-bit and 16-bit registers due to the treatment of partial registers, 
but it works with 32-bit and 64-bit general purpose registers, as well as mask registers and 
vector registers of all sizes. 
 
Floating point subtractions and compares of a register with itself are never recognized as 
independent of the input because the result depends on whether the input is NAN. 
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24.15 Branches and loops 

The throughput for jumps and taken branches is one taken jump per clock. The throughput 
for predicted not taken branches is two not taken branches per clock cycle. The throughput 
for calls and returns is one call or return per two clocks. 
 
The performance is inferior if there are more than three jump instructions or taken branches 
in an aligned 16 bytes block of code. The average throughput is approximately 2 clocks per 
jump if there are more than three jumps or taken branches in an aligned 16-bytes block of 
code. This is somewhat better than previous AMD processors. 
 
Branch prediction is quite good. Long and complicated repetitive patterns can be predicted 
after a certain learning period. Loops with a count of up to 64 can be fully predicted. Indirect 
jumps can be predicted. 
 
The branch prediction mechanism is described on page 35. 
 

24.16 Cache and memory access 

 

Cache Zen 4 

µop 6912 µops, 9 µop line size?, per core 

Level 1 code 32 kB, 8 way, 64 sets, 64 B line size, per core. Latency 4 clocks 

Level 1 data 32 kB, 8 way, 64 sets, 64 B line size, per core. Latency 4 clocks 

Level 2 1 MB, 8 way, 64 B line size, per core. Latency 14 clocks 

Level 3 32 - 64 MB, 24 way, 64 B line size, one per 8 cores. Latency 47 
clocks 

Table 24.1. Cache sizes on AMD Zen 4 

 
There is a false dependence when the address of a memory read is spaced a multiple of 
1024 bytes from a preceding write. 
 
Automatic hardware prefetching is more efficient than explicit software prefetching in most 
cases. 
 
Instructions with complex addressing modes have a latency that is one clock cycle longer. 
 

24.17 Store forwarding 

A memory write can be forwarded to a subsequent read of the same size or a smaller size 
with the same start address. The combined latency of the write and subsequent read is 8 
clock cycles for general purpose registers and 9 for vector registers. 
 
There is a delay of one or a few clock cycles when an unaligned memory write-to-read 
forwarding is crossing a 32-bytes boundary for data sizes up to 256 bits. For 512-bits data 
sizes, there is often a delay of one clock cycle when unaligned.  
 
A read that has a partial overlap with a preceding write has a penalty of approximately 11 
clock cycles. The same applies to a read that is larger than a preceding write. 
 
A read that is smaller than a preceding write and fully contained within the address range of 
the write has a penalty of 11 clock cycles only if unaligned. 
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24.18 Mirroring memory operands 

The Zen 4 can mirror memory operands inside the CPU so that memory operands have no 
latency at all in some cases. See page 236 for a detailed description of this feature in Zen 2. 
 
This feature was introduced in Zen 2, but absent in Zen 3. Now it has returned in Zen 4 with 
some improvements. It works now with addressing modes that have a pointer and a 32-bit 
offset, where Zen 2 allowed only 8-bit offsets. Some cases of false dependence have also 
been removed, but not all. 
 

24.19 Simultaneous multithreading 

The processor can run two threads in each core. This makes sense because the throughput 
of each core is so high that it will rarely be fully utilized by a single thread.  
 
In general, each thread will get half of the resources when two threads are running in the 
same core. The queueing of µops is equally distributed between the two threads so that 
each thread gets half of the maximum throughput. The caches, branch predictors, execution 
units, and most other resources are shared competitively between the two threads. 
Simultaneous multithreading is not advantageous if a shared resource is a bottleneck that 
limits performance, for example instruction decoding or cache. 
 
The CPU cores are organized into subunits of eight cores each, called core complex dies. 
Inter-thread communication is faster within the same core complex than between core 
complexes. 
 

24.20 Power saving and frequency boosting 

The Zen processor is aggressively saving power by clock gating execution units that are not 
in use. The clock frequency is varied automatically depending on the work load and the chip 
temperature. The maximum clock frequency varies by model from 3.0 to 5.7 GHz. 
 
It is difficult to get consistent performance measurements because the clock frequency is 
varying, as explained on page 239. 
 

24.21 Bottlenecks in AMD Zen 4 

The maximum average throughput of each core in the Zen 4 microarchitecture is 6 µops per 
clock cycle, while the clock frequency varies between 4.5 and 5.7 GHz.  
 
Code that does not fit into the µop cache can have a maximum throughput of four 
instructions or 16 bytes of code per clock cycle, whichever is smaller. 
 
Loops that fit into the µop cache can have a maximum average throughput of six 
instructions per clock cycle. A fused arithmetic and branch instruction counts as one. 
 
There are eight execution units for general purpose register instructions and six units for 
floating point and vector instructions, but it is impossible to keep all execution units busy for 
any period of time because the average throughput is limited by the pipeline structure. Most 
common instructions are supported by two, three, or four execution units so that it is 
possible to execute multiple instructions of the same kind simultaneously. This means that 
execution unit throughput is rarely a bottleneck.  
 
Execution unit latency is a potential bottleneck in code with long dependency chains, but the 
latencies are generally low. The latency of floating point vector addition or multiplication is 3 
clock cycles. Integer vector addition has a latency of 1 clock cycle. 
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The limiting fetch rate of up to 16 bytes per clock is a very likely bottleneck for CPU-
intensive code with large loops. Smaller loops that fit into the µop cache can execute up to 
six instructions per clock. 
 
The utilization of the execution units can hardly be increased by running two threads in each 
execution unit if instruction fetch and decoding is a bottleneck because these resources are 
shared between the two threads so that each thread gets half the throughput on average.  
 
Inter-thread communication should be kept within the same 8-core core complex if possible. 
It may be useful to turn off simultaneous multithreading in the processor if running CPU-
intensive code or if the processor has more cores than the software can utilize. 
 
The very high throughput of the Zen 4 core places an extra burden on the programmer and 
the compiler if you want optimal performance. Obviously, you cannot execute two instruc-
tions simultaneously if the second instruction depends on the output of the first one. It is 
important to avoid long dependency chains if you want to even get close to the maximum 
throughput of six instructions per clock cycle. 
 
The Zen 4 is the first AMD processor to support the AVX512 instruction set with 512-bit 
vector registers. The maximum throughput for 512-bit vector instructions is one floating 
point vector addition and one floating point vector multiplication per clock cycle, or two 
integer vector instructions per clock cycle. This throughput is doubled for vectors of 256 bits 
or less. It is still advantageous to use 512-bit instructions in most cases because the 
bottleneck often lies elsewhere. A 512-bit vector instruction is generating only a single µop. 
This makes 512-bit instructions advantageous if the throughput is limited by the 6 µop per 
clock pipeline bottleneck or the 4 instructions per clock decoder throughput. 
 
The AVX512 vector compare instructions have longer latencies than the legacy SSE and 
AVX2 compare instructions. 
 
The caches are fairly big with a high throughput. This is a significant advantage because 
cache and memory access is the most likely bottleneck in data intensive code. 
 
The advanced feature of mirroring memory operands inside the CPU that we saw in the Zen 
2 (page 236) was absent in the Zen 3, but it has come back in the Zen 4. This feature is 
mostly useful in 32-bit mode where function parameters are stored in memory. 
 
The conclusion for the Zen 4 microarchitecture is that this is a very efficient design with big 
caches, a big µop cache, and large execution units with a very high throughput and low 
latencies.  
 
Literature  
Smith, R. & Bonshor, G.: AMD Zen 4 Ryzen 9 7950X and Ryzen 5 7600X Review: Retaking 
The High-End. Anandtech, Sept. 2022. 
 
 

25 AMD Zen 5 pipeline  

25.1 The pipeline in AMD Zen 5 

The Zen 5 microarchitecture is an improvement over previous models with several features 
to increase the throughput. The theoretical maximum throughput is 8 instructions per clock 
cycle, though most of my tests showed throughputs no higher than 6 instructions per clock 
cycle when running one thread per core and half of that when running two threads per core. 
 

https://www.anandtech.com/show/17585
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The Zen 5 or Ryzen 9000 series is available with different number of cores. Mobile versions 
have 6 – 12 cores, desktop versions have 6 – 16 cores, and server versions are available 
with up to 128 cores. Each core can run two threads.  
 
Desktop and server versions have full 512 bit data width in all vector execution units, except 
memory write instructions which have 256 bit width. Mobile processors have 256 bits data 
width so that 512 bit vector instructions execute at half the throughput on mobile 
processors. 
 
The branch unit can decode two sides of a branch simultaneously and it can look two 
branches ahead. The branch prediction rate is very good, and the throughput is two 
predicted taken branches per clock cycle. 
 

25.2 Instruction decoding 

The Zen 5 has two decoders which can be used for decoding both sides of a two-way 
branch simultaneously. Each of the two decoders can fetch 32 bytes of code per clock cycle 
and decode 4 instructions per clock cycle. Previous microprocessor models from both AMD 
and Intel have a bottleneck of 16 bytes of code per clock cycle. 
 
The throughputs are halved when running two threads per core. 
 
Instruction boundaries are not marked in the code cache.  
 
The number of µops generated by each instruction is listed in manual 4: "Instruction tables". 
Most instructions generate one µop only.  
 
There is no penalty for decoding instructions with many prefixes. This includes all kinds of 
prefixes. 
 

25.3 Instruction fusion 

An arithmetic or logic instruction immediately followed by a conditional jump can be fused 
into a single µop. This applies to CMP, TEST, ADD, SUB, AND, OR, XOR, INC, or DEC 
combined with all conditional jumps, except if the arithmetic or logic instruction has a 
memory operand with a rip-relative address or both an address displacement and an 
immediate operand.  
 
The fused branch instructions can execute at a throughput of two such branches per clock 
cycle if they are predicted taken, or three branch instructions per clock cycle if predicted not 
taken. 
 
Unlike the Zen 4, the Zen 5 cannot fuse NOP instructions. 
 

25.4 µop cache 

The processor has an extra cache for decoded instructions. The size is 6144 decoded 
instructions (16 ways). The µop cache can deliver up to 6 µops per clock cycle per branch. 
The size of the µop cache is big enough for holding most critical loops. 
 

25.5 µop queue 

The queues before the schedulers can hold 88 integer instructions and 96 floating point or 
vector instructions. The queues receive decoded instructions from either the µop cache or 
directly from the decoders. 
 



 255 

25.6 Stack engine 

The processor has an efficient stack engine that renames the stack pointer. It is placed after 
the µop queue. 
 
Push and pop instructions use only a single µop. These instructions have zero latency with 
respect to the stack pointer, so that subsequent instructions that depend on the stack 
pointer, either as operand or as pointer, are not delayed. 
 
The return stack buffer has 52 entries. 
 

25.7 Register renaming and out-of-order schedulers 

The decoded instructions are separated into two units with each their queue. An integer unit 
handling instructions on general purpose registers, and a floating point unit handling floating 
point and vector instructions. Each of these units has its own register file with register 
renaming, scheduling, and several execution units. The schedulers and rename units can 
handle up to 8 integer instructions and 6 floating point or vector instructions per clock cycle. 
 
The integer register file has 240 physical registers of 64 bits each. The floating point register 
file has 384 vector registers of 512 bits each. 
 

25.8 Integer execution units 

The integer unit has six ALUs, three branch units, and four address generation units.  
Simple integer instructions can be handled by any of the six ALUs, multiplication can be 
handled by three units, and branching can be handled by three units. It is possible to 
execute up to six integer instructions per clock cycle. 
 
Instructions with a memory operand use an AGU in addition to an ALU. Read-modify and 
read-modify-write instructions are not split into multiple µops, but the same µop goes to both 
the ALU and the AGU. The maximum throughput of memory operations per clock cycle is 4 
integer reads, 2 integer writes, 2 vector reads of up to 512 bits, or two vector writes of up to 
256 bits. The total number of memory operations cannot exceed four read or write 
instructions per clock cycle. A 512-bits write operation is executed as two 256 bit 
operations. 
 

25.9 Floating point execution units 

There are six floating point/vector execution units: two multiply units, two add units, and two 
memory read/write units. Both the multiply and the add units can do simple integer vector 
instructions including integer addition, boolean, and simple permutation instructions. It is 
possible to execute up to six vector instructions per clock cycle, for example two additions, 
two multiplications, and two memory operations. All vector units have full 512 bits data 
width, except the write unit, which is 256 bits wide. 
 
The latency of simple integer vector instructions is 2 clock cycles, where previous Zen 
processors have a 1 clock latency. The Zen 5 has no vector instructions with a 1 clock 
latency (but vector move instructions have zero latency). 
 
The latency of floating point addition has been reduced from 3 to 2 clock cycles. Floating 
point multiplication has a latency of 3 clocks, and fused multiply-add takes 4 clocks. Integer 
vector instructions now have the same latencies as the corresponding floating point 
instructions. 
 
The AVX512 vector compare instructions are storing the result in a mask register. These 
compare instructions have latencies of 3, 4, and 6 clock cycles for 128, 256, and 512 bit 



 256 

vectors, respectively. The legacy SSE and AVX2 compare instructions have lower latencies 
of 2 clock cycles. 
 
AMD’s FMA4, XOP, TBM, and 3DNow instructions are no longer supported.  
 

25.10 Subnormal operands 

Floating point operations that give a subnormal result may take a few clock cycles extra. 
The same is the case when a multiplication or division underflows to zero. This is far less 
than the high penalties on the Bulldozer and Piledriver. There is no penalty for a subnormal 
result or underflow when the flush-to-zero mode is on. 
 

25.11 AVX instructions 

The Zen 5 has little or no transition penalty when mixing VEX and non-VEX code, unlike 
early AMD processors (see page 134). Instead, non-VEX vector instructions have a false 
dependence on the upper part of a vector register if it is not in the clean state. This is similar 
to the Intel Ice Lake (see page 167).  
 
It is recommended to obey the rules for using VZEROUPPER or VZEROALL to assure 
optimal execution. 
 

25.12 Data delay between different execution domains 

The Zen 5 sometimes has a 1 clock delay when the output of a µop in the integer vector 
domain goes to the input of a µop in the floating point domain, or vice versa. For example, 
when the output of a vector permutation instruction goes to the input of a floating point add 
instruction. 
 

25.13 Instructions with no latency 

Register-to-register move instructions are resolved at the register rename stage without 
using any execution units. These instructions have zero latency. It is possible to do six such 
register renamings per clock cycle, and it is even possible to rename the same register 
multiple times in one clock cycle. 
 
The following instructions have zero latency when used with register operands: MOV, 
XCHG, FXCH, (V)MOVDQA, (V)MOVDQU, (V)MOVAPS, (V)MOVUPS, (V)MOVAPD, 
(V)MOVUPD, and the AVX512 versions VMOVDQA32/64 etc. This applies to 32-bit and 64-
bit general purpose registers, 128-bit xmm registers, 256-bit ymm registers, and 512-bit 
zmm registers. It does not apply to 64-bit mmx registers, 8-bit and 16-bit integer registers, 
and mask registers. 
 
The processor always keeps the different parts of an integer register together. For example, 
AL and AH are not treated as independent by the out-of-order execution mechanism. An 
instruction that writes to part of a register will therefore have a false dependence on any 
previous write to the full register or any other part of it. 
 
An instruction that writes to a 32-bit register will not have a false dependence on the 
corresponding 64-bit register because the upper part of the 64-bit register is set to zero. 
 
A write to a part of a vector register has a false dependence on the whole register. 
  
The processor treats certain parts of the arithmetic flags as independent. For example, an 
instruction that modifies only the carry flag has no false dependence on the zero flag. 
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25.14 Dependency-breaking instructions 

A common way of setting a register to zero is  XOR EAX,EAX  or  SUB EBX,EBX.  The 
processor recognizes that certain instructions are independent of the prior value of the 
register if the two input registers are the same. The following instructions are recognized as 
independent of the input when both input operands are the same register: 
XOR, SUB, SBB (depends on carry flag only), CMP, PXOR, PANDN, PSUBx, PCMPEQx, 
PCMPGTx, XORPS, XORPD, ANDNPS, ANDNPD, but not ANDN. 
 
This does not work with 8-bit and 16-bit registers due to the treatment of partial registers, 
but it works with 32-bit and 64-bit general purpose registers, as well as mask registers and 
vector registers of all sizes. 
 
Floating point subtractions and compares of a register with itself are never recognized as 
independent of the input because the result depends on whether the input is NAN. 
 

25.15 Branches and loops 

The throughput for jumps and taken branches is two taken jumps per clock. The throughput 
for predicted not taken branches is three not taken branches per clock cycle. The 
throughput for calls and returns is one call or return per two clocks. 
 
The performance is inferior if there are more than four jump instructions or taken branches 
in an aligned 16-bytes block of code. 
 
Branch prediction is very good. The branch predictor can look two branches ahead, and it 
can decode both sides of a two-way branch simultaneously. Long and complicated 
repetitive branch patterns can be predicted after a certain learning period. Loops with a 
count of up to 128 can be fully predicted. Indirect jumps can be predicted. 
 
The branch prediction mechanism is described on page 35. 
 

25.16 Cache and memory access 

 

Cache Zen 5 

µop 6k µops, 6 µop line size, 16 way, per core 

Level 1 code 32 kB, 8 way, 64 sets, 64 B line size, per core. Latency 4 clocks 

Level 1 data 48 kB, 12 way, 64 sets, 64 B line size, per core. Latency 4 clocks 

Level 2 1 MB, 16 way, 64 B line size, per core. Latency 14 clocks 

Level 3 96 MB, 24 way, 64 B line size, one per 8 cores. Latency ~55 clocks 

Table 25.1. Cache sizes on AMD Zen 5 

 
There is a false dependence when the address of a memory read is spaced a multiple of 
1024 bytes from a preceding write. 
 
Instructions with 3-element addressing modes have a latency that is one clock cycle longer. 
 
Automatic hardware prefetching is more efficient than explicit software prefetching in most 
cases. 
 

25.17 Store forwarding 

A memory write can be forwarded to a subsequent read of the same size or a smaller size 
with the same start address. The combined latency of the write and subsequent read is 2 
clock cycles for general purpose registers, 9 for vector registers up to 256 bits, and 11 for 
512 bit vector registers. One extra clock cycle is added if the operand is unaligned. 
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There is an extra delay of one clock cycle when an unaligned memory write-to-read 
forwarding is crossing a 64-bytes boundary.  
 
A read that has a partial overlap with a preceding write has a penalty of approximately 12 
clock cycles. The same applies to a read that is larger than a preceding write. 
 
A read that is smaller than a preceding write and offset, but fully contained within the 
address range of the write has a penalty of up to 28 clock cycles if unaligned. 
 

25.18 Mirroring memory operands 

The Zen 5 can mirror memory operands with a temporary register inside the CPU so that 
memory operands have no latency at all under certain conditions. There is no latency from a 
memory write to a subsequent read, read-modify, or read-modify-write instruction with the 
same memory operand. 
 
This feature was present in Zen 2 and Zen 4, but not Zen 3. See page 236 for a detailed 
description of this feature in Zen 2. 
 
This feature in Zen 5 differs from Zen 2 and Zen 4 in the following respects: 
 

• The throughput is increased to two read-modify-write instructions per clock cycle. 

• Works for 8, 16, 32, and 64 bit integer registers. 

• Cannot trace function parameters on the stack. 

• Works with addressing modes with a base register, scaled index, and offset of any 
size. The offset must be divisible by the operand size. Does not work with absolute 
or RIP-relative addressing. 

• The scale factor is not ignored. 
 

25.19 Simultaneous multithreading 

The processor can run two threads in each core. This is useful if the throughput of each 
core is so high that it will rarely be fully utilized by a single thread.  
 
In general, each thread will get half of the resources when two threads are running in the 
same core. The fetching and queueing of instructions is equally distributed between the two 
threads so that each thread gets half of the maximum throughput. The caches, branch 
predictors, execution units, and most other resources are shared competitively between the 
two threads. Simultaneous multithreading is not advantageous if a shared resource is a 
bottleneck that limits performance, for example instruction decoding or cache. 
 
The CPU cores are organized into subunits of eight cores each, called core complex dies. 
Inter-thread communication is faster within the same core complex than between core 
complexes. Therefore, threads belonging to the same task should preferably be placed in 
the same core complex. 
 

25.20 Power saving and frequency boosting 

The Zen processor is saving power by clock gating execution units that are not in use. The 
clock frequency is varied automatically depending on the work load and the chip 
temperature. The maximum clock frequency varies by model from 3.7 to 5.7 GHz. 
 
It is difficult to get consistent performance measurements because the clock frequency is 
varying, as explained on page 239. 
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25.21 Bottlenecks in AMD Zen 5 

The throughput of everything in Zen 5 has generally been increased over previous 
processors. The maximum throughput of each core in the Zen 5 microarchitecture is 8 
instructions per clock cycle. While such a high throughput is rarely obtained in practice, it 
may be possible to obtain around 6 instructions per clock cycle if they are distributed 
between different units and there are no long dependency chains. The clock frequency 
varies between 3.8 and 5.7 GHz for the desktop model.  
 
Preceding processors from both Intel and AMD have a serious bottleneck in the instruction 
fetch and decoding hardware. Previous processors have a general limit of 16 bytes of code 
or 4 instructions fetched and decoded per clock cycle. This was a serious bottleneck 
because x86 instructions can have any length from 1 to 15 bytes. AVX512 instructions have 
lengths ranging from 6 to 11 bytes. Thus, the throughput of 4 instructions per clock cycle 
could only be reached when instructions were small or when a loop fits into the µop cache. 
The Zen 5 breaks this long-standing bottleneck for the first time with a fetch rate of 32 bytes 
per clock and a decoding rate of 6 instructions per clock. This fetch and decode rate applies 
to each side of a 2-way branch when the two branches are decoded simultaneously. 
 
Loops that fit into the µop cache can have a maximum throughput of eight instructions per 
clock cycle. A fused arithmetic and branch instruction counts as one. 
 
A high throughput of the execution units is obtained with six integer ALUs, four address 
generation units, three branch units, four vector ALUs, and two vector read/write units.  
 
All common instructions are supported by two, three, four, or six execution units so that it is 
possible to execute multiple instructions of the same kind simultaneously. This means that 
execution unit throughput is rarely a bottleneck.  
 
Integer vector instructions and floating point instructions now have the same latencies. The 
latency of integer vector addition has been increased from 1 to 2 clock cycles, while floating 
point addition latency has been reduced from 3 to 2 clock cycles compared to previous 
models. I assume that this simplifies the hardware design. The throughputs have not been 
fully standardized, though. Integer vector addition has a throughput of 4 vector operations 
per clock, while floating point addition has a throughput of 2 per clock. 
 
The high throughput of the execution units means that the performance is likely to be limited 
by the latencies rather than the throughputs of the execution units. Therefore, it is important 
to avoid long dependency chains in the code. The number of temporary registers for out-of-
order execution is so high that the processor can execute several iterations of a loop 
simultaneously, but this requires that there are no loop-carried dependency chains and that 
the loop condition is determined by a simple counter with a preknown limit. This puts an 
extra burden on the programmer if you want optimal performance. 
 
All vector instructions now have full 512 bit data width so that it is optimal to use 512 bit 
vector instructions for parallel data processing when possible. The only exception is 
memory write. 512-bit vector writes execute at half the throughput of 256-bit writes. The 
maximum throughput is two floating point vector additions, two vector multiplications, and 
two vector memory reads per clock cycle. 
 
The AVX512 vector compare instructions using mask registers have longer latencies than 
the legacy SSE and AVX2 compare instructions that return their results in vector registers. 
 
The advanced feature of mirroring memory operands inside the CPU has been redesigned 
in the Zen 5. It now covers more cases of memory operands than before, but unlike the Zen 
2 and Zen 4, the Zen 5 cannot trace function parameters on the stack. Function parameters 
are generally stored on the stack in 32-bit mode, but in registers in 64-bit mode. Therefore, 
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the mirroring of function parameters is less important today where 64-bit mode is more 
common. 
 
Branch prediction is improved over previous models. The predictor can look two branches 
ahead and it can fetch and decode both sides of a two-way branch simultaneously. 
Branches can now be executed with an unprecedented throughput of two taken branches or 
three non-taken branches per clock cycle, provided that they are all predicted correctly.  
 
Inter-thread communication is faster within the same 8-core core complex than between 
core complexes. 
 
The throughput per thread for most resources is half when two threads are sharing the 
same core and competing for the same resources. It may be useful to turn off simultaneous 
multithreading in the processor if running CPU-intensive code. 
 
All in all, a lot of features have been improved in the Zen 5: Bigger and more efficient 
caches, higher fetch and decode rate, higher pipeline throughput, more execution units, 
improved branch prediction, higher branch throughput, higher write throughput, more 
temporary registers, and full 512 bit data paths in vector units. All these improvements 
mean that RAM access and disk access are now the most likely bottlenecks. 
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26 AMD Bobcat and Jaguar pipeline  
The Bobcat and Jaguar are smaller microprocessors with low clock frequency and with 
focus on low power consumption. It saves power quite aggressively by slowing down the 
clock speed most of the time. In my tests on the Bobcat, the full speed was seen only after 
millions of instructions of CPU intensive code. This power saving feature ("CoolNQuiet") can 
be turned off in the BIOS setup when higher speed is desired. 
 
The Bobcat has two cores while the successor Jaguar currently has up to four cores, and 
with plans about future 8-core versions. No execution resources are shared between the 
cores, and the cores do not interfere with each other unless they both access the same 
memory address.  
 
The Jaguar supports the AVX instruction set, but not AMDs XOP instruction set. The AMD 
3DNow instruction set is no longer supported, and may be regarded as obsolete. The 
PREFETCH instruction is still supported, though.  
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https://www.guru3d.com/review/amd-zen5-a-deeper-dive-into-architecture/
https://www.techpowerup.com/review/amd-zen-5-technical-deep-dive/
https://www.anandtech.com/show/21469/amd-details-ryzen-ai-300-series-for-mobile-strix-point-with-rdna-35-igpu-xdna-2-npu
https://chipsandcheese.com/p/zen-5s-2-ahead-branch-predictor-unit-how-30-year-old-idea-allows-for-new-tricks


 261 

26.1 The pipeline in AMD Bobcat and Jaguar 

The pipeline is designed for a throughput of 2 instructions or µops per clock cycle with two 
integer ALUs, two floating point/vector units, and two AGUs for load and store, respectively. 
The pipeline has schedulers for out-of-order execution. There are two separate pairs of 
pipelines, one for general purpose integer instructions and one for floating point and vector 
instructions. The general purpose integer unit has the two integer ALUs, the load unit and 
the store unit. The floating point and vector unit has two pipes.  
 
The design has two physical register files, one for integer registers and one for floating point 
and vector registers. The size of the physical register files is stated as 64 entries on the 
Bobcat, which probably means 64 entries for each of the two physical register files. 
Temporary register values are not moved or shifted down the pipeline but stored in the 
physical register files while only an index or pointer to the physical register is stored in the 
pipeline. The physical registers can be renamed.  
 
The Bobcat has 64-bit physical registers and uses two such registers to save a 128-bit 
vector. The Jaguar supports the AVX instruction set with 256-bit vectors. It has 128-bit 
physical registers and uses two such registers to save a 256-bit vector. 
 

26.2 Instruction fetch 

The instruction fetch rate is stated as "up to 32 bytes per cycle", but this is not confirmed by 
my measurements which consistently show a maximum of 16 bytes per clock cycle on 
average for both Bobcat and Jaguar. Some reports say that the Jaguar has a loop buffer, 
but I cannot detect any improvement in performance for tiny loops. 
 

26.3 Instruction decoding 

Unlike previous AMD designs, the Bobcat and Jaguar do not mark instruction boundaries in 
the code cache. It decodes two instructions per clock cycle. There is no penalty for multiple 
prefixes or length-changing prefixes. There is no fusion of branch instruction. 
 

26.4 Single, double and complex instructions 

The most common integer instructions generate only one µop, including read-modify-write, 
push and pop instructions. Call instructions generate two µops.  
 
The Bobcat has 64-bit execution units and it splits all 128-bit vector instructions into at least 
two independent 64-bit µops. The Jaguar has 128-bit execution units and splits all 256-bit 
vector instructions into two independent 128-bit µops. (The Bobcat does not support the 
256-bit AVX instructions). Instructions that generate more than two µops are generated from 
microcode ROM. 
 

26.5 Integer execution pipes 

There are two execution pipelines for integer µops with two almost identical ALUs. A few 
integer instructions, including multiplication, division, and some versions of LEA, can only be 

handled by integer pipe 0, other instructions can be handled by either pipe. Integer division 
uses the floating point division circuit with a large extra delay on Bobcat. Integer division is 
much faster on Jaguar.  
 
There is one load unit and one store unit, both 64 bits wide on Bobcat and 128 bits wide on 
Jaguar. 
 
The Bobcat reorder buffer has 56 entries, though the measured reordering capacity is 
generally less than 56 µops. 
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26.6 Floating point execution pipes 

There are two floating point execution pipelines, which are also used for integer vector 
operations. Both pipelines can handle move, integer addition, and Boolean operations. 
Floating point pipe 0, here called FP0, handles integer multiplication and floating point 
addition. FP1 handles floating point multiplication and division. The division circuit is not 
pipelined and has no early out feature, hence the latency for division is independent of the 
values of the operands. 
 
Memory read and write operations use the integer load/store unit with an extra delay of one 
or more clock cycles. 
 
The penalty for underflow and subnormal operands is between 150 and 200 clock cycles on 
Bobcat. The Jaguar has penalties of 40 clock cycles for addition of subnormal numbers and 
170 - 210 clock cycles when a multiplication gives a subnormal result or underflow. 
 
While Intel processors have a large penalty for mixing 256-bit AVX instructions with non-
AVX XMM instructions due to a mode switch (see page 134), there is no such penalty the 
AMD Jaguar. 
 

26.7 Mixing instructions with different latency 

There is little or no measurable penalty for mixing µops with different latency on the same 
execution pipeline. 
 

26.8 Dependency-breaking instructions 

A common way of setting a register to zero is  XOR EAX,EAX  or  SUB EBX,EBX.  The 

Bobcat processor recognizes that certain instructions are independent of the prior value of 
the register if the two input registers are the same. The following instructions are recognized 
as independent of the input when both operands are the same register: 
XOR, SUB, SBB (depends on carry flag only), CMP, PXOR, PANDN, PSUBx, PCMPEQx, 

PCMPGTx, XORPS, XORPD. The instructions ANDNPS and ANDNPD are recognized so on 

Jaguar but not on Bobcat. 
 
The Jaguar can eliminate a move from a 128-bit register that has been zeroed in this way 
(or by VZEROALL), for example: 

 
; Example 26.1. Propagation of zero on Jaguar 

pxor   xmm0,xmm0    ; set to zero 

movdqa xmm1,xmm0    ; move eliminated 

movdqa xmm2,xmm1    ; move eliminated 

movdqa xmm3,xmm2    ; move eliminated 

 
No other case of move elimination is supported.  
 

26.9 Data delay between differently typed instructions 

There is an extra delay of 1 clock cycle when output from an integer vector instruction is 
used as input for a floating point vector instruction, or vice versa. For example, there is a 
penalty for using MOVAPS in connection with integer vector instructions, or MOVDQA in 

connection with floating point instructions. 
 
There is a penalty of 40 clock cycles when the output of a floating point calculation is input 
to a floating point calculation with a different precision, for example if the output of a double 
precision floating point addition is input to a single precision addition. This has hardly any 
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practical significance since such a sequence is most likely to be a programming error, but it 
indicates that the processor stores extra information about floating point numbers beyond 
the 128 bits in an XMM register. 
 

26.10 Partial register access 

The processor always keeps the different parts of a register smaller than 128 bits together. 
For example, AL and AH are not treated as independent by the out-of-order execution 

mechanism. But the high and low 64 bits of a 128 bit register are treated as independent on 
Bobcat, and the high and low 128 bits of a 256 bit register are treated as independent on 
Jaguar. 
 

26.11 Cache 

The cores have separate level-1 caches. The level-2 cache is separate for each core on 
Bobcat, but shared between up to four cores on Jaguar. Future Jaguar processors with 
eight cores are expected to have two level-2 caches, each shared between four cores. 
 

Cache Bobcat Jaguar 

Level 1 code 32 kB, 2 way, 64 B line size, 
latency 3, per core 

32 kB, 2 way, 64 B line size, 
latency 3, per core 

Level 1 data 32 kB, 8 way, 64 B line size, 
latency 3, per core 

32 kB, 8 way, 64 B line size, 
latency 3, per core 

Level 2 512 kB, 16 way, 64 B line size, 
half clock frequency, per core. 

Up to 2 MB, 16 way, 64 B line 
size, half clock frequency, 
latency 26, shared between four 
cores. 

Table 26.1. Cache sizes on Bobcat and Jaguar 

 
The bandwidth is one read and one write per clock cycle to the level-1 data cache. The 
reads and writes are up to 64 bits wide on Bobcat, and 128 bits wide on Jaguar. 
 
There is a penalty of typically 3 clock cycles for misaligned memory read or write that 
crosses a 16 bytes boundary. 
 

26.12 Store forwarding stalls 

Forwarding of data from a memory write to a subsequent read works well when the read is 
the same size or smaller than the write unless it is crossing a 16 bytes boundary. The 
combined latency of the read and subsequent write is at least 8 clock cycles for integer 
registers and 11 clock cycles for vector registers. The penalty for a failed store forwarding is 
4-11 clock cycles. 
 
Store forwarding is particularly fast on Jaguar for 32-bit and 64-bit general purpose 
registers. 
 

Register size Bobcat Jaguar 

8 8 8 

16 8 8 

32 8 3 

64 g.p 8 3 

64 mmx 11 7 

128 12 7 

256 n.a. 7 
Table 26.2. Store forwarding times on Bobcat and Jaguar 

Values are clock cycles, best case 
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26.13 Bottlenecks in Bobcat and Jaguar 

The Bobcat and Jaguar have a well balanced pipeline design with no obvious bottlenecks 
other than what is obvious from the low power design. 
 
Power saving is quite aggressive on the Bobcat so that the full speed is obtained only when 
the CPU load is heavy. The maximum throughput is two instructions per clock cycle, similar 
to the Intel Atom and VIA Nano processors.  
 
The level-1 code cache has only 2-way associativity. This can slow down noncontiguous 
code. Integer division is slower than floating point division on Bobcat. Memory store 
forwarding is somewhat slow on Bobcat, but much higher on Jaguar. A store forwarding 
time of just 3 clock cycles for general purpose registers on the Jaguar is faster then the 
bigger processors from both AMD and Intel.  
 
Integer vector instructions are generally faster on Jaguar than on Bobcat due to the larger 
size of internal registers (See manual 4: Instruction tables). All 128-bit instructions are split 
into two 64-bit µops on Bobcat which gives half the throughput. Similarly, all 256-bit 
instructions are split into two 128-bit µops on Jaguar. 
 
The MASKMOVQ and MASKMOVDQU instructions are very slow, partially due to the fact that 

these instructions require uncached writes. The VMASKMOVPS instruction with a memory 

source operand takes more than 300 clock cycles on the Jaguar when the mask is zero, in 
which case the instruction should do nothing. This appears to be a design flaw. 
 
The PALIGNR instruction is quite slow on the Bobcat. This instruction is used in many 

implementations of the memcpy (memory copying) function. 

 
Prefetch instructions are very slow on the Jaguar, but not on Bobcat. 
 

26.14 Literature:  

Brad Burgess, et. al.: Bobcat: AMD's Low-Power x86 Processor. IEEE Micro, March/April 
2011, pp. 16-25. 
 
Anand Lal Shimpi: AMD’s Jaguar Architecture: The CPU Powering Xbox One, PlayStation 
4, Kabini & Temash. May 2013. www.anandtech.com. 
 
 

27 Comparison of microarchitectures  
The state-of-the-art microprocessors that have been investigated here represent different 
microarchitecture kernels: the AMD, the Pentium 4 (NetBurst), the Pentium M, and the Intel 
Core 2 kernel. I will now discuss the advantages and disadvantages of each of these 
microarchitectures. I am not discussing differences in memory bandwidth because this 
depends partly on external hardware and on cache sizes. Each of the four microprocessor 
types is available in different variants with different cache sizes. The comparison of 
microarchitectures is therefore mostly relevant to CPU-intensive applications and less 
relevant to memory-intensive applications. 
 

27.1 The AMD K8 and K10 kernel 

This AMD microarchitecture is somewhat simpler than the microarchitecture of Intel 
processors. This has certain advantages because the processor spends less resources on 

http://www.anandtech.com/show/6976/amds-jaguar-architecture-the-cpu-powering-xbox-one-playstation-4-kabini-temash
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complicated logistics. It also has drawbacks in terms of suboptimal out-of-order scheduling. 
The throughput of 3 macro-operations per clock cycle is obtained simply by having a 3-way 
pipeline all the way through. The ability to move macro-operations from one of the three 
pipelines to another is limited. 
 
The execution units are less specialized than in Intel processors. All of the three integer 
execution units can handle almost any integer operation, including even the most obscure 
and seldom used instructions. Only the integer multiplication unit has been too expensive to 
make in three copies. This generality makes the logistics simple at the cost of bigger 
execution units. 
 
The three floating point execution units are more specialized. Only the simplest operations 
are supported by more than one of these units. The distribution of macro-operations 
between the three floating point units is far from optimal. There is certainly room for 
improvement here. 
 
The floating point execution units also have a problem with mixing macro-operations with 
different latencies. This problem is handled in a rather complicated and inefficient way by 
blocking the dispatch of a macro-operation with a short latency if it can be predicted that it 
would need the result bus simultaneously with a preceding macro-operation with a longer 
latency. A simpler and more efficient solution would be to keep the result of a short-latency 
macro-operation in the pipeline until the result bus is ready. This would solve the problem 
that a macro-operation with a short latency can be postponed for a long time if the pipeline 
is dominated by long-latency macro-operations, and it would get rid of the complicated logic 
for predicting when the result bus will be vacant. 
 
All execution units have fairly short latencies and are fully pipelined so that they can receive 
a new macro-operation every clock cycle. 
 
It is alleged that the nine execution units (three integer ALU's, three address generation 
units, and three floating point units) can execute nine micro-operations in the same clock 
cycle. Unfortunately, it is virtually impossible to verify this claim experimentally because the 
retirement stage is limited to three macro-operations per clock cycle. In other words, the 
AMD has ample execution resources which are never fully utilized. If the bottleneck in the 
retirement stage were widened then it would be possible to execute more macro-operations 
per clock cycle. 
 
The AMD generates quite few macro-operations per instruction. Even read-modify and 
read-modify-write instructions generate only one macro-operation which is split into micro-
operations only in the execute stage in the pipeline. This is similar to a fused micro-
operation in the PM and Core2 design. The AMD K8 design has no execution units bigger 
than 64 bytes, so that 128-bit XMM instructions generate two macro-operations in the AMD 
K8. The subsequent AMD K10 processors have 128 bit units in the floating point pipeline to 
handle vector instructions in a single macro-operation. 
 
The AMD design has no strict limitation to the number of input dependencies on a single 
macro-operation. Thus, instructions like ADC EAX,EBX, CMOVBE EAX,EBX, and MOV 

[EAX+EBX],ECX are implemented with a single macro-operation. The same instructions 

have to be split up into at least two micro-operations on comparable Intel processors where 
a micro-operation can have no more than two input dependencies, including the condition 
flags. 
 
The throughput for instruction fetching has been increased from 16 to 32 bytes per clock 
cycle on K10. There is still a lower throughput after taken jumps. Instruction fetching from 
the level-2 cache is particularly slow. 
 
Instruction decoding seems to be quite efficient. It can decode at least three instructions per 
clock cycle. 
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Branch prediction is good for branches that always go the same way because branch 
prediction information is stored both in the level-1 and the level-2 cache. But the mechanism 
for predicting regular branch patterns has a lower prediction rate than on Intel processors. 
 
The cache system can make two memory reads per clock cycle, while Intel processors prior 
to Sandy Bridge could do only one read per clock cycle. 
 

27.2 The AMD Bulldozer, Piledriver and Steamroller kernel 

The Bulldozer microarchitecture is a significant improvement over previous models. 
 
The Bulldozer has two to eight compute units which have two CPU cores each. The code 
cache, instruction fetcher, branch prediction, and floating point units are shared between the 
two cores of each compute unit. The design allows a throughput of up to four instructions 
per clock cycle when only one core in a compute unit is used, or two instructions per clock 
cycle when both cores are used. 
 
Most execution units are doubled so that most instructions can execute at a throughput of 
two instructions per clock cycle.  
 
The latencies for floating point instructions and integer vector instructions are often 
somewhat longer than in Intel's Sandy Bridge. 
 
The single-thread throughput for floating point operations is two 128-bit operations per clock 
cycle, which can be addition, multiplication or fused multiply-and-add.  
 
The AMD design has no strict limitation to the number of input dependencies on a single 
µop. Thus, instructions like ADC EAX,EBX, CMOVBE EAX,EBX, and MOV 

[EAX+EBX],ECX are implemented with a single µop. The same instructions have to be 

split up into at least two µops on Intel processors where a µop can have no more than two 
input dependencies, including the condition flags, except for fused multiply-and-add 
instructions. 
 
The instruction decoders can handle four instructions per clock cycle. The Bulldozer and 
Piledriver have one decoder per unit, shared between two threads, while the Steamroller 
has one decoder for each thread. The maximum throughput of four instructions per clock 
cycle is best obtained by mixing integer instructions and vector instructions. 
 
The cache system is poor in Bulldozer, better in Piledriver, and still better in Steamroller. 
 

27.3 The AMD Zen kernel 

The Zen processor family puts AMD back in the game after they had lagged behind Intel for 
several years. The Zen kernel has a throughput of five or six instructions per clock cycle, 
which is the record so far. The throughput is particularly high for vector code. The Zen 2, 3, 
and 4 can calculate four 256-bit floating point vectors per clock cycle. 
The high throughput places a higher burden on programmers and compilers to utilize the 
increased instruction level parallelism in single threaded applications. The core throughput 
is so high that it may be useful to run two threads per core, unlike some other processors 
with less core throughput. However, instruction fetch and decoding is still a very likely 
bottleneck which can limit performance when running two threads. 
 
The new µop cache is an important improvement which removes the bottleneck of 
instruction fetching and decoding in most of the critical loops. 
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The large caches at all levels is a particularly important improvement. The cache bandwidth 
is 32 bytes per clock on Zen 1 and 64 bytes per clock on Zen 2, 3, and 4. 
 

27.4 The Pentium 4 kernel 

The Intel Pentium 4 (NetBurst) kernel has been designed with a very one-sided focus on 
clock speed. Leading the clock frequency race surely has advantages in terms of marketing 
and prestige, but it also has considerable costs in terms of the design considerations that 
are needed in order to make the high clock frequency possible. A long pipeline is needed 
because the circuits can do less work per pipeline stage. Some pipeline stages in the P4 
microarchitecture are used simply for transporting data from one part of the chip to another. 
Physical distances really matter at these high frequencies. The long pipeline means a high 
branch misprediction penalty. 
 
Each of the execution units is kept as small as possible. Not only because physical 
distances matter but also because heat dissipation is a limiting factor. The smaller units are 
more specialized and can handle fewer different operations. This means that all but the 
simplest instructions require more than one µop, and some instructions require many µops. 
 
The level-1 data cache is also quite small (8 or 16 kb), but access to the level-2 cache is 
fast. 
 
The P4 doesn't have a code cache as other processors do, but a trace cache. The trace 
cache runs at half clock frequency, possibly because of its size. The trace cache doesn't 
store raw code but decoded µops. These µops are very similar to RISC instructions so that 
the kernel can use RISC technology. Decoding instructions into RISC-like µops before they 
are cached is a logical thing to do when decoding is a bottleneck. The P4 surely performs 
better in some cases where instruction decoding or predecoding is a bottleneck on other 
processors. 
 
But the trace cache is not as advantageous as it first looks. For example, a PUSH or POP 

instruction takes only a single byte in a code cache, but 16 bytes in the P4E trace cache. 
This means that it can cache less code on the same chip area. Furthermore, the same code 
may appear in more than one trace in the trace cache. The consequence is less code in the 
cache when cache size is limited by physical factors. The 32-bit P4 has some data 
compression in the trace cache, but this goes against the idea of making decoding simple 
and efficient. Arranging code into traces eliminates the fetching delay when jumping to 
another part of the code, but there is still a delay when jumping to a different trace, and this 
delay is higher because the trace cache runs at half clock speed. Whether to store the same 
code in multiple traces or not is a tradeoff between eliminating jumps and putting more code 
into the trace cache. 
 
Anyway, I seriously doubt that the trace cache makes the design simpler. I don't know how it 
keeps track of the traces, mapping physical addresses to multiple trace cache addresses, 
deciding whether to jump to another trace or extend the existing trace on a branch 
instruction, and deciding when to rearrange traces. This looks like a logistical nightmare to 
me. 
 
The instruction decoder can only handle one instruction per clock cycle, while other designs 
can decode three or more instructions per clock cycle. Obviously, the decoder has got a low 
priority because it is used only when building new traces from the level-2 cache. 
 
The P4 has two execution ports for ALU and other calculations (port 0 and 1) and two 
additional ports for memory operations and address calculation (port 2 and 3). Each 
execution port has one or more execution units. It is not possible to dispatch two µops 
simultaneously to two different execution units if they are using the same execution port. 
These ports are therefore a bottleneck. The execution units are not optimally distributed 
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between port 0 and 1. All floating point and SIMD (vector) operations, except simple moves, 
go through port 1. This makes port 1 a serious bottleneck in floating point and SIMD code. 
 
Two small integer ALU's run at double clock speed. The 32-bit P4 can do staggered 
additions with a virtual latency of only a half clock cycle. The latency for the condition flags 
is longer. The 64-bit P4E still uses double-speed ALU's, but with a latency of a full clock 
cycle. The throughput is four µops per clock for those instructions that can be handled by 
both ALU's. The double speed ALU's are specialized to handle only the most common 
operations such as move and addition on general purpose registers.  
 
The other execution units have longer latencies, sometimes much longer. The most 
ridiculous example is a 7 clock latency for a floating point register-to-register move on P4E. 
There is also an additional latency of one clock cycle when a result from one execution unit 
is needed as input in another execution unit. 
 
A 128-bit XMM instruction is handled by a single µop, but the execution units can handle 
only 64 bits at a time so the throughput is only 64 bits per clock cycle. Only memory reads 
have a throughput of 128 bits per clock cycle. This makes the P4/P4E an efficient 
microprocessor for memory-intensive applications that can use 128-bit operands. 
 
The branch prediction algorithm is reasonably good, but the misprediction penalty is 
unusually high for two reasons. The first reason is obviously that the pipeline is long (20 or 
more stages). The second reason is that bogus µops in a mispredicted branch are not 
discarded before they retire. A misprediction typically involves 45 µops. If these µops are 
divisions or other time-consuming operations then the misprediction can be extremely 
costly. Other microprocessors can discard µops as soon as the misprediction is detected so 
that they don't use execution resources unnecessarily. 
 
The same problem applies to bogus reads of a store-forwarded memory operand that is not 
ready. The P4 will keep re-playing the read, as well as subsequent µops that depend on it, 
until the memory operand is ready. This can waste a lot of execution resources in a read-
after-write memory dependence. This typically occurs when parameters are transferred on 
the stack to a subroutine. There is also an excessive replaying of µops after cache misses 
and other events. The amount of resources that are wasted on executing bogus µops is so 
high that it is a serious performance problem. 
 
The retirement is limited to slightly less than 3 µops per clock cycle. 
 

27.5 The Pentium M kernel 

The PM is a modification of the old Pentium Pro kernel with the main focus on saving 
power. A lot of effort has been put into turning off parts of the execution units and buses 
when they are not used. The lowered power consumption has a beneficial side effect. A low 
power consumption means that the clock frequency can be increased without overheating 
the chip. 
 
Instruction decoding is limited by the 4-1-1 rule (page 91). Software must be tuned 
specifically to the 4-1-1 rule in order to optimize instruction decoding. Unfortunately, the 
4-1-1 pattern is broken by instruction fetch boundaries, which are difficult to predict for the 
programmer or compiler maker. This problem reduces the instruction fetch rate to less than 
16 bytes per clock cycle and the decode rate to less than three instructions per clock cycle 
(page 91). Instruction fetch and decoding is definitely a weak link in the PM design. 
 
The execution units are clustered around five execution ports in a design very similar to the 
P4. Port 0 and 1 are for ALU and other calculations, while port 2, 3 and 4 are for memory 
operations and address calculation. The execution units are more evenly distributed 
between port 0 and 1, and many µops can go to any of these two ports. This makes it easier 
to keep both ports busy than in the P4 design. 
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SIMD integer instructions are quite efficient with an ALU on each of the two execution ports 
and a latency of only one clock cycle. Floating point latencies are also quite low. 
 
The PM generates fewer µops per instruction than the P4. While both designs have a 
throughput of 3 µops per clock, the PM gets more instructions executed per clock cycle 
because of the lower number of µops. The low number of µops is partially due to µop fusion 
(page 93) and a dedicated adder for the stack pointer (page 95). Unfortunately, the µop 
fusion mechanism doesn't work for XMM registers. This makes the PM more efficient for 
MMX registers and floating point registers than for XMM registers. 
 
The PM has a limitation of three register reads per clock cycle from the permanent register 
file. This can very well be a bottleneck. 
 
The PM has an advanced branch prediction mechanism. The loop counter is something that 
we have been wishing for several years. But this doesn't make up for the very small branch 
target buffer of probably only 128 entries. The improved ability to predict indirect jumps is 
probably what has made it necessary to reduce the size of the BTB. 
 
The PM doesn't support the 64-bit instruction set. 
 
The throughput of the retirement stage is exactly as in P4. While both designs are limited to 
3 µops per clock cycle, the PM has fewer µops per instruction and shorter latencies in the 
execution units. This makes the PM so efficient that it may run CPU-intensive code faster 
than the P4 even though the latter has a 50% higher clock frequency. 
 

27.6 Intel Core 2 and Nehalem microarchitecture 

This design takes the successful philosophy of the PM even further with a high focus on 
saving power. The low power consumption makes it possible to increase the clock 
frequency. 
 
The pipeline and execution units are extended to allow a throughput of four µops per clock 
cycle. The throughput is further increased by issuing fewer µops per instruction and by 
extending the data busses and execution units to 128 bits. Cache and memory bandwidth 
have also been improved. 
 
The Core2 and Nehalem have so many execution units and execution ports that the 
execution stage will rarely be a bottleneck. Most execution units and internal data busses 
have been extended to 128 bits unlike previous x86 processors from Intel and AMD, which 
have only 64-bit execution units. 
 
A few weak spots in the design remain, however. I want to point out three areas in the 
design that do not match the performance of the rest of the pipeline, and these weak spots 
are likely to be bottlenecks: 
 

1. Instruction predecoding. The mechanism of instruction fetch and predecoding has 
been improved, but the bandwidth is still limited to 16 bytes of code per clock cycle. 
This is a very likely bottleneck in CPU-intensive code. 
 

2. Register read ports. The design can read no more than two or three registers from 
the permanent register file per clock cycle. This is likely to be insufficient in many 
cases. 
 

3. Branch history pattern table. The branch history pattern table is so small that it may 
compromise the otherwise quite advanced branch prediction mechanism. 
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4. Read ports. The Core2 can read one memory operand per clock cycle, where AMD 
processors can read two. The read port cannot always match the high throughput of 
the execution units. 

 

27.7 Intel Sandy Bridge and later microarchitectures 

This new design is a significant improvement. Many of the bottlenecks of previous designs 
have been dealt with in the Sandy Bridge. 
 
Instruction fetch and predecoding has been a serious bottleneck in Intel designs for many 
years. In the NetBurst architecture they tried to fix this problem by caching decoded µops, 
without much success. In the Sandy Bridge design, they are caching instructions both 
before and after decoding. The limited size of the µop cache is therefore less problematic, 
and the µop cache appears to be very efficient. 
 
The limited number of register read ports has been a serious, and often neglected, 
bottleneck since the old Pentium Pro. This bottleneck has now finally been removed in the 
Sandy Bridge. 
 
Previous Intel processors have only one memory read port where AMD processors have 
two. This was a bottleneck in many math applications. The Sandy Bridge has two read 
ports, whereby this bottleneck is removed. 
 
The branch prediction has been improved by having bigger buffers and a shorter 
misprediction penalty, but it has no loop predictor, and mispredictions are still quite 
common. 
 
The AVX instruction set is an important improvement. The throughput of floating point 
addition and multiplication is doubled when the new 256-bit YMM registers are used. The 
new non-destructive three-operand instructions are quite convenient for reducing register 
pressure and avoiding register move instructions. There is, however, a serious performance 
penalty for mixing vector instructions with and without the VEX prefix. This penalty is easily 
avoided if the programming guidelines are followed, but it is a common programming error 
to inadvertently mix VEX and non-VEX instructions, and such errors are difficult to detect. 
 
Whenever the narrowest bottleneck is removed from a system, the next less narrow 
bottleneck will become the limiting factor. The new bottlenecks that require attention in the 
Sandy Bridge are the following: 
 

1. The µop cache. This cache can ideally hold up to 1536 µops. The effective utilization 
will be much less in most cases. The programmer should pay attention to make sure 
the most critical inner loops fit into the µop cache. 
   

2. Instruction fetch and decoding. The fetch/decode rate has not been improved over 
previous processors and is still a potential bottleneck for code that doesn't fit into the 
µop cache. 
   

3. Data cache bank conflicts. The increased memory read bandwidth means that the 
frequency of cache conflicts will increase. Cache bank conflicts are almost 
unavoidable in programs that utilize the memory ports to their maximum capacity. 
This problem has been removed in the Haswell processor.  
   

4. Branch prediction. While the branch history buffer and branch target buffers are 
probably bigger than in previous designs, mispredictions are still quite common. 
   

5. Sharing of resources between threads. Many of the critical resources are shared 
between the two threads of a core when simultaneous multithreading 
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(hyperthreading) is on. It may be wise to turn off simultaneous multithreading when 
multiple threads depend on the same execution resources. 

 

28 Comparison of low power microarchitectures  
Intel Atom, Silvermont, Goldmont, Tremont, etc., AMD Bobcat and Jaguar, VIA Nano, etc. 
are all small processors designed for low power consumption. These processors have lower 
performance than the more powerful processors but are sufficient for ordinary office 
applications, embedded applications, and even low-traffic servers. The low price and low 
power consumption makes these processors suitable for less demanding applications. 
 

28.1 Intel Atom microarchitecture 

The Intel Atom is a small low-power processor with lower performance than the Core brand. 
The original Atom processor had only in-order execution. The Silvermont has some out-of-
order execution, and the Goldmont has full out-of-order capabilities. The performance of the 
latter is sufficient for most lightweight applications. 
 
Some versions have simultaneous multithreading. This is of limited use because the 
resources that are shared between two threads are quite small, even for single-threaded 
use. Some versions have multiple cores capable of running one or two threads each. 
 

28.2 VIA Nano microarchitecture 

The VIA Nano is a small low-power processor targeted at the same type of applications as 
the Intel Atom. The Nano has a quite advanced out-of-order pipeline and powerful execution 
units. In some respects, the performance of the execution units is similar to that of the much 
bigger desktop processors from Intel and AMD. The floating point performance is 
particularly good. 
 
The Nano has longer latencies than the desktop processors for memory access and for 
jumps, but very low latencies for integer and floating point calculations. The versions with 
two or more independent cores give good performance in multitasking environments. 
 

28.3 AMD Bobcat microarchitecture 

The AMD Bobcat has an efficient out-of-order pipeline with good performance and no 
obvious bottlenecks. The execution units are only 64 bits wide, which gives a lower 
throughput for vector instructions. The Bobcat has two independent cores, which gives it a 
good performance in multitasking environments. 
 

28.4 Conclusion 

The AMD, P4 and Intel Core designs can all execute instructions out of order with a 
maximum throughput of 3 µops per clock cycle. The Core2, Nehalem and Sandy bridge can 
do 4 µops per clock cycle. AMD Bulldozer and later designs can execute four µops per clock 
cycle when there is a good mixing of integer and vector instructions. 
 
The NetBurst (Pentium 4) design has a higher clock frequency which means more µops per 
second. But each instruction generates more µops on NetBurst than on other processors, 
which means fewer instructions per clock cycle. A further disadvantage of the high clock 
frequency is a long pipeline and thus a high branch misprediction penalty. The NetBurst 
microarchitecture has so many inherent performance problems that it has been 
discontinued. 
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The PM, Core and the AMD designs all use the opposite strategy of a lower clock frequency 
but fewer µops per instruction. This strategy appears to give the best performance for CPU-
intensive applications. The NetBurst has longer latencies than other processors for many 
instructions. This makes it inferior for code with long dependency chains. 
 
All these designs have a RISC-like execution core that works on simple µops rather than on 
complex instructions. The NetBurst and Sandy Bridge designs have pushed the RISC 
philosophy even further by caching µops rather than instructions. The NetBurst design is not 
convincing since it reduces the amount of information per cache area and the management 
of the trace cache has become no less time consuming than a CISC decoder. The Sandy 
Bridge uses the compromise of caching instructions both before and after decoding. The 
result appears to be quite successful. 
 
AMD uses the different strategy of marking instruction boundaries in the code cache, 
whereby the bottleneck of instruction length decoding is removed. Intel did the same in the 
Pentium MMX, and I don't understand why they have left this strategy. Instruction length 
decoding continues to be a serious bottleneck in Intel processors. The problem has been 
reduced by caching decoded instructions, but the capacity of the NetBurst trace cache and 
the Sandy Bridge µop cache is still limited because µops take more cache space than CISC 
instructions. 
 
For many years, the RISC philosophy has been considered the best way to high 
performance. The Intel Core microarchitecture as well as the AMD design indicates a new 
trend away from RISC and back to the CISC principle. The RISC-like design of the P4 with 
its very long pipeline and long execution latencies was not convincing, and the trace cache 
appears to have been inefficient. The advantages of going back to CISC design are 
threefold: 
 

1. The compact CISC code gives better utilization of the limited code cache area. 
 

2. Fewer µops per instruction gives higher bandwidth in the pipeline. 
 

3. Fewer µops per instruction gives lower power consumption. 
 
The main disadvantage of a CISC design is that instruction decoding becomes a bottleneck. 
The AMD processor has a higher decoding bandwidth than the Intel design because of the 
technique of storing instruction boundaries in the code cache. The Intel design is still limited 
to a decoding rate of 16 bytes of code per clock cycle, which is insufficient in many cases. 
 
The initial RISC philosophy required that all instructions should have the same latency in 
order to provide a smooth pipelining. However, this principle soon proved untenable 
because multiplication, division and floating point addition take longer time than integer 
addition. This problem is partially solved in the Intel microarchitecture by sending micro-
operations with different latencies to different execution ports (see table 8.1 page 114). 
 
The increased focus on power-saving features in the Intel Core and later designs makes it 
possible to use a relatively high clock frequency despite a design that does more work per 
pipeline stage than the NetBurst. 
  
The AMD also uses a CISC design with few µops per clock cycle. Early versions were kept 
as simple as possible in order to reduce the necessary amount of logistics overhead. This, 
however, reduced the out-of-order capabilities and the optimal utilization of execution units. 
 
The Intel Core and AMD K10 processors have full 128-bit execution units. The earlier 
processors use a 64-bit unit twice when computing a 128-bit result. It is therefore not 
possible to take full advantage of the 128-bit XMM instructions in these processors. The 
Sandy Bridge has full 256-bit execution units, except for memory read and write operations. 
It is likely that we will see processors from AMD or VIA with AVX support that use 128-bit 
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units twice to compute a 256-bit vector result. The same may happen with future extensions 
of the vector size to 512 bits or more. 
 
The throughput of 3 µops per clock cycle in both AMD, P4 and PM is increased to 4 µops in 
the Core2 and later designs, but I do not expect this number to increase much further in the 
future because the advantage of a higher throughput cannot be fully utilized unless the code 
has a high degree of inherent parallelism. 
 
Instead, the trend goes towards multiple execution cores. Unfortunately, we need multi-
threaded programs to take full advantage of multiple cores in single-user systems. 
Calculation tasks that cannot be divided into multiple threads cannot take much advantage 
of multiple cores or multiple processors. 
 
Many microprocessors have multiple cores. A half-way solution was introduced in the 
NetBurst and again in the Nehalem and Sandy Bridge with simultaneous multithreading 
(hyperthreading) technology. The microprocessor has two logical processors sharing the 
same execution core. The advantage of this is limited if the two threads compete for the 
same resources, but simultaneous multithreading can be quite advantageous if the 
performance is limited by something else, such as memory access. Some processors are 
sharing all resources between the two threads, while other processors share only some of 
the resources. This makes it quite complicated for the programmer to determine whether 
simultaneous multithreading is advantageous for a particular program running on a 
particular microprocessor. 
 
The extension of the 32 bit architecture to 64 bits has been a logical and necessary thing to 
do. Intel came before AMD with their advanced Itanium RISC architecture, but it lacks the 
backwards compatibility that the market demands. The AMD 64-bit architecture, which has 
doubled the number of registers and still retained backwards compatibility, has turned out to 
be a commercial success which Intel had to copy. All x86 processors produced today 
support the x64 instruction set. 
 
Table 28.1 below compares execution latencies for various operations on the three designs. 
A table comparing cache sizes etc. is provided in manual 4: "Instruction tables". 
 

Execution latencies, typical AMD P4E Core2 
45 nm 

Sandy 
Bridge 

integer addition 1 1 1 1 

integer multiplication 3 10 3 3 

integer division, 32 bits 40 79 23 28 

packed integer move 2 7 1 1 

packed integer addition 2 2 1 1 

packed integer multiplication 3 8 3 3 

floating point move 2 7 1-3 1 

floating point addition 4 6 3 3 

floating point division, double 20 45 21 22 

floating point vector addition 4 5 3 3 

floating point vector multiplication 4 7 5 5 

Table 28.1. Comparison of instruction latencies 

 
 

29 Development trends  
The high clock frequency in the NetBurst design turned out to be too costly in terms of 
energy consumption and chip heating. This led to a change of focus away from the 
gigahertz race. Since then, there has been an increasing focus on energy efficiency, and 
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this factor will become no less important in the future since small battery-operated 
computers are becoming very popular. 
 
The speed and computing power of execution units is growing faster than the speed of 
memory access. We can therefore expect an intense focus on improving caching and 
memory bandwidth in the future. Three-level caching and wider data paths are already 
common. 
 
Branch misprediction is very costly in present microprocessors because of the long 
pipelines. We are now seeing more advanced multilevel branch prediction algorithms and 
bigger branch target buffers and history tables. The future may bring decoding and 
speculative execution of multiple branches simultaneously, as well as predicated integer 
instructions in future processors in order to reduce the cost of mispredictions. We have not 
yet seen radically shorter pipelines as a means of reducing misprediction penalties. 
 
Instruction length decoding is a very serious bottleneck in many CISC computers. Both Intel 
and AMD processors have a limitation of 16 bytes or 4 instructions per clock cycle in the 
fetch and decode units. This bottleneck has existed through many generations of 
microprocessors and is due mainly to the complicated detection of instruction length. 
 
A transition to a RISC instruction set is prevented by the requirement for backwards 
compatibility. Dual instruction set computers is a possible solution, but quite costly. The 
caching of decoded µops was not a very successful solution in the Intel NetBurst 
architecture, but more successful in later processors from Intel and later also AMD. A 
disadvantage of the µop cache is that it takes much more die space per instruction than a 
traditional code cache.  
 
More focus on improving the instruction length decoders is possibly a more efficient 
solution. Another likely possibility is multiple levels of µop caching. The AVX and later 
instructions are using the VEX coding scheme which includes information on the instruction 
length. This opens the possibility for a compromise where the decoders have a higher 
throughput for instructions with VEX and EVEX encoding than for the most complicated 
non-VEX encodings. 
 
An alternative to caching µops is to mark instruction boundaries in the instruction cache. 
This relieves the critical bottleneck of instruction length decoding. Many AMD processors 
and a few Intel processors have used this method, but it is not used in the latest processors 
from Intel and AMD. 
 
There is a remarkable convergence between the Intel and AMD microarchitectures thanks 
to a patent sharing agreement between the two companies. Intel's stack engine and the 
mechanism for predicting indirect branches have been copied by AMD. 
 
There is unfortunately not always convergence on the instruction set extensions. Intel's 
SSE4.1 and SSE4.2 instruction sets are very different from AMD's SSE4.A and XOP 
(formerly known as SSE5), and the intersection between these two sets is quite small. Intel 
has never copied AMD's 3DNow and XOP instruction sets which are now obsolete, but they 
have copied the successful x64 extension from AMD and a few other instructions. AMD has 
traditionally copied all Intel instructions, but sometimes with a lag of several years. 
Fortunately, AMD has revised their proposed SSE5 instruction set to make it compatible 
with the AVX coding scheme (as I have previously argued that it would be wise of them to 
do). The AMD Zen processors now support Intel's AVX2 instruction set, including the 256-bit 
YMM vector registers, but not yet AVX512. It often takes several years for the software 
industry to utilize new instruction set extensions. Therefore, it makes economic sense for 
AMD to lag behind Intel in the race for new instruction set extensions and longer vector 
registers. AMD have focused on improving throughput while Intel have focused on 
increasing the vector length. 
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The incompatible fused multiply-and-add instructions is a pathetic story as discussed on my 
blog. Fortunately, Intel's Haswell and AMD's Piledriver and later processors support the 
FMA3 instructions, and AMD has dropped the FMA4 instructions, originally specified by 
Intel. 
 
The transition to three- and four-operand instructions has been easier for AMD than for Intel 
because, for many generations, the Intel microarchitecture has not allowed a µop to have 
more than two input dependencies, while AMD has never had such a limitation. The 
limitation on input dependencies was first broken in the Haswell with the fused multiply-and-
add (FMA) instructions. 
 
The amount of parallelism in CPU pipelines will not grow much beyond the six µops per 
clock cycle because dependency chains in the software is likely to prevent further 
parallelism. Instead, we are seeing an increasing number of cores. Even small low-power 
processors now have multiple cores. This puts a high demand on software developers to 
make multithreaded applications. Both Intel and AMD are making hybrid solutions where 
some or all of the execution units are shared between two processor cores (hyperthreading 
in Intel terminology).  
 
Lower instruction latencies is one way to higher performance that we have yet seen only in 
low power processors. AMD's Bulldozer was the first processor to translate register-to-
register moves to register renaming with zero latency, but Intel soon followed. Another way 
to reduce latencies is instruction fusion. The store-to-load forwarding mechanism may also 
be improved to reduce latency, as we have seen in AMD Zen 2 (but not in Zen 3). 
 
The extension of the 128-bit XMM registers to 256 bits (YMM) was realized in the Intel 
Sandy Bridge processor in January 2011, and AMDs Bulldozer later in the same year. The 
next extension to 512 bits first appeared in Intel's Knights Landing and Skylake-X and later 
in AMD Zen 4. Later extension to 1024 bits have not yet been announced. Apparently, there 
are no plans of vector registers bigger than 1024 bits. Software use of AVX512 is still low 
because few programmers want to make multiple versions of their software for different 
processors. 
 
There are two different versions of the instruction set for 512-bit vectors. The Intel MIC/Xeon 
Phi Coprocessor uses a 4-bytes prefix called MVEX to increase the vector size, double the 
number of vector registers to 32 and allow various extra attributes to be added to each 
instruction, such as masked operations, type conversion, broadcast, permutation, cache 
eviction hint, rounding mode, and suppression of exceptions. The AVX-512 instruction set 
uses an almost identical prefix called EVEX. The EVEX prefix does not allow type 
conversion and permutation, but includes bits for specifying vector size instead. The MVEX 
and EVEX instruction sets are not compatible with each other. They differ by a single bit in 
the prefix, even for otherwise identical instructions. The MVEX and EVEX instruction sets 
are both backwards compatible with previous instruction sets, though. I expect the AVX-512 
instruction set with the EVEX prefix to be the standard for future x86 processors, while 
MVEX can now be regarded as obsolete. 
 
Strangely, the MIC/Xeon Phi processors also support the old x87 floating point instructions, 
which appear to be obsolete. It does not look like we are getting completely rid of the x87 
instructions in a foreseeable future even though they are expensive to implement in 
hardware. 
 
The x86 instruction set now has more than a two thousand logically different instructions, 
including specialized instructions for text processing, graphics, cryptography, CRC check, 
and complex numbers. The instruction set is likely to be increased with every new processor 
generation, at least for marketing reasons. We may see more application-specific in the 
future. 
 

https://www.agner.org/optimize/blog/read.php?i=25
https://www.agner.org/optimize/blog/read.php?i=25
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An ever-increasing number of instructions may not be optimal from a technical point of view 
because it increases the die area of the execution units whereby the clock frequency is 
limited. A more viable solution might be user-definable instructions. We are already seeing 
FPGA chips that combine a dedicated microprocessor core with programmable logic. A 
similar technology may be implemented in PC processors as well. Such a processor will 
have logical arrays similar to FPGAs that can be programmed in a hardware definition 
language to implement application-specific microprocessor instructions. Each processor 
core will have a cache for the hardware definition code in addition to the code cache and the 
data cache. The cost of task switching will increase, of course, but it will be easier to reduce 
the number of task switches when the number of cores is increased. 
 
The drive towards ever-increasing CPU speed according to Moore's law has a downside in 
terms of power consumption, size and price. We are now seeing an alternative trend of 
smaller low-power processors for mobile devices. These lightweight processors are as fast 
as the desktop processors were a few years earlier, yet smaller, cheaper and with much 
lower power consumption. We will see these small processors replace the big and power-
hungry processors in a lot of applications where we have previously paid for more CPU 
power than we need. 
 
The x86 instruction set bears a heavy burden of obsolete instructions and complicated 
coding schemes due to a long history of short-sighted patches and marketing conside-
rations. On the other hand, it has the advantage of more work done per instruction 
compared with RISC designs.  
 
The processors could be made significantly more efficient if we were not limited by the 
requirements for backward compatibility with legacy software. To showcase how a more 
efficient design could look, I have developed a new instruction set architecture called 
ForwardCom. The ForwardCom instruction set combines the fast decoding of RISC 
processors with the more work done per instruction of CISC processors. Furthermore, it has 
variable-length vector registers which eliminates the need for different software versions for 
microprocessors with different vector length. See www.forwardcom.info for details. 
 
It is a paradox that we still have many software products with frustratingly long response 
times while microprocessor performance has grown exponentially for decades. In most 
cases, the reason for unsatisfactory performance is not poor microprocessor design, but 
poor software design. All too often, the culprit is extremely wasteful software development 
tools, frameworks, virtual machines, script languages, and abstract many-layer software 
designs. The growth in hardware performance according to Moore's law is slowing down as 
we are approaching the limits of what is physically possible. Instead, Wirth's law claims 
jokingly that software speed is decreasing more quickly than hardware speed is increasing. 
 
In this situation, software developers should be advised to pick the low-hanging fruits rather 
than relying on still faster microprocessors: Avoid the most wasteful software tools and 
frameworks, and avoid feature bloat. Reducing the level of abstraction in software 
development will actually make it easier to understand the performance consequences of 
different code constructs. Good advice can be found in manual 1: "Optimizing software in 
C++". 
 

https://www.forwardcom.info/
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