eBook – Guide Spring Cloud – NPI EA (cat=Spring Cloud)
announcement - icon

Let's get started with a Microservice Architecture with Spring Cloud:

>> Join Pro and download the eBook

eBook – Mockito – NPI EA (tag = Mockito)
announcement - icon

Mocking is an essential part of unit testing, and the Mockito library makes it easy to write clean and intuitive unit tests for your Java code.

Get started with mocking and improve your application tests using our Mockito guide:

Download the eBook

eBook – Java Concurrency – NPI EA (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook – Reactive – NPI EA (cat=Reactive)
announcement - icon

Spring 5 added support for reactive programming with the Spring WebFlux module, which has been improved upon ever since. Get started with the Reactor project basics and reactive programming in Spring Boot:

>> Join Pro and download the eBook

eBook – Java Streams – NPI EA (cat=Java Streams)
announcement - icon

Since its introduction in Java 8, the Stream API has become a staple of Java development. The basic operations like iterating, filtering, mapping sequences of elements are deceptively simple to use.

But these can also be overused and fall into some common pitfalls.

To get a better understanding on how Streams work and how to combine them with other language features, check out our guide to Java Streams:

>> Join Pro and download the eBook

eBook – Jackson – NPI EA (cat=Jackson)
announcement - icon

Do JSON right with Jackson

Download the E-book

eBook – HTTP Client – NPI EA (cat=Http Client-Side)
announcement - icon

Get the most out of the Apache HTTP Client

Download the E-book

eBook – Maven – NPI EA (cat = Maven)
announcement - icon

Get Started with Apache Maven:

Download the E-book

eBook – Persistence – NPI EA (cat=Persistence)
announcement - icon

Working on getting your persistence layer right with Spring?

Explore the eBook

eBook – RwS – NPI EA (cat=Spring MVC)
announcement - icon

Building a REST API with Spring?

Download the E-book

Course – LS – NPI EA (cat=Jackson)
announcement - icon

Get started with Spring and Spring Boot, through the Learn Spring course:

>> LEARN SPRING
Course – RWSB – NPI EA (cat=REST)
announcement - icon

Explore Spring Boot 3 and Spring 6 in-depth through building a full REST API with the framework:

>> The New “REST With Spring Boot”

Course – LSS – NPI EA (cat=Spring Security)
announcement - icon

Yes, Spring Security can be complex, from the more advanced functionality within the Core to the deep OAuth support in the framework.

I built the security material as two full courses - Core and OAuth, to get practical with these more complex scenarios. We explore when and how to use each feature and code through it on the backing project.

You can explore the course here:

>> Learn Spring Security

Course – LSD – NPI EA (tag=Spring Data JPA)
announcement - icon

Spring Data JPA is a great way to handle the complexity of JPA with the powerful simplicity of Spring Boot.

Get started with Spring Data JPA through the guided reference course:

>> CHECK OUT THE COURSE

Partner – Moderne – NPI EA (cat=Spring Boot)
announcement - icon

Refactor Java code safely — and automatically — with OpenRewrite.

Refactoring big codebases by hand is slow, risky, and easy to put off. That’s where OpenRewrite comes in. The open-source framework for large-scale, automated code transformations helps teams modernize safely and consistently.

Each month, the creators and maintainers of OpenRewrite at Moderne run live, hands-on training sessions — one for newcomers and one for experienced users. You’ll see how recipes work, how to apply them across projects, and how to modernize code with confidence.

Join the next session, bring your questions, and learn how to automate the kind of work that usually eats your sprint time.

Course – LJB – NPI EA (cat = Core Java)
announcement - icon

Code your way through and build up a solid, practical foundation of Java:

>> Learn Java Basics

Partner – LambdaTest – NPI EA (cat= Testing)
announcement - icon

Distributed systems often come with complex challenges such as service-to-service communication, state management, asynchronous messaging, security, and more.

Dapr (Distributed Application Runtime) provides a set of APIs and building blocks to address these challenges, abstracting away infrastructure so we can focus on business logic.

In this tutorial, we'll focus on Dapr's pub/sub API for message brokering. Using its Spring Boot integration, we'll simplify the creation of a loosely coupled, portable, and easily testable pub/sub messaging system:

>> Flexible Pub/Sub Messaging With Spring Boot and Dapr

1. Overview

When we work with numbers, summing all integers in an array is a common operation. Also, recursion often lends itself to elegant solutions.

In this tutorial, we’ll explore how to sum integers in an array using recursion.

2. Recursion With Array Copying

First, let’s initialize an array of integers:

private static final int[] INT_ARRAY = { 1, 2, 3, 4, 5 };

Obviously, the sum of the integers in the array above is 15.

A usual approach to sum numbers in an array is sum (array[0-n]) = array[0] + array[1] + array[2] + array[3] + … + array[n].

This method is straightforward. Alternatively, we can look at this problem from a different perspective: the sum of numbers in an array equals the first number plus the sum of a subarray consists of the rest numbers:

sumOf(array[0..n]) = array[0] + sumOf(subArray[1..n]).

Now, if we look at sumOf() as a function or method, we can see the sumOf()’s body calls sumOf() again. Therefore, sumOf() is a recursive method.

As Java doesn’t allow us to change the array’s length after the creation, removing an element from an array is technically impossible. But Java has offered various ways to copy an array. We can use these methods to create the subarray.

When we implement recursive methods, defining the base case is crucial. A base case is some point to exit the recursion. Otherwise, without a base case, the method endlessly calls itself recursively until StackOverflowError is thrown.

In our case, the base case is when the subarray has only one element. This is because the subarray is empty after taking out the only number.

So next, let’s implement the recursive method:

int sumIntArray1(int[] array) {
    if (array.length == 1) {
        return array[0];
    } else {
        return array[0] + sumIntArray1(Arrays.copyOfRange(array, 1, array.length));
    }
}

As we can see in the sumIntArray1() method, we use the Arrays.copyOfRange() method to create the subarray.

If we pass our example input to the method, the recursion steps look like the following:

sumIntarray1(array) = array[0] + sumOfArray1(arr1{2, 3, 4, 5})
                    = 1 + (arr1[0] + sumIntarray1(arr2{3, 4, 5}))
                    = 1 + (2 + (arr2[0] + sumIntarray1(arr3{4, 5})))
                    = 1 + (2 + (3 + (arr3[0] + sumIntarray1(arr4{5})))) <-- (arr4.length == 1) Base case reached
                    = 1 + (2 + (3 + (4 + (5))))
                    = 15

Next, let’s test the method with INT_ARRAY:

assertEquals(15, sumIntArray1(INT_ARRAY));

3. Recursion Without Creating Array Copies

In the sumIntArray1() method, we used the Arrays.copyOfRange() method to initialize the subarray. However, a new array will be created every time we call this method. If we face an enormous integer array, this approach creates many array objects.

We know we should avoid creating unnecessary objects to gain better performance. So, next, let’s see if we can improve the sumIntArray1() method.

The idea is to pass the required index to the next recursion step. Then, we can reuse the same array object:

int sumIntArray2(int[] array, int lastIdx) {
    if (lastIdx == 0) {
        return array[lastIdx];
    } else {
        return array[lastIdx] + sumIntArray2(array, lastIdx - 1);
    }
}

If we test it with our INT_ARRAY input, the test passes:

assertEquals(15, sumIntArray2(INT_ARRAY, INT_ARRAY.length - 1))

Next, let’s understand how the sumIntArray2() method works.

The method takes two parameters: the integer array (array) and the last index up to which we intend to calculate the sum (lastIdx). This time, the recursion follows this rule:

sumOf(array[0..n], n) = array[n] + sumOf(array[0..n], n-1).

As we can see, we reuse the original array in each recursion step. The base case of this approach is when lastIdx is zero, which means we’ve reversely (from n ->0) walked through the entire array:

sumIntArray2(array, 4) = array[4] + sumOfArray2(array, 3)
                       = 5 + (array[3] + sumIntArray2(array, 2))
                       = 5 + (4 + (array[2] + sumIntArray2(array, 1)))
                       = 5 + (4 + (3 + (array[1] + sumIntArray2(array, 0))))
                       = 5 + (4 + (3 + (2 + (array[0])))) <-- (idx == 0) Base case reached
                       = 5 + (4 + (3 + (2 + (1))))
                       = 15

Finally, let’s apply a performance comparison to see, given the same input, whether sumIntArray2() is faster than sumIntArray1().

4. Benchmarking the Two Recursive Solutions

We’ll use JMH (Java Microbenchmark Harness) to benchmark the two recursive solutions. So, let’s first create a benchmark class:

@BenchmarkMode(Mode.AverageTime)
@State(Scope.Thread)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
@Warmup(iterations = 2)
@Fork(1)
@Measurement(iterations = 5)
public class SumArrayBenchmark {

    public static void main(String[] args) throws Exception {
        Options options = new OptionsBuilder()
          .include(SumArrayBenchmark.class.getSimpleName())
          .build();
        new Runner(options).run();
    }

    @Param({ "10", "10000" })
    public int size;
    int[] array;

    @Setup
    public void setup() {
        var r = new Random();
        array = new int[size];

        for (int i = 0; i < size; i++) {
            array[i] = r.nextInt();
        }
    }

    @Benchmark
    public int withArrayCopy() {
        return sumIntArray1(array);
    }

    @Benchmark
    public int withoutArrayCopy() {
        return sumIntArray2(array, array.length - 1);
    }
}

Our objective is to benchmark the two solutions. So, we won’t discuss each JMH configuration or annotation for brevity. However, it’s crucial to understand that SumArrayBenchmark performs each solution with two distinct input arrays:

  • An array with 10 random numbers
  • An array consists of 10000 random integers

Additionally, JMH conducts five iterations for each input array on each solution, ensuring a thorough evaluation of their performance.

Next, let’s look at the output SumArrayBenchmark produced:

Benchmark                           (size)  Mode  Cnt        Score       Error  Units
SumArrayBenchmark.withArrayCopy         10  avgt    5       30,576 ±     0,584  ns/op
SumArrayBenchmark.withArrayCopy      10000  avgt    5  7314150,000 ± 82516,421  ns/op
SumArrayBenchmark.withoutArrayCopy      10  avgt    5        6,764 ±     0,032  ns/op
SumArrayBenchmark.withoutArrayCopy   10000  avgt    5    30140,685 ±    91,804  ns/op

As the report shows, the withoutArrayCopy() solution is much faster than the withArrayCopy() approach:

  • Array[10] ~ 5 times faster (30576/6764)
  • Array[10000] ~ 242 times faster (7314150/30140)

5. Conclusion

In this article, we’ve explored two approaches to recursively summing integers in an array. Also, we analyzed their performance using the JMH tool. The “withoutArrayCopy” solution is much faster than the “withArrayCopy” approach.

The code backing this article is available on GitHub. Once you're logged in as a Baeldung Pro Member, start learning and coding on the project.
Baeldung Pro – NPI EA (cat = Baeldung)
announcement - icon

Baeldung Pro comes with both absolutely No-Ads as well as finally with Dark Mode, for a clean learning experience:

>> Explore a clean Baeldung

Once the early-adopter seats are all used, the price will go up and stay at $33/year.

eBook – HTTP Client – NPI EA (cat=HTTP Client-Side)
announcement - icon

The Apache HTTP Client is a very robust library, suitable for both simple and advanced use cases when testing HTTP endpoints. Check out our guide covering basic request and response handling, as well as security, cookies, timeouts, and more:

>> Download the eBook

eBook – Java Concurrency – NPI EA (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook – Java Streams – NPI EA (cat=Java Streams)
announcement - icon

Since its introduction in Java 8, the Stream API has become a staple of Java development. The basic operations like iterating, filtering, mapping sequences of elements are deceptively simple to use.

But these can also be overused and fall into some common pitfalls.

To get a better understanding on how Streams work and how to combine them with other language features, check out our guide to Java Streams:

>> Join Pro and download the eBook

eBook – Persistence – NPI EA (cat=Persistence)
announcement - icon

Working on getting your persistence layer right with Spring?

Explore the eBook

Course – LS – NPI EA (cat=REST)

announcement - icon

Get started with Spring Boot and with core Spring, through the Learn Spring course:

>> CHECK OUT THE COURSE

Partner – Moderne – NPI EA (tag=Refactoring)
announcement - icon

Modern Java teams move fast — but codebases don’t always keep up. Frameworks change, dependencies drift, and tech debt builds until it starts to drag on delivery. OpenRewrite was built to fix that: an open-source refactoring engine that automates repetitive code changes while keeping developer intent intact.

The monthly training series, led by the creators and maintainers of OpenRewrite at Moderne, walks through real-world migrations and modernization patterns. Whether you’re new to recipes or ready to write your own, you’ll learn practical ways to refactor safely and at scale.

If you’ve ever wished refactoring felt as natural — and as fast — as writing code, this is a good place to start.

eBook Jackson – NPI EA – 3 (cat = Jackson)
2 Comments
Oldest
Newest
Inline Feedbacks
View all comments