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1. Definice umélé neuronové sité

Umélou neuronovou sit (ANN) definujeme jako orientovany graf s dynamicky
ohodnocenymi vrcholy a hranami, tj. jako uspotadanou pétici [V, E, g, y, w], kde je:

mnozina vrcholl (neurontl)

mnoZzina hran (synapsi)

zobrazeni incidence hran s vrcholy (e: E - V X V)
dynamické ohodnoceni vrcholll (y: V X t = R)

=T 2 e m<

dynamické ohodnoceni hran (w: e(E) X T = R),

apro Vt € tresp. VT € T polozime y([i,t]) = y;(t) resp. w([i,j, T]) = w;;(T).

Vektor y(t) = [y;(t)|i € V] nazveme stavem sité v Case t a analogicky vektor
w(T) = [w;;(T)I[i,j] € V X V] nazveme konfiguraci sité v Sase T, pii¢emz pro [i,j] & e(E)
polozime w;;(T) = 0. Stav resp. konfiguraci sité jakoZto vektorové funkce Casu ¢ resp. T
nazveme aktivni dynamikou resp. adaptivni dynamikou umélé neuronové site.

RozliSenim cast aktivni a adaptivni dynamiky jsme vyjadfili skutecnost, Ze neuronova
sit’ pracuje ve dvou Casové nezdvislych reZimech, aktivnim a adaptivnim. V adaptivnim
rezimu probihd uceni sité, tj. nastaveni konfigurace sité jako dusledek siti predkladanych
vzorti a jim odpovidajicich obrazli, a v aktivnim rezimu probihd realizace v adaptivnim
rezimu naucené funkce sité, tj. zaujeti stavu sité jako disledek na sit’ pfilozeného stimulu.

Aktivni resp. adaptivni dynamiku umélé neuronové sité spojitého casu urcime jako
vektory feSeni ndsledujicich soustav diferencidlnich rovnic (ART):

d
250+ 50 = ) it = 80) wy =

d
ﬁwij(T) + B g;(x;(T)) wi;(T) = a fi(x;(T)) g;(x;(T))

kdeproi,j €V, a,f €<0,1 >aAt > 0 vyjadiujici zpozdéni signdlu je:

X potencidl i-tého neuronu

fi aktivacni funkce i-tého neuronu (y; = f;(x;))
gj adaptacni funkce j-t€ho neuronu

‘9j prah j-tého neuronu

Wij synaptickd vdha vazby i-t€ho neuronu s j-tym neuronem
0} mira plasticity synapse
B mira elasticity synapse.



Z definice aktivni resp. adaptivni dynamiky plyne pro t — oo resp. T — oo:

() = " yi(e0) wij = 8
i
resp. pro § # 0:

a
w;j(o0) = ] Yi(®)

apro =0, w;;(0) =0, g;(x;) = x; za pfedpokladu zanedbéni zmény potencidlii neuronti

behem adaptivni dynamiky:
wij(T) = a y(T) x;(T) T

tj. z w;j(o0) = oo plyne, Ze pro f = 0 nemd smysl nechat ¢as adaptivni dynamiky béZet do
nekonecna, ale nechdme-li Cas adaptivni dynamiky béZet N-krat pouze po dobu jednotkového
¢asového skoku, pak pro k € {1, —, N} dostaneme (Hebbovské uceni):

wig(N) = @ ) 3,00) ,06)
k

Elasticita synapse c¢asteCn¢ eliminuje nevratnou deformaci synapse zpisobenou
prochdzejicim signdlem a omezuje tak jeji schopnost adaptovat se na prochdzejici signal,
kterou pfedstavuje plasticita synapse. V piipad¢ nenulové resp. nulové miry elasticity synapse
je kapacita pamé&ti synapse omezend resp. neomezend.

Nahradime-li v definici aktivni resp. adaptivni dynamiky uvedené derivace
analogickymi vyrazy pro diskrétni Cas:

t+1—t de 7> 77 T+1-T

d
Ex]-(t) =

a polozime-li At = 0, pak obdrZime nésledujici soustavy diferen¢nich rovnic a vektory jejich
feSeni pak urcuji aktivni a adaptivni dynamiku umélé neuronové sit¢ diskrétniho Casu:

xi(t+1) =% filxi(®)) wij =9 resp. y;(t+1) =f;(Ziyi(®) wij — )
wii(T+1) = (1 - B g;(x(T)) wi(T) + a f;(x:i(T)) g;(x;(T))

kdei,j V.



Zavislost stavu na potencidlu neuronu (aktiva¢ni funkci) aproximujme sigmoidou:

O =1

Nz

kde parametr p > 0 vyjadiuje strmost sigmoidy, pro strmost bliZici se nule resp. nekonecnu

dostaneme aktivacni funkci ve tvaru linearity resp. ostré nelinearity:

1

lim f(x) == lim f(x)=0 x<0 lim f(x) =1 x>0
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V nasledujici ekvivalentni formulaci potencidlu a aktivacni funkce neuronu:

1
Xj = Z)’iWij flx) = P
l

chapeme parametr ¥ jako prdh neuronu, jehoz podkroceni resp. piekroceni potencidlem
neuronu neuron inhibuje resp. excituje. V ptivodné uvedené formulaci potencidlu a aktivacni

funkce neuronu:

1
Xj =Z}’iWij—'9j f(x)=m
i
chépeme parametry —v; jako vnéjsi stimul aktivujici sit’ svou injektdZi piimo do neuront, na
jejichZ hodnoty se iniciuji potencidly neuront: x;(0) = —¥;, pak vektor X(0) = [x;(0)|j € V]

oznacime jako vstup sité, jako vystup sité chapeme stav sité.

Vektorovou funkci pfifazujici vstupu sité vystup sité nazveme funkci site:
F(E(0)) = y(A0)
kde At je doba aktivace (odezvy) sité, pficemz konfigurace sité je parametrem funkce sité.
MnozZinu vstupil sit¢ injektovanych do sit¢ b&hem adaptivni dynamiky nazveme
trénovaci mnoZinou:

(Z(T)|T € AT}

kde AT je doba adaptace (uceni) sité.



2. Linearni heteroasociativni pamét’

Topologie sité:

Rozdélme populaci neuronii sit€¢ V na dvé disjunktni populace Vi a V, VUV, =V,
VinV, =09, |V,;| =n,|V,| =m)apropojme je hranami tak, aby z kazdého neuronu populace
Vi sméfovala hrana do kazdého neuronu populace V, (e(E) =V; X V,), sit’ je tedy
orientovdna smérem od populace V| k populaci V, a populaci V; resp. V, pak chdpeme jako
populaci vstupni resp. vystupni.

Aktivni dynamika:

Definujme aktivacni funkci neuronti sité jako identitu. Nastavime-li po¢atecni hodnoty

potencidli neuronll vstupni populace néasledovneé:
x;(0) = v

pak v ndsledujicim okamziku dostaneme tyto hodnoty potencidli neuront vystupni populace:

x;(1) = Z VW

i
kde i € V; aj € V,, vektor ¥ = [v;]i € V;] pak chdpeme jako vstup sité.

Adaptivni dynamika:

Definujme adaptacni funkci neuront vystupni populace jako identitu. Méjme trénovaci
mnoZinu ve tvaru {[d@(T), l_a)(T)]lT € AT}, kde d = [a;]i € V4] a b= [bj|j € V,]. PoloZime-li
plasticitu resp. elasticitu rovnu jedné resp. nule, pak obdrzime nasledujici adaptivni
dynamiku:

w;;i (T) = wij(T — 1) + a;(T) b;(T)

Polozime-li dale w(0) = 0aAT = {1,---, N}, pak po nauceni sit¢ budou vdhy nastaveny na
nasledujici hodnoty:

wig(N) = ) a,(T) by(T)

T

kdei €V,,j€V,aT €AT.



Funkce sité:

Necht’ vektory d z trénovaci mnoziny tvofi ortonormdlni bazi nadroviny p dimenze N
v prostoru R™ (N < n), pak pro libovolny vektor ¥ € p plati:

%(1) = Z Vi Z a;(T) b;(T) = Z b;(T) Z va;(T) = Z b;(T) % &(T) =
i T T 7 T

= D BT (5181 + -+ sy@(N) &(T) = ) s7by(T)
T

T

kde i €V, j€V,, T € AT a sq,-*-,Sy jsou soufadnice vektoru ¥ vzhledem k vySe uvedené
ortonormdlni bazi nadroviny p, pak pifi dob¢ aktivace sit¢ rovné jedné dostaneme nasledujici
funkeci sité:

F(%) = F(s,d(1) + -+ + syd(N)) = s;b(1) + -+ syb(N)
Funkce sité tedy libovolnému vstupu sité lezicimu v nadroving p, tvorenému linedrni

kombinaci vektorti d@ (vzord) trénovaci mnoziny, piifadi identickou linedrni kombinaci jim

odpovidajicich heteroasociaci, tj. vektori b (obrazll) trénovaci mnoZiny.
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3. Linearni autoasociativni pamét’ (LAM)

Topologie sité:

M¢éjme populaci neuront sit€¢ V a propojme ji hranami tak, aby z kazdého neuronu
populace sméfovala hrana do kazdého neuronu populace (¢(E) =V XV, |V| = n).

Aktivni dynamika:

Definujme aktiva¢ni funkci neuronti sit¢ jako identitu. Nastavime-li po¢ate¢ni hodnoty
potencidli neuront nasledovné:
x;(0) = v;

pak v nasledujicim okamziku dostaneme tyto hodnoty potencidlti neuronti populace:

x; (1) = Z Vi Wij

l
kde i,j € V, vektor ¥ = [v;|i € V] pak chapeme jako vstup sité.

Adaptivni dynamika:

Definujme adaptacni funkci neuronti sité jako identitu. Mé&jme trénovaci mnoZinu ve
tvaru {C(T)|T € AT}. Polozime-li plasticitu resp. elasticitu rovnu jedné resp. nule, pak
obdrZime nésledujici adaptivni dynamiku:

w;i(T) = wij(T — 1) + ¢;(T) ¢;(T)

Polozime-li ddle W(0) = 0 a AT = {1,---, N}, pak po nauden{ sit& budou véhy nastaveny na
nasledujici hodnoty:

wy(N) = ) () (T)
T

kdei,jeV aT € AT.
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Funkce sité:

Necht’ {a(1),---,a(n)}, {I;(l), e E(n)} a {¢(1),---,¢(n)} jsou baze prostoru R™, kde
druhou z uvedenych bazi ziskdme ortogonalizaci baze prvni a tfeti z uvedenych bazi ziskdme
normalizaci baze druhé, trénovaci mnozina {¢(T)|T € AT} je pak za predpokladu N < n &asti
vyse uvedené ortonormdlni baze, a pak plati (viz ortonormalizacni proces):

F(@(m) = (1) - @(m)) (1) + -+ (E(T — 1) - &(T)) &(T — 1) + |b(T)|E(T) = a(T)
F(@(s)) = (2Q1) - d(s)) é() + -+ (S — 1)+ a(s)) (S — 1) + |b($)|é(S) -
—(E(N+1)-d(8)) N + 1) — - — (665 = 1) - d(S)) €S — 1) — |b(S)|E(S) = a(S) — d(S)

kdeT € {1,---,N}, S € {N + 1, ---,n}, z &ehoZ pro libovolny vektor ¥ € R" plyne:
F®) = F(s1d(1) + - + 5,d(n)) = 5;F(@(1)) + -+ + s, F (@) =
= (50,41 + -+ spd(n)) — (SN+1C_1)(N + 1)+ -+ sng(n)) =V =T, =7,
kde sq,-+, s, jsou soufadnice vektoru ¥ vzhledem k bazi {d(1),--,d(n)} a v, resp. Uy je
ortogondlni projekce vektoru ¥ resp. kolmice spuSténd z vektoru ¥ do nadroviny p
generované vektory mnoziny {d(T)|T € AT}.

Funkce sité tedy libovolnému vstupu sité¢ pfi dobé aktivace sit€¢ rovné jedné ptitadi
jeho ortogonadlni projekci do nadroviny p, tj. jemu nejbliZsi autoasociaci z nadroviny p.

Necht’ vektor % leZi v nadroviné p a necht’ vektor ¥ je jeho nahodné zkresleni, pak si
vektor € = U — U definujeme jako Sum zkreslujici vektor %U. Funkci sit€ linedrni

autoasociativni paméti pak mizeme chdpat jako filtraci Sumu, tj. opravu vektoru v.
Pti konstantni velikosti Sumu kvalita jeho filtrace zdvisi také na jeho poloze.

Nejpiiznivéjsi poloha Sumu je, je-li kolmy na nadrovinu p, pak oprava vektoru ¥ se shoduje s
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4. Linearni model (RAM)

Topologie sité: Shodnad s linedrni autoasociativni paméti.

Aktivni dynamika:

Definujme aktivacni funkci neuroni sité jako identitu. Nastavme pocatecni hodnoty
potencidlii neuronll ndsledovné:
x;(0) = v;
a definujme vektorovou funkci:

o
P(x) = [vli'”rverk+1;"';xn]

pro X € R™, tj. k < n a m&me nésledujici aktivni dynamiku:
5+ D) = B xi(6) wi)
i

kde i,j € V, vektor U = [v;|i € V] pak chapeme jako vstup sité.

Adaptivni dynamika: Shodnad s linearni autoasociativni paméti.

Funkce sité:

Definujme vektory b(0) = [vy, -, v, 0,++,0] a B(T) = [ay(T),,ax(T),0,,0]
kde b € R" a vektorovou funkci Q(%) = [0, 0, Xgs1, ) Xn] pro X € R", pak mnoZina
o= {ﬁ(}?)lf € R"} je linedrni posunut{ nadroviny ¢ = {6 (X)|% € R"} o vektor b(0).

Piedpoklddejme, Ze vektory b (1), b (N) jsou linedrné nezavislé (N < k), pak
existuje pravé jeden vektor y € R™ lezici v priiniku nadroviny p s mnoZinou o.

Pro N > k uvaZzujme nadrovinu p, jako prinik nadrovin p a ¢ a nadrovinu p; jako

mnoZzinu vSech vektorli nadroviny p kolmych na kazdy vektor nadroviny p,, pak nadrovina p
je direktnim souétem nadrovin p; a p, (p = p1 D p,).

1.tvrzeni: Pro kazdy vektor X nadroviny p, plati, Ze vektor F (I3> (X)) lezi v nadroving p;.
Diikaz: Z € p,

(F-FP@E))Z=(P@ -FE@)) 7+ (E-P@)7=0

13



2.tvrzeni: Pro kazdé dva vektory X¥; a X, nadroviny p; plati, Ze velikost vektoru

F(P(%)) — F(P(%,)) je mensi ne velikost vektoru #; — %,.
Diikaz: 7 = (P(%;) — P(¥,)) — F(P(#) — P(%,))

% — %12 = [B@) — PG| + |G — %,) — BGy) — B
B - PG| = [F(BG) - FBG))| + 1212

Z vyse uvedenych tvrzeni podle véty o pevném bod¢ plyne, Ze existuje pravé jeden
vektor y € R"™ lezici v nadroving p, tak, Ze plati:

lim X(t) = F(P(Y)) = ¥
ktery soucasn¢ lezi v priniku nadroviny p s mnoZinou o, nebot’ z

t11m|f(t) — B((t))|sing = lim () — %(t + D] = 0
plyne
PG) =7

pak prinik nadroviny p s mnoZinou o je linedrni posunuti nadroviny p, o vektor y.

Stav sit¢ tedy béhem aktivni dynamiky alternujicimi ortogondlnimi projekcemi FaP
konverguje s libovolnou ptesnosti ke stavu lezicimu v priniku nadroviny p s mnozinou ¢ v na
ném kolmém smeéru, tj. ke stavu nejbliz§imu ortogondlni projekci vstupu sité do nadroviny p.
Doba odezvy sité je zavisld na volbé vySe uvedené ptesnosti. Pro N < k ziejmé plati, Ze
nadrovina p; je totoznd s nadrovinou p a nadrovina p, obsahuje pouze nulovy vektor.

Funkci sité¢ rekurentni autoasociativni paméti pak muiZeme chédpat podobné jako u
linedrni autoasociativni paméti jako filtraci Sumu s tim, Ze miiZeme zafixovat nékteré slozky
vstupu sité vy, -++, vy tak, zZe funkce sit€ opravi pouze zbyvajici sloZky vstupu sit€ vy 4, ", Up.
Nezafixujeme-li Zddnou sloZzku vstupu sité, pak funkce sité¢ rekurentni autoasociativni paméti
je totoznd s funkci sit€ linedrni autoasociativni paméti.

P(x(t))

x(t+1) x(t)

14



5. Hopfieldova autoasociativni pamét’ (HAM)

Topologie sité:

M¢éjme populaci neuront sit€¢ V a propojme ji hranami tak, aby z kazdého neuronu
populace sméfovala hrana do kazdého neuronu populace kromé€ do sebe sama
((E) =V xV ={[ii]li eV} V| = n).

Aktivni dynamika: (synchronni)

Definujme aktivaéni funkci neuront sit¢ jako modifikovanou ostrou nelinearitu
(f(x) =—1 pro x <0 a f(x) =+1 pro x > 0). Nastavme pocdte¢ni hodnoty potencidlt
neurond nasledovné:
x;(0) = v

a m¢jme nasledujici aktivni dynamiku:
Yt + 1) = FO 3i(®) wi)
i

kde i,j € V, vektor ¥ = [v;|i € V] pak chapeme jako vstup sité.

Adaptivni dynamika:

Definujme adaptacni funkci neuronti sit¢ jako identitu. Méjme trénovaci mnoZinu ve
tvaru {a(T)|T € AT}. Polozime-li plasticitu resp. elasticitu rovnu jedné resp. nule, pak pro
[ # j obdrzime nésledujici adaptivni dynamiku:

wii(T) = wi; (T — 1) + a;(T) a;(T)

Polozime-li ddle W(0) = 0 a AT = {1,---, N}, pak pro i # j po nauden{ sitS dostaneme:

wig(N) = ) au(T) ay(T)

T

kdei,j eV aT €AT.

15



Funkce sité:

Definujme si energetickou funkci stavu sité:

E@y)=- VZZZ%’WU’Y;
7 i

a ur¢eme jeji ndsledujici parcidlni derivace:

Oyj . YiWij

L

kdei,j V.

Déle si definujme stabilni stav sité jako stav, pro ktery plati y(t) = y(t+1) a
kvazistabilni stav sit& jako stav, pro ktery plati y(t) = —y(t + 1).

L.tvrzeni: Pro kazdy nestabilni stav sit€¢ za ptedpokladu y;(t) = y;(t + 1) pro i € V — {j}
(asynchronni aktivni dynamika) pii x;(t + 1) # 0 plati, Ze hodnota energetické funkce stavu

sité v Case t je vEtsi neZ hodnota energetické funkce stavu sité v Case t + 1.

Diikaz:
QO MO W) 3(®) < O e+ Dwe) 3yt +1)
i i
kdei,j V.
Z vyse uvedeného tvrzeni a z faktu, Ze energetickd funkce je zdola omezend, vyplyva,

Ze stav sit¢ béhem aktivni dynamiky kvazigradientnim sestupem po energetické funkci
konverguje ke stabilnimu stavu s lokdln¢ minimalni hodnotou energetické funkce.

Necht' trénovaci mnoZina obsahuje bipoldarni vektory tvofici ortogondlni bézi
nadroviny p v prostoru R™ (N < n) a definujme nadrovinu o vSech vektord kolmych na
kazdy vektor nadroviny p, pak prostor R™ je direktnim souctem nadrovin p a o
(R™ = p @ o) aplati:

N
it +1) = fj0p;(6) = —5;(6)) EG)=—-%ny ¥ —N)

kde ¥, je ortogondlni projekce stavu sité y do nadroviny p, viz:
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v ) @ g =) M) ) yal) = Y a)GFaT) - ya (M) =

T T T

=) siq(MAMET) -y, ) T =ny, Ny,
T

T

z}’jz}’iz a;(T) a;(T) = Zyj(n Yoj —Ny;) =
J i T J

=”§th—N§}f=n9%—Nn
j 7

kdejeV,i€V —{j},T € AT a s4,-+, s, jsou soufadnice vektoru y vzhledem k ortogonalni
bazi prostoru R™ obsahujici vektory baze nadroviny p, vizy = s;d(1) + -+ + s,d(n).

2.tvrzeni: Kazdy stav sité lezici v nadrovin€ p je stabilni.

Diikaz: pro kazdé j € V plati:

N
yi(t+ 1) = (1= —)y(0) = 3®
3.tvrzeni: Kazdy stav sité lezici v nadroviné o je kvazistabilni.

Diikaz: pro kazdé j € V plati:
N
yi(t+1) = fi(=— 3(0) = =¥;(®)
Hodnota energetické funkce stavu sit¢ je tedy nepifimo imérnd skaldrnimu soucinu

stavu sité s jeho ortogonalni projekci do nadroviny p a bude minimdlni resp. maximalni, pravé
kdyz stav sit¢ bude lezet v nadroviné p resp. o.

max

E(y)+————

Y
Enin 2 d } e,
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Z vySe uvedenych tvrzeni plyne, Ze kazdy stav sité, jenZ je prvkem trénovaci mnoZiny,
je stabilni a energetickd funkce sit¢ v ném nabyvé svého lokdlniho minima. Po¢dtecni stav sité
bchem aktivni dynamiky tedy konverguje k prvku trénovaci mnoZziny, tzv. atraktoru, jehoz
hodnota energetické funkce leZi na dné gradientniho spadu, na jehoZ uboci se hodnota
energetické funkce pocateniho stavu sit¢ nalézd, tj. lezi-li pocatecni stav sité ve sféfe vlivu
daného atraktoru. Kvazistabilni stavy se nalézaji na hranicich sfér vlivl riiznych atraktort.

4.tvrzeni: Stav sité je stabilni pravé kdyZ pro kazdé j € V plati:

1> > N
=YiYpj =
tj.
n=yy, >N
Duikaz:

N
yit+1) = fj(yp;(t) — oy yi() = y;(t)
kde ¥, je ortogondlni projekce stavu sité y do nadroviny p.

Z vyse uvedeného tvrzeni plyne existence i takovych stabilnich stavi sité, které nejsou
prvky trénovaci mnoZziny (y # J,), tzv. falesnych atraktorii, k nimZ pocdte¢ni stav sité

konverguje, naléza-li se ve sféfe jejich vlivu.

Funkce sité¢ pak libovolnému bipolarnimu vstupu sité ptifadi bud’to jemu nejblizsi
autoasociaci prvku trénovaci mnoziny, lezi-li k ni vstup sité¢ dostatecné blizko, anebo odezvu
sit¢ nezdvislou na prvcich trénovaci mnoziny, lezi-li vstup sité¢ dostatecné daleko od kazdého
prvku trénovaci mnoZiny. Doba aktivace sit€ zdvisi na vzdalenosti vstupu sité¢ od atraktoru
resp. faleSného atraktoru.

Funkci sit¢ Hopfieldovy autoasociativni paméti pak miZeme chédpat podobné jako u

linedrni autoasociativni paméti jako filtraci Sumu, pficemZ z hlediska spravné funkce sité
piipustné zkresleni atraktoru je dano oblasti vymezenou sférou vlivu tohoto atraktoru.
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6. Bidirektni heteroasociativni pamét’ (BAM)

Topologie sité:

Rozd€lme populaci neuronti sité V na dvé¢ disjunktni populace V; a V, (V; UV, =V,
VinV, =09, |V;| =n, |V,| = m)apropojme je hranami tak, aby z kazdého neuronu populace
Vi sméfovala hrana do kazdého neuronu populace V; (¢(E;) = V; X V,) a z kazdého neuronu
populace V, sméfovala hrana do kazdého neuronu populace V; (e(E;) = V, X V;), sit’ je tedy
orientovdna smérem od populace V; k populaci V, a zpét. Populaci V; pak chiapeme jako
populaci vstupni.

Aktivni dynamika: (synchronni)

Definujme aktivani funkci neuronil sit¢ jako modifikovanou ostrou nelinearitu
(f(x) =—1pro x <0 a f(x) =+1 pro x > 0). Nastavme pocéte¢ni hodnoty potencidld a
stavll neuront nasledovné:

x(0) = ¥,(0) = 0

a m¢jme nasledujici aktivni dynamiku:
yi(t+1) :fj(zyl'(t) Wij) yi(t+2) :fi(Z}’j(t‘*‘l) w;i)
i j

kde i € V,, j € V, a vektor ¥ = [v;]i € V;] pak chdpeme jako vstup sité.

Adaptivni dynamika:

Definujme adaptacni funkci neuront sité jako identitu. Méjme trénovaci mnozinu ve
tvaru {[d(T), l;(T)]lT € AT}, kde d = [a;[i € V4] a b= [bj|j € V,]. PoloZime-li plasticitu

resp. elasticitu rovnu jedné resp. nule, pak obdrzime nasledujici adaptivni dynamiku:
w;j(T) = wij(T — 1) + a;(T) b;(T) w;i(T) = w (T — 1) + b;j(T) a;(T)

Polozime-li dale w(0) = 0aAT = {1, -+, N}, pak po nauceni sit¢ dostaneme:

wy(N) = > @M BT W) = ) BT ax(T)
T

T

kdei €V, j€V,aT €AT.
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Funkce sité:

Definujme si energetickou funkci stavu sité:

EW) = _ZZYiWinj
T 1

a ur¢eme jeji ndsledujici parcidlni derivace:

_"’E@:z W _"’E_@:z W
ay,- i YiWij ] é YiWji

kdei € Vy,j EV,.

Dale si definujme stabilni stav sit& jako stav, pro ktery plati y(t) = y(t + 2).
1.tvrzeni: Pro kazdy nestabilni stav sité za predpokladu y;(t) = y;(t + 1) pro j € V, — {k}
(asynchronni aktivni dynamika) pfi x; (t + 1) # 0 plati, Ze hodnota energetické funkce stavu
sité v Case t je vétsi nez hodnota energetické funkce stavu sité v ¢ase ¢t + 1.

Diikaz:

(Z yi(t) wij) yi(t) < (Z yi(t + D) w;j) ye(t + 1)

i i

kdei€eV;aj k €V,
2.tvrzeni: Pro kazdy nestabilni stav sit€¢ za predpokladu y;(t +1) = y;(t +2) pro
i € V; — {k} (asynchronni aktivni dynamika) pti x, (t + 2) # 0 plati, Ze hodnota energetické
funkce stavu sité v Case t + 1 je vEtsi nez hodnota energetické funkce stavu sité v Case t + 2.
Diikaz:

Q Wt + Dwid vt + 1) < ;e +2) wy) vt +2)
J J

kdei,k €Vyaj €V,
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Z vySe uvedenych tvrzeni a z faktu, Ze energetickd funkce je zdola omezend, vyplyva,
Ze stav sit€¢ béhem aktivni dynamiky kvazigradientnim sestupem po energetické funkci
konverguje ke stabilnimu stavu s lokdln€ minimalni hodnotou energetické funkce.

Necht’ vektory trénovaci mnoziny da(T) resp. b(T) jsou bipolédrni vektory tvoiici

ortogonalni bazi nadroviny p, resp. p, v prostoru R" resp. R™ (N < n,m), pak prvky

Rn+m

trénovaci mnoZziny tvoii ortogonalni bizi nadroviny p v prostoru a plati:

yi(t+1) = fj(yp; (1)) yi(t+2) = fi(ypi(t + 1))
E()_}) =—-% (nj;b}_;bp + m)_}a)_}ap)
tj.pron =m:

E(:)_’)) =_1/2n5;5;p

kde Y, Ypp, ¥p jsou ortogondlni projekce vektorit ¥, , ¥p, ¥ do nadrovin pg, pp, p, viz:

Yy am b =Y by v =
i T T i

D BT 7 @I = Y spby(T) GTAT) = n
T

T
Yy B am =Y am )y yy () =
J T T J

D @M 9 BT = Y swera(™) BIBT) = m yp

T T

Zy]'ZYiZ a;(T) bj(T) =n Zijpj =N Yp Vbp
j) i T Jj

Z}’iz}’jz bj(T) a;(T) =m Zyiypi =M Y, Vap
7 7 T ;

kdei €V, j €V, T E€EAT, y, = [y;li € V1], y, = [yj|j € Vz] a S1,°**, Spem jsou soufadnice

Rn+m

vektoru y = [y,, ¥»] vzhledem k ortogondlni bazi prostoru obsahujici vektory baze

nadroviny p, viz ¥, = 5;8(1) + -+ + $5,8(n), P = Sps1b(1) + - + Spemb(m).
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Hodnota energetické funkce stavu sit¢ je tedy nepifimo umérnd skaldrnimu soucinu
stavu sit¢ s jeho projekci do nadroviny p a bude minimélni, pravé kdyzZ stav sit¢ bude lezet v

nadroving p.
3.tvrzeni : Kazdy stav sité lezici v nadrovin€ p je stabilni.
Diikaz: pro kazdé j € V, ai € V; plati:

yit+1) = fi(y;(©) = y; () yi(t+2)=filyi(t+ 1)) =y (¢ + 1)

Z vySe uvedeného tvrzeni plyne, Ze kazdy stav sité, jenz je prvkem trénovaci mnoZiny,
tzv. atraktor, je stabilni a energetickd funkce sit€ v ném nabyvéd svého lokdlniho minima.
Analogicky s Hopfieldovou autoasociativni paméti v§ak mohou vznikat i falesné atraktory, tj.

stabilni stavy neobsaZené v trénovaci mnozing.

Funkce sité pak bipolarnimu vstupu sité, leZicimu dostatecné blizko néjakému vzoru

d, nalezenim stability mezi oscilujicimi stavy vstupni a vystupni populace, tzv. rezonanci,

prifadi jeho heteroasociaci, tj. jeho obraz b.
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7. Optimaliza¢ni model (CHN)

Topologie sité:

M¢éjme populaci neuront sit€¢ V a propojme ji hranami tak, aby z kazdého neuronu
populace smcfovala hrana do kaZzdého neuronu populace kromé do sebe sama
(eE)=VxV—{[i,ili eV} V] =n).

Aktivni dynamika: (synchronni)

Definujme aktivacni funkci neurontl sit€ jako sigmoidu. Nastavme pocatecni hodnoty
stavll neuront nasledovné:

yi(0) =0

a m¢jme nasledujici aktivni dynamiku:

Yt +1) = O 70wy = 9))

kde i,j € V.

Adaptivni dynamika:

Konfigurace sité se urcuje extrakci z objektivni funkce.
Funkce sité:

Definujme si energetickou funkci stavu sité:

EG)=—-(% Z Z YiWijyj — Z yi9;)
i J

j

a ureme jeji ndsledujici parcidlni derivace:

OE (¥ dE (0 92E(y
_ (Y)_Ziwij_ﬂj _9EQ0) _ 2

_— = Wi
dy; 0y;0y; Y

kde i,j € V.

25



Definujme stabilni stav sité jako stav, pro ktery plati y(t) = y(t + 1) a parametr T
jako prevracenou hodnotu strmosti sigmoidy.

Tvrzeni: Bude-li se bliZit hodnota parametru 7" k nule (T — 0), pak pro kazdy nestabilni stav
sit¢ za predpokladu y;(t) = y;(t + 1) pro i € V — {j} (asynchronni aktivni dynamika) pfi
x;(t + 1) # 0 a platnosti w;; = wy; pro i,j € V, bude platit, Ze hodnota energetické funkce
stavu sité¢ v Case t bude vétsi neZ hodnota energetické funkce stavu sité v Case t + 1, tj.
EG®) > EQ(t+1).

Diikaz:
(Z yi(®) wij — ;) y;(t) < (z yit+ Dw;—9) y;(t+1)
i i
nebot’:
xi(t+1)>0=>y(t+1)=1=2y;(t)=0
xit+1D)<0=>y;t+1)=0=>y;1t) =1
kdei,j € V.

Z vySe uvedeného tvrzeni a z faktu, Ze energetickd funkce je zdola omezend, vyplyva,
Ze stav sit¢ béhem aktivni dynamiky kvazigradientnim sestupem po energetické funkci
konverguje ke stabilnimu stavu s lokdln¢ minimalni hodnotou energetické funkce.

Pii vySSich hodnotich parametru 7 muZe byt konvergence k lokdlnimu minimu
energetické funkce na dn€¢ menSiho gradientniho spadu naruSena, ¢ehoz lze vyuzit k jeho
pfeskoceni. Budeme-li tedy hodnotu parametru 7 z dostatecné vysoké pocatecni hodnoty
béhem aktivni dynamiky postupné snizovat, pak po preskoceni mélkych lokalnich minim pfi
dostate¢né nizké hodnoté parametru 7 ndm stav sit¢ uvizne v oblasti hlubokého minima
energetické funkce na dné vétSiho gradientniho spddu a zkonverguje ke stabilnimu stavu s
piiblizné¢ globdlné minimalni hodnotou energetické funkce, tj. zamrzne v globdlnim minimu.
Parametr T tedy hraje roli teploty z optimaliza¢ni metody simulovaného Zihéni.

Funkce sité pak vstupu sité pfifadi bindrni stav sit€¢ s minimdlni hodnotou energetické
funkce, ¢ehoz lze vyuZzit k hledani minim funkci ve tvaru kvadratické formy na oblasti
vymezené bindrnimi hodnotami nezdvisle proménnych. Doba aktivace sit€¢ zdvisi na
vzdélenosti vstupu sité¢ od vyse uvedeného stavu sité a volbé pocatecni teploty a strmosti
jejtho poklesu. Konfigurace sit€¢ se extrahuje z objektivni funkce urCenim jejich vyse
uvedenych parcidlnich derivaci.
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7.1. Problém obchodniho cestujiciho FeSeny optimaliza¢nim modelem

Necht mohutnost populace neuroni optimalizaéniho modelu je rovna hodnoté
m? (m € N), pak miZzeme neurony zminéné populace interpretovat jako prvky &tvercové

matice dimenze m X m.

Definujme si ndsledujici funkce stavu sit¢:

G, (y) = VZZ(Z yij — 1)? G,(y) = VZZ(Z yij — 1)?
7 7

i J

G3(y) = z z Pij Z YikYjk+1
7 X

7
kdei,j € {1,---,m}, k € {1,---,m — 1} a p;; je piislusnd metrika.

Urceme jejich parcidlni derivace:

9G,(0) 32G,(5)
-7 __
0yij 0Y:;0yik
9G,(0) 92G,()
S A | I A
ayij OYija)’kj
kde i, j,k € {1,-:-,m}a
_96(0) _, | 0%G0O) _ o
a)’ij ayika)’jk+1 Y

kdei,j € {1,---,m}ake{l,---,m—1}.

Definujeme-li objektivni funkci G jako soulet funkci G;, G, Gz a uréime-li
konfiguraci a vstup sité¢ optimalizaéniho modelu extrakci z funkce G uZitim vySe uvedenych
parcidlnich derivaci, pak se objektivni funkce G ztotoZni s energetickou funkci E
optimalizacniho modelu, jejiZ minimalizace probéhne béhem aktivni dynamiky.
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Minimalizaci funkce G resp. G, zajistime excitaci pravé jednoho neuronu v kazdém
fadku resp. sloupci zminéné matice, ¢imz obdrzime tzv. pripustny stav sité, interpretujeme-li
si totiZ fadky resp. sloupce zminéné matice jako mésta resp. poradi jejich navstévy obchodnim
cestujicim, pak kazdy pfipustny stav sité predstavuje jisté feSeni problému obchodniho
cestujiciho, ov§em ne nutn¢ optimélni.

Minimalizaci funkce G3 zajistime nalezeni optimdlniho piipustného stavu sité, tj.
optimdlniho feSeni problému obchodniho cestujictho, nebot’ hodnota funkce Gs udava délku
cesty obchodniho cestujiciho v zavislosti na pfipustném stavu.

 S—
 S—
 ——

vazby zajistujici vazby zajistujici
minimalizaci Gy minimalizaci Gp

vazby zajistujici
minimalizaci G3
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8. Kompeti¢ni model

Topologie sité:

Rozd€lme populaci neuronti sité V na dvé¢ disjunktni populace V; a V, (V; UV, =V,
NV, =0,|V;| =n,|V,] =m)apropojme je hranami tak, aby z kazdého neuronu populace
Vi sméfovala hrana do kazdého neuronu populace V, (e(E;) =V, X V,), sit’ je tedy
orientovdna smérem od populace V| k populaci V, a populaci V| resp. V, pak chidpeme jako
populaci vstupni resp. vystupni. Dédle propojme neurony populace V, hranami tak, aby z
kazdého neuronu populace sméfovala hrana do kazdého neuronu populace kromé& do sebe

sama (e(E;) = Vo X Vo, — {[j, jllj € V2 }).

Aktivni dynamika:

Definujme aktivac¢ni funkci neuronti populace V) resp. V, jako identitu resp. ostrou
nelinearitu. Nastavme pocatecni hodnoty potencidll a stavii neuronti ndsledovne:

x(0) = v, ¥,(0) = 0

a m¢jme nasledujici aktivni dynamiku:

yi(t+1) :fj(Z}’k(t) Wi — ;) — 9, ZZW Wij
- .

L

kde i € V4, j, k € V, a parametr —V; pak piedstavuje zisk potencidlu j-t¢ho neuronu vystupni

populace od neuront vstupni populace. Vektor v = [v;|i € V;] pak chdpeme jako vstup sité.

Adaptivni dynamika:

Nastavme pocétecni hodnoty vah nésledovné:
w;;(0) = 1y; wy;(0) = -2
a definujme adaptacni funkci neuront vystupni populace jako ostrou nelinearitu. Méjme
trénovaci mnozinu ve tvaru {a(T)|T € AT}, kde a = [a;|i € V;]. Nechame-li adaptovat pouze

vazby mezi neurony populace V| a V, a poloZime-li plasticitu rovnu elasticité¢ (a¢ = f8), pak
obdrzime nésledujici adaptivni dynamiku:
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w;ii(T) = wi (T = 1) + ay;(T)(a;(T) — wi(T — 1))
Wy (T) = wy;(T — 1)
kdei €V, j,k €V,, T € AT = {1,—,N} ar;; je ndhodné generovana hodnota.

V kazdém kroku adaptivni dynamiky je nutné urcit stavy neuronti populace V,, kroky
adaptivni dynamiky jsou tedy podminény dynamikou aktivni, kterd z pohledu adaptivni
dynamiky bézi nekonecné rychle, takze stav populace V, se béhem adaptivni dynamiky urci
synchronn¢ se stavem populace V.

Stav populace V, v kazdém adaptacnim kroku ur¢ime pomoci aktivni dynamiky s

ndsledujicim pocatecnim nastavenim hodnot potencidlii neurond populace V;:

x;(0) = a;(T)
kde i € V.

Piitadme kazdému neuronu populace V, viahovy vektor w; = [Wl- ili € Vl], potom
neurony populace V, spolu s hranami E; a aktivni dynamikou tvoii spojitou Hopfieldovu sit’ s
energetickou funkci:

E®) =22ykyj+2yj19j - =Zai(T) w;j = a(T) w;
i k J

2
kdeiEVl,jEVZ,kEVZ—{]}.

Budou-li vektory trénovaci mnoZiny resp. vdhové vektory normélni, pak vzdédlenost
mezi uvedenymi vektory mulZeme definovat jako jimi sevieny tuhel ¢ €<0,m >
(neeuklidovskéd metrika) a pro zisk potencidlu pak bude platit —9; = cos ¢ (d(T),Ww;). Vyse
uvedend energetickd funkce pak nabude svého minima, pravé kdyZ bude excitovan pravé

jeden neuron populace V; a to neuron s maximdlnim ziskem potencidlu, tzv. gain neuron.

Proces minimalizace energie stavu populace V>, realizovany aktivni dynamikou, kdy
excitovany neuron populace s maximdlnim ziskem potencidlu inhibuje prostiednictvim
zépornych internich vazeb ostatni neurony populace, ozna¢ime jako laterdlni inhibici.
Laterdlni inhibice, urcujici na zdklad¢ ptredlozeného vzoru jemu odpovidajici stav populace
V>, nahrazuje v trénovaci mnoZin¢ chybé&jici asociaci vzoru, tj. jeho obraz neboli vyrok
ucitele, a mluvime tedy o uceni bez ucitele.
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Laterdlni inhibice v kazdém adaptacnim kroku zabezpe¢i adaptaci pouze vahového
vektoru odpovidajiciho j-tému gain neuronu, tj. vdhového vektoru ve smyslu vyse uvedené
neeuklidovské metriky nejblizsiho pfedloZzenému vzoru, k némuz se po povrchu n-rozmérné
hyperkoule jednotkového poloméru piibliZi o adaptacni krok imérny mite plasticity synapse:

W, (T) = Wi(T — 1) + a (@(T) — w; (T — 1))

a(a(T) - w; (T-1))

pak fekneme, Ze j-ty gain neuron vyhral kompetici o piedlozeny vzor trénovaci mnoziny.
Normalitu vektoru zadaptovanych vah zajistime jeho normalizaci po adaptaci.

Definujme objektivni funkci:
G(7) =1 ) 3T ) (@(T) - wy;)’
T i
a urCeme jeji nasledujici parcidlni derivace:

0G(w))
B aWU

= Z yi(T)(a (T) — wyj)
T

kdei€eV,,jeV,aT € AT.

Objektivni funkce nabude svého minima, pravé kdyz vahovy vektor zaujme polohu s
minimdlnim souc¢tem jeho vzdélenosti od vSech vektori trénovaci mnoZiny excitujicich

piislusny neuron, tj. ve smyslu euklidovské metriky ve sttedu uvedenych vektort.

Jelikoz vySe uvedend adaptivni dynamika je kvazigradientnim sestupem po zdola
omezené objektivni funkci, tak za predpokladu, ze vektory trénovaci mnoZiny tvoii ve
vstupnim prostoru shluky, jejichZ pocet odpovidd mohutnosti populace V>, budou ndhodné
nastavené vahové vektory béhem adaptivni dynamiky konvergovat ke stiediim téchto shluk.
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Funkce sité:

Definujme si ndsledujici kategorie normdlnich vektori, do kterych byl béhem
adaptivni dynamiky proveden rozklad oblasti normdlnich vektori obsahujici trénovaci
mnozinu (N > n, m):

Cr = {X € Qo W) < p(¥, W)} Q= {XeR"¥ =1}
kde k € V,, j € V, — {k} a @ je neeuklidovskd metrika, tj. Gdhel mezi uvedenymi vektory.

Funkce sit¢ tedy v aktivnim rezimu libovolnému normdlnimu vstupu sité piifadi

vektor kanonické baze s jednotkou na k-té pozici praveé kdyzZ vstup sité lezi v k-té kategorii.

Doba aktivace sité je shodna s dobou aktivace optimaliza¢niho modelu.

Funkci sit¢ kompeticniho modelu pak muzeme chdpat jako klasifikacni z hlediska
vyse uvedenych kategorii.
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8.1. Kohonenova mapa (SOM)

PoloZime-li |V,| = m?, pak mliZeme neurony populace V, interpretovat jako prvky
ctvercové miizky o rozméru m X m. Definujme ctvercové okoli r-tého fadu k-t€ho prvku
miizky jako mnoZinu obsahujici vSechny prvky mifizky lezici ve vzdalenosti mensi nebo
rovné fadu r, tj. o(k,r) = {j € Vy|p(k,j) < r}, kde p je metrika definovand na zminéné
miiZce jako sousedstvi prvki piisluSného fadu, a upravme adaptivni dynamiku pro k-ty gain
neuron:

wi(T) = W;(T — 1) + a;(T)(a(T) — w;(T — 1))

kde j € a(k,r) a mira plasticity klesa globaln¢ s casem adaptivni dynamiky a lokalné s fadem
vzdalenosti prislusného neuronu v miizce populace V, od gain neuronu.

a[3|2[ 1 J@l1]2]3 NEAHO DHE
sousedé gain neuronu ctvercové okoli gain
2. fadu neuronu 2. Fadu

v v

Uvedenou udpravou adaptivni dynamiky jsme zobecnili laterdlni inhibici rozsifenim

excitace gain neuronu na jeho okoli, ¢imZ jsme provazali metriku ¢ s metrikou p.

Budou-li vektory trénovaci mnoZiny ndhodné rozd€leny v n-rozmérném prostoru v
souladu s néjakou distribu¢ni funkci, pak po adaptaci sit¢ budou vahové vektory ndahodné
rozdéleny v tomtéZ prostoru v souladu se stejnou distribucni funkci.

PredloZime-li v aktivnim reZimu trénovaci mnoZinu na ni zadaptované siti, pak mapa
cetnosti excitaci neuronii populace V,, tzv. Kohonenova mapa, ndm zobrazi rozmisténi vzori

trénovaci mnoZiny v n-rozmérném prostoru.
Takto zobecnény kompeti¢ni model za piedpokladu dostatecné velké mohutnosti

populace V, provadi shlukovou analyzu trénovaci mnoziny, tj. ureni poctu shlukii véetné

jejich rozmisténi v n-rozmérném prostoru.
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8.2. Vstricné Sifeni vah (CPN)

propojme ji hranami s populaci V, tak, aby z kazdého neuronu populace V, sméfovala hrana
do kazdého neuronu populace V3 (¢(E3) = V, X V3). Necht’ novd vystupni populace V3 ma
stejnou mohutnost jako vstupni populace V;. Vahy hran E5 nastavme néasledovné¢:

Wip(i) = Wij

kde i € V3, j € V,, p(i) € V3 a p(i) je bijektivni obraz i-tého neuronu vstupni populace ve
vystupni populaci.

Vystupni populace V3 spolu s ohodnocenymi hranami FE5 je tedy obrazem vstupni
populace V; spolu s ohodnocenymi hranami E; zrcadlicim se pfes nyni skrytou populaci V5,
mluvime o vstFicném Sireni synaptickych vah hran E| na hrany E3 ve sméru orientace hran.

Zvolme aktivacni funkce neuront populace V3 shodné s aktivaénimi funkcemi
populace Vi, pak béhem aktivni dynamiky po stabilizaci stavu populace V, excitaci k-té€ho
gain neuronu dostaneme hodnoty potencidlli neuronti populace V3 nasledovné:

*p(i) = Z YiVip() = Wkp@) = Wik
j

kde i € Vy, j € V,, z &ehoZ pro stimul X € Cj, plyne ndsledujici funkce sité:
F(3) =y

Funkce sit€¢ kompetiéniho modelu se vstficnym Sifenim vah tedy libovolnému
normdalnimu vstupu sité piifadi jeho prototyp, tj. jemu nejblizsi vahovy vektor. Prototypy lezi
v centrech pfisluSnych shluki a tim uvedené shluky reprezentuji, jsou jejich typickymi
predstaviteli.

Kompeti¢ni model se vstiicnym §itenim vah a Kohonenovou mapou miZeme uZit pro
redukci mohutnosti trénovaci mnoziny, nahradime-li ji mnoZinou prototypii jejich prvkii o

volitelné mohutnosti m? (N > m?).
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9. Nelinearni model (MLP)

Topologie sité:

Rozd€élme populaci neuronti sit¢ V na tfi disjunktni populace V), V, a V;
VuWhuVa=V, VinV,=0,V,NnV;=0, V,nV;=0, |V;|] =n, |V,|=?, |[V;]=m) a
propojme je hranami tak, aby z kazdého neuronu populace V; sméfovala hrana do kazdého
neuronu populace V; (¢(E;) = V; X V,) a z kazdého neuronu populace V, sméfovala hrana do
kazdého neuronu populace V3 (e(E,) =V, X V3), sit’ je tedy orientovana smérem od populace
V1 k populaci Vi. Populaci V; resp. V3 pak chapeme jako populaci vstupni resp. vystupni a
populaci V, nazveme skrytou populaci implikujici nelinearitu funkce sit¢.

Aktivni dynamika:

Definujme aktivacni funkci neurontl sit€ jako sigmoidu. Nastavme pocatecni hodnoty
potencidli neuront nasledovné:
x;(0) = v
a mé&jme nasledujici aktivni dynamiku:

V() = e yi(0) w)

Y@ = 0 e wiy)
k

kdei € V,, k € V,, j € V5 a vektor U = [v;]i € V,] pak chdpeme jako vstup sité.

Adaptivni dynamika:

Nastavme pocatecni hodnoty vah nésledovné:
wix (0) = 1y wy ;i (0) = 1y
PoloZime-li elasticitu rovnu nule, pak dostaneme nasledujici adaptivni dynamiku:

Wik (T) = wy (T — 1) + a y;(T) gi(x(T))
Wi (T) = wy; (T — 1) + a yi (T) g;(x;(T))

kdei € Vy, k € V;,j € V3, T € AT a1y, resp. 7yj jsou ndhodn€ generované hodnoty.

36



Mgjme trénovaci mnoZinu ve tvaru {[&(T),I;(T)“TE AT}, kde d = [a;i € V4],

b= [bj|j € V5] a definujme globélni chybovou funkci funkce sité:
E@) =% ) ) (FEM) — i)Y = ) Er
T T

kdej€eVyaT € AT.

Globalni chybova funkce vyjadiuje soucet hodnot lokdlnich chyb Er, tj. soucet rozdila
mezi skuteCnou a pozadovanou odezvou sit€¢ pfes vSechny prvky trénovaci mnoZiny pii
aktudln¢ nastavené konfiguraci sit€¢ a jeji funkcni hodnotu Ize proto chdpat jako aktudlni
chybu funkce sit¢ vzhledem k trénovaci mnozin¢. Funkce sité definovand béhem adaptace sité
trénovaci mnoZinou, bude bezchybna pravé kdyz E (W) = 0.

Upozorneni. V dal§Sim pro zjednoduSeni zdpisu u potencidlii a stavii neuronid nebudeme
explicitné uvadeét Cas adaptivni dynamiky jakozto jejich argument, budeme implicitné
v zapisech predpokladat jeho synchronizaci s indexem lokdlni chyby.

Definujme adaptacni funkce neuroni vystupni a skryté populace:

9E,
9;(g) =—5—

_ dy
i (x) = Tx. gj(x;) wy;
J k 7

kdekeV,aj eV,

Urceme nésledujici parcidlni derivace:

aE'T _ aET ax] _
owyj - 0x; 0wy =~k 9;(%)
aET _ aET ax] dyk axk B
dwy L 0x; Oy dxy 0wy, = =¥i G (X)
j
kde:
0% 0xp,
3 = Wgj = V.

proi €V, keV, jeV;.
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Adaptivni dynamiku pak dostaneme ve tvaru:

OE,
wix(T) =wy(T—1) —a Wi
OE;
Wk](T) = Wk](T - 1) - (laij
adale z
0E O 9Fr 0E  ~C 0E;
an'k = an'k aWk] = aWk]

plyne, Ze adaptivni dynamika je kvazigradientnim sestupem po zdola omezené globalni
chybové funkci, kde jeden gradientni krok odpovida jednomu piedlozeni trénovaci mnoziny,
takZze pfi opakovaném predkladani trénovaci mnoZiny bude hodnota chybové funkce
v zavislosti na volb¢ velikosti miry plasticity synapse klesat.

Adaptacni funkce vystupni a skryté populace uréi za predpokladu jednotkovych
strmosti sigmoid jakoZto aktivacnich funkci nasledujici derivace:

dEr dyy
a—xj =y;(1=y)W; — fj(b)) - V(1 = yi)

V kazdém adapta¢nim kroku tedy musime urcit stav sit€¢ pomoci aktivni dynamiky s

ndsledujicim pocatecnim nastavenim hodnot potencidlil neurond vstupni populace:

x;(0) = a;(T)
kde i € V;.

Kroky adaptivni dynamiky jsou tedy stejné jako u kompeti¢éniho modelu podminény
dynamikou aktivni, pficemz stavy neurontl vSech jednotlivych populaci se v nich z pohledu
adaptivni dynamiky ur¢i synchronng.

Jelikoz pro urceni hodnot vah hran spojujicich vstupni a skrytou populaci neuronti v
daném adaptacnim kroku museji byt jiz ureny aktualizované hodnoty vah hran spojujicich
skrytou a vystupni populaci neurond, a to na zdkladé velikosti chyby E;, mluvime o zpétném
Sireni chyby proti sméru orientace hran (BPA).
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Funkce sité:

Libovolnému vstupu sité ¥ pak funkce sité piifadi vystup sité F (V) tak, Ze usporddana
dvojice [ﬁ,ﬁ (¥)] predstavuje dalsi funkci sit€ vytvofeny a v trénovaci mnoZiné neobsaZzeny
piiklad n&jaké objektivni vektorové funkce G:R™ > R™, mluvime tak o schopnosti sité
zobecnit (generalizovat) béhem adaptace ziskanou zkuSenost, nelinedrni model je tak
univerzdlnim aproximdtorem libovolné objektivni vektorové funkce, jejiz piiklady jsou

uvedené v trénovaci mnozing.

Optimdlni pocet neuronii skryté populace je piimo imérné zavisly na mite nelinearity
aproximované objektivni vektorové funkce a stanovuje se experimentdlné¢ béhem adaptivni
dynamiky na zdklad¢€ vyvoje hodnoty globalni chybové funkce.

Za ptedpokladu E(W) = 0 je funkce nelinedrniho modelu pro vzory z trénovaci
mnoziny stejné¢ jako u linedrni pamcéti heteroasociativni, ale na rozdil od linedrni paméti
vykazuje nelinedrni model robustnost vici jisté mife poskozeni vzoru, tj. i do jisté miry
poskozeny vzor asociuje s odpovidajicim obrazem, a jestlize je obraz shodny se vzorem, tj.
@(T) = b(T) pro T €AT, tj. n=m, lze nelinedrni model uZit podobné¢ jako linedrni
autoasociativni pamét’ k filtraci Sumu. Na druhou stranu funkce nelinedrniho modelu neni
nijak urcena pro linedrni kombinace vzort, pokud nejsou obsaZeny v trénovaci mnozing.

M¢jme pocet kategorii jistych objektd roven mohutnosti populace V3 a méjme
trénovaci mnoZinu ve tvaru {[&(T),B(T)“T € AT}, kde d = [a;]i € V] predstavuje dany
objekt a b = [bj|j € V5], kde b;(T) = 0 pro j # k a b (T) = 1, pfedstavuje vyrok ucitele o
piisluSnosti daného objektu do k-té kategorie, pak po adaptaci sit€¢ na uvedenou trénovaci

mnozinu funkce sit¢ v aktivnim rezimu klasifikuje libovolny objekt z hlediska danych
kategorii.

M¢éjme Casovou posloupnost {P(t, + kAt)|k € N}, kde At je perioda snimkovani a
méjme trénovaci mnozinu ve tvaru {[d(T), l_a)(T)]lT € AT}, kde d(T) = [P(tr — iAb)|i € V4],
E(T) = [P(ty + jAt)|j € V3] a ty =ty + TAt pro T € AT, pak po adaptaci sité na uvedenou
trénovaci mnozinu funkce sité v aktivnim rezimu na zdklad¢ pfedloZené historie posloupnosti
[P(t — iAt)]i € V;] provede predikci posloupnosti [P(t + jAt)|j € V3], kde t = t, + kAt.
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Autoasociativni funkci nelinearniho modelu lze také uzit k symetrickému Sifrovani
libovolného pocitaového souboru, a to béhem aktivni dynamiky nejprve zakédovanim
kazdého jeho bajtu | x4, ..., xg] do jemu ptislusného vektoru |y, ..., V4 l:

Ugr o Ugg
lxl, ...,XBJ : = lyli ...,y4J
Ugy -+ Ugs
a posléze jeho néslednym dekédovanim:
Vi1 = Vig
VAC R ACHIE Cl = L e xg)
Vg1 1 Vsg

kde X resp. y jsou vektory potencialt neuronti vstupni/vystupni resp. skryté, tzv. délici vrstvy,

.
f je vektor aktivaénich funkci neuronti délici vrstvy a [uy, ..., U, Uy, ..., Us] je konfigurace
sité, tj. adaptovany nahodné generovany klic.

fly)

O 0O
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9.1. Setrvacnost gradientu chybové funkce
Definujme piiristek konfigurace sit¢ béhem adaptacniho kroku ndsledovné:
Aw(T) =w(T) —w(T — 1)
a upravme vyse uvedenou adaptivni dynamiku:

OE,

Wi (T) =wy(T-1)—«a FIom

+ uAwy (T — 1)

OE
Wi (T) = i (T = 1) — a5—

Awyi (T — 1

kdei €V, k €V,,j € V3 au € (0,1) nazveme mirou setrvacnosti gradientu.

Necht béhem adaptacniho kroku vSechny parcidlni derivace globélni chybové funkce
nezméni znaménko, pak gradient chybové funkce pted a po aktualizaci konfigurace vyznamné
neméni smér ani orientaci, pfi¢teni minulého piiriistku konfigurace k aktualizovanému
gradientu probéhne tedy ve smeéru pavodniho gradientu a tim aktualizovany gradient
vyznamné nevychyli, zvétsi se pouze velikost gradientniho resp. adaptacniho kroku ve sméru
k lokdlnimu minimu globdlni chybové funkce.

Necht béhem adaptacniho kroku vSechny parcidlni derivace globélni chybové funkce
zméni znaménko, pak gradient chybové funkce pfed a po aktualizaci konfigurace vyznamné
neméni smér, v némz lokdlni minimum chybové funkce zfejmé neleZi, ale méni orientaci.
Pricteni minulého piirtstku konfigurace k aktualizovanému gradientu pii vhodné mife
setrvacnosti gradientu pak aktualizovany gradient vychyli smérem k lokdlnimu minimu
globalni chybové funkce.

V obou uvedenych typickych situacich se tedy pfictenim minulého pfirastku
konfigurace k aktualizovanému gradientu konvergence hodnoty globdlni chybové funkce k
nule urychli, gradient globdlni chybové funkce diky své setrvacnosti neméni prudce smér,
trajektorie gradientniho sestupu sméiujici k hlubsimu lokdlnimu minimu je pfiméjsi a melci
lokdlni minima preskoci.

min
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9.2. Dynamika miry plasticity synapse

Uvazujme adaptivni dynamiku v makroskopickém Case t, kdy konfiguraci sité
adaptujeme vzdy po pfedlozeni celé trénovaci mnoziny, na rozdil od vySe uvedené adaptivni
dynamiky v mikroskopickém Case T, kdy jsme konfiguraci sit¢ adaptovali vZdy po piedlozeni
piislusného prvku trénovaci mnoziny, pak tuto adaptivni dynamiku dostaneme ve tvaru
gradientniho sestupu po zdola omezené globalni chybové funkci, pfipadn€ s dynamicky se
ménici mirou plasticity synapse jakoZto velikosti gradientniho kroku:

0E(w
w+1) =w(r) —a() %

a proved’'me Tayloriv rozvoj j-té slozky funkce sit¢ v okoli konfigurace sité v Case t:

oF;(w
Fj(W(T + 1)) = Fj(W(T)) + %(W& +1)— W(T)) =
0F; (WD) E(W(1))
ow (1) ow (1)

=F(wW®@) - a(®)

a u funkce sit¢ zaménme jeji parametr s promeénnou, tj. konfiguraci sité s ptislusSnym prvkem
trénovaci mnoziny (F;(d(T)) = FjW(Zi(T)) = Fja(T) (W) = F;(w)), pak dostaneme derivaci

globdlni chybové funkce podle miry plasticity synapse pro ejT(T) =F j(W(T)) — fj(b;(T)) ve

tvaru:
dE(W(t +1)) _ dF;(W(z + 1))
— e = Z Z(F;(w(r +1) - fOON L
kde:
dEW(I+1) _ 95W@)IEWD) _ _8(0)
da(1) - ow(r) ow() ~ t
t.:

dE(W(T + 1)) T
T L0 @@

a velikost miry plasticity synapse mizeme v kazdém gradientnim kroku optimalizovat:

IR

dEW(@ +1)) _2je(1) 6(1)
da(1) =0 = «@= NY;82 (1)

kdej € V5, T € {1,-,N}, T € Nag;(z) = Xrel (D).
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Upozornéni: V dalSim pro zjednoduSeni vyjadieni piislusnych parcidlnich derivaci nebudeme

uvadét makroskopicky Cas t adaptivni dynamiky jakoZto argument

Skalédrni souCin §; pfisluSnych kolinedrnich gradientii rozepiSeme do tvaru

OE;

OF; (W) 0E(W) _~O 0F; O OE; Z z
OW 61/7 B - aWk] = aWk] awlk aWik

4. pro z;(¥;) = ¥;(1 = ¥;), 2k (i) = yi(1 = i) a ¢;(T) = y,(T) = f(b;(T))

— == = Vizj(¥;) w2 Emawik = ¥iZ (Vx) Z Zi (yj) Wi
j

aWk] dx] aWk]
OFr _ (1 T)) e;(T OFr _ T T)) e;(T
aij = Y ( )Zj()’j( ) ej( ) Wi = ¥i(T) z Yk ( ))sz(Yj( ) ej( )ij

takZe pro uy; = y,z;(y)), Uik = ¥,2(¥}) a Vkj = Z;(y) wy :

oF; 0E
L - uk,zuk]m &(T)
aWk] aWk]

dF; OEr = Uy, Z kj Z u (T) Z vij(T) ;(T)

an'k = an'k

kdei €V, k €V,,jEVsaT € AT.
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10. Hybridni model (RBF)

Topologie sité:

Rozd€élme populaci neuronti sit¢ V na tfi disjunktni populace V), V, a V;
ViuWhuV,=V,Vnlhb=0,VinV;=0,V,NnVs=0, |Vi|=n, |V,| =M, |Vz] =m) a
propojme je hranami tak, aby z kazdého neuronu populace V; smétfovala hrana do kazdého
neuronu populace V; (¢(E;) = V; X V,) a z kazdého neuronu populace V, sméfovala hrana do
kazdého neuronu populace V3 (e(E,) =V, X V3), sit’ je tedy orientovana smérem od populace
V1 k populaci Vs. Populaci V; resp. Vi pak chdpeme jako populaci vstupni resp. vystupni.

Aktivni dynamika:

Definujme aktivaéni funkci neuront populace V; resp. V, resp. V3 jako identitu resp.
linearitu (f(x) = % x) resp. sigmoidu. Nastavme pocateéni hodnoty potencidlli neuronti
nasledovné:

x;(0) = v;
a m¢jme nasledujici aktivni dynamiku:

(1) = fk(z yi(0) wye — i)

Y@ = 0 e wiy)
k

kdei € Vy, k € V,, j € V5 a vektor ¥ = [v;]i € V;] pak chdpeme jako vstup sité&.

Adaptivni dynamika:

Nastavme poc¢étecni hodnoty vah nésledovné:
Wi (0) = cj Wy (0) = 1

Nechdme-li adaptovat pouze vazby mezi neurony populace V, a V3 a poloZime-li elasticitu
rovnu nule, pak obdrzime ndsledujici adaptivni dynamiku:

wix (T) = wy (T — 1)
Wi (T) = wi; (T — 1) + a y, (T) g (x;(T))

kdei € Vy, k € V,,j € V5, T € AT a ryj jsou ndhodné€ generované hodnoty.
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Mgjme trénovaci mnoZinu ve tvaru {[&(T),I;(T)“TE AT}, kde d = [a;i € V4],
b= [bj|j € V5] a definujme globalni chybovou funkci a adaptacni funkci neurond vystupni

populace:

E@) =% ) ) (FEM) — i)Y = ) Er
T T

0E
9i(x) = =5 ==y, = ¥ = ;)
]

a ur¢eme nasledujici parcidlni derivaci:

OET _OET ax] _ ( )
aij B ax] aWk] - Yk g] xj

pak adaptivni dynamiku dostaneme ve tvaru:
O0Er

kde k €V,,j € V5, T € AT, pficemZ z

OF OE,

aij_ = aWk]

plyne, Ze adaptivni dynamika je kvazigradientnim sestupem po zdola omezené globalni
chybové funkci, kde jeden gradientni krok odpovidd jednomu piedloZeni trénovaci mnoZiny,
takZze pfi opakovaném predkladani trénovaci mnoZiny bude hodnota chybové funkce
konvergovat k nule.

V kazdém adaptacnim kroku tedy musime urcit stav sit¢ pomoci aktivni dynamiky s
ndsledujicim pocatecnim nastavenim hodnot potencidlil neurond vstupni populace:

x;(0) = a;(T)
kde i € V;.

Kroky adaptivni dynamiky jsou tedy stejn¢ jako u kompeticniho modelu podminény
dynamikou aktivni, pficemz stavy neuront vSech jednotlivych populaci se v nich z pohledu
adaptivni dynamiky ur¢i synchronng.
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Funkce sité:

Necht' vektor &, = [c;|i € V1] je prototyp k-tého shluku normalnich n-slozkovych
vektorti, nastavime-li —9, = 1, pak za pfedpokladu normality vektorli d trénovaci mnoZiny
bude stav k-tého neuronu skryté populace v piisluSném adaptacnim kroku vyjadiovat miru
vzdalenosti p vektoru a(T) od k-tého prototypu ve smyslu neeuklidovské metriky ¢:

ye(T) =% (Z a;(T) ci +1) = Y2 (d(T) G + 1) = % (cos p(a(T),c,) + 1)

kdeT € {1,—,N}ak € {1,—, M} pti N > M.

¢

:‘.----------J----------J

4

Libovolny normdlni vstup sit¢ ¥ funkce sité¢ v prvnim okamZiku aktivni dynamiky
asociuje s mirami jeho vzdalenosti od vSech prototypii shluki mnoziny {a(T)|T € AT}
jakoZto se stavy neuronu skryté populace a v druhém okamziku aktivni dynamiky asociuje

stav skryté populace s funk¢éni hodnotou F ).

Prvni ¢ést sit¢ €(E;) je tvofena kompeticnim modelem s odebranymi zdpornymi
internimi vazbami a druha cast sité €(E,) je tvofena horni ¢asti nelinedarniho modelu, mluvime
tedy o hybridni siti.

Hybridni model je tak stejné¢ jako nelinedrni model univerzdlnim aproximatorem

libovolné objektivni vektorové funkce G:R" > R™, jejiz priklady jsou uvedené v trénovaci

mnoziné.
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11. Dodatek A: Perceptron

Topologie sité:

Rozdélme populaci neuronit sit¢ V na dveé disjunktni populace V; a V,
VauV, =V, V,nV, =0, |V;| =n, |V,] =1) a propojme je hranami tak, aby z kazdého
neuronu populace V; sméfovala hrana do neuronu populace V, (e(E) = V; X V), sit’ je tedy
orientovdna smérem od populace V; k populaci V,. Populaci V; resp. V, pak chipeme jako
populaci vstupni resp. vystupni.

Aktivni dynamika:

Definujme aktiva¢ni funkci neuronti populace V; resp. V, jako identitu resp. ostrou
nelinearitu (f;(0) = 0), pak pro x;(0) = v; dostaneme nasledujici aktivni dynamiku:

Y1) = O vewy) = £ )
7
kde i € Vy,j € V, aw; = [wy;|i € V;]. Vektor ¥ = [v;]i € V;] pak chdpeme jako vstup sité.

Adaptivni dynamika:

Zvolme w;;(0) = 0 a poloZme plasticitu resp. elasticitu rovnu jedné resp. nule, pak

dostaneme ndsledujici adaptivni dynamiku:

w;i(T) = wi;(T — 1) + x;,(T) g;(x;(T))
kdei €V,,j €EV,aT € AT.

M¢jme trénovaci mnozinu ve tvaru {[d(T),b(T)]|T € AT}, kde d = [a;|i € V;] a
b € {0,1} uspotddanou tak, aby b(1) = 1 a definujme chybovou funkci:

E(T) = b(T) — f;(a(T) w;(T — 1)) (E(1)=b(1)=1)
a ddle zvolme adaptatni funkei vystupniho neuronu ve tvaru g;(x;(T)) = E(T), pak:
wi(T) =w;(T - 1) +d(MET)  (w;(1) =d(1))
tj. pro AT ={1,---,N}:
W, (N) = Z G(TYE(T)

T
kdej€eV,aT € AT.
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Funkce sité:

Zvolme d(T) € a = b(T) =1 a d(T) € B = b(T) = 0 (viz definice niZe) a necht
vektory d jsou vzdjemné¢ ortonormdlni a vektory W; normalni, pak plati:

fi@mw(r) =bM) (@@ w;(1) = f;a@®) a) = ;1) =b(1) = 1)

nebot’ z Cauchy - Shwarzovy nerovnosti |d(T) w;(T — 1)| < |d(T)| |w;(T — 1)| = 1 plyne pro
T #1aE(T) % 0:

f;@mW;(T — 1) + d(ME(T))) = f;(a(M) wy(T — 1) + E(T)) = f;(E(T)) = b(T)

Pozndmka: f;(E(T)) = b(T) plyne z nasledujicich implikaci:
EM=-1=2bT) =0Af;@Mw,(T-1D)=1=2d(M)w;(T-1)>0=>d(T) €Ea
EM=+1=2bTM) =1Af;@Mw,(T-1D)=0=2d(Tw;(T-1)<0=>a(T)€P

Definice: a,B c R, anpB =0
@,  — linedrné separabilni nadrovinou p ©@ W ER" (WEa =W >0)AWERL=>UW <0)
kdep={PeR"vw=0}aaUBUp=R"
Z vyse uvedeného pro T = {1,---, N} plati:
F(E@) = @@ ) dMEM) = fE®) = b
T
apro ¥ € R™, kde |¥| = 1, plati:

fj(ﬁ Wj) = fj(|17||v7j| cos @) = fj(cos @)

kde j €V,, T € AT, tj. perceptron klasifikuje libovolny normélni vektor z hlediska dvou
linedrné separabilnich kategorii a a 5, pfi¢emz vektor leZici v délici nadroviné p pfifadi do f3.

48



12. Dodatek B: Vicevrstvy perceptron (zobecnéni BPA)

M¢jme lokélni chybu prvku trénovaci mnoZiny nelinedrniho modelu vyjadfenou
souctem rozdilti skutecné a pozadované hodnoty stavu neuronli vystupni vrstvy sité¢ V; a
vyjadieme si stavy a potencidly neuront skryté vrstvy sité V5:

Er="% ) M =5M)  ye=1+eP xo= yowy +9,

RozS$ifme seznam nezdvisle proménnych chybové funkce nelinedrniho modelu, dosud
tvofeny synaptickymi vahami vazeb mezi neurony jednotlivych vrstev sit€, tj. wy a wy;, 0

parametry aktivacni funkce neuronti skryté vrstvy sité, tj. U, a pg, a urCeme ndsledujici
derivace:

aET aET ax]
dw, ~ o awgy ~ P05 = 2) = =i g;09)
aET _ aET ax] dyk axk

95T _ . 1— Z..l_.._. =
w, ,- 5%, 3y oy, Iwig Vi iy — yi) j p;yi(1 —y)(Vj — 2) wg; Vi 9k (Xx)
aET aET ax] dyk axk
30, 2 axjﬁdxk aﬁk=pkyk(l_yk)zpjyj(l_yj)(Yj_Zj) Wij = =gk (Xk)
]

aET _ aET ax] dyk (1 )2 1 xk
o ; 0x; Oy dpy e VAE T Vi ] pjyi(A =y = z) wij = o I (Xk)
kde:
dEr d}’] 0x; 0x; Axy 9%y,
=T . — — 9%k _ 4
axj (y J ) E kj Wy Vi Wy Vi FER
dy-

dy dy
J _ k _ k
prat yl-y) G-y = aod =)

pak dostaneme adaptivni dynamiku nelinedrntho modelu zobecnénou o adaptaci praht a

strmosti aktivac¢nich funkci neuronii skryté vrstvy sité jakoZto nezdvisle proménnych chybové
funkce nelinedrniho modelu:

0Er
wi(T) =wy (T —1) —a FIom
0E;
Wk](T) = Wk](T - 1) - aaij
0E;
U (T) =9, (T - 1) — aﬁ
OEr
pe(T) =pe(T = 1) — aﬂ

kdei €V, k €V, jEVsaT € AT.
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Prahy a strmosti aktiva¢nich funkci (sigmoidélni funkce resp. Gaussova funkce resp.
funkce ,,mexicky klobouk*) neuront vstupni a vystupni vrstvy sité¢ mizeme urcit v zavislosti
na trénovaci mnozin¢ pomoci dile uvedenych transformaci:

sigmoiddlni transformace: flx) = (1 + e—P(x—ﬁ))_l
- 0,05
— —p(®+30-9)) "1 -3po _
095=(1+e ) = e 0,95
In0,95—-1n0,05 1
= p = ~ —
0.95 30 o
— —-p(9-30-19) -1 3poc —
0,05=(1+e ) > e 005
y
1 T
0 |
T I X
9 -30 9 3+30
pasmo citlivosti
radidlni transformace I f(x) = e PG—9)?
1 1
_ ,-p(9+V6o-9)° _ N
0,05=e p( Véo ) = p—-mll’l0,0S:m
y
1
+ 0 1
I I
9-V6o 9 9+/60

pasmo citlivosti

= o |
'~
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radidlni transformace II: gx) =—c%f"(x)

) =P 5 f10) = —2px—O)f () = () = ~2p(1 - 2(x = Df ()

1 1 1
90 = =" = (1= = 9)?) () = g'0) = — (=) (5 (v = ) = 3) (@)

y

9-30 9-V3o f ¢ 9+/30 9+30

pasmo citlivosti

[ = l ~1

< 103 1 >t 1
9-30 9-0 8§ 9+0 9+30

pozn.: Vyse uvedené transformaci resp. jeji nezaporné ¢asti odpovidaji riznéd pasma citlivosti.

9 — stfedni hodnota dat pfivddénych na dany neuron z trénovaci mnoZiny

o — smérodatnd odchylka dat pfivddénych na dany neuron z trénovaci mnoZiny
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13. Dodatek C: Instar uceni ve spojitém case

M¢jme nasledujici neuronovou sit:

Wo2 Wo3

P —
I, I3

kde pro zjednoduSeni uvazujme aktivacni a adaptacni funkci jako identitu a miru plasticity
nastavme shodné s mirou elasticity na hodnotu jedna, pak za ptfedpokladu nulovych
pocadtecnich podminek pro —9; = [; > 0, kde j € {0,1,2,3}, dostaneme nasledujici aktivni a

adaptivni dynamiku:

Aktivni dynamika:

d

Exo(t) + xo(t) = 1o
tj.

xo(t) =l (1—e™)
tj.

tlim xo(t) = xo(0) = Iy

aproj € {1,2,3}

d

tj.
@O =lowy; 1-q® e ™)+ (A—-e™)  q®) =1 +te)
tj.
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Adaptivni dynamika:

d
77 Woi [(T) + x;(0) wo;(T) = x¢(c0) x;j(0)
t.

d
oWy (1) = =(@wi(T) = b wo;(T) + <)

pro j € {1,2,3}, kde
a=10 bzlg_lj C=_101]'

tj. po separaci proménnych:

tj. obecné:

+C  D=b*—4ac=(2+1) >0

pti¢emz plati b — /D < 0 < b ++/D akde C je integraéni konstanta.

b\/_b+\/_

) pak dostaneme hyperbolicky prab¢h:

b +\/_
b —\/—
WOj(T) ~%a
tj.proT # C:
1 e VD(I=0) 4
WO](T) —_ %(b - \/E—e—\/B(T—C) _ 1
tj.
, b ++D
7ll_I)Tolowoj(T) = Woj(oo) = oa =1
a
_ b—vD I
Aim wo;(T) = wgj(—00) = 2 1,
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Pro T = 0 dale dostaneme:

b++VD
1 W j(o) 2a
=—1n
D b—+D
Wo ](0) 2a
takZe pro wy;(0) > b;f plati C < 0 a pro wy;(0) < b;f plati C > 0, z ¢ehoz plyne, Ze z
pohledu piedpokladu nulovych pocéte¢nich podminek je hodnota wy;(0) sice vzdy dobie
b—VD b+VD

definovand, nicméné lezi vzdy mimo interval ( 7}, a proto nemiiZze nikdy nabyt

2a ’
nulové hodnoty, tj. pro toto feSeni adaptivni dynamiky nelze splnit poZadavek nulovych
pocatecnich podminek.

b—VD b+VD

2a ' 2a

Za druhé uvazujme wy;(T) € ( ), pak dostaneme sigmoidalni pribéh:

b++D
e—\/E(T—C) _ 2a - WO](T)
b—+D
woj(T) = =—g—
tj.
1 e VD=0 1
Woj(T) = %(b — \/B—e—\/B(T—C) 1
tj.
, b ++D
7ll_I)Tolowoj(T) = Woj(oo) = oa =1
a
_ b—+D Ij
Aim wo;(T) = wgj(—o0) = 2@ 1,
Pro T = 0 déle dostaneme:
b++D
c 1 1 7a _WOj(O)
=—1In
VD b—+D
WOj(O) - 2a
tj. pro nulové pocate¢ni podminky je:
1 VD+b
C=—In
VD VD -b

tj. jeding v piipade I§ = I; je C = 0
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Z obecného teSeni adaptivni dynamiky plyne, Ze pokud budou synaptické véihy
naucené sité pred zahdjenim jeji adaptace jiZ nastaveny na poZadované hodnoty, tj. na limitni
hodnoty v nekone¢ném cCase adaptivni dynamiky, adaptivni dynamika nemd smysl, tj.
naucenou sit’ jiZ nemd smysl ucit.

V opacném piipadé funkci naucené sit€¢ pfi obraceném toku Casu, tj. sit’ si pamatuje
budoucnost, dostaneme ve tvaru:

ﬁ([’o» 0,0,0]) = [Io, =1y, =I5, — 3]
a pii béZném toku cCasu, tj. sit’ si pamatuje minulost, dostaneme ve tvaru:
F([10,0,0,0) = [Io, I8, I, 18]
tj. funkce sité€ je tedy zavisla na orientaci percep¢ni Sipky Casu.
7. partikularniho teSeni adaptivni dynamiky daného nulovymi pocatecnimi

podminkami pii nulové integracni konstanté a béZném toku Casu dostaneme funkci naucené
sit¢ v nasledujicim tvaru:

F([16,0,0,01) = [y, 11, I, 5]
Béhem instar uceni (f = 1) se do paméti synaptické vazby redln€ ulozi po dostatecné

dlouhou dobu ji prochdzejici informacni signdl I, (presynaptickd aktivita), tj. kapacita paméti
je omezend hodnotou /.
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14. Dodatek D: Outstar uceni ve spojitém case

M¢jme nasledujici neuronovou sit’:

I, I3

kde pro zjednoduSeni uvazujme aktivacni a adaptacni funkci jako identitu a miru plasticity
resp. elasticity nastavme na hodnotu jedna resp. nula, pak za ptfedpokladu nulovych
pocatecnich podminek pro —9; = [; > 0, kde j € {0,1,2,3}, dostaneme nasledujici aktivni a

adaptivni dynamiku:

Aktivni dynamika:
d
T xo(8) + xo(t) = Z x;(t — At wyo + Io
J
6.
5O = ) hwe A=q@® e+l (I—e™)  q(t)=(1+te)
J
6.
lim %0(6) = x0(e2) = ) [ wyo + Iy
Jj

aproj€{1,2,3}:

d
6.

Xj(t) = I] (1 - e"t)

tj.
th_)rglo xj(t) = xj(0) =
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Adaptivni dynamika:

d

ZeWjo(T) = (@) x0()

t.

d
= wio(T) = O Tiwig(T)+10)
5
pro i,j € {1,2,3}, tj. obecné:

I.
wio(T) = w;jo(0) +j C(e®T—1)
-2 -
kde w = |I| pro I = [I, I, I5] a kde integraéni konstanta C = ¥; ;w;;(0)+1, pak plati:
Hm wio(T) = w; (o) = oo
z ¢ehoz plyne, Ze nema smysl nechat ¢as adaptivni dynamiky béZet do nekone¢na. Nechme na

sit’ pisobit stimul I, a I po dobu adaptace (T, Ty) a vzapé&ti stimul Jo a ] = [J1, /5, /3] po dobu
adaptace (T4, T,), kde:

Tp =0 T, =7 In2 T,=|]] In2

7. partikularniho fteSeni adaptivni dynamiky daného nulovymi pocatecnimi
podminkami pro dobu adaptace (T, T;) dostaneme funkci naucené sité ve tvaru:

ﬁ'([O, I, I, 13]) = [10, Iy, 15, 13]

Z I; wjo (T =1
Jj

nebot’:

a dale z partikuldrntho feSeni adaptivni dynamiky daného pocateCnimi podminkami

> —2
wio(Ty) = 1| I; I, pro dobu adaptace (T;,T,) dostaneme:

hilo , JiJo )

wio(T2) =~ 2 Vo2
LAV i

2/j’0
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t.

ZIJ WjO (TZ) = IO ( g)]O ( ])2 ( ]) 0
J

] 71171
Z]]W]o(Tz) Jo+ (|I_,|]) 0 |(|2|]_,|)2(] ]) 0

t.

7 - -
z Lwyo (Ty) =1 + %]0 cos<p(1,f) + I, coszgo(l,f)
J

Iy cos (p(l D += I cos<p(1 f)

S gy () = o + L | bl
; 1] 1]

77 M W pd P4
tj. pro vzdjemné ortogondlni vstupy I, ] dostaneme funkci naucené sité ve tvaru:

F([0,Iy, I, 3D = [Io, Iy, I, 1] F([0,]1,J2,J5]) = UosJu,J20 )]

Béhem outstar uceni (f = 0) se do paméti synaptické vazby uloZi po uréitou dobu ji
prochézejici normovany informacni signél [;, vazeny stimulem [, (postsynaptickd aktivita),
injektovanym do neuronu pfijimaciho prochdzejici signdl. Analogicky miiZeme neomezen¢
nacitat do paméti hodnoty dané pary stimuld f a J, injektovanych do obou vrstev neurontl, tj.
do cipt resp. sttedu hvézdy, tj. kapacita paméti je neomezena.

w A

Io
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15. Dodatek E: Simulované zihani

Evoluc¢ni algoritmy se uZivaji k nalezeni dostatecné kvalitniho feSeni optimaliza¢nich
uloh v dostate¢né kriatkém case. Mezi evolu¢ni algoritmy inspirované piirodou se zahrnuje
celé spektrum optimalizacnich heuristickych technik, napt. genetické algoritmy ¢i simulované
Zihani. Heuristiky mtiZeme popsat jako zkratkovity postup prohleddvéani prostoru feSeni bez
zaruky spravného vysledku, nicméné jsou zbaveny celé fady neduhti konvencnich
optimalizacnich metod, jako napi. pozadavek spojitosti ¢i diferencovatelnosti objektivni resp.
vazebni funkce, respektovidni omezujicich podminek, uviznuti v mélkém lokdlnim minimu
atd. Na druhou stranu vSak je pti jejich aplikaci zapotifebi nastaveni jistych volnych
parametrd, které je nutné ,,naladit v zdvislosti na konkrétnim optimalizacnim problému, tak
jako napf. pocatecni resp. koneCnou teplotu a pocet iteraci ddle popsaného algoritmu
simulovaného Zihdni, vychédzejictho z evoluce termodynamickych systémd. Zihinim
oznacujeme ve fyzice proces, pii kterém je téleso zahiaté na vysokou teplotu postupné
ochlazovano, ¢imz se odstranuji vnitini defekty télesa. Vlivem vysoké teploty se ¢éstice latky
v télese ndhodné uspofddaji, tim se defekty krystalické miizky zahladi a postupnym
ochlazovanim pak castice ustalujeme do rovnovaZznych poloh spolu s poklesem
pravdépodobnosti vzniku defektti novych.

Predstavme si, Ze argument optimalizované funkce jednoznacné€ urCuje makrostav
n¢jakého termodynamického systému o energii rovné funkéni hodnoté, pak mizeme vyjadrit
jeho termodynamickou pravdépodobnost:

P(E) = |{ZeR|f(® = E}|

jako pocet jemu odpovidajicich mikrostavii.

Ponotime-li uvedeny systém nabyvajici riznych makrostavli o energiich E; do tepelné
lazn€ o energii Ey, pak dle Boltzmannovy rovnice, pro jednotkovou velikost Boltzmannovy
konstanty, pomoci Taylorova rozvoje diferencovatelné funkce mizeme po vyrovndni teplot

vyjadtit pro E = Ey + E; = konst a E >> E; entropii 14zné&:

S(E;) = S(E) —dz—(;:)Ei =InP(E - E;)

a déle uzitim definice teploty dS(E)/dE = (1/T) pro T > 0 vyjadfime termodynamickou
pravdépodobnost makrostavu tepelné ldzn¢ jako funkci energie makrostavu vlozeného
systému, tj. pomoci Boltzmannova faktoru:

Ej
P(E—E)=ce T

59



Algoritmus simulovaného zihadni spoCivd v perturbaci kandididta na optimum a
nasledném rozhodnuti o jeho nahrazeni perturbaci v kazdé iteraci algoritmu dle Metropolisova

kritéria:
L oy _P(E) _ _aE
o %) = =e T AE >0
p(xl - x]) P(Ei) e
p(% - %) =1 AE <0

vyjadiujictho pravdépodobnost piechodu systému z jednoho makrostavu do druhého, kde
AE =E;—E; a AE/T vyjadfuje pfirGstek entropie, tj. v souladu s druhou vétou
termodynamickou nemozny jev je v uvedeném kritériu uméle pifedefinovan na jev jisty.

Posloupnost akceptovanych perturbaci, tj. ptipustnych feSeni optimalizacni ulohy,
tvofi Markoviiv fetézec s paméti fadu jedna, tj. vyskyt daného feSeni je podminén pouze
vyskytem feSeni ptfedchdzejiciho. Perturbace leZici mimo oblast piipustnych feSeni se zamitaji
automaticky.

Af T

Ze zavislosti p(Af) je zfejmé, Ze vyrazné ,horSi“ feSeni se akceptuje vuci
predchdzejicimu feSeni s mnohem mensi pravdépodobnosti nez feSeni jen o malo ,horSi*.
Zavislost p(T) lze uzit k fizeni pravdépodobnosti akceptace feSeni béhem iteraniho cyklu.
Iteracni cyklus startujeme s tak vysokou teplotou, aby se po jistou dobu akceptovalo témét
kazdé navrzené feSeni, coz piipadné umoZni pocateni aproximaci feSeni ,,vyklouznout™ z
oblasti mélkych lokdlnich minim, ke konci iteraéniho cyklu naopak teplotu dostate¢né
snizime tak, aby se neakceptovalo témétf Zadné ,horSi* feSeni, tj. béhem iteratniho cyklu
chladime systém predstavujici optimalizacni tlohu z dostatecné vysoké teploty na dostate¢né
nizkou teplotu tak, Ze ndm v zavéru cyklu feSeni ,,zamrzne* v dostate€n¢ hlubokém lokalnim

minimu. Pokles teploty mize byt zvolen napt. jako exponencidlni:

_ iter N _ _iter
T = Toe T T= —m Tw = itllrlllooTOe T =0

kde Ty resp. T., je pocatecni resp. konecna teplota a N je pocet iteraci algoritmu.
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16. Priklad aplikace linearniho modelu

Ptiklad popisuje aplikaci pfedfazeni linedrniho modelu jakoZto projekéni vrstvy (filtr)
modelu nelinedarnimu (lokétor), jakoZto asociaéni vrstvé, a to pii lokalizaci poruchy (zkratu) v
rozvodné elektrické energie z divodu filtrace mozného Sumu obsaZeného ve snimku
signalizaci stavii vypinacl a ochran, na zdklad¢ kterého pak probihd lokalizace (asociace)
mista poruchy v rozvodné. Snimek signalizaci je zpracovavan dvoufdzove: nejprve probéhne
jeho projekce do okruhu zndmych vzora (filtrace Sumu), kterd je pak asociovdna s mistem
poruchy (lokalizace poruchy):

lokalizace

lokator

filtr

signalizace

Rozvodna se sklada ze ctyt sbérnic (Al, A2, B1, B2), ¢tyf vyvodi vedeni (LL1-1.4) a
deseti vyvodu strojit (U1-U9, AT), tj. deviti generatort a autotransformdtoru, a dile z dvaceti
Sesti vypinaci a Ctyficeti ochran:

ul U2 u3 U4 us U6 U7 us us
V6A
Al A2
¥
VIA V2A V3A V4A V5A V7A VBA VoA VIOA V1A
v H HE B B . B B ]
V3AB V5AB VBAB V10AB
ECE]
o R O R I N B = .
vie V2 vis v4B V58 Vs vas VoB vios viie
=
81 Sen B2
(8] L2 L3 L4
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Lokétor je tvofen vstupni vrstvou o 66 neuronech odpovidajicich staviim jednotlivych
vypinacl a ochran a vystupni vrstvou o 18 neuronech odpovidajicich jednotlivym sbérnicim a
vyvodiim. Mezi vstupni a vystupni vrstvu byly vloZeny dvé skryté vrstvy o 45 a 25
neuronech. Pozadovana funkce lokdtoru o 5% chybovosti byla dosazena po piiblizn¢ 6800
piedloZenich tréninkovych dat s parametry uceni 0,05 (mira plasticity synapse) a 0,7 (mira
setrvacnosti gradientu).

Tréninkovd mnozZina lokdtoru je uvedena v ndsledujici tabulce signalizaci stavl
vypinaci (levd ¢ast) a ochran (pravd Cdst) v zdvislosti na mist¢ poruchy v rozvodné, kde
hodnota 1 signalizuje vypnuti vypinace resp. ptisobeni ochrany:

Lokator se jevi sim o sob¢ jako robustni vzhledem k vypadku jednotlivych signala ve
snimku signalizaci vypinact a ochran, coZ znamenad, Ze je schopen spravn¢ lokalizovat poruchu
1 v piipadé¢ castecného zaSuméni snimku. Porucha je lokalizovdna excitaci neuronu
odpovidajicimu piisluSnému prvku rozvodny. Robustnost lokalizace poruch muze byt
podpotena predbéznou filtraci Sumu uvedeného snimku, tj. nejprve filtr provede ortogonalni
projekci zaSuméného snimku do nadroviny generované 18 linedarné nezavislymi vzdajemné
ortogonalnimi snimky o 66 slozkach, ktera je poté predloZena lokatoru.

Byla simulovédna porucha na sbérnici Al provazend vypadkem signalizace vypinace
V6A a ochrany RA1, porucha na vyvodu L1 provazena vypadkem signalizace ochrany DL1 a
porucha na vyvodu Ul provazend vypadkem signalizace vypinaci V3A a V3AB. Vysledky
filtrace Sumu (prvni tabulka) a lokalizace poruchy (druh4 tabulka) jsou uvedeny déle:
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Al u u1
filtrace pred po pred po pred po
V1A 1 0,7 0 0,0 0 0,1
V2A 1 0,7 1 0.5 0 -0,1
V3A 1 0,7 0 0.1 R s AR
V4A 1 0,7 0 0,0 0 -0,1
VSA 1 0,7 0 0,1 0 0,1
V6A 0 0,1 0 0,1
VA8 0 01 0 0,0 BT R v |
v28 1 0,5 0 0,0
RA1/H 0 01 0 -0,1
RA1/Z 0 0,1 0 0,1
ASV/A1 1 0,6 0 01 0 -0,1
DLI/H 0 01 0 0,0
DL1/Z 0 01 0 0,0
RU1/H 0 0,1 0 0,0 1 0.6
RU1/Z 0 0.1 0 0,0 1 0,6
Al u u1
lokalizace bez filtru sfiltrem bez filtru s filtrem bez filtru s filtrem
A1l R e 1t 0,0 0,2 01 -01
A2 0,0 0,1 0,0 0,0 0,0 0,0
81 0,0 0,1 01 0.2 -0,1 0,0
82 0,0 0,0 0,0 -0,1 02 01
1 0,0 01 [ ey 0,1 0,0
L2 0,0 01 -0,1 0,1 -0, 0,0
13 0,0 0,0 01 0,0 01 0.0
14 0,2 0,0 -0,1 01 0,2 0,0
u1 0,0 0.1 0,0 01 A s
u2 0,1 0,0 0,0 0,1 -0,1 -0,2
u3 01 01 0,1 0,1 0,1 0,0
u4 0,1 0,0 0,0 0,0 0,0 0,0
us 0,0 0,0 0,0 0,0 0,2 0,1
ue 0.0 0,0 0,0 0,0 0,0 0,0
u7 01 01 0,1 01 0,1 0,0
us 0,1 0,1 0,2 01 0.2 01
us 0,1 -0,1 0,0 0,0 0,2 0,0
AT 0,2 01 0,3 0,0 0,2 01

Bez filtrace Sumu je porucha na vyvodu L1 lokalizovana na hranici rozpoznatelnosti, tj.
ji odpovidajici neuron je excitovan na hodnotu 0,4 a neuron odpovidajici poruse vyvodu AT je
excitovdn na hodnotu 0,3, pfi filtraci Sumu je ji odpovidajici neuron excitovdn na hodnotu 0,7,
zatimco fale$né excitovany neuron zustava inhibovan.
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17. Priklad aplikace optimaliza¢niho modelu

M¢jme tuplny orientovany graf s ohodnocenymi hranami, tj. uspofddanou ctvefici
[V,E, e, w], kde:

mnozina vrcholu
mnozina hran

zobrazeni incidence hran s vrcholy (e: E - V X V)

° 0w o<

ohodnoceni hran (p: e(E) = R),

pro p([i,j1) = pij a [V] = m, n = m? dostaneme otevieny problém obchodniho cestujiciho:
FROSR fG)=minf@ 0cO @ =) Y pyy
i J

kazdy vektor X € Q vybird jistou cestu v grafu, tj. x;; je stav hrany sméfujici z i-tého do j-tého

vrcholu pro i,j € V, kde x;; = 0.

Nésledujici optimaliza¢ni experiment, feSici vySe uvedeny problém, byl proveden na
souboru 45 evropskych mést (Tab. 1) uzitim optimalizacniho modelu resp. simulovaného
zihani, vzdy pro dva zpusoby sestupu teploty, tj. exponencidlni a linearni (Obr. 1).
Experiment byl provddén pro hodnoty pocatecnich teplot (0,1 + 1000) resp. hodnoty
parametru SEED (0 + 1000) a pro pocet iteraci (103 =+ 106) resp. (103 =+ 109), viz Tab. 2
(optimaliza¢ni model) a Tab. 3 (simulované Zihdni) obsahujici i primémé optimalni
vzdélenosti @ a primérné absolutni odchylky 6. VSechny experimenty simulovaného Zihani
byly provedeny pro po&iteéni teplotu rovnou jedné, s vyjimkou posledni fady (10° iteraci)
experimentl pro linedrni sestup, kde poc¢éatecni teplota byla nastavena na pét.

Amsterdam  Dublin Kobenhavn  Munchen Strasbourg
Ankara Dubrovnik Lisboa Narvik Venezia
Athenai Edinburgh Liverpool Oslo Warszawa
Barcelona Frankfurt London Palermo Wien
Beograd Geneve Luxenbourg Paris Zurich
Berlin Hamburg Madrid Praha

Bratislava Hammerfest Malaga Roma

Bruxelles Helsinki Marseille Salzburg

Bucuresti Instanbul Milano Sofia

Budapest Kijev Moskva Stockholm

Tab. 1 UZitd evropskd mésta
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Exp 0.1 1 5 10 50 100 500 1000 @ (o}
3 63599 44225 43778 42580 47373 43111 43770 46660 46887 4300
63599 35968 35403 36682 37668 40212 36563 41637 40967 5826
S5 34278 38222 38557 34278 33610 37330 35180 39517 36372 2035
6 38912 35892 35559 33668 35559 38912 35892 35559 36244 1334

Lin 0.1 1 5 10 50 100 500 1000 @ (o}
3 63599 49691 56409 63494 ERR ERR ERR ERR 58298 5248
63599 35818 39703 49691 56409 63599 ERR ERR 51470 9733
5 78595 37522 40870 35818 39703 45432 57134 63317 49799 12412
6] 78595 35559 35559 35815 36239 35818 40657 40764 42376 9055

Tab. 2 Optimdlni vzddlenosti pro riizné pocdtecni hodnoty teploty a rddy poctu iteract

Exp 0 1 5 10 50 100 500 1000 @ o
3 39544 39009 39315 40824 38577 42079 42890 36130 39796 1601
4 30663 33507 26551 29417 33686 30116 31876 31343 30895 1708
5 27146 26944 27969 30623 29658 27899 27421 28596 28282 1008
6 26534 25932 29001 27070 26157 28419 27805 26466 27173 927
7 26528 25460 26452 25361 24428 26454 29066 27468 26402 989

0

25934 24786 24557 26812 25545 26471 28403 25428 25992 928
9 33664 33617 31528 31320 26114 29320 27255 30521 30417 2141

Lin 0 1 5 10 50 100 500 1000 @ o
3 48024 54057 48038 49988 53922 53167 42890 51830 50240 3005
4 40581 38116 36496 37282 35368 40152 37476 36299 37721 1421
5 29916 29618 29475 31216 29126 29384 28417 30391 29693 611
6 27273 27171 25851 28421 26072 26830 27566 27584 27096 634
7 26904 25917 25618 25798 25442 26152 26941 26758 26191 507
8 25191 24922 25343 26162 24741 26373 24504 25713 25369 536

9| 24360 24074 24881 25577 25071 24558 24924 25811 24907 439

Tab. 3 Optimdlni vzddlenosti pro ruzné pocdtecni hodnoty SEED a rddy poctu iteraci

Redeni ziskané optimalizaénim modelem resp. simulovanym Zihanim je 33 610 km
(Tab. 4, Obr. 2) resp. 24 074 km (Tab. 5, Obr. 3). Optimalnim feSenim je 23 932 km, zatimco
nejlepsi fesSeni ziskané simulovanym Zihanim je 24 074 km, tj. pouze o 142 km (0,6%) horsi.

Algoritmus simulované Zihdni poskytuje mnohem lepsi vysledky neZ kvazigradientni
sestup optimaliza¢niho modelu, trajektorie kvazigradientiho sestupu optimaliza¢niho modelu,
na rozdil od algoritmu simulovaného Zihdni, béhem experimentu ziejmé vétSinou nepiekrocila
oblast hlubsiho lokalniho minima, v kterém uvazla.
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Tab. 5 Reseni simulovaného Zihdni
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Obr. 1 Prumérnd optimdlni vzddlenost v zdvislosti na rddu poctu iteract
Lisboa Edinburgh  Zurich Instanbul Oslo
Madrid Liverpool Salzburg Sofia Stockholm
Barcelona London Munchen Beograd Helsinki
Malaga Strasbourg Venezia Budapest Narvik
Marseille Warszawa  Milano Wien Hammerfest
Geneve Bucuresti Roma Bratislava
Paris Kijev Dubrovnik  Praha
Amsterdam Frankfurt Palermo Berlin
Bruxelles Luxenbourg Athenai Hamburg
Dublin Moskva Ankara Kobenhavn
Tab. 4 Reseni optimalizacniho modelu
Lisboa Athenai Salzburg London Helsinki
Malaga Ankara Munchen Dublin Stockholm
Madrid Instanbul Zurich Liverpool Oslo
Barcelona  Bucuresti Geneve Edinburgh  Narvik
Marseille  Sofia Strasbourg Kobenhavn Hammerfest
Milano Beograd Frankfurt Hamburg
Venezia Budapest Luxenbourg Berlin
Roma Bratislava Paris Warszawa
Dubrovnik  Wien Bruxelles Kijev
Palermo Praha Amsterdam Moskva
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18. Priklad aplikace kompeti¢niho modelu

Experiment prob¢hl nad souborem zaznamenanym béhem pribéhu kampané jedné

z portugalskych bank, spocivajici v oslovovani klientd s nabidkou terminovaného vkladu.

Zminény soubor obsahoval 45 211 klientli charakterizovanych 16 atributy, pti¢emz u kazdého
klienta byla uvedena informace o vysledku nabidky, tj. 5 289 klientl nabidku akceptovalo,
zbylych 39 922 klientd nabidku neakceptovalo. Cilem experimentu bylo uZiti neuronové sité

ke klasifikaci klienti z hlediska dvou vySe uvedenych kategorii, resp. predikci, zda je klient

nachylny uvedenou nabidku akceptovat ¢i nikoli, a to na zdkladé¢ jemu pfifazenych 16

nésledujicich atributi:

# bank client data:

1-age

2 - job: O-unknown, 1-unemployed, 2-student, 3-housemaid, 4-retired, S-blue-collar,
6-administrator, 7-technician, 8-services, 9-management, 10-self-employed, 11-entrepreneur

3 -marital:  O-divorced/widowed, 1-single, 2-married

4 - education: 0-unknown, 1-primary, 2-secondary, 3-tertiary

5 - has credit in default? 1-yes, 0-no

6 - average yearly balance in euros

7 - has housing loan?  1-yes, 0-no

8 - has personalloan? 1-yes, 0-no

# related with the last contact of the current campaign:

9 - contact: O-unknown, 1-cellular, 2-telephone
10 - last contact day of the month

11 - last contact month of year

12 - last contact duration in seconds

# other attributes:

13 - number of contacts performed during this campaign and for this client

14 - number of days that passed by after the client was last contacted from a previous campaign
15 - number of contacts performed before this campaign and for this client

16 - outcome of the previous marketing campaign: -1-failure, 0O-unknown, 1-success, 2-other

V prvni fazi experimentu byla nejprve provedena segmentace (shlukovd analyza)
klientd dle jejich atributli, a to jednak s cilem redukce jejich poctu z divodu piili§ velké
mohutnosti souboru klientii pro tvorbu tréninkovych dat klasifikdtoru, a jednak s cilem

eliminace moZznych rozporii v chovani klientii, tj. odliSnosti v rozhodovani vzdjemné si
podobnych klientl. V druhé fazi experimentu pak probchla vlastni adaptace klasifikdtoru

klientu.
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Na ndsledujicim obrdzku je uvedena Kohonenova mapa zobrazujici rozmisténi vSech

klientll v prostoru daného jejich atributy:

67 97 91 61 S0 29 80 46 74 140 194 135 5 1 3 2 1 9 17 19 28 18 17 2 3 e 00 O
103 112 57 42 51 S0 5 25 17 3 3 11 41
134 127 62 22 39 S0 0 48 17 29 7 40
148 200 72 48 46 32 0 20 59 26 47

29 218 70 29 26 24 8 E 20 20 30 2 2

27 31 556 8 1 1 1 3 22 3 1
s8 30 2 8 10 10 7 10 11 36 2
45 37 38 7 14 20 13 12 13 16 13
30 116 67 2 97 32 27 2 125 1 36
4 4 155 7 62 25 49 39 113 6 22
12 155 5§57 2 22 13 44 15 23 15 67
74 70 23 2 13 15 22 14 23 5 19
133 492 73 23 21 31 26 21 15 16
240 =2 60 31 14 12 39 9 32 1
69 55 51 28 27 35 32 10 19 3
93 98 88 106 53 15 23 32
89 52 102 8 15 17 41 4 4 3

25 144 111 125 90 67 11 62 64 22 5 4 1 3
122 128 142 96 77 89 81 g8 9 3 1 1 1 s
230 28 61 92 64 15 33 2 2 2 2 6 26 112

v2 109 67 72 60 69 115 4 3 28 72 152

62 96 86 104 25 51 7 s 2 100 128 171

38 61 57 52 42 34 62 58 12 54 177 118 64 11 78 98 119 69 31 211 17 28 128 193 37 358 352 200 165 91

85 66 62 42 41 6 46 38 51 101 42 44 60 66 69 13 53 65 28 13 378 179 44 98 674 6 47 68 97 68

64 37 S8 32 31 21 68 140 86 32 76 42 41 60 62 26 31 13 66 60 278 104 26 30 51 99 66 78 97 121

25 76 12 56 95 71 36 66 40 69 90 79 23 816 74 34 89 251 4 21 6 65 67 136 112 82 97 116

44 29 1 15 16 150 51 39 47 25 84 76 102 78 341 les 116 131 97 11 4 6 41 33 47 83 7 8 21 20

19 25 3 31 124 77 37 30 29 62 46 56 49 00 117 83 122 74 42 66 91 49

11 51 48 66 103 39 31 33 34 57 88 100 198 9 1 1 16 117 169 160 249 62 67

19 71 54 104 83 66 24 S8 59 45 105 153 199 1 1 R 2 42 86 32 45 22

Odectem Kohonenovy mapy bylo identifikovdno osm nejvyznamné&jSich shluki
klientli, avSak z pomérného zastoupeni klienti obou kategorii v kazdém shluku nelze shluky
klientll jednoznac¢né identifikovat s Zddnou z jejich kategorii:

1 2 3 - 9 6 7 8 z
yes 97 102 80 100 70 29 . 15 537
no 719 572 476 392 343 349 272 215 3338
z 816 674 556 492 413 378 316 230 3875
yes/no 0,13 0,18 0,17 0,26 0,20 0,08 0,16 0,07 0,16

Z vySe uvedeného diivodu byla provedena dekompozice souboru klientd do dvou

souborti danych jejich chovanim ,,yes or no* spolu se zobrazenim jejich rozmisténi:
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T
33 s3 132 71 138 e 29 s1 81 12 65 100 70 71 89 24 47 24 80 4 4 23 26 83 79 39 42 40 38
12 37 72 3 160 72 32 24 3¢ s° 71 37 45 33 29 24
71 446 30 112 74 3 1 18 58 96 53 38 38 26 48 45 29
279 36 86 109 20 14 1 46 92 36 33 33 60 48 36 110 193
9 3 4 72 21 66 41 28 27 30 46 36 75 173 139
1 2 0 20 110 54 SO 21 26 48 S0 38 175
0 0 0 E 100 67 32 17 29 42 37 88 206 102
90 31 23 37 s1 S8 95 183 116 94
37 33 49 61 44 76 59
63 42 46 63 42 136
3¢ 35 70 88 19 73
19 29 46 55 171 212
72 30 46 41 217 105
7 7 31 20 799 19

4 19 73 25 25 53
93 22 3¢ 52 95 17
s 199 64 52 20 61
30 186 44 45 57 96

157 65 S6 43 72 170
s8 17 54 53 119 41

114 63 30 131 51 70

172 23 49 57 77 133 S5 160 57 56 26 1

625 78 78 S0 69 95 43 73 25 42 34 1
S0 67 5S4 19 19 73 S0 47 3 s2 7 1
71 49 118 49 81 65 39 14 20 71 59 92
11 98 66 19 S0 66 6 13 28 62 100 116
99 137 104 42 43 39 16 44 68 84 S0 86

80 81 68 49 9 8 48 280 275 161 234 272 146 121 43 123 64 101 81 52 61 28 6 2 38 47 22 63 81 73

62 72 81 60 S1 20 509 78 22 114 81 46 86 121 70 S9 77 S6 98 34 35 18 16 6 S1 69 91 68 38 60

Odectem vyse uvedenych Kohonenovych map byly identifikovany tii nejvyznamnéjsi
shluky klientd s chovanim ,,yes* a pét nejvyznamnégjSich shlukt klientd s chovdanim ,,no*,
prototypy (reprezentanti) kazdého ze zminénych shlukt jsou uvedeny nize:

yes 234 29 6 1 2 0 1,233 0 0 1 8 6 5,12 2 00 0 0
205 30 7 1 2 0 1,575 0 0 1 24 6 5,44 2 00 0 0

144 62 S 2 2 0 2,356 0 0 1 13 6 4,95 2 0,0 0 0

no 799 29 6 1 2 0 0,983 1 0 1 27 S 2,22 3 -01 0 0
625 29 6 1 2 0 0,916 1 0 1 S S 2,29 2| -0,1 0 0

518 35 6 1 2 0 0,926 1 0 1 13 5 2,19 2 36,0 3 0

509 59 6 2 2 0 2,094 0 0 1 8 6 2,28 2 -0,1 0 0

446 58 6 2 2 0 1,729 0 0 1 25 7 2,05 4 -0,1 0 0

yes ¢ 43 6 1 2 0 1,935 0 0 1 15 6 5,07 2 98 2 0
max 62 7 2 2 0 4,401 1 0 1 25 7 6,93 3 27,4 B n |

no ¢ 41 7 | 2 0 1,363 1 0 1 16 6 2,22 3 58 1 0
max 59 7 2 2 0 2,094 1 0 | 29 8 2,52 S 36,0 S 0

*1000 *100 *10

spolu s primérnou a maximdlni hodnotou kaZzdého atributu, pocitanou pies vSechny klienty
ptislusného chovani, obsazené ve zminénych shlucich, pficemz ptivodni hodnoty atributi 6
resp. 12 resp. 14 byly normalizovény ¢isly 1000 resp. 100 resp. 10.

Véahové vektory obou vyse uvedenych Kohonenovych map pak byly uZity jako prvky
tréninkovych dat klasifikatoru, pficemz pro klienty s chovanim ,,no*“ byly uZity pouze ty
vahové vektory, ke kterym se ptihlasilo minimélné deset klientl a vice, ¢imz byl uveden do
vzajemné proporce pocet klientll obou dvou zptsobi jejich chovani.

Jako prvku tréninkovych dat klasifikdtoru bylo uZito 1 207 vzorovych klientd, z toho
603 klientd s chovanim ,,yes“ a 604 klient s chovdnim ,,no“, na kterych byla provedena
korela¢ni analyza vlivu jednotlivych atributii na chovani klienta:
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KENDALL SPEARMAN

yes no yes no
1 0,0 0,0 0,1 -0,1
2 -0,8 0,8 -0,3 0,3
3 -0,8 0,8 -0,4 0,4
4 0,0 0,0 0,0 0,0
S 0,0 0,0 0,0 0,0
6 0,5 -0,5 0,7 -0,7
7 -1,0 1,0 -0,8 0,8
8 0,0 0,0 0,0 0,0
) 0,0 0,0 0,0 0,0
10 -0,1 0,1 0,0 0,0
11 -0,1 0,1 0,3 -0,3
12 0,7 -0,7 0,9 -0,9
13 -1,0 1,0 -0,6 0,6
14 0,4 -0,4 0,5 -0,5
15 0,1 -0,1 0,4 -0,4
16 -1,7 1,7 0,2 -0,2

z které vyplyva, Ze vyznamné&jsi korelaci s chovanim klientli vykazuji pouze atributy 2, 3, 6,
7, 12 a 13, ostatni atributy byly z tréninkovych dat vyfazeny. Adaptace klasifikatoru probéhla
s parametry A=0,001, B=0,5 a C=1,01 (rychlost, setrvacnost, zrychleni) pii povolené chyb¢
klasifikace do vyse 20%:

Data Mining Provider

Action terminated successfully ...

[ ok

Running F\cﬁon waiting in Data Mining Provider

Z vyse uvedeného piiblizn¢ hyperbolického pribéhu chyby funkce sité pro zvoleny
limit iteraci 10 000 plyne, Ze se zadanou presnosti +20% si adaptace klasifikatoru vyzadala
cca 2 700 iteraci.
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Funkce sité byla testovdna na 4 521 z tréninkovych dat ndhodné vybranych klientech,

piicemz chybovost klasifikace je vyrazné posunuta v neprospéch klientti s chovanim ,,yes*, a

to ziejmé z dlivodu jejich mensiho zastoupeni v pozorovanych datech, sit’ ma s nimi mensi

zkuSenost.

Analogicky byl proveden jeSté experiment pro pozménénou skladbu atributt klientd,

tj. k Sesti ptivodnim atributlim byl jednak ptidan atribut 1 a jednak atributy 1, 10, 11, 14 a 15

s vysledkem viz vySe, jako optimdlni skladba atributl se jevi skladba se sedmi atributy, kde

v sum¢é testovacich dat resp. pro klienty s chovidnim ,,no* je chybovost klasifikace 20% resp.

17% sice nejvyssi, ale naproti tomu doSlo k poklesu chybovosti klasifikace u klient s

chovéanim ,,yes* na minimdalnich 36%, coZ je cca pouhy dvojndsobek chybovosti klasifikace

klientd s chovanim ,,no*:

6 atr invalid valid )3 error [%]
2 805 3716 4521 18
yes 201 320 521 39
no 604 3396 4000 15
7 atr
z 883 3638 4521 20
yes 188 333 521 36
no 695 3305 4000 i ¥ 4
11 atr
b3 705 3816 4521 16
yes 207 314 921 40
no 498 3502 4000 12

Obecné lze tici, ze klienti s chovdnim ,,yes vs. no*“ se markantné liSi ve velikosti

atributu 12, pficemz ob¢ skupiny se dale rozpadaji na podskupiny tficatniki a Sedesatnikii,

vzdjemn¢ se liSicich ve velikosti atributu 6.

72



19. Piiklad aplikace nelinearniho modelu (deep learning)

Vypocetni experiment s cilem ovéfit efektivitu hloubkového uceni byl proveden na
hluboké neuronové siti o deseti vrstvach, kazdd o deseti neuronech s vyjimkou posledni
vrstvy, kterd se sestdvala ze tfi neuront. Sit' byla adaptovdna na klasifikaci objekti

(popsanych deseti atributy) z hlediska tii kategorii. Béhem uceni byly adaptovany vSechny
synaptické vahy a parametry aktivacnich funkci (prahy a strmosti) neuront skrytych vrstev:

w;i(T) = w;;(T—1) + a y;(T) g;(x;(T)) + u Aw;;(T — 1)
0;(T) =9;(T— 1) + a g;(x;(T)) + p A9 (T — 1)

pi(T) =pi(T — 1) + a x;,(T) g;(x;(T)) + u Ap;(T — 1)

Ik (xx) = Py (1 — yi) (Zk — Yi) gi(x) = piyi(1 =) Z gj(xj) Wi
J

prok€Vy,jeV,,i€V,_y,Le{2,..,N},T € {1, ..., M}, kde:

X potencidl i-tého neuronu

Vi skutecny stav i-t€ho neuronu

Zj poZadovany stav i-t€ho neuronu

8i adaptacni funkce i-t€ho neuronu

Y prah i-tého neuronu

Di strmost aktivacni funkce i-t€ho neuronu

wij synaptickd vdha vazby i-t€ho neuronu s j-tym neuronem
0} rychlost u¢eni
u mira setrvacnosti gradientniho sestupu

VL populace neuronii L-té vrstvy

N pocet vrstev sité
M pocet prvkil trénovaci mnoZziny
A predchazejici pfirtstek piisluSné proménné
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Nejprve se sit’ adaptovala pouze vySe uvedenym algoritmem BPA, pak se urc¢ila mira
zmén vah v jednotlivych vrstvach sité¢ ve sméru od posledni vrstvy k prvni vrstvé, tj. béhem
zpétného Siteni chyby poZadované funkce sit¢:

1,000000

0,800000

0,600000

0,400000

0,200000

Poté se sit” adaptovala ve dvou fazich (hloubkové uceni), v prvni fazi se preducovaly
jednotlivé vrstvy vah postupné od prvni vrstvy do Ctvrté vrstvy a poté od prvni vrstvy do paté
vrstvy atd. az do devété vrstvy, a to na autoasociativni funkci sit€ o dvou vrstvich vah,
z nichZ prvni vrstva byla vZdy pfislusna skute¢nd vrstva ptivodni sit¢ a druhd vrstva byla vzdy
dodatecné pridand fiktivni vrstva z divodu zkompletovani piisluSnych postupné nad sebe
fazenych dvouvrstvych autokodéri:

autoasociace
Xl o k) " s . Xn

nepouzité vahy

pouzité vahy
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V druhé fazi se pak celd pireducend sit’ doucila opét vySe uvedenym algoritmem BPA.
Jako optimdlnim, z hlediska minimalizace poc¢tu pieducovanych vrstev vah, se jevi preduceni
prvni az paté vrstvy vah, od které se vdahy smérem k posledni devaté vrstvé béhem BPA
douceni pak jiz dostatecné meéni, viz ndsledujici pritbé¢hy chyby funkce sité¢ v zdvislosti na
poctu piedloZeni tréninkovych dat béhem BPA uceni s preduCenymi Ctyimi, péti az deviti

vrstvami:

8. Error Graphics B.'| Error Graphics .| Error Graphics B.'| Error Graphics #.'| Error Graphics #.'| Error Graphics

[Running [Action [Running |Action [Running |Action [Running [Action [Running [Action |Running |Action

Pti preduCeni pouze prvni resp. prvni aZ druhé resp. prvni az tieti vrstvy vah se sit’
pozadovanou funkci naucila, ale az po vyrazné vétsSim poctu predlozeni tréninkovych dat, nez

v ostatnich na obrdzku vyse uvedenych ptipadech.
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20. Zkratky

ANN Artificial Neural Network
ART Adaptive Resonance Theory
BAM Bi-directional Associative Memory
BPA Back Propagation Algorithm
CHN Continuous Hopfield Network
CPN Counter Propagation Network
HAM Hopfield Associative Memory
LAM Linear Associative Memory
MLP Multi-Layer Perceptron

RAM Recurrent Associative Memory
RBF Radial Basis Function

SOM Self-Organizing Map
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