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1. Definice umělé neuronové sítě 

Umělou neuronovou síť (ANN) definujeme jako orientovaný graf s dynamicky 

ohodnocenými vrcholy a hranami, tj. jako uspořádanou pětici [�, �, �, �, �], kde je: 

 

V množina vrcholů (neuronů) 

E množina hran (synapsí) 

ε zobrazení incidence hran s vrcholy (�: � → � × �) 
y dynamické ohodnocení vrcholů (�: � × � → ℝ) 
w dynamické ohodnocení hran (�: �(�) × � → ℝ), 
 

a pro ∀� ∈ � resp. ∀� ∈ � položíme �([�, �]) ≡ ��(�) resp. �([�, �, �]) ≡ ���(�). 
Vektor ��(�) = [��(�)|� ∈ �] nazveme stavem sítě v čase t a analogicky vektor ����(�) = [���(�)|[�, �] ∈ � × �] nazveme konfigurací sítě v čase T, přičemž pro [�, �] ∉ �(�) 

položíme ���(�) = 0. Stav resp. konfiguraci sítě jakožto vektorové funkce času t resp. T 

nazveme aktivní dynamikou resp. adaptivní dynamikou umělé neuronové sítě. 

Rozlišením časů aktivní a adaptivní dynamiky jsme vyjádřili skutečnost, že neuronová 

síť pracuje ve dvou časově nezávislých režimech, aktivním a adaptivním. V adaptivním 

režimu probíhá učení sítě, tj. nastavení konfigurace sítě jako důsledek síti předkládaných 

vzorů a jim odpovídajících obrazů, a v aktivním režimu probíhá realizace v adaptivním 

režimu naučené funkce sítě, tj. zaujetí stavu sítě jako důsledek na síť přiloženého stimulu. 

Aktivní resp. adaptivní dynamiku umělé neuronové sítě spojitého času určíme jako 

vektory řešení následujících soustav diferenciálních rovnic (ART): 

   � !�(�) + !�(�) =#$�(!�(� − ∆�))	���� − (� 
  ����(�) + )	*�(!�(�))	���(�) = +	$�(!�(�))	*�(!�(�)) 

 

kde pro �, � ∈ �, +, ) ∈< 0,1 > a ∆� > 0 vyjadřující zpoždění signálu je: 

 

xi potenciál i-tého neuronu 

fi aktivační funkce i-tého neuronu (�� = $�(!�)) 
gj adaptační funkce j-tého neuronu 

ϑj práh j-tého neuronu 

wij synaptická váha vazby i-tého neuronu s j-tým neuronem 

α míra plasticity synapse 

β míra elasticity synapse. 
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Z definice aktivní resp. adaptivní dynamiky plyne pro � → ∞ resp. � → ∞: 

 !�(∞) =#��(∞)	���� − (� 
resp. pro ) ≠ 0: ���(∞) = +)	��(∞) 
 

a pro ) = 0, ���(0) = 0, *�(!�) = !�  za předpokladu zanedbání změny potenciálů neuronů 

během adaptivní dynamiky: 

 ���(�) = +	��(�)	!�(�)	� 

 

tj. z ���(∞) = ∞ plyne, že pro ) = 0 nemá smysl nechat čas adaptivní dynamiky běžet do 

nekonečna, ale necháme-li čas adaptivní dynamiky běžet N-krát pouze po dobu jednotkového 

časového skoku, pak pro 1 ∈ 21,−,34 dostaneme (Hebbovské učení): 

 ���(3) = +#��(1)	!�(1)5  

 

Elasticita synapse částečně eliminuje nevratnou deformaci synapse způsobenou 

procházejícím signálem a omezuje tak její schopnost adaptovat se na procházející signál, 

kterou představuje plasticita synapse. V případě nenulové resp. nulové míry elasticity synapse 

je kapacita paměti synapse omezená resp. neomezená. 

Nahradíme-li v definici aktivní resp. adaptivní dynamiky uvedené derivace 

analogickými výrazy pro diskrétní čas: 

   � !�(�) ≡ !�(� + 1) − !�(�)� + 1 − � 														   � ���(�) ≡ ���(� + 1) − ���(�)� + 1 − �  

 

a položíme-li ∆� = 0, pak obdržíme následující soustavy diferenčních rovnic a vektory jejich 

řešení pak určují aktivní a adaptivní dynamiku umělé neuronové sítě diskrétního času: 

 !�(� + 1) = ∑ $�(!�(�))	���� − (� resp. ��(� + 1) = $�(∑ ��(�)	���� − (�) 
 ���(� + 1) = (1 − )	*�(!�(�)))	���(�) + +	$�(!�(�))	*�(!�(�)) 
 

kde �, � ∈ �. 
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Závislost stavu na potenciálu neuronu (aktivační funkci) aproximujme sigmoidou: 

 $(!) = 11 + 789: 

 

kde parametr ; > 0 vyjadřuje strmost sigmoidy, pro strmost blížící se nule resp. nekonečnu 

dostaneme aktivační funkci ve tvaru linearity resp. ostré nelinearity: 

 lim9→? $(!) = 12																				 lim9→A$(!) =0					! < 0																 lim9→A $(!) =1					! > 0 
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V následující ekvivalentní formulaci potenciálu a aktivační funkce neuronu: 

 !� =#������ 										$(!) = 11 + 789(:8B) 
 

chápeme parametr ( jako práh neuronu, jehož podkročení resp. překročení potenciálem 

neuronu neuron inhibuje resp. excituje. V původně uvedené formulaci potenciálu a aktivační 

funkce neuronu: !� =#����� − (�� 										$(!) = 11 + 789: 

 

chápeme parametry −(� jako vnější stimul aktivující síť svou injektáží přímo do neuronů, na 

jejichž hodnoty se iniciují potenciály neuronů: !�(0) = −(�, pak vektor !�(0) = [!�(0)|� ∈ �] 
označíme jako vstup sítě, jako výstup sítě chápeme stav sítě. 

 

 

 
 

 

Vektorovou funkci přiřazující vstupu sítě výstup sítě nazveme funkcí sítě: 

 C�(!�(0)) = ��(∆�) 
 

kde D� je doba aktivace (odezvy) sítě, přičemž konfigurace sítě je parametrem funkce sítě. 

 

Množinu vstupů sítě injektovaných do sítě během adaptivní dynamiky nazveme 

trénovací množinou: 2!�(�)|� ∈ ∆�4 
 

kde D� je doba adaptace (učení) sítě. 
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2. Lineární heteroasociativní paměť 
 
Topologie sítě: 

 

 Rozdělme populaci neuronů sítě V na dvě disjunktní populace V1 a V2 (�E ∪ �G = �, �E ∩ �G = ∅, |�E| = J, |�G| = K) a propojme je hranami tak, aby z každého neuronu populace 

V1 směřovala hrana do každého neuronu populace V2 (�(�) = �E × �G), síť je tedy 

orientována směrem od populace V1 k populaci V2 a populaci V1 resp. V2 pak chápeme jako 

populaci vstupní resp. výstupní. 

 

Aktivní dynamika: 

 

 Definujme aktivační funkci neuronů sítě jako identitu. Nastavíme-li počáteční hodnoty 

potenciálů neuronů vstupní populace následovně: 

 !�(0) = L� 
 

pak v následujícím okamžiku dostaneme tyto hodnoty potenciálů neuronů výstupní populace: 

 !�(1) =#L�����  

 

kde � ∈ �E a � ∈ �G, vektor L� = [L�|� ∈ �E] pak chápeme jako vstup sítě. 

 

Adaptivní dynamika: 

 

 Definujme adaptační funkci neuronů výstupní populace jako identitu. Mějme trénovací 

množinu ve tvaru MNO�(�), P��(�)Q|� ∈ ∆�R, kde O� = [O�|� ∈ �E] a P�� = [P�|� ∈ �G]. Položíme-li 

plasticitu resp. elasticitu rovnu jedné resp. nule, pak obdržíme následující adaptivní 

dynamiku: 

 ���(�) = ���(� − 1) + O�(�)	P�(�) 
 

Položíme-li dále ����(0) = 0�� a ∆� = 21,⋯ , 34, pak po naučení sítě budou váhy nastaveny na 

následující hodnoty: 

 ���(3) =#O�(�)	P�(�)T  

 

kde � ∈ �E, � ∈ �G a � ∈ ∆�. 
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Funkce sítě: 

 

 Nechť vektory O� z trénovací množiny tvoří ortonormální bázi nadroviny U dimenze N 

v prostoru ℝV (3 < J), pak pro libovolný vektor L� ∈ U platí: 

 !�(1) =#L�� #O�(�)	P�(�)T =#P�(�)T #L�O�(�)� =#P�(�)T L�	O�(�) = 

 												= #P�(�)T (WEO�(1) + ⋯+ WXO�(3))	O�(�) =#WTP�(�)T  

 

kde � ∈ �E, � ∈ �G, � ∈ ∆� a WE, ⋯ , WX jsou souřadnice vektoru L� vzhledem k výše uvedené 

ortonormální bázi nadroviny U, pak při době aktivace sítě rovné jedné dostaneme následující 

funkci sítě: 

 C�(L�) = C�(WEO�(1) + ⋯+ WXO�(3)) = WEP��(1) + ⋯+ WXP��(3) 
 

 Funkce sítě tedy libovolnému vstupu sítě ležícímu v nadrovině U, tvořenému lineární 

kombinací vektorů O� (vzorů) trénovací množiny, přiřadí identickou lineární kombinaci jim 

odpovídajících heteroasociací, tj. vektorů P�� (obrazů) trénovací množiny. 
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3. Lineární autoasociativní paměť (LAM) 

 

Topologie sítě: 

 

 Mějme populaci neuronů sítě V a propojme ji hranami tak, aby z každého neuronu 

populace směřovala hrana do každého neuronu populace (�(�) = � × �, |�| = J). 

 

Aktivní dynamika: 

 

 Definujme aktivační funkci neuronů sítě jako identitu. Nastavíme-li počáteční hodnoty 

potenciálů neuronů následovně: !�(0) = L� 
 

pak v následujícím okamžiku dostaneme tyto hodnoty potenciálů neuronů populace: 

 !�(1) =#L�����  

 

kde �, � ∈ �, vektor L� = [L�|� ∈ �] pak chápeme jako vstup sítě. 

 

Adaptivní dynamika: 

 

 Definujme adaptační funkci neuronů sítě jako identitu. Mějme trénovací množinu ve 

tvaru 2Y�(�)|� ∈ ∆�4. Položíme-li plasticitu resp. elasticitu rovnu jedné resp. nule, pak 

obdržíme následující adaptivní dynamiku: 

 ���(�) = ���(� − 1) + Y�(�)	Y�(�) 
 

Položíme-li dále ����(0) = 0�� a ∆� = 21,⋯ , 34, pak po naučení sítě budou váhy nastaveny na 

následující hodnoty: 

 ���(3) =#Y�(�)	Y�(�)T  

 

kde �, � ∈ � a � ∈ ∆�. 
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Funkce sítě: 

 

 Nechť 2O�(1),⋯ , O�(J)4, MP��(1),⋯ , P��(J)R a 2Y�(1),⋯ , Y�(J)4 jsou báze prostoru ℝV, kde 

druhou z uvedených bází získáme ortogonalizací báze první a třetí z uvedených bází získáme 

normalizací báze druhé, trénovací množina 2Y�(�)|� ∈ ∆�4 je pak za předpokladu 3 < J částí 

výše uvedené ortonormální báze, a pak platí (viz ortonormalizační proces): 

 C�ZO�(�)[ = ZY�(1) ∙ O�(�)[	Y�(1) + ⋯+ ZY�(� − 1) ∙ O�(�)[	Y�(� − 1)	+ ]P��(�)]Y�(�) = O�(�) C�ZO�(^)[ = ZY�(1) ∙ O�(^)[	Y�(1) + ⋯+ ZY�(^ − 1) ∙ O�(^)[	Y�(^ − 1) + ]P��(^)]Y�(^) − 			−ZY�(3 + 1) ∙ O�(^)[	Y�(3 + 1) −⋯− ZY�(^ − 1) ∙ O�(^)[	Y�(^ − 1) − ]P��(^)]Y�(^) = O�(^) −  �(^) 
 

kde � ∈ 21,⋯ ,34, ^ ∈ 23 + 1,⋯ , J4, z čehož pro libovolný vektor L� ∈ ℝV plyne: 

 C�(L�) = C�ZWEO�(1) + ⋯+ WVO�(J)[ = WEC�ZO�(1)[ + ⋯+ WVC�ZO�(J)[ = 											= ZWEO�(1) + ⋯+ WVO�(J)[ − ZWX_E �(3 + 1) + ⋯+ WV �(J)[ = L� − L�5 = L�9 

 

kde WE, ⋯ , WV jsou souřadnice vektoru L� vzhledem k bázi 2O�(1),⋯ , O�(J)4 a L�9 resp. L�5 je 

ortogonální projekce vektoru L� resp. kolmice spuštěná z vektoru L� do nadroviny U 

generované vektory množiny 2O�(�)|� ∈ ∆�4. 
 Funkce sítě tedy libovolnému vstupu sítě při době aktivace sítě rovné jedné přiřadí 

jeho ortogonální projekci do nadroviny U, tj. jemu nejbližší autoasociaci z nadroviny U. 

 Nechť vektor �̀� leží v nadrovině U a nechť vektor L� je jeho náhodné zkreslení, pak si 

vektor 7� = L� − �̀� definujeme jako šum zkreslující vektor �̀�. Funkci sítě lineární 

autoasociativní paměti pak můžeme chápat jako filtraci šumu, tj. opravu vektoru L�. 
 Při konstantní velikosti šumu kvalita jeho filtrace závisí také na jeho poloze. 

Nejpříznivější poloha šumu je, je-li kolmý na nadrovinu U, pak oprava vektoru L� se shoduje s 

vektorem �̀� (C�(L�) = �̀�). Nejnepříznivější poloha šumu je, leží-li v nadrovině U, pak oprava 

vektoru L� se shoduje se zkreslením vektoru �̀� (C�(L�) = L�). 
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4. Lineární model (RAM) 
 

Topologie sítě: Shodná s lineární autoasociativní pamětí. 

 

Aktivní dynamika: 

 

 Definujme aktivační funkci neuronů sítě jako identitu. Nastavme počáteční hodnoty 

potenciálů neuronů následovně: !�(0) = L� 
a definujme vektorovou funkci: 

 a��(!�) = [LE, ⋯ , L5, !5_E, ⋯ , !V] 
 

pro !� ∈ ℝV, tj. 1 < J a mějme následující aktivní dynamiku: 

 !�(� + 1) = a�(#!�(�)	���� ) 
 

kde �, � ∈ �, vektor L� = [L�|� ∈ �] pak chápeme jako vstup sítě. 

 

Adaptivní dynamika:  Shodná s lineární autoasociativní pamětí. 

 

Funkce sítě: 

 

 Definujme vektory P��(0) = [LE, ⋯ , L5 , 0,⋯ ,0] a P��(�) = [OE(�),⋯ , O5(�), 0,⋯ ,0] 
kde P�� ∈ ℝV a vektorovou funkci b��(!�) = [0,⋯ ,0, !5_E, ⋯ , !V] pro !� ∈ ℝV, pak množina c = Ma��(!�)|!� ∈ ℝVR je lineární posunutí nadroviny d = Mb��(!�)|!� ∈ ℝVR o vektor P��(0). 
 Předpokládejme, že vektory P��(1),⋯ , P��(3) jsou lineárně nezávislé (3 ≤ 1), pak 

existuje právě jeden vektor �� ∈ ℝV ležící v průniku nadroviny U s množinou c. 

 Pro 3 > 1 uvažujme nadrovinu UG jako průnik nadrovin U a d a nadrovinu UE jako 

množinu všech vektorů nadroviny U kolmých na každý vektor nadroviny UG, pak nadrovina U 

je direktním součtem nadrovin UE a UG (U = UE ⊕UG). 

 

1.tvrzení: Pro každý vektor !� nadroviny UE platí, že vektor C�(a��(!�)) leží v nadrovině UE. 

 

Důkaz: g� ∈ UG 

 Z!� − C�(a��(!�))[	g� = Za��(!�) − C�(a��(!�))[	g� + Z!� − a��(!�)[	g� = 0 
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2.tvrzení: Pro každé dva vektory !�E a !�G nadroviny UE platí, že velikost vektoru C�(a��(!�E)) − C�(a��(!�G)) je menší než velikost vektoru !�E − !�G. 

 

Důkaz: g� = (a��(!�E) − a��(!�G)) − C�(a��(!�E) − a��(!�G)) 
 

           |!�E − !�G|G = ]a��(!�E) − a��(!�G)]G + ](!�E − !�G) − (a��(!�E) − a��(!�G))]G ]a��(!�E) − a��(!�G)]G = ]C�(a��(!�E)) − C�(a��(!�G))]G + |g�|G 

 

 Z výše uvedených tvrzení podle věty o pevném bodě plyne, že existuje právě jeden 

vektor �� ∈ ℝV ležící v nadrovině UE tak, že platí: 

 limh→A !�(�) = C�(a��(��)) = �� 
 

který současně leží v průniku nadroviny U s množinou c, neboť z 

 limh→A]!�(�) − a��(!�(�))] sink = limh→A|!�(�) − !�(� + 1)| = 0 

plyne a��(��) = �� 
 

pak průnik nadroviny U s množinou c je lineární posunutí nadroviny UG o vektor ��. 
 Stav sítě tedy během aktivní dynamiky alternujícími ortogonálními projekcemi C� a a�� 
konverguje s libovolnou přesností ke stavu ležícímu v průniku nadroviny U s množinou c v na 

něm kolmém směru, tj. ke stavu nejbližšímu ortogonální projekci vstupu sítě do nadroviny U. 

Doba odezvy sítě je závislá na volbě výše uvedené přesnosti. Pro 3 ≤ 1 zřejmě platí, že 

nadrovina UE je totožná s nadrovinou U a nadrovina UG obsahuje pouze nulový vektor. 

 Funkci sítě rekurentní autoasociativní paměti pak můžeme chápat podobně jako u 

lineární autoasociativní paměti jako filtraci šumu s tím, že můžeme zafixovat některé složky 

vstupu sítě LE, ⋯ , L5 tak, že funkce sítě opraví pouze zbývající složky vstupu sítě L5_E,⋯ , LV. 

Nezafixujeme-li žádnou složku vstupu sítě, pak funkce sítě rekurentní autoasociativní paměti 

je totožná s funkcí sítě lineární autoasociativní paměti. 
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5. Hopfieldova autoasociativní paměť (HAM) 

 

Topologie sítě: 

 

 Mějme populaci neuronů sítě V a propojme ji hranami tak, aby z každého neuronu 

populace směřovala hrana do každého neuronu populace kromě do sebe sama 

(�(�) = � × � − 2[�, �]|� ∈ �4,	|�| = J). 

 

Aktivní dynamika: (synchronní) 

 

 Definujme aktivační funkci neuronů sítě jako modifikovanou ostrou nelinearitu 

($(!) = −1 pro ! < 0 a $(!) = +1 pro ! > 0). Nastavme počáteční hodnoty potenciálů 

neuronů následovně: !�(0) = L� 
 

a mějme následující aktivní dynamiku: 

 ��(� + 1) = $�(#��(�)	���� ) 
 

kde �, � ∈ �, vektor L� = [L�|� ∈ �] pak chápeme jako vstup sítě. 

 

Adaptivní dynamika: 

 

 Definujme adaptační funkci neuronů sítě jako identitu. Mějme trénovací množinu ve 

tvaru 2O�(�)|� ∈ ∆�4. Položíme-li plasticitu resp. elasticitu rovnu jedné resp. nule, pak pro � ≠ � obdržíme následující adaptivní dynamiku: 

 ���(�) = ���(� − 1) + O�(�)	O�(�) 
 

Položíme-li dále ����(0) = 0�� a ∆� = 21,⋯ , 34, pak pro � ≠ � po naučení sítě dostaneme: 

 ���(3) =#O�(�)	O�(�)T  

 

kde �, � ∈ � a � ∈ ∆�. 
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Funkce sítě: 

 

 Definujme si energetickou funkci stavu sítě: 

 �(��) = −	½##���������  

 

a určeme její následující parciální derivace: 

 

−m�(��)m�� =#������  

kde �, � ∈ �. 

 

 Dále si definujme stabilní stav sítě jako stav, pro který platí ��(�) = ��(� + 1) a 

kvazistabilní stav sítě jako stav, pro který platí ��(�) = −��(� + 1). 
 

1.tvrzení: Pro každý nestabilní stav sítě za předpokladu ��(�) = ��(� + 1) pro � ∈ � − 2�4 
(asynchronní aktivní dynamika) při !�(� + 1) ≠ 0 platí, že hodnota energetické funkce stavu 

sítě v čase � je větší než hodnota energetické funkce stavu sítě v čase � + 1. 

 

Důkaz: (#��(�)	���� )	��(�) < (#��(� + 1)	���� )	��(� + 1) 
kde �, � ∈ �. 

 

 Z výše uvedeného tvrzení a z faktu, že energetická funkce je zdola omezená, vyplývá, 

že stav sítě během aktivní dynamiky kvazigradientním sestupem po energetické funkci 

konverguje ke stabilnímu stavu s lokálně minimální hodnotou energetické funkce. 

 

 Nechť trénovací množina obsahuje bipolární vektory tvořící ortogonální bázi 

nadroviny U v prostoru ℝV (3 < J) a definujme nadrovinu c všech vektorů kolmých na 

každý vektor nadroviny U, pak prostor ℝV je direktním součtem nadrovin U a c 

(ℝV = U⊕ c) a platí: 

 ��(� + 1) = $�(�9�(�) − 3J ��(�))																�(��) = −	½	J	(��	��9 − 3) 
 

kde ��9 je ortogonální projekce stavu sítě �� do nadroviny U, viz: 
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#��� #O�(�)	O�(�) =T #O�(�)T #��O�(�)� =#O�(�)(��	O�(�) − ��O�(�))T = 

 =#WTO�(�)	O�(�)O�(�)T − ��#O�(�)GT = J	�9� − 3	�� 
 #��� #��� #O�(�)	O�(�)T =#��ZJ	�9� − 3	��[ =�  

 = J#���9�� − 3#��G� = J	��	��9 − 3	J 

 

kde � ∈ �, � ∈ � − 2�4, � ∈ ∆� a WE,⋯ , WV jsou souřadnice vektoru �� vzhledem k ortogonální 

bázi prostoru ℝV obsahující vektory báze nadroviny U, viz �� = WEO�(1) + ⋯+ WVO�(J). 
 

2.tvrzení: Každý stav sítě ležící v nadrovině U je stabilní. 

 

Důkaz: pro každé � ∈ � platí: ��(� + 1) = $�((1 − 3J	)��(�)) = ��(�) 
 

3.tvrzení: Každý stav sítě ležící v nadrovině c je kvazistabilní. 

 

Důkaz: pro každé � ∈ � platí: ��(� + 1) = $�(−3J 	��(�)) = −��(�) 
 

 Hodnota energetické funkce stavu sítě je tedy nepřímo úměrná skalárnímu součinu 

stavu sítě s jeho ortogonální projekcí do nadroviny U a bude minimální resp. maximální, právě 

když stav sítě bude ležet v nadrovině U resp. c. 
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 Z výše uvedených tvrzení plyne, že každý stav sítě, jenž je prvkem trénovací množiny, 

je stabilní a energetická funkce sítě v něm nabývá svého lokálního minima. Počáteční stav sítě 

během aktivní dynamiky tedy konverguje k prvku trénovací množiny, tzv. atraktoru, jehož 

hodnota energetické funkce leží na dně gradientního spádu, na jehož úbočí se hodnota 

energetické funkce počátečního stavu sítě nalézá, tj. leží-li počáteční stav sítě ve sféře vlivu 

daného atraktoru. Kvazistabilní stavy se nalézají na hranicích sfér vlivů různých atraktorů. 

 

4.tvrzení: Stav sítě je stabilní právě když pro každé � ∈ � platí: 

 1 ≥ �� 	�9� > 3J  

tj. J ≥ ��	��9 > 3 

 

Důkaz: ��(� + 1) = $�(�9�(�) − 3J 	��(�)) = ��(�) 
 

kde ��9 je ortogonální projekce stavu sítě �� do nadroviny U. 

 

 Z výše uvedeného tvrzení plyne existence i takových stabilních stavů sítě, které nejsou 

prvky trénovací množiny (�� 	≠ ��9), tzv. falešných atraktorů, k nimž počáteční stav sítě 

konverguje, nalézá-li se ve sféře jejich vlivu. 

 

 Funkce sítě pak libovolnému bipolárnímu vstupu sítě přiřadí buďto jemu nejbližší 

autoasociaci prvku trénovací množiny, leží-li k ní vstup sítě dostatečně blízko, anebo odezvu 

sítě nezávislou na prvcích trénovací množiny, leží-li vstup sítě dostatečně daleko od každého 

prvku trénovací množiny. Doba aktivace sítě závisí na vzdálenosti vstupu sítě od atraktoru 

resp. falešného atraktoru. 

 

 Funkci sítě Hopfieldovy autoasociativní paměti pak můžeme chápat podobně jako u 

lineární autoasociativní paměti jako filtraci šumu, přičemž z hlediska správné funkce sítě 

přípustné zkreslení atraktoru je dáno oblastí vymezenou sférou vlivu tohoto atraktoru. 
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6. Bidirektní heteroasociativní paměť (BAM) 

 

Topologie sítě: 

 

Rozdělme populaci neuronů sítě V na dvě disjunktní populace V1 a V2 (�E ∪ �G = �, �E ∩ �G = ∅, |�E| = J, |�G| = K) a propojme je hranami tak, aby z každého neuronu populace 

V1 směřovala hrana do každého neuronu populace V2 (�(�E) = �E × �G) a z každého neuronu 

populace V2 směřovala hrana do každého neuronu populace V1 (�(�G) = �G × �E), síť je tedy 

orientována směrem od populace V1 k populaci V2 a zpět. Populaci V1 pak chápeme jako 

populaci vstupní. 

 

Aktivní dynamika: (synchronní) 

 

 Definujme aktivační funkci neuronů sítě jako modifikovanou ostrou nelinearitu 

($(!) = −1 pro ! < 0 a $(!) = +1 pro ! > 0). Nastavme počáteční hodnoty potenciálů a 

stavů neuronů následovně: !�(0) = L�  ��(0) = 0 

 

a mějme následující aktivní dynamiku: 

 ��(� + 1) = $�(#��(�)	���� )														��(� + 2) = $�(#��(� + 1)	���� ) 
 

kde � ∈ �E, � ∈ �G a vektor L� = [L�|� ∈ �E] pak chápeme jako vstup sítě. 

 

Adaptivní dynamika: 

 

 Definujme adaptační funkci neuronů sítě jako identitu. Mějme trénovací množinu ve 

tvaru MNO�(�), P��(�)Q|� ∈ ∆�R, kde O� = [O�|� ∈ �E] a P�� = [P�|� ∈ �G]. Položíme-li plasticitu 

resp. elasticitu rovnu jedné resp. nule, pak obdržíme následující adaptivní dynamiku: 

 ���(�) = ���(� − 1) + O�(�)	P�(�)														���(�) = ���(� − 1) + P�(�)	O�(�)	 
 

Položíme-li dále ����(0) = 0�� a ∆� = 21,⋯ , 34, pak po naučení sítě dostaneme: 

 ���(3) =#O�(�)	P�(�)T 															���(3) =#P�(�)	O�(�)T  

 

kde � ∈ �E, � ∈ �G a � ∈ ∆�. 
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Funkce sítě: 

 

 Definujme si energetickou funkci stavu sítě: 

 �(��) = −##���������  

 

a určeme její následující parciální derivace: 

 

−m�(��)m�� =#������ 														− m�(��)m�� =#������ 	 
kde � ∈ �E, � ∈ �G. 

 

 Dále si definujme stabilní stav sítě jako stav, pro který platí ��(�) = ��(� + 2). 
 

1.tvrzení: Pro každý nestabilní stav sítě za předpokladu ��(�) = ��(� + 1) pro � ∈ �G − 214 
(asynchronní aktivní dynamika) při !5(� + 1) ≠ 0 platí, že hodnota energetické funkce stavu 

sítě v čase � je větší než hodnota energetické funkce stavu sítě v čase � + 1. 

 

Důkaz: (#��(�)	���� )	�5(�) < (#��(� + 1)	���� )	�5(� + 1) 
 

kde � ∈ �E a �, 1 ∈ �G. 

 

2.tvrzení: Pro každý nestabilní stav sítě za předpokladu ��(� + 1) = ��(� + 2) pro � ∈ �E − 214 (asynchronní aktivní dynamika) při !5(� + 2) ≠ 0 platí, že hodnota energetické 

funkce stavu sítě v čase � + 1 je větší než hodnota energetické funkce stavu sítě v čase � + 2. 

 

Důkaz: (#��(� + 1)	���� )	�5(� + 1) < (#��(� + 2)	���� )	�5(� + 2) 
 

kde �, 1 ∈ �E a � ∈ �G. 
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 Z výše uvedených tvrzení a z faktu, že energetická funkce je zdola omezená, vyplývá, 

že stav sítě během aktivní dynamiky kvazigradientním sestupem po energetické funkci 

konverguje ke stabilnímu stavu s lokálně minimální hodnotou energetické funkce. 

 

 Nechť vektory trénovací množiny O�(�) resp. P��(�) jsou bipolární vektory tvořící 

ortogonální bázi nadroviny Uo resp. Up v prostoru ℝV resp. ℝq (3 < J,K), pak prvky 

trénovací množiny tvoří ortogonální bázi nadroviny U v prostoru ℝV_q a platí: 

 ��(� + 1) = $�(�9�(�))														��(� + 2) = $�(�9�(� + 1))	 
 �(��) = −	½	(J	��p��p9 +K	��o��o9) 
tj. pro J = K: �(��) = −	½	J	��	��9 

 

kde ��o9, ��p9, ��9 jsou ortogonální projekce vektorů ��o, ��p, �� do nadrovin Uo, Up, U, viz: 

 #��� #O�(�)	P�(�)T =#P�(�)T #��O�(�)� = 

 #P�(�)	��o	O�(�)T =#WTP�(�)	O�(�)O�(�)T = J	�9� 
 #��� #P�(�)	O�(�)T =#O�(�)T #��P�(�)� = 

 #O�(�)	��p	P��(�)T =#WV_TO�(�)T 	P��(�)P��(�) = K	�9� 
 #��#���� #O�(�)	P�(�)	T = J	#���9�� = J	��p	��p9 

 #��#���� #P�(�)	O�(�)	T = K	#���9�� = K	��o	��o9 

 

kde � ∈ �E, � ∈ �G, � ∈ ∆�, ��o = [��|� ∈ �E], ��p = N��|� ∈ �GQ a WE, ⋯ , WV_q jsou souřadnice 

vektoru �� = [��o , ��p] vzhledem k ortogonální bázi prostoru ℝV_q obsahující vektory báze 

nadroviny U, viz ��o = WEO�(1) + ⋯+ WVO�(J), ��p = WV_EP��(1) + ⋯+ WV_qP��(K). 
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 Hodnota energetické funkce stavu sítě je tedy nepřímo úměrná skalárnímu součinu 

stavu sítě s jeho projekcí do nadroviny U a bude minimální, právě když stav sítě bude ležet v 

nadrovině U. 

 

3.tvrzení : Každý stav sítě ležící v nadrovině U je stabilní. 

 

Důkaz: pro každé � ∈ �G a � ∈ �E platí: 

 ��(� + 1) = $�(��(�)) = ��(�)															��(� + 2) = $�(��(� + 1)) = ��(� + 1) 
 

 Z výše uvedeného tvrzení plyne, že každý stav sítě, jenž je prvkem trénovací množiny, 

tzv. atraktor, je stabilní a energetická funkce sítě v něm nabývá svého lokálního minima. 

Analogicky s Hopfieldovou autoasociativní pamětí však mohou vznikat i falešné atraktory, tj. 

stabilní stavy neobsažené v trénovací množině. 

 

 Funkce sítě pak bipolárnímu vstupu sítě, ležícímu dostatečně blízko nějakému vzoru O�, nalezením stability mezi oscilujícími stavy vstupní a výstupní populace, tzv. rezonancí, 

přiřadí jeho heteroasociaci, tj. jeho obraz P��. 
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7. Optimalizační model (CHN) 

 
Topologie sítě: 

 

 Mějme populaci neuronů sítě V a propojme ji hranami tak, aby z každého neuronu 

populace směřovala hrana do každého neuronu populace kromě do sebe sama 

(�(�) = � × � − 2[�, �]|� ∈ �4,	|�| = J). 

 

Aktivní dynamika: (synchronní) 

 

 Definujme aktivační funkci neuronů sítě jako sigmoidu. Nastavme počáteční hodnoty 

stavů neuronů následovně: 

 ��(0) = 0 

 

a mějme následující aktivní dynamiku: 

 ��(� + 1) = $�(#��(�)	���� − (�) 
kde �, � ∈ �. 

 

Adaptivní dynamika: 

 

 Konfigurace sítě se určuje extrakcí z objektivní funkce. 

 

Funkce sítě: 

 

 Definujme si energetickou funkci stavu sítě: 

 �(��) = −	(½##��������� −#��(�� ) 
 

a určeme její následující parciální derivace: 

 

−m�(��)m�� =#����� − (� 				− m�(0��)m�� = −(� 				− mG�(��)m��m�� = ����  

 

kde �, � ∈ �. 
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 Definujme stabilní stav sítě jako stav, pro který platí ��(�) = ��(� + 1) a parametr T 

jako převrácenou hodnotu strmosti sigmoidy. 

 

Tvrzení: Bude-li se blížit hodnota parametru T k nule (� → 0), pak pro každý nestabilní stav 

sítě za předpokladu ��(�) = ��(� + 1) pro � ∈ � − 2�4 (asynchronní aktivní dynamika) při !�(� + 1) ≠ 0 a platnosti ��� = ��� pro �, � ∈ �, bude platit, že hodnota energetické funkce 

stavu sítě v čase � bude větší než hodnota energetické funkce stavu sítě v čase � + 1, tj. �(��(�)) > �(��(� + 1)). 
 

Důkaz: 

 (#��(�)	��� − (�� )	��(�) < (#��(� + 1)	��� − (�� )	��(� + 1) 
neboť: !�(� + 1) > 0 ⇒ ��(� + 1) = 1 ⇒ ��(�) = 0	 !�(� + 1) < 0 ⇒ ��(� + 1) = 0 ⇒ ��(�) = 1	 
kde �, � ∈ �. 

 

 Z výše uvedeného tvrzení a z faktu, že energetická funkce je zdola omezená, vyplývá, 

že stav sítě během aktivní dynamiky kvazigradientním sestupem po energetické funkci 

konverguje ke stabilnímu stavu s lokálně minimální hodnotou energetické funkce. 

 

 Při vyšších hodnotách parametru T může být konvergence k lokálnímu minimu 

energetické funkce na dně menšího gradientního spádu narušena, čehož lze využít k jeho 

přeskočení. Budeme-li tedy hodnotu parametru T z dostatečně vysoké počáteční hodnoty 

během aktivní dynamiky postupně snižovat, pak po přeskočení mělkých lokálních minim při 

dostatečně nízké hodnotě parametru T nám stav sítě uvízne v oblasti hlubokého minima 

energetické funkce na dně většího gradientního spádu a zkonverguje ke stabilnímu stavu s 

přibližně globálně minimální hodnotou energetické funkce, tj. zamrzne v globálním minimu. 

Parametr T tedy hraje roli teploty z optimalizační metody simulovaného žíhání. 

 

 Funkce sítě pak vstupu sítě přiřadí binární stav sítě s minimální hodnotou energetické 

funkce, čehož lze využít k hledání minim funkcí ve tvaru kvadratické formy na oblasti 

vymezené binárními hodnotami nezávisle proměnných. Doba aktivace sítě závisí na 

vzdálenosti vstupu sítě od výše uvedeného stavu sítě a volbě počáteční teploty a strmosti 

jejího poklesu. Konfigurace sítě se extrahuje z objektivní funkce určením jejích výše 

uvedených parciálních derivací. 
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7.1. Problém obchodního cestujícího řešený optimalizačním modelem 

 

 Nechť mohutnost populace neuronů optimalizačního modelu je rovna hodnotě KG	(K ∈ ℕ), pak můžeme neurony zmíněné populace interpretovat jako prvky čtvercové 

matice dimenze K ×K. 

 

 Definujme si následující funkce stavu sítě: 

 tE(��) = ½#(#��� − 1� )G� 									tG(��) = ½#(#��� − 1� )G� 	 
 tu(��) =##U��#��5��5_E5��  

 

kde �, � ∈ 21,⋯ ,K4, 1 ∈ 21,⋯ ,K − 14 a U�� je příslušná metrika. 

 

Určeme jejich parciální derivace: 

 

−mtEZ0��[m��� = 1									 − mGtE(��)m���m��5 = −1 

 

−mtGZ0��[m��� = 1									 − mGtG(��)m���m�5� = −1 

 

kde �, �, 1 ∈ 21,⋯ ,K4 a 

 

−mtuZ0��[m��� = 0									 − mGtu(��)m��5m��5_E = −U�� 
 

kde �, � ∈ 21,⋯ ,K4 a 1 ∈ 21,⋯ ,K − 14. 
 

 Definujeme-li objektivní funkci G jako součet funkcí G1, G2, G3 a určíme-li 

konfiguraci a vstup sítě optimalizačního modelu extrakcí z funkce G užitím výše uvedených 

parciálních derivací, pak se objektivní funkce G ztotožní s energetickou funkcí E 

optimalizačního modelu, jejíž minimalizace proběhne během aktivní dynamiky. 
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 Minimalizací funkce G1 resp. G2 zajistíme excitaci právě jednoho neuronu v každém 

řádku resp. sloupci zmíněné matice, čímž obdržíme tzv. přípustný stav sítě, interpretujeme-li 

si totiž řádky resp. sloupce zmíněné matice jako města resp. pořadí jejich návštěvy obchodním 

cestujícím, pak každý přípustný stav sítě představuje jisté řešení problému obchodního 

cestujícího, ovšem ne nutně optimální. 

 

 Minimalizací funkce G3 zajistíme nalezení optimálního přípustného stavu sítě, tj. 

optimálního řešení problému obchodního cestujícího, neboť hodnota funkce G3 udává délku 

cesty obchodního cestujícího v závislosti na přípustném stavu. 
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8. Kompetiční model 
 

Topologie sítě: 

 

Rozdělme populaci neuronů sítě V na dvě disjunktní populace V1 a V2 (�E ∪ �G = �, �E ∩ �G = ∅, |�E| = J, |�G| = K) a propojme je hranami tak, aby z každého neuronu populace 

V1 směřovala hrana do každého neuronu populace V2 (�(�E) = �E × �G), síť je tedy 

orientována směrem od populace V1 k populaci V2 a populaci V1 resp. V2 pak chápeme jako 

populaci vstupní resp. výstupní. Dále propojme neurony populace V2 hranami tak, aby z 

každého neuronu populace směřovala hrana do každého neuronu populace kromě do sebe 

sama (�(�G) = �G × �G − 2[�, �]|� ∈ �G4). 
 

Aktivní dynamika: 

 

 Definujme aktivační funkci neuronů populace V1 resp. V2 jako identitu resp. ostrou 

nelinearitu. Nastavme počáteční hodnoty potenciálů a stavů neuronů následovně: 

 !�(0) = L�  ��(0) = 0 

 

a mějme následující aktivní dynamiku: 

 ��(� + 1) = $�(#�5(�)	�5�5 − (�) 										− (� =#L� 	����  

 

kde � ∈ �E, �, 1 ∈ �G a parametr −(� pak představuje zisk potenciálu j-tého neuronu výstupní 

populace od neuronů vstupní populace. Vektor L� = [L�|� ∈ �E] pak chápeme jako vstup sítě. 

 

Adaptivní dynamika: 

 

 Nastavme počáteční hodnoty vah následovně: 

 ���(0) = v��   �5�(0) = −2 

 

a definujme adaptační funkci neuronů výstupní populace jako ostrou nelinearitu. Mějme 

trénovací množinu ve tvaru 2O�(�)|� ∈ ∆�4, kde O� = [O�|� ∈ �E]. Necháme-li adaptovat pouze 

vazby mezi neurony populace V1 a V2 a položíme-li plasticitu rovnu elasticitě (+ = )), pak 

obdržíme následující adaptivní dynamiku: 
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���(�) = ���(� − 1) + +��(�)(O�(�) − ���(� − 1)) 
 �5�(�) = �5�(� − 1) 
 

kde � ∈ �E, �, 1 ∈ �G, � ∈ ∆� = 21,−,34 a v�� je náhodně generovaná hodnota. 

 

V každém kroku adaptivní dynamiky je nutné určit stavy neuronů populace V2, kroky 

adaptivní dynamiky jsou tedy podmíněny dynamikou aktivní, která z pohledu adaptivní 

dynamiky běží nekonečně rychle, takže stav populace V2 se během adaptivní dynamiky určí 

synchronně se stavem populace V1. 

 

 Stav populace V2 v každém adaptačním kroku určíme pomocí aktivní dynamiky s 

následujícím počátečním nastavením hodnot potenciálů neuronů populace V1: 

 !�(0) = O�(�) 
kde � ∈ �E. 

 

Přiřaďme každému neuronu populace V2 váhový vektor ����� = N���|� ∈ �EQ, potom 

neurony populace V2 spolu s hranami E2 a aktivní dynamikou tvoří spojitou Hopfieldovu síť s 

energetickou funkcí: 

 �(��) =##�5��5� +#��(�� 														− (� =#O�(�)	���� = O�(�)	����� 
 

kde � ∈ �E, � ∈ �G, 1 ∈ �G − 2�4. 
 

Budou-li vektory trénovací množiny resp. váhové vektory normální, pak vzdálenost 

mezi uvedenými vektory můžeme definovat jako jimi sevřený úhel k ∈< 0, w > 

(neeuklidovská metrika) a pro zisk potenciálu pak bude platit −(� = cosk (O�(�),�����). Výše 

uvedená energetická funkce pak nabude svého minima, právě když bude excitován právě 

jeden neuron populace V2 a to neuron s maximálním ziskem potenciálu, tzv. gain neuron. 

 

Proces minimalizace energie stavu populace V2, realizovaný aktivní dynamikou, kdy 

excitovaný neuron populace s maximálním ziskem potenciálu inhibuje prostřednictvím 

záporných interních vazeb ostatní neurony populace, označíme jako laterální inhibici. 

Laterální inhibice, určující na základě předloženého vzoru jemu odpovídající stav populace 

V2, nahrazuje v trénovací množině chybějící asociaci vzoru, tj. jeho obraz neboli výrok 

učitele, a mluvíme tedy o učení bez učitele. 
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Laterální inhibice v každém adaptačním kroku zabezpečí adaptaci pouze váhového 

vektoru odpovídajícího j-tému gain neuronu, tj. váhového vektoru ve smyslu výše uvedené 

neeuklidovské metriky nejbližšího předloženému vzoru, k němuž se po povrchu n-rozměrné 

hyperkoule jednotkového poloměru přiblíží o adaptační krok úměrný míře plasticity synapse: 

 �����(�) = �����(� − 1) + +	(O�(�) − �����(� − 1)) 
 

 

 

pak řekneme, že j-tý gain neuron vyhrál kompetici o předložený vzor trénovací množiny. 

Normalitu vektoru zadaptovaných vah zajistíme jeho normalizací po adaptaci. 

 

 Definujme objektivní funkci: 

 tZ�����[ = ½#��(�)#(O�(�) − ���)G�T  

a určeme její následující parciální derivace: 

 

									− mtZ�����[m��� =#��(�)ZO�(�) − ���[T  

kde � ∈ �E, � ∈ �G a � ∈ ∆�. 

 

 Objektivní funkce nabude svého minima, právě když váhový vektor zaujme polohu s 

minimálním součtem jeho vzdáleností od všech vektorů trénovací množiny excitujících 

příslušný neuron, tj. ve smyslu euklidovské metriky ve středu uvedených vektorů. 

 

 Jelikož výše uvedená adaptivní dynamika je kvazigradientním sestupem po zdola 

omezené objektivní funkci, tak za předpokladu, že vektory trénovací množiny tvoří ve 

vstupním prostoru shluky, jejichž počet odpovídá mohutnosti populace V2, budou náhodně 

nastavené váhové vektory během adaptivní dynamiky konvergovat ke středům těchto shluků. 
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Funkce sítě: 

 

 Definujme si následující kategorie normálních vektorů, do kterých byl během 

adaptivní dynamiky proveden rozklad oblasti normálních vektorů obsahující trénovací 

množinu (3 ≫ J,K): 

 {5 = M!� ∈ Ω|k(!�,����5) ≤ k(!�, �����)R					Ω = 2!� ∈ ℝV||!�| = 14 
 

kde 1 ∈ �G, � ∈ �G − 214 a k je neeuklidovská metrika, tj. úhel mezi uvedenými vektory. 

 

 Funkce sítě tedy v aktivním režimu libovolnému normálnímu vstupu sítě přiřadí 

vektor kanonické báze s jednotkou na k-té pozici právě když vstup sítě leží v k-té kategorii. 

Doba aktivace sítě je shodná s dobou aktivace optimalizačního modelu. 

 

 Funkci sítě kompetičního modelu pak můžeme chápat jako klasifikační z hlediska 

výše uvedených kategorií. 
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8.1. Kohonenova mapa (SOM) 
 

Položíme-li |�G| = KG, pak můžeme neurony populace V2 interpretovat jako prvky 

čtvercové mřížky o rozměru K ×K. Definujme čtvercové okolí r-tého řádu k-tého prvku 

mřížky jako množinu obsahující všechny prvky mřížky ležící ve vzdálenosti menší nebo 

rovné řádu r, tj. c(1, v) = 2� ∈ �G|U(1, �) ≤ v4, kde U je metrika definovaná na zmíněné 

mřížce jako sousedství prvků příslušného řádu, a upravme adaptivní dynamiku pro k-tý gain 

neuron: �����(�) = �����(� − 1) + +�(�)(O�(�) − �����(� − 1)) 
 

kde � ∈ c(1, v) a míra plasticity klesá globálně s časem adaptivní dynamiky a lokálně s řádem 

vzdálenosti příslušného neuronu v mřížce populace V2 od gain neuronu. 

 

 
 

Uvedenou úpravou adaptivní dynamiky jsme zobecnili laterální inhibici rozšířením 

excitace gain neuronu na jeho okolí, čímž jsme provázali metriku k s metrikou U. 

 

Budou-li vektory trénovací množiny náhodně rozděleny v n-rozměrném prostoru v 

souladu s nějakou distribuční funkcí, pak po adaptaci sítě budou váhové vektory náhodně 

rozděleny v tomtéž prostoru v souladu se stejnou distribuční funkcí. 

 

Předložíme-li v aktivním režimu trénovací množinu na ní zadaptované síti, pak mapa 

četnosti excitací neuronů populace V2, tzv. Kohonenova mapa, nám zobrazí rozmístění vzorů 

trénovací množiny v n-rozměrném prostoru. 

 

Takto zobecněný kompetiční model za předpokladu dostatečně velké mohutnosti 

populace V2 provádí shlukovou analýzu trénovací množiny, tj. určení počtu shluků včetně 

jejich rozmístění v n-rozměrném prostoru. 
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8.2. Vstřícné šíření vah (CPN) 
 

Upravme topologii již zadaptovaného kompetičního modelu přidáním populace V3 a 

propojme ji hranami s populací V2 tak, aby z každého neuronu populace V2 směřovala hrana 

do každého neuronu populace V3 (�(�u) = �G × �u). Nechť nová výstupní populace V3 má 

stejnou mohutnost jako vstupní populace V1. Váhy hran E3 nastavme následovně: 

 ��9(�) = ��� 
 

kde � ∈ �E, � ∈ �G, ;(�) ∈ �u a ;(�) je bijektivní obraz i-tého neuronu vstupní populace ve 

výstupní populaci. 

 

Výstupní populace V3 spolu s ohodnocenými hranami E3 je tedy obrazem vstupní 

populace V1 spolu s ohodnocenými hranami E1 zrcadlícím se přes nyní skrytou populaci V2, 

mluvíme o vstřícném šíření synaptických vah hran E1 na hrany E3 ve směru orientace hran. 

 

Zvolme aktivační funkce neuronů populace V3 shodně s aktivačními funkcemi 

populace V1, pak během aktivní dynamiky po stabilizaci stavu populace V2 excitací k-tého 

gain neuronu dostaneme hodnoty potenciálů neuronů populace V3  následovně: 

 !9(�) =#����9(�) = �59(�) = ��5�  

 

kde � ∈ �E, � ∈ �G, z čehož pro stimul !� ∈ {5 plyne následující funkce sítě: 

 C�(!�) = ����5 

 

Funkce sítě kompetičního modelu se vstřícným šířením vah tedy libovolnému 

normálnímu vstupu sítě přiřadí jeho prototyp, tj. jemu nejbližší váhový vektor. Prototypy leží 

v centrech příslušných shluků a tím uvedené shluky reprezentují, jsou jejich typickými 

představiteli. 

 

Kompetiční model se vstřícným šířením vah a Kohonenovou mapou můžeme užít pro 

redukci mohutnosti trénovací množiny, nahradíme-li ji množinou prototypů jejích prvků o 

volitelné mohutnosti KG (3 ≫ KG). 
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9. Nelineární model (MLP) 
 
Topologie sítě: 

 

 Rozdělme populaci neuronů sítě V na tři disjunktní populace V1, V2 a V3 

(�E ∪ �G ∪ �u = �, �E ∩ �G = ∅, �E ∩ �u = ∅, �G ∩ �u = ∅, |�E| = J, |�G| =?, |�u| = K) a 

propojme je hranami tak, aby z každého neuronu populace V1 směřovala hrana do každého 

neuronu populace V2 (�(�E) = �E × �G) a z každého neuronu populace V2 směřovala hrana do 

každého neuronu populace V3 (�(�G) = �G × �u), síť je tedy orientována směrem od populace 

V1 k populaci V3. Populaci V1 resp. V3 pak chápeme jako populaci vstupní resp. výstupní a 

populaci V2 nazveme skrytou populací implikující nelinearitu funkce sítě. 

 

Aktivní dynamika: 

 

 Definujme aktivační funkci neuronů sítě jako sigmoidu. Nastavme počáteční hodnoty 

potenciálů neuronů následovně: !�(0) = L� 
a mějme následující aktivní dynamiku: 

 �5(1) = $5(#��(0)	��5� ) 
��(2) = $�(#�5(1)	�5�5 ) 

 

kde � ∈ �E, 1 ∈ �G, � ∈ �u a vektor L� = [L�|� ∈ �E] pak chápeme jako vstup sítě. 

 

Adaptivní dynamika: 

 

 Nastavme počáteční hodnoty vah následovně: 

 ��5(0) = v�5   �5�(0) = v5� 
 

Položíme-li elasticitu rovnu nule, pak dostaneme následující adaptivní dynamiku: 

 ��5(�) = ��5(� − 1) + +	��(�)	*5(!5(�)) �5�(�) = �5�(� − 1) + +	�5(�)	*�(!�(�)) 
 

kde � ∈ �E, 1 ∈ �G, � ∈ �u, � ∈ ∆� a v�5 resp. v5� jsou náhodně generované hodnoty. 
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 Mějme trénovací množinu ve tvaru MNO�(�), P��(�)Q|� ∈ ∆�R, kde O� = [O�|� ∈ �E], P�� = [P�|� ∈ �u] a definujme globální chybovou funkci funkce sítě: 

 �(����) = ½	##(C�(O�(�)) − $�(P�(�)))G�T =#�TT  

 

kde � ∈ �u a � ∈ ∆�. 

 

 Globální chybová funkce vyjadřuje součet hodnot lokálních chyb �T, tj. součet rozdílů 

mezi skutečnou a požadovanou odezvou sítě přes všechny prvky trénovací množiny při 

aktuálně nastavené konfiguraci sítě a její funkční hodnotu lze proto chápat jako aktuální 

chybu funkce sítě vzhledem k trénovací množině. Funkce sítě definovaná během adaptace sítě 

trénovací množinou, bude bezchybná právě když �(����) = 0. 

 

Upozornění: V dalším pro zjednodušení zápisu u potenciálů a stavů neuronů nebudeme 

explicitně uvádět čas adaptivní dynamiky jakožto jejich argument, budeme implicitně 

v zápisech předpokládat jeho synchronizaci s indexem lokální chyby. 

 

 Definujme adaptační funkce neuronů výstupní a skryté populace: 

 

*�(!�) = −m�Tm!� 															*5(!5) =  �5 !5 	#*�(!�)	�5��  

 

kde 1 ∈ �G a � ∈ �u. 

 

 Určeme následující parciální derivace: 

 m�Tm�5� = m�Tm!� m!�m�5� = −�5	*�(!�) 
 m�Tm��5 =#m�Tm!� m!�m�5  �5 !5 m!5m��5� = −��	*5(!5) 
kde: m!�m�5 = �5� 																 m!5m��5 = �� 
 

pro � ∈ �E, 1 ∈ �G, � ∈ �u. 
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 Adaptivní dynamiku pak dostaneme ve tvaru: 

 

��5(�) = ��5(� − 1) − + m�Tm��5 

 �5�(�) = �5�(� − 1) − + m�Tm�5� 
a dále z m�m��5 =# m�Tm��5T 															 m�m�5� =# m�Tm�5�T  

 

plyne, že adaptivní dynamika je kvazigradientním sestupem po zdola omezené globální 

chybové funkci, kde jeden gradientní krok odpovídá jednomu předložení trénovací množiny, 

takže při opakovaném předkládání trénovací množiny bude hodnota chybové funkce 

v závislosti na volbě velikosti míry plasticity synapse klesat. 

 

 Adaptační funkce výstupní a skryté populace určí za předpokladu jednotkových 

strmostí sigmoid jakožto aktivačních funkcí následující derivace: 

 m�Tm!� = ��(1 − ��)(�� − $�(P�))															 �5 !5 = �5(1 − �5) 
kde �� = C�(O�). 
 

 V každém adaptačním kroku tedy musíme určit stav sítě pomocí aktivní dynamiky s 

následujícím počátečním nastavením hodnot potenciálů neuronů vstupní populace: 

 !�(0) = O�(�) 
kde � ∈ �E. 

 

 Kroky adaptivní dynamiky jsou tedy stejně jako u kompetičního modelu podmíněny 

dynamikou aktivní, přičemž stavy neuronů všech jednotlivých populací se v nich z pohledu 

adaptivní dynamiky určí synchronně. 

 

 Jelikož pro určení hodnot vah hran spojujících vstupní a skrytou populaci neuronů v 

daném adaptačním kroku musejí být již určeny aktualizované hodnoty vah hran spojujících 

skrytou a výstupní populaci neuronů, a to na základě velikosti chyby �T, mluvíme o zpětném 

šíření chyby proti směru orientace hran (BPA). 
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Funkce sítě: 

 

 Libovolnému vstupu sítě L� pak funkce sítě přiřadí výstup sítě C�(L�) tak, že uspořádaná 

dvojice [L�, C�(L�)] představuje další funkcí sítě vytvořený a v trénovací množině neobsažený 

příklad nějaké objektivní vektorové funkce t�:ℝV → ℝq, mluvíme tak o schopnosti sítě 

zobecnit (generalizovat) během adaptace získanou zkušenost, nelineární model je tak 

univerzálním aproximátorem libovolné objektivní vektorové funkce, jejíž příklady jsou 

uvedené v trénovací množině. 

 

 Optimální počet neuronů skryté populace je přímo úměrně závislý na míře nelinearity 

aproximované objektivní vektorové funkce a stanovuje se experimentálně během adaptivní 

dynamiky na základě vývoje hodnoty globální chybové funkce. 

 

 Za předpokladu �(����) = 0 je funkce nelineárního modelu pro vzory z trénovací 

množiny stejně jako u lineární paměti heteroasociativní, ale na rozdíl od lineární paměti 

vykazuje nelineární model robustnost vůči jisté míře poškození vzoru, tj. i do jisté míry 

poškozený vzor asociuje s odpovídajícím obrazem, a jestliže je obraz shodný se vzorem, tj. O�(�) = P��(�) pro � ∈ ∆�, tj. J = K, lze nelineární model užít podobně jako lineární 

autoasociativní paměť k filtraci šumu. Na druhou stranu funkce nelineárního modelu není 

nijak určena pro lineární kombinace vzorů, pokud nejsou obsaženy v trénovací množině. 

 

 Mějme počet kategorií jistých objektů roven mohutnosti populace V3 a mějme 

trénovací množinu ve tvaru MNO�(�), P��(�)Q|� ∈ ∆�R, kde O� = [O�|� ∈ �E] představuje daný 

objekt a P�� = [P�|� ∈ �u], kde P�(�) = 0 pro � ≠ 1 a P5(�) = 1, představuje výrok učitele o 

příslušnosti daného objektu do k-té kategorie, pak po adaptaci sítě na uvedenou trénovací 

množinu funkce sítě v aktivním režimu klasifikuje libovolný objekt z hlediska daných 

kategorií. 

 

 Mějme časovou posloupnost 2a(�? + 1∆�)|1 ∈ ℕ4, kde ∆� je perioda snímkování a 

mějme trénovací množinu ve tvaru MNO�(�), P��(�)Q|� ∈ ∆�R, kde O�(�) = [a(�T − �∆�)|� ∈ �E], P��(�) = [a(�T + �∆�)|� ∈ �u] a �T = �? + �∆� pro � ∈ ∆�, pak po adaptaci sítě na uvedenou 

trénovací množinu funkce sítě v aktivním režimu na základě předložené historie posloupnosti [a(� − �∆�)|� ∈ �E] provede predikci posloupnosti [a(� + �∆�)|� ∈ �u], kde � = �? + 1∆�. 
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 Autoasociativní funkci nelineárního modelu lze také užít k symetrickému šifrování 

libovolného počítačového souboru, a to během aktivní dynamiky nejprve zakódováním 

každého jeho bajtu ~!E, … , !�� do jemu příslušného vektoru ~�E, … , ���: 
 

~!E, … , !�� �`EE ⋯ `E�⋮ ⋱ ⋮`�E ⋯ `��� = ~�E, … , ��� 
 

a posléze jeho následným dekódováním: 

 

~$E(�E),… , $�(��)� �LEE ⋯ LE�⋮ ⋱ ⋮L�E ⋯ L��� = ~!E, … , !�� 
 

kde !� resp. �� jsou vektory potenciálů neuronů vstupní/výstupní resp. skryté, tzv. dělící vrstvy, $� je vektor aktivačních funkcí neuronů dělící vrstvy a [�̀�E, … , �̀��, L�E, … , L��] je konfigurace 

sítě, tj. adaptovaný náhodně generovaný klíč. 
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9.1. Setrvačnost gradientu chybové funkce 

 

 Definujme přírůstek konfigurace sítě během adaptačního kroku následovně: 

 ∆����(�) = ����(�) − ����(� − 1) 
 

a upravme výše uvedenou adaptivní dynamiku: 

 

��5(�) = ��5(� − 1) − + m�Tm��5 + �	∆��5(� − 1) 
 �5�(�) = �5�(� − 1) − + m�Tm�5� + �	∆�5�(� − 1) 
 

kde � ∈ �E, 1 ∈ �G, � ∈ �u a � ∈ (0,1) nazveme mírou setrvačnosti gradientu. 

 

 Nechť během adaptačního kroku všechny parciální derivace globální chybové funkce 

nezmění znaménko, pak gradient chybové funkce před a po aktualizaci konfigurace významně 

nemění směr ani orientaci, přičtení minulého přírůstku konfigurace k aktualizovanému 

gradientu proběhne tedy ve směru původního gradientu a tím aktualizovaný gradient 

významně nevychýlí, zvětší se pouze velikost gradientního resp. adaptačního kroku ve směru 

k lokálnímu minimu globální chybové funkce. 

 Nechť během adaptačního kroku všechny parciální derivace globální chybové funkce 

změní znaménko, pak gradient chybové funkce před a po aktualizaci konfigurace významně 

nemění směr, v němž lokální minimum chybové funkce zřejmě neleží, ale mění orientaci. 

Přičtení minulého přírůstku konfigurace k aktualizovanému gradientu při vhodné míře 

setrvačnosti gradientu pak aktualizovaný gradient vychýlí směrem k lokálnímu minimu 

globální chybové funkce. 

 V obou uvedených typických situacích se tedy přičtením minulého přírůstku 

konfigurace k aktualizovanému gradientu konvergence hodnoty globální chybové funkce k 

nule urychlí, gradient globální chybové funkce díky své setrvačnosti nemění prudce směr, 

trajektorie gradientního sestupu směřující k hlubšímu lokálnímu minimu je přímější a mělčí 

lokální minima přeskočí. 
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9.2. Dynamika míry plasticity synapse 

 

 Uvažujme adaptivní dynamiku v makroskopickém čase �, kdy konfiguraci sítě 

adaptujeme vždy po předložení celé trénovací množiny, na rozdíl od výše uvedené adaptivní 

dynamiky v mikroskopickém čase �, kdy jsme konfiguraci sítě adaptovali vždy po předložení 

příslušného prvku trénovací množiny, pak tuto adaptivní dynamiku dostaneme ve tvaru 

gradientního sestupu po zdola omezené globální chybové funkci, případně s dynamicky se 

měnící mírou plasticity synapse jakožto velikostí gradientního kroku: 

 

����(� + 1) = ����(�) − +(�) m�(����(�))m����(�)  

 

a proveďme Taylorův rozvoj j-té složky funkce sítě v okolí konfigurace sítě v čase �: 

 

C�Z����(� + 1)[ ≅ C�Z����(�)[ + mC�Z����(�)[m����(�) Z����(� + 1) − ����(�)[ =
= C�Z����(�)[ − +(�) mC�Z����(�)[m����(�) m�Z����(�)[m����(�)  

a u funkce sítě zaměňme její parametr s proměnnou, tj. konfiguraci sítě s příslušným prvkem 

trénovací množiny (C�ZO���(�)[ = C�����ZO���(�)[ = C�O���(T)(����) = C�(����)), pak dostaneme derivaci 

globální chybové funkce podle míry plasticity synapse pro 7�T(�) = C�Z�����(�)[ − $�(P�(�)) ve 

tvaru:  �(����(� + 1)) +(�) =##(C�Z����(� + 1)[ − $�(P(�)))�T
 C�(����(� + 1)) +(�)  

kde:  C�(����(� + 1)) +(�) ≅ −mC�Z����(�)[m����(�) m�Z����(�)[m����(�) ≡ −��(�) 
tj.:  �(����(� + 1)) +(�) ≅ −##(7��(�) − +(�)��(�))�T ��(�) 
a velikost míry plasticity synapse můžeme v každém gradientním kroku optimalizovat: 

  �(����(� + 1)) +(�) = 0					 ⇒ 					+(�) = ∑ 7�(�)	��(�)�3∑ ��G(�)�  

kde � ∈ �u, � ∈ 21,⋯ , 34, � ∈ ℕ a 7�(�) = ∑ 7��(�)T . 
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Upozornění: V dalším pro zjednodušení vyjádření příslušných parciálních derivací nebudeme 

uvádět makroskopický čas � adaptivní dynamiky jakožto argument. 

 

Skalární součin �� příslušných kolineárních gradientů rozepíšeme do tvaru: 

 mC�(����)m���� m�(����)m���� =# mC�m�5�5 # m�Tm�5�T +## mC�m��5� # m�Tm��5T5  

tj. pro g�(��) = ��(1 − ��), g5(�5) = �5(1 − �5) a 7�(�) = ��(�) − $�(P�(�)) : 
 mC�m�5� =  �� !� m!�m�5� = �5g�(��)								 mC�m��5 =# �� !� m!�m�5 m�5m��5� = ��g5(�5)#g�(��)	�5�	�  

m�Tm�5� = �5(�)	g�(��(�))	7�(�)										 m�Tm��5 = ��(�)	g5(�5(�))#g�(��(�))	7�(�)	�5��  

 

takže pro `5� = �1g�(��), `�5 = ��g1(�1) a L5� = g�(��)	�1� : 
 mC�m�5�# m�Tm�5�T = `5�#`5�(�)	7�(�)	T  

mC�m��5# m�Tm��5T = `�5#L5�� #`�5(�)T #L5�(�)	7�(�)	�  

 

kde � ∈ �E, 1 ∈ �G, � ∈ �u a � ∈ ∆�. 
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10. Hybridní model (RBF) 
 
Topologie sítě: 

 

 Rozdělme populaci neuronů sítě V na tři disjunktní populace V1, V2 a V3 

(�E ∪ �G ∪ �u = �, �E ∩ �G = ∅, �E ∩ �u = ∅, �G ∩ �u = ∅, |�E| = J, |�G| = �, |�u| = K) a 

propojme je hranami tak, aby z každého neuronu populace V1 směřovala hrana do každého 

neuronu populace V2 (�(�E) = �E × �G) a z každého neuronu populace V2 směřovala hrana do 

každého neuronu populace V3 (�(�G) = �G × �u), síť je tedy orientována směrem od populace 

V1 k populaci V3. Populaci V1 resp. V3 pak chápeme jako populaci vstupní resp. výstupní. 

 

Aktivní dynamika: 

 

 Definujme aktivační funkci neuronů populace V1 resp. V2 resp. V3 jako identitu resp. 

linearitu ($(!) = ½	!) resp. sigmoidu. Nastavme počáteční hodnoty potenciálů neuronů 

následovně: !�(0) = L� 
a mějme následující aktivní dynamiku: 

 																																																					�5(1) = $5(#��(0)	��5 − (5� ) 
��(2) = $�(#�5(1)	�5�5 ) 

 

kde � ∈ �E, 1 ∈ �G, � ∈ �u a vektor L� = [L�|� ∈ �E] pak chápeme jako vstup sítě. 

 

Adaptivní dynamika: 

 

 Nastavme počáteční hodnoty vah následovně: 

 ��5(0) = Y�5   �5�(0) = v5� 
 

Necháme-li adaptovat pouze vazby mezi neurony populace V2 a V3 a položíme-li elasticitu 

rovnu nule, pak obdržíme následující adaptivní dynamiku: 

 																																														��5(�) = ��5(� − 1) �5�(�) = �5�(� − 1) + +	�5(�)	*�(!�(�)) 
 

kde � ∈ �E, 1 ∈ �G, � ∈ �u, � ∈ ∆� a v5� jsou náhodně generované hodnoty. 
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 Mějme trénovací množinu ve tvaru MNO�(�), P��(�)Q|� ∈ ∆�R, kde O� = [O�|� ∈ �E], P�� = [P�|� ∈ �u] a definujme globální chybovou funkci a adaptační funkci neuronů výstupní 

populace: �(����) = ½	##(C�(O�(�)) − $�(P�(�)))G�T =#�TT  

 *�Z!�[ = −m�Tm!� = −	��(1 − ��)(�� − $�(P�)) 
 

a určeme následující parciální derivaci: 

 m�Tm�5� = m�Tm!� m!�m�5� = −�5	*�Z!�[ 
 

pak adaptivní dynamiku dostaneme ve tvaru: 

 �5�(�) = �5�(� − 1) − + m�Tm�5� 
 

kde 1 ∈ �G, � ∈ �u, � ∈ ∆�, přičemž z 

 m�m�5� =# m�Tm�5�T  

 

plyne, že adaptivní dynamika je kvazigradientním sestupem po zdola omezené globální 

chybové funkci, kde jeden gradientní krok odpovídá jednomu předložení trénovací množiny, 

takže při opakovaném předkládání trénovací množiny bude hodnota chybové funkce 

konvergovat k nule. 

 

 V každém adaptačním kroku tedy musíme určit stav sítě pomocí aktivní dynamiky s 

následujícím počátečním nastavením hodnot potenciálů neuronů vstupní populace: 

 !�(0) = O�(�) 
kde � ∈ �E. 

 

 Kroky adaptivní dynamiky jsou tedy stejně jako u kompetičního modelu podmíněny 

dynamikou aktivní, přičemž stavy neuronů všech jednotlivých populací se v nich z pohledu 

adaptivní dynamiky určí synchronně. 
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Funkce sítě: 

 
 Nechť vektor Y�5 = [Y�5|� ∈ �E] je prototyp k-tého shluku normálních n-složkových 

vektorů, nastavíme-li −(5 = 1, pak za předpokladu normality vektorů O� trénovací množiny 

bude stav k-tého neuronu skryté populace v příslušném adaptačním kroku vyjadřovat míru 

vzdálenosti � vektoru O�(�) od k-tého prototypu ve smyslu neeuklidovské metriky k: 

 �5(�) = ½	(#O�(�)	Y�5 + 1� ) = ½	(O�(�)	Y�5 + 1) = ½	(cosk(O�(�), Y�5) + 1) 
 

kde � ∈ 21,−,34 a 1 ∈ 21,−,�4 při 3 ≫ �. 

 

 
 

 Libovolný normální vstup sítě L� funkce sítě v prvním okamžiku aktivní dynamiky 

asociuje s mírami jeho vzdálenosti od všech prototypů shluků množiny 2O�(�)|� ∈ ∆�4 
jakožto se stavy neuronů skryté populace a v druhém okamžiku aktivní dynamiky asociuje 

stav skryté populace s funkční hodnotou C�(L�). 
 

 První část sítě �(�E) je tvořena kompetičním modelem s odebranými zápornými 

interními vazbami a druhá část sítě �(�G) je tvořena horní částí nelineárního modelu, mluvíme 

tedy o hybridní síti. 

 

 Hybridní model je tak stejně jako nelineární model univerzálním aproximátorem 

libovolné objektivní vektorové funkce t�:ℝV → ℝq, jejíž příklady jsou uvedené v trénovací 

množině. 
  



 

47 

11. Dodatek A: Perceptron 

 
Topologie sítě: 

 Rozdělme populaci neuronů sítě V na dvě disjunktní populace V1 a V2 

(�E ∪ �G = �, �E ∩ �G = ∅, |�E| = J, |�G| = 1) a propojme je hranami tak, aby z každého 

neuronu populace V1 směřovala hrana do neuronu populace V2 (�(�) = �E × �G), síť je tedy 

orientována směrem od populace V1 k populaci V2. Populaci V1 resp. V2 pak chápeme jako 

populaci vstupní resp. výstupní. 

 

Aktivní dynamika: 

 Definujme aktivační funkci neuronů populace �E resp. �G jako identitu resp. ostrou 

nelinearitu ($�(0) ≡ 0), pak pro !�(0) = L� dostaneme následující aktivní dynamiku: 

 ��(1) = $�(#L� 	���� ) = $�(L�	�����) 
kde � ∈ �E, � ∈ �G a ����� = N���|� ∈ �EQ. Vektor L� = [L�|� ∈ �E] pak chápeme jako vstup sítě. 

 

Adaptivní dynamika: 

 Zvolme ���(0) = 0 a položme plasticitu resp. elasticitu rovnu jedné resp. nule, pak 

dostaneme následující adaptivní dynamiku: 

 ���(�) = ���(� − 1) + !�(�)	*�(!�(�)) 
kde � ∈ �E, � ∈ �G a � ∈ ∆�. 

 

 Mějme trénovací množinu ve tvaru 2[O�(�), P(�)]|� ∈ ∆�4, kde O� = [O�|� ∈ �E] a P ∈ 20,14 uspořádanou tak, aby P(1) = 1 a definujme chybovou funkci: 

 �(�) = P(�) − $�(O�(�)	�����(� − 1))										(�(1) = P(1) = 1) 
 

a dále zvolme adaptační funkci výstupního neuronu ve tvaru *�(!�(�)) = �(�), pak: 

 �����(�) = �����(� − 1) + O�(�)�(�)									(	�����(1) = O�(1)) 
 

tj. pro ∆� = 21,⋯ ,34: �����(3) =#O�(�)�(�)T  

kde � ∈ �G a � ∈ ∆�. 
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Funkce sítě: 

 

 Zvolme O�(�) ∈ + ⇒ P(�) = 1 a O�(�) ∈ ) ⇒ P(�) = 0 (viz definice níže) a nechť 

vektory O� jsou vzájemně ortonormální a vektory ����� normální, pak platí: 

 $�(O�(�)	�����(�)) = P(�)									($�(O�(1)	�����(1)) = $�(O�(1)	O�(1)) = $�(1) = P(1) = 1) 
 

neboť z Cauchy - Shwarzovy nerovnosti ]O�(�)	�����(� − 1)] < |O�(�)|	]�����(� − 1)] = 1 plyne pro � ≠ 1 a �(�) ≠ 0: 

 $�(O�(�)(�����(� − 1) + O�(�)�(�))) = $�(O�(�)	�����(� − 1) + �(�)) = $�(�(�)) = P(�) 
 

Poznámka: $�(�(�)) = P(�) plyne z následujících implikací: �(�) = −1 ⇒ P(�) = 0 ∧ $�(O�(�)	�����(� − 1)) = 1 ⇒ O�(�)	�����(� − 1) > 0 ⇒ O�(�) ∈ +	 �(�) = +1 ⇒ P(�) = 1 ∧ $�(O�(�)	�����(� − 1)) = 0 ⇒ O�(�)	�����(� − 1) < 0 ⇒ O�(�) ∈ )	 
 

Definice: +, ) ⊂ ℝV, + ∩ ) = ∅ +, ) – lineárně separabilní nadrovinou U ⇔ ∃���� ∈ ℝV	(L� ∈ + ⇒ L�	���� > 0) ∧ (L� ∈ ) ⇒ L�	���� < 0) 
kde U = 2L� ∈ ℝV|L�	���� = 04 a + ∪ ) ∪ U = ℝV 

 

Z výše uvedeného pro � = 21,⋯ ,34 platí: 

 C�ZO�(�)[ = $�(O�(�)#O�(�)�(�)T ) = $�(�(�)) = P(�) 
a pro L� ∈ ℝV, kde |L�| = 1, platí: 

 $�ZL�	�����[ = $�(|L�|]�����] cos k) = $�(cos k) 
 

kde � ∈ �G, � ∈ ∆�, tj. perceptron klasifikuje libovolný normální vektor z hlediska dvou 

lineárně separabilních kategorií + a ), přičemž vektor ležící v dělící nadrovině U přiřadí do ). 

 

 
  



 

49 

12. Dodatek B: Vícevrstvý perceptron (zobecnění BPA) 

 

 Mějme lokální chybu prvku trénovací množiny nelineárního modelu vyjádřenou 

součtem rozdílů skutečné a požadované hodnoty stavu neuronů výstupní vrstvy sítě �u a 

vyjádřeme si stavy a potenciály neuronů skryté vrstvy sítě �G: 

 �T = ½	#(��(�) − g�(�))G� 										�5 = (1 + 789�:�)8E										!5 =#��	��5� + (5 

 Rozšiřme seznam nezávisle proměnných chybové funkce nelineárního modelu, dosud 

tvořený synaptickými vahami vazeb mezi neurony jednotlivých vrstev sítě, tj. ��5 a �5�, o 

parametry aktivační funkce neuronů skryté vrstvy sítě, tj. (5 a ;5, a určeme následující 

derivace: m�Tm�5� = m�Tm!� m!�m�5� = �5 	;���(1 − ��)(�� − g�) 	= −�5 	*�(!�) m�Tm��5 =#m�Tm!� m!�m�5  �5 !5 m!5m��5� = �� 	;5�5(1 − �5)#;���(1 − ��)(�� − g�)	�5�� = −��	*5(!5) 
m�Tm(5 =#m�Tm!� m!�m�5  �5 !5�

m!5m(5 = ;5�5(1 − �5)#;���(1 − ��)(�� − g�)	�5�� = −*5(!5) 
m�Tm;5 =#m�Tm!� m!�m�5  �5 ;5� = !5 	�5(1 − �5)#;���(1 − ��)(�� − g�)	�5�� = −!5;5 *5(!5) 

kde: m�Tm!� =  �� !� Z�� − g�[										 m!�m�5 = �5� 											 m!�m�5� = �5 										 m!5m��5 = �� 										m!5m(5 = 1  �� !� = ;� 	��Z1 − ��[										 �5 !5 = ;5 	�5(1 − �5)										 �5 ;5 = !5 	�5(1 − �5) 
 

pak dostaneme adaptivní dynamiku nelineárního modelu zobecněnou o adaptaci prahů a 

strmostí aktivačních funkcí neuronů skryté vrstvy sítě jakožto nezávisle proměnných chybové 

funkce nelineárního modelu: 

��5(�) = ��5(� − 1) − + m�Tm��5 

�5�(�) = �5�(� − 1) − + m�Tm�5� (5(�) = (5(� − 1) − + m�Tm(5  

;5(�) = ;5(� − 1) − + m�Tm;5  

 

kde � ∈ �E, 1 ∈ �G, � ∈ �u a � ∈ ∆�. 
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 Prahy a strmosti aktivačních funkcí (sigmoidální funkce resp. Gaussova funkce resp. 

funkce „mexický klobouk“) neuronů vstupní a výstupní vrstvy sítě můžeme určit v závislosti 

na trénovací množině pomocí dále uvedených transformací: 

 

sigmoidální transformace:  $(!) = Z1 + 789(:8B)[8E 
 0,95 = Z1 + 789(B_u�8B)[8E 					⇒ 					 78u9� = 0,050,95 

⇒ 					; = ln 0,95 − ln 0,053c ≅ 1c 

0,05 = Z1 + 789(B8u�8B)[8E 					⇒ 					 7u9� = 0,950,05 

 

 
 
radiální transformace I:  $(!) = 789(:8B)� 
 0,05 = 789ZB�√��8B[� 					⇒ 					; = − 16cG ln 0,05 ≅ 12cG 
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radiální transformace II:  *(!) = −cG$��(!) 
 

$(!) = 789(:8B)� 			⇒ 		$�(!) = −2;(! − ()$(!) 			⇒ 		 $��(!) = −2;(1 − 2;(! − ()G)$(!) 
 *(!) = −cG$��(!) = �1 − 1cG (! − ()G�$(!) ⇒ *�(!) = 1cG (! − () � 1cG (! − ()G − 3�$(!) 
 

 

 

pozn.: Výše uvedené transformaci resp. její nezáporné části odpovídají různá pásma citlivosti. 

 

ϑ – střední hodnota dat přiváděných na daný neuron z trénovací množiny 

σ – směrodatná odchylka dat přiváděných na daný neuron z trénovací množiny 
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13. Dodatek C: Instar učení ve spojitém čase 

 

Mějme následující neuronovou síť: 

 
 

kde pro zjednodušení uvažujme aktivační a adaptační funkci jako identitu a míru plasticity 

nastavme shodně s mírou elasticity na hodnotu jedna, pak za předpokladu nulových 

počátečních podmínek pro −(� = �� > 0, kde � ∈ 20,1,2,34, dostaneme následující aktivní a 

adaptivní dynamiku: 

 

Aktivní dynamika:   � !?(�) + !?(�) = �? 

tj. !?(�) = �?	(1 − 78h) 
tj. limh→A !?(�) = !?(∞) = �? 

 

a pro � ∈ 21,2,34 
   � !�(�) + !�(�) = !?(� − ∆�)	�?� + �� 
tj. !�(�) = �?	�?�	(1 − �(�)	78h) + �� 	(1 − 78h)										�(�) = (1 + �	7∆h) 
tj. limh→A !�(�) = !�(∞) = �?	�?� + ��  
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Adaptivní dynamika:   ��?�(�) + !�(∞)	�?�(�) = !?(∞)	!�(∞)	 
tj.   ��?�(�) = −(O	�?�G (�) − P	�?�(�) + Y) 
pro � ∈ 21,2,34, kde O = �?										P = �?G − �� 										Y = −�?	�� 
tj. po separaci proměnných: � = −  1O	�?�G − P	�?� + Y 	 �?� 
tj. obecně: 

 

� = − 1√¡	ln ¢	�?� − P + √¡2O�?� − P − √¡2O 	¢ + {										¡ = PG − 4OY = Z�?G + ��[G > 0 

 

přičemž platí P − √¡ < 0 < P + √¡ a kde { je integrační konstanta. 

_______________________________ 

Za prvé uvažujme �?�(�) ∉ 〈p8√¥Go , p_√¥Go 〉, pak dostaneme hyperbolický průběh: 

 

78√¥(T8§) = �?�(�) − P + √¡2O�?�(�) − P − √¡2O  

 

tj. pro � ≠ {: 

�?�(�) = 12O ¨P − √¡ 78√¥(T8§) + 178√¥(T8§) − 1© 

tj. 

limT→A�?�(�) = �?�(∞) = P + √¡2O = �? 

a 

limT→8A�?�(�) = �?�(−∞) = P − √¡2O = − ���? 
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Pro � = 0 dále dostaneme: 

{ = 1√¡	ln 	�?�(0) − P + √¡2O�?�(0) − P − √¡2O  

 

takže pro �?�(0) > p_√¥Go  platí { < 0 a pro �?�(0) < p8√¥Go  platí { > 0, z čehož plyne, že z 

pohledu předpokladu nulových počátečních podmínek je hodnota �?�(0) sice vždy dobře 

definovaná, nicméně leží vždy mimo interval 〈p8√¥Go , p_√¥Go 〉, a proto nemůže nikdy nabýt 

nulové hodnoty, tj. pro toto řešení adaptivní dynamiky nelze splnit požadavek nulových 

počátečních podmínek. 

_______________________________ 

Za druhé uvažujme �?�(�) ∈ (p8√¥Go , p_√¥Go ), pak dostaneme sigmoidální průběh: 

 

78√¥(T8§) = P + √¡2O − �?�(�)
�?�(�) − P − √¡2O  

tj. 

�?�(�) = 12O ¨P − √¡ 78√¥(T8§) − 178√¥(T8§) + 1© 

tj. 

limT→A�?�(�) = �?�(∞) = P + √¡2O = �? 

a 

limT→8A�?�(�) = �?�(−∞) = P − √¡2O = − 	���?  

 

Pro � = 0 dále dostaneme: 

{ = 1√¡	ln 	
P + √¡2O − �?�(0)
�?�(0) − P − √¡2O  

 

tj. pro nulové počáteční podmínky je: 

{ = 1√¡ ln√¡ + P√¡ − P 

tj. jedině v případě �?G = ��  je { = 0 

_______________________________ 
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 Z obecného řešení adaptivní dynamiky plyne, že pokud budou synaptické váhy 

naučené sítě před zahájením její adaptace již nastaveny na požadované hodnoty, tj. na limitní 

hodnoty v nekonečném čase adaptivní dynamiky, adaptivní dynamika nemá smysl, tj. 

naučenou síť již nemá smysl učit. 

 V opačném případě funkci naučené sítě při obráceném toku času, tj. síť si pamatuje 

budoucnost, dostaneme ve tvaru: 

 C�([�?, 0,0,0]) = [�?, −�E, −�G, −�u] 
 

a při běžném toku času, tj. síť si pamatuje minulost, dostaneme ve tvaru: 

 C�([�?, 0,0,0]) = [�?, �?G, �?G, �?G] 
 

tj. funkce sítě je tedy závislá na orientaci percepční šipky času. 

 Z partikulárního řešení adaptivní dynamiky daného nulovými počátečními 

podmínkami při nulové integrační konstantě a běžném toku času dostaneme funkci naučené 

sítě v následujícím tvaru: 

 C�([�?, 0,0,0]) = [�?, �E, �G, �u] 
 

 Během instar učení () = 1) se do paměti synaptické vazby reálně uloží po dostatečně 

dlouhou dobu jí procházející informační signál �? (presynaptická aktivita), tj. kapacita paměti 

je omezená hodnotou �?. 
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14. Dodatek D: Outstar učení ve spojitém čase 

 

Mějme následující neuronovou síť: 

 
 

kde pro zjednodušení uvažujme aktivační a adaptační funkci jako identitu a míru plasticity 

resp. elasticity nastavme na hodnotu jedna resp. nula, pak za předpokladu nulových 

počátečních podmínek pro −(� = �� > 0, kde � ∈ 20,1,2,34, dostaneme následující aktivní a 

adaptivní dynamiku: 

 

Aktivní dynamika: 

   � !?(�) + !?(�) =#!�(� − ∆�)	��?� + �? 

tj. !?(�) =#�� 	��?� 	(1 − �(�)	78h) + �?	(1 − 78h)										�(�) = (1 + �	7∆h) 
tj. limh→A !?(�) = !?(∞) =#�� 	��?� + �? 

a pro j∈{1,2,3}:   � !�(�) + !�(�) = ��  
tj. !�(�) = �� 	(1 − 78h) 
tj. limh→A !�(�) = !�(∞) = �� 
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Adaptivní dynamika: 

   ���?(�) = !�(∞)	!?(∞)	 
tj.   ���?(�) = ��(#����?(�)+�?� ) 
 

pro �, � ∈ 21,2,34, tj. obecně: 

 ��?(�) = ��?(0) + ��ª 	{	(7«T − 1) 
 

kde ª = ]��]G pro �� = [�E, �G, �u] a kde integrační konstanta { = ∑ ����?(0)+�?� , pak platí: 

 limT→A��?(�) = �?�(∞) = ∞ 

 

z čehož plyne, že nemá smysl nechat čas adaptivní dynamiky běžet do nekonečna. Nechme na 

síť působit stimul �? a �� po dobu adaptace (�?, �E) a vzápětí stimul ¬? a ¬� = [¬E, ¬G, ¬u] po dobu 

adaptace (�E, �G), kde: �? = 0																				�E = ]��]8G ln 2																				�G = ]¬�]8G ln 2 

 

 Z partikulárního řešení adaptivní dynamiky daného nulovými počátečními 

podmínkami pro dobu adaptace (�?, �E) dostaneme funkci naučené sítě ve tvaru: 

 C�([0, �E, �G, �u]) = [�?, �E, �G, �u] 
neboť: #�� 	��?� (�E) = �? 

 

a dále z partikulárního řešení adaptivní dynamiky daného počátečními podmínkami ��?(�E) = ]��]8G��	�?  pro dobu adaptace (�E, �G) dostaneme: 

 

��?(�G) = �� 	�?]��]G + ¬� 	¬?]¬�]G + (�� ∙ ¬�)]��]G]¬�]G 	¬� 	�? 
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tj. 

#�� 	��?� (�G) = �? + (�� ∙ ¬�)]¬�]G ¬? + (�� ∙ ¬�)]��]G]¬�]G 	(�� ∙ ¬�)	�? 

 

#¬� 	��?� (�G) = ¬? + (�� ∙ ¬�)]��]G �? + (�� ∙ ¬�)]��]G]¬�]G (¬� ∙ ¬�)	�? 

tj. 

#�� 	��?� (�G) = �? + ]��]]¬�] ¬?	Y­WkZ��, ¬�[ + �?	Y­WGkZ��, ¬�[ 
 

#¬� 	��?� (�G) = ¬? + ]¬�]]��] 	�?	Y­WkZ��, ¬�[ + ]¬�]]��] 	�?	Y­WkZ��, ¬�[ 
 

tj. pro vzájemně ortogonální vstupy ��, ¬� dostaneme funkci naučené sítě ve tvaru: 

 C�([0, �E, �G, �u]) = [�?, �E, �G, �u]										C�([0, ¬E, ¬G, ¬u]) = [¬?, ¬E, ¬G, ¬u] 
 

 Během outstar učení () = 0) se do paměti synaptické vazby uloží po určitou dobu jí 

procházející normovaný informační signál ��, vážený stimulem �? (postsynaptická aktivita), 

injektovaným do neuronu přijímacího procházející signál. Analogicky můžeme neomezeně 

načítat do paměti hodnoty dané páry stimulů ¬� a ¬? injektovaných do obou vrstev neuronů, tj. 

do cípů resp. středu hvězdy, tj. kapacita paměti je neomezená. 
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15. Dodatek E: Simulované žíhání 

 

 Evoluční algoritmy se užívají k nalezení dostatečně kvalitního řešení optimalizačních 

úloh v dostatečně krátkém čase. Mezi evoluční algoritmy inspirované přírodou se zahrnuje 

celé spektrum optimalizačních heuristických technik, např. genetické algoritmy či simulované 

žíhání. Heuristiky můžeme popsat jako zkratkovitý postup prohledávání prostoru řešení bez 

záruky správného výsledku, nicméně jsou zbaveny celé řady neduhů konvenčních 

optimalizačních metod, jako např. požadavek spojitosti či diferencovatelnosti objektivní resp. 

vazební funkce, respektování omezujících podmínek, uvíznutí v mělkém lokálním minimu 

atd. Na druhou stranu však je při jejich aplikaci zapotřebí nastavení jistých volných 

parametrů, které je nutné „naladit“ v závislosti na konkrétním optimalizačním problému, tak 

jako např. počáteční resp. konečnou teplotu a počet iterací dále popsaného algoritmu 

simulovaného žíhání, vycházejícího z evoluce termodynamických systémů. Žíháním 

označujeme ve fyzice proces, při kterém je těleso zahřáté na vysokou teplotu postupně 

ochlazováno, čímž se odstraňují vnitřní defekty tělesa. Vlivem vysoké teploty se částice látky 

v tělese náhodně uspořádají, tím se defekty krystalické mřížky zahladí a postupným 

ochlazováním pak částice ustalujeme do rovnovážných poloh spolu s poklesem 

pravděpodobnosti vzniku defektů nových. 

 Představme si, že argument optimalizované funkce jednoznačně určuje makrostav 

nějakého termodynamického systému o energii rovné funkční hodnotě, pak můžeme vyjádřit 

jeho termodynamickou pravděpodobnost: 

 a(��) = │M!� ∈ ℝV│$(!�) = ��R│ 

 

jako počet jemu odpovídajících mikrostavů. 

 Ponoříme-li uvedený systém nabývající různých makrostavů o energiích �� do tepelné 

lázně o energii �?, pak dle Boltzmannovy rovnice, pro jednotkovou velikost Boltzmannovy 

konstanty, pomocí Taylorova rozvoje diferencovatelné funkce můžeme po vyrovnání teplot 

vyjádřit pro � = �? + �� = 1­JW� a � >> �� entropii lázně: 

 

^(��) = 	^(�) −  ^(�) �� �� = lna(� − ��) 
 

a dále užitím definice teploty  ^(�)/ � = (1/�) pro � > 0 vyjádříme termodynamickou 

pravděpodobnost makrostavu tepelné lázně jako funkci energie makrostavu vloženého 

systému, tj. pomocí Boltzmannova faktoru: 

 a(� − ��) = Y78	°±T  
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 Algoritmus simulovaného žíhání spočívá v perturbaci kandidáta na optimum a 

následném rozhodnutí o jeho nahrazení perturbací v každé iteraci algoritmu dle Metropolisova 

kritéria: 

;Z!�� → !��[ = a(��)a(��) = 78	∆°T 										∆� > 0 

;Z!�� → !��[ = 1																																	∆� ≤ 0 

 

vyjadřujícího pravděpodobnost přechodu systému z jednoho makrostavu do druhého, kde ∆� = �� − �� a ∆�/� vyjadřuje přírůstek entropie, tj. v souladu s druhou větou 

termodynamickou nemožný jev je v uvedeném kritériu uměle předefinován na jev jistý. 

 Posloupnost akceptovaných perturbací, tj. přípustných řešení optimalizační úlohy, 

tvoří Markovův řetězec s pamětí řádu jedna, tj. výskyt daného řešení je podmíněn pouze 

výskytem řešení předcházejícího. Perturbace ležící mimo oblast přípustných řešení se zamítají 

automaticky. 

 

 
 

 Ze závislosti ;(∆$) je zřejmé, že výrazně „horší“ řešení se akceptuje vůči 

předcházejícímu řešení s mnohem menší pravděpodobností než řešení jen o málo „horší“. 

Závislost ;(�) lze užít k řízení pravděpodobnosti akceptace řešení během iteračního cyklu. 

Iterační cyklus startujeme s tak vysokou teplotou, aby se po jistou dobu akceptovalo téměř 

každé navržené řešení, což případně umožní počáteční aproximaci řešení „vyklouznout“ z 

oblasti mělkých lokálních minim, ke konci iteračního cyklu naopak teplotu dostatečně 

snížíme tak, aby se neakceptovalo téměř žádné „horší“ řešení, tj. během iteračního cyklu 

chladíme systém představující optimalizační úlohu z dostatečně vysoké teploty na dostatečně 

nízkou teplotu tak, že nám v závěru cyklu řešení „zamrzne“ v dostatečně hlubokém lokálním 

minimu. Pokles teploty může být zvolen např. jako exponenciální: 

 � = �?78	�h²³´ 										� = − 3ln(�A �?⁄ )										�A ¶ lim�h²³→A�?78	�h²³´ = 0 

 

kde T0 resp. T∞ je počáteční resp. konečná teplota a N je počet iterací algoritmu. 
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16. Příklad aplikace lineárního modelu 

 
 Příklad popisuje aplikaci předřazení lineárního modelu jakožto projekční vrstvy (filtr) 

modelu nelineárnímu (lokátor), jakožto asociační vrstvě, a to při lokalizaci poruchy (zkratu) v 

rozvodně elektrické energie z důvodu filtrace možného šumu obsaženého ve snímku 

signalizací stavů vypínačů a ochran, na základě kterého pak probíhá lokalizace (asociace) 

místa poruchy v rozvodně. Snímek signalizací je zpracováván dvoufázově: nejprve proběhne 

jeho projekce do okruhu známých vzorů (filtrace šumu), která je pak asociována s místem 

poruchy (lokalizace poruchy): 

 
 Rozvodna se skládá ze čtyř sběrnic (A1, A2, B1, B2), čtyř vývodů vedení (L1-L4) a 

deseti vývodů strojů (U1-U9, AT), tj. devíti generátorů a autotransformátoru, a dále z dvaceti 

šesti vypínačů a čtyřiceti ochran: 
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 Lokátor je tvořen vstupní vrstvou o 66 neuronech odpovídajících stavům jednotlivých 

vypínačů a ochran a výstupní vrstvou o 18 neuronech odpovídajících jednotlivým sběrnicím a 

vývodům. Mezi vstupní a výstupní vrstvu byly vloženy dvě skryté vrstvy o 45 a 25 

neuronech. Požadovaná funkce lokátoru o 5% chybovosti byla dosažena po přibližně 6800 

předloženích tréninkových dat s parametry učení 0,05 (míra plasticity synapse) a 0,7 (míra 

setrvačnosti gradientu). 

 Tréninková množina lokátoru je uvedena v následující tabulce signalizací stavů 

vypínačů (levá část) a ochran (pravá část) v závislosti na místě poruchy v rozvodně, kde 

hodnota 1 signalizuje vypnutí vypínače resp. působení ochrany: 

 

 

 
 
 Lokátor se jeví sám o sobě jako robustní vzhledem k výpadku jednotlivých signálů ve 

snímku signalizací vypínačů a ochran, což znamená, že je schopen správně lokalizovat poruchu 

i v případě částečného zašumění snímku. Porucha je lokalizována excitací neuronu 

odpovídajícímu příslušnému prvku rozvodny. Robustnost lokalizace poruch může být 

podpořena předběžnou filtrací šumu uvedeného snímku, tj. nejprve filtr provede ortogonální 

projekci zašuměného snímku do nadroviny generované 18 lineárně nezávislými vzájemně 

ortogonálními snímky o 66 složkách, která je poté předložena lokátoru. 

 Byla simulována porucha na sběrnici A1 provázená výpadkem signalizace vypínače 

V6A a ochrany RA1, porucha na vývodu L1 provázená výpadkem signalizace ochrany DL1 a 

porucha na vývodu U1 provázená výpadkem signalizace vypínačů V3A a V3AB. Výsledky 

filtrace šumu (první tabulka) a lokalizace poruchy (druhá tabulka) jsou uvedeny dále: 
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 Bez filtrace šumu je porucha na vývodu L1 lokalizována na hranici rozpoznatelnosti, tj. 

jí odpovídající neuron je excitován na hodnotu 0,4 a neuron odpovídající poruše vývodu AT je 

excitován na hodnotu 0,3, při filtraci šumu je jí odpovídající neuron excitován na hodnotu 0,7, 

zatímco falešně excitovaný neuron zůstává inhibován. 
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17. Příklad aplikace optimalizačního modelu 

 

 Mějme úplný orientovaný graf s ohodnocenými hranami, tj. uspořádanou čtveřici [�, �, �, �], kde: 

 

V množina vrcholů 

E množina hran 

ε zobrazení incidence hran s vrcholy (�: � → � × �) 
ρ ohodnocení hran (U: �(�) → ℝ), 
 

pro U([�, �]) ≡ U�� a |�| = K, J = KG dostaneme otevřený problém obchodního cestujícího: 

 $:ℝV → ℝ					$(!�?) = min:�∈· $(!�) 				Ω ⊂ 20,14V					$(!�) =##U��!����  

 

každý vektor !� ∈ Ω vybírá jistou cestu v grafu, tj. !�� je stav hrany směřující z i-tého do j-tého 

vrcholu pro �, � ∈ �, kde !�� = 0. 

 

 Následující optimalizační experiment, řešící výše uvedený problém, byl proveden na 

souboru 45 evropských měst (Tab. 1) užitím optimalizačního modelu resp. simulovaného 

žíhání, vždy pro dva způsoby sestupu teploty, tj. exponenciální a lineární (Obr. 1). 

Experiment byl prováděn pro hodnoty počátečních teplot (0,1 ÷ 1000) resp. hodnoty 

parametru SEED (0 ÷ 1000) a pro počet iterací (103 ÷ 106) resp. (103 ÷ 109), viz Tab. 2 

(optimalizační model) a Tab. 3 (simulované žíhání) obsahující i průměrné optimální 

vzdálenosti Ø a průměrné absolutní odchylky σ. Všechny experimenty simulovaného žíhání 

byly provedeny pro počáteční teplotu rovnou jedné, s výjimkou poslední řady (109 iterací) 

experimentů pro lineární sestup, kde počáteční teplota byla nastavena na pět. 

 

 
Tab. 1 Užitá evropská města 
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Tab. 2 Optimální vzdálenosti pro různé počáteční hodnoty teploty a řády počtu iterací 

 
Tab. 3 Optimální vzdálenosti pro různé počáteční hodnoty SEED a řády počtu iterací 

 

 Řešení získané optimalizačním modelem resp. simulovaným žíháním je 33 610 km 

(Tab. 4, Obr. 2) resp. 24 074 km (Tab. 5, Obr. 3). Optimálním řešením je 23 932 km, zatímco 

nejlepší řešení získané simulovaným žíháním je 24 074 km, tj. pouze o 142 km (0,6%) horší. 

 Algoritmus simulované žíhání poskytuje mnohem lepší výsledky než kvazigradientní 

sestup optimalizačního modelu, trajektorie kvazigradientího sestupu optimalizačního modelu, 

na rozdíl od algoritmu simulovaného žíhání, během experimentu zřejmě většinou nepřekročila 

oblast hlubšího lokálního minima, v kterém uvázla. 
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Obr. 1 Průměrná optimální vzdálenost v závislosti na řádu počtu iterací 

 

 
Tab. 4 Řešení optimalizačního modelu 

 

 
Tab. 5 Řešení simulovaného žíhání 
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Obr. 2 Řešení optimalizačního modelu 

 

 
Obr. 3 Řešení simulovaného žíhání 
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18. Příklad aplikace kompetičního modelu 

 
Experiment proběhl nad souborem zaznamenaným během průběhu kampaně jedné 

z portugalských bank, spočívající v oslovování klientů s nabídkou termínovaného vkladu. 

Zmíněný soubor obsahoval 45 211 klientů charakterizovaných 16 atributy, přičemž u každého 

klienta byla uvedena informace o výsledku nabídky, tj. 5 289 klientů nabídku akceptovalo, 

zbylých 39 922 klientů nabídku neakceptovalo. Cílem experimentu bylo užití neuronové sítě 

ke klasifikaci klientů z hlediska dvou výše uvedených kategorií, resp. predikci, zda je klient 

náchylný uvedenou nabídku akceptovat či nikoli, a to na základě jemu přiřazených 16 

následujících atributů: 

 

 

 

V první fázi experimentu byla nejprve provedena segmentace (shluková analýza) 

klientů dle jejich atributů, a to jednak s cílem redukce jejich počtu z důvodu příliš velké 

mohutnosti souboru klientů pro tvorbu tréninkových dat klasifikátoru, a jednak s cílem 

eliminace možných rozporů v chování klientů, tj. odlišností v rozhodování vzájemně si 

podobných klientů. V druhé fázi experimentu pak proběhla vlastní adaptace klasifikátoru 

klientů. 
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Na následujícím obrázku je uvedena Kohonenova mapa zobrazující rozmístění všech 

klientů v prostoru daného jejich atributy: 

 

 

 

Odečtem Kohonenovy mapy bylo identifikováno osm nejvýznamnějších shluků 

klientů, avšak z poměrného zastoupení klientů obou kategorií v každém shluku nelze shluky 

klientů jednoznačně identifikovat s žádnou z jejich kategorií: 

 

 

 

Z výše uvedeného důvodu byla provedena dekompozice souboru klientů do dvou 

souborů daných jejich chováním „yes or no“ spolu se zobrazením jejich rozmístění: 
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Odečtem výše uvedených Kohonenových map byly identifikovány tři nejvýznamnější 

shluky klientů s chováním „yes“ a pět nejvýznamnějších shluků klientů s chováním „no“, 

prototypy (reprezentanti) každého ze zmíněných shluků jsou uvedeny níže: 

 

 

 

spolu s průměrnou a maximální hodnotou každého atributu, počítanou přes všechny klienty 

příslušného chování, obsažené ve zmíněných shlucích, přičemž původní hodnoty atributů 6 

resp. 12 resp. 14 byly normalizovány čísly 1000 resp. 100 resp. 10. 

Váhové vektory obou výše uvedených Kohonenových map pak byly užity jako prvky 

tréninkových dat klasifikátoru, přičemž pro klienty s chováním „no“ byly užity pouze ty 

váhové vektory, ke kterým se přihlásilo minimálně deset klientů a více, čímž byl uveden do 

vzájemné proporce počet klientů obou dvou způsobů jejich chování. 

Jako prvků tréninkových dat klasifikátoru bylo užito 1 207 vzorových klientů, z toho 

603 klientů s chováním „yes“ a 604 klientů s chováním „no“, na kterých byla provedena 

korelační analýza vlivu jednotlivých atributů na chování klienta: 
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z které vyplývá, že významnější korelaci s chováním klientů vykazují pouze atributy 2, 3, 6, 

7, 12 a 13, ostatní atributy byly z tréninkových dat vyřazeny. Adaptace klasifikátoru proběhla 

s parametry A=0,001, B=0,5 a C=1,01 (rychlost, setrvačnost, zrychlení) při povolené chybě 

klasifikace do výše 20%: 

 

 
 

Z výše uvedeného přibližně hyperbolického průběhu chyby funkce sítě pro zvolený 

limit iterací 10 000 plyne, že se zadanou přesností ±20% si adaptace klasifikátoru vyžádala 

cca 2 700 iterací. 
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Funkce sítě byla testována na 4 521 z tréninkových dat náhodně vybraných klientech, 

přičemž chybovost klasifikace je výrazně posunuta v neprospěch klientů s chováním „yes“, a 

to zřejmě z důvodu jejich menšího zastoupení v pozorovaných datech, síť má s nimi menší 

zkušenost. 

Analogicky byl proveden ještě experiment pro pozměněnou skladbu atributů klientů, 

tj. k šesti původním atributům byl jednak přidán atribut 1 a jednak atributy 1, 10, 11, 14 a 15 

s výsledkem viz výše, jako optimální skladba atributů se jeví skladba se sedmi atributy, kde 

v sumě testovacích dat resp. pro klienty s chováním „no“ je chybovost klasifikace 20% resp. 

17% sice nejvyšší, ale naproti tomu došlo k poklesu chybovosti klasifikace u klientů s 

chováním „yes“ na minimálních 36%, což je cca pouhý dvojnásobek chybovosti klasifikace 

klientů s chováním „no“: 

 

 

 

Obecně lze říci, že klienti s chováním „yes vs. no“ se markantně liší ve velikosti 

atributu 12, přičemž obě skupiny se dále rozpadají na podskupiny třicátníků a šedesátníků, 

vzájemně se lišících ve velikosti atributu 6. 
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19. Příklad aplikace nelineárního modelu (deep learning) 

 

Výpočetní experiment s cílem ověřit efektivitu hloubkového učení byl proveden na 

hluboké neuronové síti o deseti vrstvách, každá o deseti neuronech s výjimkou poslední 

vrstvy, která se sestávala ze tří neuronů. Síť byla adaptována na klasifikaci objektů 

(popsaných deseti atributy) z hlediska tří kategorií. Během učení byly adaptovány všechny 

synaptické váhy a parametry aktivačních funkcí (prahy a strmosti) neuronů skrytých vrstev: 

 ���(�) = ���(� − 1) + +	��(�)	*�(!�(�)) + �	∆���(� − 1) 
 (�(�) = (�(� − 1) + +	*�(!�(�)) + �	∆(�(� − 1) 
 ;�(�) = ;�(� − 1) + +	!�(�)	*�(!�(�)) + �	∆;�(� − 1) 
 *5(!5) = ;5�5(1 − �5)(g5 − �5)															*�(!�) = ;���(1 − ��)	#*�(!�)	����  

 

pro 1 ∈ �X, � ∈ �¹, � ∈ �¹8E, º ∈ 22,… ,34, � ∈ 21,… ,�4, kde: 

 

xi potenciál i-tého neuronu 

yi skutečný stav i-tého neuronu 

zi požadovaný stav i-tého neuronu 

gi adaptační funkce i-tého neuronu 

ϑi práh i-tého neuronu 

pi strmost aktivační funkce i-tého neuronu 

wij synaptická váha vazby i-tého neuronu s j-tým neuronem 

α rychlost učení 

µ míra setrvačnosti gradientního sestupu 

VL populace neuronů L-té vrstvy 

N počet vrstev sítě 

M počet prvků trénovací množiny 

∆ předcházející přírůstek příslušné proměnné 
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Nejprve se síť adaptovala pouze výše uvedeným algoritmem BPA, pak se určila míra 

změn vah v jednotlivých vrstvách sítě ve směru od poslední vrstvy k první vrstvě, tj. během 

zpětného šíření chyby požadované funkce sítě: 

 

 

 

Poté se síť adaptovala ve dvou fázích (hloubkové učení), v první fázi se předučovaly 

jednotlivé vrstvy vah postupně od první vrstvy do čtvrté vrstvy a poté od první vrstvy do páté 

vrstvy atd. až do deváté vrstvy, a to na autoasociativní funkci sítě o dvou vrstvách vah, 

z nichž první vrstva byla vždy příslušná skutečná vrstva původní sítě a druhá vrstva byla vždy 

dodatečně přidaná fiktivní vrstva z důvodu zkompletování příslušných postupně nad sebe 

řazených dvouvrstvých autokodérů: 
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V druhé fázi se pak celá předučená síť doučila opět výše uvedeným algoritmem BPA. 

Jako optimálním, z hlediska minimalizace počtu předučovaných vrstev vah, se jeví předučení 

první až páté vrstvy vah, od které se váhy směrem k poslední deváté vrstvě během BPA 

doučení pak již dostatečně mění, viz následující průběhy chyby funkce sítě v závislosti na 

počtu předložení tréninkových dat během BPA učení s předučenými čtyřmi, pěti až devíti 

vrstvami: 

 

 

 

Při předučení pouze první resp. první až druhé resp. první až třetí vrstvy vah se síť 

požadovanou funkci naučila, ale až po výrazně větším počtu předložení tréninkových dat, než 

v ostatních na obrázku výše uvedených případech. 
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20. Zkratky 

 
ANN  Artificial Neural Network 

ART  Adaptive Resonance Theory 

BAM  Bi-directional Associative Memory 

BPA  Back Propagation Algorithm 

CHN  Continuous Hopfield Network 

CPN  Counter Propagation Network 

HAM  Hopfield Associative Memory 

LAM  Linear Associative Memory 

MLP  Multi-Layer Perceptron 

RAM  Recurrent Associative Memory 

RBF  Radial Basis Function 

SOM  Self-Organizing Map 
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