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Developing Solutions Close to Where 

Our Customers and Partners Operate

A company with 30,000+ employees with operations in 32 countries and posted revenue of $9.26 billion
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Creating a Smarter World
By innovating advanced secure technology into daily lives
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Figure from Nvidia blog post: 

https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai
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Model Cloning
Image source: Matrix Revolutions movie poster
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Example: Microsoft Azure Emotions Recognition

• https://azure.microsoft.com/en-us/services/cognitive-services/emotion
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Example: Microsoft Azure Emotions Recognition

• https://azure.microsoft.com/en-us/services/cognitive-services/emotion

• Tramèr, Zhang, Juels, Reiter, Ristenpart: Stealing Machine Learning Models via Prediction APIs. In USENIX Security Symposium, 2016.

• Correia-Silva, Berriel, Badue, de Souza, Oliveira-Santos. Copycat CNN: Stealing Knowledge by Persuading Confession with Random Non-Labeled Data. arXiv

preprint (2018).

Clone model for < $350 using random non-labeled data 



Adversarial Examples Optical Illusions 
for Machines

Image by artist Joseph Jastrow, published in 1899 in Popular Science Monthly
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Misclassification
versus

Adversarial 
Examples

• Biggio, Corona, Maiorca, Nelson, Srndic, Laskov, Giacinto, Roli: Evasion 

attacks against machine learning at test time. In Machine Learning and 

Knowledge Discovery in Databases, 2013.

• Goodfellow, Shlens, Szegedy: Explaining and harnessing adversarial 

examples. In arXiv preprint 2014

• Szegedy, Vanhoucke, Ioffe, Shlens, Wojna: Rethinking the inception 

architecture for computer vision. In IEEE conference on computer vision and 

pattern recognition, 2016.
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Impact in Practice

Security Safety

Sharif, Bhagavatula, Bauer, Reiter: Accessorize to a crime: Real and 

stealthy attacks on state-of-the-art face recognition. In ACM SIGSAC 2016

Eykholt, Evtimov, Fernandes, Li, Rahmati, Xiao, Prakash, Kohno, Song: Robust 

Physical-World Attacks on Deep Learning Visual Classification. In IEEE 

Computer Vision and Pattern Recognition 2018.



Countermeasures?
Adversarial Training

Papernot et al.: Technical Report on the 

CleverHans v2.1.0 Adversarial Examples

Library, arXiv preprint 2018



Adversarial Training

CIFAR-10 
Model

Accuracy 
of the 
model

Adversarial 
examples that 

mislead the model

Original 87% 90%

Trained with 
adversarial 
examples

86% 17%



Data 
Poisoning

Barreno, Nelson, Sears, Joseph, and Tygar: Can machine learning be secure? In ACM CCS 2006.
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Shafahi, Huang, Najibi, Suciu, Studer, 

Dumitras, Goldstein: Poison Frogs! Targeted 

Clean-Label Poisoning Attacks on Neural 

Networks. arXiv preprint 2018.

Adversarial 
Training -
Revisited

Target

Poison
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Anomaly detection
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Anomaly detection

• Incremental learning

• Offline learning



Privacy - Use case: Smart Grid



Forecasting power 
consumption

• Suppliers need forecast to buy energy 
generation contracts that cover their clients

• Distribution supply operators require longer 
term forecasts to ensure the necessary 
network capacity is available

• Forecasting could allow for dynamic price   
determination 

Hernandez, Zorita, Aguiar, Carro, Sanchez-Esguevillas, Lloret, 

Massana: A survey on electric power demand forecasting: 

Future trends in smart grids, microgrids and smart buildings. 

IEEE Communications Surveys and Tutorials, 2014.



Privacy Concerns in 
the Smart-Grid

Energy consumption reveals

Patterns

• Another microwave meal?

Invalid usage

• Insurance or warranty

Real-time information

• Number of people in a 
household

• Are you on holidays?
Hart: Nonintrusive appliance load monitoring. Proceedings of the IEEE 1992



Computing 
on Encrypted 

Data

Bos, Lauter, Naehrig: Private Predictive Analysis on Encrypted 

Medical Data. Journal of Biomedical Informatics, 2014.



Machine Learning using 
Encrypted Data

• Forecast power consumption 
for next half hour in ≈ 2.5
seconds to evaluate 

• Neural network
Inputs: 51
Hidden layers: 3 (8  4  2)
Output: 1

Encrypted
forecast

• Bonte, Bootland, Bos, Castryck, Iliashenko, 

Vercauteren: Faster Homomorphic Function Evaluation 

using Non-Integral Base Encoding. Cryptographic 

Hardware and Embedded Systems – CHES 2017

• Bos, Castryck, Iliashenko, Vercauteren: Privacy-friendly 

Forecasting for the Smart Grid using Homomorphic 

Encryption and the Group Method of Data Handling. 

AFRICACRYPT 2017
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Conclusions
• Machine learning can improve quality of life 

due to availability of huge amount of data

• Security is one of the biggest challenges in 
large scale deployment of machine learning

• A lot of open security & privacy challenges

• [+] Cryptography to the rescue for some 
problems

• [-] Expect zero-day attacks against machine 
learning models
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