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Developing Solutions Close to Where
Our Customers and Partners Operate
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A company with 30,000+ employees with operations in 32 countries and posted revenue of $9.26 billion



Creating a Smarter World
By innovating advanced secure technology into daily lives
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Figure from Nvidia blog post:
https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai PUBLIC | 3
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Where Machine Learning,
Security & Privacy Intersect

Machine Learning can contribute to loT Security —
but Machine Learning itself must be secured.

Adversarial examples Improve safety
Security of ML — and security of
™) I i B Rl it ML Systems
Security & ML
@ Intrusion detection
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- attacks
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Model Cloning

Image source: Matrix Revolutions movie poster




Example: Microsoft Azure Emotions Recognition

Vilaz

“scores": {

“anger": 2.83898679E-87,
“contempt": 0.0007247786,
"disgust™: 6.856115E-87,
“fear": 1.9638247E-89,
“happiness™: 8.9959635,
"neutral®: 9.88329714641,
“sadness": 4.30003233E-08,
"surprise”: 1.36911349E-85

https://azure.microsoft.com/en-us/services/cognitive-services/emotion
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Example: Microsoft Azure Emotions Recognition

Vilaz

“scores": {

“anger": 2.83898679E-87,
“contempt": 0.0007247786,
"disgust™: 6.856115E-87,
“fear": 1.9638247E-89,
“happiness™: 8.9959635,
"neutral®: 9.88329714641,
“sadness": 4.30003233E-08,
"surprise”: 1.36911349E-85

Clone model for < $350 using random non-labeled data

https://azure.microsoft.com/en-us/services/cognitive-services/emotion
Trameér, Zhang, Juels, Reiter, Ristenpart: Stealing Machine Learning Models via Prediction APIs. In USENIX Security Symposium, 2016.
Correia-Silva, Berriel, Badue, de Souza, Oliveira-Santos. Copycat CNN: Stealing Knowledge by Persuading Confession with Random Non-Labeled Data. arXiv

preprint (2018). PUBLIC | 8



Optical lllusions
for Machines
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Cat or Dog?

Misclassification
versus
Adversarial

Examples

» Biggio, Corona, Maiorca, Nelson, Srndic, Laskov, Giacinto, Roli: Evasion
attacks against machine learning at test time. In Machine Learning and
Knowledge Discovery in Databases, 2013.

Goodfellow, Shlens, Szegedy: Explaining and harnessing adversarial
examples. In arXiv preprint 2014

Szegedy, Vanhoucke, loffe, Shlens, Wojna: Rethinking the inception
architecture for computer vision. In IEEE conference on computer vision and
pattern recognition, 2016. .
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Security Safety

100% | |
confidence SPEED
LIMIT

45

Eykholt, Evtimov, Fernandes, Li, Rahmati, Xiao, Prakash, Kohno, Song: Robust
Sharif, Bhagavatula, Bauer, Reiter: Accessorize to a crime: Real and Physical-World Attacks on Deep Learning Visual Classification. In IEEE
stealthy attacks on state-of-the-art face recognition. In ACM SIGSAC 2016 Computer Vision and Pattern Recognition 2018.

Impact in Practice
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https://github.com/tensorflow/cleverhans

Papernot et al.: Technical Report on the
CleverHans v2.1.0 Adversarial Examples
Library, arXiv preprint 2018

Countermeasures?
Adversarial Training



Adversarial Training
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ARSENIC.
QLSO

Data

R. C. MATHEWSON, Druggist,
Boonville, Ind.

Poisoning

ANTIDOTE.—After an emetic, give sweet oil, butter or milk,
and Hydrated Oxide of Iron.

Barreno, Nelson, Sears, Joseph, and Tygar: Can machine learning be secure? In ACM CCS 2006.



Adversarial
Training
Revisited

Shafahi, Huang, Najibi, Suciu, Studer,
Dumitras, Goldstein: Poison Frogs! Targeted
Clean-Label Poisoning Attacks on Neural
Networks. arXiv preprint 2018.
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Anomaly detection
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Anomaly detection
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Hernandez, Zorita, Aguiar, Carro, Sanchez-Esguevillas, Lloret,
Massana: A survey on electric power demand forecasting:
Future trends in smart grids, microgrids and smart buildings.
IEEE Communications Surveys and Tutorials, 2014.

r

-

Forecasting power
consumption \

« Suppliers need forecast to buy energy

generation contracts that cover their clients I
« Distribution supply operators require longer

term forecasts to ensure the necessary

network capacity is available

« Forecasting could allow for dynamic price
determination
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Hart: Nonintrusive appliance load monitoring. Proceedings of the IEEE 1992

Privacy Concerns in
the Smart-Grid

Energy consumption reveals
Patterns

* Another microwave meal?
Invalid usage

* |nsurance or warranty
Real-time information

* Number of peopleina
household

* Are you on holidays?



Computing

on Encrypted
Data

= algorithm on
encrypted data

g E T ‘ ‘ AT " runs prediction

3 Send encrypted

values to Azure o
c 5 Cloud returns
encrypted prediction

2 Encrypt values with
personal password

o=

.] 6 Decrypt \‘%
- prediction with
1 Enter medical data personal password

Bos, Lauter, Naehrig: Private Predictive Analysis on Encrypted
Medical Data. Journal of Biomedical Informatics, 2014.



External untrusted company
* Forecast power consumption

M
@HEAT for next half hour in = 2.5

47 previous values seconds to evaluate

* Neural network
Inputs: 51
Hidden layers: 3 (8 2 4 =2 2)
Output: 1

. New value

Temperature

. Month
Day Funded by the Horizon 2020

Framework Programme of the
European Union

» Bonte, Bootland, Bos, Castryck, lliashenko,

. - . Vercauteren: Faster Homomorphic Function Evaluation
I\/I a C h I n e I_e a r n I n g u S I n g using Non-Integral Base Encoding. Cryptographic
Hardware and Embedded Systems — CHES 2017

* Bos, Castryck, lliashenko, Vercauteren: Privacy-friendly

E NC ry pte d D d t a Forecasting for the Smart Grid using Homomorphic

Encryption and the Group Method of Data Handling.
AFRICACRYPT 2017
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Bonte, Bootland, Bos, Castryck, lliashenko,
Vercauteren: Faster Homomorphic Function Evaluation
using Non-Integral Base Encoding. Cryptographic
Hardware and Embedded Systems — CHES 2017

Bos, Castryck, lliashenko, Vercauteren: Privacy-friendly
Forecasting for the Smart Grid using Homomorphic
Encryption and the Group Method of Data Handling.
AFRICACRYPT 2017

Machine Learning using

Encrypted Data




Conclusions

- Machine learning can improve quality of life
due to availability of huge amount of data

- Security is one of the biggest challenges in
large scale deployment of machine learning

- A lot of open security & privacy challenges

- [+] Cryptography to the rescue for some
problems

- [-] Expect zero-day attacks against machine
learning models
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