

# FOOLING SMART MACHINES: SECURITY CHALLENGES FOR MACHINE LEARNING

JOPPE W. BOS

OCTOBER 2018

INTERNET & MOBILE WORLD 2018 | Bucharest



SECURE CONNECTIONS  
FOR A SMARTER WORLD

PUBLIC

# Developing Solutions Close to Where Our Customers and Partners Operate



## Corporate Office



 NXP Locations

A company with 30,000+ employees with operations in 32 countries and posted revenue of \$9.26 billion

PUBLIC | 1



# Creating a Smarter World

By innovating advanced secure technology into daily lives

## Consumer

- Mobile payment
- Machine learning
- Smart cards
- Wearables
- Health monitoring



## Smart Home

- Home automation
- Voice assistant
- Home entertainment
- Gaming
- Computing



## Transportation

- Smart mobility
- Connected car
- Moving things
- Car infotainment



## Smart Cities

- Transportation management
- Smart lighting
- Smart access
- Smart retail
- Safety/sensors
- Urban management
- Secure identification



## Smart Industry

- Factory automation
- Machine learning
- Smart building
- Agriculture 3.0
- Smart utilities



# ARTIFICIAL INTELLIGENCE

Early artificial intelligence stirs excitement.

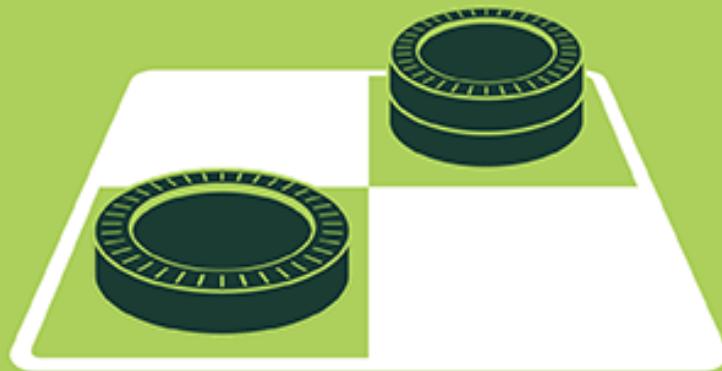
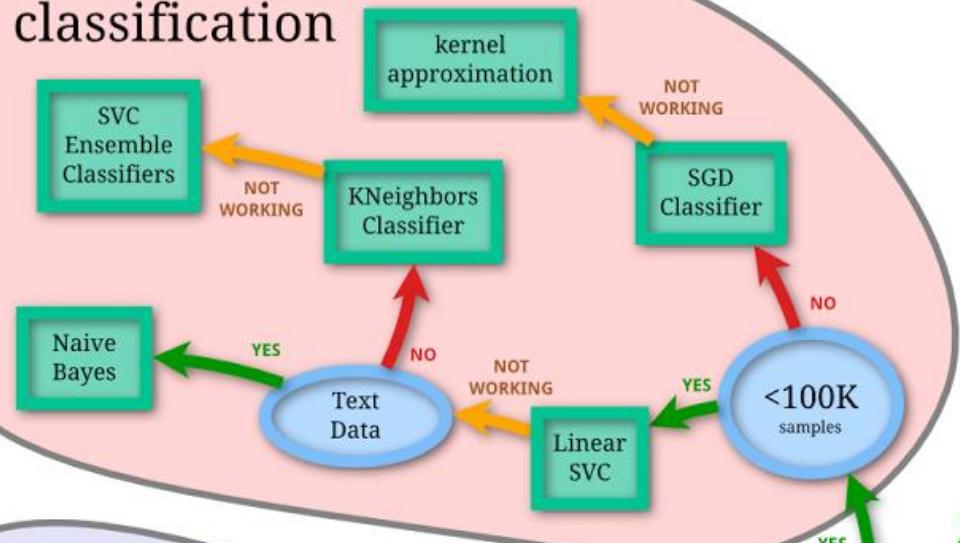


Figure from Nvidia blog post:

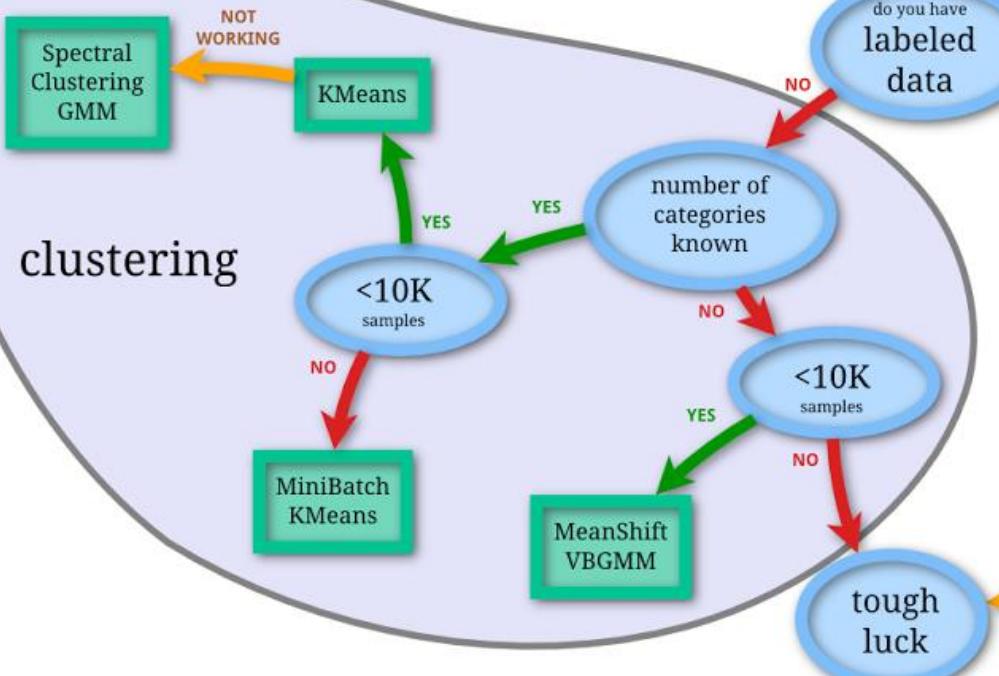
<https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai>

# scikit-learn algorithm cheat-sheet

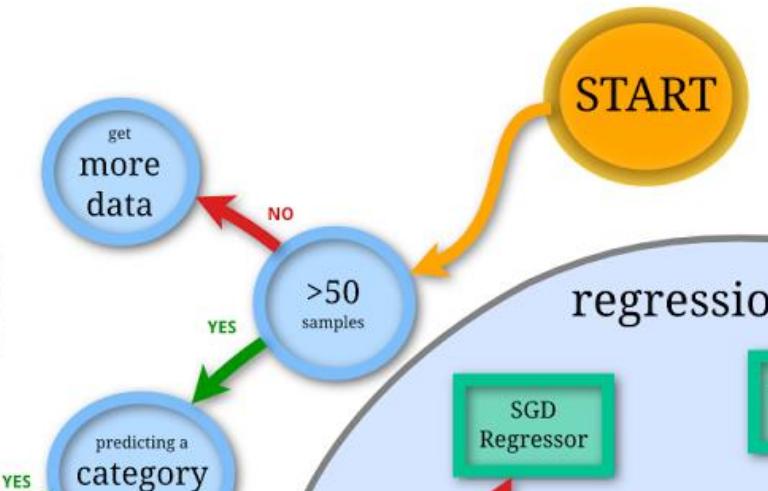
## classification



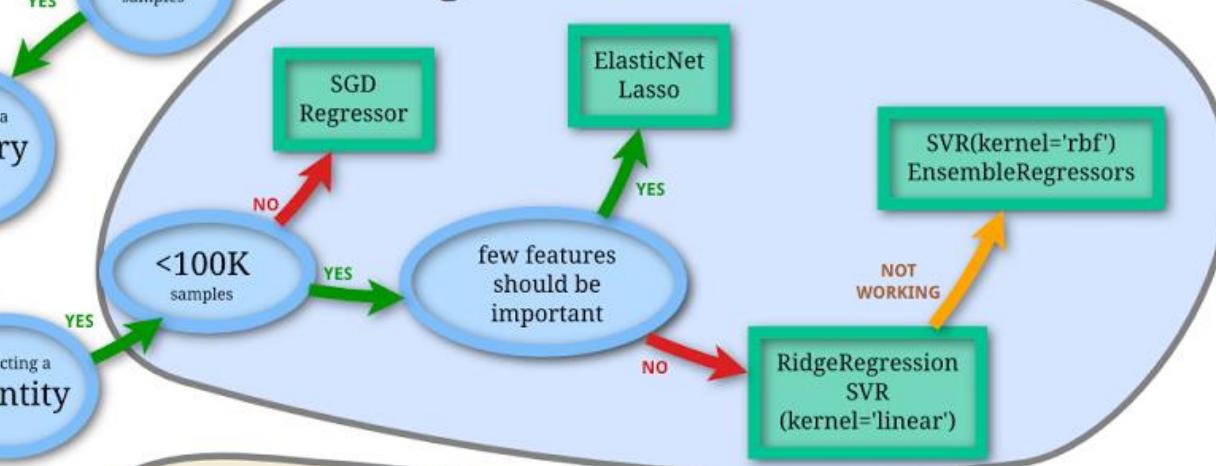
## clustering



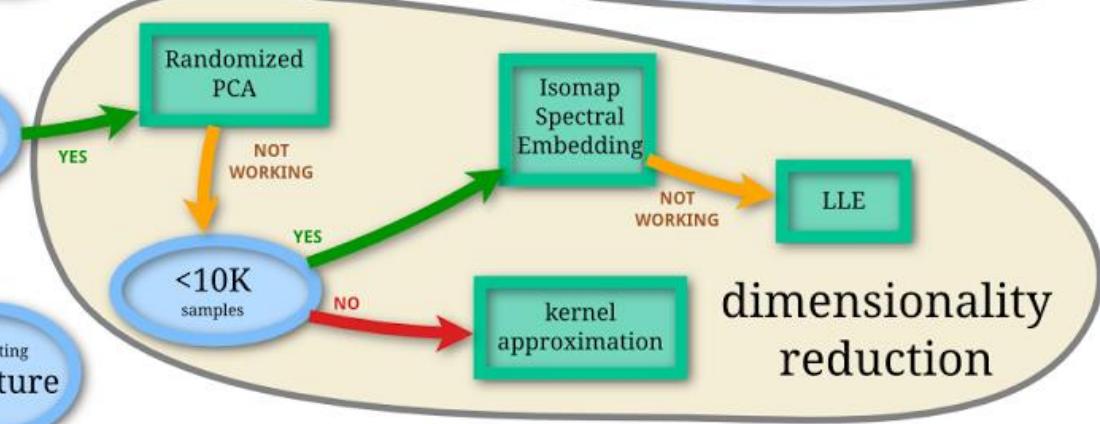
## predicting a category



## regression



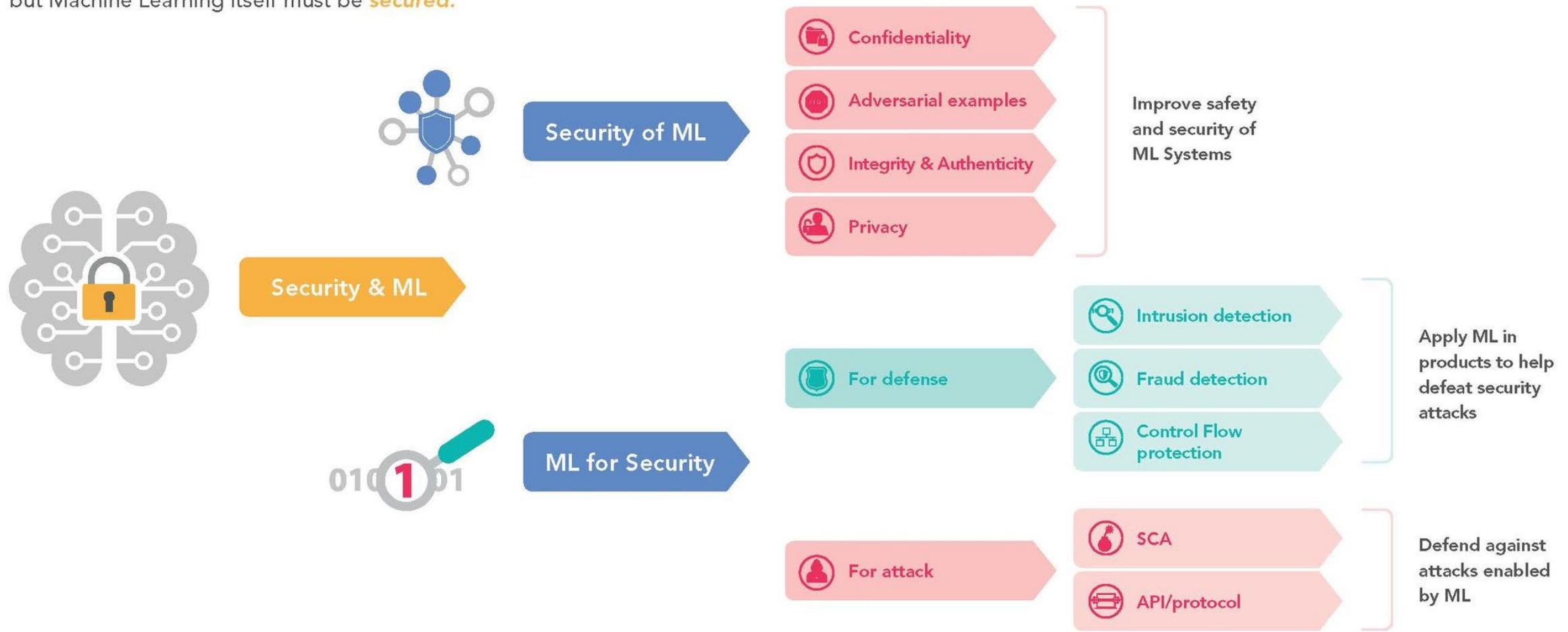
## predicting structure



## dimensionality reduction

# Where Machine Learning, Security & Privacy Intersect

Machine Learning can **contribute** to IoT Security –  
but Machine Learning itself must be **secured**.



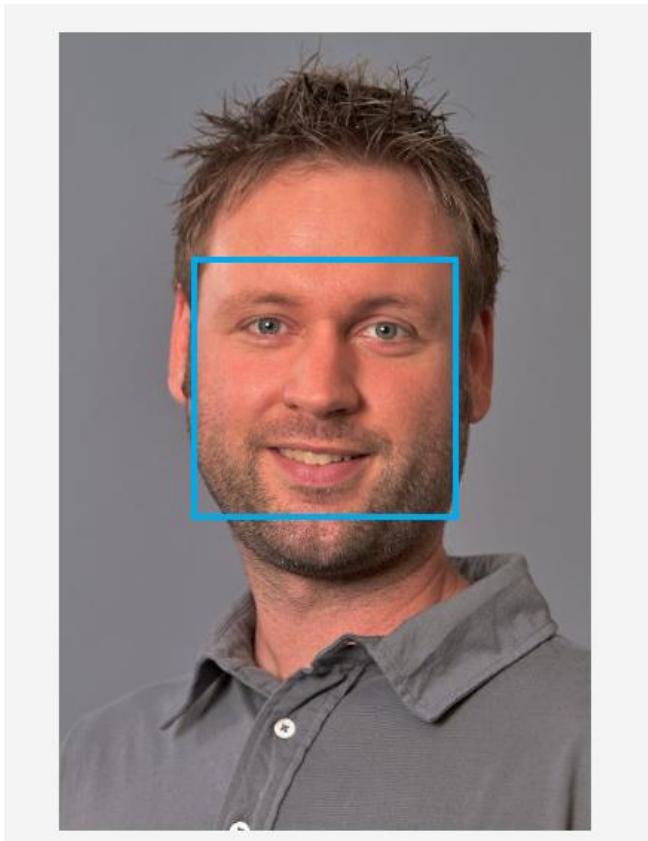


# Model Cloning

---

Image source: **Matrix Revolutions** movie poster

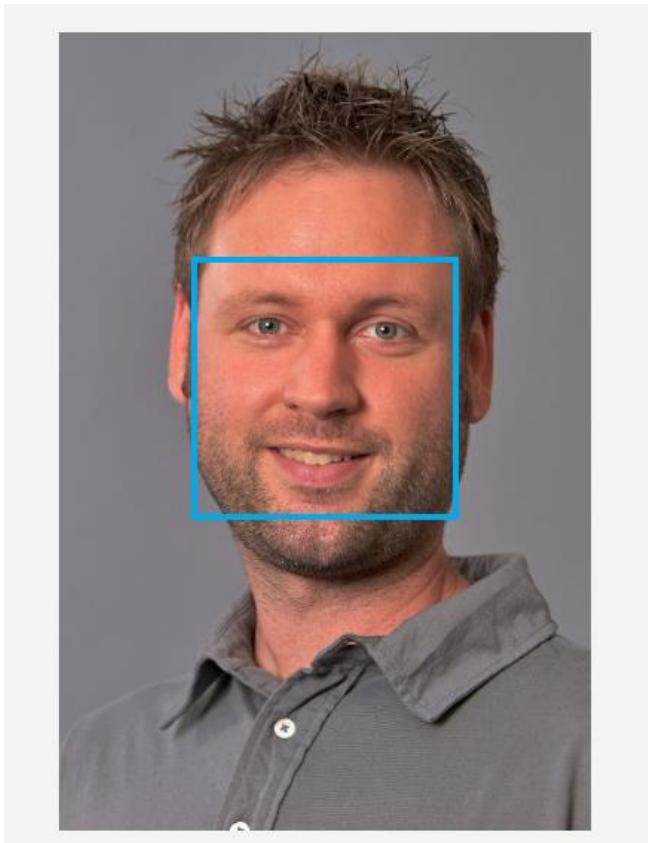
# Example: Microsoft Azure Emotions Recognition



```
"scores": {  
    "anger": 2.03898679E-07,  
    "contempt": 0.0007247706,  
    "disgust": 6.056115E-07,  
    "fear": 1.0638247E-09,  
    "happiness": 0.9959635,  
    "neutral": 0.00329714641,  
    "sadness": 4.30003233E-08,  
    "surprise": 1.36911349E-05  
}
```

- <https://azure.microsoft.com/en-us/services/cognitive-services/emotion>

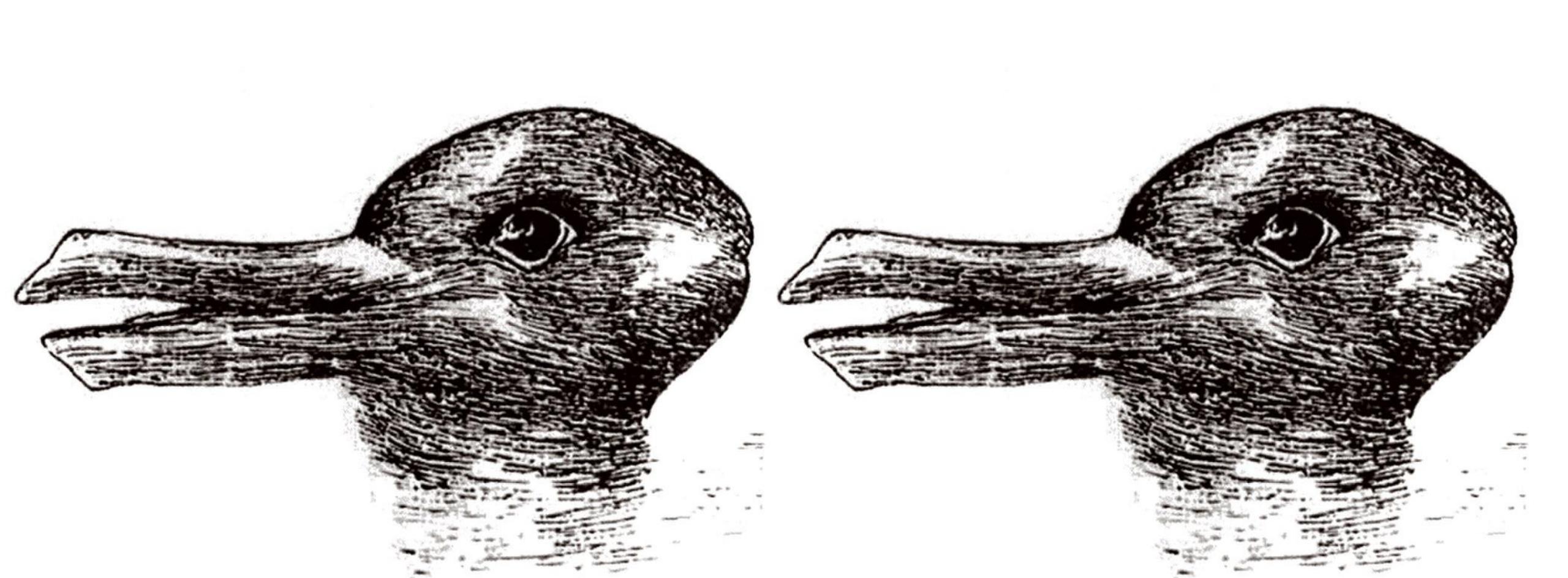
# Example: Microsoft Azure Emotions Recognition



```
"scores": {  
    "anger": 2.03898679E-07,  
    "contempt": 0.0007247706,  
    "disgust": 6.056115E-07,  
    "fear": 1.0638247E-09,  
    "happiness": 0.9959635,  
    "neutral": 0.00329714641,  
    "sadness": 4.30003233E-08,  
    "surprise": 1.36911349E-05  
}
```

Clone model for < \$350 using random non-labeled data

- <https://azure.microsoft.com/en-us/services/cognitive-services/emotion>
- Tramèr, Zhang, Juels, Reiter, Ristenpart: *Stealing Machine Learning Models via Prediction APIs*. In *USENIX Security Symposium*, 2016.
- Correia-Silva, Berriel, Badue, de Souza, Oliveira-Santos. *Copycat CNN: Stealing Knowledge by Persuading Confession with Random Non-Labeled Data*. *arXiv preprint* (2018).

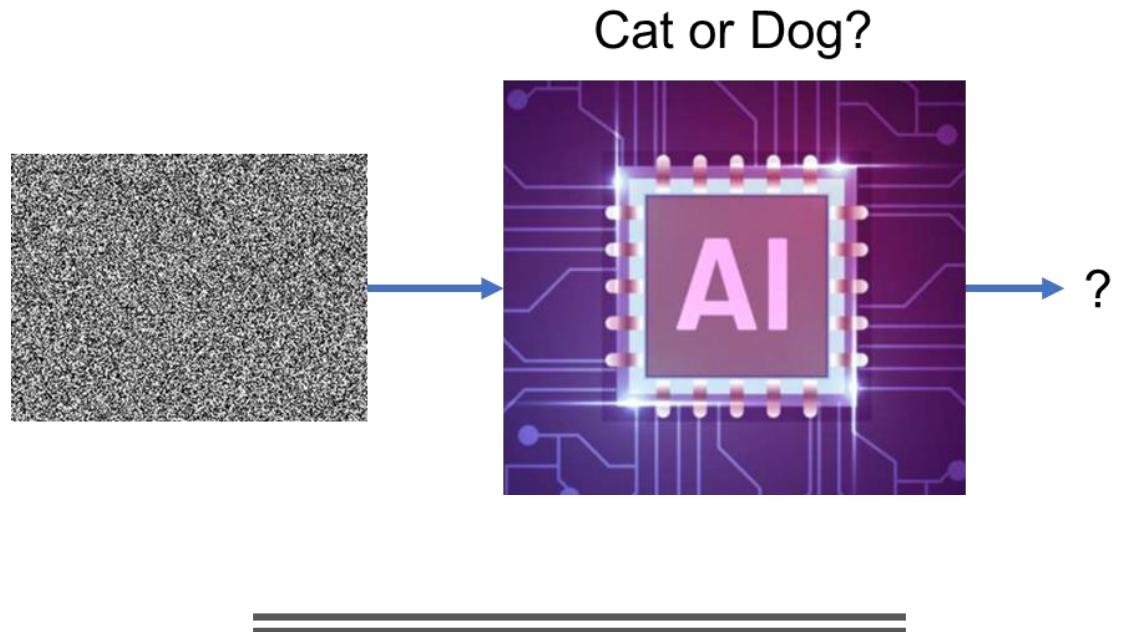


# Adversarial Examples | Optical Illusions for Machines

Image by artist Joseph Jastrow, published in 1899 in Popular Science Monthly

# Misclassification versus Adversarial Examples

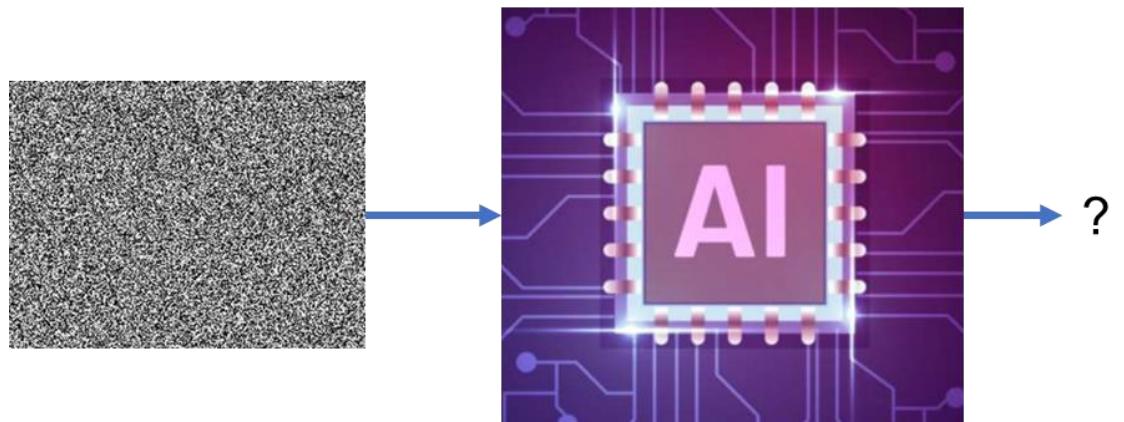
- Biggio, Corona, Maiorca, Nelson, Srndic, Laskov, Giacinto, Roli: *Evasion attacks against machine learning at test time*. In Machine Learning and Knowledge Discovery in Databases, 2013.
- Goodfellow, Shlens, Szegedy: *Explaining and harnessing adversarial examples*. In arXiv preprint 2014
- Szegedy, Vanhoucke, Ioffe, Shlens, Wojna: *Rethinking the inception architecture for computer vision*. In IEEE conference on computer vision and pattern recognition, 2016.



# Misclassification versus Adversarial Examples

- Biggio, Corona, Maiorca, Nelson, Srndic, Laskov, Giacinto, Roli: *Evasion attacks against machine learning at test time*. In Machine Learning and Knowledge Discovery in Databases, 2013.
- Goodfellow, Shlens, Szegedy: *Explaining and harnessing adversarial examples*. In arXiv preprint 2014
- Szegedy, Vanhoucke, Ioffe, Shlens, Wojna: *Rethinking the inception architecture for computer vision*. In IEEE conference on computer vision and pattern recognition, 2016.

Cat or Dog?

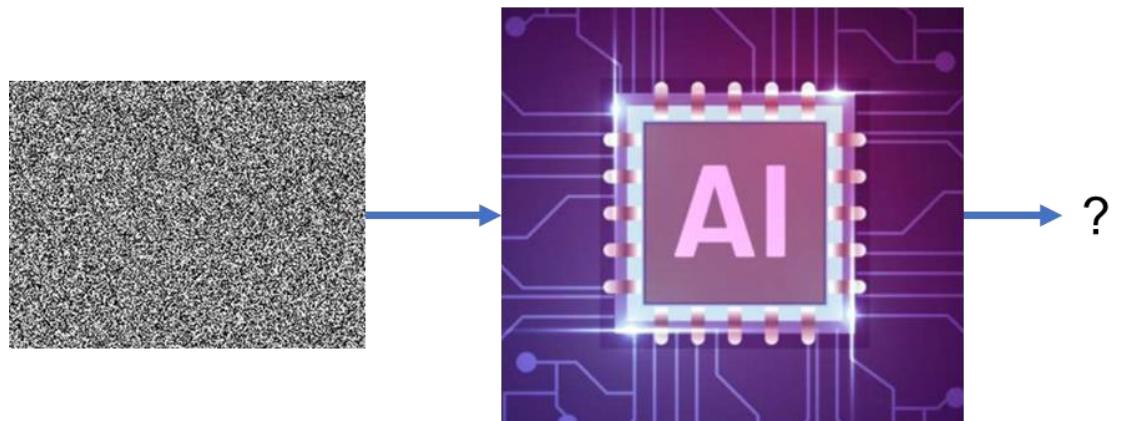


~ 0.832 flowerpot

# Misclassification versus Adversarial Examples

- Biggio, Corona, Maiorca, Nelson, Srndic, Laskov, Giacinto, Roli: *Evasion attacks against machine learning at test time*. In Machine Learning and Knowledge Discovery in Databases, 2013.
- Goodfellow, Shlens, Szegedy: *Explaining and harnessing adversarial examples*. In arXiv preprint 2014
- Szegedy, Vanhoucke, Ioffe, Shlens, Wojna: *Rethinking the inception architecture for computer vision*. In IEEE conference on computer vision and pattern recognition, 2016.

Cat or Dog?

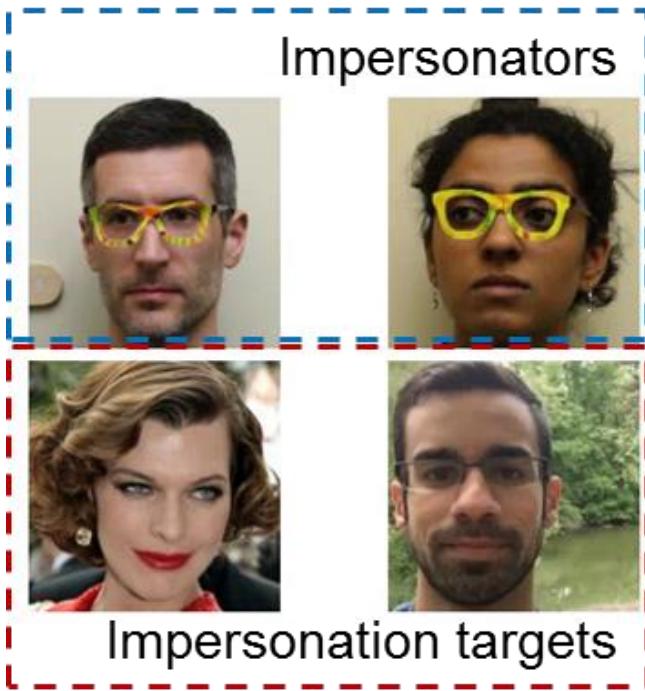


~ 0.832 flowerpot



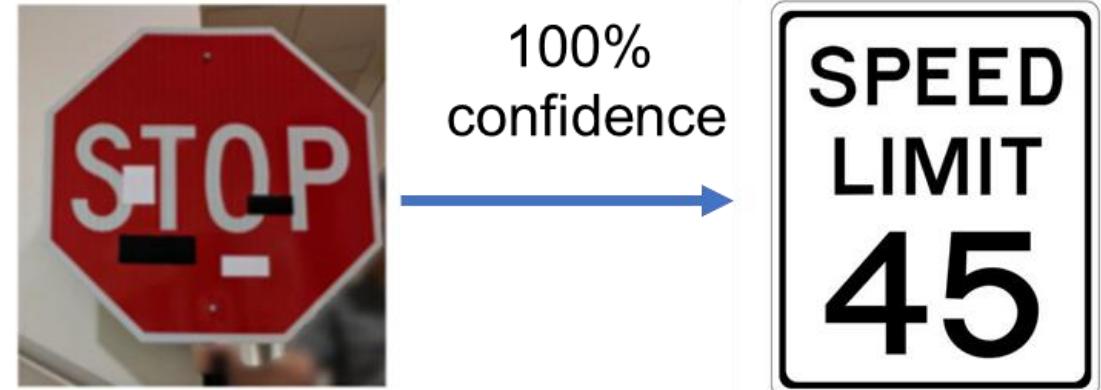
~ 0.999 warplane

# Security



Sharif, Bhagavatula, Bauer, Reiter: *Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition*. In ACM SIGSAC 2016

# Safety



Eykholt, Evtimov, Fernandes, Li, Rahmati, Xiao, Prakash, Kohno, Song: *Robust Physical-World Attacks on Deep Learning Visual Classification*. In IEEE Computer Vision and Pattern Recognition 2018.

# Impact in Practice



**cleverhans**

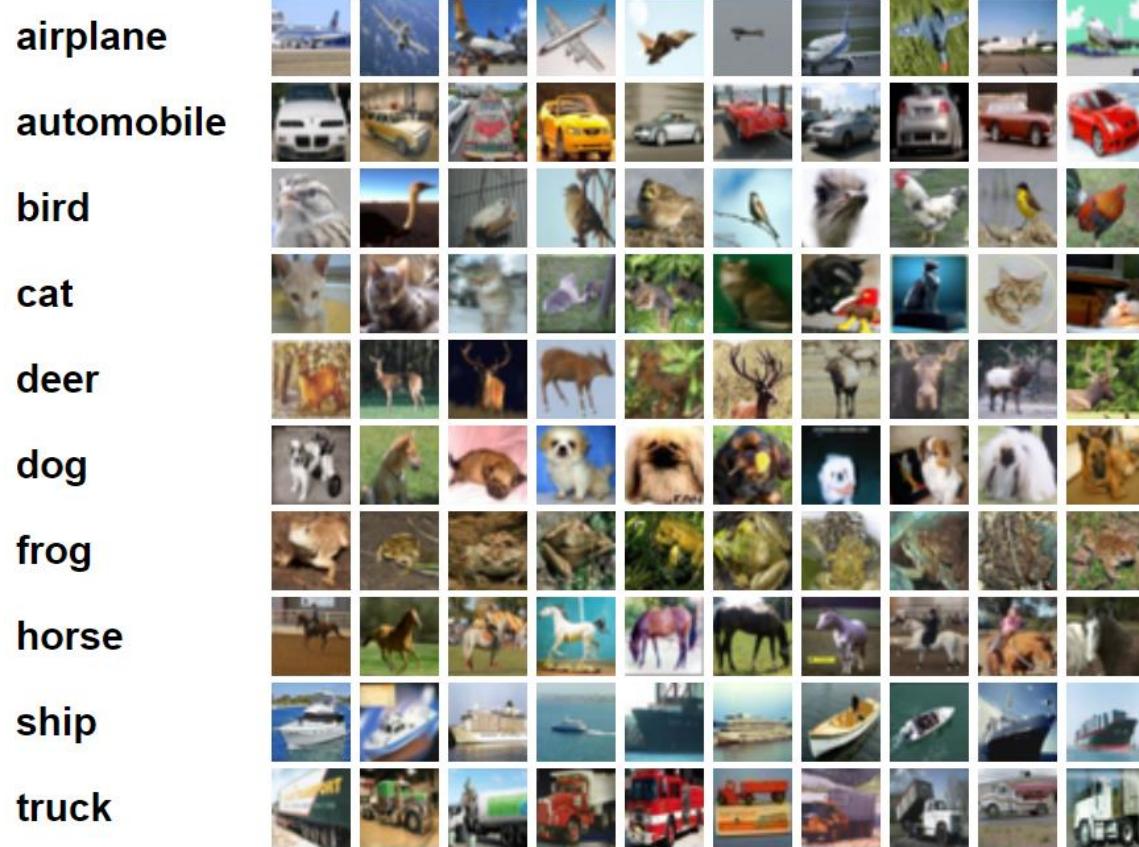
<https://github.com/tensorflow/cleverhans>

Papernot et al.: *Technical Report on the CleverHans v2.1.0 Adversarial Examples Library*, arXiv preprint 2018

# Countermeasures? Adversarial Training



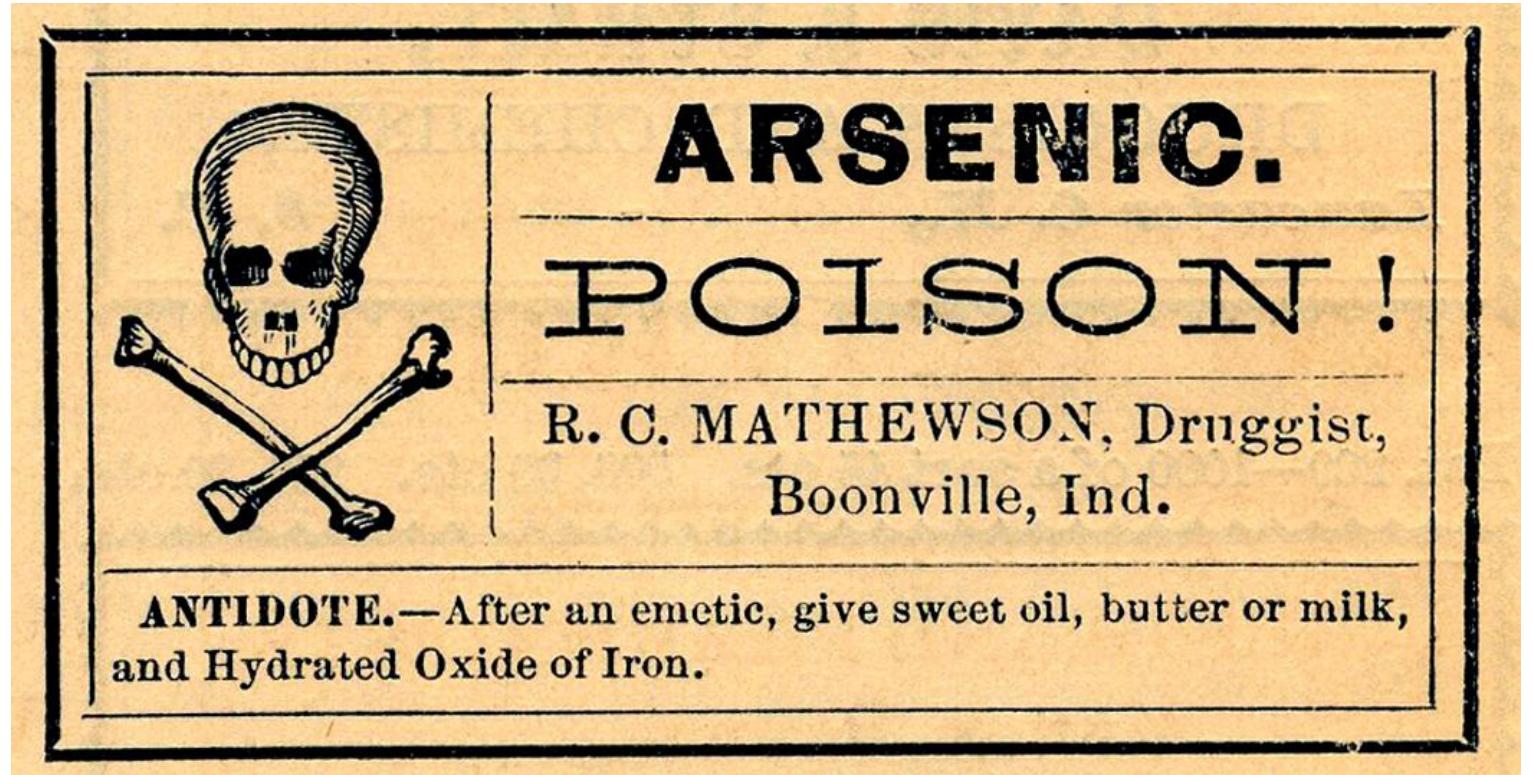
# Adversarial Training



<https://github.com/tensorflow/cleverhans>

| CIFAR-10 Model                    | Accuracy of the model | Adversarial examples that mislead the model |
|-----------------------------------|-----------------------|---------------------------------------------|
| Original                          | 87%                   | 90%                                         |
| Trained with adversarial examples | 86%                   | 17%                                         |

# Data Poisoning

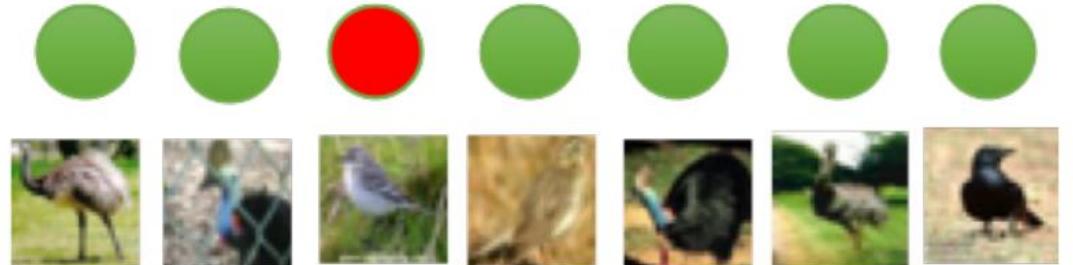


# Adversarial Training - Revisited

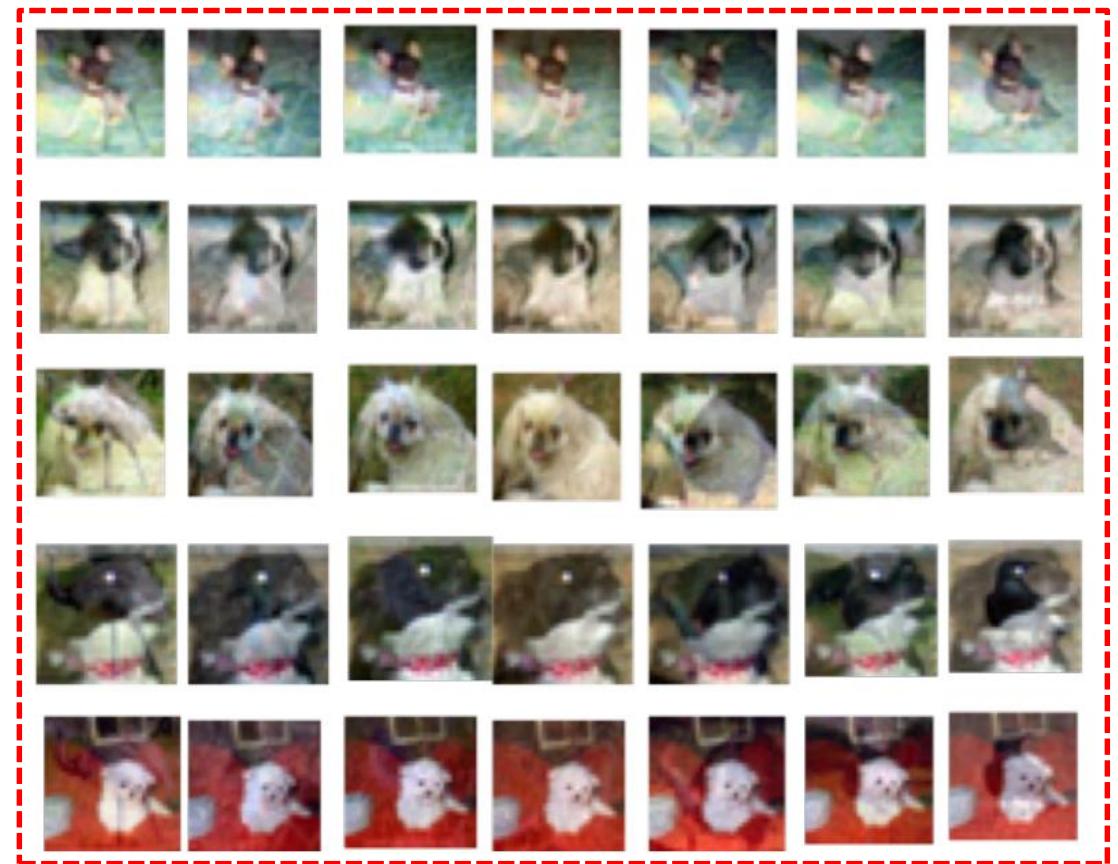
---

Shafahi, Huang, Najibi, Suciu, Studer,  
Dumitras, Goldstein: *Poison Frogs! Targeted  
Clean-Label Poisoning Attacks on Neural  
Networks*. arXiv preprint 2018.

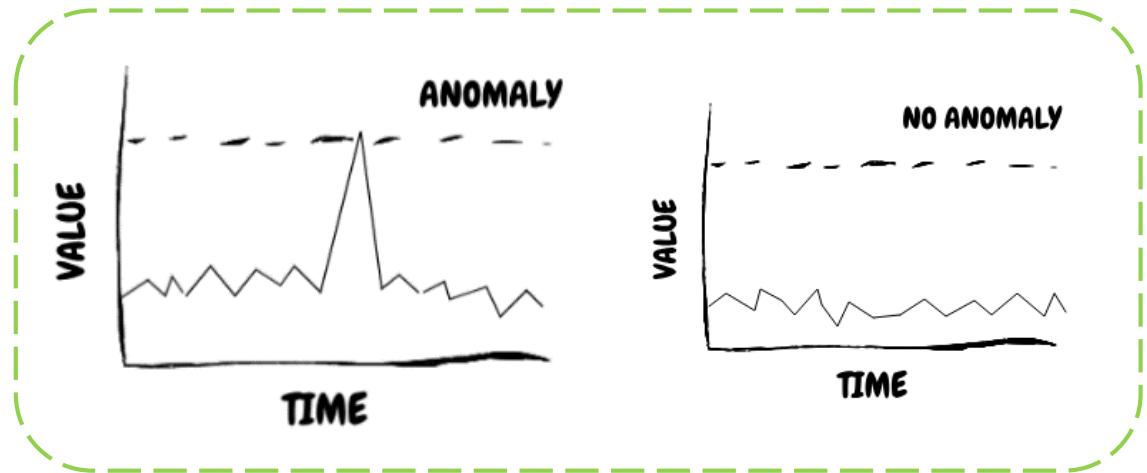
Target



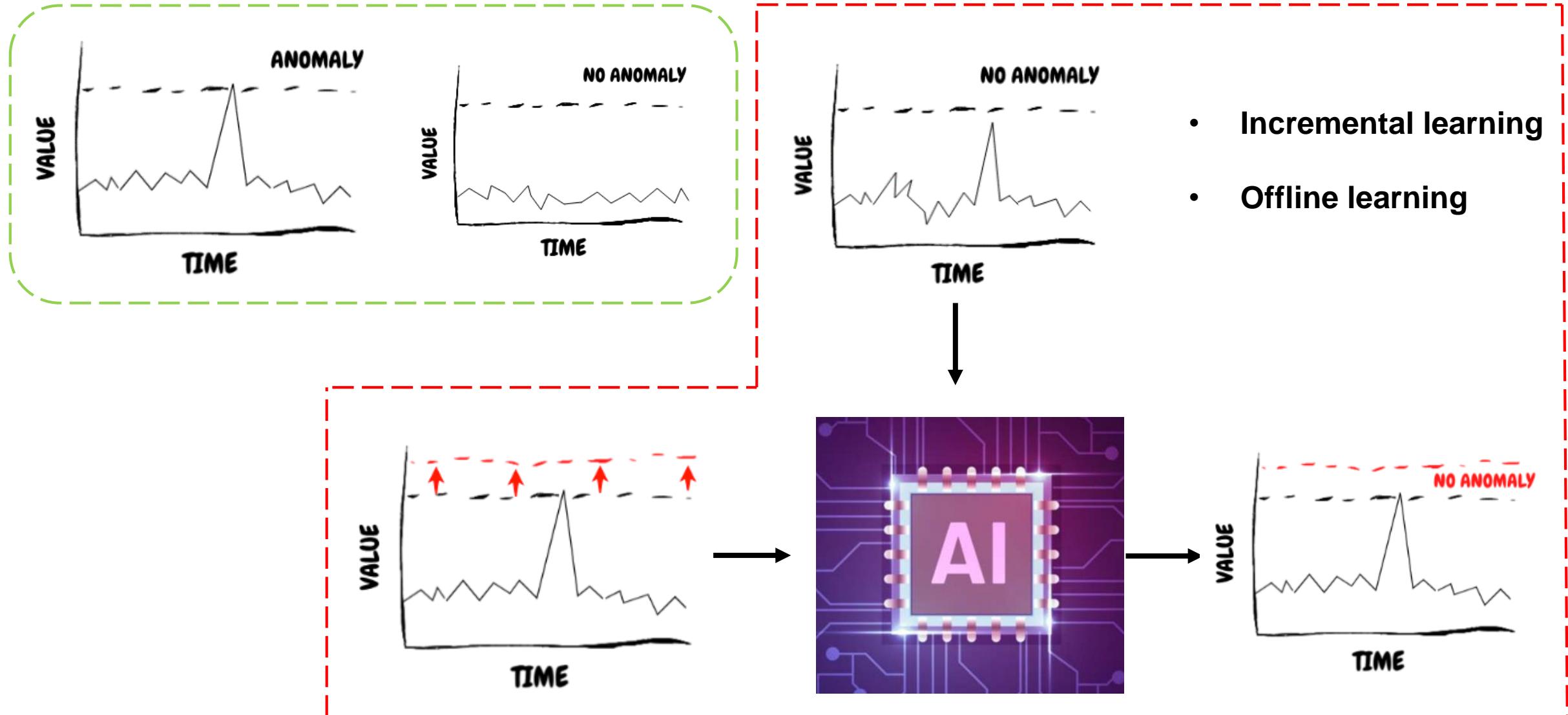
Poison



# Anomaly detection



# Anomaly detection





## Privacy - Use case: Smart Grid

# Forecasting power consumption

- **Suppliers** need forecast to buy energy generation contracts that cover their clients
- **Distribution supply operators** require longer term forecasts to ensure the necessary network capacity is available
- Forecasting could allow for dynamic price determination

## Privacy Concerns in the Smart-Grid

Energy consumption reveals  
**Patterns**

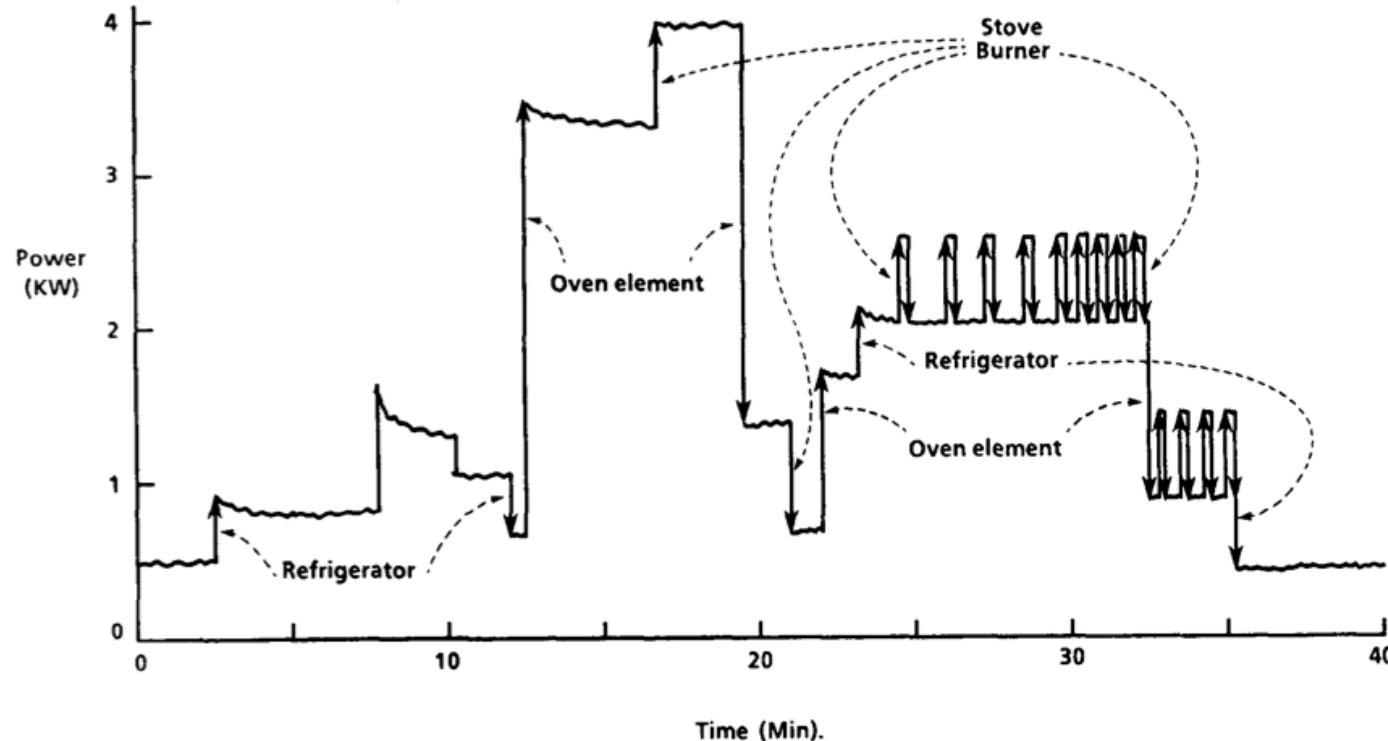
- Another microwave meal?

**Invalid usage**

- Insurance or warranty

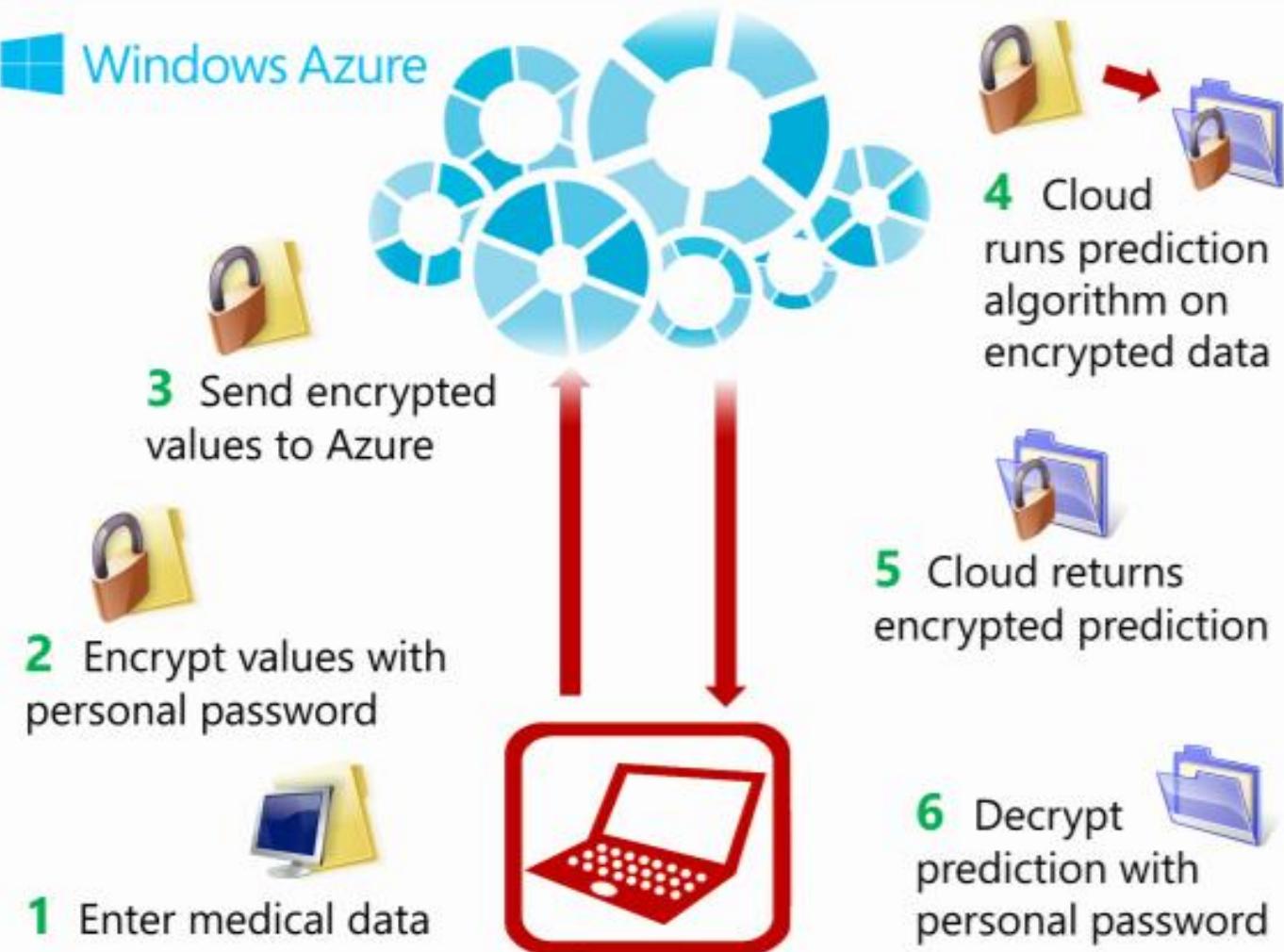
**Real-time information**

- Number of people in a household
- Are you on holidays?

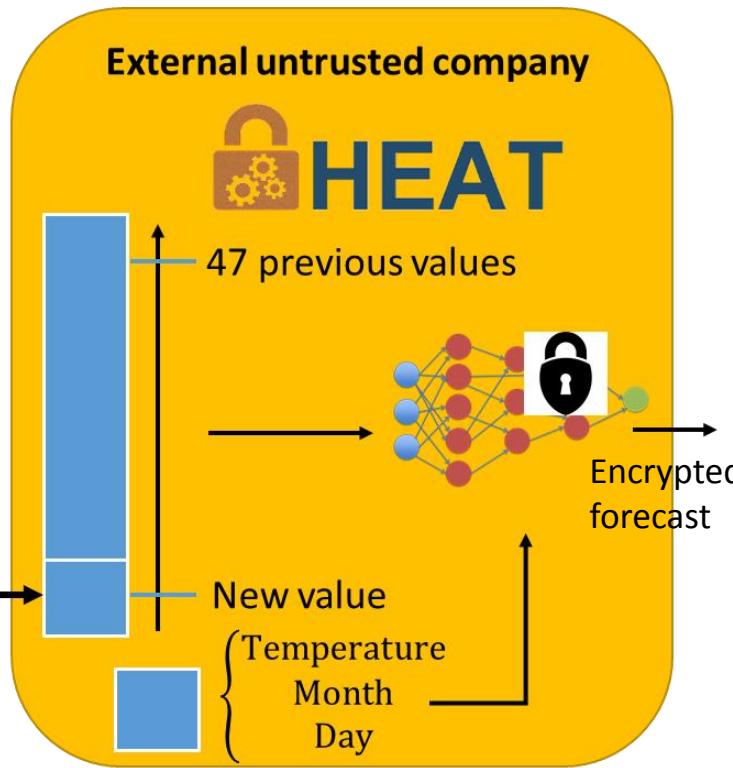


Hart: *Nonintrusive appliance load monitoring*. Proceedings of the IEEE 1992

## Computing on Encrypted Data



Bos, Lauter, Naehrig: *Private Predictive Analysis on Encrypted Medical Data*. Journal of Biomedical Informatics, 2014.



- Forecast power consumption for next half hour in  $\approx 2.5$  seconds to evaluate
- Neural network  
Inputs: 51  
Hidden layers: 3 ( $8 \rightarrow 4 \rightarrow 2$ )  
Output: 1



# Machine Learning using Encrypted Data

- Bonte, Bootland, Bos, Castryck, Iliashenko, Vercauteren: *Faster Homomorphic Function Evaluation using Non-Integral Base Encoding*. Cryptographic Hardware and Embedded Systems – CHES 2017
- Bos, Castryck, Iliashenko, Vercauteren: *Privacy-friendly Forecasting for the Smart Grid using Homomorphic Encryption and the Group Method of Data Handling*. AFRICACRYPT 2017

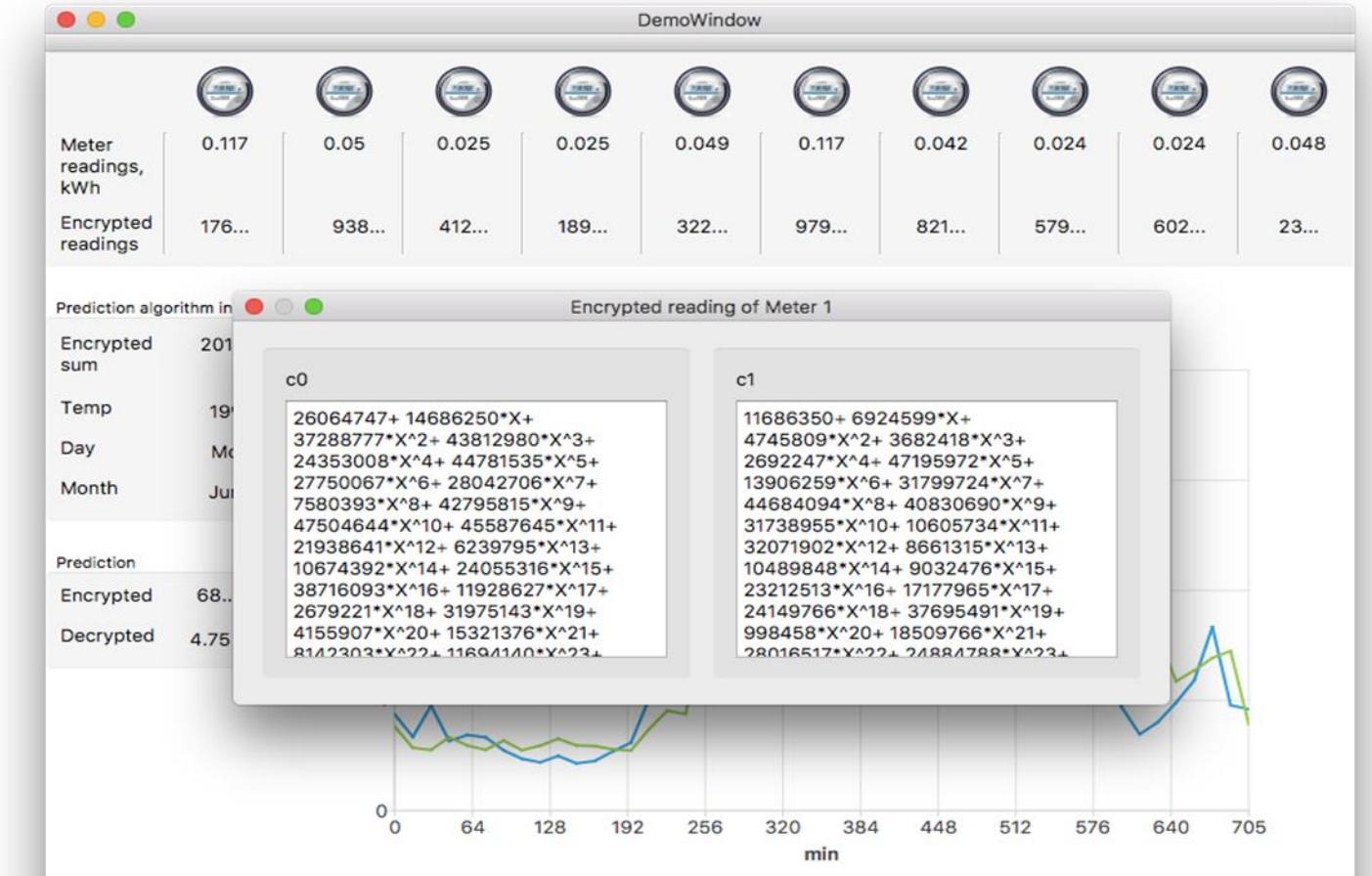


# Machine Learning using Encrypted Data

- Forecast power consumption for next half hour in  $\approx 2.5$  seconds to evaluate
- Neural network
  - Inputs: 51
  - Hidden layers: 3 ( $8 \rightarrow 4 \rightarrow 2$ )
  - Output: 1



- Bonte, Bootland, Bos, Castryck, Iliashenko, Vercauteren: *Faster Homomorphic Function Evaluation using Non-Integral Base Encoding*. Cryptographic Hardware and Embedded Systems – CHES 2017
- Bos, Castryck, Iliashenko, Vercauteren: *Privacy-friendly Forecasting for the Smart Grid using Homomorphic Encryption and the Group Method of Data Handling*. AFRICACRYPT 2017



# Machine Learning using Encrypted Data

- Forecast power consumption for next half hour in  $\approx 2.5$  seconds to evaluate
- Neural network  
Inputs: 51  
Hidden layers: 3 ( $8 \rightarrow 4 \rightarrow 2$ )  
Output: 1



- Bonte, Bootland, Bos, Castryck, Iliashenko, Vercauteren: *Faster Homomorphic Function Evaluation using Non-Integral Base Encoding*. Cryptographic Hardware and Embedded Systems – CHES 2017
- Bos, Castryck, Iliashenko, Vercauteren: *Privacy-friendly Forecasting for the Smart Grid using Homomorphic Encryption and the Group Method of Data Handling*. AFRICACRYPT 2017



# Conclusions

- Machine learning can improve quality of life due to availability of huge amount of data
- Security is one of the biggest challenges in large scale deployment of machine learning
- A lot of open security & privacy challenges
- [+] Cryptography to the rescue for some problems
- [-] Expect zero-day attacks against machine learning models



SECURE CONNECTIONS  
FOR A SMARTER WORLD

& MACHINE LEARNING

