Fast Cryptography in Genus 2

Joppe W. Bos

Joint work with
Craig Costello, Huseyin Hisil, Kristin Lauter

Workshop on Elliptic Curve Cryptography 2013

Microsoft:

Research

Fast Cryptography in Genus 2

From a practical perspective!

Joppe W. Bos

Joint work with
Craig Costello, Huseyin Hisil, Kristin Lauter

Workshop on Elliptic Curve Cryptography 2013

Microsoft:

Research

Motivation - |

This is the ECC Workshop: we all like (elliptic) curves!

Group (F;ﬂx) (E(sz)’ +)

Motivation - |

This is the ECC Workshop: we all like (elliptic) curves!

Group (F{;ﬂx) (E(sz)’ +)

Security level log, P1 log, po
(bits)

128 3072 256
192 7680 384
256 15360 521

Source: NSA — The case for Elliptic Curve Cryptography
http://www.nsa.gov/business/programs/elliptic_curve.shtml

Motivation - |

This is the ECC Workshop: we all like (elliptic) curves!

Group (F{;ﬂx) (E(sz)’ +)

Why?

(bits) DH cost : ECDH cost
128 3072 256 10:1
192 7680 384 32:1
256 15360 521 64:1

Source: NSA — The case for Elliptic Curve Cryptography
http://www.nsa.gov/business/programs/elliptic_curve.shtml

Motivation - |

This is the ECC Workshop: we all like (elliptic) curves!

Ratio
DH cost : ECDH cost

ource: NSA — The case for Elliptic Curve Cryptography
http://www.nsa.gov/business/programs/elliptic_curve.shtml

Reduce the cost of the group operation

Can we do better?

e Use a different curve representation

e Use a different coordinate system

* E.g. twisted Edwards curves with
extended twisted Edwards coordinates

* See the Explicit-Formulas Database

Can we do better?

Reduce the cost of the group operation Reduce the number of group operations

e Use a different curve representation * Reduce the number of point additions

e Use a different coordinate system e.g. use large window sizes

* E.g. twisted Edwards curves with * Reduce the number of point doublings
extended twisted Edwards coordinates e.g. scalar decomposition

* See the Explicit-Formulas Database

Can we do better?

Reduce the cost of the group operation Reduce the number of group operations

e Use a different curve representation * Reduce the number of point additions

e Use a different coordinate system e.g. use large window sizes

* E.g. twisted Edwards curves with * Reduce the number of point doublings
extended twisted Edwards coordinates e.g. scalar decomposition

* See the Explicit-Formulas Database

Other optimizations

 Montgomery ladder

e Fast finite field arithmetic:
Curves over “special” primes

* Implementations using all the features
of the architecture: e.g. special
instructions, SIMD instructions

Can we do better?

Reduce the cost of the group operation Reduce the number of group operations

e Use a different curve representation Reduce the number of point additions

e Use a different coordinate system e.g. use large window sizes

* E.g. twisted Edwards curves with Reduce the number of point doublings
extended twisted Edwards coordinates e.g. scalar decomposition

* See the Explicit-Formulas Database

 Montgomery ladder Consider genus 2
e Fast finite field arithmetic: * Different cost of the group operation

Curves over “special” primes » Different number of group operations
* Implementations using all the features Genus 2 equivalent of Montgomery ladder

of the architecture: e.g. special Kummer surface

instructions, SIMD instructions GLV on genus 2 curves?

Why genus 27

y% =x3 + a,x? + ayx + qq y? = x° + ax* + azx3 + a,x% + a;x + qq

O O

Both curves have around p points over E,
Hasse-Weil: p + 1 - 2g/p < #C(F,)<p+ 1+ 2g.p

Why genus 27

y% =x3 + a,x? + ayx + qq 2 = x>+ ax* + azx3 + a,x? + a;x + q,

Can’t do “chord-and-tangent” in genus 2

Why genus 27

y% =x3 + a,x? + ayx + qq y? = x° + ax* + azx3 + a,x% + a;x + qq

Roughly speaking: group elements are pairs of points
#E(F,) = p versus #acc(F,) = p?

Flashback?!

Wasn’t this considered before?

2006: D. J. Bernstein: Elliptic vs. hyperelliptic, ECC
Workshop

“Can we obtain higher speeds at comparable security
levels using genus-2 hyperelliptic curves?”
Unfortunately:

“genus-2 point counting is too slow to reach 256 bits”

No point counting = no cryptographic genus 2 curves

Flashback?!

Wasn’t this considered before?

2006: D. J. Bernstein: Elliptic vs. hyperelliptic, ECC
Workshop

“Can we obtain higher speeds at comparable security
levels using genus-2 hyperelliptic curves?”
Unfortunately:

“genus-2 point counting is too slow to reach 256 bits”

No point counting = no cryptographic genus 2 curves

Fortunately, there has been significant progress

2011: Gaudry-Kohel-Smith: Counting points on genus 2
curves with real multiplication, Asiacrypt

2012: Gaudry-Schost: Genus 2 point counting over
prime fields, J. Symb. Comput.

After seven years Genus 2 is ready to rumble!

Genus1l versus Genus?2

Practical performance comparison
Genus 1 versus Genus 2

e 128-bit security level

* High-end 64-bit platforms
(although we considered embedded devices as well)

Endomorphism Endomorphism

e Use all the available tricks!

Ladder Ladder

After seven years Genus 2 is ready to rumble!

Genus1l versus Genus?2

Practical performance comparison
Genus 1 versus Genus 2

e 128-bit security level

* High-end 64-bit platforms
(although we considered embedded devices as well)

Endomorphism Endomorphism

e Use all the available tricks!

Ladder Ladder * Let’s start with an arlth(r(netlc.m”ferlyde:
Why do we care about “special” primes?

Mersenne to the rescue!

In genus 1 “special” primes are used
to speed-up modular reduction
¢ NIST p224 — 2224 - 296 + 1
* NIST pyse = 2270 — 2224 42192 4296 —1

* Bernstein pyss19 = 22°° — 19

Mersenne to the rescue!

II)

primes are used

In genus 1 “specia

to speed-up modular reduction 1 2
i NIST p224 — 2224 - 296 + 1 2 3
+ NIST pge = 2256 — 2224 42192 4 296 _ | j 3
* Bernstein pyccq9 = 22°° — 19 : 13
6 17
8 31
* Prime of the form 29 — 1, with g prime 9 61
* Allows very efficient modular arithmetic 10 89
* Gaudry-Schost found a cryptographic 11 107
Kummer surface over F, with 12 127
p = 21471 13 521
14 607

Mersenne to the rescue!

III

primes are used

In genus 1 “specia

to speed-up modular reduction 1 2
¢ NIST p224 — 2224 - 296 + 1 2 3
+ NIST pge = 2256 — 2224 42192 4 296 _ | j 3
: __ ~255
* Bernstein pysc19 = 2%°° — 19 : -
6 17
8 31
* Prime of the form 29 — 1, with g prime 9 61
* Allows very efficient modular arithmetic = LA SEEUgY 10 89
. for genus 2
* Gaudry-Schost found a cryptographic 11 107
Kummer surface over F, with 12 127

p = 2127_1 13 521

Mersenne to the rescue! — Modular addition

Zero is represented by
128
a+b<?2 0or 2127 _ 1

(
+b if (a+b) < 21?7 —1
— a + b mod (2127-1) = ¢
¢ =a+bmod() a+b—(227-1)if (a +b) > 2?7 — 1
Constant-time: addition + conditional subtraction

= addition +subtraction + masking (uses registers)

Mersenne to the rescue! — Modular addition

Zero is represented by
128
a+b<?2 0or 2127 _ 1

(
+b if (a+b) < 21?7 —1
— a + b mod (2127-1) = ¢
¢ =a+bmod() a+b—(227-1)if (a +b) > 2?7 — 1
Constant-time: addition + conditional subtraction

= addition +subtraction + masking (uses registers)

R(x)=X—{%‘(2127_1)=x—{%‘2127+{%‘

Mersenne to the rescue! — Modular addition

a+b <218

(
+b if (a+b) < 21?7 —1
— a + b mod (2127-1) = ¢
¢ =a+bmod() a+b—(227-1)if (a +b) > 2?7 — 1
Constant-time: addition + conditional subtraction

= addition +subtraction + masking (uses registers)

R(x)=X—{%‘(2127_1)=x—{%‘2127+{%‘

If the msb is zero then leave it at zero

If the msb is one then set it to zero
Idea: use the bit-reset instruction!

Mersenne to the rescue! — Modular addition

(
+b if (a+b) < 21?7 —1
— a + b mod (2127-1) = ¢
¢ =a+bmod() a+b—(227-1)if (a +b) > 2?7 — 1
Constant-time: addition + conditional subtraction

= addition +subtraction + masking (uses registers)

R(x)=x—{%‘(2127—1)=x—{%‘2127+{%‘

Compute: ¢ = R(a + b) when 0 < a,b < 21?7 then 0 < ¢ < 2147
Avoid masking and extra register usage
Cost modular addition: 2x add + 1xbit-reset instruction

Mersenne to the rescue! — Modular multiplication

c=aXxXb=cy2'?8 + ¢;, with
127 _ 1)
0<ab<2¥ 0<c¢ <2 and 0<cy< [(2 21281)] =216 —1

¢ = cy2?8 + ¢ —2cy (2127 = 1) = ¢, +2¢4 (mod (2127 — 1))

Mersenne to the rescue! — Modular multiplication

c=aXxXb=cy2'?8 + ¢;, with
127 _ 1)
0<ab<2¥ 0<c¢ <2 and 0<cy< [(2 21281)] =216 —1

¢ = cy2?8 + ¢ —2cy (2127 = 1) = ¢, +2¢4 (mod (2127 — 1))

¢ = R(R(c;) +2cy) (mod (2127 — 1))

Mersenne to the rescue! — Modular multiplication

c=aXxXb=cy2'?8 + ¢;, with
127 _ 1)
0<ab<2¥ 0<c¢ <2 and 0<cy< [(2 21281)] =216 —1

¢ = cy2?8 + ¢ —2cy (2127 = 1) = ¢, +2¢4 (mod (2127 — 1))

¢ = R(R(c;) +2cy) (mod (2127 — 1))

Reduction cost; 6X add, 2X bit-reset, 1X shift

Mersenne to the rescue! — Modular multiplication

c=aXxXb=cy2'?8 + ¢;, with 2
127 _
0<ab<2¥ 0<c¢ <2 and 0<cy< [(2 21281)] =216 —1

¢ = cy2?8 + ¢ —2cy (2127 = 1) = ¢, +2¢4 (mod (2127 — 1))

¢ = R(R(c;) +2cy) (mod (2127 — 1))

Reduction cost: 6x add, 2X bit-reset, 1X shift
Multiplication: 4x mul and 5x add instruction

Montgomery friendly primes

Interleaved radix-2? Montgomery multiplication
n—1

C=A-B-27""modp,u=—-p 'mod2° A= Z a; 2P

=0 "
fori=0ton—1do
C=C+ai-B
g =pu-Cmod?2”
C:C+Z-p
2
_ J

Montgomery: Modular Multiplication Without Trial Division. Math. of Comp. 1985

Montgomery friendly primes

Interleaved radix-2? Montgomery multiplication

n—1
C=A-B-27""modp,u=—p~' mod2°,A = Z a; 2%
i=0
=0 h
fori=0ton—1do Not much we can do: this is the multiplication
C =C+ a - B
g = u-C mod 2°
C .
=32
- J

Montgomery: Modular Multiplication Without Trial Division. Math. of Comp. 1985

Montgomery friendly primes

Interleaved radix-2? Montgomery multiplication

n—1
C=A-B-2"""modp,u=—-p~' mod2”°, 4= Z a;2b
i=0
C=0 A
fori=0ton—1do Not much we can do: this is the multiplication
C =0C + a - B
b b _ I b
q{:::@odz S If p = +1 mod 2° then u = ¥1 mod 2
__C+qp
=%
NS J

Montgomery: Modular Multiplication Without Trial Division. Math. of Comp. 1985

Montgomery friendly primes

Interleaved radix-2? Montgomery multiplication

n—1
C=A-B-2"""modp,u=—-p~' mod2”°, 4= Z a; 2"

i=0
=0 h
fori=0ton—1do Not much we can do: this is the multiplication

C=C-I—al--B
| If p = +1 mod 2° then 4 = ¥1 mod 2P

I”

_ Additionally, if p has a “special” form: avoid muls

Montgomery: Modular Multiplication Without Trial Division. Math. of Comp. 1985

Montgomery friendly primes

Interleaved radix-2? Montgomery multiplication

n—1
C=A-B-2"""modp,u=—-p~' mod2”°, 4= Z a; 2"

i=0
C=0 R
fori=0ton—1do Not much we can do: this is the multiplication

C=C+ai-B

If p = +1 mod 2° then 4 = ¥1 mod 2P

\

I”

Additionally, if p has a “special” form: avoid muls

2127 —1 = 264(263 _ 0) —1

Montgomery: Modular Multiplication Without Trial Division. Math. of Comp. 1985

Benchmark Platform

Security & Benchmark Platform

* Intel Core i7-3520M (lvy Bridge)
processor at 2893.484 MHz

* hyperthreading turned off and over-
clocking (“turbo boost”) disabled

Security & Benchmark Platform
Benchmark Platform

Generic Attack: Pollard rho

* Intel Core i7-3520M (lvy Bridge) e [Pollard-MoC78]

processor at 2893.484 MHz
hyperthreading turned off and over-
clocking (“turbo boost”) disabled

* \/(m‘)/(Z#Aut), where #Aut > 2
for curves with group order h - r

Prio

Pa+ps2
PA+1

PA+p+1
PA+p+3 % Prt3

Px g Pa+p

Pa-1e
: Pr+pu—1 Prsp—2

pQE

P1

J. M. Pollard: Monte Carlo methods for index computation (mod p). Math. Comp., 1978

Battle

Battle #1
NISTp-256 versus Genericl271

Generic genus 1 versus Generic genus 2

Generic?

* No special requirements on the curve

* Techniques can be applied to all genus 1 or genus 2 curves
* Use “special” primes for efficiency

* Use prime order curves for optimal security

NISTp-256 versus Genericl27/1

2127 _ 1 (a)
2256 _ 2224- + 2192 + 296 —1

& 264(263 — 0) — 1 (b)
Order Prime order Prime order
Scalar multiplication windowing windowing

: Jacobian coordinates with a = —3
Heareinglis / cu for short Weierstrass curves [CL

i (7tr) -~ »127.8 (7tr) -~ 7126.8
Security J 2-2)~ 2 2-2)~ 2

We use arithmetic on imaginary quadratic curves using homogeneous projective coordinates.
We optimized the formulas from:

[CL] Costello, Lauter: Group law computations on Jacobians of hyperelliptic curves. SAC 2011

NISTp-256 versus Genericl27/1

2127 _ 1 (a)
2256 _ 2224- + 2192 + 296 —1

p 264(263 _ 0) — 1 (b)
Order Prime order Prime order
Scalar multiplication windowing windowing

: Jacobian coordinates with a = —3
Heareinglis / cu for short Weierstrass curves [CL

i (7r) ~ 7127.8 (7r) ~ 7126.8
Security J 2-2)~ 2 2-2)~ 2
Double 3M+5S 34M+6S
Addition 11M+5S 44M+4S

Mixed addition 7M+4S 37M+5S

NISTp-256 versus Genericl27/1

2127 —1 a
p 2256 _ 9224 | 9192 4 296 _ q { D)1 §b§
Order Prime order Prime order
Scalar multiplication windowing windowing
Jacobian coordinates with a = —3

Coordinate / curve [CL]

for short Weierstrass curves

Security J(”T)/(Z) ® 2127.8 \/(”7‘)/(2) 2126.8

Battle #2

GLV-j=0 versus BuhlerKoblitzGLV

Scalar Decomposition over Prime Fields

e Gallant, Lambert, Vanstone [GLV-CO1]
e Use non-trivial endomorphism

e Larger endomorphism ring means larger
dimensional scalar decomposition

/

Scalar
Decomposition

Scalar Decomposition over Prime Fields

e Gallant, Lambert, Vanstone [GLV-CO1]
e Use non-trivial endomorphism

e Larger endomorphism ring means larger
dimensional scalar decomposition

/

Scalar

Decomposition
Genus 1 over Fp Genus 2 over Fp

256-bit primes 128-bit primes

Allows: 2-GLV Allows: 4-GLV

Reducing the Number of Point Doublings

-

N\

* d-dimensional scalar decomposition

. . . d
« Decompose a scalar k into d “mini-scalars” k; =~ Yk
e Perform a multi-scalar multiplication with these d smaller scalars

Reducing the Number of Point Doublings

4)
* d-dimensional scalar decomposition
. . . d
« Decompose a scalar k into d “mini-scalars” k; =~ Yk

e Perform a multi-scalar multiplication with these d smaller scalars
\ J

Assume we can multiply efficiently by (powers) of some integer A = Vk

d-1
k1P =) (kA1 P = [ko]P + [ka](AIP) + -+ + [ka11([A*]P)
=0

Reducing the Number of Point Doublings

-

N\

* d-dimensional scalar decomposition

. . . d
« Decompose a scalar k into d “mini-scalars” k; =~ Yk
e Perform a multi-scalar multiplication with these d smaller scalars

d-1

Assume we can multiply efficiently by (powers) of some integer A = Vk

k1P = > [kiATTP = [kolP + [ka(AIP) + -+ [ka—1 (A" *]P)
=0

Approach #1
Precompute: {@, P, [A]P, P + [A]P}

Example:d = 2

Reducing the Number of Point Doublings

-

N\

* d-dimensional scalar decomposition

. . . d
« Decompose a scalar k into d “mini-scalars” k; =~ Yk
e Perform a multi-scalar multiplication with these d smaller scalars

d-1

Assume we can multiply efficiently by (powers) of some integer A = Vk

k1P = > [kiATTP = [kolP + [ka(AIP) + -+ [ka—1 (A" *]P)
=0

Approach #1
Precompute: {@, P, [A]P, P + [A]P}

Example:d = 2

Reducing the Number of Point Doublings

-

N\

* d-dimensional scalar decomposition

. . . d
« Decompose a scalar k into d “mini-scalars” k; =~ Yk
e Perform a multi-scalar multiplication with these d smaller scalars

d-1

Assume we can multiply efficiently by (powers) of some integer A = Vk

k1P = > [kiATTP = [kolP + [ka(AIP) + -+ [ka—1 (A" *]P)
=0

Approach #1
Precompute: {@, P, [A]P, P + [A]P}

Example:d = 2

Reducing the Number of Point Doublings

-

N\

* d-dimensional scalar decomposition

. . . d
« Decompose a scalar k into d “mini-scalars” k; =~ Yk
e Perform a multi-scalar multiplication with these d smaller scalars

Assume we can multiply efficiently by (powers) of some integer A = Vk

k1P = > [kiATTP = [kolP + [ka(AIP) + -+ [ka—1 (A" *]P)
=0

Approach #1
Precompute: {@, P, [A]P, P + [A]P}

Example:d = 2

Reducing the Number of Point Doublings

-

N\

* d-dimensional scalar decomposition

. . . d
« Decompose a scalar k into d “mini-scalars” k; =~ Yk
e Perform a multi-scalar multiplication with these d smaller scalars

Assume we can multiply efficiently by (powers) of some integer A = Vk

k1P = > [kiATTP = [kolP + [ka(AIP) + -+ [ka—1 (A" *]P)
=0

Approach #1
Precompute: {@, P, [A]P, P + [A]P}

Example:d = 2

Reducing the Number of Point Doublings

4)
* d-dimensional scalar decomposition

. . . d
« Decompose a scalar k into d “mini-scalars” k; =~ Yk

e Perform a multi-scalar multiplication with these d smaller scalars
\ J

Assume we can multiply efficiently by (powers) of some integer A = Vk

d-1
k1P =) (kA1 P = [ko]P + [ka](AIP) + -+ + [ka11([A*]P)
=0

Approach #2

{@,P,2P,3P}
{@, [A]P, 2[A]P, 3[A]P}

Example:d = 2

Precompute: {

Reducing the Number of Point Doublings

4)
* d-dimensional scalar decomposition

. . . d
« Decompose a scalar k into d “mini-scalars” k; =~ Yk

e Perform a multi-scalar multiplication with these d smaller scalars
\ J

Assume we can multiply efficiently by (powers) of some integer A = Vk

d-1
k1P =) (kA1 P = [ko]P + [ka](AIP) + -+ + [ka11([A*]P)
=0

Approach #2

{@,P,2P,3P}
{@,[A]P, 2[A]P, 3[A] P}
Example:d = 2

Precompute: {

BuhlerKoblitzGLV — 4-dimensional GLV

* C/F,: y*=x"+a D1y = (263 — 27433)26% + 1
* Y:Jac(C) - Jac(0), a=17

YD) =[A]D,for0 <A< 1= —pis,, mod 2% = —1
* Decompose the scalar using [PJL] 254-bit prime order

Cost: 20 long integer muls

{p128n — 2128 — 24935
a=73"
256-bit prime order

[PJL] Park, Jeong, Lim: Speeding up point multiplication on hyperelliptic curves with efficiently-computable endomorphisms.
Eurocrypt 2002

BuhlerKoblitzGLV — 4-dimensional GLV

-

N

Offline
Pre-compute 2% points
11A+3Y

Online
64D+64A

{p127m = (263 — 27433)264 + 1
a=17
K = —Piz7m mod 2°% = —1
254-bit prime order

{p128n — 2128 — 24935
a=73"
256-bit prime order

BuhlerKoblitzGLV — 4-dimensional GLV

-

N\

Offline
Pre-compute 2% points
11A+3Y+11+(3+4)-15M

Online
64D+64A - 64D+64MA

J

-

Recall: A=44M+4S, MA=37M+5S

Additional cost: 11+105M

Savings:

64(A-MA)=448M-64S

. Speedup when: 1< 279M

~

J

{p127m = (263 — 27433)264 + 1
a=17
K = —Piz7m mod 2°% = —1
254-bit prime order

{pmn = 2128 _ 24935
a=73"
256-bit prime order

Montgomery: Speeding the Pollard and elliptic curve methods of factorization. Math. of Comp. 1987

GLV-j=0 versus BuhlerKoblitzGLV

128

g 250 ~ 11733 ?263 — 232:5)264 +1 gg

Order Prime order Prime order

Scalar multiplication 2-dimensional GLV 4-dimensional GLV (approach #1)

CosrliEie / GURE j-invariant % iEWSierstrass form Buhlezr-KobISitz curve
ye=x+2 ye=x>+a

Longa, Sica: Four-dimensional Gallant-Lambert-Vanstone scalar multiplication. Asiacrypt 2012

GLV-j=0 versus BuhlerKoblitzGLV

2128 _ 24935 (a)
2256 — 11733
P {(263 — 27433)25* + 1 (b)
Order Prime order Prime order
Scalar multiplication 2-dimensional GLV 4-dimensional GLV (approach #1)
e 20 integer muls +
Cost scalar multiplication 11 + 904M + 690S 34p+2145005M+748S
' (nr)/ ~ 2127.0 (7cr) ~ 71257
Security \/ 2-6)~ 2 2-10) ® 2

Longa, Sica: Four-dimensional Gallant-Lambert-Vanstone scalar multiplication. Asiacrypt 2012

GLV-j=0 versus BuhlerKoblitzGLV

2128 _ 24935 (a)
2256 — 11733
& {(263 _ 27433)26* + 1 (b)
Order Prime order Prime order
Scalar multiplication 2-dimensional GLV 4-dimensional GLV (approach #1)
e 20 integer muls +
Cost scalar multiplication 11 + 904M + 690S 31p+21+5005M+748S
' (cr) ~ 2127.0 (7cr) ~ 71257
Security \/ 2-6)~ 2 2-10) ® 2
Genus 1: GLV-j=0 145,000

Longa, Sica: Four-dimensional Gallant-Lambert-Vanstone scalar multiplication. Asiacrypt 2012

Battle #3

curve25519 versus Kummerl271

Battle #3

curve25519 versus Kummerl271

Use the Kummer surface from
Gaudry, Schost: Genus 2 point counting over prime fields, J. Symb. Comput., 2012

Laddering algorithms

~

e [M] differential addition: compute P + Q from
{P,Q,P — Q} without y-coord

e to compute kP keep {mP,(m + 1)P} such
that(im+ 1)P —mP =P

* Identify P = (P, Py) and —P = (P, —P))

4 Elliptic curves

* Cost for double+differential add: 5M + 4S

[M] Montgomery: Speeding the Pollard and elliptic curve methods of factorization. Math. of Comp. 1987

Laddering algorithms

/

\

[M] differential addition: compute P + Q from
{P,Q,P — Q} without y-coord

to compute kP keep {mP, (m + 1)P} such
that(im+ 1)P —mP =P

Identify P = (P, B,) and —P = (P,

Elliptic curves

_py)
Cost for double+differential add: 5M + 4S

[M]
[SS]
[G]
[C]

-

Work on the Kummer surface associated to a
Jacobian, rather than on the Jacobian itself

Genus 2 curves

* [SS] genus 2 analogue Jac(C) — K is 2-to-1

» [G] faster Kummer surface

* [C] even faster “squares only” setting on the
Kummer surface

\° Cost for double+differential add: 16M + 9S

~

/

Montgomery: Speeding the Pollard and elliptic curve methods of factorization. Math. of Comp. 1987
Smart, Siksek: A fast Diffie-Hellman protocol in genus 2. J. of Cryptology. 1999

Gaudry: Fast genus 2 arithmetic based on theta functions. J. of Math. Cryptology. 2007

Cosset: Factorization with genus 2 curves. Math. of Comp. 2010

Laddering algorithms

- Elliptic curves N Genus 2 curves N
* [M] differential addition: compute P + Q from Work on the Kummer surface associated to a
{P,Q,P — Q} without y-coord Jacobian, rather than on the Jacobian itself

e to compute kP keep {mP,(m + 1)P} such
that(im+ 1)P —mP =P
* Identify P = (P, Py) and —P = (P, —P))

[SS] genus 2 analogue Jac(C) — K is 2-to-1
[G] faster Kummer surface

[C] even faster “squares only” setting on the
* Cost for double+differential add: 5M + 4S Kummer surface

Cost for double+differential add: 16M + 9S /

-z

" no additions: does allow scalar multiplication
= attractive setting for Diffie-Hellman like protocols
= |nherently runs in constant time

[M] Montgomery: Speeding the Pollard and elliptic curve methods of factorization. Math. of Comp. 1987
[SS] Smart, Siksek: A fast Diffie-Hellman protocol in genus 2. J. of Cryptology. 1999
[G] Gaudry: Fast genus 2 arithmetic based on theta functions. J. of Math. Cryptology. 2007

[C] Cosset: Factorization with genus 2 curves. Math. of Comp. 2010

curve25519 versus Kummerl2/1
T anvenss1y | Kemmezn

2127 —1
p 2255 —19 64 (63 &)
2°%(2%° —=0)—1 (b)
Order 8 - 253-bit prime / 4 - 253-bit prime 16 - 250-bit prime / 16 - 251-bit prime
Scalar multiplication Montgomery ladder Kummer ladder
Coordinate / curve Montgomery curve eIl 7 Bl eel i
surface
Double + dif. add 5M + 4S 16M + 9S
i (7cr) ~ 7125.8 (7r) ~ 7124.8
Security \/ 2-2)~ 2 2-2)~ 2

Bernstein: Curve25519: New Diffie-Hellman speed records. PKC 2006
Bernstein, Duif, Lange, Schwabe: High-speed high-security signatures. CHES 2011

curve25519 versus Kummerl2/1
T anvenss1y | Kemmezn

p 2255 _ 19 {227 _631 (a)
2°%(2%° —=0)—1 (b)
Order 8 - 253-bit prime / 4 - 253-bit prime 16 - 250-bit prime / 16 - 251-bit prime
Scalar multiplication Montgomery ladder Kummer ladder
Double + dif. add 5M + 4S 16M + 9S
Security \/(m")/(z 2y F 2125.8 \/(m”)/(z) 2124.8

Bernstein: Curve25519: New Diffie-Hellman speed records. PKC 2006
Bernstein, Duif, Lange, Schwabe: High-speed high-security signatures. CHES 2011

Summary: genus 1 versus genus 2 over prime fields

Genus 1: NISTp-256 658,000
Genus 2: genericl1271 (a) 248,000

Generic
* Genus 2 > 2.5 faster than genus 1
* Mersenne prime 2127 — 1 very efficient in practice
* NISTp-256 arithmetic (22°6 — 2224 + 2192 4 296 — 1) is relatively slow

Summary: genus 1 versus genus 2 over prime fields

Genus 1: GLV-j=0 145,000
Genus 2: BuhlerKoblitzGLV (b) 156,000

Endomorphism
* Genus 1 slightly faster than genus 2
(better genus 1 assembly implementation?)
« Montgomery friendly primes faster than primes of the form 2128 — ¢

Summary: genus 1 versus genus 2 over prime fields

Genus 1: curve25519 182,000 M
Genus 2: Kummer1271 (a) 117,000 |

Ladder
* Genus 2 faster than genus 1
* Thanks to the Kummer surface by Gaudry & Schost
the Mersenne prime 2127 — 1 comes to the rescue again

Conclusions

Genus 2 has many advantages over elliptic curves

v’ Larger endomorphism ring
4-GLV possible in genus 2 versus 2-GLV in genus 1

v/ Can use the Mersenne prime 2147 — 1
v’ Laddering using the Kummer surface is very efficient

v’ This results are on a 64-bit platform, smaller primes have more
potential on embedded devices

Final score

genus 1 versus genus 2
1 ; 2

Conclusions

Related / ongoing work

= Genus 2 curves over Fz — 8-dimensional scalar decomposition

Allows for 64-bit primes p
Faster attacks, reduced security from 128-bit to =112-bit

" Practical analysis of security genus 1 versus genus 2 over F,
What is the effect of using the automorphism group in practice?

Future work
* Unlikely to attract attention from industry if less than order of magnitude faster:

More work is needed!
* Using endomorphisms on the Kummer surface?

Conclusions

Se ayy:
Related / ongoing work e”l,ot,-c or

" Genus 2 curves over F2 — 8-dimensional scalar decomposition genus
Allows for 64-bit primes p Cu"l/esp
Faster attacks, reduced security from 128-bit to =112-bit)

" Practical analysis of security genus 1 versus genus 2 over F,
What is the effect of using the automorphism group in practice?

Future work
* Unlikely to attract attention from industry if less than order of magnitude faster:

More work is needed!
* Using endomorphisms on the Kummer surface?

Conclusions

Se ayy:
Related / ongoing work e”l,ot,-c or

" Genus 2 curves over F2 — 8-dimensional scalar decomposition genus
Allows for 64-bit primes p Cu"l/esp
Faster attacks, reduced security from 128-bit to =112-bit)

" Practical analysis of security genus 1 versus genus 2 over F,
What is the effect of using the automorphism group in practice?

Future work
* Unlikely to attract attention from industry if less than order of magnitude faster:

More work is needed!
* Using endomorphisms on the Kummer surface?

Difficult to see. Always in motion is the future.

YODA, Star Wars Episode V: The Empire Strikes Back

