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Group (𝐅𝑝1
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Security level 
(bits)

log𝟐 𝒑𝟏 log𝟐 𝒑𝟐

128 3072 256

192 7680 384

256 15360 521

Source: NSA – The case for Elliptic Curve Cryptography
http://www.nsa.gov/business/programs/elliptic_curve.shtml

Motivation - I

This is the ECC Workshop: we all like (elliptic) curves!

Why? Size of 𝑝! 
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Can we do better?

Reduce the cost of the group operation

• Use a different curve representation
• Use a different coordinate system
• E.g. twisted Edwards curves with 

extended twisted Edwards coordinates
• See the Explicit-Formulas Database

Reduce the number of group operations

• Reduce the number of point additions
e.g. use large window sizes

• Reduce the number of point doublings
e.g. scalar decomposition

Change the setting!

• Consider genus 2
• Different cost of the group operation
• Different number of group operations

• Genus 2 equivalent of Montgomery ladder
• Kummer surface

• GLV on genus 2 curves?

Other optimizations

• Montgomery ladder
• Fast finite field arithmetic:

Curves over “special” primes
• Implementations using all the features 

of the architecture: e.g. special 
instructions, SIMD instructions



𝑦2 = 𝑥3 + 𝑎2𝑥
2 + 𝑎1𝑥 + 𝑎0 𝑦2 = 𝑥5 + 𝑎4𝑥

4 + 𝑎3𝑥
3 + 𝑎2𝑥

2 + 𝑎1𝑥 + 𝑎0

Both curves have around 𝑝 points over 𝐅𝑝

Hasse-Weil: 𝑝 + 1 − 2𝑔 𝑝 ≤ #𝐶(𝐅𝑝) ≤ 𝑝 + 1 + 2𝑔 𝑝

Why genus 2?



Can’t do “chord-and-tangent” in genus 2

𝑦2 = 𝑥3 + 𝑎2𝑥
2 + 𝑎1𝑥 + 𝑎0 𝑦2 = 𝑥5 + 𝑎4𝑥

4 + 𝑎3𝑥
3 + 𝑎2𝑥

2 + 𝑎1𝑥 + 𝑎0

Why genus 2?



Roughly speaking: group elements are pairs of points
#𝐸 𝐅𝑝 ≈ 𝑝 versus #Jac𝐶 𝐅𝑝 ≈ 𝑝2

𝑦2 = 𝑥3 + 𝑎2𝑥
2 + 𝑎1𝑥 + 𝑎0 𝑦2 = 𝑥5 + 𝑎4𝑥

4 + 𝑎3𝑥
3 + 𝑎2𝑥

2 + 𝑎1𝑥 + 𝑎0

Why genus 2?



Wasn’t this considered before?

2006: D. J. Bernstein: Elliptic vs. hyperelliptic, ECC 
Workshop 
“Can we obtain higher speeds at comparable security 
levels using genus-2 hyperelliptic curves?”
Unfortunately: 
“genus-2 point counting is too slow to reach 256 bits”

No point counting → no cryptographic genus 2 curves 

Flashback?!



Wasn’t this considered before?

2006: D. J. Bernstein: Elliptic vs. hyperelliptic, ECC 
Workshop 
“Can we obtain higher speeds at comparable security 
levels using genus-2 hyperelliptic curves?”
Unfortunately: 
“genus-2 point counting is too slow to reach 256 bits”

No point counting → no cryptographic genus 2 curves 

Fortunately, there has been significant progress
2011: Gaudry-Kohel-Smith: Counting points on genus 2 
curves with real multiplication, Asiacrypt
2012: Gaudry-Schost: Genus 2 point counting over 
prime fields, J. Symb. Comput.

Flashback?!
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• 128-bit security level
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(although we considered embedded devices as well)

• Use all the available tricks!
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Practical performance comparison
Genus 1 versus Genus 2

• 128-bit security level

• High-end 64-bit platforms
(although we considered embedded devices as well)

• Use all the available tricks!

• Let’s start with an arithmetic interlude:
Why do we care about “special” primes?

After seven years Genus 2 is ready to rumble!

Generic Generic

Endomorphism Endomorphism

Ladder Ladder

Genus 1      versus      Genus 2
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• NIST 𝑝224 = 2224 − 296 + 1

• NIST 𝑝256 = 2256 − 2224 + 2192 + 296 − 1

• Bernstein 𝑝25519 = 2255 − 19

Mersenne to the rescue!

Mersenne primes

• Prime of the form 2𝑞 − 1, with q prime
• Allows very efficient modular arithmetic
• Gaudry-Schost found a cryptographic 

Kummer surface over 𝐅𝑝 with 

𝑝 = 2127−1

# q

1 2

2 3

3 5

4 7

5 13

6 17

7 19

8 31

9 61

10 89

11 107

12 127

13 521

14 607NIST-p521

≈ 128-bit security 
for genus 2
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∈ 0, 1

𝑎 + 𝑏 < 2128

If the msb is zero then leave it at zero
If the msb is one then set it to zero
Idea: use the bit-reset instruction!
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Compute: 𝑐 = 𝑅(𝑎 + 𝑏) when 0 ≤ 𝑎, 𝑏 < 2127 then 0 ≤ 𝑐 < 2127

Avoid masking and extra register usage
Cost modular addition: 2x add + 1x bit-reset instruction
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Mersenne to the rescue! – Modular multiplication

Can be > 2128

𝑐 ≡ 𝑅 𝑅 𝑐𝐿 +2𝑐𝐻 mod 2127 − 1

Reduction cost: 6x add, 2x bit-reset, 1x shift

Multiplication: 4x mul and 5x add instruction
≤ 2127 + 2 2126 − 1
= 2(2127 − 1)

𝑐 = 𝑎 × 𝑏 = 𝑐𝐻2
128 + 𝑐𝐿 , with 
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Montgomery friendly primes

Interleaved radix-2𝑏 Montgomery multiplication

𝐶 ≡ 𝐴 ∙ 𝐵 ∙ 2−𝑏𝑛 mod 𝑝, 𝜇 = −𝑝−1 mod 2𝑏, 𝐴 =  

𝑖=0

𝑛−1

𝑎𝑖2
𝑏𝑖

Montgomery: Modular Multiplication Without Trial Division. Math. of Comp. 1985

C=0

for 𝑖 = 0 to 𝑛 − 1 do

𝐶 = 𝐶 + 𝑎𝑖 ∙ 𝐵
𝑞 = 𝜇 ∙ 𝐶 mod 2𝑏

𝐶 =
𝐶+𝑞∙𝑝

2𝑏
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Not much we can do: this is the multiplication

If 𝑝 = ±1 mod 2b then 𝜇 = ∓1 mod 2b

Montgomery: Modular Multiplication Without Trial Division. Math. of Comp. 1985
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C=0

for 𝑖 = 0 to 𝑛 − 1 do

𝐶 = 𝐶 + 𝑎𝑖 ∙ 𝐵
𝑞 = 𝜇 ∙ 𝐶 mod 2𝑏

𝐶 =
𝐶+𝑞∙𝑝

2𝑏

Montgomery friendly primes

Interleaved radix-2𝑏 Montgomery multiplication

𝐶 ≡ 𝐴 ∙ 𝐵 ∙ 2−𝑏𝑛 mod 𝑝, 𝜇 = −𝑝−1 mod 2𝑏, 𝐴 =  

𝑖=0

𝑛−1

𝑎𝑖2
𝑏𝑖

Not much we can do: this is the multiplication

If 𝑝 = ±1 mod 2b then 𝜇 = ∓1 mod 2b

Additionally, if p has a “special” form: avoid muls

Example: 2𝑏 2  𝑏 − 𝑐 − 1 2127 − 1 = 264 263 − 0 − 1

Montgomery: Modular Multiplication Without Trial Division. Math. of Comp. 1985
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Security & Benchmark Platform

Generic Attack: Pollard rho

• [Pollard-MoC78]

•  (𝜋𝑟) (2#Aut), where #Aut ≥ 2
for curves with group order ℎ ∙ 𝑟

Benchmark Platform

• Intel Core i7-3520M (Ivy Bridge) 
processor at 2893.484 MHz

• hyperthreading turned off and over-
clocking (“turbo boost”) disabled

J. M. Pollard: Monte Carlo methods for index computation (mod p). Math. Comp., 1978



Battle #1



Battle #1

Generic genus 1 versus Generic genus 2

Generic?
• No special requirements on the curve
• Techniques can be applied to all genus 1 or genus 2 curves
• Use “special” primes for efficiency
• Use prime order curves for optimal security



NISTp-256 versus Generic1271

NISTp-256 Generic1271

p 2256 − 2224 + 2192 + 296 − 1  
2127 − 1 (𝒂)

264(263 − 0) − 1 (𝒃)

Order Prime order Prime order

Scalar multiplication windowing windowing

Coordinate / curve
Jacobian coordinates with 𝑎 = −3

for short Weierstrass curves
[CL]

Security  
(𝜋𝑟)

(2 ∙ 2) ≈ 2127.8  
(𝜋𝑟)

(2 ∙ 2) ≈ 2126.8

We use arithmetic on imaginary quadratic curves using homogeneous projective coordinates.

We optimized the formulas from:

[CL] Costello, Lauter: Group law computations on Jacobians of hyperelliptic curves. SAC 2011



NISTp-256 versus Generic1271

NISTp-256 Generic1271

p 2256 − 2224 + 2192 + 296 − 1  
2127 − 1 (𝒂)

264(263 − 0) − 1 (𝒃)

Order Prime order Prime order

Scalar multiplication windowing windowing

Coordinate / curve
Jacobian coordinates with 𝑎 = −3

for short Weierstrass curves
[CL]

Security  
(𝜋𝑟)

(2 ∙ 2) ≈ 2127.8  
(𝜋𝑟)

(2 ∙ 2) ≈ 2126.8

Double 3M+5S 34M+6S

Addition 11M+5S 44M+4S

Mixed addition 7M+4S 37M+5S



NISTp-256 versus Generic1271

Genus 1: NISTp-256 658,000

Genus 2: generic1271 (a) 248,000

Genus 2: generic1271 (b) 295,000
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2127 − 1 (𝒂)
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Order Prime order Prime order
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for short Weierstrass curves
[CL]

Security  
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(2 ∙ 2) ≈ 2126.8
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• Gallant, Lambert, Vanstone [GLV-C01]

• Use non-trivial endomorphism

• Larger endomorphism ring means larger 
dimensional scalar decomposition

GLV

Scalar 
Decomposition

Scalar Decomposition over Prime Fields



• Gallant, Lambert, Vanstone [GLV-C01]

• Use non-trivial endomorphism

• Larger endomorphism ring means larger 
dimensional scalar decomposition

GLV

Scalar 
Decomposition

Genus 1 over 𝐅𝑝
256-bit primes 
Allows: 2-GLV

Genus 2 over 𝐅𝑝
128-bit primes 
Allows: 4-GLV

Scalar Decomposition over Prime Fields



Reducing the Number of Point Doublings

• d-dimensional scalar decomposition

• Decompose a scalar k into d “mini-scalars” 𝑘𝑖 ≈
𝑑
𝑘

• Perform a multi-scalar multiplication with these d smaller scalars



Assume we can multiply efficiently by (powers) of some integer λ ≈
𝑑
𝑘

𝑘 𝑃 =  

𝑖=0

𝑑−1

[𝑘𝑖λ
𝑖] 𝑃 = [𝑘0]𝑃 + [𝑘1] λ 𝑃 +⋯+ [𝑘𝑑−1] λ𝑑−1 𝑃
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Precompute: ∅, 𝑃, λ 𝑃, 𝑃 + λ 𝑃𝑘0 =

𝑘1 = Example: 𝑑 = 2

Approach #1
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• Perform a multi-scalar multiplication with these d smaller scalars

𝑘0,1𝑘0,0 𝑘0,3𝑘0,2

𝑘1,1𝑘1,0 𝑘1,3𝑘1,2

Precompute: ∅, 𝑃, λ 𝑃, 𝑃 + λ 𝑃𝑘0 =

𝑘1 = Example: 𝑑 = 2

Approach #1



𝑘0,0 𝑘0,2

𝑘1,0 𝑘1,2

Assume we can multiply efficiently by (powers) of some integer λ ≈
𝑑
𝑘

𝑘 𝑃 =  

𝑖=0

𝑑−1

[𝑘𝑖λ
𝑖] 𝑃 = [𝑘0]𝑃 + [𝑘1] λ 𝑃 +⋯+ [𝑘𝑑−1] λ𝑑−1 𝑃

Reducing the Number of Point Doublings

• d-dimensional scalar decomposition

• Decompose a scalar k into d “mini-scalars” 𝑘𝑖 ≈
𝑑
𝑘

• Perform a multi-scalar multiplication with these d smaller scalars

𝑘0,1 𝑘0,3

𝑘1,1 𝑘1,3

Precompute: ∅, 𝑃, λ 𝑃, 𝑃 + λ 𝑃𝑘0 =

𝑘1 = Example: 𝑑 = 2

Approach #1
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𝑘0,0 𝑘0,2

𝑘1,0 𝑘1,2

Assume we can multiply efficiently by (powers) of some integer λ ≈
𝑑
𝑘

𝑘 𝑃 =  

𝑖=0

𝑑−1

[𝑘𝑖λ
𝑖] 𝑃 = [𝑘0]𝑃 + [𝑘1] λ 𝑃 +⋯+ [𝑘𝑑−1] λ𝑑−1 𝑃

Reducing the Number of Point Doublings

• d-dimensional scalar decomposition

• Decompose a scalar k into d “mini-scalars” 𝑘𝑖 ≈
𝑑
𝑘

• Perform a multi-scalar multiplication with these d smaller scalars

Precompute: ∅, 𝑃, λ 𝑃, 𝑃 + λ 𝑃𝑘0 =

𝑘1 = Example: 𝑑 = 2

Approach #1



𝑘0,3

𝑘1,3

𝑘0,1

𝑘1,1

𝑘0,0 𝑘0,2

𝑘1,0 𝑘1,2

Assume we can multiply efficiently by (powers) of some integer λ ≈
𝑑
𝑘

𝑘 𝑃 =  

𝑖=0

𝑑−1

[𝑘𝑖λ
𝑖] 𝑃 = [𝑘0]𝑃 + [𝑘1] λ 𝑃 +⋯+ [𝑘𝑑−1] λ𝑑−1 𝑃

Reducing the Number of Point Doublings

• d-dimensional scalar decomposition

• Decompose a scalar k into d “mini-scalars” 𝑘𝑖 ≈
𝑑
𝑘

• Perform a multi-scalar multiplication with these d smaller scalars

Precompute: ∅, 𝑃, λ 𝑃, 𝑃 + λ 𝑃𝑘0 =

𝑘1 = Example: 𝑑 = 2

Approach #1



𝑘1,2

𝑘0,2 𝑘0,3

𝑘1,3

𝑘0,1

𝑘1,1

𝑘0,0

𝑘1,0

Assume we can multiply efficiently by (powers) of some integer λ ≈
𝑑
𝑘

𝑘 𝑃 =  

𝑖=0

𝑑−1

[𝑘𝑖λ
𝑖] 𝑃 = [𝑘0]𝑃 + [𝑘1] λ 𝑃 +⋯+ [𝑘𝑑−1] λ𝑑−1 𝑃

Reducing the Number of Point Doublings

• d-dimensional scalar decomposition

• Decompose a scalar k into d “mini-scalars” 𝑘𝑖 ≈
𝑑
𝑘

• Perform a multi-scalar multiplication with these d smaller scalars

Precompute:  
∅, 𝑃, 2𝑃, 3𝑃

∅, λ 𝑃, 2 λ 𝑃, 3 λ 𝑃
𝑘0 =

𝑘1 = Example: 𝑑 = 2

Approach #2



𝑘1,1

𝑘0,1 𝑘0,3

𝑘1,3

𝑘0,0 𝑘0,2

𝑘1,0 𝑘1,2

Assume we can multiply efficiently by (powers) of some integer λ ≈
𝑑
𝑘

𝑘 𝑃 =  

𝑖=0

𝑑−1

[𝑘𝑖λ
𝑖] 𝑃 = [𝑘0]𝑃 + [𝑘1] λ 𝑃 +⋯+ [𝑘𝑑−1] λ𝑑−1 𝑃

Reducing the Number of Point Doublings

• d-dimensional scalar decomposition

• Decompose a scalar k into d “mini-scalars” 𝑘𝑖 ≈
𝑑
𝑘

• Perform a multi-scalar multiplication with these d smaller scalars

Precompute:  
∅, 𝑃, 2𝑃, 3𝑃

∅, λ 𝑃, 2 λ 𝑃, 3 λ 𝑃
𝑘0 =

𝑘1 = Example: 𝑑 = 2

Approach #2



BuhlerKoblitzGLV – 4-dimensional GLV

Buhler-Koblitz curves

• 𝐶/𝐅𝑝 ∶ 𝑦2 = 𝑥5 + 𝑎

• 𝜓: Jac 𝐶 → Jac 𝐶 ,
𝜓 𝐷 = 𝜆 𝐷, for 0 < 𝜆 < 𝑟

• Decompose the scalar using [PJL]
Cost: 20 long integer muls

[PJL] Park, Jeong, Lim: Speeding up point multiplication on hyperelliptic curves with efficiently-computable endomorphisms. 
Eurocrypt 2002

Curve Choice

 𝑝127𝑚 = 263 − 27433 264 + 1
𝑎 = 17

𝜇 = −𝑝127𝑚
−1 mod 264 = −1

254-bit prime order

 
𝑝128𝑛 = 2128 − 24935

𝑎 = 37

256-bit prime order
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Curve Choice

 𝑝127𝑚 = 263 − 27433 264 + 1
𝑎 = 17

𝜇 = −𝑝127𝑚
−1 mod 264 = −1

254-bit prime order

 
𝑝128𝑛 = 2128 − 24935

𝑎 = 37

256-bit prime order

Offline
Pre-compute 24 points
11A+3𝝍

Online
64D+64A



BuhlerKoblitzGLV – 4-dimensional GLV

Curve Choice

 𝑝127𝑚 = 263 − 27433 264 + 1
𝑎 = 17

𝜇 = −𝑝127𝑚
−1 mod 264 = −1

254-bit prime order

 
𝑝128𝑛 = 2128 − 24935

𝑎 = 37

256-bit prime order

Offline
Pre-compute 24 points
11A+3𝝍+1I+(3+4)∙15M

Online
64D+64A 64D+64MA

Recall: A=44M+4S, MA=37M+5S

Additional cost: 1I+105M
Savings: 64(A-MA)=448M-64S

Speedup when: I < 279M

Montgomery: Speeding the Pollard and elliptic curve methods of factorization. Math. of Comp. 1987



GLV-j=0 versus BuhlerKoblitzGLV

GLV-j=0 BuhlerKoblitzGLV

p 2256 − 11733  
2128 − 24935 (𝒂)

263 − 27433 264 + 1 (𝒃)

Order Prime order Prime order

Scalar multiplication 2-dimensional GLV 4-dimensional GLV (approach #1)

Coordinate / curve
j-invariant 0 in Weierstrass form

𝑦2 = 𝑥3 + 2
Buhler-Koblitz curve

𝑦2 = 𝑥5 + 𝑎

Longa, Sica: Four-dimensional Gallant-Lambert-Vanstone scalar multiplication. Asiacrypt 2012



GLV-j=0 versus BuhlerKoblitzGLV

Longa, Sica: Four-dimensional Gallant-Lambert-Vanstone scalar multiplication. Asiacrypt 2012

GLV-j=0 BuhlerKoblitzGLV

p 2256 − 11733  
2128 − 24935 (𝒂)

263 − 27433 264 + 1 (𝒃)

Order Prime order Prime order

Scalar multiplication 2-dimensional GLV 4-dimensional GLV (approach #1)

Cost scalar multiplication 1I + 904M + 690S
20 integer muls + 

3𝝍+2I+5005M+748S

Security  
(𝜋𝑟)

(2 ∙ 6) ≈ 2127.0  
(𝜋𝑟)

(2 ∙ 10) ≈ 2125.7



GLV-j=0 versus BuhlerKoblitzGLV

Genus 1: GLV-j=0 145,000

Genus 2: BuhlerKoblitzGLV (a) 164,000

Genus 2: BuhlerKoblitzGLV (b) 156,000

Longa, Sica: Four-dimensional Gallant-Lambert-Vanstone scalar multiplication. Asiacrypt 2012

GLV-j=0 BuhlerKoblitzGLV

p 2256 − 11733  
2128 − 24935 (𝒂)

263 − 27433 264 + 1 (𝒃)

Order Prime order Prime order

Scalar multiplication 2-dimensional GLV 4-dimensional GLV (approach #1)

Cost scalar multiplication 1I + 904M + 690S
20 integer muls + 

3𝝍+2I+5005M+748S

Security  
(𝜋𝑟)

(2 ∙ 6) ≈ 2127.0  
(𝜋𝑟)

(2 ∙ 10) ≈ 2125.7



Battle #3



Battle #3

Use the Kummer surface from 
Gaudry, Schost: Genus 2 point counting over prime fields, J. Symb. Comput., 2012



[M] Montgomery: Speeding the Pollard and elliptic curve methods of factorization. Math. of Comp. 1987

Laddering algorithms

Elliptic curves

• [M] differential addition: compute 𝑃 + 𝑄 from 
𝑃, 𝑄, 𝑃 − 𝑄 without 𝑦-coord

• to compute 𝑘𝑃 keep 𝑚𝑃, 𝑚 + 1 𝑃 such 
that 𝑚 + 1 𝑃 −𝑚𝑃 = 𝑃

• Identify 𝑃 = (𝑃𝑥, 𝑃𝑦) and −𝑃 = (𝑃𝑥, −𝑃𝑦)

• Cost for double+differential add: 5M + 4S



[M] Montgomery: Speeding the Pollard and elliptic curve methods of factorization. Math. of Comp. 1987

[SS] Smart, Siksek: A fast Diffie-Hellman protocol in genus 2. J. of Cryptology. 1999

[G] Gaudry: Fast genus 2 arithmetic based on theta functions. J. of Math. Cryptology. 2007

[C] Cosset: Factorization with genus 2 curves. Math. of Comp. 2010

Laddering algorithms

Elliptic curves

• [M] differential addition: compute 𝑃 + 𝑄 from 
𝑃, 𝑄, 𝑃 − 𝑄 without 𝑦-coord

• to compute 𝑘𝑃 keep 𝑚𝑃, 𝑚 + 1 𝑃 such 
that 𝑚 + 1 𝑃 −𝑚𝑃 = 𝑃

• Identify 𝑃 = (𝑃𝑥, 𝑃𝑦) and −𝑃 = (𝑃𝑥, −𝑃𝑦)

• Cost for double+differential add: 5M + 4S

Genus 2 curves

Work on the Kummer surface associated to a 
Jacobian, rather than on the Jacobian itself

• [SS] genus 2 analogue Jac(𝐶) → 𝐾 is 2-to-1
• [G] faster Kummer surface
• [C] even faster “squares only” setting on the 

Kummer surface

• Cost for double+differential add: 16M + 9S



[M] Montgomery: Speeding the Pollard and elliptic curve methods of factorization. Math. of Comp. 1987

[SS] Smart, Siksek: A fast Diffie-Hellman protocol in genus 2. J. of Cryptology. 1999

[G] Gaudry: Fast genus 2 arithmetic based on theta functions. J. of Math. Cryptology. 2007

[C] Cosset: Factorization with genus 2 curves. Math. of Comp. 2010

Laddering algorithms

Elliptic curves

• [M] differential addition: compute 𝑃 + 𝑄 from 
𝑃, 𝑄, 𝑃 − 𝑄 without 𝑦-coord

• to compute 𝑘𝑃 keep 𝑚𝑃, 𝑚 + 1 𝑃 such 
that 𝑚 + 1 𝑃 −𝑚𝑃 = 𝑃

• Identify 𝑃 = (𝑃𝑥, 𝑃𝑦) and −𝑃 = (𝑃𝑥, −𝑃𝑦)

• Cost for double+differential add: 5M + 4S

Genus 2 curves

Work on the Kummer surface associated to a 
Jacobian, rather than on the Jacobian itself

• [SS] genus 2 analogue Jac(𝐶) → 𝐾 is 2-to-1
• [G] faster Kummer surface
• [C] even faster “squares only” setting on the 

Kummer surface

• Cost for double+differential add: 16M + 9S

 no additions: does allow scalar multiplication
 attractive setting for Diffie-Hellman like protocols
 Inherently runs in constant time



curve25519 Kummer1271

p 2255 − 19  
2127 − 1 (𝒂)

264(263 − 0) − 1 (𝒃)

Order 8 ∙ 253-bit prime / 4 ∙ 253-bit prime 16 ∙ 250-bit prime / 16 ∙ 251-bit prime

Scalar multiplication Montgomery ladder Kummer ladder

Coordinate / curve Montgomery curve
“Squares only” setting on a Kummer

surface

Double + dif. add 5M + 4S 16M + 9S

Security  
(𝜋𝑟)

(2 ∙ 2) ≈ 2125.8  
(𝜋𝑟)

(2 ∙ 2) ≈ 2124.8

curve25519 versus Kummer1271

Bernstein: Curve25519: New Diffie-Hellman speed records. PKC 2006
Bernstein, Duif, Lange, Schwabe: High-speed high-security signatures. CHES 2011



curve25519 Kummer1271

p 2255 − 19  
2127 − 1 (𝒂)

264(263 − 0) − 1 (𝒃)

Order 8 ∙ 253-bit prime / 4 ∙ 253-bit prime 16 ∙ 250-bit prime / 16 ∙ 251-bit prime

Scalar multiplication Montgomery ladder Kummer ladder

Double + dif. add 5M + 4S 16M + 9S

Security  
(𝜋𝑟)

(2 ∙ 2) ≈ 2125.8  
(𝜋𝑟)

(2 ∙ 2) ≈ 2124.8

curve25519 versus Kummer1271

Bernstein: Curve25519: New Diffie-Hellman speed records. PKC 2006
Bernstein, Duif, Lange, Schwabe: High-speed high-security signatures. CHES 2011

Genus 1: curve25519 182,000

Genus 2: Kummer1271 (a) 117,000

Genus 2: Kummer1271 (b) 139,000



Summary: genus 1 versus genus 2 over prime fields

Curve cycles CT protocols

Genus 1: NISTp-256 658,000 ? all

Genus 2: generic1271 (a) 248,000  all

Genus 1: GLV-j=0 145,000  all

Genus 2: BuhlerKoblitzGLV (b) 156,000  all

Genus 1: curve25519 182,000  some

Genus 2: Kummer1271 (a) 117,000  some

Generic
• Genus 2 > 2.5 faster than genus 1
• Mersenne prime 2127 − 1 very efficient in practice
• NISTp-256 arithmetic (2256 − 2224 + 2192 + 296 − 1) is relatively slow



Summary: genus 1 versus genus 2 over prime fields

Curve cycles CT protocols

Genus 1: NISTp-256 658,000 ? all

Genus 2: generic1271 (a) 248,000  all

Genus 1: GLV-j=0 145,000  all

Genus 2: BuhlerKoblitzGLV (b) 156,000  all

Genus 1: curve25519 182,000  some

Genus 2: Kummer1271 (a) 117,000  some

Endomorphism
• Genus 1 slightly faster than genus 2

(better genus 1 assembly implementation?)
• Montgomery friendly primes faster than primes of the form 2128 − 𝑐



Summary: genus 1 versus genus 2 over prime fields

Curve cycles CT protocols

Genus 1: NISTp-256 658,000 ? all

Genus 2: generic1271 (a) 248,000  all

Genus 1: GLV-j=0 145,000  all

Genus 2: BuhlerKoblitzGLV (b) 156,000  all

Genus 1: curve25519 182,000  some

Genus 2: Kummer1271 (a) 117,000  some

Ladder
• Genus 2 faster than genus 1
• Thanks to the Kummer surface by Gaudry & Schost

the Mersenne prime 2127 − 1 comes to the rescue again



Genus 2 has many advantages over elliptic curves

 Larger endomorphism ring
4-GLV possible in genus 2 versus 2-GLV in genus 1

 Can use the Mersenne prime 2127 − 1

 Laddering using the Kummer surface is very efficient

 This results are on a 64-bit platform, smaller primes have more 
potential on embedded devices

Conclusions

Final score
genus 1 versus genus 2

1 : 2



Related / ongoing work

 Genus 2 curves over 𝐅𝑝2 → 8-dimensional scalar decomposition
Allows for 64-bit primes p
Faster attacks, reduced security from 128-bit to ≈112-bit

 Practical analysis of security genus 1 versus genus 2 over 𝐅𝑝
What is the effect of using the automorphism group in practice?

Conclusions

Future work
• Unlikely to attract attention from industry if less than order of magnitude faster:

More work is needed!
• Using endomorphisms on the Kummer surface?
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Related / ongoing work

 Genus 2 curves over 𝐅𝑝2 → 8-dimensional scalar decomposition
Allows for 64-bit primes p
Faster attacks, reduced security from 128-bit to ≈112-bit

 Practical analysis of security genus 1 versus genus 2 over 𝐅𝑝
What is the effect of using the automorphism group in practice?

Difficult to see. Always in motion is the future.
YODA, Star Wars Episode V: The Empire Strikes Back

Conclusions

Future work
• Unlikely to attract attention from industry if less than order of magnitude faster:

More work is needed!
• Using endomorphisms on the Kummer surface?


