Elliptic Curve Cryptography in Practice

Joppe W. Bos

Joint work with
J. Alex Halderman, Nadia Heninger, Jonathan Moore,
Michael Naehrig, Eric Wustrow

Microsoft-

Research

Elliptic Curves — An Incomplete Historic Overview

Circle

300 BC: Euclid studies conics
262-190 BC: Apollonius of Perga, On conics, introducing the name "ellipse"
200-300: Diophantus of Alexandria, Arithmetica

a
Y(a—Y)=X3—X,y=Y—E,x=—X - y?2=x3—x+ (a/2)*

Ellipse
” & Parabola

'Hyperbola

See for more info: Adrian Rice, Ezra Brown: Why Ellipses Are Not Elliptic Curves Mathematics Magazine, 2012

Elliptic Curves — An Incomplete Historic Overview

300 BC: Euclid studies conics Clm‘e
262-190 BC: Apollonius of Perga, On conics, introducing the name "ellipse" !,E"‘pse
200-300: Diophantus of Alexandria, Arithmetica " 4\ Parabola
a &7/ \Hyperbola
Y(a—Y)=X3 — X,y = Y—E,x =—X - y?=x3—x+(a/2)* ‘fj
Congruent numbers A f ;

1225: Leonardo of Pisa (Fibonacci), Liber quadratorum (The Book
of Squares), study of congruent numbers
1621: Claude-Gaspar Bachet de Meziriac translates Diophantus
1670: Fermat's notes are published

(problems related to “elliptic curves”)
1730: Euler obtains a copy of Fermat's notes

Ellipse as infinite series
1669: Newton
1733: Euler
1742: Maclaurin

See for more info: Adrian Rice, Ezra Brown: Why Ellipses Are Not Elliptic Curves Mathematics Magazine, 2012

Elliptic Curves — An Incomplete Historic Overview

300 BC: Euclid studies conics Clrcl.e
262-190 BC: Apollonius of Perga, On conics, introducing the name "ellipse" , [Ellipse
200-300: Diophantus of Alexandria, Arithmetica Parabola
a &4 \n I
Y(a—Y)=X3—X,y=Y—E,x=—X N y2:x3_x+(a/2)2 Hyperbola
- -
Congruent numbers N A

1225: Leonardo of Pisa (Fibonacci), Liber quadratorum (The Book
of Squares), study of congruent numbers
1621: Claude-Gaspar Bachet de Meziriac translates Diophantus
1670: Fermat's notes are published

(problems related to “elliptic curves”)
1730: Euler obtains a copy of Fermat's notes
1825-1828: Legendre, elliptic integrals of the first, second and third kind: elliptic functions
1829: Abel and Jacobi groundbreaking work on elliptic functions
1847: Eisenstein, defines elliptic functions via infinite series and connect elliptic functions with elliptic curves
1863-1864: Clebsch, introduced the idea of using elliptic functions to parameterize cubic curves

Weierstrass, addition formula for elliptic functions to the addition of points on cubic curves

1901: Pointcaré, tied all these ideas together: elliptic curves field as we know it

Ellipse as infinite series
1669: Newton
1733: Euler
1742: Maclaurin

See for more info: Adrian Rice, Ezra Brown: Why Ellipses Are Not Elliptic Curves Mathematics Magazine, 2012

Elliptic Curves in Practice — An Incomplete Overview

1933: Hasse, estimate of the number of points on an elliptic curve
#E(F,) —(p+1)| < 2\p

1985: Schoof, deterministic polynomial time algorithm for counting points on elliptic curves
1985-1987: Lenstra Jr., elliptic curves can be used to factor integers
Miller & Koblitz, elliptic curves can be used to instantiate public-key cryptography

Elliptic Curves in Practice — An Incomplete Overview

1933: Hasse, estimate of the number of points on an elliptic curve
#E(F,) —(p+1)| < 2\p

1985: Schoof, deterministic polynomial time algorithm for counting points on elliptic curves
1985-1987: Lenstra Jr., elliptic curves can be used to factor integers
Miller & Koblitz, elliptic curves can be used to instantiate public-key cryptography

2000: Standard for ECC by Certicom

2006: NIST standard for ECDSA

2006: RFC 4492, ECC in Transport Layer Security (TLS)
2009: RFC 5656, ECC in Secure Shell (SSH)

2009: Nakamoto, Bitcoin

© OpenBSD

©bitcoin

Elliptic Curves in Practice — An Incomplete Overview

1933: Hasse, estimate of the number of points on an elliptic curve
#E(F,) —(p+1)| < 2\p

1985: Schoof, deterministic polynomial time algorithm for counting points on elliptic curves
1985-1987: Lenstra Jr., elliptic curves can be used to factor integers
Miller & Koblitz, elliptic curves can be used to instantiate public-key cryptography

2000: Standard for ECC by Certicom

2006: NIST standard for ECDSA

2006: RFC 4492, ECC in Transport Layer Security (TLS)
2009: RFC 5656, ECC in Secure Shell (SSH)

2009: Nakamoto, Bitcoin

© OpenBSD

©bitcoin

2013: Question #1

What is the current state of existing elliptic curve deployments in several different applications?

Elliptic Curves in Cryptography - |

E:y*=x34+ax+b
* Defined over F,,, where p > 3 primeand a, b € F,
* Assume #E(F,) = nis prime

* The standard specifies a generator G € E(F,)

“ NIST FIPS 186-4 | Certicom SEC1 |OpenSSL | a |

2192 P-192 secp192rl prime192v1 -3

IR — 296 +1 P-224 secp224rl secp224rl -3

2256 _ 224 4 7192 4 296 _ 1 P-256 secp256r1 prime256v1 -3
2384 _ 128 _ 996 4 232 _ 1 p-384 secp384rl secp384rl -3
2521 _1q P-521 secp521rl secp521rl -3

2256 _ 232 _ 977 secp256k1 secp256k1 0

Elliptic Curves in Cryptography - Il

Elliptic Curve Public Key Pairs
(d,Q) suchthatd € F7,E(F,) 2 Q = dG

Elliptic Curves in Cryptography - Il

4)

Elliptic Curve Key Exchange

Elliptic Curve Public Key Pairs

(d,Q) such thatd € F;,E(F,) 2 Q = dG (dg, Qa);gdb; Qb)ihen compute
P = daQb — db Qa)

Elliptic Curves in Cryptography - I

()

Elliptic Curve Key Exchange

Elliptic Curve Public Key Pairs

(d,Q) such thatd € F;,E(F,) 2 Q = dG (dg, Qa);gdb; Qb)ihen compute
P = daQb — db Qa)
- R

Elliptic Curve Digital Signatures (d, Q, m)
k € F, kG = (x,y), r =xmodn
s = k~1(Hash(m) + dr) mod n, Signature: (7, s)

Elliptic Curves in Cryptography - I

-

Elliptic Curve Public Key Pairs
(d,Q) suchthatd € F7,E(F,) 2 Q = dG

Elliptic Curve Key Exchange
(da; Qa); (dbi Qb) then CompUte

P=d,Q, =dp Qg

~

J

-

-

We requirer # 0 # s and k is a per-message secret since
if (r,s;) and (7, s,) thenk = (s, — s;) " 1(e; — ey) (mod n)

Elliptic Curve Digital Signatures (d, Q, m) b

k € F, kG = (x,y), r =xmodn
s = k~1(Hash(m) + dr) mod n, Signature: (7, s)

Elliptic Curves in Cryptography - I

-

Elliptic Curve Public Key Pairs
(d,Q) suchthatd € F7,E(F,) 2 Q = dG

Elliptic Curve Key Exchange

(dg, Q,), (dy, Q) then compute
P = daQb — db Qq

~

J

-

-

We requirer # 0 # s and k is a per-message secret since
if (r,s;) and (7, s,) thenk = (s, — s;) " 1(e; — ey) (mod n)

Elliptic Curve Digital Signatures (d, Q, m) b

k € F, kG = (x,y), r =xmodn
s = k~1(Hash(m) + dr) mod n, Signature: (7, s)

d = r71(ks — Hash(m)) (mod n)

Elliptic Curves in Cryptography - I

4)

Elliptic Curve Public Key Pairs
(d,Q) suchthatd € F7,E(F,) 2 Q = dG

Elliptic Curve Key Exchange

(dg, Q,), (dy, Q) then compute
P = daQb — db Qq

J

-

Elliptic Curve Digital Signatures (d, Q, m)

~

k € F, kG = (x,y), r =xmodn

s = k~1(Hash(m) + dr) mod n, Signature: (7, s)
We requirer # 0 # s and k is a per-message secret since
if (r,s;) and (7, s,) thenk = (s, — s;) " 1(e; — ey) (mod n)

-

d = r71(ks — Hash(m)) (mod n)

J

Y:E - E,(x,y) = ({x,—y)

N\

secp256kl: p = 1 (mod 6), there exists { € F,, such that (6=1

Fast scalar multiplication Y (P) = AP for an integer A° = 1(mod n)

Vanstone. Faster point multiplication
on elliptic curves with efficient
endomorphisms. CRYPTO 2001

J

R. P. Gallant, R. J. Lambert, and S. A.

Secure Shell (SSH) Protocol

“The Secure Shell Protocol (SSH) is a protocol for secure remote
login and other secure network services over an insecure
network.” [RFC4252]

© OpenBSD

Dec. 2009: RFC 5656 “algorithms based on Elliptic Curve Cryptography (ECC) for
use within the Secure Shell (SSH) transport protocol”

* the ephemeral ECDH key exchange method
» Server (host) authentication (ECDSA)
 Client authentication (ECDSA)

Secure Shell (SSH) - Statistics

“The Secure Shell Protocol (SSH) is a protocol for secure remote
login and other secure network services over an insecure
network.” [RFC4252]

v’ Scan the complete public IPv4 space (October 2013)
for SSH host keys (port 22)

Z. Durumeric, E. Wustrow, J. A. Halderman. ZMap: Fast Internet-wide scanning
and its security applications. In USENIX Security Symposium, 2013.

Secure Shell (SSH) - Statistics

“The Secure Shell Protocol (SSH) is a protocol for secure remote
login and other secure network services over an insecure
network.” [RFC4252]

v’ Scan the complete public IPv4 space (October 2013)
for SSH host keys (port 22)

Total cipher suites:

12 114 534

Z. Durumeric, E. Wustrow, J. A. Halderman. ZMap: Fast Internet-wide scanning
and its security applications. In USENIX Security Symposium, 2013.

Secure Shell (SSH) - Statistics

“The Secure Shell Protocol (SSH) is a protocol for secure remote
login and other secure network services over an insecure
network.” [RFC4252]

v’ Scan the complete public IPv4 space (October 2013)
for SSH host keys (port 22)

Total cipher suites:

ECDSA

12 114 534

1249 273 (10.3%)

Z. Durumeric, E. Wustrow, J. A. Halderman. ZMap: Fast Internet-wide scanning
and its security applications. In USENIX Security Symposium, 2013.

Secure Shell (SSH) - Statistics

“The Secure Shell Protocol (SSH) is a protocol for secure remote
login and other secure network services over an insecure

network.” [RFC4252]
1247 741 (99.9%)
supported
v’ Scan the complete public IPv4 space (October 2013) ecdsa-sha2-nistp256

for SSH host keys (port 22)

Total cipher suites: ECDSA 74 (0.006%)

supported

12 114 534 ecdsa-sha2-nistp384

1249 273 (10.3%)

1458 (0.1%)
supported
ecdsa-sha2-nistp521

Z. Durumeric, E. Wustrow, J. A. Halderman. ZMap: Fast Internet-wide scanning
and its security applications. In USENIX Security Symposium, 2013.

Secure Shell (SSH) - Statistics

“The Secure Shell Protocol (SSH) is a protocol for secure remote 1 24;;‘;3} 99.9%)
login and other secure network services over an insecure ecdsa-sha2-

nistp256

network.” [RFC4252]

ECDSA 74 (0.006%)

supported
1249273 ecdsa-sha2-

v’ Scan the complete public IPv4 space (October 2013) (10.3%)
3% nistp384

for SSH host keys (port 22)

1458 (0.1%)
supported

Total cipher suites: ecdsa-sha2-
12 114 534 nistp521

1672 458 (99.8%)
supported
ecdh-sha2-

ECDH nistp{256,384,521}

1674700

(13.8%) 25 (0.001%)
supported
ecdh-sha2-

. . . nistp{521,384,256}
Z. Durumeric, E. Wustrow, J. A. Halderman. ZMap: Fast Internet-wide scanning

and its security applications. In USENIX Security Symposium, 2013.

Secure Shell (SSH) - Statistics

“The Secure Shell Protocol (SSH) is a protocol for secure remote 1 24;;‘;3} 99.9%)
login and other secure network services over an insecure ecdsa-sha2-

nistp256

network.” [RFC4252]

74 (0.006%)
supported
ecdsa-sha2-
nistp384

ECDSA
1249 273
(10.3%)

v’ Scan the complete public IPv4 space (October 2013)
for SSH host keys (port 22)

1458 (0.1%)
supported

Total cipher suites: ecdsa-sha2-

nistp521

12 114 534

1 672 458 (99.8%)
_ o _ _ supported
v' Client offered only elliptic curve cipher suites ecdh-sha2-

= 458 689 servers responded with a DSA public key ECDH nistp{256,384,521}
= 29 648 responded with an RSA public key 1 i;‘lgz/oo
= 7935 responded with an empty host key (13.8%) 25 (0.001%)

supported
ecdh-sha2-
nistp{521,384,256}

Z. Durumeric, E. Wustrow, J. A. Halderman. ZMap: Fast Internet-wide scanning
and its security applications. In USENIX Security Symposium, 2013.

Transport Layer Security (TLS) - Statistics

2006: RFC 4492 “describes new key exchange algorithms
based on Elliptic Curve Cryptography (ECC) for the Transport
Layer Security (TLS) protocol. In particular, it specifies the use of
Elliptic Curve Diffie-Hellman (ECDH) key agreement in a TLS
handshake and the use of Elliptic Curve Digital Signature
Algorithm (ECDSA) as a new authentication mechanism.”

Transport Layer Security (TLS) - Statistics

2006: RFC 4492 “describes new key exchange algorithms
based on Elliptic Curve Cryptography (ECC) for the Transport
Layer Security (TLS) protocol. In particular, it specifies the use of
Elliptic Curve Diffie-Hellman (ECDH) key agreement in a TLS
handshake and the use of Elliptic Curve Digital Signature
Algorithm (ECDSA) as a new authentication mechanism.”

Crvoraeraony and SSIL/TLS Taakar
- o /

Elliptic curve Diffie-Hellman (ECDH) key exchange

* Long-term: key is reused for different key exchanges
 Ephemeral: key is regenerated for each key exchange

Elliptic curve digital signature (ECDSA)

TLS certificates contain a public key for authentication:
either ECDSA or RSA

Transport Layer Security (TLS) - Statistics

2006: RFC 4492 “describes new key exchange algorithms
based on Elliptic Curve Cryptography (ECC) for the Transport
Layer Security (TLS) protocol. In particular, it specifies the use of
Elliptic Curve Diffie-Hellman (ECDH) key agreement in a TLS
handshake and the use of Elliptic Curve Digital Signature
Algorithm (ECDSA) as a new authentication mechanism.”

Elliptic curve Diffie-Hellman (ECDH) key exchange

* Long-term: key is reused for different key exchanges
 Ephemeral: key is regenerated for each key exchange

—

Elliptic curve digital signature (ECDSA)

TLS certificates contain a public key for authentication:
either ECDSA or RSA

|

Cryotag)raiony and SSIL/TLS Taoldt

Example
TLS ECDHE_RSA WITH _AES 128 CBC_SHA

= ephemeral ECDH for a key exchange
= signed with an RSA key for identity verification
= AES-128 in CBC mode for encryption
= SHA-1 in an HMAC for message authentication

Transport Layer Security (TLS) - Statistics

October 2013: scan IPv4 address space (port 443)

= TLS server does not send its full list of cipher suites it supports
= Client sends its list, server picks a single cipher suite or closes connection

Transport Layer Security (TLS) - Statistics

ldea:
L = a set of 38 ECDH and ECDHE cipher suites (28 different curves)
repeat {

connect to server with L

if answer a # @ write down curve info

L = L\{a}

}until a ==

Transport Layer Security (TLS) - Statistics

ldea:
L = a set of 38 ECDH and ECDHE cipher suites (28 different curves)
repeat {

connect to server with L

if answer a # @ write down curve info

L = L\{a}

buntila ==

98% supported
nistp256

Total hosts: ECDH(E) 80% supported
30.2M 2.2M (7.2%) nistp384

17% supported
nistp521

Transport Layer Security (TLS) - Statistics

ldea:
L = a set of 38 ECDH and ECDHE cipher suites (28 different curves)
repeat {

connect to server with L

if answer a #= @ write down curve info .
L = [\{a} 98% supported

}untila == nistp256

Total hosts: ECDH(E) 80% supported
30.2M 2.2M (7.2%) nistp384

17% supported
nistp521

1.7 million hosts supported

> 1 curve

98.9% support a strictly increasing
curve-size preference.

354 767 hosts

“secp256rl, secp384rl, secp521rl1”
190 hosts

“secp521rl, secp384rl, secp256rl1"

Transport Layer Security (TLS) - Statistics

ldea:
L = a set of 38 ECDH and ECDHE cipher suites (28 different curves)

repeat { 1.7 million hosts supported

connect to server with L > 1 curve

if answer a # @ write down curve info 98.9% support a strictly increasing

_ 98% supported curve-size preference
L=1L P :
\a} nistp256

buntila ==
354 767 hosts

“secp256rl, secp384rl, secp521rl1”

Total hosts: ECDH(E) 80% supported }90 hosts)
30.2M 2.2M (7.2%) nistp384 secp521rl, secp384rl, secp256rl

17% supported
nistp521

Hosts prefer lower computation and bandwidth costs over increased security

Bitcoin - Statistics
Bitcoin is a distributed peer-to-peer digital currency which & @&
allows “online payments to be sent directly from one party to ' tc o ’ n
another without going through a financial institution"

S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2009.

Bitcoin - Statistics

Bitcoin is a distributed peer-to-peer digital currency which

allows “online payments to be sent directly from one party to

another without going through a financial institution"

S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2009.

Transaction

Owner 1's
Public Key

'y

Hash

J,

Owner O's
Signature

Transaction

Owner 2's
Public Key

1
L -~

Owner 1's
Private Key

’/e,«,-?jh

'y

Hash

'

Owner 1's
Signature

Transaction

Owner 3's
Public Key

1
L -

Owner 2's
Private Key

,_\W&r/’j’\

vy

Hash

'

Owner 2's
Signature

N
D

\

\ \

bitcoin

o

Owner 3's
Private Key

o

All transactions are public

From asymmetric crypto point of view
Bitcoin relies exclusively on ECDSA

Interesting choice:
not NIST P-256 but “special” sec256k1

Avoiding double spending etc. is out of
scope for this talk

~

/

Bitcoin - Statistics
Bitcoin is a distributed peer-to-peer digital currency which & @&
allows “online payments to be sent directly from one party to ' tc o ’ n
another without going through a financial institution"

S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2009.

Bitcoin address is not really an ECDSA key K

HASH160 = RIPEMD160(SHA256(K))
Bitcoin address = base58(0x00 || HASH160 || {

SHA256(SHA256(0x00|HASH160))
2224)

Bitcoin - Statistics
Bitcoin is a distributed peer-to-peer digital currency which & E
allows “online payments to be sent directly from one party to l tc o ’ n
another without going through a financial institution"

S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2009.

Bitcoin address is not really an ECDSA key K

HASH160 = RIPEMD160(SHA256(K))
Bitcoin address = base58(0x00 || HASH160 || {

SHA256(SHA256(0x00|HASH160))
2224)

(August 2013: Bitcoin block chain (#252 450) A

O Extracted 22M transactions (26GB plaintext file)
0 46M signatures
0 46M ECDSA keys
= 15.3M unique
= 6.6M compressed
= 8.7M uncompressed
" (136 points both))

Bitcoin - Statistics
Bitcoin is a distributed peer-to-peer digital currency which & E
allows “online payments to be sent directly from one party to l t C o ’ n
another without going through a financial institution"

S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2009.

Bitcoin address is not really an ECDSA key K

HASH160 = RIPEMD160(SHA256(K))
Bitcoin address = base58(0x00 || HASH160 || {

SHA256(SHA256(0x00|HASH160))
2224)

(August 2013: Bitcoin block chain (#252 450) A

0 46M signatures

0 46M ECDSA keys

= 15.3M unique

= 6.6M compressed

= 8.7M uncompressed

= (136 points both))

O Extracted 22M transactions (26GB plaintext file) D E— :
{October 2013: > 11.5 million bitcoins in circulation }

estimated value: > 2 billion USD

_

Public Key Cryptography in Practice

“two out of every one thousand RSA moduli “we are able to obtain the private keys for 0.50%
collected offer no security” of TLS hosts and 0.03% of SSH hosts”

Likely cause: limited entropy in (embedded) devices

Cryptographic Mistakes / Malfunctions in Practice

2008: Debian OpenSSL vulnerability
change in the code (2006) prevented any entropy from being
incorporated into the OpenSSL entropy pool

2012: RSA keys with common factors (previous slide)

2013: RSA keys obtained from Taiwan's national Citizen Digital int gt RondomNumber ()

Certificate database can be factored due to a malfunctioning return Y, 4/ chosen by fair dice rell.
hardware random number generator on cryptographic smart # quaranteed to be randem.
cards

D. J. Bernstein, Y.-A. Chang, C.-M. Cheng, L.-P. Chou, N. Heninger, T. Lange, and N.
van Someren: Factoring RSA keys from certified smart cards: Coppersmith in the
wild. In ASIACRYPT 2013.

(FUARAMTEED EMTROPY

Cryptographic Mistakes / Malfunctions in Practice

2008: Debian OpenSSL vulnerability
change in the code (2006) prevented any entropy from being
incorporated into the OpenSSL entropy pool

2012: RSA keys with common factors (previous slide)

2013: RSA keys obtained from Taiwan's national Citizen Digital
Certificate database can be factored due to a malfunctioning
hardware random number generator on cryptographic smart
cards

D. J. Bernstein, Y.-A. Chang, C.-M. Cheng, L.-P. Chou, N. Heninger, T. Lange, and N.

van Someren: Factoring RSA keys from certified smart cards: Coppersmith in the
wild. In ASIACRYPT 2013.

2010: Sony PlayStation 3 video game console

The PS3 used a constant value for ECDSA
signatures allowing hackers to compute the secret
code signing key

“Bushing", H. M. Cantero, S. Boessenkool, and S. Peter. PS3 epic fail, 27t
Chaos Communication Congress

int getRandombumber ()

relurn 4, A4 chosen by fair dice rell.
r guuruntu-:i fo be randam.

(FUARAMTEED EMTROPY

Cryptographic Mistakes / Malfunctions in Practice

2008: Debian OpenSSL vulnerability
change in the code (2006) prevented any entropy from being
incorporated into the OpenSSL entropy pool

2012: RSA keys with common factors (previous slide)

2013: RSA keys obtained from Taiwan's national Citizen Digital
Certificate database can be factored due to a malfunctioning
hardware random number generator on cryptographic smart
cards.

D. J. Bernstein, Y.-A. Chang, C.-M. Cheng, L.-P. Chou, N. Heninger, T. Lange, and N.

van Someren: Factoring RSA keys from certified smart cards: Coppersmith in the
wild. In ASIACRYPT 2013.

2013: Question #2

2010: Sony PlayStation 3 video game console

The PS3 used a constant value for ECDSA
signatures allowing hackers to compute the secret
code signing key

“Bushing", H. M. Cantero, S. Boessenkool, and S. Peter. PS3 epic fail, 27t
Chaos Communication Congress

int getRandombumber ()

relurn 4, A4 chosen by fair dice rell.
r guuruntu-:i fo be randam.

(FUARAMTEED EMTROPY

Can we find problems that might signal the presence of cryptographic vulnerabilities in ECC?

Cryptographic “Sanity” Checks

Key Generation

@ = dG poor randomness might result in repeated d

?

Insecure

Insecure

Secure

Cryptographic “Sanity” Checks

Key Generation

Repeated Per-Message Signature Secrets
Q = dG poor randomness might result in repeated d

Signature (13, s;) if we find (for i # j)

(ri 0, (1))

? Then we can compute the secret key

Insecure

Insecure

Secure

Cryptographic “Sanity” Checks
Key Generation

Repeated Per-Message Signature Secrets
Q = dG poor randomness might result in repeated d

Signature (13, s;) if we find (for i # j)

(s, (105))
Then we can compute the secret key

?
Insecure ?
Insecure Secure
Secure

Unexpected, lllegal, and Known Weak Values

Generate many scalars s and check if sG occurs in practice

for NISTp256 and secp256k1

= Negation: store x-coordinate only (we represent both +5sG)

» Small integers: 10° < s < 10°

= Bitcoin: Also iAG = Y(iG)

= Low Hamming weight: (*>°) = 256, (*>°) = 32640, (*3°) = 2763520

SSH/TLS - Cryptographic Sanity Checks

M TS

elliptic curve public keys 1.2 million 5.4 million

unique keys 0.8 million 5.2 million

SSH/TLS - Cryptographic Sanity Checks
. sH___|Ts

elliptic curve public keys 1.2 million 5.4 million

unique keys 0.8 million 5.2 million

/ SSH \

Most commonly repeated keys are from cloud hosting
providers

e shared SSH infrastructure that is accessible via
multiple IP address

* mistake during virtual machine deployment
Example:
July 2013: Digital Ocean, Avoid duplicate SSH host
keys
“The SSH host keys for some Ubuntu-based
systems could have been duplicated by
DigitalOcean's snapshot and creation process.”

5614 hosts served the public key from
Digital Ocean’s setup guide

/

SSH/TLS - Cryptographic Sanity Checks
s TS

elliptic curve public keys 1.2 million 5.4 million
unique keys 0.8 million 5.2 million
/ SSH \ 4 TLS)
Most commonly repeated keys are from cloud hosting Many duplicated keys are from small set of subnets, most
providers likely nothing wrong: single shared host, but
* shared SSH infrastructure that is accessible via ,
multiple IP address * Asingle key presented by 2000 hosts
* mistake during virtual machine deployment « 1800 of a particular brand of devices presented the
Example: . _ _ same NISTp256 key for ECDHE key exchange
July 2013: Digital Ocean, Avoid duplicate SSH host buying this device allows to decrypt traffic
keys _ J
“The SSH host keys for some Ubuntu-based
systems could have been duplicated by
DigitalOcean's snapshot and creation process.”
5614 hosts served the public key from No overlap between SSH and TLS keys
Digital Ocean’s setup guide

/

Bitcoin - Cryptographic Sanity Checks

* We collected 47 093 121 elliptic curve points from the signatures and verified that they are correct
i.e. the points are on the curve secp256k1

* We looked for duplicated nonces in the signatures

158 unique public keys had used the same signature nonce r value in more than one signature
— making it possible to compute these users' private keys

e Currently only 0.00031217 BTC = 0.1228 USD left on these accounts

Bitcoin - Cryptographic Sanity Checks

* We collected 47 093 121 elliptic curve points from the signatures and verified that they are correct
i.e. the points are on the curve secp256k1

* We looked for duplicated nonces in the signatures

158 unique public keys had used the same signature nonce r value in more than one signature
— making it possible to compute these users' private keys

e Currently only 0.00031217 BTC = 0.1228 USD left on these accounts

[Address: 1HKywxiL4JzigXrzLKhmB6a74mabkxbSDj)

March to October 2013: 59 BTC = 23000 USD has
\been stolen from 10 of these addresses

J

Bitcoin - Cryptographic Sanity Checks

* We collected 47 093 121 elliptic curve points from the signatures and verified that they are correct
i.e. the points are on the curve secp256k1

* We looked for duplicated nonces in the signatures

158 unique public keys had used the same signature nonce r value in more than one signature
— making it possible to compute these users' private keys

e Currently only 0.00031217 BTC = 0.1228 USD left on these accounts

(Address: 1HKywxiL4JzigXrzLKhmB6a74mabkxbSDj)

March to October 2013: 59 BTC = 23000 USD has
\been stolen from 10 of these addresses

J

Possible cause
Poor entropy? At least 3 keys are known to be generated by implementations with Javascript’s RNG problem

"
r e’

e a\\:‘\

’
r !

"\K

\;\\\;\\

.
\

A\
RN T

w" Tlﬁ
N
m\f”’

- a Di
» _I lt il - .
[AN AT a - - - .
r - - - -
P U T S NPT N o
- b |
-
i
~ \
5 (/1% f /t/%) N
rrrk \!“\r.af__hi . /.t,sb
. b { @ - .
* AT v o] o, ., \
. A RTINS,
> 4 LH - Q P P ®
3 g 3 | - >
vrrftcrqtin 4T e,
-
» - - - - v
> - '1114 - "
w L A - “
‘.t_._l.l‘\
4
o

L B =
" ¥ av
-« bk
G T et
s
p‘: -
- ¥ 4
F . .-: -4
L -
'rh‘ti. om d
- Pl
A ﬁ . Vo)
- - r L]
o L
, ! A ER P
- L [- 4
L " ; :
'Lh}'.' o1 fi
e
4 - ¥ .
) T oy '
Yo
L 1]
-

-

Unspendable Bitcoins

Recall:
o HASH160 = RIPEMD160(SHA256(K))

o Bitcoin address = base58(0x00 || HASH160 || {

SHA256(SHA256(0x00|HASH160))
2224)

g Idea A

Transfer bitcoins to an account for which (most
likely) no corresponding cryptographic key-pair exists

This results in deflation — increasing the value of -
\other bitcoins \, -

|

N
S
- -
. L N
4 b A ¥
y b v L '\.‘ A
| |
|
‘ |]
y

J

Unspendable Bitcoins

Recall:
o HASH160 = RIPEMD160(SHA256(K))

o Bitcoin address = base58(0x00 || HASH160 || {

SHA256(SHA256(0x00|HASH160))
2224)

g Idea A

Transfer bitcoins to an account for which (most _
likely) no corresponding cryptographic key-pair exists A 4B

This results in deflation — increasing the value of
\other bitcoins

J

Can we give a lower bound on these unspendable / burned bitcoins?

Unspendable Bitcoins

00 1111111111111111111131340LvT2 2.94896715
0000000000000000000000000000000000000001 11111111111111111111BZbvjr 0.01000000
0000000000000000000000000000000000000002 11111111111111111111HeBAG;j 0.00000001
0000000000000000000000000000000000000003 11111111111111111111QekFQw 0.00000001
0000000000000000000000000000000000000004 111711111111111111111UpYBrS 0.00000001
0000000000000000000000000000000000000005 111711111111111111111g4hiWR 0.00000001
0000000000000000000000000000000000000006 111711111111111111111jGyPMS8 0.00000001
0000000000000000000000000000000000000007 11171111111111111111109FmEC 0.00000001
0000000000000000000000000000000000000008 11111111111111111111ufYVpS 0.00000001
dddadaaaaaaaaaadadaaaaaaaaaaaaaaaaaaaaaaa 1GZQKjsC97yasxRj1wtYf5rC61AxpR1zmr 0.00012000
i 1QLbz7JHiBTspS962RLKV8GndWFwi5j6Qr 0.01000005

151 miscellaneous ASCII HASH160 values 1.32340175

Unspendable Bitcoins

00 1111111111111111111131340LvT2 2.94896715
0000000000000000000000000000000000000001 11111111111111111111BZbvjr 0.01000000
0000000000000000000000000000000000000002 11111111111111111111HeBAG;j 0.00000001
0000000000000000000000000000000000000003 11111111111111111111QekFQw 0.00000001
0000000000000000000000000000000000000004 111711111111111111111UpYBrS 0.00000001
0000000000000000000000000000000000000005 111711111111111111111g4hiWR 0.00000001
0000000000000000000000000000000000000006 111711111111111111111jGyPMS8 0.00000001
0000000000000000000000000000000000000007 11171111111111111111109FmEC 0.00000001
0000000000000000000000000000000000000008 11111111111111111111ufYVpS 0.00000001
dddadaaaaaaaaaadadaaaaaaaaaaaaaaaaaaaaaaa 1GZQKjsC97yasxRj1wtYf5rC61AxpR1zmr 0.00012000
i 1QLbz7JHiBTspS962RLKV8GndWFwi5j6Qr 0.01000005

151 miscellaneous ASCII HASH160 values 1.32340175

Like graffiti in the Bitcoin block chain

69206861766520696€76697369626c6520676621 i have invisible gf!
486170707920626461792c20416e647269617500 Happy bday, Andriau

2174692064656c69706d6f6320796c6c616e€6946 !ti delipmoc yllaniF

2d2d2d424547494e20545249425554452d2d2d20
232e2f4269744c656e2020202020202020202020
3a3a3a3a3a3a3a3a3a3a3a3a3a3a3a3a3a3a3a20
3a3a3a3a3a3a3al2e3a3a2e3a3aZ2e3a2e3a3a3a20

3a2e3a203a2e272027202720272027203a203a20 :.:
3a2e3a2727202c2c7869572c2234782c20272720 :.:
3a20202c6457575758585858692¢c3457582¢c2020 :

2720645757575858583722202020202060582c20
206c5757575858372020205f512020205f205820
3a575757585837202c785858372720225e5e5820
6c57575758372c205f2e2b2c2c205f2e2b2e2c20
3a575757372c2e20605e222d22202c5e2d272020
205757222c583a2020202020202020582c202020
2022375e5e586c2e2020202051285f7837272020
206c2028203a583a202020202020205f5f205120
20602e202220585820202c787857575757583720
202029582d20222220345822202e5f5f5f2e2020
2¢57205820202020203a586920205f2c2c512020
5757205820202020202034586979585757586420
2222202c2c202020202020345857575757585820
2c205237582c20202020202020225e3434375e20
522c20223452586b2c2020202020205f2c202c20
54576b20202234525858692c20202058272c7820
6c54576b2c202022345252523727203420584820
3a6¢c5757576b2c20205e22202020202060342020
3a3a5454585757692c5f2020586c6c203a2e2e20
3d2d3d2d3d2d3d2d3d2d3d2d3d2d3d2d3d2d3d20
4c454e20227261626269222053415353414d4120
2020202020313938302d32303131202020202020
4c656e20776173206f757220667269656e642e20
41206272696c6c69616e74206d696e642c202020
61206b696e64207361756c2c20616e6420202020
61206465766961757320736368656d65723b2020
68757362616e6420746f204d6572656469746820
6272617468657220746f2043616c76696e2c2020
736f6e20746f204a696d20616e64202020202020
44616e612048617274736861726e2c2020202020
636f61757468617220616e642020202020202020
636f666f756e64657220616e6420202020202020
53686d6f6120616e6420736f206d756368202020
6d6f72652e202057652064656469636174652020
746869732073696c6c79206861636b2074612020
4c656e2c2077686f20776F756c64206861766520
6661756€64206974206162736T6Cc7574656C7920
68696C6172696175732e20202020202020202020
2d2d44616e204b616d696e736b792c2020202020
54726176697320476f6164737065656420202020

---BEGIN TRIBUTE---
#./BitLen

'Y, xiw, "4x,
, AWWWXXXXT , 4WX ,

' dwwwxxx7" X,
Twwwxx7 . _ X
TWWWXX7 ,XXX7' "AAX
TWWwX7, _.+,, _.+.,
Www7z, . A= AT
ww', X: X,
"7AAXT . _(x7'

1 C :x: _
TLTXX, XXWwwwX 7
IX- """ o4Ax"
W X Xi o, ,_
ww X 4Xi yxwwXd
"y AXWWWWXX
, R7X, "A447A
R, "4RXk, .y
Twk "4RXXi, X', x
TTwk, "4RRR7' 4 XH
tTwwwk, A" "4
rTTXwWwi, . XTT

LEN "rabbi" SASSAMA
1980-2011

Len was our friend.
A brilliant mind,

a kind soul, and

a devious schemer;
husband to Meredith
brother to calvin,
son to Jim and

Dana Hartshorn,
coauthor and
cofounder and

shmoo and so much
more. We dedicate
this silly hack to
Len, who would have
found it absolutely
hilarious.

--Dan Kaminsky,
Travis Goodspeed

69206861766520696€76697369626c6520676621 i have invisible gf!
486170707920626461792c20416e647269617500 Happy bday, Andriau

2174692064656c69706d6f6320796c6c616e€6946 !ti delipmoc yllaniF

502e532e20204d792061706f6c61676965732c20
4269744361696€20706561706c652e2020486520
616c736120776f756c6420686176652020202020
4c4f4c2764206174204269744361696e€27732020
6e657720646570656e64656€63792075706F6e20
2020204153434949204245524e414e4b45202020

3a273a3a2e3a3a3a3a3a2e3a3a3a2e3a3al2e3a20 :
3a203a2e3a2027202720272027203a203a273a20 : :.:
3a2e3a20202020205f2e5f5f20202020272e3a20 :.:

3a2020205f2c5e22202020225e782c2020203a20 :

272020783727202020202020202060342c202020
2058583720202020202020202020202034585820
2058582020202020202020202020202020585820
20586c202c7878782c2020202c7878782c585820
282027205f2c2b6f2c207c202c612b2c22202020
2034202020222d5e27205820225e2d2722203720
206c2c20202020202820292920202020202c5820
203a58782c5f202c7858585878782c5f2c585820
20203458586958272d5f5f5f2d60585858582720
202020345858692c512020205f69585837272020
20202c2060345858585858585858585e205F2¢c20
202058782c202022225e5e5e5858372c78582020
572c22345757782c5f205f2c5878575758372720
5877692c202234575737222234575737272c5720
54585857772c205e3720586b203437202c574820
3a5458585857772c5f2022292c202c7757543a20
3a3a54545858575757206¢c586c205757543a2020
2d2d2d2d454e4420545249425554452d2d2d2d20

P.S. My apologies,
BitCoin people. He
also would have
LoL'd at BitCoin's
new dependency upon

XX XX
X1 ,xxx, y XXX , XX
" _,+0, | ,0+,"
4 "-AT X AT 7
1, (D)) » X
IXX,_y XXXXXX, _ y XX
AXXiX"' - - XXXX'
4XXi,_ _ixXX7'
,AXXXXXXXXXA
Xx, ""AAAXXT7 ,xX

W, "AWWX , _ _, XXWWX7"'
Xwi, "4ww7""4ww7',w
TXXWw, A7 Xk 47 ,wH
TTXXXWw,_ "), ,wWWT:
ITTXXWWW TXT WWT:
-—---END TRIBUTE----

Unspendable Bitcoins

» |f Pis the point at infinity, then it is represented by the single byte 00.
= An uncompressed point starts with the byte 04 followed by the 256-bit x- and 256-bit y-

coordinate of the point: 04 || x || y (= 2[log,(p)] + 1 bytes).
= Apointis compressed by first computing a parity bit b of the y-coordinate as b =
(y mod 2) + 2 and converting this to a byte value b || x (= [log,(p)] + 1 bytes).

Unspendable Bitcoins

» |f Pis the point at infinity, then it is represented by the single byte 00.
= An uncompressed point starts with the byte 04 followed by the 256-bit x- and 256-bit y-

coordinate of the point: 04 || x || y (= 2[log,(p)] + 1 bytes).
= Apointis compressed by first computing a parity bit b of the y-coordinate as b =
(y mod 2) + 2 and converting this to a byte value b || x (= [log,(p)] + 1 bytes).

FUbIic Valu.i Foint Bitcoin address Balance in BTC
key encoding on curve

00 V] V] 1FYMZEHNnszCHKTBdFZ2DLrUuk3dGwYKQxh 2.08000002
13VmALKHkCdSN1JULKkP6RqW3LcbpWvgryV 0.00010000

[x]

01280

0401260 V] 16QaFeudRUt8NYy2yzjm3BMvG4xBbAsSBFM 0.01000000

[x]

Unspendable Bitcoins

» |f Pis the point at infinity, then it is represented by the single byte 00.

= An uncompressed point starts with the byte 04 followed by the 256-bit x- and 256-bit y-
coordinate of the point: 04 || x Il y (= 2[log,(p)] + 1 bytes).

= Apointis compressed by first computing a parity bit b of the y-coordinate as b =
(y mod 2) + 2 and converting this to a byte value b || x (= [log,(p)] + 1 bytes).

Fublic valic Foint Bitcoin address Balance in BTC
key encodlng on curve

1HT7xU2Ngenf7D4yocz2SAcnNLW7rK8d4E 68.80080003

00 |z| |z| 1FYMZEHNnszCHKTBdFZ2DLrUuk3dGwYKQxh 2.08000002
01280 13VmALKHkCASN1JULKP6RgW3LcbpWvgryV 0.00010000
0401260 V] 16QaFeudRUt8NYy2yzjm3BMvG4xBbAsSBFM 0.01000000

Conclusions

v' ECC is well-deployed and used in practice

Statistics

Elliptic curves are used in practice

e >1outofl10inSSH

e >1outofl14inTLS

* 100% of all keys in Bitcoin

* However, hosts prefer lower computation
and bandwidth costs over increased security

Conclusions

v' ECC is well-deployed and used in practice

Statistics

Elliptic curves are used in practice

e >1outofl10inSSH

e >1outofl14inTLS

* 100% of all keys in Bitcoin

* However, hosts prefer lower computation
and bandwidth costs over increased security

v' ECC is not immune to insufficient entropy and software bugs

Cryptographic sanity check

* We found many instances of repeated public SSH and TLS keys

e Bitcoin: there are many signatures sharing ephemeral nonces
This lead to the theft of a at least 59 BTC

N Bitcoin: > 75 BTC = 14000 USD is unspendable

