
Joppe W. Bos

Elliptic Curve Cryptography in Practice

Joint work with
J. Alex Halderman, Nadia Heninger, Jonathan Moore,

Michael Naehrig, Eric Wustrow

300 BC: Euclid studies conics
262-190 BC: Apollonius of Perga, On conics, introducing the name "ellipse"
200-300: Diophantus of Alexandria, Arithmetica

𝑌 𝑎 − 𝑌 = 𝑋3 − 𝑋, 𝑦 = 𝑌 −
𝑎

2
, 𝑥 = −𝑋 → 𝑦2 = 𝑥3 − 𝑥 + (𝑎 2)2

Elliptic Curves – An Incomplete Historic Overview

See for more info: Adrian Rice, Ezra Brown: Why Ellipses Are Not Elliptic Curves Mathematics Magazine, 2012

300 BC: Euclid studies conics
262-190 BC: Apollonius of Perga, On conics, introducing the name "ellipse"
200-300: Diophantus of Alexandria, Arithmetica

𝑌 𝑎 − 𝑌 = 𝑋3 − 𝑋, 𝑦 = 𝑌 −
𝑎

2
, 𝑥 = −𝑋 → 𝑦2 = 𝑥3 − 𝑥 + (𝑎 2)2

Congruent numbers
1225: Leonardo of Pisa (Fibonacci), Liber quadratorum (The Book
of Squares), study of congruent numbers
1621: Claude-Gaspar Bachet de Meziriac translates Diophantus
1670: Fermat's notes are published

(problems related to “elliptic curves”)
1730: Euler obtains a copy of Fermat's notes

Elliptic Curves – An Incomplete Historic Overview

See for more info: Adrian Rice, Ezra Brown: Why Ellipses Are Not Elliptic Curves Mathematics Magazine, 2012

Ellipse as infinite series
1669: Newton
1733: Euler
1742: Maclaurin

1825-1828: Legendre, elliptic integrals of the first, second and third kind: elliptic functions
1829: Abel and Jacobi groundbreaking work on elliptic functions
1847: Eisenstein, defines elliptic functions via infinite series and connect elliptic functions with elliptic curves
1863-1864: Clebsch, introduced the idea of using elliptic functions to parameterize cubic curves

Weierstrass, addition formula for elliptic functions to the addition of points on cubic curves
1901: Pointcaré, tied all these ideas together: elliptic curves field as we know it

300 BC: Euclid studies conics
262-190 BC: Apollonius of Perga, On conics, introducing the name "ellipse"
200-300: Diophantus of Alexandria, Arithmetica

𝑌 𝑎 − 𝑌 = 𝑋3 − 𝑋, 𝑦 = 𝑌 −
𝑎

2
, 𝑥 = −𝑋 → 𝑦2 = 𝑥3 − 𝑥 + (𝑎 2)2

Congruent numbers
1225: Leonardo of Pisa (Fibonacci), Liber quadratorum (The Book
of Squares), study of congruent numbers
1621: Claude-Gaspar Bachet de Meziriac translates Diophantus
1670: Fermat's notes are published

(problems related to “elliptic curves”)
1730: Euler obtains a copy of Fermat's notes

Elliptic Curves – An Incomplete Historic Overview

See for more info: Adrian Rice, Ezra Brown: Why Ellipses Are Not Elliptic Curves Mathematics Magazine, 2012

Ellipse as infinite series
1669: Newton
1733: Euler
1742: Maclaurin

1933: Hasse, estimate of the number of points on an elliptic curve

|#𝐸 𝐅𝑝 − 𝑝 + 1 | ≤ 2 𝑝

Elliptic Curves in Practice – An Incomplete Overview

1985: Schoof, deterministic polynomial time algorithm for counting points on elliptic curves
1985-1987: Lenstra Jr., elliptic curves can be used to factor integers

Miller & Koblitz, elliptic curves can be used to instantiate public-key cryptography

1933: Hasse, estimate of the number of points on an elliptic curve

|#𝐸 𝐅𝑝 − 𝑝 + 1 | ≤ 2 𝑝

Elliptic Curves in Practice – An Incomplete Overview

1985: Schoof, deterministic polynomial time algorithm for counting points on elliptic curves
1985-1987: Lenstra Jr., elliptic curves can be used to factor integers

Miller & Koblitz, elliptic curves can be used to instantiate public-key cryptography

2000: Standard for ECC by Certicom
2006: NIST standard for ECDSA
2006: RFC 4492, ECC in Transport Layer Security (TLS)
2009: RFC 5656, ECC in Secure Shell (SSH)
2009: Nakamoto, Bitcoin © OpenBSD

2013: Question #1

What is the current state of existing elliptic curve deployments in several different applications?

1933: Hasse, estimate of the number of points on an elliptic curve

|#𝐸 𝐅𝑝 − 𝑝 + 1 | ≤ 2 𝑝

Elliptic Curves in Practice – An Incomplete Overview

1985: Schoof, deterministic polynomial time algorithm for counting points on elliptic curves
1985-1987: Lenstra Jr., elliptic curves can be used to factor integers

Miller & Koblitz, elliptic curves can be used to instantiate public-key cryptography

2000: Standard for ECC by Certicom
2006: NIST standard for ECDSA
2006: RFC 4492, ECC in Transport Layer Security (TLS)
2009: RFC 5656, ECC in Secure Shell (SSH)
2009: Nakamoto, Bitcoin © OpenBSD

𝐸 ∶ 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

• Defined over 𝐅𝑝, where 𝑝 > 3 prime and 𝑎, 𝑏 ∈ 𝐅𝑝

• Assume #𝐸(𝐅𝑝) = 𝑛 is prime

• The standard specifies a generator 𝐺 ∈ 𝐸(𝐅𝑝)

𝒑 NIST FIPS 186-4 Certicom SEC1 OpenSSL 𝒂

2192 − 264 − 1 P-192 secp192r1 prime192v1 −3

2224 − 296 + 1 P-224 secp224r1 secp224r1 −3

2256 − 2224 + 2192 + 296 − 1 P-256 secp256r1 prime256v1 −3

2384 − 2128 − 296 + 232 − 1 P-384 secp384r1 secp384r1 −3

2521 − 1 P-521 secp521r1 secp521r1 −3

2256 − 232 − 977 secp256k1 secp256k1 0

Elliptic Curves in Cryptography - I

Elliptic Curve Public Key Pairs
𝑑, 𝑄 such that 𝑑 ∈ 𝐅𝑛

×, 𝐸(𝐅𝑝) ∋ 𝑄 = 𝑑𝐺

Elliptic Curves in Cryptography - II

Elliptic Curve Public Key Pairs
𝑑, 𝑄 such that 𝑑 ∈ 𝐅𝑛

×, 𝐸(𝐅𝑝) ∋ 𝑄 = 𝑑𝐺

Elliptic Curve Key Exchange
𝑑𝑎, 𝑄𝑎 , 𝑑𝑏, 𝑄𝑏 then compute

𝑃 = 𝑑𝑎𝑄𝑏 = 𝑑𝑏 𝑄𝑎

Elliptic Curves in Cryptography - II

Elliptic Curve Public Key Pairs
𝑑, 𝑄 such that 𝑑 ∈ 𝐅𝑛

×, 𝐸(𝐅𝑝) ∋ 𝑄 = 𝑑𝐺

Elliptic Curve Key Exchange
𝑑𝑎, 𝑄𝑎 , 𝑑𝑏, 𝑄𝑏 then compute

𝑃 = 𝑑𝑎𝑄𝑏 = 𝑑𝑏 𝑄𝑎

Elliptic Curve Digital Signatures 𝑑, 𝑄,𝑚
𝑘 ∈ 𝐅𝑛

×, 𝑘𝐺 = 𝑥, 𝑦 , 𝑟 = 𝑥 mod 𝑛
s = 𝑘−1 Hash 𝑚 + 𝑑𝑟 mod 𝑛, Signature: (𝑟, 𝑠)

Elliptic Curves in Cryptography - II

Elliptic Curve Public Key Pairs
𝑑, 𝑄 such that 𝑑 ∈ 𝐅𝑛

×, 𝐸(𝐅𝑝) ∋ 𝑄 = 𝑑𝐺

Elliptic Curve Key Exchange
𝑑𝑎, 𝑄𝑎 , 𝑑𝑏, 𝑄𝑏 then compute

𝑃 = 𝑑𝑎𝑄𝑏 = 𝑑𝑏 𝑄𝑎

Elliptic Curve Digital Signatures 𝑑, 𝑄,𝑚
𝑘 ∈ 𝐅𝑛

×, 𝑘𝐺 = 𝑥, 𝑦 , 𝑟 = 𝑥 mod 𝑛
s = 𝑘−1 Hash 𝑚 + 𝑑𝑟 mod 𝑛, Signature: (𝑟, 𝑠)

We require 𝑟 ≠ 0 ≠ 𝑠 and 𝑘 is a per-message secret since
if (𝑟, 𝑠1) and (𝑟, 𝑠2) then 𝑘 ≡ (𝑠2 − 𝑠1)

−1 𝑒1 − 𝑒2 (mod 𝑛)

Elliptic Curves in Cryptography - II

Elliptic Curve Public Key Pairs
𝑑, 𝑄 such that 𝑑 ∈ 𝐅𝑛

×, 𝐸(𝐅𝑝) ∋ 𝑄 = 𝑑𝐺

Elliptic Curve Key Exchange
𝑑𝑎, 𝑄𝑎 , 𝑑𝑏, 𝑄𝑏 then compute

𝑃 = 𝑑𝑎𝑄𝑏 = 𝑑𝑏 𝑄𝑎

Elliptic Curve Digital Signatures 𝑑, 𝑄,𝑚
𝑘 ∈ 𝐅𝑛

×, 𝑘𝐺 = 𝑥, 𝑦 , 𝑟 = 𝑥 mod 𝑛
s = 𝑘−1 Hash 𝑚 + 𝑑𝑟 mod 𝑛, Signature: (𝑟, 𝑠)

We require 𝑟 ≠ 0 ≠ 𝑠 and 𝑘 is a per-message secret since
if (𝑟, 𝑠1) and (𝑟, 𝑠2) then 𝑘 ≡ (𝑠2 − 𝑠1)

−1 𝑒1 − 𝑒2 (mod 𝑛)

𝑑 ≡ 𝑟−1 𝑘𝑠 − Hash 𝑚 mod 𝑛

Elliptic Curves in Cryptography - II

secp256k1: 𝑝 ≡ 1 (mod 6), there exists 𝜁 ∈ 𝐅𝑝, such that 𝜁
6 = 1

𝜓 ∶ 𝐸 → 𝐸, (𝑥, 𝑦) → (𝜁𝑥,−𝑦)

Fast scalar multiplication 𝜓 𝑃 = 𝜆𝑃 for an integer 𝜆6 ≡ 1(mod n)

Elliptic Curve Public Key Pairs
𝑑, 𝑄 such that 𝑑 ∈ 𝐅𝑛

×, 𝐸(𝐅𝑝) ∋ 𝑄 = 𝑑𝐺

Elliptic Curve Key Exchange
𝑑𝑎, 𝑄𝑎 , 𝑑𝑏, 𝑄𝑏 then compute

𝑃 = 𝑑𝑎𝑄𝑏 = 𝑑𝑏 𝑄𝑎

Elliptic Curve Digital Signatures 𝑑, 𝑄,𝑚
𝑘 ∈ 𝐅𝑛

×, 𝑘𝐺 = 𝑥, 𝑦 , 𝑟 = 𝑥 mod 𝑛
s = 𝑘−1 Hash 𝑚 + 𝑑𝑟 mod 𝑛, Signature: (𝑟, 𝑠)

We require 𝑟 ≠ 0 ≠ 𝑠 and 𝑘 is a per-message secret since
if (𝑟, 𝑠1) and (𝑟, 𝑠2) then 𝑘 ≡ (𝑠2 − 𝑠1)

−1 𝑒1 − 𝑒2 (mod 𝑛)

𝑑 ≡ 𝑟−1 𝑘𝑠 − Hash 𝑚 mod 𝑛

Elliptic Curves in Cryptography - II

Secp256k1: A special curve
R. P. Gallant, R. J. Lambert, and S. A.

Vanstone. Faster point multiplication

on elliptic curves with efficient
endomorphisms. CRYPTO 2001

Dec. 2009: RFC 5656 “algorithms based on Elliptic Curve Cryptography (ECC) for
use within the Secure Shell (SSH) transport protocol”

• the ephemeral ECDH key exchange method

• Server (host) authentication (ECDSA)

• Client authentication (ECDSA)

“The Secure Shell Protocol (SSH) is a protocol for secure remote
login and other secure network services over an insecure
network.” [RFC4252]

Secure Shell (SSH) Protocol

© OpenBSD

“The Secure Shell Protocol (SSH) is a protocol for secure remote
login and other secure network services over an insecure
network.” [RFC4252]

Secure Shell (SSH) - Statistics

Z. Durumeric, E. Wustrow, J. A. Halderman. ZMap: Fast Internet-wide scanning
and its security applications. In USENIX Security Symposium, 2013.

 Scan the complete public IPv4 space (October 2013)
for SSH host keys (port 22)

“The Secure Shell Protocol (SSH) is a protocol for secure remote
login and other secure network services over an insecure
network.” [RFC4252]

Secure Shell (SSH) - Statistics

Total cipher suites:
12 114 534

Z. Durumeric, E. Wustrow, J. A. Halderman. ZMap: Fast Internet-wide scanning
and its security applications. In USENIX Security Symposium, 2013.

 Scan the complete public IPv4 space (October 2013)
for SSH host keys (port 22)

“The Secure Shell Protocol (SSH) is a protocol for secure remote
login and other secure network services over an insecure
network.” [RFC4252]

Secure Shell (SSH) - Statistics

Total cipher suites:
12 114 534

ECDSA
1 249 273 (10.3%)

Z. Durumeric, E. Wustrow, J. A. Halderman. ZMap: Fast Internet-wide scanning
and its security applications. In USENIX Security Symposium, 2013.

 Scan the complete public IPv4 space (October 2013)
for SSH host keys (port 22)

“The Secure Shell Protocol (SSH) is a protocol for secure remote
login and other secure network services over an insecure
network.” [RFC4252]

Secure Shell (SSH) - Statistics

Total cipher suites:
12 114 534

ECDSA
1 249 273 (10.3%)

1 247 741 (99.9%)
supported

ecdsa-sha2-nistp256

74 (0.006%)
supported

ecdsa-sha2-nistp384

1458 (0.1%)
supported

ecdsa-sha2-nistp521

Z. Durumeric, E. Wustrow, J. A. Halderman. ZMap: Fast Internet-wide scanning
and its security applications. In USENIX Security Symposium, 2013.

 Scan the complete public IPv4 space (October 2013)
for SSH host keys (port 22)

“The Secure Shell Protocol (SSH) is a protocol for secure remote
login and other secure network services over an insecure
network.” [RFC4252]

Secure Shell (SSH) - Statistics

Total cipher suites:
12 114 534

ECDSA
1 249 273

(10.3%)

1 247 741 (99.9%)
supported

ecdsa-sha2-
nistp256

74 (0.006%)
supported

ecdsa-sha2-
nistp384

1458 (0.1%)
supported

ecdsa-sha2-
nistp521

ECDH
1 674 700

(13.8%)

1 672 458 (99.8%)
supported
ecdh-sha2-

nistp{256,384,521}

25 (0.001%)
supported
ecdh-sha2-

nistp{521,384,256}
Z. Durumeric, E. Wustrow, J. A. Halderman. ZMap: Fast Internet-wide scanning
and its security applications. In USENIX Security Symposium, 2013.

 Scan the complete public IPv4 space (October 2013)
for SSH host keys (port 22)

“The Secure Shell Protocol (SSH) is a protocol for secure remote
login and other secure network services over an insecure
network.” [RFC4252]

Secure Shell (SSH) - Statistics

Total cipher suites:
12 114 534

ECDSA
1 249 273

(10.3%)

1 247 741 (99.9%)
supported

ecdsa-sha2-
nistp256

74 (0.006%)
supported

ecdsa-sha2-
nistp384

1458 (0.1%)
supported

ecdsa-sha2-
nistp521

ECDH
1 674 700

(13.8%)

1 672 458 (99.8%)
supported
ecdh-sha2-

nistp{256,384,521}

25 (0.001%)
supported
ecdh-sha2-

nistp{521,384,256}
Z. Durumeric, E. Wustrow, J. A. Halderman. ZMap: Fast Internet-wide scanning
and its security applications. In USENIX Security Symposium, 2013.

 Scan the complete public IPv4 space (October 2013)
for SSH host keys (port 22)

 Client offered only elliptic curve cipher suites
 458 689 servers responded with a DSA public key
 29 648 responded with an RSA public key
 7 935 responded with an empty host key

Transport Layer Security (TLS) - Statistics

2006: RFC 4492 “describes new key exchange algorithms
based on Elliptic Curve Cryptography (ECC) for the Transport
Layer Security (TLS) protocol. In particular, it specifies the use of
Elliptic Curve Diffie-Hellman (ECDH) key agreement in a TLS
handshake and the use of Elliptic Curve Digital Signature
Algorithm (ECDSA) as a new authentication mechanism.”

Transport Layer Security (TLS) - Statistics

2006: RFC 4492 “describes new key exchange algorithms
based on Elliptic Curve Cryptography (ECC) for the Transport
Layer Security (TLS) protocol. In particular, it specifies the use of
Elliptic Curve Diffie-Hellman (ECDH) key agreement in a TLS
handshake and the use of Elliptic Curve Digital Signature
Algorithm (ECDSA) as a new authentication mechanism.”

• Long-term: key is reused for different key exchanges
• Ephemeral: key is regenerated for each key exchange

TLS certificates contain a public key for authentication:

either ECDSA or RSA

Elliptic curve Diffie-Hellman (ECDH) key exchange

Elliptic curve digital signature (ECDSA)

Transport Layer Security (TLS) - Statistics

2006: RFC 4492 “describes new key exchange algorithms
based on Elliptic Curve Cryptography (ECC) for the Transport
Layer Security (TLS) protocol. In particular, it specifies the use of
Elliptic Curve Diffie-Hellman (ECDH) key agreement in a TLS
handshake and the use of Elliptic Curve Digital Signature
Algorithm (ECDSA) as a new authentication mechanism.”

• Long-term: key is reused for different key exchanges
• Ephemeral: key is regenerated for each key exchange

TLS certificates contain a public key for authentication:

either ECDSA or RSA

Example
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA

 ephemeral ECDH for a key exchange
 signed with an RSA key for identity verification
 AES-128 in CBC mode for encryption
 SHA-1 in an HMAC for message authentication

Elliptic curve Diffie-Hellman (ECDH) key exchange

Elliptic curve digital signature (ECDSA)

Transport Layer Security (TLS) - Statistics

October 2013: scan IPv4 address space (port 443)

 TLS server does not send its full list of cipher suites it supports
 Client sends its list, server picks a single cipher suite or closes connection

Transport Layer Security (TLS) - Statistics

Idea:
𝐿 = a set of 38 ECDH and ECDHE cipher suites (28 different curves)
repeat {

connect to server with 𝐿
if answer 𝑎 ≠ ∅ write down curve info
𝐿 = 𝐿\{𝑎}

} until 𝑎 == ∅

Transport Layer Security (TLS) - Statistics

Total hosts:
30.2M

ECDH(E)
2.2M (7.2%)

98% supported
nistp256

80% supported
nistp384

17% supported
nistp521

Idea:
𝐿 = a set of 38 ECDH and ECDHE cipher suites (28 different curves)
repeat {

connect to server with 𝐿
if answer 𝑎 ≠ ∅ write down curve info
𝐿 = 𝐿\{𝑎}

} until 𝑎 == ∅

Transport Layer Security (TLS) - Statistics

Total hosts:
30.2M

ECDH(E)
2.2M (7.2%)

98% supported
nistp256

80% supported
nistp384

17% supported
nistp521

Idea:
𝐿 = a set of 38 ECDH and ECDHE cipher suites (28 different curves)
repeat {

connect to server with 𝐿
if answer 𝑎 ≠ ∅ write down curve info
𝐿 = 𝐿\{𝑎}

} until 𝑎 == ∅

1.7 million hosts supported

> 1 curve

98.9% support a strictly increasing

curve-size preference.

354 767 hosts
“secp256r1, secp384r1, secp521r1”
190 hosts
“secp521r1, secp384r1, secp256r1"

Transport Layer Security (TLS) - Statistics

Total hosts:
30.2M

ECDH(E)
2.2M (7.2%)

98% supported
nistp256

80% supported
nistp384

17% supported
nistp521

Idea:
𝐿 = a set of 38 ECDH and ECDHE cipher suites (28 different curves)
repeat {

connect to server with 𝐿
if answer 𝑎 ≠ ∅ write down curve info
𝐿 = 𝐿\{𝑎}

} until 𝑎 == ∅

1.7 million hosts supported

> 1 curve

98.9% support a strictly increasing

curve-size preference.

354 767 hosts
“secp256r1, secp384r1, secp521r1”
190 hosts
“secp521r1, secp384r1, secp256r1"

Hosts prefer lower computation and bandwidth costs over increased security

Bitcoin - Statistics

Bitcoin is a distributed peer-to-peer digital currency which
allows “online payments to be sent directly from one party to
another without going through a financial institution"

S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2009.

Bitcoin - Statistics

Bitcoin is a distributed peer-to-peer digital currency which
allows “online payments to be sent directly from one party to
another without going through a financial institution"

S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2009.

 All transactions are public

 From asymmetric crypto point of view
Bitcoin relies exclusively on ECDSA

 Interesting choice:
not NIST P-256 but “special” sec256k1

 Avoiding double spending etc. is out of
scope for this talk

Bitcoin - Statistics

Bitcoin is a distributed peer-to-peer digital currency which
allows “online payments to be sent directly from one party to
another without going through a financial institution"

S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2009.

Bitcoin address is not really an ECDSA key K

HASH160 = RIPEMD160(SHA256(K))

Bitcoin address = base58(0x00 ∥ HASH160 ∥
SHA256 SHA256 0x00∥HASH160

2224
)

Bitcoin - Statistics

Bitcoin is a distributed peer-to-peer digital currency which
allows “online payments to be sent directly from one party to
another without going through a financial institution"

S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2009.

Bitcoin address is not really an ECDSA key K

HASH160 = RIPEMD160(SHA256(K))

Bitcoin address = base58(0x00 ∥ HASH160 ∥
SHA256 SHA256 0x00∥HASH160

2224
)

August 2013: Bitcoin block chain (#252 450)

 Extracted 22M transactions (26GB plaintext file)

 46M signatures

 46M ECDSA keys

 15.3M unique

 6.6M compressed

 8.7M uncompressed

 (136 points both)

Bitcoin - Statistics

Bitcoin is a distributed peer-to-peer digital currency which
allows “online payments to be sent directly from one party to
another without going through a financial institution"

S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2009.

Bitcoin address is not really an ECDSA key K

HASH160 = RIPEMD160(SHA256(K))

Bitcoin address = base58(0x00 ∥ HASH160 ∥
SHA256 SHA256 0x00∥HASH160

2224
)

October 2013: > 11.5 million bitcoins in circulation

estimated value: > 2 billion USD

August 2013: Bitcoin block chain (#252 450)

 Extracted 22M transactions (26GB plaintext file)

 46M signatures

 46M ECDSA keys

 15.3M unique

 6.6M compressed

 8.7M uncompressed

 (136 points both)

August 2013: Bitcoin block chain (#252 450)

 Extracted 22M transactions (26GB plaintext file)

 46M signatures

 46M ECDSA keys

 15.3M unique

 6.6M compressed

 8.7M uncompressed

 (136 points both)

Public Key Cryptography in Practice

A. K. Lenstra, J. P. Hughes, M.
Augier, J. W. Bos, T. Kleinjung,

C. Wachter: Public Keys, in
Crypto 2012

• Millions of keys from TLS
X.509 certs

(EFF SSL Observatory)
• Millions of PGP keys

N. Heninger, Z. Durumeric, E.
Wustrow, J. A. Halderman:

Mining Your Ps and Qs:
Detection of Widespread

Weak Keys in Network
Devices, in USENIX Security

Symposium 2012

• Millions of keys from TLS
X.509 certs

(scan IPv4 network)
• Millions of PGP keys

Likely cause: limited entropy in (embedded) devices

“we are able to obtain the private keys for 0.50%
of TLS hosts and 0.03% of SSH hosts”

“two out of every one thousand RSA moduli
collected offer no security”

2008: Debian OpenSSL vulnerability
change in the code (2006) prevented any entropy from being
incorporated into the OpenSSL entropy pool

2012: RSA keys with common factors (previous slide)

2013: RSA keys obtained from Taiwan's national Citizen Digital
Certificate database can be factored due to a malfunctioning
hardware random number generator on cryptographic smart
cards
D. J. Bernstein, Y.-A. Chang, C.-M. Cheng, L.-P. Chou, N. Heninger, T. Lange, and N.
van Someren: Factoring RSA keys from certified smart cards: Coppersmith in the
wild. In ASIACRYPT 2013.

Cryptographic Mistakes / Malfunctions in Practice

2008: Debian OpenSSL vulnerability
change in the code (2006) prevented any entropy from being
incorporated into the OpenSSL entropy pool

2012: RSA keys with common factors (previous slide)

2013: RSA keys obtained from Taiwan's national Citizen Digital
Certificate database can be factored due to a malfunctioning
hardware random number generator on cryptographic smart
cards
D. J. Bernstein, Y.-A. Chang, C.-M. Cheng, L.-P. Chou, N. Heninger, T. Lange, and N.
van Someren: Factoring RSA keys from certified smart cards: Coppersmith in the
wild. In ASIACRYPT 2013.

2010: Sony PlayStation 3 video game console

The PS3 used a constant value for ECDSA

signatures allowing hackers to compute the secret

code signing key
“Bushing", H. M. Cantero, S. Boessenkool, and S. Peter. PS3 epic fail, 27th

Chaos Communication Congress

Cryptographic Mistakes / Malfunctions in Practice

2008: Debian OpenSSL vulnerability
change in the code (2006) prevented any entropy from being
incorporated into the OpenSSL entropy pool

2012: RSA keys with common factors (previous slide)

2013: RSA keys obtained from Taiwan's national Citizen Digital
Certificate database can be factored due to a malfunctioning
hardware random number generator on cryptographic smart
cards.
D. J. Bernstein, Y.-A. Chang, C.-M. Cheng, L.-P. Chou, N. Heninger, T. Lange, and N.
van Someren: Factoring RSA keys from certified smart cards: Coppersmith in the
wild. In ASIACRYPT 2013.

2010: Sony PlayStation 3 video game console

The PS3 used a constant value for ECDSA

signatures allowing hackers to compute the secret

code signing key
“Bushing", H. M. Cantero, S. Boessenkool, and S. Peter. PS3 epic fail, 27th

Chaos Communication Congress

Cryptographic Mistakes / Malfunctions in Practice

2013: Question #2

Can we find problems that might signal the presence of cryptographic vulnerabilities in ECC?

Key Generation

𝑄 = 𝑑𝐺 poor randomness might result in repeated 𝑑

RSA 𝑝1𝑞1

𝑝1𝑞1 ?

𝑝1𝑞2 Insecure

𝑝2𝑞1 Insecure

𝑝2𝑞2 Secure

ECC 𝑑1

𝑑1 ?

𝑑2 Secure

Cryptographic “Sanity” Checks

Key Generation

𝑄 = 𝑑𝐺 poor randomness might result in repeated 𝑑

RSA 𝑝1𝑞1

𝑝1𝑞1 ?

𝑝1𝑞2 Insecure

𝑝2𝑞1 Insecure

𝑝2𝑞2 Secure

ECC 𝑑1

𝑑1 ?

𝑑2 Secure

Cryptographic “Sanity” Checks

Repeated Per-Message Signature Secrets

Signature (𝑟𝑖 , 𝑠𝑖) if we find (for 𝑖 ≠ 𝑗)

𝑟𝑖 , 𝑠𝑖 , 𝑟𝑖 , 𝑠𝑗
Then we can compute the secret key

Key Generation

𝑄 = 𝑑𝐺 poor randomness might result in repeated 𝑑

RSA 𝑝1𝑞1

𝑝1𝑞1 ?

𝑝1𝑞2 Insecure

𝑝2𝑞1 Insecure

𝑝2𝑞2 Secure

ECC 𝑑1

𝑑1 ?

𝑑2 Secure

Cryptographic “Sanity” Checks

Repeated Per-Message Signature Secrets

Signature (𝑟𝑖 , 𝑠𝑖) if we find (for 𝑖 ≠ 𝑗)

𝑟𝑖 , 𝑠𝑖 , 𝑟𝑖 , 𝑠𝑗
Then we can compute the secret key

Unexpected, Illegal, and Known Weak Values
Generate many scalars 𝑠 and check if 𝑠𝐺 occurs in practice
for NISTp256 and secp256k1
 Negation: store 𝑥-coordinate only (we represent both ±𝑠𝐺)
 Small integers: 100 ≤ 𝑠 ≤ 106

 Bitcoin: Also 𝑖𝜆𝐺 = 𝜓(𝑖𝐺)

 Low Hamming weight: 256
1

= 256, 256
2

= 32640, 256
3

= 2763520

SSH/TLS - Cryptographic Sanity Checks

SSH TLS

elliptic curve public keys 1.2 million 5.4 million

unique keys 0.8 million 5.2 million

SSH

Most commonly repeated keys are from cloud hosting
providers

• shared SSH infrastructure that is accessible via
multiple IP address

• mistake during virtual machine deployment
Example:
July 2013: Digital Ocean, Avoid duplicate SSH host
keys
“The SSH host keys for some Ubuntu-based
systems could have been duplicated by
DigitalOcean's snapshot and creation process.”

5614 hosts served the public key from
Digital Ocean’s setup guide

SSH/TLS - Cryptographic Sanity Checks

SSH TLS

elliptic curve public keys 1.2 million 5.4 million

unique keys 0.8 million 5.2 million

SSH

Most commonly repeated keys are from cloud hosting
providers

• shared SSH infrastructure that is accessible via
multiple IP address

• mistake during virtual machine deployment
Example:
July 2013: Digital Ocean, Avoid duplicate SSH host
keys
“The SSH host keys for some Ubuntu-based
systems could have been duplicated by
DigitalOcean's snapshot and creation process.”

5614 hosts served the public key from
Digital Ocean’s setup guide

SSH/TLS - Cryptographic Sanity Checks

SSH TLS

elliptic curve public keys 1.2 million 5.4 million

unique keys 0.8 million 5.2 million

TLS

Many duplicated keys are from small set of subnets, most
likely nothing wrong: single shared host, but

• A single key presented by 2000 hosts

• 1800 of a particular brand of devices presented the
same NISTp256 key for ECDHE key exchange
buying this device allows to decrypt traffic

No overlap between SSH and TLS keys

• We collected 47 093 121 elliptic curve points from the signatures and verified that they are correct
i.e. the points are on the curve secp256k1

• We looked for duplicated nonces in the signatures
158 unique public keys had used the same signature nonce r value in more than one signature
→ making it possible to compute these users' private keys

• Currently only 0.00031217 BTC = 0.1228 USD left on these accounts

Bitcoin - Cryptographic Sanity ChecksBitcoin - Cryptographic Sanity Checks

• We collected 47 093 121 elliptic curve points from the signatures and verified that they are correct
i.e. the points are on the curve secp256k1

• We looked for duplicated nonces in the signatures
158 unique public keys had used the same signature nonce r value in more than one signature
→ making it possible to compute these users' private keys

• Currently only 0.00031217 BTC = 0.1228 USD left on these accounts

Bitcoin - Cryptographic Sanity Checks

Address: 1HKywxiL4JziqXrzLKhmB6a74ma6kxbSDj

March to October 2013: 59 BTC ≈ 23000 USD has
been stolen from 10 of these addresses

• We collected 47 093 121 elliptic curve points from the signatures and verified that they are correct
i.e. the points are on the curve secp256k1

• We looked for duplicated nonces in the signatures
158 unique public keys had used the same signature nonce r value in more than one signature
→ making it possible to compute these users' private keys

• Currently only 0.00031217 BTC = 0.1228 USD left on these accounts

Bitcoin - Cryptographic Sanity Checks

Address: 1HKywxiL4JziqXrzLKhmB6a74ma6kxbSDj

March to October 2013: 59 BTC ≈ 23000 USD has
been stolen from 10 of these addresses

Possible cause
Poor entropy? At least 3 keys are known to be generated by implementations with Javascript’s RNG problem

Idea

Transfer bitcoins to an account for which (most
likely) no corresponding cryptographic key-pair exists

This results in deflation → increasing the value of
other bitcoins

Unspendable Bitcoins

Recall:
o HASH160 = RIPEMD160(SHA256(K))

o Bitcoin address = base58(0x00 ∥ HASH160 ∥
SHA256 SHA256 0x00∥HASH160

2224
)

Idea

Transfer bitcoins to an account for which (most
likely) no corresponding cryptographic key-pair exists

This results in deflation → increasing the value of
other bitcoins

Unspendable Bitcoins

Recall:
o HASH160 = RIPEMD160(SHA256(K))

o Bitcoin address = base58(0x00 ∥ HASH160 ∥
SHA256 SHA256 0x00∥HASH160

2224
)

Can we give a lower bound on these unspendable / burned bitcoins?

HASH160 Bitcoin address BTC

00 1111111111111111111114oLvT2 2.94896715

0000000000000000000000000000000000000001 11111111111111111111BZbvjr 0.01000000

0000000000000000000000000000000000000002 11111111111111111111HeBAGj 0.00000001

0000000000000000000000000000000000000003 11111111111111111111QekFQw 0.00000001

0000000000000000000000000000000000000004 11111111111111111111UpYBrS 0.00000001

0000000000000000000000000000000000000005 11111111111111111111g4hiWR 0.00000001

0000000000000000000000000000000000000006 11111111111111111111jGyPM8 0.00000001

0000000000000000000000000000000000000007 11111111111111111111o9FmEC 0.00000001

0000000000000000000000000000000000000008 11111111111111111111ufYVpS 0.00000001

aa 1GZQKjsC97yasxRj1wtYf5rC61AxpR1zmr 0.00012000

ff 1QLbz7JHiBTspS962RLKV8GndWFwi5j6Qr 0.01000005

151 miscellaneous ASCII HASH160 values 1.32340175

Unspendable Bitcoins

HASH160 Bitcoin address BTC

00 1111111111111111111114oLvT2 2.94896715

0000000000000000000000000000000000000001 11111111111111111111BZbvjr 0.01000000

0000000000000000000000000000000000000002 11111111111111111111HeBAGj 0.00000001

0000000000000000000000000000000000000003 11111111111111111111QekFQw 0.00000001

0000000000000000000000000000000000000004 11111111111111111111UpYBrS 0.00000001

0000000000000000000000000000000000000005 11111111111111111111g4hiWR 0.00000001

0000000000000000000000000000000000000006 11111111111111111111jGyPM8 0.00000001

0000000000000000000000000000000000000007 11111111111111111111o9FmEC 0.00000001

0000000000000000000000000000000000000008 11111111111111111111ufYVpS 0.00000001

aa 1GZQKjsC97yasxRj1wtYf5rC61AxpR1zmr 0.00012000

ff 1QLbz7JHiBTspS962RLKV8GndWFwi5j6Qr 0.01000005

151 miscellaneous ASCII HASH160 values 1.32340175

Unspendable Bitcoins

Like graffiti in the Bitcoin block chain

69206861766520696e76697369626c6520676621 i have invisible gf!

486170707920626461792c20416e647269617500 Happy bday, Andriau

2174692064656c69706d6f6320796c6c616e6946 !ti delipmoc yllaniF

502e532e20204d792061706f6c6f676965732c20 P.S. My apologies,
426974436f696e2070656f706c652e2020486520 BitCoin people. He
616c736f20776f756c6420686176652020202020 also would have
4c4f4c276420617420426974436f696e27732020 LOL'd at BitCoin's
6e657720646570656e64656e63792075706f6e20 new dependency upon
2020204153434949204245524e414e4b45202020 ASCII BERNANKE
3a273a3a2e3a3a3a3a3a2e3a3a3a2e3a3a2e3a20 :'::.:::::.:::.::.:
3a203a2e3a2027202720272027203a203a273a20 : :.: ' ' ' ' : :':
3a2e3a20202020205f2e5f5f20202020272e3a20 :.: _.__ '.:
3a2020205f2c5e22202020225e782c2020203a20 : _,^" "^x, :
272020783727202020202020202060342c202020 ' x7' `4,
2058583720202020202020202020202034585820 XX7 4XX
2058582020202020202020202020202020585820 XX XX
20586c202c7878782c2020202c7878782c585820 Xl ,xxx, ,xxx,XX
282027205f2c2b6f2c207c202c6f2b2c22202020 (' _,+o, | ,o+,"
2034202020222d5e27205820225e2d2722203720 4 "-^' X "^-'" 7
206c2c20202020202820292920202020202c5820 l, ()) ,X
203a58782c5f202c7858585878782c5f2c585820 :Xx,_ ,xXXXxx,_,XX
20203458586958272d5f5f5f2d60585858582720 4XXiX'-___-`XXXX'
202020345858692c5f2020205f69585837272020 4XXi,_ _iXX7'
20202c2060345858585858585858585e205f2c20 , `4XXXXXXXXX^ _,
202058782c202022225e5e5e5858372c78582020 Xx, ""^^^XX7,xX
572c22345757782c5f205f2c5878575758372720 W,"4WWx,_ _,XxWWX7'
5877692c202234575737222234575737272c5720 Xwi, "4WW7""4WW7',W
54585857772c205e3720586b203437202c574820 TXXWw, ^7 Xk 47 ,WH
3a5458585857772c5f2022292c202c7757543a20 :TXXXWw,_ "), ,wWT:
3a3a54545858575757206c586c205757543a2020 ::TTXXWWW lXl WWT:
2d2d2d2d454e4420545249425554452d2d2d2d20 ----END TRIBUTE----

2d2d2d424547494e20545249425554452d2d2d20 ---BEGIN TRIBUTE---
232e2f4269744c656e2020202020202020202020 #./BitLen
3a3a3a3a3a3a3a3a3a3a3a3a3a3a3a3a3a3a3a20 :::::::::::::::::::
3a3a3a3a3a3a3a2e3a3a2e3a3a2e3a2e3a3a3a20 :::::::.::.::.:.:::
3a2e3a203a2e272027202720272027203a203a20 :.: :.' ' ' ' ' : :
3a2e3a2727202c2c7869572c2234782c20272720 :.:'' ,,xiW,"4x, ''
3a20202c6457575758585858692c3457582c2020 : ,dWWWXXXXi,4WX,
2720645757575858583722202020202060582c20 ' dWWWXXX7" `X,
206c5757575858372020205f5f2020205f205820 lWWWXX7 __ _ X
3a575757585837202c785858372720225e5e5820 :WWWXX7 ,xXX7' "^^X
6c57575758372c205f2e2b2c2c205f2e2b2e2c20 lWWWX7, _.+,, _.+.,
3a575757372c2e20605e222d22202c5e2d272020 :WWW7,. `^"-" ,^-'
205757222c583a2020202020202020582c202020 WW",X: X,
2022375e5e586c2e202020205f285f7837272020 "7^^Xl. _(_x7'
206c2028203a583a202020202020205f5f205f20 l (:X: __ _
20602e202220585820202c787857575757583720 `. " XX ,xxWWWWX7
202029582d20222220345822202e5f5f5f2e2020)X- "" 4X" .___.
2c57205820202020203a586920205f2c2c5f2020 ,W X :Xi _,,_
5757205820202020202034586979585757586420 WW X 4XiyXWWXd
2222202c2c202020202020345857575757585820 "" ,, 4XWWWWXX
2c205237582c20202020202020225e3434375e20 , R7X, "^447^
522c20223452586b2c2020202020205f2c202c20 R, "4RXk, _, ,
54576b20202234525858692c20202058272c7820 TWk "4RXXi, X',x
6c54576b2c202022345252523727203420584820 lTWk, "4RRR7' 4 XH
3a6c5757576b2c20205e22202020202060342020 :lWWWk, ^" `4
3a3a5454585757692c5f2020586c6c203a2e2e20 ::TTXWWi,_ Xll :..
3d2d3d2d3d2d3d2d3d2d3d2d3d2d3d2d3d2d3d20 =-=-=-=-=-=-=-=-=-=
4c454e20227261626269222053415353414d4120 LEN "rabbi" SASSAMA
2020202020313938302d32303131202020202020 1980-2011
4c656e20776173206f757220667269656e642e20 Len was our friend.
41206272696c6c69616e74206d696e642c202020 A brilliant mind,
61206b696e6420736f756c2c20616e6420202020 a kind soul, and
6120646576696f757320736368656d65723b2020 a devious schemer;
68757362616e6420746f204d6572656469746820 husband to Meredith
62726f7468657220746f2043616c76696e2c2020 brother to Calvin,
736f6e20746f204a696d20616e64202020202020 son to Jim and
44616e61204861727473686f726e2c2020202020 Dana Hartshorn,
636f617574686f7220616e642020202020202020 coauthor and
636f666f756e64657220616e6420202020202020 cofounder and
53686d6f6f20616e6420736f206d756368202020 Shmoo and so much
6d6f72652e202057652064656469636174652020 more. We dedicate
746869732073696c6c79206861636b20746f2020 this silly hack to
4c656e2c2077686f20776f756c64206861766520 Len, who would have
666f756e64206974206162736f6c7574656c7920 found it absolutely
68696c6172696f75732e20202020202020202020 hilarious.
2d2d44616e204b616d696e736b792c2020202020 --Dan Kaminsky,
54726176697320476f6f64737065656420202020 Travis Goodspeed

69206861766520696e76697369626c6520676621 i have invisible gf!

486170707920626461792c20416e647269617500 Happy bday, Andriau

2174692064656c69706d6f6320796c6c616e6946 !ti delipmoc yllaniF

 If P is the point at infinity, then it is represented by the single byte 00.

 An uncompressed point starts with the byte 04 followed by the 256-bit 𝑥- and 256-bit y-

coordinate of the point: 04 ∥ 𝑥 ∥ 𝑦 (= 2 log2(𝑝) + 1 bytes).

 A point is compressed by first computing a parity bit 𝑏 of the 𝑦-coordinate as 𝑏 =
𝑦 mod 2 + 2 and converting this to a byte value b ∥ 𝑥 (= log2(𝑝) + 1 bytes).

Unspendable Bitcoins

Public
key

Valid
encoding

Point
on curve

Bitcoin address Balance in BTC

00   1FYMZEHnszCHKTBdFZ2DLrUuk3dGwYKQxh 2.08000002

0 ⋯
1280   13VmALKHkCdSN1JULkP6RqW3LcbpWvgryV 0.00010000

040 ⋯
1260   16QaFeudRUt8NYy2yzjm3BMvG4xBbAsBFM 0.01000000

 If P is the point at infinity, then it is represented by the single byte 00.

 An uncompressed point starts with the byte 04 followed by the 256-bit 𝑥- and 256-bit y-

coordinate of the point: 04 ∥ 𝑥 ∥ 𝑦 (= 2 log2(𝑝) + 1 bytes).

 A point is compressed by first computing a parity bit 𝑏 of the 𝑦-coordinate as 𝑏 =
𝑦 mod 2 + 2 and converting this to a byte value b ∥ 𝑥 (= log2(𝑝) + 1 bytes).

Unspendable Bitcoins

Public
key

Valid
encoding

Point
on curve

Bitcoin address Balance in BTC

∅   1HT7xU2Ngenf7D4yocz2SAcnNLW7rK8d4E 68.80080003

00   1FYMZEHnszCHKTBdFZ2DLrUuk3dGwYKQxh 2.08000002

0 ⋯
1280   13VmALKHkCdSN1JULkP6RqW3LcbpWvgryV 0.00010000

040 ⋯
1260   16QaFeudRUt8NYy2yzjm3BMvG4xBbAsBFM 0.01000000

 If P is the point at infinity, then it is represented by the single byte 00.

 An uncompressed point starts with the byte 04 followed by the 256-bit 𝑥- and 256-bit y-

coordinate of the point: 04 ∥ 𝑥 ∥ 𝑦 (= 2 log2(𝑝) + 1 bytes).

 A point is compressed by first computing a parity bit 𝑏 of the 𝑦-coordinate as 𝑏 =
𝑦 mod 2 + 2 and converting this to a byte value b ∥ 𝑥 (= log2(𝑝) + 1 bytes).

Unspendable Bitcoins

Conclusions

 ECC is well-deployed and used in practice

Elliptic curves are used in practice
• > 1 out of 10 in SSH
• > 1 out of 14 in TLS
• 100% of all keys in Bitcoin
• However, hosts prefer lower computation

and bandwidth costs over increased security

Statistics

• We found many instances of repeated public SSH and TLS keys
• Bitcoin: there are many signatures sharing ephemeral nonces

This lead to the theft of a at least 59 BTC
• Bitcoin: > 75 BTC ≈ 14000 USD is unspendable

Conclusions

 ECC is well-deployed and used in practice

 ECC is not immune to insufficient entropy and software bugs

Cryptographic sanity check

Elliptic curves are used in practice
• > 1 out of 10 in SSH
• > 1 out of 14 in TLS
• 100% of all keys in Bitcoin
• However, hosts prefer lower computation

and bandwidth costs over increased security

Statistics

