

Selecting Elliptic Curves

Joppe W. Bos

Joint work with:

*Craig Costello, Patrick Longa, Michael Naehrig
(Microsoft Research)*

SECURE CONNECTIONS
FOR A SMARTER WORLD

Elliptic Curves in Cryptography

1985-1987

- Koblitz and Miller: **elliptic curves in cryptography**

2000

- Certicom: First curve standard **Standards for Efficient Cryptography**
- NIST: FIPS 186-2 **Digital Signature Standard**

2005

- ECC Brainpool: **Standard Curves and Curve Generation**

2006

- D. J. Bernstein: **Curve25519** (128-bit security only)

2013

- New York Times:
"the National Security Agency had written the standard and could break it"

2014

- IETF asks for recommendations for new elliptic curves in TLS

Motivation

SECURE CONNECTIONS
FOR A SMARTER WORLD

Motivation

- ❖ Public distrust against everything touched by NIST
- ❖ Dan Bernstein & Tanja Lange: *Security dangers of the NIST curves*
- ❖ Bruce Schneier: *“I no longer trust the constants. I believe the NSA has manipulated them through their relationships with industry”*

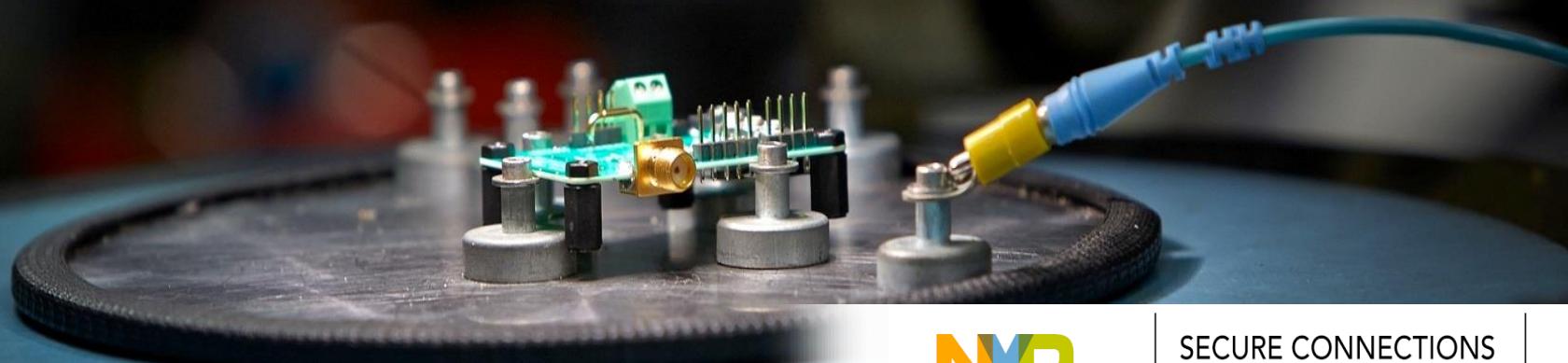
Motivation

- ❖ Public distrust against everything touched by NIST
- ❖ Dan Bernstein & Tanja Lange: *Security dangers of the NIST curves*
- ❖ Bruce Schneier: *“I no longer trust the constants. I believe the NSA has manipulated them through their relationships with industry”*

**NIST curves are old curves designed for 32-bit platforms.
Many new techniques since 2000:**

- 1) Faster modular arithmetic
- 2) Faster curve arithmetic (twisted Edwards)
- 3) Constant-time algorithms to protect against various types of side-channel attacks

Forms of Elliptic Curves



SECURE CONNECTIONS
FOR A SMARTER WORLD

Forms of Elliptic Curves

Weierstrass curves

$$y^2 = x^3 + ax + b$$

- Most general form,
all elliptic curves can be
written as a Weierstrass
curve

Forms of Elliptic Curves

Weierstrass curves

$$y^2 = x^3 + ax + b$$

- Most general form, all elliptic curves can be written as a Weierstrass curve

“One form to rule them all”

Convenience

One API to implement them all

Forms of Elliptic Curves

Weierstrass curves

$$y^2 = x^3 + ax + b$$

- Most general form, all elliptic curves can be written as a Weierstrass curve
- Prime order n possible

Forms of Elliptic Curves

Weierstrass curves

$$y^2 = x^3 + ax + b$$

- Most general form, all elliptic curves can be written as a Weierstrass curve
- Prime order n possible

- ✓ Full security
- ✓ No small subgroups
- Point validation
 - Check $Q \neq \mathcal{O}$
 - Check Q is on the curve
 - Check $nQ = \mathcal{O}$

This can be omitted!

Forms of Elliptic Curves

Weierstrass curves

$$y^2 = x^3 + ax + b$$

- Most general form, all elliptic curves can be written as a Weierstrass curve
- Prime order n possible
- Exceptions in group law

Forms of Elliptic Curves

Weierstrass curves

$$y^2 = x^3 + ax + b$$

- Most general form, all elliptic curves can be written as a Weierstrass curve
- Prime order n possible
- Exceptions in group law

$$P + Q, \quad P + \mathcal{O}$$

$$P + P, \quad P + (-P)$$

might require different formula / implementations

Complete formula exists:
very slow

Forms of Elliptic Curves

Weierstrass curves

$$y^2 = x^3 + ax + b$$

- Most general form, all elliptic curves can be written as a Weierstrass curve
- Prime order n possible
- Exceptions in group law
- NIST and Brainpool curves are prime-order Weierstrass curves with $a = -3$.

Forms of Elliptic Curves

Weierstrass curves

$$y^2 = x^3 + ax + b$$

- Most general form, all elliptic curves can be written as a Weierstrass curve
- Prime order n possible
- Exceptions in group law
- NIST and Brainpool curves are prime-order Weierstrass curves with $a = -3$.

- ✓ Full security
- ✓ No small subgroups
- ✓ $a = -3$ for efficiency
- ✓ How were these curves chosen?

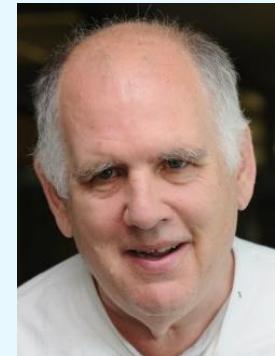
Forms of Elliptic Curves

Montgomery curves

$$By^2 = x^3 + Ax^2 + x$$

- Subset of all curves

P. L. Montgomery (1987). *Speeding the Pollard and Elliptic Curve Methods of Factorization*



Forms of Elliptic Curves

Montgomery curves

$$By^2 = x^3 + Ax^2 + x$$

- Subset of all curves

- Not all curves can be written as a Montgomery curve
- How many?
Roughly 40%

P. L. Montgomery (1987). *Speeding the Pollard and Elliptic Curve Methods of Factorization*

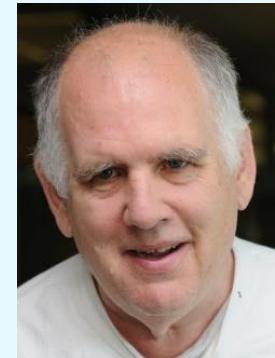
Forms of Elliptic Curves

Montgomery curves

$$By^2 = x^3 + Ax^2 + x$$

- Subset of all curves
- **Not** prime order

P. L. Montgomery (1987). *Speeding the Pollard and Elliptic Curve Methods of Factorization*



Forms of Elliptic Curves

Montgomery curves

$$By^2 = x^3 + Ax^2 + x$$

- Subset of all curves
- **Not** prime order

- The order of a Montgomery curve is divisible by at least 4
- Lose at least one bit of security
- Small subgroup attacks

P. L. Montgomery (1987). *Speeding the Pollard and Elliptic Curve Methods of Factorization*



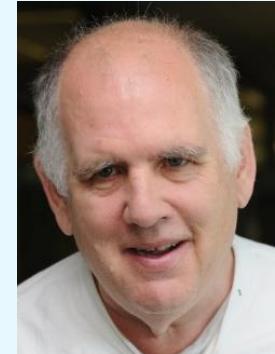
Forms of Elliptic Curves

Montgomery curves

$$By^2 = x^3 + Ax^2 + x$$

- Subset of all curves
- **Not** prime order
- Montgomery ladder

P. L. Montgomery (1987). *Speeding the Pollard and Elliptic Curve Methods of Factorization*



Forms of Elliptic Curves

Montgomery curves

$$By^2 = x^3 + Ax^2 + x$$

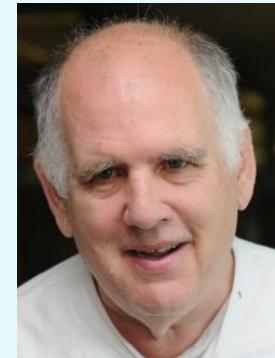
- Subset of all curves
- **Not** prime order
- Montgomery ladder

✓ Very efficient
differential addition

Given $P, Q, P - Q$ compute $P + Q$

✓ Inherently, constant-time

P. L. Montgomery (1987). *Speeding the Pollard and Elliptic Curve Methods of Factorization*



Forms of Elliptic Curves

Montgomery curves

$$By^2 = x^3 + Ax^2 + x$$

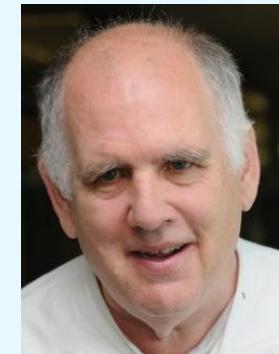
- Subset of all curves
- **Not** prime order
- Montgomery ladder

✓ Very efficient
differential addition

Given $P, Q, P - Q$ compute $P + Q$
✓ Inherently, constant-time

- **No point addition**
We can do ECDH,
no ECDSA signature
verification
- Single-coordinate system
Twist-security comes into
play

P. L. Montgomery (1987). *Speeding the Pollard and Elliptic Curve Methods of Factorization*



Forms of Elliptic Curves

Twisted Edwards curves

$$ax^2 + y^2 = 1 + dx^2y^2$$

H. M. Edwards (2007), *A normal form for elliptic curves*
D. J. Bernstein, T. Lange (2007), *Faster addition and doubling on elliptic curves*

Forms of Elliptic Curves

Twisted Edwards curves

$$ax^2 + y^2 = 1 + dx^2y^2$$

- Subset of all curves

- Not all curves can be written as a twisted Edwards curve
- How many?
Roughly 40%

H. M. Edwards (2007), *A normal form for elliptic curves*
D. J. Bernstein, T. Lange (2007), *Faster addition and doubling on elliptic curves*

Forms of Elliptic Curves

Twisted Edwards curves

$$ax^2 + y^2 = 1 + dx^2y^2$$

- Subset of all curves
- Not prime order

- The order of a twisted Edwards curve is divisible by at least 4
- Lose at least one bit of security
- Small subgroup attacks

H. M. Edwards (2007), *A normal form for elliptic curves*
D. J. Bernstein, T. Lange (2007), *Faster addition and doubling on elliptic curves*

Forms of Elliptic Curves

Twisted Edwards curves

$$ax^2 + y^2 = 1 + dx^2y^2$$

- Subset of all curves
- Not prime order
- Fastest arithmetic

H. M. Edwards (2007), *A normal form for elliptic curves*
D. J. Bernstein, T. Lange (2007), *Faster addition and doubling on elliptic curves*

Forms of Elliptic Curves

Twisted Edwards curves

$$ax^2 + y^2 = 1 + dx^2y^2$$

- Subset of all curves
- Not prime order
- Fastest arithmetic

- ✓ When $a = -1$, most efficient elliptic curve arithmetic known

H. Hisil, K. K. Wong, G. Carter, E. Dawson (2008),
Twisted Edwards Curves Revisited

H. M. Edwards (2007), *A normal form for elliptic curves*
D. J. Bernstein, T. Lange (2007), *Faster addition and doubling on elliptic curves*

Forms of Elliptic Curves

Twisted Edwards curves

$$ax^2 + y^2 = 1 + dx^2y^2$$

- Subset of all curves
- Not prime order
- Fastest arithmetic
- Some have complete group law

H. M. Edwards (2007), *A normal form for elliptic curves*
D. J. Bernstein, T. Lange (2007), *Faster addition and doubling on elliptic curves*

Forms of Elliptic Curves

Twisted Edwards curves

$$ax^2 + y^2 = 1 + dx^2y^2$$

- Subset of all curves
- Not prime order
- Fastest arithmetic
- Some have complete group law

Efficient complete group law:

$$P + Q, \quad P + \mathcal{O}$$

$$P + P, \quad P + (-P)$$

However, slower than dedicated arithmetic

H. M. Edwards (2007), *A normal form for elliptic curves*
D. J. Bernstein, T. Lange (2007), *Faster addition and doubling on elliptic curves*

Forms of Elliptic Curves

Weierstrass curves

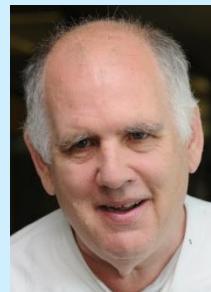
$$y^2 = x^3 + ax + b$$

- Most general form
- Prime order possible
- Exceptions in group law
- NIST and Brainpool curves

Montgomery curves

$$By^2 = x^3 + Ax^2 + x$$

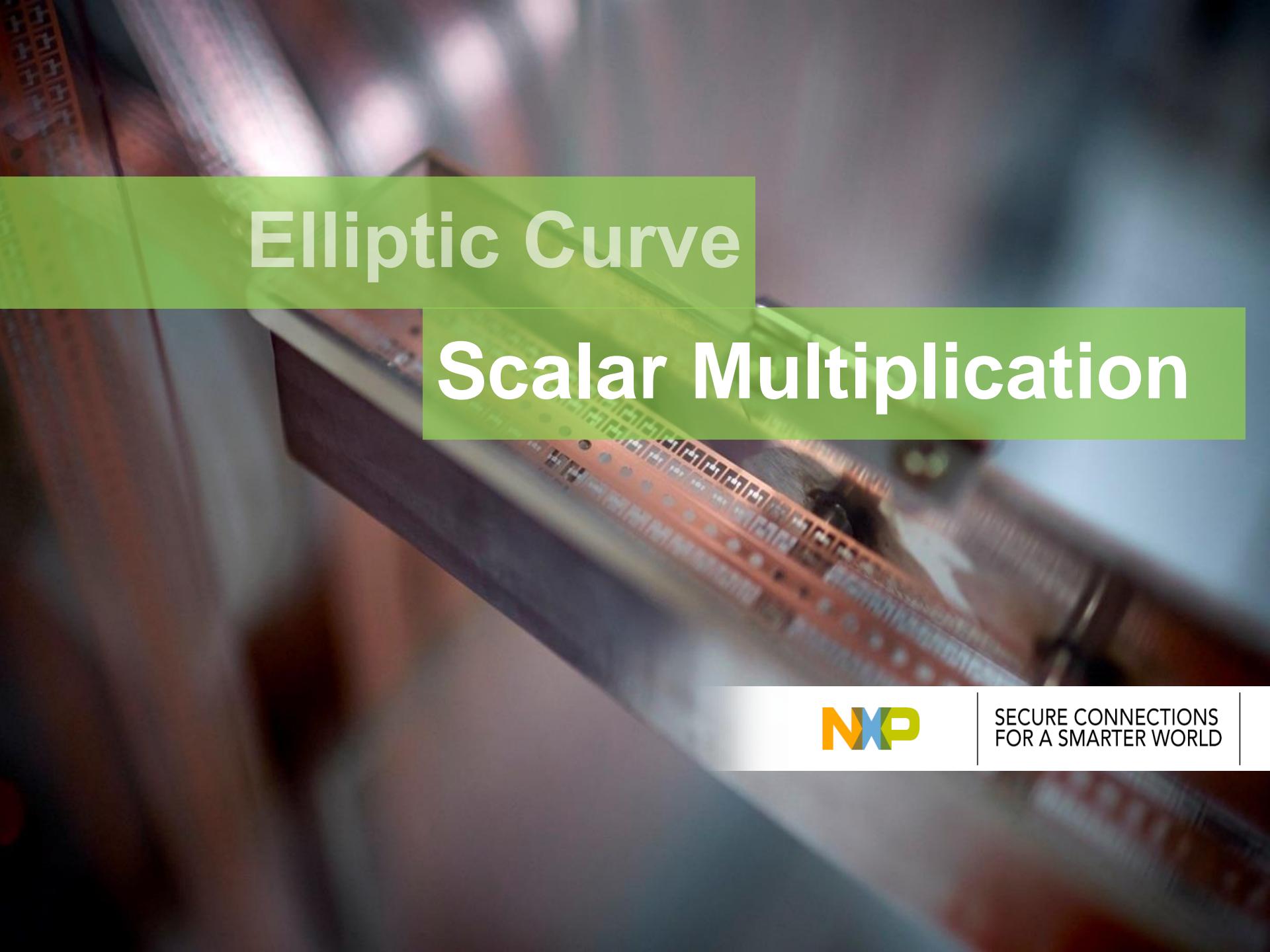
- Subset of curves
- Not prime order
- Montgomery ladder



Twisted Edwards curves

$$ax^2 + y^2 = 1 + dx^2y^2$$

- Subset of curves
- Not prime order
- Fastest arithmetic
- Some have complete group law



Elliptic Curve

Scalar Multiplication

SECURE CONNECTIONS
FOR A SMARTER WORLD

Elliptic Curve Scalar Multiplication

Core of all ECC based protocols

Given $P \in E(\mathbf{F}_p)$ of order n and $k \in \mathbf{Z}_{>0}$ compute kP

scalar multiplication	k	P
Variable-base	Random	Random
Fixed-base	Random	Fixed

Fixed-base: pre-computation can lead to performance speedups

Elliptic Curve Scalar Multiplication

Core of all ECC based protocols

Given $P \in E(\mathbf{F}_p)$ of order n and $k \in \mathbf{Z}_{>0}$ compute kP

scalar multiplication	k	P
Variable-base	Random	Random
Fixed-base	Random	Fixed

Fixed-base: pre-computation can lead to performance speedups

Most popular ECC protocols (used in e.g. TLS):

- **ECDSA signature generation** = fixed-base scalar multiplication
- **ECDSA signature verification** = double-scalar multiplication
 - compute $k_1P + k_2Q$ such that k_1 and k_2 random, P fixed and Q random
- **ECDHE** = variable + fixed base scalar multiplication
 - Ephemeral ECDH (temporary session keys)
 - Perfect forward secrecy
 - Compute $k_1(k_2P)$ such that k_1, k_2 random and P fixed

Example: Curve25519

Cryptographic curve providing 128-bit security

Montgomery Curve

$$y^2 = x^3 + 486662x^2 + x$$

Twisted Edwards curve

$$x^2 + y^2 = 1 + \frac{121665}{121666}x^2y^2$$

Fast ECDH →

Montgomery ladder

Fast ECDSA →

twisted Edwards arithmetic

D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, B.-Y. Yang (2011), *High-speed high-security signatures*
D. J. Bernstein (2006), *Curve25519: New Diffie-Hellman Speed Records*

Example: Curve25519

Cryptographic curve providing 128-bit security

Montgomery Curve

$$y^2 = x^3 + 486662x^2 + x$$

Twisted Edwards curve

$$x^2 + y^2 = 1 + \frac{121665}{121666} x^2 y^2$$

Fast ECDH →

Montgomery ladder

Fast ECDSA →

twisted Edwards arithmetic

Practical Issues

How to compute ECDHE?

- 1) Montgomery ladder, Montgomery ladder
 - (fixed-base) (variable-base)
- 2) Twisted Edwards, convert, Montgomery ladder
 - (fixed base) (variable-base)
- 3) Twisted Edwards, twisted Edwards
 - (fixed base) (variable-base)

D. J. Bernstein, N. Duff, T. Lange, P. Schwabe, B.-Y. Yang (2011), *High-speed high-security signatures*

D. J. Bernstein (2006), *Curve25519: New Diffie-Hellman Speed Records*

Example: Curve25519

Cryptographic curve providing 128-bit security

Montgomery Curve

$$y^2 = x^3 + 486662x^2 + x$$

Twisted Edwards curve

$$x^2 + y^2 = 1 + \frac{121665}{121666}x^2y^2$$

Fast ECDH →

Montgomery ladder

Fast ECDSA →

twisted Edwards arithmetic

Practical Issues

How to compute ECDHE?

- 1) **Montgomery ladder**, Montgomery ladder
(fixed-base) (variable-base)
- 2) Twisted Edwards, **convert**, Montgomery ladder
(fixed base) (variable-base)
- 3) Twisted Edwards, twisted Edwards
(fixed base) (variable-base)

How to transfer points?

Coordinate system:

- Montgomery
- Twisted Edwards
- Weierstrass

D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, B.-Y. Yang (2011), *High-speed high-security signatures*

D. J. Bernstein (2006), *Curve25519: New Diffie-Hellman Speed Records*

Selecting new Curves

SECURE CONNECTIONS
FOR A SMARTER WORLD

Deterministic Prime Selection

Minimize room for manipulation

Given an even security level s do

```
 $c = 0$ ; do  $p = 2^{2s} - c++$ ; while( $p \neq \text{prime}$  or  $p \not\equiv 3 \pmod{4}$ );
```

Deterministic Prime Selection

Minimize room for manipulation

Given an even security level s do

$c = 0$; do $p = 2^{2s} - c++$; while($p \neq \text{prime}$ or $p \not\equiv 3 \pmod{4}$);

Security level	Prime
128	$2^{256} - 189$
192	$2^{384} - 317$
256	$2^{512} - 569$

Deterministic Prime Selection

Minimize room for manipulation

Given an even security level s do

$c = 0$; do $p = 2^{2s} - c++$; while($p \neq \text{prime}$ or $p \not\equiv 3 \pmod{4}$);

Why special prime shape? Performance!

$$0 \leq x, y < 2^{2s} - c$$

$$x \cdot y \bmod 2^{2s} - c$$

$$\begin{aligned} x \cdot y &= z_h 2^{2s} + z_\ell \\ &\equiv z_h 2^{2s} + z_\ell - z_h (2^{2s} - c) \pmod{2^{2s} - c} \\ &= z_\ell + c \cdot z_h \end{aligned}$$

Security level	Prime
128	$2^{256} - 189$
192	$2^{384} - 317$
256	$2^{512} - 569$

Deterministic Prime Selection

Minimize room for manipulation

Given an even security level s do

$c = 0$; do $p = 2^{2s} - c++$; while($p \neq \text{prime}$ or $p \not\equiv 3 \pmod{4}$);

Why special prime shape? Performance!

$$0 \leq x, y < 2^{2s} - c$$

$$x \cdot y \pmod{2^{2s} - c}$$

$$x \cdot y = z_h 2^{2s} + z_\ell$$

$$\equiv z_h 2^{2s} + z_\ell - z_h (2^{2s} - c) \pmod{2^{2s} - c}$$

$$= z_\ell + c \cdot z_h$$

Security level	Prime
128	$2^{256} - 189$
192	$2^{384} - 317$
256	$2^{512} - 569$

Constant time modular inversion

$$a^{-1} \equiv a^{p-2} \pmod{p}$$

Constant time modular square root

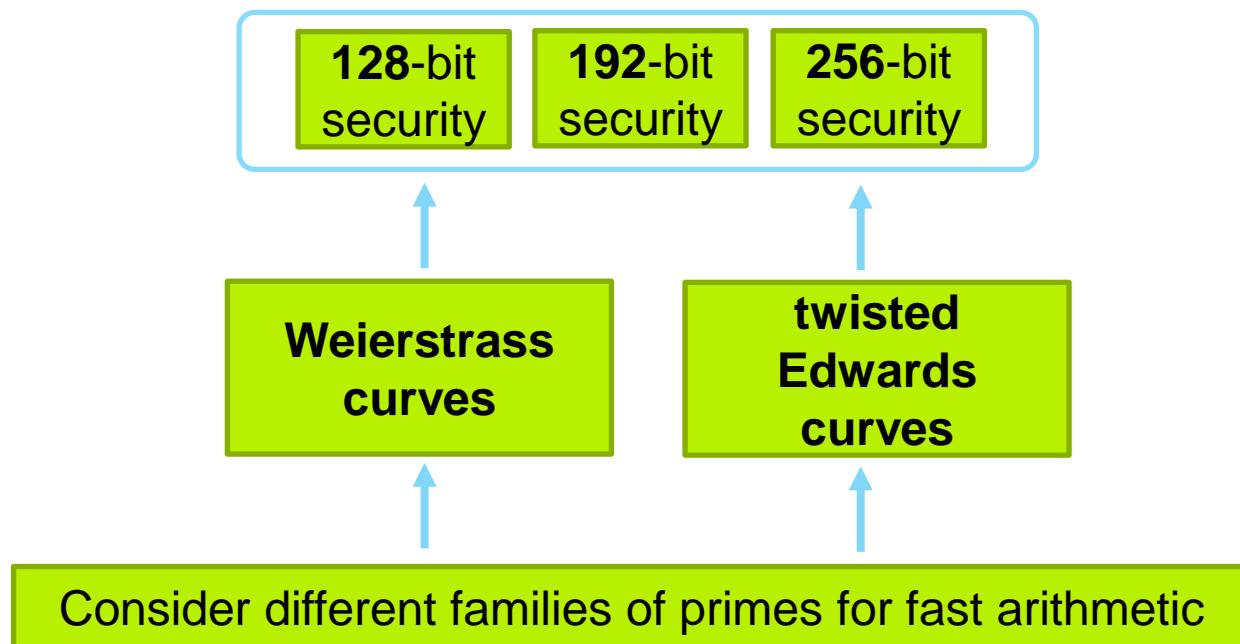
$$\sqrt{a} \equiv a^{(p+1)/4} \pmod{p}$$

Deterministic Curve Selection

	Curve	Quadratic twist	parameter	order
Weierstrass	$y^2 = x^3 - 3x + b$	$y^2 = x^3 - 3x - b$	$b \in \mathbf{F}_p \setminus \{\pm 2, 0\}$	prime
Twisted Edwards	$-x^2 + y^2 = 1 + dx^2y^2$	$-x^2 + y^2 = 1 + \frac{1}{d}x^2y^2$	$d \in \mathbf{F}_p \setminus \{0, 1\}$	$4 \times$ prime

Deterministic Curve Selection

	Curve	Quadratic twist	parameter	order
Weierstrass	$y^2 = x^3 - 3x + b$	$y^2 = x^3 - 3x - b$	$b \in \mathbf{F}_p \setminus \{\pm 2, 0\}$	prime
Twisted Edwards	$-x^2 + y^2 = 1 + dx^2y^2$	$-x^2 + y^2 = 1 + \frac{1}{d}x^2y^2$	$d \in \mathbf{F}_p \setminus \{0, 1\}$	$4 \times \text{prime}$



Computing scalar multiplications

We have curves defined over these primes.

How to compute ECSM?

- Dedicated formulas
- Complete formulas

What formula should be used in practice?

Complete

- Works for everything
- No exceptions possible
- Performance price

Dedicated

- Faster
- Analyze exceptions

Computing scalar multiplications

We have curves defined over these primes.

How to compute ECSM?

- Dedicated formulas
- Complete formulas

What formula should be used in practice?

Complete

- Works for everything
- No exceptions possible
- Performance price

Dedicated

- Faster
- Analyze exceptions

Weierstrass	Dedicated	Complete	New “Complete”
double	$4M + 4S$		
jac + aff \rightarrow jac	$7M + 4S$		$8M + 3S$
jac + jac \rightarrow jac	$11M + 5S$	$25M$	$12M + 4S$

Twisted Edwards	Dedicated	Complete
double	$4M + 3S$	
proj + aff \rightarrow proj	$7M$	$8M$
proj + proj \rightarrow proj	$8M$	$9M$

Algorithm 19 Complete (projective) addition using masking and Jacobian coordinates on prime-order Weierstrass curves E_b .

Input: $P, Q \in E_b(\mathbf{F}_p)$ such that $P = (X_1, Y_1, Z_1)$ and $Q = (X_2, Y_2, Z_2)$ are in Jacobian coordinates.

Output: $R = P + Q \in E_b(\mathbf{F}_p)$ in Jacobian coordinates. Computations marked with [*] are implemented in constant time using masking.

1. $T[0] = \mathcal{O}$ $\{T[i] = (\tilde{X}_i, \tilde{Y}_i, \tilde{Z}_i) \text{ for } 0 \leq i < 5\}$
2. $T[1] = Q$
3. $T[4] = P$
4. $t_2 = Z_1^2$
5. $t_3 = Z_1 \times t_2$
6. $t_1 = X_2 \times t_2$
7. $t_4 = Y_2 \times t_3$
8. $t_3 = Z_2^2$
9. $t_5 = Z_2 \times t_3$
10. $t_7 = X_1 \times t_3$
11. $t_8 = Y_1 \times t_5$
12. $t_1 = t_1 - t_7$
13. $t_4 = t_4 - t_8$
14. $\text{index} = 3$
15. **if** $t_1 = 0$ **then**
16. $\text{index} = 0$ $\{R = \mathcal{O}\}$
17. **if** $t_4 = 0$ **then** $\text{index} = 2$ $\{R = 2P\}$
18. **if** $P = \mathcal{O}$ **then** $\text{index} = 1$ $\{R = Q\}$
19. **if** $Q = \mathcal{O}$ **then** $\text{index} = 4$ $\{R = P\}$
20. $\text{mask} = 0$
21. **if** $\text{index} = 3$ **then** $\text{mask} = 1$
 {case $P + Q$, else any other case}
22. $t_3 = X_1 + t_2$
23. $t_6 = X_1 - t_2$
24. **if** $\text{mask} = 0$ **then** $t_2 = Y_1$ **else** $t_2 = t_1$
25. $t_5 = t_2^2$
26. **if** $\text{mask} = 0$ **then** $t_7 = X_1$ [*]
27. $t_1 = t_5 \times t_7$
28. $\tilde{Z}_2 = Z_1 \times t_2$
29. $\tilde{Z}_3 = Z_2 \times \tilde{Z}_2$
30. **if** $\text{mask} \neq 0$ **then** $t_3 = t_2$ [*]
31. **if** $\text{mask} \neq 0$ **then** $t_6 = t_5$ [*]
32. $t_2 = t_3 \times t_6$
33. $t_3 = t_2/2$
34. $t_3 = t_2 + t_3$
35. **if** $\text{mask} \neq 0$ **then** $t_3 = t_4$ [*]
36. $t_4 = t_3^2$
37. $t_4 = t_4 - t_1$
38. $\tilde{X}_2 = t_4 - t_1$
39. $\tilde{X}_3 = \tilde{X}_2 - t_2$
40. **if** $\text{mask} = 0$ **then** $t_4 = \tilde{X}_2$ **else** $t_4 = \tilde{X}_3$ [*]
41. $t_1 = t_1 - t_4$
42. $t_4 = t_3 \times t_1$
43. **if** $\text{mask} = 0$ **then** $t_1 = t_5$ **else** $t_1 = t_8$ [*]
44. **if** $\text{mask} = 0$ **then** $t_2 = t_5$ [*]
45. $t_3 = t_1 \times t_2$
46. $\tilde{Y}_2 = t_4 - t_3$
47. $\tilde{Y}_3 = \tilde{Y}_2$
48. $R = T[\text{index}]$ $(= (\tilde{X}_{\text{index}}, \tilde{Y}_{\text{index}}, \tilde{Z}_{\text{index}}))$ [*]
49. **return** R

Computing scalar multiplications

Use dedicated formulas when possible

$$P + P,$$

$$P + \mathcal{O}$$

Proof that no exceptions can occur

$$\mathcal{O} + P,$$

$$P + (-P)$$

Weierstrass

Variable base

- Given a window size w , $2 \leq w < 10$.
- Scalar recoding to odd non-zero digits $\{\pm 1, \pm 3, \dots, \pm(2^{w-1} - 1)\}$
- Compute ECSM with dedicated point additions
- Except the last addition which should be complete

Computing scalar multiplications

Use dedicated formulas when possible

$$P + P,$$

$$P + \mathcal{O}$$

Proof that no exceptions can occur

$$\mathcal{O} + P,$$

$$P + (-P)$$

Twisted Edwards

Variable base

- Given a window size w , $2 \leq w < 10$.
- Clear torsion $Q = 4P$
- Validation: Check $Q \neq \mathcal{O}$
- Scalar recoding to odd non-zero digits $\{\pm 1, \pm 3, \dots, \pm(2^{w-1} - 1)\}$
- Compute ECSM with dedicated point additions
- Except the last addition which should be complete

Computing scalar multiplications

Use dedicated formulas when possible

$$P + P,$$

$$P + \mathcal{O}$$

Proof that no exceptions can occur

$$\mathcal{O} + P,$$

$$P + (-P)$$

Weierstrass / **Twisted Edwards**

Fixed base

Offline

- **Clear torsion** $Q = 4P$
- **Validation: Check** $Q \neq \mathcal{O}$
- Precompute $v > 0$ different tables of 2^{w-1} points each

Online

- Compute ECSM with complete point additions only

Computing scalar multiplications

Use dedicated formulas when possible

$$P + P,$$

$$P + \mathcal{O}$$

Proof that no exceptions can occur

$$\mathcal{O} + P,$$

$$P + (-P)$$

Weierstrass / Twisted Edwards

Fixed base

Offline

- Clear torsion $Q = 4P$
- Validation: Check $Q \neq \mathcal{O}$
- Precompute $v > 0$ different tables of 2^{w-1} points each

Online

- Compute ECSM with complete point additions only

Are other fixed base implementations correct for all inputs?

Our Implementation Choices

Performance

- ✓ Use dedicated formulas when possible

Security

- ✓ Use only algorithms which can be implemented in constant-time (branch-free)

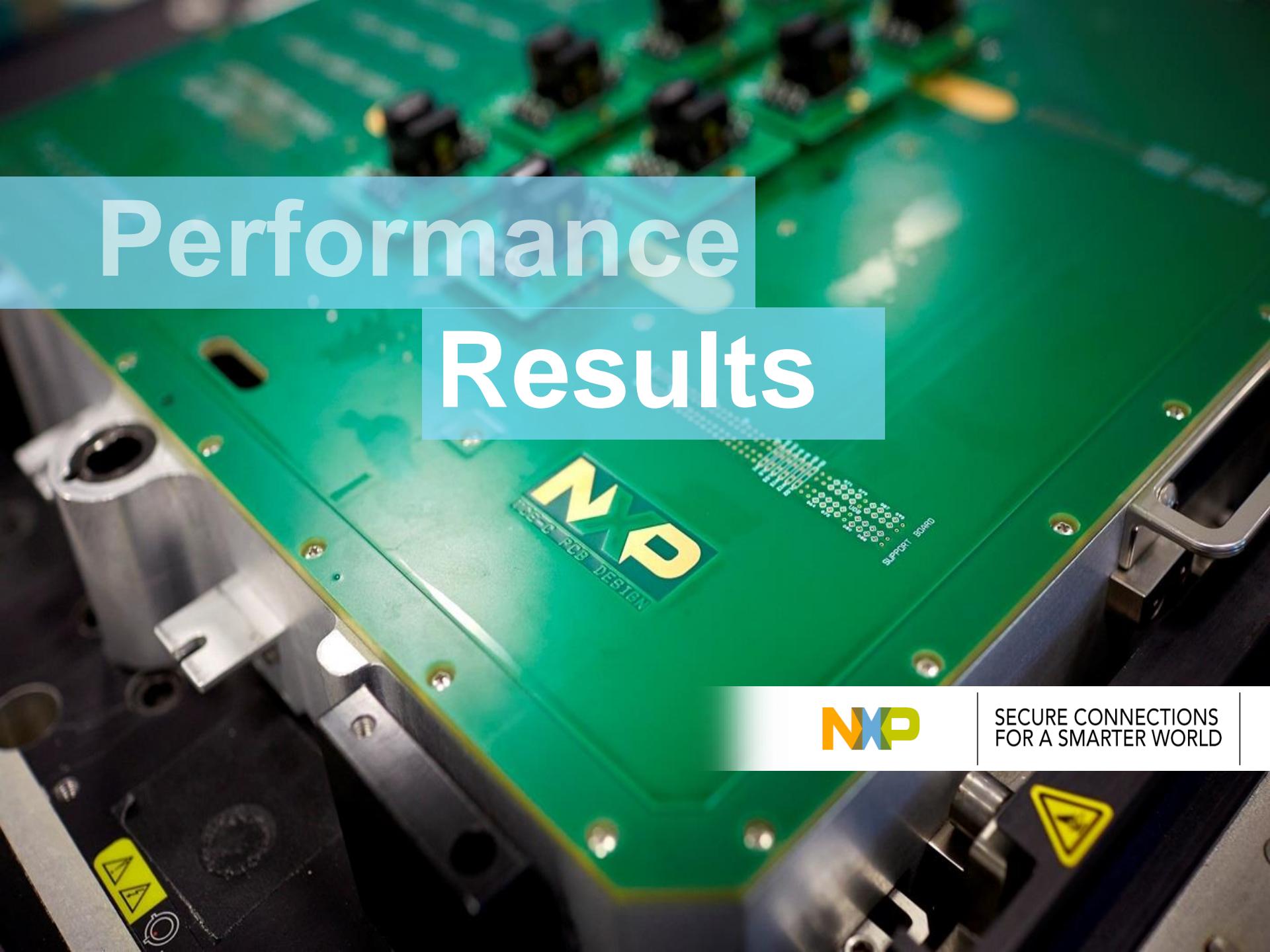
Weierstrass

- ✓ Backward compatible with existing APIs implementing NIST curves
- ✓ Highest security

Twisted Edwards

- ✓ Use Edwards arithmetic only (no Montgomery ladder)
 - ✓ Reduce implementation burden and code size
 - ✓ Performance at least as fast

Performance Results



SECURE CONNECTIONS
FOR A SMARTER WORLD

Performance Results

Costs estimates for the TLS handshake using the ECDHE-ECDSA cipher suite on a 3.4GHz Intel Core i7-2600 Sandy Bridge processor

128-bit security	ECDHE	ECDSA sign	ECDSA ver	Constant time
NIST P-256	490	90 (150 KB)	530	?
numsp256d1	379	107 (6 KB)	288 (2 KB)	✓

S. Gueron, V. Krasnov (2013), *Fast prime field elliptic curve cryptography with 256 bit primes*

Performance Results

Costs estimates for the TLS handshake using the ECDHE-ECDSA cipher suite on a 3.4GHz Intel Core i7-2600 Sandy Bridge processor

128-bit security	ECDHE	ECDSA sign	ECDSA ver	Constant time
NIST P-256	490	90 (150 KB)	530	?
numsp256d1	379	107 (6 KB)	288 (2 KB)	✓

Old Weierstrass versus New Weierstrass

- **ECDHE** 1.3x faster
- **ECDSA sign** 1.2x slower, 25x reduced look-up table, more secure: side-channel resistant + cache-attack resistant
- **ECDSA ver** 1.8x faster

S. Gueron, V. Krasnov (2013), *Fast prime field elliptic curve cryptography with 256 bit primes*

Performance Results

128-bit security	ECDHE	ECDSA sign	ECDSA ver	Constant time
NIST P-256	490	90 (150 KB)	530	?
numsp256d1	379	107 (6 KB)	288 (2 KB)	✓
Curve25519	398 *	69 (30 KB)	225 (3.8 KB)	✓
numsp256t1	300	82 (9 KB)	231 (3 KB)	✓

Twisted Edwards versus twisted Edwards

- **ECDHE** 1.3x faster
- **ECDSA sign** 1.2x slower, 3x reduced look-up table, curve25519 implements EdDSA (not ECDSA)
- **ECDSA ver** 1.03x slower

S. Gueron, V. Krasnov (2013), *Fast prime field elliptic curve cryptography with 256 bit primes*

D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, B.-Y. Yang (2011), *High-speed high-security signatures*

D. J. Bernstein (2006), *Curve25519: New Diffie-Hellman Speed Records*

Performance Results

128-bit security	ECDHE	ECDSA sign	ECDSA ver	Constant time
NIST P-256	490	90 (150 KB)	530	?
numsp256d1	379	107 (6 KB)	288 (2 KB)	✓
Curve25519	398 *	69 (30 KB)	225 (3.8 KB)	✓
numsp256t1	300	82 (9 KB)	231 (3 KB)	✓

Weierstrass versus twisted Edwards

- Compared to old (NIST) curves, twisted Edwards is for **ECDHE 1.6x** and **ECDSA sign 2.4x** faster
- Compared to our new curves, twisted Edwards is for **ECDHE 1.3x** and **ECDSA sign 1.3x** faster

S. Gueron, V. Krasnov (2013), *Fast prime field elliptic curve cryptography with 256 bit primes*

D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, B.-Y. Yang (2011), *High-speed high-security signatures*

D. J. Bernstein (2006), *Curve25519: New Diffie-Hellman Speed Records*

Performance Results

128-bit security	ECDHE	ECDSA sign	ECDSA ver	Constant time
NIST P-256	490	90 (150 KB)	530	?
numsp256d1	379	107 (6 KB)	288 (2 KB)	✓
Curve25519	398 *	69 (30 KB)	225 (3.8 KB)	✓
numsp256t1	300	82 (9 KB)	231 (3 KB)	✓

Source code available (open source apache license v2.0)
<http://research.microsoft.com/en-us/projects/nums/>

S. Gueron, V. Krasnov (2013), *Fast prime field elliptic curve cryptography with 256 bit primes*

D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, B.-Y. Yang (2011), *High-speed high-security signatures*

D. J. Bernstein (2006), *Curve25519: New Diffie-Hellman Speed Records*

Conclusions

New set of elliptic curves for the 128-, 192-, and 256-bit security levels

- Performance**
 - ❖ Use dedicated formulas: provably no exceptions
 - ❖ New Weierstrass curves significantly faster than NIST curves
- Security**
 - ❖ Use algorithms which can be implemented in constant-time
 - ❖ Primes and curves are chosen deterministically
(minimize room for backdoors)
- Practical**
 - Weierstrass curves**
 - ❖ Backward compatible with existing APIs
 - ❖ No changes in protocols required
 - Twisted Edwards / Montgomery curves**
 - ❖ Use twisted Edwards arithmetic only (no Montgomery ladder)
Reduce maintenance cost and code size (no restrictions)
 - ❖ Better performance (1.3x) but protocol adjustments required

IETF proposal online

Elliptic Curve Cryptography Nothing Up My Sleeve Curves and Curve Generation
<http://tools.ietf.org/html/draft-black-numscurves-01>