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Elliptic Curves in Cryptography

()58 - Koblitz and Miller: elliptic curves in cryptography
1987

» Certicom: First curve standard
Standards for Efficient Cryptography

* NIST: FIPS 186-2 Digital Signature Standard

« ECC Brainpool: Standard Curves and Curve Generation

* New York Times:
"the National Security Agency had written
the standard and could break it"

» IETF asks for recommendations for new elliptic curves in TLS

w * D. J. Bernstein: Curve25519 (128-bit security only)
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¢ Public distrust against everything
touched by NIST

¢ Dan Bernstein & Tanja Lange:
Security dangers of the NIST curves

¢ Bruce Schneier: “I no longer trust the
constants. | believe the NSA has
manipulated them through their
relationships with industry”

4
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¢ Public distrust against everything
touched by NIST

¢ Dan Bernstein & Tanja Lange:
Security dangers of the NIST curves

¢ Bruce Schneier: “I no longer trust the
constants. | believe the NSA has
manipulated them through their
relationships with industry”

NIST curves are old curves designed for 32-bit platforms.
Many new techniques since 2000:
1) Faster modular arithmetic
2) Faster curve arithmetic (twisted Edwards)
3) Constant-time algorithms to protect against various
types of side-channel attacks

4
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Forms of Elliptic Curves

Weilerstrass curves
y2=x34+ax+b

Most general form,
all elliptic curves can be
written as a Weierstrass

curve
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Forms of Elliptic Curves

Weilerstrass curves
y2=x34+ax+b

“One form to rule them all’
Convenience

One API to implement

them all

Most general form,
all elliptic curves can be
written as a Weierstrass

curve
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Forms of Elliptic Curves

Weilerstrass curves
y2=x34+ax+b

Most general form,
all elliptic curves can be
written as a Weierstrass
curve

Prime order n possible
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Forms of Elliptic Curves

Weilerstrass curves
y2=x34+ax+b

v Full security

v" No small subgroups
Point validation

= CheckQ + 0

= Check Q is on the curve

»= ChecknQ =0

w be omitted!

Most general form,
all elliptic curves can be
written as a Weierstrass
curve

Prime order n possible
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Forms of Elliptic Curves

Weilerstrass curves
y2=x34+ax+b

Most general form,
all elliptic curves can be
written as a Weierstrass
curve

Prime order n possible
Exceptions in group law
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Forms of Elliptic Curves

Weilerstrass curves
y2=x34+ax+b

P+Q, P+0
P+ P, P+ (—P)
might require different

formula / implementations

Most general form,
all elliptic curves can be
written as a Weierstrass

curve
- Prime order n possible Complete formula exists:
very slow

«  Exceptions in group law \
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Forms of Elliptic Curves

Weilerstrass curves
y2=x34+ax+b

Most general form,
all elliptic curves can be
written as a Weierstrass
curve

Prime order n possible
Exceptions in group law

 NIST and Brainpool
curves are prime-order
Welerstrass curves with
a = —3.

5
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Forms of Elliptic Curves

Weilerstrass curves
y2=x34+ax+b

v Full security

v No small subgroups
Most general form, SO

all elliptic curves can be
written as a Weierstrass
curve

Prime order n possible
Exceptions in group law

 NIST and Brainpool
curves are prime-order
Welerstrass curves with
a = —3.

v a = -3 for efficiency
v" How were these curves
chosen?

5
Selecting new Curves / BU S&C / J. W. Bos July 29, 2014



Forms of Elliptic Curves

Montgomery curves
By? = x3 + Ax? + x

* Subset of all curves

P. L. Montgomery (1987). Speeding the Pollard and Elliptic Curve Methods of Factorization
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Forms of Elliptic Curves

Montgomery curves
By? = x3+ Ax? +x

 Not all curves can be
written as a Montgomery
curve

How many?

Roughly 40%

* Subset of all curves

P. L. Montgomery (1987). Speeding the Pollard and Elliptic Curve Methods of Factorization
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Forms of Elliptic Curves

Montgomery curves
By? = x3 + Ax? + x

» Subset of all curves
* Not prime order

P. L. Montgomery (1987). Speeding the Pollard and Elliptic Curve Methods of Factorization
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Forms of Elliptic Curves

Montgomery curves
By? = x3+ Ax? +x

 The order of a
Montgomery curve Is
divisible by at least 4

« Lose at least one bit of

security

Small subgroup attacks

» Subset of all curves
* Not prime order

P. L. Montgomery (1987). Speeding the Pollard and Elliptic Curve Methods of Factorization
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Forms of Elliptic Curves

Montgomery curves
By? = x3 + Ax? + x

« Subset of all curves
* Not prime order
* Montgomery ladder

P. L. Montgomery (1987). Speeding the Pollard and Elliptic Curve Methods of Factorization
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Forms of Elliptic Curves

Montgomery curves

By? = x® + Ax? + x v Very efficient
differential addition

Given P,Q,P — Q compute P + Q

v Inherently, constant-time

« Subset of all curves
* Not prime order
* Montgomery ladder

P. L. Montgomery (1987). Speeding the Pollard and Elliptic Curve Methods of Factorization
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Forms of Elliptic Curves

Montgomery curves

By? = x® + Ax? + x v Very efficient
differential addition

Given P,Q,P — Q compute P + Q

v Inherently, constant-time

« Subset of all curves
* Not prime order
* Montgomery ladder

No point addition
We can do ECDH,

no ECDSA signature
verification
Single-coordinate system
Twist-security comes into
play

P. L. Montgomery (1987). Speeding the Pollard and Elliptic Curve Methods of Factorization
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Forms of Elliptic Curves

Twisted Edwards curves
ax? +y? =1+ dx?y?

H. M. Edwards (2007), A normal form for elliptic curves
D. J. Bernstein, T. Lange (2007), Faster addition and doubling on elliptic curves
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Forms of Elliptic Curves

Twisted Edwards curves
ax? +y? =1+ dx?y?

 Not all curves can be
written as a twisted
Edwards curve

 How many?

Roughly 40%

* Subset of all curves

H. M. Edwards (2007), A normal form for elliptic curves
D. J. Bernstein, T. Lange (2007), Faster addition and doubling on elliptic curves
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Forms of Elliptic Curves

Twisted Edwards curves
ax? +y? =1+ dx?y?

 The order of a twisted
Edwards curve is
divisible by at least 4

 Lose at least one bit of

security

Small subgroup attacks

» Subset of all curves
* Not prime order

H. M. Edwards (2007), A normal form for elliptic curves
D. J. Bernstein, T. Lange (2007), Faster addition and doubling on elliptic curves
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Forms of Elliptic Curves

Twisted Edwards curves
ax? +y? =1+ dx?y?

* Subset of all curves
* Not prime order
* Fastest arithmetic

H. M. Edwards (2007), A normal form for elliptic curves
D. J. Bernstein, T. Lange (2007), Faster addition and doubling on elliptic curves
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Forms of Elliptic Curves

Twisted Edwards curves
ax? +y? =1+ dx?y?

v When a = —1, most efficient
elliptic curve arithmetic

known

H. Hisil, K. K. Wong, G. Carter, E. Dawson (2008),
Twisted Edwards Curves Revisited

* Subset of all curves
* Not prime order
* Fastest arithmetic

H. M. Edwards (2007), A normal form for elliptic curves
D. J. Bernstein, T. Lange (2007), Faster addition and doubling on elliptic curves
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Forms of Elliptic Curves

Twisted Edwards curves
ax? +y? =1+ dx?y?

* Subset of all curves
* Not prime order
* Fastest arithmetic

« Some have complete
group law

H. M. Edwards (2007), A normal form for elliptic curves
D. J. Bernstein, T. Lange (2007), Faster addition and doubling on elliptic curves

7
Selecting new Curves / BU S&C / J. W. Bos July 29, 2014



Forms of Elliptic Curves

Twisted Edwards curves
ax? +y? =1+ dx?y?

Efficient complete group law:
P+Q, P+0
P+ P, P+ (—P)

However, slower than dedicated

arithmetic

* Subset of all curves
* Not prime order
* Fastest arithmetic

« Some have complete
group law

H. M. Edwards (2007), A normal form for elliptic curves
D. J. Bernstein, T. Lange (2007), Faster addition and doubling on elliptic curves
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Forms of Elliptic Curves

Weierstrass curves Montgomery Twisted Edwards
y2=x3+ax+h curves curves
By? =x3+ Ax* +x ax? +y? =1+ dx?y?
Most general form . =ubset of clrves L Eulbesn o EUEs
Prime order possible :
TIeT P y Vot prime order * Not prime order
Exceptions in group law Montgomery . Fastest arithmetic

O NIST and ladder

: « Some have
Brainpool curves

complete group law

8
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Elliptic Curve Scalar Multiplication

Core of all ECC based protocols
Given P € E(F,) of order n and k € Z., compute kP

Variable-base Random Random

Fixed-base Random Fixed
Fixed-base: pre-computation can lead to performance speedups

9
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Elliptic Curve Scalar Multiplication

Core of all ECC based protocols
Given P € E(F,,) of order n and k € Z., compute kP

Variable-base Random Random
Fixed-base Random Fixed
Fixed-base: pre-computation can lead to performance speedups

Most popular ECC protocols (used in e.g. TLS):
= ECDSA sighature generation = fixed-base scalar multiplication
= ECDSA signature verification = double-scalar multiplication
= compute k;P + k,Q such that
k, and k, random, P fixed and Q random
= ECDHE = variable + fixed base scalar multiplication
 Ephemeral ECDH (temporary session keys)
« Perfect forward secrecy
« Compute k,(k,P) such that k,, k, random and P fixed

9
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Example: Curve25519

Cryptographic curve providing 128-bit security

Montgomery Curve _ Twisted Edwards curve
y? = x3 + 486662x% + x 121665 ,

2 2 _
ey = 666" Y
Fast ECDH = Fast ECDSA -
Montgomery ladder twisted Edwards arithmetic

Bernstein, N. Duif, T. Lange, P. Schwabe, B.-Y. Yang (2011), High-speed high-security signatures

D. J.
D. J. Bernstein (2006), Curve25519: New Diffie-Hellman Speed Records
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Example: Curve25519

Cryptographic curve providing 128-bit security

Montgomery Curve _ Twisted Edwards curve
2 _ 3 2
y4 =x3 4+ 486662x% + x s o 121665 ,
Y =t 666 XY

Fast ECDH = Fast ECDSA -
Montgomery ladder twisted Edwards arithmetic

Practical Issues

How to compute ECDHE?
1) Montgomery ladder, Montgomery ladder

(fixed-base) (variable-base)

2) Twisted Edwards, convert, Montgomery ladder
(fixed base) (variable-base)

3) Twisted Edwards, twisted Edwards
(fixed base) (variable-base)

D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, B.-Y. Yang (2011), High-speed high-security signatures
D. J. Bernstein (2006), Curve25519: New Diffie-Hellman Speed Records
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Example: Curve25519

Cryptographic curve providing 128-bit security

Montgomery Curve _ Twisted Edwards curve
y% = x3 + 486662x% + x 121665

2 2 2.,2
Ay =t 1666 Y
Fast ECDH = Fast ECDSA -
Montgomery ladder twisted Edwards arithmetic

Practical Issues

How to compute ECDHE? How to transfer points?
1) Montgomery ladder, Montgomery ladder
(fixed-base) (variable-base) Coordinate system:
2) Twisted Edwards, convert, Montgomery ladder * Montgomery
(fixed base) (variable-base) « Twisted Edwards
3) Twisted Edwards, twisted Edwards * Weierstrass
(fixed base) (variable-base)

D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, B.-Y. Yang (2011), High-speed high-security signatures
D. J. Bernstein (2006), Curve25519: New Diffie-Hellman Speed Records
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SECURE CONNECTIONS
FOR A SMARTER WORLD




Deterministic Prime Selection

Minimize room for manipulation

Given an even security level s do
¢ = 0;do p = 225 — c++; while(p # prime or p Z 3 mod 4);
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Deterministic Prime Selection

Minimize room for manipulation

Given an even security level s do
¢ = 0;do p = 225 — c++; while(p # prime or p Z 3 mod 4);

128 2256 _ 189
192 2384 _ 317
256 2512 _ 569
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Deterministic Prime Selection

Minimize room for manipulation

Given an even security level s do
¢ = 0;do p = 225 — c++; while(p # prime or p Z 3 mod 4);

Why special prime shape? Performance!

0<x,y<2%—c 128 2256 — 189
x - ymod 2% — ¢ 192 2384 _ 317
x-y = zp 2%+ 2z, 256 2512 _ 569

zy 225+ 2z, — 7, (2%5—c) (mod 225 —¢)

= Zp+cC-zZy

11
Selecting new Curves / BU S&C / J. W. Bos July 29, 2014



Deterministic Prime Selection

Minimize room for manipulation

Given an even security level s do
¢ = 0;do p = 225 — c++; while(p # prime or p Z 3 mod 4);

Why special prime shape? Performance!

0<x,y<2%—c 128 2256 — 189
x - ymod 2% — ¢ 192 2384 _ 317
x-y = zp 2%+ 2z, 256 2512 _ 569
= 2z, 224+ zp — z,(2%°—c) (mod 2% —¢)
= ZptC-Zp

Constant time modular inversion
a ! = a?? (mod p)

Constant time modular square root
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Deterministic Curve Selection

Weierstrass y2=x3—-3x+b y2=x3—-3x—b b € F,\{+2,0} prime

Twisted

.2 2 _ 2,2 .2 2 _ 1 2,2 :
Edwards x“+y"=1+dx% x> +y?=1+"/,x°y> deF\{01} 4 xprime
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Deterministic Curve Selection

Weierstrass

Twisted
Edwards

y2=x3—-3x+b

y2=x3-3x—b

—x2+y?2=1+dx?y?> —-x*+y*=1+ 1/d x?y?  d € F,\{0,1}

128-bit 192-bit 256-bit
security | | security | | security
Weierstrass twisted
Edwards
curves
curves

Consider different families of primes for fast arithmetic

Selecting new Curves / BU S&C / J. W. Bos

b € F,\{£2,0} prime

4 xprime
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Computing scalar multiplications

We have curves defined over these primes.

How to compute ECSM?
 Dedicated formulas
« Complete formulas

What formula should
be used in practice?

Complete
=  Works for everything
= NoO exceptions
possible
= Performance price

Dedicated
= [aster
= Analyze exceptions

13
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Computing scalar multiplications

We have curves defined over these primes.

How to compute ECSM?
 Dedicated formulas
« Complete formulas

What formula should
be used in practice?

Complete
= Works for everything
= No exceptions
possible
= Performance price

Dedicated
= Faster
= Analyze exceptions

double 4M + 4S
!ac + aff > IM + 4S
jac

jac+jac > 1 vi55  25M
jac

double 4M + 3S
proj + aff > proj ™
proj + proj - proj 8M

Selecting new Curves / BU S&C / J. W. Bos

8M + 3S

12M + 4S

8M
oM
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Algorithm 19 Complete (projective) addition using masking and Jacobian coordinates on
prime-order Weierstrass curves Fy,.
Input: P,Q € Ey(F,) such that P = (X,Y1,4)1) and @Q = (X2, Y2, Z2) are in Jacobian coordinates,

Output: R = P+ Q € Ey(F,) in Jacobian coordinates. Computations marked with [*] are implemented in
constant time using masking.

1. T0] =0  {T[i| = (X:,Yi, Z:) for 0 < i <5} 25 t5=13
2. T =@ 26. if mask = 0 then t; = X [*]
3. T4 = P 27. by =15 X Iy
4. tg = Z? 28. Zo = 71 X lg
D, la = 2 X o 29, 2;; = o X 23
6. t1 = Xo % g 30, if mask # 0 then 3 = {o [*]
T. ta = Yo % I3 31, if mask # 0 then tg = {5 [*]
8. lg = r‘.:ea 32, Lo =13 x lg
0. Iy = Za X la 33, 1y = 1',2‘,-"2
10, ty = Xy x 13 34. ln =1t + s
11, ls = Y] % 15 35, if mask # 0 then {3 = {4 [*]
12. 4y =t — 7 36. tq =15
13, 14 =14 —In 37ty =14 — 1y
14, index = 3 38. Xo =t — 1y
15. if £; = 0 then [+] 39. X3 = X3 — 1y
16. index = () {R = O} 40. if mask = 0 then {4, = X» else 14 = )E',-; [#]
17. if {4 = 0 then index = 2 {R =2P} [*] 41. &) =1t — 14
18, if P = @ then index = 1 {R=Q} [*] 42, 14 =13 x 1y
19. if Q = O then index = 4 {R =P} [*] 43. if mask = 0 then {;, = {5 else {; = g [*]
20. mask = 0 44. if mask = 0 then (2 = 15 [*]
21, if index = 3 then mask = 1 45, g =1 % 12
{ease P+ @, else any other case} [%] 46. Yy = tq4 — t3
22, I3 =X + 12 47. ?’3:?2
23. te = X1 — L2 48. R = Tlindex] (= (Xindox, Yindexs Zindox)) [*]

24, if mask = 0 then {2 = Y] else {2 = 1 [#*] 49. return I




Computing scalar multiplications

Use dedicated formulas when possible P+ P, P+0
Proof that no exceptions can occur O+ P P + (=P)

Welerstrass
Variable base

Given a window size w, 2 < w < 10.

Scalar recoding to odd non-zero digits {+1,+3,...,+(2% "1 - 1)}
Compute ECSM with dedicated point additions

Except the last addition which should be complete

15
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Computing scalar multiplications

Use dedicated formulas when possible P+ P, P+0
Proof that no exceptions can occur O+ P P + (=P)

Twisted Edwards
Variable base

Given a window size w, 2 < w < 10.

Clear torsion Q = 4P

Validation: Check Q # O

Scalar recoding to odd non-zero digits {+1,+3,...,+(2% "1 - 1)}
Compute ECSM with dedicated point additions

Except the last addition which should be complete
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Computing scalar multiplications

Use dedicated formulas when possible P+ P, P+0
Proof that no exceptions can occur O+ P P + (=P)

Weierstrass / Twisted Edwards

Fixed base

Offline

= (Cleartorsion Q = 4P

= Validation: Check Q # O

= Precompute v > 0 different tables of 2%~ points each

Online
= Compute ECSM with complete point additions only

15
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Computing scalar multiplications

Use dedicated formulas when possible P+ P, P+0
Proof that no exceptions can occur O+ P P + (=P)

Weierstrass / Twisted Edwards

Fixed base

Offline

= (Cleartorsion Q = 4P

= Validation: Check Q # O

= Precompute v > 0 different tables of 2%~ points each

Online
= Compute ECSM with complete point additions only

Are other fixed base implementations correct for all inputs?

15
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Our Implementation Choices

Performance
v Use dedicated formulas when possible

Security
v Use only algorithms which can be implemented in constant-time
(branch-free)

Weierstrass Twisted Edwards
v’ Backward compatible |v° Use Edwards arithmetic only
with existing APIs (no Montgomery ladder)
Implementing NIST v’ Reduce implementation burden and
curves code size

v Highest security v Performance at least as fast

16
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SECURE CONNECTIONS
FOR A SMARTER WORLD




Performance Results

Costs estimates for the TLS handshake using the
ECDHE-ECDSA cipher suite on a 3.4GHz Intel
Core i7-2600 Sandy Bridge processor

NIST P-256 490 90 (150 KB) 530 ?
numsp256d1 379 107 (6 KB) 288 (2 KB) v

S. Gueron, V. Krasnov (2013), Fast prime field elliptic curve cryptography with 256 bit primes
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Performance Results

Costs estimates for the TLS handshake using the
ECDHE-ECDSA cipher suite on a 3.4GHz Intel
Core i7-2600 Sandy Bridge processor

NIST P-256 490 90 (150 KB) 530 ?
numsp256d1 379 107 (6 KB) 288 (2 KB) v

Old Weierstrass versus New Weierstrass
« ECDHE 1.3x faster
« ECDSA sign 1.2x slower, 25x reduced look-up table,
more secure: side-channel resistant + cache-attack resistant
« ECDSA ver 1.8x faster

S. Gueron, V. Krasnov (2013), Fast prime field elliptic curve cryptography with 256 bit primes
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Performance Results

NIST P-256 490 90 (150 KB) 530 ?
numsp256d1 379 107 (6 KB) 288 (2 KB) v
Curve25519 398* 69 (30KB) 225 (3.8 KB) v
numsp256t1 300 82 (9KB) 231 (3KB) v

Twisted Edwards versus twisted Edwards
« ECDHE 1.3x faster
« ECDSA sign 1.2x slower, 3x reduced look-up table,
curve25519 implements EdDSA (not ECDSA)
ECDSA ver 1.03x slower

S. Gueron, V. Krasnov (2013), Fast prime field elliptic curve cryptography with 256 bit primes
D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, B.-Y. Yang (2011), High-speed high-security signatures
D. J. Bernstein (2006), Curve25519: New Diffie-Hellman Speed Records

Selecting new Curves / BU S&C / J. W. Bos
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Performance Results

NIST P-256 490 90 (150 KB) 530 ?
numsp256d1 379 107 (6 KB) 288 (2 KB) v
Curve25519 398* 69 (30KB) 225 (3.8 KB) v
numsp256t1 300 82 (9KB) 231 (3KB) v

Welierstrass versus twisted Edwards
« Compared to old (NIST) curves, twisted Edwards is for
ECDHE 1.6x and ECDSA sign 2.4x faster
« Compared to our new curves, twisted Edwards is for
ECDHE 1.3x and ECDSA sign 1.3x faster

S. Gueron, V. Krasnov (2013), Fast prime field elliptic curve cryptography with 256 bit primes
D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, B.-Y. Yang (2011), High-speed high-security signatures
D. J. Bernstein (2006), Curve25519: New Diffie-Hellman Speed Records
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Performance Results

NIST P-256 490 90 (150 KB) 530 ?
numsp256d1 379 107 (6 KB) 288 (2 KB) v
Curve25519 398* 69 (30KB) 225 (3.8 KB) v
numsp256t1 300 82 (9KB) 231 (3KB) v

Source code available (open source apache license v2.0)
http://research.microsoft.com/en-us/projects/nums/

S. Gueron, V. Krasnov (2013), Fast prime field elliptic curve cryptography with 256 bit primes
D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, B.-Y. Yang (2011), High-speed high-security signatures
D. J. Bernstein (2006), Curve25519: New Diffie-Hellman Speed Records
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Conclusions

New set of elliptic curves for the 128-, 192-, and 256-bit security levels

Performance

Security

Practical

/7

* Use dedicated formulas: provably no exceptions

/7

** New Weierstrass curves significantly faster than NIST curves

/

% Use algorithms which can be implemented in constant-time

% Primes and curves are chosen deterministically
(minimize room for backdoors)

Weierstrass curves

* Backward compatible with existing APIs

*+ No changes in protocols required

Twisted Edwards / Montgomery curves

* Use twisted Edwards arithmetic only (no Montgomery ladder)
Reduce maintenance cost and code size (no restrictions)

*» Better performance (1.3x) but protocol adjustments required

IETF proposal online

Elliptic Curve Cryptography Nothing Up My Sleeve Curves and Curve Generation

http://tools.ietf.org/html/draft-black-numscurves-01
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