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1985-
1987 

• Koblitz and Miller: elliptic curves in cryptography 

2000 

• Certicom: First curve standard  
Standards for Efficient Cryptography 

• NIST: FIPS 186-2 Digital Signature Standard 

2005 
• ECC Brainpool: Standard Curves and Curve Generation 

2006 
• D. J. Bernstein: Curve25519 (128-bit security only) 

2013 

• New York Times: 
"the National Security Agency had written  
the standard and could break it" 

2014 
• IETF asks for recommendations for new elliptic curves in TLS 

Elliptic Curves in Cryptography 
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Motivation 

 Public distrust against everything 

touched by NIST 
  

 Dan Bernstein & Tanja Lange:  

Security dangers of the NIST curves 
  

 Bruce Schneier: “I no longer trust the 

constants. I believe the NSA has 

manipulated them through their 

relationships with industry” 
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Motivation 

 Public distrust against everything 

touched by NIST 
  

 Dan Bernstein & Tanja Lange:  

Security dangers of the NIST curves 
  

 Bruce Schneier: “I no longer trust the 

constants. I believe the NSA has 

manipulated them through their 

relationships with industry” 

NIST curves are old curves designed for 32-bit platforms. 

Many new techniques since 2000: 

1) Faster modular arithmetic 

2) Faster curve arithmetic (twisted Edwards) 

3) Constant-time algorithms to protect against various  

types of side-channel attacks 
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Elliptic Curves 



July 29, 2014 Selecting new Curves / BU S&C / J. W. Bos 

5 

Forms of Elliptic Curves 

Weierstrass curves 

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 
  

• Most general form, 
all elliptic curves can be 
written as a Weierstrass 
curve 
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Forms of Elliptic Curves 

Weierstrass curves 

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 
  

• Most general form, 
all elliptic curves can be 
written as a Weierstrass 
curve 

“One form to rule them all” 

Convenience 

One API to implement 

them all 
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Forms of Elliptic Curves 

Weierstrass curves 

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 
  

• Most general form, 
all elliptic curves can be 
written as a Weierstrass 
curve 

• Prime order 𝑛 possible 
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Forms of Elliptic Curves 

Weierstrass curves 

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 
  

• Most general form, 
all elliptic curves can be 
written as a Weierstrass 
curve 

• Prime order 𝑛 possible 

 Full security 

 No small subgroups 

Point validation 

 Check 𝑄 ≠ 𝒪 

 Check 𝑄 is on the curve 

 Check 𝑛𝑄 = 𝒪 

This can be omitted! 
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Forms of Elliptic Curves 

Weierstrass curves 

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 
  

• Most general form, 
all elliptic curves can be 
written as a Weierstrass 
curve 

• Prime order 𝑛 possible 

• Exceptions in group law 

𝑃 + 𝑄, 𝑃 + 𝒪  
       𝑃 + 𝑃, 𝑃 + (−𝑃)  

might require different 

formula / implementations 

 

Complete formula exists:  

very slow 
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Forms of Elliptic Curves 

Weierstrass curves 

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 
  

• Most general form, 
all elliptic curves can be 
written as a Weierstrass 
curve 

• Prime order 𝑛 possible 

• Exceptions in group law 

• NIST and Brainpool 
curves are prime-order 
Weierstrass curves with 
𝑎 = −3. 
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Forms of Elliptic Curves 

Weierstrass curves 

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 
  

• Most general form, 
all elliptic curves can be 
written as a Weierstrass 
curve 

• Prime order 𝑛 possible 

• Exceptions in group law 

• NIST and Brainpool 
curves are prime-order 
Weierstrass curves with 
𝑎 = −3. 

 Full security 

 No small subgroups 

 

 𝑎 = −3 for efficiency 

 How were these curves 

chosen? 
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Forms of Elliptic Curves 

Montgomery curves 

𝐵𝑦2 = 𝑥3 + 𝐴𝑥2 + 𝑥 

  

• Subset of all curves 

P. L. Montgomery (1987). Speeding the Pollard and Elliptic Curve Methods of Factorization 
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Forms of Elliptic Curves 

Montgomery curves 

𝐵𝑦2 = 𝑥3 + 𝐴𝑥2 + 𝑥 

  

• Subset of all curves 

• Not all curves can be 

written as a Montgomery 

curve 

• How many?  

Roughly 40%  

P. L. Montgomery (1987). Speeding the Pollard and Elliptic Curve Methods of Factorization 
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Forms of Elliptic Curves 

Montgomery curves 

𝐵𝑦2 = 𝑥3 + 𝐴𝑥2 + 𝑥 

  

• Subset of all curves 

• Not prime order 

P. L. Montgomery (1987). Speeding the Pollard and Elliptic Curve Methods of Factorization 
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Forms of Elliptic Curves 

Montgomery curves 

𝐵𝑦2 = 𝑥3 + 𝐴𝑥2 + 𝑥 

  

• Subset of all curves 

• Not prime order 

• The order of a 

Montgomery curve is 

divisible by at least 4 

• Lose at least one bit of 

security 

• Small subgroup attacks 

P. L. Montgomery (1987). Speeding the Pollard and Elliptic Curve Methods of Factorization 
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Forms of Elliptic Curves 

Montgomery curves 

𝐵𝑦2 = 𝑥3 + 𝐴𝑥2 + 𝑥 

  

• Subset of all curves 

• Not prime order 

• Montgomery ladder 

 Very efficient  

differential addition 

Given 𝑃, 𝑄, 𝑃 − 𝑄 compute 𝑃 + 𝑄 

 Inherently, constant-time 

 

P. L. Montgomery (1987). Speeding the Pollard and Elliptic Curve Methods of Factorization 
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Forms of Elliptic Curves 

Montgomery curves 

𝐵𝑦2 = 𝑥3 + 𝐴𝑥2 + 𝑥 

  

• Subset of all curves 

• Not prime order 

• Montgomery ladder 

P. L. Montgomery (1987). Speeding the Pollard and Elliptic Curve Methods of Factorization 

 Very efficient  

differential addition 

Given 𝑃, 𝑄, 𝑃 − 𝑄 compute 𝑃 + 𝑄 

 Inherently, constant-time 

 

• No point addition 

We can do ECDH,  

no ECDSA signature 

verification 

• Single-coordinate system 

Twist-security comes into         

 play 
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Forms of Elliptic Curves 

Twisted Edwards curves 

𝑎𝑥2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2 

  

H. M. Edwards (2007), A normal form for elliptic curves 

D. J. Bernstein, T. Lange (2007), Faster addition and doubling on elliptic curves 
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Forms of Elliptic Curves 

Twisted Edwards curves 

𝑎𝑥2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2 

  

• Subset of all curves 

• Not all curves can be 

written as a twisted 

Edwards curve 

• How many?  

Roughly 40%  

H. M. Edwards (2007), A normal form for elliptic curves 

D. J. Bernstein, T. Lange (2007), Faster addition and doubling on elliptic curves 
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Forms of Elliptic Curves 

Twisted Edwards curves 

𝑎𝑥2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2 

  

• Subset of all curves 

• Not prime order 

 

• The order of a twisted 

Edwards curve is 

divisible by at least 4 

• Lose at least one bit of 

security 

• Small subgroup attacks 

H. M. Edwards (2007), A normal form for elliptic curves 

D. J. Bernstein, T. Lange (2007), Faster addition and doubling on elliptic curves 
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Forms of Elliptic Curves 

Twisted Edwards curves 

𝑎𝑥2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2 

  

• Subset of all curves 

• Not prime order 

• Fastest arithmetic 

 

 

H. M. Edwards (2007), A normal form for elliptic curves 

D. J. Bernstein, T. Lange (2007), Faster addition and doubling on elliptic curves 
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Forms of Elliptic Curves 

Twisted Edwards curves 

𝑎𝑥2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2 

  

• Subset of all curves 

• Not prime order 

• Fastest arithmetic 

 

 

 When 𝑎 = −1, most efficient 

elliptic curve arithmetic 

known  
H. Hisil, K. K. Wong, G. Carter, E. Dawson (2008), 

Twisted Edwards Curves Revisited 

 

H. M. Edwards (2007), A normal form for elliptic curves 

D. J. Bernstein, T. Lange (2007), Faster addition and doubling on elliptic curves 
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Forms of Elliptic Curves 

Twisted Edwards curves 

𝑎𝑥2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2 

  

• Subset of all curves 

• Not prime order 

• Fastest arithmetic 

• Some have complete 
group law 

 

 

H. M. Edwards (2007), A normal form for elliptic curves 

D. J. Bernstein, T. Lange (2007), Faster addition and doubling on elliptic curves 
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Forms of Elliptic Curves 

Twisted Edwards curves 

𝑎𝑥2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2 

  

• Subset of all curves 

• Not prime order 

• Fastest arithmetic 

• Some have complete 
group law 

 

 

H. M. Edwards (2007), A normal form for elliptic curves 

D. J. Bernstein, T. Lange (2007), Faster addition and doubling on elliptic curves 

Efficient complete group law: 
𝑃 + 𝑄, 𝑃 + 𝒪  

       𝑃 + 𝑃, 𝑃 + −𝑃  

However, slower than dedicated 

arithmetic 
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Montgomery 
curves 

𝐵𝑦2 = 𝑥3 + 𝐴𝑥2 + 𝑥 

  

• Subset of curves 

• Not prime order 

• Montgomery 
ladder 

 

Twisted Edwards 
curves 

𝑎𝑥2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2 
  

• Subset of curves 

• Not prime order 

• Fastest arithmetic 

• Some have 
complete group law 
 

 

Forms of Elliptic Curves 

Weierstrass curves 

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 

  

• Most general form 

• Prime order possible 

• Exceptions in group law 

• NIST and  
Brainpool curves 
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Scalar Multiplication 
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Elliptic Curve Scalar Multiplication 
Core of all ECC based protocols 

Given P ∈ 𝐸(𝐅𝑝) of order 𝑛 and 𝑘 ∈ 𝐙>0 compute 𝑘𝑃 

scalar 

multiplication 
𝑘 𝑃 

Variable-base Random Random 

Fixed-base Random Fixed 

Fixed-base: pre-computation can lead to performance speedups 
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Elliptic Curve Scalar Multiplication 
Core of all ECC based protocols 

Given P ∈ 𝐸(𝐅𝑝) of order 𝑛 and 𝑘 ∈ 𝐙>0 compute 𝑘𝑃 

scalar 

multiplication 
𝑘 𝑃 

Variable-base Random Random 

Fixed-base Random Fixed 

Most popular ECC protocols (used in e.g. TLS): 

 ECDSA signature generation = fixed-base scalar multiplication 

 ECDSA signature verification = double-scalar multiplication 

 compute 𝑘1𝑃 + 𝑘2𝑄 such that  
𝑘1 and 𝑘2 random, P fixed and 𝑄 random 

 ECDHE = variable + fixed base scalar multiplication 

• Ephemeral ECDH (temporary session keys) 

• Perfect forward secrecy 

• Compute 𝑘1(𝑘2𝑃) such that 𝑘1, 𝑘2 random and P fixed  

Fixed-base: pre-computation can lead to performance speedups 
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Example: Curve25519 

D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, B.-Y. Yang (2011), High-speed high-security signatures 

D. J. Bernstein (2006), Curve25519: New Diffie-Hellman Speed Records 

Montgomery Curve 
𝑦2 = 𝑥3 + 486662𝑥2 + 𝑥 

Twisted Edwards curve 

𝑥2 + 𝑦2 = 1 +
121665

121666
𝑥2𝑦2 

Cryptographic curve providing 128-bit security 

Fast ECDH   

Montgomery ladder 
Fast ECDSA   

twisted Edwards arithmetic 
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Example: Curve25519 

D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, B.-Y. Yang (2011), High-speed high-security signatures 

D. J. Bernstein (2006), Curve25519: New Diffie-Hellman Speed Records 

Montgomery Curve 
𝑦2 = 𝑥3 + 486662𝑥2 + 𝑥 

Twisted Edwards curve 

𝑥2 + 𝑦2 = 1 +
121665

121666
𝑥2𝑦2 

Cryptographic curve providing 128-bit security 

Fast ECDH   

Montgomery ladder 
Fast ECDSA   

twisted Edwards arithmetic 

How to compute ECDHE? 

1)  Montgomery ladder, Montgomery ladder 

     (fixed-base)                (variable-base) 

2) Twisted Edwards, convert, Montgomery ladder 
      (fixed base)                           (variable-base) 

3) Twisted Edwards, twisted Edwards 
       (fixed base)          (variable-base) 

Practical Issues 
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Example: Curve25519 

D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, B.-Y. Yang (2011), High-speed high-security signatures 

D. J. Bernstein (2006), Curve25519: New Diffie-Hellman Speed Records 

Montgomery Curve 
𝑦2 = 𝑥3 + 486662𝑥2 + 𝑥 

Twisted Edwards curve 

𝑥2 + 𝑦2 = 1 +
121665

121666
𝑥2𝑦2 

Cryptographic curve providing 128-bit security 

Fast ECDH   

Montgomery ladder 
Fast ECDSA   

twisted Edwards arithmetic 

How to compute ECDHE? 

1)  Montgomery ladder, Montgomery ladder 

     (fixed-base)                (variable-base) 

2) Twisted Edwards, convert, Montgomery ladder 
      (fixed base)                           (variable-base) 

3) Twisted Edwards, twisted Edwards 
       (fixed base)          (variable-base) 

How to transfer points? 

 

Coordinate system: 

• Montgomery 

• Twisted Edwards 

• Weierstrass 

Practical Issues 
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Curves 



Minimize room for manipulation 

Given an even security level 𝑠 do 

𝑐 = 0; do 𝑝 = 22𝑠 − 𝑐++;while 𝑝 ≠ prime or 𝑝 ≢ 3 mod 4 ; 
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Deterministic Prime Selection 



Minimize room for manipulation 

Given an even security level 𝑠 do 

𝑐 = 0; do 𝑝 = 22𝑠 − 𝑐++;while 𝑝 ≠ prime or 𝑝 ≢ 3 mod 4 ; 
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Deterministic Prime Selection 

Security level Prime 

128 2256 − 189 

192 2384 − 317 

256 2512 − 569 



Minimize room for manipulation 

Given an even security level 𝑠 do 

𝑐 = 0; do 𝑝 = 22𝑠 − 𝑐++;while 𝑝 ≠ prime or 𝑝 ≢ 3 mod 4 ; 
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Deterministic Prime Selection 

𝑥 ⋅ 𝑦 = 𝑧ℎ  2
2𝑠+ 𝑧ℓ  

≡ 𝑧ℎ  2
2𝑠+ 𝑧ℓ − 𝑧ℎ  22𝑠−𝑐   (mod 22𝑠 − 𝑐) 

= 𝑧ℓ + 𝑐 ⋅ 𝑧ℎ  

Why special prime shape? Performance! 

0 ≤ 𝑥, 𝑦 < 22𝑠 − 𝑐 

𝑥 ⋅ 𝑦 mod 22𝑠 − 𝑐 

Security level Prime 

128 2256 − 189 

192 2384 − 317 

256 2512 − 569 
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𝑐 = 0; do 𝑝 = 22𝑠 − 𝑐++;while 𝑝 ≠ prime or 𝑝 ≢ 3 mod 4 ; 
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Deterministic Prime Selection 

𝑥 ⋅ 𝑦 = 𝑧ℎ  2
2𝑠+ 𝑧ℓ  

≡ 𝑧ℎ  2
2𝑠+ 𝑧ℓ − 𝑧ℎ  22𝑠−𝑐   (mod 22𝑠 − 𝑐) 

= 𝑧ℓ + 𝑐 ⋅ 𝑧ℎ  

Why special prime shape? Performance! 

0 ≤ 𝑥, 𝑦 < 22𝑠 − 𝑐 

𝑥 ⋅ 𝑦 mod 22𝑠 − 𝑐 

Security level Prime 

128 2256 − 189 

192 2384 − 317 

256 2512 − 569 

Constant time modular inversion 

𝑎−1 ≡ 𝑎𝑝−2 mod 𝑝  

 

Constant time modular square root 

𝑎 ≡ 𝑎(𝑝+1) 4  (mod 𝑝) 
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Deterministic Curve Selection 

Curve Quadratic twist parameter order 

Weierstrass 𝑦2 = 𝑥3 − 3𝑥 + 𝑏 𝑦2 = 𝑥3 − 3𝑥 − 𝑏 

 

𝑏 ∈ 𝐅𝑝\ ±2,0  prime 

Twisted 

Edwards 
−𝑥2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2 −𝑥2 + 𝑦2 = 1 + 1

𝑑 𝑥2𝑦2 𝑑 ∈ 𝐅𝑝\ 0,1  4 ×prime 
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Deterministic Curve Selection 

Consider different families of primes for fast arithmetic 

twisted 

Edwards 

curves 

Weierstrass 

curves 

128-bit 

security 

192-bit 

security 

256-bit 

security 

Curve Quadratic twist parameter order 

Weierstrass 𝑦2 = 𝑥3 − 3𝑥 + 𝑏 𝑦2 = 𝑥3 − 3𝑥 − 𝑏 

 

𝑏 ∈ 𝐅𝑝\ ±2,0  prime 

Twisted 

Edwards 
−𝑥2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2 −𝑥2 + 𝑦2 = 1 + 1

𝑑 𝑥2𝑦2 𝑑 ∈ 𝐅𝑝\ 0,1  4 ×prime 



We have curves defined over these primes. 

How to compute ECSM? 
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Computing scalar multiplications 

• Dedicated formulas 

• Complete formulas 

What formula should  

be used in practice? 
  

Complete 

 Works for everything 

 No exceptions 

possible 

 Performance price 
  

Dedicated 

 Faster 

 Analyze exceptions 



We have curves defined over these primes. 

How to compute ECSM? 
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Computing scalar multiplications 

Weierstrass Dedicated Complete 
New 

“Complete” 

double 4M + 4S 

jac + aff  

jac 
7M + 4S 8M + 3S 

jac + jac  

jac 
11M + 5S 25M 12M + 4S 

Twisted 

Edwards 
Dedicated Complete 

double 4M + 3S 

proj + aff  proj 7M 8M 

proj + proj  proj 8M 9M 

• Dedicated formulas 

• Complete formulas 

What formula should  

be used in practice? 
  

Complete 

 Works for everything 

 No exceptions 

possible 

 Performance price 
  

Dedicated 

 Faster 

 Analyze exceptions 



We have prime and curves defined over these primes. 

How to compute ECSM? 
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Computing scalar multiplications 
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Weierstrass 

 

Variable base 

 

 Given a window size 𝑤, 2 ≤ 𝑤 < 10. 
 Scalar recoding to odd non-zero digits ±1,±3,… ,±(2𝑤−1 − 1)  

 Compute ECSM with dedicated point additions 

 Except the last addition which should be complete 

 

 

𝑃 + 𝑃, 𝑃 + 𝒪  
       𝒪 + 𝑃, 𝑃 + (−𝑃)  

Computing scalar multiplications 

Use dedicated formulas when possible 

Proof that no exceptions can occur 
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Twisted Edwards 

 

Variable base 

 

 Given a window size 𝑤, 2 ≤ 𝑤 < 10. 
 Clear torsion 𝑄 = 4𝑃 

 Validation: Check 𝑄 ≠ 𝒪 

 Scalar recoding to odd non-zero digits ±1,±3,… ,±(2𝑤−1 − 1)  

 Compute ECSM with dedicated point additions 

 Except the last addition which should be complete 

 

 

𝑃 + 𝑃, 𝑃 + 𝒪  
       𝒪 + 𝑃, 𝑃 + (−𝑃)  

Computing scalar multiplications 

Use dedicated formulas when possible 

Proof that no exceptions can occur 
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Weierstrass / Twisted Edwards 

 

Fixed base 
  

Offline 

 Clear torsion 𝑄 = 4𝑃 

 Validation: Check 𝑄 ≠ 𝒪 

 Precompute 𝑣 > 0 different tables of 2𝑤−1 points each 
  

Online 

 Compute ECSM with complete point additions only 

 

𝑃 + 𝑃, 𝑃 + 𝒪  
       𝒪 + 𝑃, 𝑃 + (−𝑃)  

Computing scalar multiplications 

Use dedicated formulas when possible 

Proof that no exceptions can occur 



July 29, 2014 Selecting new Curves / BU S&C / J. W. Bos 

15 

 

Weierstrass / Twisted Edwards 

 

Fixed base 
  

Offline 

 Clear torsion 𝑄 = 4𝑃 

 Validation: Check 𝑄 ≠ 𝒪 

 Precompute 𝑣 > 0 different tables of 2𝑤−1 points each 
  

Online 

 Compute ECSM with complete point additions only 

𝑃 + 𝑃, 𝑃 + 𝒪  
       𝒪 + 𝑃, 𝑃 + (−𝑃)  

Computing scalar multiplications 

Use dedicated formulas when possible 

Proof that no exceptions can occur 

Are other fixed base implementations correct for all inputs? 
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Our Implementation Choices 

Performance 

 Use dedicated formulas when possible 

 

Security 

 Use only algorithms which can be implemented in constant-time 

(branch-free)  

Weierstrass Twisted Edwards 

 Backward compatible 

with existing APIs 

implementing NIST 

curves 

 Use Edwards arithmetic only  

(no Montgomery ladder) 

 Reduce implementation burden and 

code size 

 Highest security  Performance at least as fast 
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Results 
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Old Weierstrass versus New Weierstrass 

• ECDHE 1.3x faster 

• ECDSA sign 1.2x slower, 25x reduced look-up table,  

more secure: side-channel resistant + cache-attack resistant 

• ECDSA ver 1.8x faster 
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D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, B.-Y. Yang (2011), High-speed high-security signatures 

D. J. Bernstein (2006), Curve25519: New Diffie-Hellman Speed Records 

Twisted Edwards versus twisted Edwards 

• ECDHE 1.3x faster 

• ECDSA sign 1.2x slower, 3x reduced look-up table,  

curve25519 implements EdDSA (not ECDSA) 

ECDSA ver 1.03x slower 
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D. J. Bernstein (2006), Curve25519: New Diffie-Hellman Speed Records 

Weierstrass versus twisted Edwards 

• Compared to old (NIST) curves, twisted Edwards is for 

ECDHE 1.6x and ECDSA sign 2.4x faster 

• Compared to our new curves, twisted Edwards is for 

ECDHE 1.3x and ECDSA sign 1.3x faster 
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Performance Results 

S. Gueron, V. Krasnov (2013), Fast prime field elliptic curve cryptography with 256 bit primes 

D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, B.-Y. Yang (2011), High-speed high-security signatures 

D. J. Bernstein (2006), Curve25519: New Diffie-Hellman Speed Records 

Source code available (open source apache license v2.0) 

http://research.microsoft.com/en-us/projects/nums/ 
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Conclusions 

New set of elliptic curves for the 128-, 192-, and 256-bit security levels 

 

Performance  

 
  

Security 

 

 
 

Practical 
 

  

 

 

 
 

 

 

  

IETF proposal online 

Elliptic Curve Cryptography Nothing Up My Sleeve Curves and Curve Generation 

http://tools.ietf.org/html/draft-black-numscurves-01 

 Use dedicated formulas: provably no exceptions 

 New Weierstrass curves significantly faster than NIST curves 

 Use algorithms which can be implemented in constant-time 

 Primes and curves are chosen deterministically 

(minimize room for backdoors) 

Weierstrass curves 

 Backward compatible with existing APIs 

 No changes in protocols required 

Twisted Edwards / Montgomery curves 

 Use twisted Edwards arithmetic only (no Montgomery ladder) 

Reduce maintenance cost and code size (no restrictions) 

 Better performance (1.3x) but protocol adjustments required 


