Fast Cryptography in Genus 2

Joppe W. Bos

Joint work with
Craig Costello, Huseyin Hisil, Kristin Lauter

MSR Privacy Workshop 2013

Microsoft:

Research

Motivation - |

| DH______ ECDH

Group (F{;ﬂx) (E(sz)’ +)

Motivation - |

| DH______ ECDH

Group (F{;ﬂx) (E(sz)’ +)

Security level log, P1 log, po
(bits)

128 3072 256
192 7680 384
256 15360 521

Source: NSA — The case for Elliptic Curve Cryptography
http://www.nsa.gov/business/programs/elliptic_curve.shtml

Motivation - |

Group (F{;ﬂx) (E(sz)’ +)

Why?

(bits) DH cost : ECDH cost
128 3072 256 10:1
192 7680 384 32:1
256 15360 521 64:1

Source: NSA — The case for Elliptic Curve Cryptography
http://www.nsa.gov/business/programs/elliptic_curve.shtml

Motivation - |

Ratio
DH cost : ECDH cost

ource: NSA — The case for Elliptic Curve Cryptography
http://www.nsa.gov/business/programs/elliptic_curve.shtml

Reduce the cost of the group operation

Can we do better?

e Use a different curve representation

e Use a different coordinate system

* E.g. twisted Edwards curves with
extended twisted Edwards coordinates

* See the Explicit-Formulas Database

Can we do better?

Reduce the cost of the group operation Reduce the number of group operations

e Use a different curve representation * Reduce the number of point additions

e Use a different coordinate system e.g. use large window sizes

* E.g. twisted Edwards curves with * Reduce the number of point doublings
extended twisted Edwards coordinates e.g. scalar decomposition

* See the Explicit-Formulas Database

Can we do better?

Reduce the cost of the group operation Reduce the number of group operations

e Use a different curve representation * Reduce the number of point additions

e Use a different coordinate system e.g. use large window sizes

* E.g. twisted Edwards curves with * Reduce the number of point doublings
extended twisted Edwards coordinates e.g. scalar decomposition

* See the Explicit-Formulas Database

Other optimizations

 Montgomery ladder

e Fast finite field arithmetic:
Curves over “special” primes

* Implementations using all the features
of the architecture: e.g. special
instructions, SIMD instructions

Can we do better?

Reduce the cost of the group operation

e Use a different curve representation

e Use a different coordinate system

* E.g. twisted Edwards curves with
extended twisted Edwards coordinates

* See the Explicit-Formulas Database

Other optimizations

 Montgomery ladder

e Fast finite field arithmetic:
Curves over “special” primes

* Implementations using all the features
of the architecture: e.g. special
instructions, SIMD instructions

Reduce the number of group operations

* Reduce the number of point additions
e.g. use large window sizes

* Reduce the number of point doublings
e.g. scalar decomposition

Change the setting!

* Consider genus 2
* Different cost of the group operation
» Different number of group operations
* Genus 2 equivalent of Montgomery ladder
 Kummer surface
* GLV on genus 2 curves?

Why genus 27

y% =x3 + a,x? + ayx + qq y? = x° + ax* + azx3 + a,x% + a;x + qy

O O

Both curves have around p points over E,
Hasse-Weil: p + 1 - 2gp < #C(F,)<p+ 1+ 2g.p

Why genus 27

y% =x3 + a,x? + ayx + qq 2 = x>+ a,x* + azx3 + a,x? + a;x + q,

Can’t do “chord-and-tangent” in genus 2

Why genus 27

y% =x3 + a,x? + ayx + qq y? = x° + ax* + azx3 + a,x% + a;x + qy

Roughly speaking: group elements are pairs of points
#E(F,) ~p versus #Jacc(F,) = p?

Why now?

Genus1l versus Genus?2 . . .
Due to recent advances in point counting we can

now construct cryptographic genus 2 curves

Practical performance comparison
Genus 1 versus Genus 2

* 128-bit security level

e High-end 64-bit platforms
(although we considered embedded devices as well)

Endomorphism Endomorphism

e Use all the available tricks!

Ladder Ladder

Why now?

Genus1l versus Genus?2 . . .
Due to recent advances in point counting we can

now construct cryptographic genus 2 curves

Practical performance comparison
Genus 1 versus Genus 2

* 128-bit security level

e High-end 64-bit platforms
(although we considered embedded devices as well)

Endomorphism Endomorphism

e Use all the available tricks!

Ladder Ladder

* Let’s start with an arithmetic interlude:
Why do we care about “special” primes?

Mersenne to the rescue!

In genus 1 “special” primes are used
to speed-up modular reduction
¢ NIST p224 — 2224 - 296 + 1
* NIST pyse = 2%°¢ — 2224 42192 4. 296 — 1

* Bernstein pyss9 = 22°° — 19

Mersenne to the rescue!

In genus 1 “special” primes are used

to speed-up modular reduction 1 2
¢ NIST p224 — 2224 - 296 + 1 2 3
* NIST pyge = 2256 — 2224 4+ 2192 4 29 — 1 2 j
* Bernstein pyss9 = 22°° — 19 : 12
6 17
8 31
* Prime of the form 29 — 1, with g prime 9 61
* Allows very efficient modular arithmetic 10 89
11 107
12 127
13 521
14 607

Mersenne to the rescue!

III

primes are used

In genus 1 “specia

to speed-up modular reduction 1 2
i NIST p224 — 2224 - 296 + 1 2 3
+ NIST ppge = 2256 — 2224 4. 2192 4 296 _ | j j
: __ »255
* Bernstein pysc19 = 2%°° — 19 : -
6 17
8 31
* Prime of the form 29 — 1, with g prime 9 61
« Allows very efficient modular arithmetic 3 LA SIS 10 89
. for genus 2
* Gaudry-Schost found a cryptographic 11 107
Kummer surface over F, with 12 127

p = 2127_1 13 521

Mersenne to the rescue! — Modular addition

Zero is represented by
128
a+b<?2 0or 2127 _ 1

f
+b if (a+b) < 21?7 —1
= a+bmod (2127-1) = {"
¢ =a+bmod() a+b—(227-1)if (a +b) > 2?7 — 1
Constant-time: addition + conditional subtraction

= addition +subtraction + masking (uses registers)

Mersenne to the rescue! — Modular addition

Zero is represented by
128
a+b<?2 0or 2127 _ 1

f
+b if (a+b) < 21?7 —1
= a+bmod (2127-1) = {"
¢ =a+bmod() a+b—(227-1)if (a +b) > 2?7 — 1
Constant-time: addition + conditional subtraction

= addition +subtraction + masking (uses registers)

R(x)=X—{%‘(2127_1)=x—{%‘2127+{%‘

Mersenne to the rescue! — Modular addition

a+b <218

f
+b if (a+b) < 21?7 —1
= a+bmod (2127-1) = {"
¢ =a+bmod() a+b—(227-1)if (a +b) > 2?7 — 1
Constant-time: addition + conditional subtraction

= addition +subtraction + masking (uses registers)

R(x)=X—{%‘(2127_1)=x—{%‘2127+{%‘

If the msb is zero then leave it at zero

If the msb is one then set it to zero
Idea: use the bit-reset instruction!

Mersenne to the rescue! — Modular addition

(
+b if (a+b) < 21?7 —1
= a+bmod (2127-1) = {"
¢ =a+bmod() a+b—(227-1)if (a +b) > 2?7 — 1
Constant-time: addition + conditional subtraction

= addition +subtraction + masking (uses registers)

R(x)=x—{%‘(2127—1)=x—{%‘2127+{%‘

Compute: ¢ = R(a + b) when 0 < a,b < 2127 then 0 < ¢ < 2147
Avoid masking and extra register usage
Cost modular addition: 2x add + 1x bit-reset instruction

Mersenne to the rescue! — Modular multiplication

c=axb=cy28 + ¢;, with
2
0<ab<227,0<c¢ <2128 and 0<cy < [(2127‘1)] = 2126 _q
2128

¢ = cy2?8 + ¢ —2cy (2127 — 1) = ¢, +2¢4 (mod (2127 — 1))

Mersenne to the rescue! — Modular multiplication

c=axb=cy28 + ¢;, with
2
0<ab<227,0<c¢ <2128 and 0<cy < [(2127‘1)] = 2126 _q
2128

¢ = cy2?8 + ¢ —2cy (2127 — 1) = ¢, +2¢4 (mod (2127 — 1))

¢ = R(R(c;) +2cy) (mod (2127 — 1))

Mersenne to the rescue! — Modular multiplication

c=aXxXb=cy21?8 + ¢;, with
127 _ 1)
0<ab<2¥ 0<c¢ <2 and 0<cy< [(2 21281)] =216 —1

¢ = cy2?8 + ¢ —2cy (2127 — 1) = ¢, +2¢4 (mod (2127 — 1))

¢ = R(R(c;) +2cy) (mod (2127 — 1))

Reduction cost: 6x add, 2X bit-reset, 1X shift

Mersenne to the rescue! — Modular multiplication

c=aXxXb=cy21?8 + ¢;, with
127 _ 1)
0<ab<2¥ 0<c¢ <2 and 0<cy< [(2 21281)] =216 —1

¢ = cy2?8 + ¢ —2cy (2127 — 1) = ¢, +2¢4 (mod (2127 — 1))

¢ = R(R(c;) +2cy) (mod (2127 — 1))

Reduction cost: 6x add, 2X bit-reset, 1X shift
Multiplication: 4x mul and 5x add instruction

Montgomery friendly primes

Interleaved radix-2? Montgomery multiplication
n-—1

C=A-B-27""modp,u=—-p 'mod2° A= Z a; 2P

=0 "
fori=0ton—1do
C=C+ai-B
g =pu-Cmod?2”
C:C+Z-p
2
_ J

Montgomery: Modular Multiplication Without Trial Division. Math. of Comp. 1985

Montgomery friendly primes

Interleaved radix-2? Montgomery multiplication

n-—1
C=A-B-27""modp,u=—p ' mod2° A= Z a; 2%
i=0
=0 h
fori=0ton—1do Not much we can do: this is the multiplication
C =0C+ a - B
g = u-C mod 2°
C .
=32
- J

Montgomery: Modular Multiplication Without Trial Division. Math. of Comp. 1985

Montgomery friendly primes

Interleaved radix-2? Montgomery multiplication

n—1
C=A-B-2"""modp,u=—-p~' mod2”°, 4= Z a;2b
i=0
C=0 A
fori=0ton—1do Not much we can do: this is the multiplication
C =0C + a - B
b b I b
q{:::@odz S If p = +1 mod 2° then u = ¥1 mod 2
__C+qp
=
NS J

Montgomery: Modular Multiplication Without Trial Division. Math. of Comp. 1985

Montgomery friendly primes

Interleaved radix-2? Montgomery multiplication

n-—1
C=A-B-2"""modp,u=—-p~' mod2”°, 4= Z a; 20"

i=0
=0 h
fori=0ton—1do Not much we can do: this is the multiplication

C=C-I—al--B
| If p = +1 mod 2° then 4 = ¥1 mod 2P

\

I”

Additionally, if p has a “special” form: avoid muls

Montgomery: Modular Multiplication Without Trial Division. Math. of Comp. 1985

Montgomery friendly primes

Interleaved radix-2? Montgomery multiplication

n-—1
C=A-B-2"""modp,u=—-p~' mod2”°, 4= Z a; 20"

i=0
C=0 R
fori=0ton—1do Not much we can do: this is the multiplication

C=C-I—al--B

If p = +1 mod 2° then 4 = ¥1 mod 2P

\

I”

Additionally, if p has a “special” form: avoid muls

Montgomery: Modular Multiplication Without Trial Division. Math. of Comp. 1985

2127 —1 = 264(263 _ O) —1 ‘

Security & Benchmark Platform
Benchmark Platform Generic Attack: Pollard rho

* Intel Core i7-3520M (lvy Bridge) e [Pollard-MoC78]
processor at 2893.484 MHz . \/(nr)/(Z#Aut), where #Aut > 2
* hyperthreading turned off and over- for curves with group order h - r
clocking (“turbo boost”) disabled Pr+2

Pa+ps2
PA+1

PA+p+1
PA+p+3 % Prt3

Px g Pa+p
Pr—1 .

pQE

P1

J. M. Pollard: Monte Carlo methods for index computation (mod p). Math. Comp., 1978

Po

Battle #1

NISTp-256 versus Genericl271

Battle #1
NISTp-256 versus Genericl271

Generic genus 1 versus Generic genus 2

Generic?

* No special requirements on the curve

* Techniques can be applied to all genus 1 or genus 2 curves
* Use “special” primes for efficiency

* Use prime order curves for optimal security

NISTp-256 versus Genericl27/1

2127 _ 1 (a)
2256 _ 2224- + 2192 + 296 —1

& 264263 — 0) — 1 (b)
Order Prime order Prime order
Scalar multiplication windowing windowing

: Jacobian coordinates with a = —3
Heareinalis cun for short Weierstrass curves [CL

i (1tr) -~ »127.8 (mtr) -~ 7126.8
Security J 2-2)~ 2 2-2)% 2

We use arithmetic on imaginary quadratic curves using homogeneous projective coordinates.
We optimized the formulas from:

[CL] Costello, Lauter: Group law computations on Jacobians of hyperelliptic curves. SAC 2011

NISTp-256 versus Genericl27/1

2127 _ 1 (a)
2256 _ 2224- + 2192 + 296 —1

p 264(263 _ 0) — 1 (b)
Order Prime order Prime order
Scalar multiplication windowing windowing

: Jacobian coordinates with a = —3
Heareinalis cun for short Weierstrass curves [CL

i (7r) ~ 7127.8 (7r) ~ 2126.8
Security J 2-2)~ 2 2-2)~ 2
Double 3M+5S 34M+6S
Addition 11M+5S 44M+4S

Mixed addition 7M+4S 37M+5S

NISTp-256 versus Genericl27/1

2127 —1 a
p 2256 _ 9224 | 9192 4 296 _ q { D)1 §b§
Order Prime order Prime order
Scalar multiplication windowing windowing
Jacobian coordinates with a = —3

Coordinate / curve [CL]

for short Weierstrass curves

Security J(”T)/(Z) ® 2127.8 \/(”7‘)/(2 2 2126.8

Battle #2

GLV-j=0 versus BuhlerKoblitzGLV

Scalar Decomposition over Prime Fields

e Gallant, Lambert, Vanstone [GLV-CO1]
e Use non-trivial endomorphism

e Larger endomorphism ring means larger
dimensional scalar decomposition

/

Scalar

Decomposition
Genus 1 over Fp Genus 2 over Fp

256-bit primes 128-bit primes

Allows: 2-GLV Allows: 4-GLV

Reducing the Number of Point Doublings

-

N\

* d-dimensional scalar decomposition

. . . d
« Decompose a scalar k into d “mini-scalars” k; =~ Yk
e Perform a multi-scalar multiplication with these d smaller scalars

Reducing the Number of Point Doublings

4)
* d-dimensional scalar decomposition
. . . d
« Decompose a scalar k into d “mini-scalars” k; =~ Yk

e Perform a multi-scalar multiplication with these d smaller scalars
\ J

Assume we can multiply efficiently by (powers) of some integer A = Vk

d-1
k1P =) (kA1 P = [ko]P + [ka](AIP) + -+ + [k 1 1([A*]P)
=0

Reducing the Number of Point Doublings

-

N\

* d-dimensional scalar decomposition

. . . d
« Decompose a scalar k into d “mini-scalars” k; =~ Yk
e Perform a multi-scalar multiplication with these d smaller scalars

d-1

Assume we can multiply efficiently by (powers) of some integer A = Vk

k1P = > kAT P = [kolP + [ka(AIP) + -+ [ka—a (A" *]P)
=0

Approach #1
Precompute: {@, P, [A]P, P + [A]P}

Example: d = 2

Reducing the Number of Point Doublings

-

N\

* d-dimensional scalar decomposition

. . . d
« Decompose a scalar k into d “mini-scalars” k; =~ Yk
e Perform a multi-scalar multiplication with these d smaller scalars

d-1

Assume we can multiply efficiently by (powers) of some integer A = Vk

k1P = > kAT P = [kolP + [ka(AIP) + -+ [ka—a (A" *]P)
=0

Approach #1
Precompute: {@, P, [A]P, P + [A]P}

Example: d = 2

Reducing the Number of Point Doublings

-

N\

* d-dimensional scalar decomposition

. . . d
« Decompose a scalar k into d “mini-scalars” k; =~ Yk
e Perform a multi-scalar multiplication with these d smaller scalars

d-1

Assume we can multiply efficiently by (powers) of some integer A = Vk

k1P = > kAT P = [kolP + [ka(AIP) + -+ [ka—a (A" *]P)
=0

Approach #1
Precompute: {@, P, [A]P, P + [A]P}

Example: d = 2

Reducing the Number of Point Doublings

-

N\

* d-dimensional scalar decomposition

. . . d
« Decompose a scalar k into d “mini-scalars” k; =~ Yk
e Perform a multi-scalar multiplication with these d smaller scalars

Assume we can multiply efficiently by (powers) of some integer A = Vk

k1P = > kAT P = [kolP + [ka(AIP) + -+ [ka—a (A" *]P)
=0

Approach #1
Precompute: {@, P, [A]P, P + [A]P}

Example: d = 2

Reducing the Number of Point Doublings

-

N\

* d-dimensional scalar decomposition

. . . d
« Decompose a scalar k into d “mini-scalars” k; =~ Yk
e Perform a multi-scalar multiplication with these d smaller scalars

Assume we can multiply efficiently by (powers) of some integer A = Vk

k1P = > kAT P = [kolP + [ka(AIP) + -+ [ka—a (A" *]P)
=0

Approach #1
Precompute: {@, P, [A]P, P + [A]P}

Example: d = 2

Reducing the Number of Point Doublings

4)
* d-dimensional scalar decomposition

. . . d
« Decompose a scalar k into d “mini-scalars” k; =~ Yk

e Perform a multi-scalar multiplication with these d smaller scalars
\ J

Assume we can multiply efficiently by (powers) of some integer A = Vk

d-1
k1P =) (kA1 P = [ko]P + [ka](AIP) + -+ + [k 1 1([A*]P)
=0

Approach #2

| {@,P,2P,3P}
Precompute: {{@, A]P, 2[A]P, 3|A]P}

Example: d = 2

Reducing the Number of Point Doublings

4)
* d-dimensional scalar decomposition

. . . d
« Decompose a scalar k into d “mini-scalars” k; =~ Yk

e Perform a multi-scalar multiplication with these d smaller scalars
\ J

Assume we can multiply efficiently by (powers) of some integer A = Vk

d-1
k1P =) (kA1 P = [ko]P + [ka](AIP) + -+ + [k 1 1([A*]P)
=0

Approach #2

{@,P,2P,3P}
{@,[A]P, 2[A]P, 3[A] P}
Example: d = 2

Precompute: {

BuhlerKoblitzGLV — 4-dimensional GLV

* C/F,: y*=x"+a D1y = (263 — 27433)26% + 1
* :Jac(C) - Jac(0), a=17

YD) =[A]D,for0 <A< 1= —pi,, mod26* = —1
* Decompose the scalar using [PJL] 254-bit prime order

Cost: 20 long integer muls

{p128n — 2128 — 24935
a=73"
256-bit prime order

[PJL] Park, Jeong, Lim: Speeding up point multiplication on hyperelliptic curves with efficiently-computable endomorphisms.
Eurocrypt 2002

GLV-j=0 versus BuhlerKoblitzGLV

2128 _ 24935 (a)
2256 — 11733
& (263 — 27433)26* + 1 (b)
Order Prime order Prime order
Scalar multiplication 2-dimensional GLV 4-dimensional GLV (approach #1)
e 20 integer muls +
Cost scalar multiplication 11 + 904M + 690S 34p+2145005M+748S
' (nr)/ ~ 2127.0 (7cr) ~ 71257
Security \/ 2-6)~ 2 2-10) ® 2

Longa, Sica: Four-dimensional Gallant-Lambert-Vanstone scalar multiplication. Asiacrypt 2012

GLV-j=0 versus BuhlerKoblitzGLV

2128 _ 24935 (a)
2256 — 11733
& (263 — 27433)26* + 1 (b)
Order Prime order Prime order
Scalar multiplication 2-dimensional GLV 4-dimensional GLV (approach #1)
e 20 integer muls +
Cost scalar multiplication 11 + 904M + 690S 31p+21+5005M+748S
' (cr) ~ 2127.0 (7cr) ~ 7125.7
Security \/ 2-6)~ 2 2-10) ® 2
Genus 1: GLV-j=0 145,000

Longa, Sica: Four-dimensional Gallant-Lambert-Vanstone scalar multiplication. Asiacrypt 2012

Battle #3

curve25519 versus Kummerl271

Battle #3

curve25519 versus Kummerl271

Use the Kummer surface from
Gaudry, Schost: Genus 2 point counting over prime fields, J. Symb. Comput., 2012

Laddering algorithms

~

* [M] differential addition: compute P + Q from
{P,Q,P — Q} without y-coord

e to compute kP keep {mP,(m + 1)P} such
that(im+ 1)P —mP =P

* Identify P = (P, Py) and —P = (P, —P))

* Cost for double+differential add: 5M + 4S

4 Elliptic curves

[M] Montgomery: Speeding the Pollard and elliptic curve methods of factorization. Math. of Comp. 1987

Laddering algorithms

- Elliptic curves N Genus 2 curves N
* [M] differential addition: compute P + Q from Work on the Kummer surface associated to a
{P,Q,P — Q} without y-coord Jacobian, rather than on the Jacobian itself

e to compute kP keep {mP,(m + 1)P} such
that(im+ 1)P —mP =P

[SS] genus 2 analogue Jac(C) — K is 2-to-1

« Identify P = (P.,P,) and —P = (P,, —P. * [G] faster Kummer surface
Y (B By) (B —Fy) * [C] even faster “squares only” setting on the
\. Cost for double+differential add: 5M + 4S Kummer surface

Cost for double+differential add: 16M + 9S /

-z

[M] Montgomery: Speeding the Pollard and elliptic curve methods of factorization. Math. of Comp. 1987
[SS] Smart, Siksek: A fast Diffie-Hellman protocol in genus 2. J. of Cryptology. 1999
[G] Gaudry: Fast genus 2 arithmetic based on theta functions. J. of Math. Cryptology. 2007

[C] Cosset: Factorization with genus 2 curves. Math. of Comp. 2010

Laddering algorithms

- Elliptic curves N Genus 2 curves N
* [M] differential addition: compute P + Q from Work on the Kummer surface associated to a
{P,Q,P — Q} without y-coord Jacobian, rather than on the Jacobian itself

e to compute kP keep {mP,(m + 1)P} such
that(im+ 1)P —mP =P
* Identify P = (P, Py) and —P = (P, —P))

[SS] genus 2 analogue Jac(C) — K is 2-to-1
[G] faster Kummer surface

[C] even faster “squares only” setting on the
* Cost for double+differential add: 5M + 4S Kummer surface

Cost for double+differential add: 16M + 9S /

-z

" no additions: does allow scalar multiplication
= attractive setting for Diffie-Hellman like protocols
= |nherently runs in constant time

[M] Montgomery: Speeding the Pollard and elliptic curve methods of factorization. Math. of Comp. 1987
[SS] Smart, Siksek: A fast Diffie-Hellman protocol in genus 2. J. of Cryptology. 1999
[G] Gaudry: Fast genus 2 arithmetic based on theta functions. J. of Math. Cryptology. 2007

[C] Cosset: Factorization with genus 2 curves. Math. of Comp. 2010

curve25519 versus Kummerl2/71
_ curve25519 Kummerl271

2127 —1
p 2755 —19 64 (63 "
2°%(2%° —=0)—1 (b)
Order 8 - 253-bit prime / 4 - 253-bit prime 16 - 250-bit prime / 16 - 251-bit prime
Scalar multiplication Montgomery ladder Kummer ladder
Coordinate / curve Montgomery curve SRl 7B s
surface
Double + dif. add 5M + 4S 16M + 9S
i (7cr) ~ 7125.8 (7r) ~ 71248
Security \/ 2-2)~ 2 2-2)~ 2

Bernstein: Curve25519: New Diffie-Hellman speed records. PKC 2006
Bernstein, Duif, Lange, Schwabe: High-speed high-security signatures. CHES 2011

curve25519 versus Kummerl271
I curve25519 Kummer1271

p 2255 _ 19 {227 _631 (a)
2°%(2%° —=0)—1 (b)
Order 8 - 253-bit prime / 4 - 253-bit prime 16 - 250-bit prime / 16 - 251-bit prime
Scalar multiplication Montgomery ladder Kummer ladder
Double + dif. add 5M + 4S 16M + 9S
Security \/(m”)/(z 2y F 2125.8 \/(m”)/(z) 2124.8

Bernstein: Curve25519: New Diffie-Hellman speed records. PKC 2006
Bernstein, Duif, Lange, Schwabe: High-speed high-security signatures. CHES 2011

Summary: genus 1 versus genus 2 over prime fields

Genus 1: NISTp-256 658,000
Genus 2: genericl1271 (a) 248,000

Generic
* Genus 2 > 2.5 faster than genus 1
* Mersenne prime 21?7 — 1 very efficient in practice
* NISTp-256 arithmetic (22°6 — 2224 + 2192 4 296 _ 1) is relatively slow

Summary: genus 1 versus genus 2 over prime fields

Genus 1: GLV-j=0 145,000
Genus 2: BuhlerKoblitzGLV (b) | 156,000

Endomorphism
* Genus 1 slightly faster than genus 2
(better genus 1 assembly implementation?)
* Montgomery friendly primes faster than primes of the form 2148 — ¢

Summary: genus 1 versus genus 2 over prime fields

Genus 1: curve25519 182,000 M
Genus 2: Kummer1271 (a) 117,000 |

Ladder
* Genus 2 faster than genus 1
* Thanks to the Kummer surface by Gaudry & Schost
the Mersenne prime 21?7 — 1 comes to the rescue again

Conclusions

Genus 2 has many advantages over elliptic curves

v’ Larger endomorphism ring
4-GLV possible in genus 2 versus 2-GLV in genus 1

v/ Can use the Mersenne prime 2147 — 1
v’ Laddering using the Kummer surface is very efficient

v’ This results are on a 64-bit platform, smaller primes have more
potential on embedded devices

Final score

genus 1 versus genus 2
1 ; 2

Conclusions

Related / ongoing work

= Genus 2 curves over Fz — 8-dimensional scalar decomposition

Allows for 64-bit primes p
Faster attacks, reduced security from 128-bit to =112-bit

" Practical analysis of security genus 1 versus genus 2 over F,
What is the effect of using the automorphism group in practice?

Future work
* Unlikely to attract attention from industry if less than order of magnitude faster:

More work is needed!
* Using endomorphisms on the Kummer surface?

Conclusions

Se ayy:
Related / ongoing work e”l,ot,-c or

" Genus 2 curves over F2 — 8-dimensional scalar decomposition genus
Allows for 64-bit primes p Cu"l/esp
Faster attacks, reduced security from 128-bit to =112-bit)

" Practical analysis of security genus 1 versus genus 2 over F,
What is the effect of using the automorphism group in practice?

Future work
* Unlikely to attract attention from industry if less than order of magnitude faster:

More work is needed!
* Using endomorphisms on the Kummer surface?

Conclusions

Se ayy:
Related / ongoing work e”l,ot,-c or

" Genus 2 curves over F2 — 8-dimensional scalar decomposition genus
Allows for 64-bit primes p Cu"l/esp
Faster attacks, reduced security from 128-bit to =112-bit)

" Practical analysis of security genus 1 versus genus 2 over F,
What is the effect of using the automorphism group in practice?

Future work
* Unlikely to attract attention from industry if less than order of magnitude faster:

More work is needed!
* Using endomorphisms on the Kummer surface?

Difficult to see. Always in motion is the future.

YODA, Star Wars Episode V: The Empire Strikes Back

