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MOTIVATION



Contemporary cryptography
TLS-ECDHE-RSA-AES128-GCM-SHA256

Public-key 
cryptography

RSA signatures

difficulty of 
factoring

Elliptic curve 
Diffie–Hellman
key exchange

difficulty of elliptic 
curve discrete 

logarithms

Symmetric 
cryptography

AES SHA-2

Can be solved efficiently by a 

large-scale quantum computer



Building quantum computers

Devoret, Schoelkopf. Science 339:1169–1174, March 2013.



Building quantum computers

Devoret, Schoelkopf. Science 339:1169–1174, March 2013.



When will a large-scale quantum computer be built?

“I estimate a 1/7 chance of 

breaking RSA-2048 by 2026

and a 1/2 chance by 2031.”

— Michele Mosca, November 2015

https://eprint.iacr.org/2015/1075



Post-quantum cryptography in academia

Conference series

• PQCrypto 2006

• PQCrypto 2008

• PQCrypto 2010

• PQCrypto 2011

• PQCrypto 2013

• PQCrypto 2014

• PQCrypto 2016
2009



Post-quantum cryptography in government

Aug. 2015 (Jan. 2016)

“IAD will initiate a 

transition to quantum 

resistant algorithms in 

the not too distant 

future.”

– NSA Information 

Assurance Directorate, 

Aug. 2015

Apr. 2016



NIST Post-quantum Crypto Project timeline

September 16, 2016 Feedback on call for proposals

Fall 2016 Formal call for proposals

November 2017 Deadline for submissions

Early 2018 Workshop – submitters’ presentations

3-5 years Analysis phase

2 years later Draft standards ready

http://www.nist.gov/pqcrypto

http://www.nist.gov/pqcrypto


Post-quantum / quantum-safe crypto

Hash-based

• Merkle
signatures

• Sphincs

Code-based

• McEliece

Multivariate 

• multivariate 
quadratic

Lattice-
based

• NTRU

• learning with 
errors

• ring-LWE

Isogenies

• supersingular
elliptic curve 
isogenies

No known exponential quantum speedup



Lots of questions

Design better post-quantum key exchange and signature schemes

Improve classical and quantum attacks

Pick parameter sizes

Develop fast, secure implementations

Integrate them into the existing infrastructure



This talk

• Two key exchange protocols from lattice-based problems
• BCNS15: key exchange from the ring learning with errors problem

• Frodo: key exchange from the learning with errors problem



Why key exchange?

• Signatures still done with traditional primitives (RSA/ECDSA) 
• we only need authentication to be secure now
• benefit: use existing RSA-based PKI

• Key agreement done with ring-LWE, LWE, …
• Also consider “hybrid” ciphersuites that use post-quantum and traditional elliptic curve

Premise: large-scale quantum computers don’t 

exist right now, but we want to protect today’s 

communications against tomorrow’s adversary.



LEARNING WITH 

ERROR PROBLEM



Solving systems of linear equations

Linear system problem: given blue, find red

secret
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Solving systems of linear equations

Linear system problem: given blue, find red
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Learning with errors problem

random secret small noise
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Learning with errors problem

Computational LWE problem: given blue, find red

random secret small noise
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Decision learning with errors problem

Decision LWE problem: given blue, distinguish green from random

random secret small noise looks random
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Toy example versus real-world example

4 1 11 10

5 5 9 5

3 9 0 10

1 3 3 2

12 7 3 4

6 5 11 4

3 3 5 0

2738 3842 3345 2979 …

2896 595 3607

377 1575

2760

…

752

8

752 × 8 × 15 bits =   11 KiB



Ring learning with errors problem

random

4 1 11 10

10 4 1 11

11 10 4 1

1 11 10 4

4 1 11 10

10 4 1 11

11 10 4 1

Each row is the cyclic 

shift of the row above



Ring learning with errors problem

random

4 1 11 10

3 4 1 11

2 3 4 1

12 2 3 4

9 12 2 3

10 9 12 2

11 10 9 12

Each row is the cyclic 

shift of the row above

…

with a special wrapping rule:

x wraps to –x mod 13.



Ring learning with errors problem

random

4 1 11 10 Each row is the cyclic 

shift of the row above

…

with a special wrapping rule:

x wraps to –x mod 13 ( )

So I only need to tell you the first row.



Ring learning with errors problem

4 + 1x + 11x2 + 10x3

6 + 9x + 11x2 + 11x3

0 – 1x +   1x2 +   1x3

10 + 5x + 10x2 +   7x3

random

secret

small noise

×

+

=



Ring learning with errors problem

4 + 1x + 11x2 + 10x3

10 + 5x + 10x2 +   7x3

random

secret

small noise

Computational ring-LWE problem: given blue, find red

×

+

=



Decision ring learning with errors problem

4 + 1x + 11x2 + 10x3

10 + 5x + 10x2 +   7x3

random

secret

small noise

looks random

Decision ring-LWE problem: given blue, distinguish green from random

×

+

=



Decision ring learning with errors problem 

with small secrets

4 + 1x + 11x2 + 10x3

1 + 0x – 1x2 +   2x3

10 + 5x + 10x2 +   7x3

random

small secret

small noise

looks random

×

+

=

Decision ring-LWE problem: given blue, distinguish green from random



Problems

Computational 
LWE problem

Decision 
LWE problem

Computational
ring-LWE problem

Decision 
ring-LWE problem

with or without 
short secrets

[LPR10] Lyubashevsky, Peikert, Regev. EUROCRYPT 2010.

[Reg05] Regev, STOC 2005; J. ACM 2009.



KEY AGREEMENT 

FROM RING-LWE



Decision ring learning with errors problem with short secrets



Hardness of decision ring-LWE

worst-case approximate shortest 
(independent) vector problem 
(SVP/SIVP) on ideal lattices in R

search ring-LWE

decision ring-LWE

decision ring-LWE 
with short secrets

Practice:

• Assume the best way to solve 

DRLWE is to solve LWE.

• Assume solving LWE involves a 

lattice reduction problem.

• Estimate parameters based on 

runtime of lattice reduction 

algorithms e.g. [APS15]

• (Ignore non-tightness.) [CKMS16]

poly-time [LPR10]

poly-time [LPR10]

tight [ACPS09]

[LPR10] Lyubashevsky, Peikert, Regev. EUROCRYPT 2010.

[ACPS15] Applebaum, Cash, Peikert, Sahai. CRYPTO 2009.

[CKMS16] Chatterjee, Koblitz, Menezes, Sarkar. ePrint 2016/360.



Basic ring-LWE-DH key agreement (unauthenticated)

public: “big” a in Rq = Zq[x]/(xn+1)

Alice

secret: 

random “small” s, e in Rq

Bob

secret:

random “small” s’, e’ in Rq

b = a • s + e

b’ = a • s’ + e’

shared secret: 

s • b’ = s • (a • s’ • e’) ≈ s • a • s’

shared secret: 

b • s’ ≈ s • a • s’

• Reformulation of Peikert’s ring-LWE KEM (PQCrypto 2014)

These are only approximately equal ⇒ need rounding



Rounding

• Each coefficient of the polynomial is an integer modulo q

• Treat each coefficient independently



Basic rounding

• Round either to 0 or q/2

• Treat q/2 as 1

0

q/4

q/2

3q/4

round 

to 0

round 

to 1

This works 

most of the time: 

prob. failure 2-10.

Not good enough: 

we need exact 

key agreement.



Better rounding (Peikert)
Bob says which of two regions 

the value is in:         or

0

q/4

q/2

3q/4

If 0

q/4

q/2

3q/4

If 0

q/4

q/2

3q/4

Prob. Failure is less than 2-128

Security not affected: revealing            or           leaks no information



Exact ring-LWE-DH key agreement (unauthenticated)

public: “big” a in Rq = Zq[x]/(xn+1)

Alice

secret: 

random “small” s, e in Rq

Bob

secret:

random “small” s’, e’ in Rq

b = a • s + e

b’ = a • s’ + e’,        or

shared secret: 

round(s • b’)

shared secret: 

round(b • s’)

• Reformulation of Peikert’s R-LWE KEM (PQCrypto 2014)



Ring-LWE-DH key agreement

Secure if 

decision ring 

learning with 

errors problem 

is hard.



Parameters

160-bit classical security, 
80-bit quantum security

• n = 1024

• q = 232–1

• 𝜒 = discrete Gaussian with 
parameter sigma = 8/sqrt(2π)

• Failure: 2-128

• Total communication: 8.1 KiB



Implementation aspect 1: Polynomial arithmetic

Polynomial multiplication in 𝑅𝑞 = ℤ𝑞 𝑋 /(𝑋210 + 1) done with Nussbaumer’s FFT

H. J. Nussbaumer. Fast polynomial transform algorithms for digital convolution. Acoustics, Speech and Signal Processing, IEEE Transactions on, 1980

Decompose 𝑅 = ℤ 𝑋 /(𝑋𝑛 + 1) into two extensions. 

Let 𝑛 = 2𝑘 = 𝑠 ∙ 𝑟 such that 𝑠 | 𝑟. Then

𝑅 ≅ 𝑆 = 𝑇[𝑋]/(𝑋𝑠 − 𝑍), where 𝑇 = ℤ 𝑍 /(𝑍𝑟 + 1)

Note: 𝑍𝑟/𝑠 is an 𝑠th root of −1 in 𝑇 and 𝑋𝑠 = 𝑍 in 𝑆.

Allow to compute the DFT symbolically in 𝑇.



Implementation aspect 2: 

Sampling discrete Gaussians

• Security proofs require “small” elements sampled within statistical distance 
2-128 of the true discrete Gaussian

• We use inversion sampling: precompute table of cumulative probabilities
• For us: 52 elements, size = 1248 bytes

• Sampling each coefficient requires six 192-bit integer comparisons and there are 
1024 coefficients
• 51 table entries and 1024 coefficients ≈ 52𝑘 comparisons for constant time



Sampling is expensive



“NewHope”
Alkim, Ducas, Pöppelman, Schwabe. 

USENIX Security 2016

• New parameters

• Different error distribution

• Improved performance

• Pseudorandomly generated 

parameters

• Further performance 

improvements by others 

[GS16,LN16,…]

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html

[GS16] Gueron, Schlieker. ePrint 2016/467.

[LN16] Longa, Naehrig. ePrint 2016/504.

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html


KEY AGREEMENT 

FROM LWE
Bos, Costello, Ducas, Mironov, Naehrig, Nikolaenko, Raghunathan, Stebila. 

Frodo: Take off the ring! Practical, quantum-safe key exchange from LWE.

ACM Conference on Computer and Communications Security (CCS) 2016.

See:   https://eprint.iacr.org/2016/659



Decision learning with errors problem with short secrets



Hardness of decision LWE

worst-case gap shortest 
vector problem (GapSVP)

decision LWE

decision LWE 
with short secrets

Practice:

• Assume the best way to solve 

DLWE is to solve LWE.

• Assume solving LWE involves 

a lattice reduction problem.

• Estimate parameters based on 

runtime of lattice reduction 

algorithms.

• (Ignore non-tightness.)

poly-time [BLPRS13]

tight [ACPS09]

[BLPRS13] Brakerski, Langlois, Peikert, Regev, Stehlé. STOC 2013.

[ACPS15] Applebaum, Cash, Peikert, Sahai. CRYPTO 2009.



Generic vs. ideal lattices

• Ring-LWE matrices have 
additional structure
• Relies on hardness of a problem in 

ideal lattices

• LWE matrices have 
no additional structure
• Relies on hardness of a problem in 

generic lattices

• NTRU also relies on a problem in 
a type of ideal lattices

• Currently, best algorithms for ideal 
lattice problems are essentially the 
same as for generic lattices
• Small constant factor improvement 

in some cases (e.g. sieving)

• If we want to eliminate this 
additional structure, can we still 
get an efficient algorithm?



“Frodo”: LWE-DH key agreement

Uses two matrix forms of LWE:

• Public key is n x n matrix

• Shared secret is m x n matrix

Secure if 

decision 

learning with 

errors problem 

is hard (and Gen is a 

secure PRF).

A generated 

pseudorandomly



Parameters

“Recommended”
• 156-bit classical security,

142-bit quantum security,
112-bit plausible lower bound

• n = 752, m = 8, q = 215

• 𝜒 = approximation to rounded Gaussian 
with 11 elements (< 16 bytes LUT)

• Failure: 2-36.5

• Total communication: 22.6 KiB

“Paranoid”
• 191-bit classical security,

174-bit quantum security,
138-bit plausible lower bound

• n = 864, m = 8, q = 215

• 𝜒 = approximation to rounded Gaussian 
with 13 elements (< 16 bytes LUT)

• Failure: 2-35.8

• Total communication: 25.9 KiB

All known variants of the sieving algorithm require a list of 

vectors to be created of this size

Improved Security Proofs in Lattice-Based Cryptography: Using the Rényi Divergence Rather Than the Statistical 

Distance. By S. Bai , A. Langlois, T. Lepoint, D. Stehlé, R. Steinfeld. In ASIACRYPT 2016

Error distribution close to discrete 

Gaussian in terms of Rényi divergence



STANDALONE 

PERFORMANCE



Implementations

Our implementations

• BCNS15

• Frodo

Pure C implementations

Constant time

Compare with others

• RSA 3072-bit (OpenSSL 1.0.1f)

• ECDH nistp256 (OpenSSL)

Use assembly code

• NewHope

• NTRU EES743EP1

• SIDH (Isogenies) (MSR)

Pure C implementations



Standalone performance

x86_64, 2.6 GHz Intel Xeon E5 (Sandy Bridge) – Google n1-standard-4 Note somewhat incomparable security levels



Standalone performance

RSA 3072-bit Fast (4 ms) Small (0.3 KiB)

ECDH nistp256 Very fast (0.7 ms) Very small (0.03 KiB)

BCNS Fast (1.5 ms) Medium (4 KiB)

NewHope Very fast (0.2 ms) Medium (2 KiB)

NTRU EES743EP1 Fast (0.3–1.2 ms) Medium (1 KiB)

SIDH Very slow (400 ms) Small (0.5 KiB)

Frodo Recommended Fast (1.4 ms) Large (11 KiB)

McBits* Very fast (0.5 ms) Very large (360 KiB)

* McBits results from source paper [BCS13] Bernstein, Chou, Schwabe. CHES 2013. Note somewhat incomparable security levels



TLS INTEGRATION 

AND 

PERFORMANCE



Integration into TLS 1.2

New ciphersuite: 

TLS-KEX-SIG-AES256-GCM-SHA384

• SIG = RSA or ECDSA signatures 

for authentication

• KEX = Post-quantum key exchange

• AES-256 in GCM for authenticated 

encryption

• SHA-384 for HMAC-KDF



TLS performance

Handshake latency

• Time from when client 
sends first TCP packet 
till client receives first 
application data

• No load on server

Connection throughput

• Number of connections 
per second at server 
before server latency 
spikes



TLS handshake latency
compared to NewHope-ECDSA

1.51x

1.65x

1.00x

1.55x

1.17x

1.71x

1.64x

1.08x

1.69x

1.33x

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Frodo Recom.

NTRU

NewHope

BCNS

ECDH nistp256

RSA sig ECDSA sig

x86_64, 2.6 GHz Intel Xeon E5 (Sandy Bridge) – server Google n1-standard-4, client -32 Note somewhat incomparable security levels

smaller (left) is better



TLS connection throughput
ECDSA signatures
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Hybrid ciphersuites

• Use both post-quantum key 
exchange and traditional key 
exchange

• Example: 
• ECDHE + NewHope

• Used in Google Chrome 
experiment

• ECDHE + Frodo

• Session key secure if either 
problem is hard

• Why use post-quantum?
• (Potential) security against future 

quantum computer

• Why use ECDHE?
• Security not lost against existing 

adversaries if post-quantum 
cryptanalysis advances



TLS connection throughput – hybrid w/ECDHE
ECDSA signatures
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bigger (top) is better



SUMMARY



Summary

• Exciting research area – lots of opportunities!

• Ring-LWE is fast and fairly small

• LWE can achieve reasonable key sizes

• Hybrid ciphersuites will probably play a role in the transition

• Performance differences are muted in application-level protocols

• Parameter sizes and efficiency likely to evolve

• Post-quantum key exchange soon to be in demand



Questions?

64.




