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Outline

The Cell Broadband Engine Architecture

Project 1: 112-bit prime field ECDLP

Project 2: Fast arithmetic modulo a Mersenne number in ECM
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Cell Availability

PS3 PS3 PCIe BladeServer
slim discontinued QS22?

Speed 3.2GHz 3.2GHz 2.8GHz 3.2GHz
#SPEs 6 6 8 16
Memory ≈256MB ≈256MB 4GB ≤32GB

Price $299.99 $100 – $300 ≈ $8k $10k – $14k
Power 250W 280W 210W 230W

Compatibility PSOne PSOne, Linux Linux Linux

? IBM PowerXCell 8i processor, offering five times the double precision
performance of the previous Cell/B.E. processor.
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Cell architecture, the SPEs

The SPEs contain

a Synergistic Processing Unit (SPU)

Access to 128 registers of 128-bit
SIMD operations
Dual pipeline (odd and even)
In-order processor

256 KB of fast local memory (Local Store)

Memory Flow Controller (MFC)

Direct Memory Access (DMA) controller
Handles synchronization operations to the other SPUs and the PPU
DMA transfers are independent of the SPU program execution
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SPU registers

• Byte: 16× 8-bit SIMD
• Half-word: 8× 16-bit SIMD
• Word: 4× 32-bit SIMD

Theoretical performance of 16× 3.2 · 109 = 51.2 billion 8-bit integer
operations per second.
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Special SPU instructions

All distinct binary operations f : {0, 1}2 → {0, 1} are present.
Furthermore:

shuffle bytes add/sub extended
or across count leading zeros
average of two vectors count ones in bytes
select bits gather lsb
carry/borrow generate sum bytes
multiply and add multiply and subtract

only

4-way SIMD

16× 16→ 32-bit multiplication
but,

4-way SIMD

16× 16 + 32→ 32-bit multiply-and-add instruction
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SPU pipelines and latencies

Instruction class Latency Pipeline

Load and store 6 Odd
Branch hints 15 Odd

Single-precision floating point 6 Even
Double-precision floating point 13∗ Even

Floating point integer 7 Even
Shuffle 4 Odd

Simple fixed-point 2 Even
Word rotate and shift 4 Even

One odd and one even instruction can be dispatched per clock cycle.
Challenge to the programmer (or compiler).
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Considerations

Branching

No “smart” dynamic branch prediction
Instead “prepare-to-branch” instructions to redirect instruction prefetch
to branch targets

Memory

The executable and all data should fit in the LS
Or perform manual DMA requests to the main memory (max. 214 MB)

Instruction set limitations

16× 16→ 32 bit multipliers (4-SIMD)

Challenge

One odd and one even instruction can be dispatched per clock cycle.
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LACAL setup

Physically in the cluster room:
190 PS3s

6× 4 PS3s in the PlayLaB
(attached to the cluster)

5 PS3 in our offices for
programming purposes

⇒ 219 PS3s in total.
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Outline

The Cell Broadband Engine Architecture

Project 1: 112-bit prime field ECDLP
Joppe W. Bos, Thorsten Kleinjung, Arjen K. Lenstra, On the Use of the Negation Map in the Pollard Rho
Method, Algorithmic Number Theory (ANTS) 2010, volume 6197 of LNCS, pages 67–83, 2010
Joppe W. Bos, High-Performance Modular Multiplication on the Cell Processor, Arithmetic of Finite Fields
(WAIFI) 2010, volume 6087 of LNCS, pages 7-24, 2010
Joppe W. Bos, Marcelo E. Kaihara, Peter L. Montgomery, Pollard rho on the PlayStation 3, Handouts of
SHARCS 2009, pages 35-50

Project 2: Fast arithmetic modulo a Mersenne number in ECM

12 / 35



The ECDLP

The setting:

E is an elliptic curve over Fp with p prime.

P ∈ E (Fp) a point of (prime) order n.

Q = k · P ∈ 〈P〉.

Problem: Given E , p, n,P and Q what is k?
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ECDLP Parameters

Certicom Challenge

Solve the ECDLP for EC over Fp (p odd prime) and F2m .

109-bit prime challenge solved in November 2002 by Chris Monico
Required time: 4000-5000 PCs working 24/7 for one year.

Next challenge is an EC over an 131-bit prime field

The 131-bit challenge requires 2000 times the effort of the 109-bit
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ECDLP Parameters

ECC Standards

Standard for Efficient Cryptography (SEC),
SEC2: Recommended Elliptic Curve Domain Parameters
Prime fields bit length: { 112, 128, 160, 192, 224, 256, 384, 521 }
Wireless Transport Layer Security Specification
Prime fields bit length: { 112, 160, 224 }
Digital Signature Standard (FIPS PUB 186-3)
Prime fields bit length: { 192, 224, 256, 384, 521 }

How fast can we solve this 112-bit ECDLP?
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How fast can we solve an 112-bit ECDLP?

Pollard rho

The most efficient algorithm in the literature (for generic curves) is Pollard
rho. The underlying idea of this method is to search for two distinct pairs
(ci , di ), (cj , dj) ∈ Z/nZ× Z/nZ such that

ci · P + di · Q = cj · P + dj · Q

(ci − cj) · P = (dj − di ) · Q = (dj − di )k · P

k ≡ (ci − cj)(dj − di )
−1 mod n

J. M. Pollard. Monte Carlo methods for index computation (mod p).Mathematics of Computation, 32:918-924, 1978.
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Xλ+1
Xλ+µ+1

Xλ+2

Xλ+µ+2

Xλ+3Xλ+µ+3

Xλ+µ−2
Xλ+µ−1

X0

X1

X2

Xλ−1

Xλ Xλ+µ
Pollard Rho

“Walk” through the set 〈P〉
Xi = ci · P + di · Q
Iteration function f : 〈P〉 → 〈P〉
This sequence eventually collides

Expected number of steps

(iterations):

√
π·|〈P〉|
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Integer Representation

x [0] =

128-bit wide register︷ ︸︸ ︷︸ ︷︷ ︸
the 32 (or 16) least significant bits of x2 are located in

this 32-bit word (or in its 16 least significant bits)
...

...
x [j ] = 16-bit︸ ︷︷ ︸

high

order

16-bit︸ ︷︷ ︸
low

order...
...

x [n − 1] = ︸ ︷︷ ︸
↑

(x1,

︸ ︷︷ ︸
↑
x2,

︸ ︷︷ ︸
↑
x3,

︸ ︷︷ ︸
↑
x4)
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Implementation Details

Optimize for high-throughput, not low-latency

Interleave two 4-way SIMD streams

An efficient 4-way SIMD modular inversion algorithm

Compute on 400 curves in parallel

simultaneous inversion (Montgomery)

Do not use the negation map optimization

Trade correctness for speed

When adding points X and Y do not check if X = Y .
Save code size and increase performance (no branching).

Faster modular reduction which might compute the wrong result.
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Special Moduli

112-bit target

The 112-bit prime p used in the target curve E (Fp) is

p = 2128−3
11·6949

Let R = 2128, use a redundant representation modulo
p̃ = R − 3 = 11 · 6949 · p

Note: x · 2128 ≡ x · 3 mod p̃

R : Z/2256Z → Z/2256Z
x 7→

(
x mod 2128

)
+ 3 ·

⌊
x

2128

⌋
x = xH · 2128 + xL ≡ xL + 3 · xH = R(x) mod p̃
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Sloppy Reduction

How often does it happen that R(R(a · b)) >= R?

Given x = x0 + x1R, 0 ≤ x < R2, then
R(x) = x0 + 3x1 = y = y0 + y1R ≤ 4R − 4 and hence: y1 ≤ 3

If y1 = 3, then y0 + y1R = y0 + 3R ≤ 4R − 4 and thus y0 ≤ R − 4.
If y1 ≤ 2, then y0 ≤ R − 1.

R(R(x)) =

{
y0 + 3y1 ≤ (R − 4) + 3 · 3
y0 + 2y1 ≤ (R − 1) + 3 · 2

}
= R + 5.

Rough heuristic approximation: 6
R+6

More sophisticated heuristic:(
φ(p̃)

p̃

)
·
∑
k=1,2

(
3− k − k log

(
3

k

))
≈ 0.99118

R
<

1

R
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Performance Results

Operation Average # cycles Average # cycles Operations Average # cycles

(sloppy modulus p̃ = 2128 − 3, per two interleaved per operation per iteration per iteration

modulus p = p̃
11·6949

) 4-SIMD operations

Sloppy multiplication modulo p̃ 430 54 6 322
(multiplication+reduction) (318 + 112) (40 + 14)
Modular subtraction 40 even, 24 odd: 40 total 5 6 30

Modular inversion n/a 4941 1
400

12

Unique representation mod p 192 24 1 24
Miscellaneous 544 68 1 68

Total 456

Hence, our 214-PS3 cluster:

computes 9.1 · 109 ≈ 233 iterations per second

works on > 0.5M curves in parallel

Storage

Per PS3: one distinguished point (4× 16 bytes) per two second

When storing the data naively: ≈ 300GB expected
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Comparison

XC3S1000 FPGAs [1]

FPGA-results of EC over 96- and 128-bit generic prime fields
for COPACOBANA [2]

Can host up to 120 FPGAs (US$ 10, 000)

Our implementation

Targeted at 112-bit prime curve

Use 128-bit multiplication + fast reduction modulo p̃

For US$ 10, 000 buy 33 PS3s

[1] T. Güneysu, C. Paar, and J. Pelzl. Special-purpose hardware for solving the elliptic curve discrete logarithm problem. ACM
Transactions on Reconfigurable Technology and Systems, 1(2):1-21, 2008.
[2] S. Kumar, C. Paar, J. Pelzl, G. Pfeiffer, and M. Schimmler. Breaking ciphers with COPACOBANA a cost-optimized parallel
code breaker. In CHES 2006, volume 4249 of LNCS, pages 101-118, 2006.
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Comparison

96 bits 128 bits

COPACOBANA 4.0 · 107 2.1 · 107

+ Moore’s law 7.9 · 107 4.2 · 107

+ Negation map 1.1 · 108 5.9 · 107

PS3 4.2 · 107

33 PS3 1.4 · 109

33 PS3 / COPACOBANA (96 bits): 12.4 times faster
33 PS3 / COPACOBANA (128 bits): 23.8 times faster

Note

The 33 dual-threaded PPE were not used

The new COPACOBANA has faster FPGAs
(no performance results known yet).
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The 112-bit Solution

The point P of prime order n is given in the standard.
The x-coordinate of Q was chosen as b(π − 3)1034c.

Expected #iterations
√

π·n
2 ≈ 8.4 · 1016

January 13, 2009 – July 8, 2009 (not running continuously)

When run continuously using the latest version of our code, the same
calculation would have taken 3.5 months

P = (188281465057972534892223778713752, 3419875491033170827167861896082688)
Q = (1415926535897932384626433832795028, 3846759606494706724286139623885544)
n = 4451685225093714776491891542548933

Q = 312521636014772477161767351856699 · P
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Outline

The Cell Broadband Engine Architecture

Project 1: 112-bit prime field ECDLP

Project 2: Fast arithmetic modulo a Mersenne number in ECM
Joppe W. Bos, Thorsten Kleinjung, Arjen K. Lenstra, Peter L. Montgomery. Efficient SIMD arithmetic modulo
a Mersenne number, Cryptology ePrint Archive: Report 2010/338, 2010.
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The Elliptic Curve Factorization Method

H. W. Lenstra, Factoring integers with elliptic curves, Annals of Mathematics 126 (1987), 649–673.

Goal: factor n ∈ Z

Pretend that Z/nZ is a field, pick a random curve Ea,b(Z/nZ) and a
random point P ∈ Ea,b(Z/nZ). Compute:

(x , y , z) :=
∏
q≤B1

q

⌊
log B1
log q

⌋
P,

where q is prime, computations are modulo n. If p = gcd(n, z) 6= {1, n}
then a non-trivial factor p of n has been found, else repeat.

The expected time used by ECM to find a factor p of a number n is

O(L(p)
√

2+o(1)M(log n))

where L(p) = e
√

log p log log p and M(log n) represents the complexity of
multiplication modulo n.
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Special Moduli

Moduli of special form allow fast computation

Proposed in the 1960s in the setting of residue number systems
R. D. Merrill. Improving digital computer performance using residue number theory. Electronic Computers, IEEE
Transactions on, EC-13(2):93–101, April 1964

Speed up fast Fourier transform based multiplications
R. Crandall and B. Fagin. Discrete weighted transforms and large-integer arithmetic. Mathematics of Computation,
62(205):305–324, 1994

Speeding up elliptic curve cryptography
The NIST curves
D. J. Bernstein. Curve25519: New Diffie-Hellman speed records. In PKC 2006, volume 3958 of LNCS, pages 207 228,
2006.

Factorization of Cunningham numbers, numbers of the form bn ± 1
for b = 2, 3, 5, 6, 7, 10, 11, 12 up to high powers.
A. J. C. Cunningham and H. J. Woodall. Factorizations of bn ± 1 for b = 2, 3, 5, 6, 7, 10, 11, 12 up to high powers.
Frances Hodgson, London, 1925
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Mersenne numbers: a = 2M − 1

We target M in the range [1000, 1200]

Target the finite field arithmetic,
the ECM implementation is from GMP-ECM
Optimize for throughput and reasonable latency
Compute on 4 computations in parallel
Do not interleave multiple of 4-way SIMD streams
Instead exploit the parallelism inside the computations
What prime sizes are doable with ECM?
(RSA multi-prime, unbalanced RSA)

unsigned radix-232 signed radix-213

a =
38∑
j=0

aj2
32j a =

95∑
j=0

aj2
13j

0 ≤ aj < 232 −212 ≤ aj < 212

Exploit the fast multiply-and-add instruction on the Cell
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Modular Arithmetic: Two Approaches

In- and output are in unsigned radix-232

1 conversion of inputs a and b to signed radix-213 representation;

2 carry-less calculation of the 2M-bit product a · b in signed 32-bit
radix-213 representation;

3 reduction modulo N and conversion to radix-232 representation of the
2M-bit product a · b, resulting in c = a · b mod N ∈ {0, 1, . . . ,N − 1}.

Additions and subtractions in unsigned radix-232 are faster
The conversion back can absorb the reduction almost for free
The conversions are expensive
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Example: Conversion to signed radix-213

Straightforward approach is slow due to lots of data dependencies.

Other approach:
pre-compute (radix-232 representation) C0 = 212 ·

∑95
j=0 213j .

1 Calculate the radix-232 representation of a + C0 (carries)

2 extract the radix-213 representation
95∑
j=0

ãj2
13j = a + C0 using masks

and shifts (in parallel)
3 subtract C0: aj = ãj − 212, for j = 0, 1, . . . , 95 (in parallel)

Pack two signed radix-213 digits in one 32-bit word (2x speedup).
Obtain a, regarded as a polynomial

Pa(X ) =
95∑
j=0

ajX
j ∈ Z[X ]

with Pa(213) = a
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Multiplication

Product polynomial: P(X ) = Pa(X )Pb(X ) =
190∑
j=0

pjX
j

with |pj | ≤ 96 · (212)2 < 231 such that P(213) = a · b

Carry-less product calculation of a and b allows computation modulo 232

Four levels of Karatsuba multiplication

81 independent polynomial multiplications

Q(k)(X ) = P
(k)
a (X )P

(k)
b (X ) of degree ≤ 5

Carry-less schoolbook multiplications (96× 96→ 192-bit)
→ factor 2 speedup over regular schoolbook multiplication

Carry-less additions and subtractions of the Q(k)(X )’s result in the
polynomial P(X )
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Performance

SPE effort for 4-way SIMD phase one ECM trials for N = 21193 − 1,
B1 = 3 · 109

operation
number of calls

radix-232 signed radix-213

mod N cpc hours cpc hours

a · b 26 193 284 192 6971 15.89 5666 12.92
a2 13 358 576 558 4814 5.60 4306 5.00
a + b
a− b

}
18 990 126 989 268 0.44

 645 1.12
a + b 523 868 924 180 0.01
a− b 523 868 924 180 0.01

total 21.95 19.05

The PS3-cluster:
24k curves expected to find a 65-digit factor: < 4 days
110k curves expected to find a 70-digit factor: two and a half weeks
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Comparison

Table : Time to complete 24 phase one ECM trials.

processor GHz cores
hours

Mersenne generic

Intel Xeon E5430 2.66 8 23.70 43.13
Intel Core i7 920 2.67 4 46.28 83.52
Intel Core2 Quad Q9550 2.83 4 47.26 85.93
Intel Core2 Quad Q6700 2.66 4 48.80 86.45
AMD Phenom 9500 2.22 4 38.48 65.75
AMD Opteron 1381 2.50 4 33.78 58.46
PlayStation 3 3.19 6 19.20
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Results

M
targeted completed number of trials

result
composite phase one phase two

961 c254 53 384 1 190 p61 · p193

1051 c310 23 136 9 186 p63 · c248
1073 c281 24 504 1 460 p66 · p215
1139 c313 49 080 35 490 p68 · p246
1163 c318 50 152 47 768 p73 · p246
1181 c291 25 393 8 808 p73 · p218
1187 c266 15 089 9 860 p63 · p204
1237 c373 71 556 70 809 p70 · c303
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