High-Performance Implementations on the Cell

Broadband Engine Architecture

Joppe W. Bos

Laboratory for Cryptologic Algorithms, EPFL,
Lausanne, Switzerland

(|

IECO},I: POLYTECHNIQUE
FEDERALE DE LAUSANNE

@ The Cell Broadband Engine Architecture
@ Project 1: 112-bit prime field ECDLP

@ Project 2: Fast arithmetic modulo a Mersenne number in ECM

SPE

o — [— | — = PU e — | r— | r—
[sxu {(sxu I sxu Tfiisxu J_sxu_1{{[sxu_J{I[sxu_][_sxv_]
v v v v v v
LS LS LS LS LS LS LS LS
[swE_[[TsmE | [SmE_]|[ZSME_J[_SME_||[“SME_]| [_S™E SMF |

6Bicycly v v \ 4 v v \ 4 A4
HB (up to 96Bicycle)
A A
PPE D 16B/cycle 16B/cycle (2x)
A
PPU MiC BIC

L1

e 16B[¢ycle

XU

L

\

Dual FlexIO™

XDR™

64-bit Power Architecture with VMX

Cell Availability

PS3 PS3 PCle BladeServer
slim discontinued QS22*
Speed 3.2GHz 3.2GHz 2.8GHz 3.2GHz
#SPEs 6 6 8 16
Memory ~256MB ~256MB 4GB <32GB
Price $299.99 $100 - $300 ~ $8k $10k — $14k
Power 250W 280W 210W 230W
Compatibility | PSOne PSOne, Linux Linux Linux

* IBM PowerXCell 8i processor, offering five times the double precision
performance of the previous Cell/B.E. processor.

Cell architecture, the SPEs

The SPEs contain
@ a Synergistic Processing Unit (SPU)

Access to 128 registers of 128-bit
SIMD operations

Dual pipeline (odd and even)

e In-order processor

@ 256 KB of fast local memory (Local Store)
e Memory Flow Controller (MFC)

o Direct Memory Access (DMA) controller
e Handles synchronization operations to the other SPUs and the PPU
o DMA transfers are independent of the SPU program execution

SPU registers

Preferred Slot Byte Index
o] 1 2 73 4 5 6 7 8 9 10 1" 12 13 14 15
Registers | vre |
e |
e]
‘ DOUBLEWORD H
‘ QUAD WORD
e Byte: 16 x 8-bit SIMD
e Half-word: 8 x 16-bit SIMD
e Word: 4 x 32-bit SIMD

SPU registers

Preferred Slot Byte Index
o] 1 2 73 4 5 6 7 8 9 10 1" 12 13 14 15
Registers | vre |
e |
e]
‘ DOUBLEWORD H
‘ QUAD WORD
e Byte: 16 x 8-bit SIMD
e Half-word: 8 x 16-bit SIMD
e Word: 4 x 32-bit SIMD

Theoretical performance of 16 x 3.2 - 10° = 51.2 billion 8-bit integer
operations per second.

Special SPU instructions

All distinct binary operations f : {0,1}? — {0,1} are present.
Furthermore:

shuffle bytes add/sub extended
or across count leading zeros
average of two vectors count ones in bytes
select bits gather Isb
carry/borrow generate sum bytes
multiply and add multiply and subtract
only 16 x 16 — 32-bit multiplication
but, 16 x 16 4+ 32 — 32-bit multiply-and-add instruction

Special SPU instructions

All distinct binary operations f : {0,1}? — {0,1} are present.
Furthermore:

shuffle bytes add/sub extended

or across count leading zeros
average of two vectors count ones in bytes
select bits gather Isb
carry/borrow generate sum bytes

multiply and add multiply and subtract

only 4-way SIMD 16 x 16 — 32-bit multiplication
but, 4-way SIMD 16 x 16 4+ 32 — 32-bit multiply-and-add instruction

SPU pipelines and latencies

Instruction class Latency Pipeline
Load and store 6 Odd
Branch hints 15 Odd
Single-precision floating point 6 Even
Double-precision floating point 13* Even
Floating point integer 7 Even
Shuffle 4 Odd
Simple fixed-point 2 Even
Word rotate and shift 4 Even

One odd and one even instruction can be dispatched per clock cycle.
Challenge to the programmer (or compiler).

Considerations

@ Branching

e No “smart” dynamic branch prediction
o Instead “prepare-to-branch” instructions to redirect instruction prefetch
to branch targets

e Memory

e The executable and all data should fit in the LS
o Or perform manual DMA requests to the main memory (max. 214 MB)

@ Instruction set limitations
e 16 x 16 — 32 bit multipliers (4-SIMD)
Challenge

e One odd and one even instruction can be dispatched per clock cycle.

LACAL setup

@ Physically in the cluster room:
190 PS3s

@ 6 X 4 PS3s in the PlayLaB
(attached to the cluster)

@ 5 PS3 in our offices for
programming purposes

@ = 219 PS3s in total.

10/35

Outline

@ The Cell Broadband Engine Architecture
° PrOJect 1: 112-bit prime field ECDLP

Joppe W. Bos, Thorsten Kleinjung, Arjen K. Lenstra, On the Use of the Negation Map in the Pollard Rho
Method, Algorithmic Number Theory (ANTS) 2010, volume 6197 of LNCS, pages 67-83, 2010

@ Joppe W. Bos, High-Performance Modular Multiplication on the Cell Processor, Arithmetic of Finite Fields
(WAIFI) 2010, volume 6087 of LNCS, pages 7-24, 2010

@ Joppe W. Bos, Marcelo E. Kaihara, Peter L. Montgomery, Pollard rho on the PlayStation 3, Handouts of
SHARCS 2009, pages 35-50

@ Project 2: Fast arithmetic modulo a Mersenne number in ECM

12/35

The ECDLP

The setting:
@ E is an elliptic curve over F, with p prime.
e P e E(F,) a point of (prime) order n.
e Q=k-Pec(P).

Problem: Given E, p,n, P and Q what is k?

13/35

ECDLP Parameters

Certicom Challenge
@ Solve the ECDLP for EC over I, (p odd prime) and Fonm.

@ 109-bit prime challenge solved in November 2002 by Chris Monico
Required time: 4000-5000 PCs working 24/7 for one year.

@ Next challenge is an EC over an 131-bit prime field

The 131-bit challenge requires 2000 times the effort of the 109-bit

14 /35

ECDLP Parameters

ECC Standards

e Standard for Efficient Cryptography (SEC),
SEC2: Recommended Elliptic Curve Domain Parameters
Prime fields bit length: { 112, 128, 160, 192, 224, 256, 384, 521 }

@ Wireless Transport Layer Security Specification
Prime fields bit length: { 112, 160, 224 }

e Digital Signature Standard (FIPS PUB 186-3)
Prime fields bit length: { 192, 224, 256, 384, 521 }

15/35

ECDLP Parameters

ECC Standards

e Standard for Efficient Cryptography (SEC),
SEC2: Recommended Elliptic Curve Domain Parameters
Prime fields bit length: { 112, 128, 160, 192, 224, 256, 384, 521 }

@ Wireless Transport Layer Security Specification
Prime fields bit length: { 112, 160, 224 }

e Digital Signature Standard (FIPS PUB 186-3)
Prime fields bit length: { 192, 224, 256, 384, 521 }

How fast can we solve this 112-bit ECDLP?

15 /35

How fast can we solve an 112-bit ECDLP?

Pollard rho

The most efficient algorithm in the literature (for generic curves) is Pollard
rho. The underlying idea of this method is to search for two distinct pairs
(ci,di), (¢j, dj) € Z/nZ x Z/nZ such that

¢i-P+di-Q=¢-P+d-Q

(ci—¢) P=(dj—d) - Q= (dj—d)k-P
k= (ci—¢)(dj —d;)"* mod n

J. M. Pollard. Monte Carlo methods for index computation (mod p).Mathematics of Computation, 32:918-924, 1978.

16 /35

y X)t3

Pollard Rho

e “Walk" through the set (P)
Xi:C;-P+di-Q

°
X1 ¢ e lIteration function f : (P) — (P)
"'.__ Xatpu—1 ‘XA+u—2 @ This sequence eventually collides
Xz“" @ Expected number of steps
(iterations): 4/ %
X1 1

Integer Representation

128-bit wide register

X [0] = | | | | | | ‘ ! |
| S——
the 32 (or 16) least significant bits of x» are located in
this 32-bit word (or in its 16 least significant bits)
x[j] = [|16-bit, 16-bit | | | |
S~
high low
: order order
x[n—1] = | I S R A N |
(X17 X2, X3, X4)

18/35

Implementation Details

Optimize for high-throughput, not low-latency
o Interleave two 4-way SIMD streams

An efficient 4-way SIMD modular inversion algorithm

Compute on 400 curves in parallel
e simultaneous inversion (Montgomery)

@ Do not use the negation map optimization

19/35

Implementation Details

@ Optimize for high-throughput, not low-latency

o Interleave two 4-way SIMD streams
o An efficient 4-way SIMD modular inversion algorithm
@ Compute on 400 curves in parallel

e simultaneous inversion (Montgomery)

@ Do not use the negation map optimization

Trade correctness for speed

@ When adding points X and Y do not check if X = Y.
Save code size and increase performance (no branching).

@ Faster modular reduction which might compute the wrong result.

19/35

Special Moduli

112-bit target

The 112-bit prime p used in the target curve E(FF,) is

. 2128_3
P = 116949

Let R = 21?8, use a redundant representation modulo
p=R—-3=11-6949-p

Note: x-21%8 = x .3 mod p

R: 7/2%°7 — 7.)2%507
X — (xmod 2'%) + 3. | 5% |

x=xy 22 4 x, =x +3-xy = R(x) mod p

Sloppy Reduction

How often does it happen that R(%R(a - b)) >= R?

Given x = xp + x1R, 0 < x < R?, then
R(x)=x0+3x1=y=yo+y1R <4R —4 and hence: y; <3

21/35

Sloppy Reduction

How often does it happen that R(%R(a - b)) >= R?

Given x = xp + x1R, 0 < x < R?, then
R(x)=x0+3x1=y=yo+y1R <4R —4 and hence: y; <3

If y7 =3, then yo+y1R=y0+ 3R < 4R — 4 and thus yo < R — 4.
If y7 <2, then yp < R —1.

[w+3<(R-4)+3-3] _
SR(%(X))_{yo+2y1§(R—1)+3-2 =R+5.

6

Rough heuristic approximation: #¢

21/35

Sloppy Reduction

How often does it happen that R(%R(a - b)) >= R?

Given x = xp + x1R, 0 < x < R?, then
R(x)=x0+3x1=y=yo+y1R <4R —4 and hence: y; <3

If y7 =3, then yo+y1R=y0+ 3R < 4R — 4 and thus yo < R — 4.
If y7 <2, then yp < R —1.

[w+3<(R-4)+3-3] _
SR(%(X))_{yo+2y1§(R—1)+3-2 =R+5.

6

Rough heuristic approximation: #¢

More sophisticated heuristic:

<¢§f)) .g;z <3_ K Klog <2)> N 0.9??118 1

>yl

21/35

ormance Results

Operation Average # cycles Average # cycles Operations Average # cycles
(sloppy modulus p = 2128 _ 3 per two interleaved per operation per iteration per iteration
modulus p = ﬁ) 4-SIMD operations
Sloppy multiplication modulo p 430 54 6 322
(multiplication+reduction) (318 + 112) (40 + 14)
Modular subtraction 40 even, 24 odd: 40 total 5 6 30
Modular inversion n/a 4941 ﬁ 12
Unique representation mod p 192 24 1 24
Miscellaneous 544 68 1 68

456

Total

22 /35

Performance Results

Operation Average # cycles Average # cycles Operations Average # cycles
(sloppy modulus p = 2128 _ 3 per two interleaved per operation per iteration per iteration
modulus p = ﬁ) 4-SIMD operations
Sloppy multiplication modulo p 430 54 6 322
(multiplication+reduction) (318 + 112) (40 + 14)
Modular subtraction 40 even, 24 odd: 40 total 5 6 30
Modular inversion n/a 4941 ﬁ 12
Unique representation mod p 192 24 1 24
Miscellaneous 544 68 1 68

[Total [456

Hence, our 214-PS3 cluster:
e computes 9.1 - 10° ~ 233 jterations per second

@ works on > 0.5M curves in parallel

Storage
@ Per PS3: one distinguished point (4 x 16 bytes) per two second

@ When storing the data naively: ~ 300GB expected

22 /35

Comparison

XC351000 FPGAs [1]

@ FPGA-results of EC over 96- and 128-bit generic prime fields
for COPACOBANA [2]

@ Can host up to 120 FPGAs (US$ 10, 000)

Our implementation

@ Targeted at 112-bit prime curve
@ Use 128-bit multiplication + fast reduction modulo p
@ For US$ 10,000 buy 33 PS3s

[1] T. Giineysu, C. Paar, and J. Pelzl. Special-purpose hardware for solving the elliptic curve discrete logarithm problem. ACM
Transactions on Reconfigurable Technology and Systems, 1(2):1-21, 2008.
[2] S. Kumar, C. Paar, J. Pelzl, G. Pfeiffer, and M. Schimmler. Breaking ciphers with COPACOBANA a cost-optimized parallel
code breaker. In CHES 2006, volume 4249 of LNCS, pages 101-118, 2006.

23 /35

Comparison

96 bits | 128 bits
COPACOBANA | 4.0-107 | 2.1-107
+ Moore's law | 7.9-107 | 4.2- 107
+ Negation map | 1.1-10% [5.9 107
PS3 4.2-10°
33 PS3 1.4-10°

33 PS3 / COPACOBANA (96 bits): 12.4 times faster
33 PS3 / COPACOBANA (128 bits): 23.8 times faster

24 /35

Comparison

96 bits | 128 bits
COPACOBANA | 4.0-107 | 2.1-107
+ Moore's law | 7.9-107 | 4.2- 107
+ Negation map | 1.1-10% [5.9 107
PS3 4.2-10°
33 PS3 1.4-10°

33 PS3 / COPACOBANA (96 bits): 12.4 times faster
33 PS3 / COPACOBANA (128 bits): 23.8 times faster

The 33 dual-threaded PPE were not used

The new COPACOBANA has faster FPGAs
(no performance results known yet).

24 /35

The 112-bit Solution

The point P of prime order n is given in the standard.
The x-coordinate of @ was chosen as | (7 — 3)1034].

25/35

The 112-bit Solution

The point P of prime order n is given in the standard.
The x-coordinate of @ was chosen as | (7 — 3)1034].

o Expected #iterations /5" ~ 8.4 - 1016
e January 13, 2009 — July 8, 2009 (not running continuously)

@ When run continuously using the latest version of our code, the same
calculation would have taken 3.5 months

P = (188281465057972534892223778713752, 3419875491033170827167861896082688)
Q = (1415926535897932384626433832795028, 3846759606494706724286139623885544)
n= 4451685225093714776491891542548933

25 /35

The 112-bit Solution

The point P of prime order n is given in the standard.
The x-coordinate of @ was chosen as | (7 — 3)1034].

o Expected #iterations /5 ~ 8.4 - 101°

e January 13, 2009 — July 8, 2009 (not running continuously)

@ When run continuously using the latest version of our code, the same
calculation would have taken 3.5 months

P = (188281465057972534892223778713752, 3419875491033170827167861896082688)
Q = (1415926535897932384626433832795028, 3846759606494706724286139623885544)
n= 4451685225093714776491891542548933

@ = 312521636014772477161767351856699 - P

25 /35

Outline

@ The Cell Broadband Engine Architecture

@ Project 1. 112-bit prime field ECDLP

@ Project 2: Fast arithmetic modulo a Mersenne number in ECM

@ Joppe W. Bos, Thorsten Kleinjung, Arjen K. Lenstra, Peter L. Montgomery. Efficient SIMD arithmetic modulo
a Mersenne number, Cryptology ePrint Archive: Report 2010/338, 2010.

(C ONTEMPORARY
IMATHEMATICS

2

Factorizations of b'+1,
b=23,567,1011, 12
Up to High Powers

Third Edifion

John Brilhart, D. H, Lehmer
J. L. Selfiidge, Bryant Tuckerman,
ands. 5. Wagstaff, Jr.

26 /35

The Elliptic Curve Factorization Method

H. W. Lenstra, Factoring integers with elliptic curves, Annals of Mathematics 126 (1987), 649-673.

Goal: factorne Z

Pretend that Z/nZ is a field, pick a random curve E, »(Z/nZ) and a
random point P € E, ,(Z/nZ). Compute:

Iog Bl

(o) = I ol

q<Bi

where g is prime, computations are modulo n. If p = ged(n, z) # {1, n}
then a non-trivial factor p of n has been found, else repeat.

27 /35

The Elliptic Curve Factorization Method

H. W. Lenstra, Factoring integers with elliptic curves, Annals of Mathematics 126 (1987), 649-673.

Goal: factorne Z

Pretend that Z/nZ is a field, pick a random curve E, »(Z/nZ) and a
random point P € E, ,(Z/nZ). Compute:

Iog Bl

(o) = I ol

q<Bi

where g is prime, computations are modulo n. If p = ged(n, z) # {1, n}
then a non-trivial factor p of n has been found, else repeat.

The expected time used by ECM to find a factor p of a number n is
O(L(p)V*+°™ M(log n))

where L(p) = eV'oerloglogr and M(log n) represents the complexity of

multiplication modulo n.
27 /35

Special Moduli

Moduli of special form allow fast computation

@ Proposed in the 1960s in the setting of residue number systems

R. D. Merrill. Improving digital computer performance using residue number theory. Electronic Computers, |IEEE
Transactions on, EC-13(2):93-101, April 1964

@ Speed up fast Fourier transform based multiplications
R. Crandall and B. Fagin. Discrete weighted transforms and large-integer arithmetic. Mathematics of Computation,
62(205):305-324, 1994

@ Speeding up elliptic curve cryptography
The NIST curves
D. J. Bernstein. Curve25519: New Diffie-Hellman speed records. In PKC 2006, volume 3958 of LNCS, pages 207 228,
2006.

e Factorization of Cunningham numbers, numbers of the form b" £+ 1
for b=2,3,5,6,7,10,11,12 up to high powers.

A. J. C. Cunningham and H. J. Woodall. Factorizations of b" 41 for b = 2,3,5,6,7,10, 11, 12 up to high powers.
Frances Hodgson, London, 1925

28 /35

Mersenne numbers: a = 2M — 1

We target M in the range [1000, 1200]

Target the finite field arithmetic,

the ECM implementation is from GMP-ECM
Optimize for throughput and reasonable latency
Compute on 4 computations in parallel

Do not interleave multiple of 4-way SIMD streams
Instead exploit the parallelism inside the computations
What prime sizes are doable with ECM?

(RSA multi-prime, unbalanced RSA)

29 /35

Mersenne numbers: a = 2M — 1

We target M in the range [1000, 1200]

Target the finite field arithmetic,

the ECM implementation is from GMP-ECM
Optimize for throughput and reasonable latency
Compute on 4 computations in parallel

Do not interleave multiple of 4-way SIMD streams
Instead exploit the parallelism inside the computations
What prime sizes are doable with ECM?

(RSA multi-prime, unbalanced RSA)

unsigned radix-232 ‘ signed radix-213

38 95
a= Z aj2321 a= Z aj213j
j=0 j=0
0<aj<2% —212 < g; < 212

Exploit the fast multiply-and-add instruction on the Cell

29 /35

Modular Arithmetic: Two Approaches

In- and output are in unsigned radix-232

@ conversion of inputs a and b to signed radix-2'3 representation;

@ carry-less calculation of the 2M-bit product a - b in signed 32-bit
radix-213 representation;

@ reduction modulo N and conversion to radix-232 representation of the
2M-bit product a- b, resulting in c =a-bmod N € {0,1,...,N—1}.

Additions and subtractions in unsigned radix-232 are faster

The conversion back can absorb the reduction almost for free
The conversions are expensive

30/35

Modular Arithmetic: Two Approaches

In- and output are in

@ conversion of inputs a and b to signed radix-2'3 representation;

@ carry-less calculation of the 2M-bit product a - b in signed 32-bit
radix-213 representation;

@ reduction modulo N and conversion to radix-232 representation of the
2M-bit product a- b, resulting in c =a-bmod N € {0,1,...,N—1}.

Additions and subtractions in unsigned radix-232 are faster

The conversion back can absorb the reduction almost for free
The conversions are expensive

30/35

Example: Conversion to signed radix-2'3

Straightforward approach is slow due to lots of data dependencies.

Other approach:
pre-compute (radix-232 representation) Co = 212 - Zjio 213/,
@ Calculate the radix-23? representation of a + Cp (carries)
95
@ extract the radix-213 representation Z 5;2'% = a + Cp using masks
and shifts (in parallel) =
O subtract Cp: a; = 3; — 2'2, for j =0,1,...,95 (in parallel)

31/35

Example: Conversion to signed radix-2'3

Pack two signed radix-2'3 digits in one 32-bit word (2x speedup).
Obtain a, regarded as a polynomial

95
Pa(X) = aXl € Z[X]
j=0

with P,(213) = a

31/35

Multiplication

190
Product polynomial: P(X) = P,(X)Pu(X) = Z p;i X!
j=0
with |pj| < 96 - (212)? < 231 such that P(213) =a- b

Carry-less product calculation of a and b allows computation modulo 232

Four levels of Karatsuba multiplication

@ 81 independent polynomial multiplications
QM(X) = PSI(X)PU(X) of degree < 5

@ Carry-less schoolbook multiplications (96 x 96 — 192-bit)
— factor 2 speedup over regular schoolbook multiplication

o Carry-less additions and subtractions of the @(X)(X)'s result in the
polynomial P(X)

32/35

Performance

SPE effort for 4-way SIMD phase one ECM trials for N = 21193 — 1,
B; =3-10°

operation radix-2%2 signed radix-213
number of calls

mod N cpc | hours | cpc hours
a-b 26193284192 | 6971 | 15.89 | 5666 12.92
a° 13358576558 | 4814 | 5.60 | 4306 5.00
z i_ 2 } 18990126989 | 268 | 0.44
a+b 523868924 | 180 | 0.01 045 112
a—b 523868924 | 180 | 0.01

total 21.95 19.05

The PS3-cluster:
24k curves expected to find a 65-digit factor: < 4 days

110k curves expected to find a 70-digit factor: two and a half weeks

33/35

Comparison

Table : Time to complete 24 phase one ECM trials.

hours

processor GHz cores .

Mersenne generic
Intel Xeon E5430 2.66 8 23.70 43.13
Intel Core i7 920 2.67 4 46.28 83.52
Intel Core2 Quad Q9550 2.83 4 47.26 85.93
Intel Core2 Quad Q6700 2.66 4 48.80 86.45
AMD Phenom 9500 2.22 4 38.48 65.75
AMD Opteron 1381 2.50 4 33.78 58.46
PlayStation 3 3.19 6 19.20

34 /35

targeted completed number of trials

i result
composite phase one phase two
1051 c310 23136 9186 p63 - c248
1073 c281 24504 1460 p66 - p215
1139 c313 49080 35490 p68 - p246
1163 c318 50152 47768 p73 - p246
1181 c291 25393 8808 p73 - p218
1187 €266 15089 93860 p63 - p204

1237 c373 71556 70809 p70 - c303

35/35

targeted completed number of trials

i result
composite phase one phase two
961 c254 53384 1190 p61 - p193
1051 c310 23136 9186 p63 - c248
1073 c281 24504 1460 p66 - p215
1139 c313 49080 35490 p68 - p246
1163 c318 50152 47768 p73 - p246
1181 c291 25393 8808 p73 - p218
1187 €266 15089 93860 p63 - p204

1237 c373 71556 70809 p70 - c303

35/35

	The Cell Broadband Engine
	SPU pipelines

	Preliminaries
	The ECDLP
	Pollard Rho

	Fast Implementation for a 112-bit ECDLP
	Results
	Performance Comparison

