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Motivation — Common belief
When computing the DLP on curves with an automorphism group of
cardinality m, one can obtain a constant-factor speedup of \/m.

How accurate is this factor v/m for various cryptographic genus 1 and
genus 2 curves in practice?



Preliminaries

The Elliptic Curve Discrete Logarithm Problem

Let p be an odd prime and E(F,) an elliptic curve over F,. Given
g € E(Fp) of prime order g and b € (g) find m € Z such that mg = b.

Believed to be a hard problem (O(,/9)).
Algorithms to solve the ECDLP:
Baby-step Giant-step, Pollard p, Pollard Kangaroo

Basic Idea

Pick random objects: ug + vh € (g) (u,v € Z)
Find duplicate / collision: ug + vh = ag + vbh.

u

If v # v mod g, m= = mod g solves the discrete logarithm problem.

Expected number of random objects: \/mq/2




, Xo43

Pollard Rho

e “Walk" through the set (g).
e Xi=u-g+v-h

Xa-1% _ e Iteration function f : (g) — (g)
Xxtp—1 Xo 2 @ This sequence eventually collides.
X> @ Expected number of steps

(iterations): %

X1



Pollard p

Approximate random walk in (g)
Index function £ : (g) = GoU...U&:_1 — [0,t — 1]

o= frire (o) =1 (o~

Precomputed partition constants: fo,...,fr—1

J. M. Pollard, Monte Carlo methods for index computation (modp), Math. Comp. 32 (1978)



Pollard p

Approximate random walk in (g)
Index function £ : (g) = GoU...U&:_1 — [0,t — 1]
q
G ={r:re )= '} &il ~

Precomputed partition constants: fo,...,fr—1

r-adding walk ‘ r + s-mixed walk
t=r t=r+s
pi + Fepy, iF0<L(pi) <r
2}3,‘, if é(p,) >r

pit1 =pi+fop;) | Pit1 =

r > 20 performance close to a random walk

J. M. Pollard, Monte Carlo methods for index computation (modp), Math. Comp. 32 (1978)
E. Teske: On random walks for Pollard’s rho method, Math. Comp. 70 (2001)



The Negation Map

M. J. Wiener, R. J. Zuccherato: Faster attacks on elliptic curve cryptosystems. SAC, LNCS 1556, Springer, 1999

Equivalence relation ~ on (g) by p ~ —p for p € (g).

(g) of size ¢ versus  (g)/~ of size about 3.

Advantage: Reduces the number of steps by a factor of v/2.
Efficient to compute: Given (x,y) € (g) — —(x,y) = (x, —y)



Certicom challenges

79-bit | exercise | December 1997
89-bit | exercise | February 1998
97-bit | exercise | September 1999
109-bit | level 1 | November 2002

@ 112-bit, standard curve, July 2009
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79-bit | exercise | December 1997
89-bit | exercise | February 1998
97-bit | exercise | September 1999
109-bit | level 1 | November 2002

@ 112-bit, standard curve, July 2009

Textbook optimization

Negation map (v/2 speed-up for EC) published in 1999.
Not used in any of the above mentioned ECDLP records.




Certicom challenges

79-bit | exercise | December 1997
89-bit | exercise | February 1998
97-bit | exercise | September 1999
109-bit | level 1 | November 2002

@ 112-bit, standard curve, July 2009

@ No theoretical improvement:
complexity still O(,/q)

@ Practical implications: e.g. 112-bit ECDLP
took us =~ 58.3 PS3 years. The negation map
could have saved up to 17.1 PS3 years




Negation Map, Side-Effects

Well-known disadvantage: as presented no solution to large ECDLPs
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Well-known disadvantage: fruitless cycles
(i7_) ('7_)
p— —(p+fi) —p.
Fruitless 2-cycle starts from a random point with probability =

I. M. Duursma, P. Gaudry, F. Morain. Speeding up the discrete log computation on curves with automorphisms. ASIACRYPT,
LNCS 1716, Springer, 1999.



Negation Map, Side-Effects

Well-known disadvantage: fruitless cycles

p("—_g—(pﬂ,-)("—_?p-

Fruitless 2-cycle starts from a random point with probability 2i

I. M. Duursma, P. Gaudry, F. Morain. Speeding up the discrete log computation on curves with automorphisms. ASIACRYPT,
LNCS 1716, Springer, 1999.

2-cycle reduction technique: look ahead

F(p) = { E(p) if j = £(~(p + 7)) for 0 <j<r
~(p +f;) with i > £(p) minimal s.t. £(~(p +f;)) # i mod r.

once every r" steps: E : (g) — (g) may restart the walk
r

. 1 .
Costlncreasec:g —I.W|th1—|-%§c§1—|-ﬁ.
r
i=0




Dealing with Fruitless Cycles in General

Cycle detection

[ steps

—_— P
O B
—_—

o steps

Compare p to all S points. Detect cycles of length < j3.

a too small: frequent cycle-checking (expensive)
a too large: higher probability of trapped walks (useless steps)

10/26



Dealing with Fruitless Cycles in General

Cycle detection

[ steps
—_—— P
Y
[ —

o steps

Compare p to all 8 points. Detect cycles of length < f.

| \

Cycle Escaping
Add
® fy(p)4c forafixed c € Z
@ a precomputed value §’
/!

° f/e,(p) from a distinct list of r precomputed values fg, 1, ..., f/_;.

to a representative element of this cycle.

10/26



2-cycles when using the 2-cycle reduction technique

U~(p+fir))  U~(a+fia))
=i—1 =1i—1

Lemma

The probability to enter a fruitless 2-cycle when looking ahead to reduce
2-cycles while using an r-adding walk is

2
1 (31 (rr=1—1)2 1 1
5(27) —m—ﬁw(ﬁ)-

1=

11/26



Size of the Random Walk

@ Probability to enter cycle depends on the number of partitions r
@ Why not simply increase r?
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Size of the Random Walk

@ Probability to enter cycle depends on the number of partitions r
@ Why not simply increase r?
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@ Practical performance penalty (cache-misses)
@ Fruitless cycles still occur
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Recurring Cycles

Using
o r-adding walk with a medium sized r and
o { 2, 4 }-reduction technique and
@ cycle escaping techniques
it is expected that many walks will never find a DTP.

13/26



Recurring Cycles

Using
o r-adding walk with a medium sized r and
o { 2, 4 }-reduction technique and
@ cycle escaping techniques
it is expected that many walks will never find a DTP.
—p—Fi— ¥

(j7 ;)f‘o\(% +)
ptfi v%fp_%
(iv +) (.] ’ 7)

*P*fi*fkq (k,+) 40 —p—Fe—F;

T b
(’L’ ) P +fk (]’7)

13/26



Probabilities Overview

Cycle reduction method: none 2-cycle 4-cycle

2-cycle i s 2r—2)2
Probability to enter { y 2r1 2r 1(‘2*1%:( n
- r—1 r—1 r—<) \r=
4-cycle T3 s T
f 1 1 (r—2)2
Probability to recur ff(p)“ 2r  2r ( f42)2
) ) 1 1 r—
to escape point using " 8r 83 T
Fe(p) S T ()
8r2 8r4 2r0
Slowdown factor of iteration function n/a £l 44

14 /26



Dealing with Recurring Cycles
A cycle with at least one doubling is most likely not fruitless. I
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Dealing with Recurring Cycles
A cycle with at least one doubling is most likely not fruitless. l

7 P+ Fo) 1 AP) # L~(P + Tp))s
flp) = { ~(2p) v otherwise v

This completely eliminates 2-cycles.
EC doubling is more expensive compared to a EC addition
(in affine Weierstrass).

15/26



What is used in practice?

o perform w > 0 steps before checking for a cycle

@ enter a cycle with probability p at each step

@ once we enter a cycle at step 0 </ < w all subsequent w — i steps
are fruitless

After w steps we expect to have computed

S
—

W(w,p) =3 _ p(1=p)(w—i)

Il
<}

fruitless steps.

Estimate the maximum speedup possible
(ignoring various implementation overheads)

16 /26



What is used in practice?

Cost EC-addition: 6 multiplications
Cost EC-doubling: 7 multiplications

o = 3000, 5 =10, r =128

2-cycle reduction, cycle escape by doubling
Prlenter 2-cycle] ~ 1/(2r%)

Prlenter 4-cycle] ~ (r —1)/(4r3)

fruitful 6(c — W(a, ;;,31))
total V2= %1604 +7 v2=0907v2

J. W. Bos, T. Kleinjung, A. K. Lenstra: On the Use of the Negation Map in the Pollard Rho Method, ANTS-IX,
LNCS 6197, pp. 66-82, Springer, 2010.
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Cost EC-addition: 6 multiplications
Cost EC-doubling: 7 multiplications

a = 3000, 8 =10, r =128

2-cycle reduction, cycle escape by doubling
Prlenter 2-cycle] ~ 1/(2r)

Prlenter 4-cycle] ~ (r —1)/(4r3)

. 6 - W 7f;1
fruitful - (a (o, %55 ))\@ = 0.97V2

total B 6o +7

In practice the observed speedup was 0.91y/2

J. W. Bos, T. Kleinjung, A. K. Lenstra: On the Use of the Negation Map in the Pollard Rho Method, ANTS-IX,

LNCS 6197, pp. 66-82, Springer, 2010.
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What is used in practice?

@ No cycle reduction, check frequently for cycles.

o Large r value: look for special precomputed points (x,y) such that
x=y =0 (mod 2°)

Check for 2-cycles every av = 48 steps, escape by doubling, r = 2048

fruitful\/z _ 6(a — W(a, %)) /2 = 01977/2
total ba+7 '

D. J. Bernstein, T. Lange, and P. Schwabe. On the correct use of the negation map in the Pollard rho method. PKC, LNCS
6571, Springer, 2011.

16 /26



Extending this approach

The idea behind the negation map applies to larger
efficiently computable cyclic automorphism groups

@ Assume the target curve comes equipped with such an automorphism
group of cardinality m and generator 1

o Define an equivalence relation ~ on (g) by R ~ R’ iff R = ¢/(R') for
some 0 <i<m

@ Modify Pollard rho:
Find the unique representative R of the class containing R (i.e.
Ri = R iff Ry ~ Ry), then call f(R) as usual

@ We always have the identity and the negation map
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Extending this approach

The idea behind the negation map applies to larger
efficiently computable cyclic automorphism groups

@ Assume the target curve comes equipped with such an automorphism
group of cardinality m and generator 1

o Define an equivalence relation ~ on (g) by R ~ R’ iff R = ¢/(R') for
some 0 <i<m

@ Modify Pollard rho:
Find the unique representative R of the class containing R (i.e.
Ri = R iff Ry ~ Ry), then call f(R) as usual

@ We always have the identity and the negation map

speedup slowdown
v/m fewer iterations | find the unique representative
— more costly iteration
overhead to deal with fruitless cycles

17 /26



Target Curves

NIST CurveP-256
E/FI_,:y2 =x3>-3x+b

[ (J’J); (.'X, *Y)}
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Target Curves

Generic1271
C/Ey:
NIST CurveP-256 v = x5+ azx® +azx? +ayx + ag

E/F, iy =x—3x+b Mumford representation:
{Goy), (x,— } { (x? + uyx + ug, vy x + v7g),
G2 4+ wyx +ug, —(vyx + vy)) }

19/26



Target Curves

NIST CurveP-256
E/szy2 =x*—3x+b
{ Gy, (e, )}

BN254
E/Fy:y* =x3+2

Sincep=1mod3 >{=+1€F,

st.(3=1
{ ), (x,—y),
Gx,y), (x,—y),
(¢%x, ), ((Px,~¥) }

Genericl271

C/Fy:
A ol & 2
y-=x + asx +a2x +a1x + dg

Mumford representation:
{ (2 + wyx + wg, vy x + ),

G2 4+ wyx +ug, —(vyx + vy)) }




Target Curves

Genericl271

C/Fy:
NIST CurveP-256 y2 = x5 +azx® tax? tax + ag
E[Fp:y* =x*—3x+b Mumford representation:
{(xy), (x,—) } { (2 + wyx + wg, vy x + ),
(e + wyx + ug, — (v x + 1)) }

BN254
E/F, cy? =x3 42 4GLv127-BK

C/Fp:y? =x5+417
Sincep=1mod3 -+ 1€E, _ {p ye=xtt
st.(3=1 Sincep=1mod5 > {+1€FE,

) (ot ) ¢ (x*+ Sltfs - + vg)
Px UX + Uy, VX + 1, s
(((fxy))((gzx 73’)3} (x? +§u1x1+ Czu(;, ogx -IPvO)
x,¥), X, —y




Updated Speedup Estimate

cost of one step
curve (g, m) divisor compute representative
addition worst average
CurveP-256 (1,2) 5M + S + 6a la 3a
original — updated estimate
CurveP-256 V2 — V2

Representative point with odd y-coordinate (when 0 <y < p)
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Updated Speedup Estimate

cost of one step
curve (g, m) divisor compute representative
addition worst ‘ average

CurveP-256 (1,2) 5M + S + 6a la za
BN254 (1,6) 5M + S + 6a 1M+ 3a IM +21a

original — updated estimate
CurveP-256 V2 — V2
BN254 V6 — 8V6 ~ 0.857/6

Representative point whose x-coordinate has least absolute value and
whose y-coordinate is odd

lneg (x,y)— (x,—y)
Lmul (Cx,y) < (Cx,—Y)
I mul (C%x,y) < (%%, —y)
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Updated Speedup Estimate

cost of one step
curve (g, m) divisor compute representative
addition worst ‘ average

CurveP-256 (1,2) 5M + S + 6a la za
BN254 (1,6) 5M + S + 6a 1M+ 3a IM +21a

original — updated estimate
CurveP-256 V2 — V2
BN254 V6 — 8V6 ~ 0.857/6

Representative point whose x-coordinate has least absolute value and
whose y-coordinate is odd. (?x = —(( + 1)x

1 neg (x,y) = (x,~y)
1 mul (Cx,y) > (Cx,—y)
Lneg, 1add (—(Cx+x),y) ¢ (—(Cx+x),—y)
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Updated Speedup Estimate

cost of one step
curve (g, m) divisor compute representative
addition ‘ worst ‘ average

CurveP-256 (1,2) 5M + S + 6a la 3a
BN254 (1,6) 5M + S + 6a 1M + 3a IM +21a
Generic1271 (2,2) | 20M + 4S + 48a 2a la

original — updated estimate
CurveP-256 V2 — V2
BN254 V6 — 8V6 ~ 0.857/6
Genericl271 V2 — V2

Representative divisor with odd vy-coordinate
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Updated Speedup Estimate

cost of one step
curve (g, m) divisor compute representative
addition worst ‘ average
CurveP-256 (1,2) 5M + S + 6a la ia
BN254 (1,6) 5M + S + 6a 1M + 3a IM +23a
Genericl271 (2,2) | 20M + 4S + 48a 2a la
4GLV127-BK | (2,10) | 20M +4S +48a | 6M+1S+5a | 5ZM+ ¢S+ 2a

original — updated estimate
CurveP-256 V2 — V2
BN254 NG — 8V6 ~ 0.857/6
Genericl271 V2 — V2
4GLV127-BK V10 - 120,/10 ~ 0.784+/10

151

Representative divisor whose wu;-coordinate has least absolute value and
whose vp-coordinate is odd. Use: (* = —(3 4+ 2 +( +1)
urup and u? are required for the efficient formulas

22/26



Other (popular) cryptographic curves?

o Curve25519 (Bernstein)
no additional automorphisms — identical analysis as CurveP-256

@ j-invariant zero curves (not pairing-friendly) using GLV techniques
o E/F,: y*=x3+2 with p =22 — 11733 (Longa and Sica)
o E/F,:y*=x3+T7 with p =2%° — 232 _ 977 standard curve used in
Bitcoin

Automorphism group the same as BN254 so identical analysis.
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Other (popular) cryptographic curves?

o Curve25519 (Bernstein)
no additional automorphisms — identical analysis as CurveP-256
@ j-invariant zero curves (not pairing-friendly) using GLV techniques
o E/F,:y?>=x3+2 with p=22° — 11733 (Longa and Sica)
o E/F,:y*=x3+T7 with p =2%° — 232 _ 977 standard curve used in
Bitcoin

Automorphism group the same as BN254 so identical analysis.

Genus 2

| \

Kummer surface over F, with p = 2127 — 1 (Gaudry and Schost)
@ No known way how to exploit the fast arithmetic on the Kummer
surface (only pseudo-additions exist)

@ Map DLP back to the Jacobian group — same situation as
Generic1271 (except cofactor of 16)

23 /26



Curve Performance (10° it/sec) speedup
without with expected real
NIST CurveP-256 | 2.569 2.447 V2 0.947/2
BN254 2.816 2.238 0.857v6  0.790v/6
Generic1271 2.941 2.780 V2 0.940v/2
4GLV127-BK 2.074 1.643 0.795v10 0.784/10
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Curve Performance (10° it/sec) speedup
without with expected real
NIST CurveP-256 | 2.569 2.447 V2 0.947/2
BN254 2.816 2.238 0.857v6  0.790/6
Generic1271 2.941 2.780 V2 0.940+/2
4GLV127-BK 2.074 1.643 0.795v/10 0.784/10

real / expected = 0.922 to 0.986
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Curve Performance (10° it/sec) speedup
without with expected real
NIST CurveP-256 | 2.569 2.447 V2 0.947\/2
BN254 2.816 2.238 0.857v6  0.790v/6
Generic1271 2.941 2.780 V2 0.940v/2
4GLV127-BK 2.074 1.643 0.795v10 0.784/10
| CurveP-256  BN254  Generic1271 4GLV127-BK
core years | 3.946 - 102* 0.486-102 1.736-10%* 1.309-10%
security 128.0 125.9 126.8 126.4
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Security

| CurveP-256 ~ BN254  Generic1271 4GLV127-BK
3.946-10** 9.486-10 1.736-10**  1.309-10*
128.0 125.9 126.8 126.4

core years
security

v

Interesting

o Certicom challenge over a 239-bit prime field: estimate 1.4 - 1077
Pentium-100 core years
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Security

| CurveP-256 ~ BN254  Generic1271 4GLV127-BK
3.946-10** 9.486-10 1.736-10**  1.309-10*
128.0 125.9 126.8 126.4

core years
security

v

Interesting

o Certicom challenge over a 239-bit prime field: estimate 1.4 - 1077
Pentium-100 core years

@ RSA-768 2000 core years. Estimate for RSA-3072:

N(3072)

W T768 =5 - 108 .2.10% = 10% core years

where N(k) = exp(1.923 |og(2k)1/3 |0g(|og(2k))z/3)

25 /26



Conclusions

One should use the automorphism group of cardinality m when solving the
DLP for genus {1,2} curves.
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One should use the automorphism group of cardinality m when solving the
DLP for genus {1,2} curves.

Advantage

Reduces the number of expected iterations by a factor /m

Disadvantages
@ More expensive iteration function: find the unique representative

o Side-effect: curves with larger automorphism groups loose less security

then previously thought:
e.g. BN254 /6 — 0.790v/6 ~ /3.7

@ Deal with fruitless cycles: overhead
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Conclusions

One should use the automorphism group of cardinality m when solving the
DLP for genus {1,2} curves.

Advantage

Reduces the number of expected iterations by a factor /m

Disadvantages
@ More expensive iteration function: find the unique representative

o Side-effect: curves with larger automorphism groups loose less security

then previously thought:
e.g. BN254 /6 — 0.790v/6 ~ /3.7

@ Deal with fruitless cycles: overhead

Given these estimates even the 131-bit prime field Certicom challenge

seems out of reach by an academic effort.
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