

Elliptic and Hyperelliptic Curves a Practical Security Analysis

Joppe W. Bos

Conference on the
Theoretical and Practical Aspects of the Discrete Logarithm Problem

Elliptic and Hyperelliptic Curves a **Practical** Security Analysis

Joppe W. Bos

Conference on the
Theoretical and **Practical Aspects** of the Discrete Logarithm Problem

Outline

- Practical issues when using Pollard rho and the negation map to solve the ECDLP (genus 1).

J. W. Bos, T. Kleinjung, A. K. Lenstra. *On the Use of the Negation Map in the Pollard Rho Method*, ANTS-IX, LNCS 6197, Springer, 2010.

- How does this look for genus 2 curves?

J. W. Bos, C. Costello, A. Miele. *Elliptic and Hyperelliptic Curves: a Practical Security Analysis*, PKC 2014, LNCS 8383, pp. 203-220, Springer, 2014.

Outline

- Practical issues when using Pollard rho and the negation map to solve the ECDLP (genus 1).
J. W. Bos, T. Kleinjung, A. K. Lenstra. *On the Use of the Negation Map in the Pollard Rho Method*, ANTS-IX, LNCS 6197, Springer, 2010.
- How does this look for genus 2 curves?

J. W. Bos, C. Costello, A. Miele. *Elliptic and Hyperelliptic Curves: a Practical Security Analysis*, PKC 2014, LNCS 8383, pp. 203-220, Springer, 2014.

Motivation – Common belief

When computing the DLP on curves with an automorphism group of cardinality m , one can obtain a constant-factor speedup of \sqrt{m} .

How accurate is this factor \sqrt{m} for various cryptographic genus 1 and genus 2 curves **in practice**?

The Elliptic Curve Discrete Logarithm Problem

Let p be an odd prime and $E(\mathbf{F}_p)$ an elliptic curve over \mathbf{F}_p . Given $\mathbf{g} \in E(\mathbf{F}_p)$ of prime order q and $\mathbf{h} \in \langle \mathbf{g} \rangle$ find $m \in \mathbf{Z}$ such that $m\mathbf{g} = \mathbf{h}$.

Believed to be a hard problem ($\mathcal{O}(\sqrt{q})$).

Algorithms to solve the ECDLP:

Baby-step Giant-step, Pollard ρ , Pollard Kangaroo

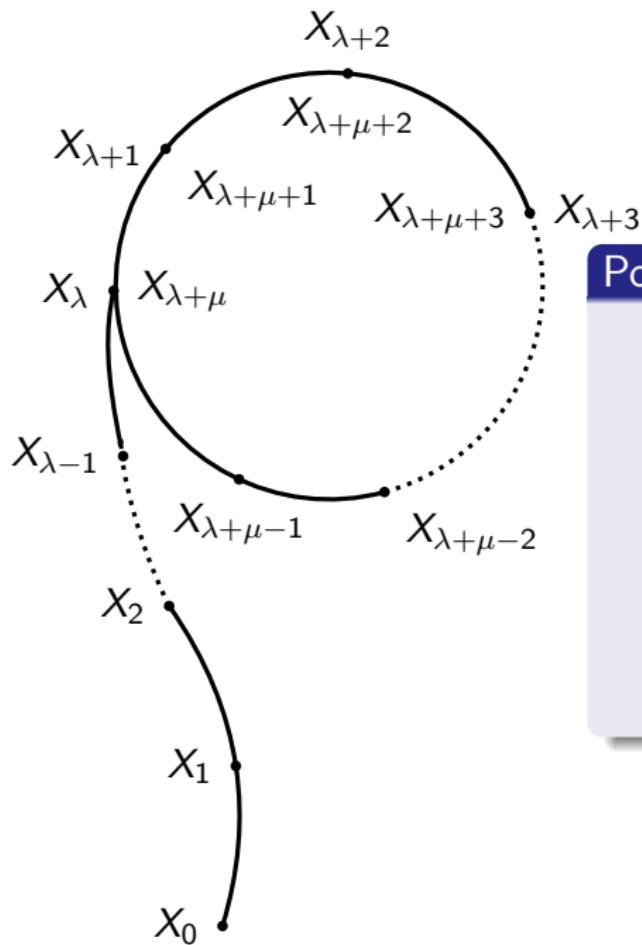
Basic Idea

Pick random objects: $u\mathbf{g} + v\mathbf{h} \in \langle \mathbf{g} \rangle$ ($u, v \in \mathbf{Z}$)

Find duplicate / collision: $u\mathbf{g} + v\mathbf{h} = \bar{u}\mathbf{g} + \bar{v}\mathbf{h}$.

If $\bar{v} \not\equiv v \pmod{q}$, $m = \frac{u - \bar{u}}{\bar{v} - v} \pmod{q}$ solves the discrete logarithm problem.

Expected number of random objects: $\sqrt{\pi q / 2}$



Pollard Rho

- “Walk” through the set $\langle g \rangle$.
- $X_i = u \cdot g + v \cdot h$
- Iteration function $f : \langle g \rangle \rightarrow \langle g \rangle$
- This sequence eventually collides.
- Expected number of steps
(iterations): $\sqrt{\frac{\pi \cdot |\langle g \rangle|}{2}}$

Pollard ρ

Approximate random walk in $\langle \mathfrak{g} \rangle$

Index function $\ell : \langle \mathfrak{g} \rangle = \mathfrak{G}_0 \cup \dots \cup \mathfrak{G}_{t-1} \mapsto [0, t-1]$

$\mathfrak{G}_i = \{ \mathfrak{x} : \mathfrak{x} \in \langle \mathfrak{g} \rangle, \ell(\mathfrak{x}) = i \}, \quad |\mathfrak{G}_i| \approx \frac{q}{t}$

Precomputed partition constants: $\mathfrak{f}_0, \dots, \mathfrak{f}_{t-1}$

Pollard ρ

Approximate random walk in $\langle \mathfrak{g} \rangle$

Index function $\ell : \langle \mathfrak{g} \rangle = \mathfrak{G}_0 \cup \dots \cup \mathfrak{G}_{t-1} \mapsto [0, t-1]$

$$\mathfrak{G}_i = \{ \mathfrak{x} : \mathfrak{x} \in \langle \mathfrak{g} \rangle, \ell(\mathfrak{x}) = i \}, \quad |\mathfrak{G}_i| \approx \frac{q}{t}$$

Precomputed partition constants: $\mathfrak{f}_0, \dots, \mathfrak{f}_{t-1}$

r-adding walk	$r+s$-mixed walk
$t = r$	$t = r+s$
$\mathfrak{p}_{i+1} = \mathfrak{p}_i + \mathfrak{f}_{\ell(\mathfrak{p}_i)}$	$\mathfrak{p}_{i+1} = \begin{cases} \mathfrak{p}_i + \mathfrak{f}_{\ell(\mathfrak{p}_i)}, & \text{if } 0 \leq \ell(\mathfrak{p}_i) < r \\ 2\mathfrak{p}_i, & \text{if } \ell(\mathfrak{p}_i) \geq r \end{cases}$

$r \geq 20$ performance close to a random walk

The Negation Map

M. J. Wiener, R. J. Zuccherato: *Faster attacks on elliptic curve cryptosystems*. SAC, LNCS 1556, Springer, 1999

Equivalence relation \sim on $\langle \mathfrak{g} \rangle$ by $\mathfrak{p} \sim -\mathfrak{p}$ for $\mathfrak{p} \in \langle \mathfrak{g} \rangle$.

$\langle \mathfrak{g} \rangle$ of size q versus $\langle \mathfrak{g} \rangle / \sim$ of size about $\frac{q}{2}$.

Advantage: Reduces the number of steps by a factor of $\sqrt{2}$.

Efficient to compute: Given $(x, y) \in \langle \mathfrak{g} \rangle \rightarrow -(x, y) = (x, -y)$

Observation

Certicom challenges

79-bit	exercise	December 1997
89-bit	exercise	February 1998
97-bit	exercise	September 1999
109-bit	level 1	November 2002

- 112-bit, standard curve, July 2009

Observation

Certicom challenges

79-bit	exercise	December 1997
89-bit	exercise	February 1998
97-bit	exercise	September 1999
109-bit	level 1	November 2002

- 112-bit, standard curve, July 2009

Textbook optimization

Negation map ($\sqrt{2}$ speed-up for EC) published in 1999.

Not used in any of the above mentioned ECDLP records.

Observation

Certicom challenges

79-bit	exercise	December 1997
89-bit	exercise	February 1998
97-bit	exercise	September 1999
109-bit	level 1	November 2002

- 112-bit, standard curve, July 2009
- No theoretical improvement: complexity still $\mathcal{O}(\sqrt{q})$
- Practical implications: e.g. 112-bit ECDLP took us ≈ 58.3 PS3 years. The negation map could have saved up to 17.1 PS3 years

Negation Map, Side-Effects

Well-known disadvantage: as presented no solution to large ECDLPs

Negation Map, Side-Effects

Well-known disadvantage: fruitless cycles

$$\mathfrak{p} \xrightarrow{(i,-)} -(\mathfrak{p} + \mathfrak{f}_i) \xrightarrow{(i,-)} \mathfrak{p}.$$

Fruitless 2-cycle starts from a random point with probability $\frac{1}{2r}$

I. M. Duursma, P. Gaudry, F. Morain. *Speeding up the discrete log computation on curves with automorphisms*. ASIACRYPT, LNCS 1716, Springer, 1999.

Negation Map, Side-Effects

Well-known disadvantage: fruitless cycles

$$\mathfrak{p} \xrightarrow{(i,-)} -(\mathfrak{p} + \mathfrak{f}_i) \xrightarrow{(i,-)} \mathfrak{p}.$$

Fruitless 2-cycle starts from a random point with probability $\frac{1}{2r}$

I. M. Duursma, P. Gaudry, F. Morain. *Speeding up the discrete log computation on curves with automorphisms*. ASIACRYPT, LNCS 1716, Springer, 1999.

2-cycle reduction technique: look ahead

$$f(\mathfrak{p}) = \begin{cases} E(\mathfrak{p}) & \text{if } j = \ell(\sim(\mathfrak{p} + \mathfrak{f}_j)) \text{ for } 0 \leq j < r \\ \sim(\mathfrak{p} + \mathfrak{f}_i) & \text{with } i \geq \ell(\mathfrak{p}) \text{ minimal s.t. } \ell(\sim(\mathfrak{p} + \mathfrak{f}_i)) \neq i \bmod r. \end{cases}$$

once every r^r steps: $E : \langle \mathfrak{g} \rangle \rightarrow \langle \mathfrak{g} \rangle$ may restart the walk

$$\text{Cost increase } c = \sum_{i=0}^r \frac{1}{r^i} \text{ with } 1 + \frac{1}{r} \leq c \leq 1 + \frac{1}{r-1}.$$

Dealing with Fruitless Cycles in General

Cycle detection

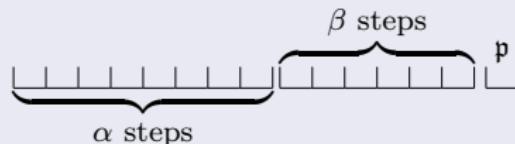
Compare p to all β points. Detect cycles of length $\leq \beta$.

α too small: frequent cycle-checking (expensive)

α too large: higher probability of trapped walks (useless steps)

Dealing with Fruitless Cycles in General

Cycle detection



Compare p to all β points. Detect cycles of length $\leq \beta$.

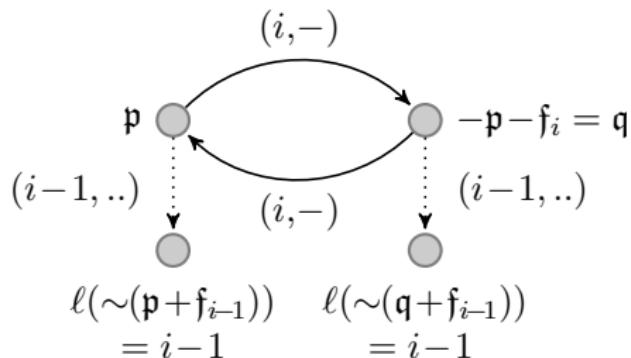
Cycle Escaping

Add

- $f_{\ell(p)+c}$ for a fixed $c \in \mathbf{Z}$
- a precomputed value f'
- $f''_{\ell(p)}$ from a distinct list of r precomputed values $f''_0, f''_1, \dots, f''_{r-1}$.

to a representative element of this cycle.

2-cycles when using the 2-cycle reduction technique



Lemma

The probability to enter a fruitless 2-cycle when looking ahead to reduce 2-cycles while using an r -adding walk is

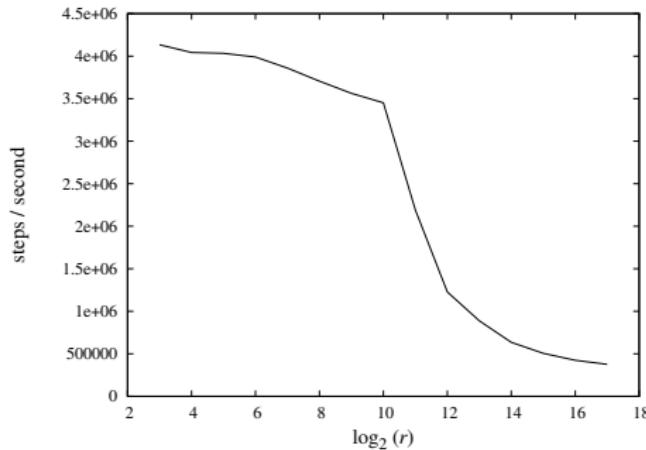
$$\frac{1}{2r} \left(\sum_{i=1}^{r-1} \frac{1}{r^i} \right)^2 = \frac{(r^{r-1} - 1)^2}{2r^{2r-1}(r-1)^2} = \frac{1}{2r^3} + \mathcal{O}\left(\frac{1}{r^4}\right).$$

Size of the Random Walk

- Probability to enter cycle depends on the number of partitions r
- Why not simply increase r ?

Size of the Random Walk

- Probability to enter cycle depends on the number of partitions r
- Why not simply increase r ?



- Practical performance penalty (cache-misses)
- Fruitless cycles still occur

Recurring Cycles

Using

- r -adding walk with a medium sized r **and**
- $\{ 2, 4 \}$ -reduction technique **and**
- cycle escaping techniques

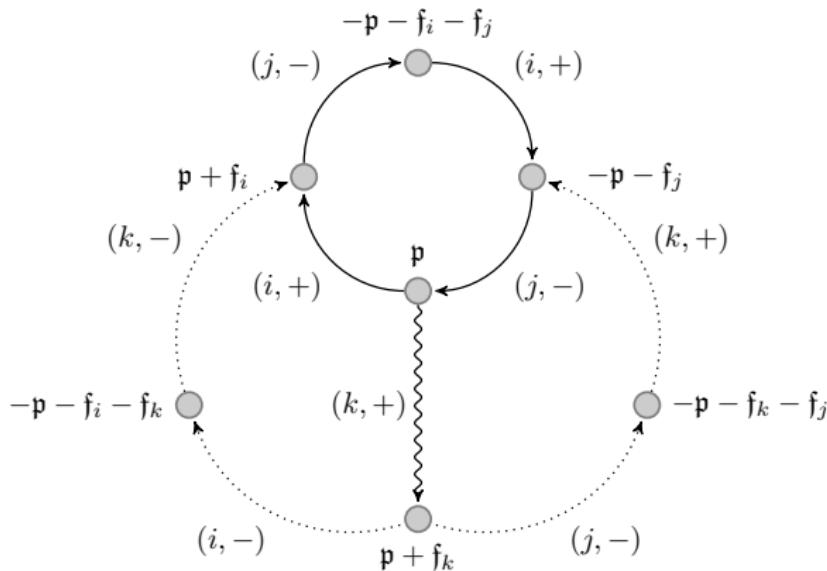
it is expected that many walks will never find a DTP.

Recurring Cycles

Using

- r -adding walk with a medium sized r **and**
- $\{ 2, 4 \}$ -reduction technique **and**
- cycle escaping techniques

it is expected that many walks will never find a DTP.



Probabilities Overview

	Cycle reduction method:	none	2-cycle	4-cycle
Probability to enter	2-cycle	$\frac{1}{2r}$	$\frac{1}{2r^3}$	$\frac{2(r-2)^2}{(r-1)r^4}$
	4-cycle	$\frac{r-1}{4r^3}$	$\frac{r-1}{4r^3}$	$\frac{4(r-2)^4(r-1)}{r^{11}}$
Probability to recur to escape point using	$f_{\ell}(p) + c$	$\frac{1}{2r}$	$\frac{1}{2r^2}$	$\frac{(r-2)^2}{r^4}$
	f'	$\frac{1}{8r}$	$\frac{1}{8r^3}$	$\frac{(r-2)^2}{2r^5}$
	$f''_{\ell}(p)$	$\frac{1}{8r^2}$	$\frac{1}{8r^4}$	$\frac{(r-2)^2}{2r^6}$
Slowdown factor of iteration function	n/a	$\frac{r+1}{r}$	$\frac{r+4}{r}$	

Dealing with Recurring Cycles

Heuristic

A cycle with at least one doubling is most likely not fruitless.

Dealing with Recurring Cycles

Heuristic

A cycle with at least one doubling is most likely not fruitless.

$$\bar{f}(\mathfrak{p}) = \begin{cases} \sim(\mathfrak{p} + \mathfrak{f}_{\ell(\mathfrak{p})}) & \text{if } \ell(\mathfrak{p}) \neq \ell(\sim(\mathfrak{p} + \mathfrak{f}_{\ell(\mathfrak{p})})), \\ \sim(2\mathfrak{p}) & \text{otherwise} \end{cases}$$

Dealing with Recurring Cycles

Heuristic

A cycle with at least one doubling is most likely not fruitless.

$$\bar{f}(\mathfrak{p}) = \begin{cases} \sim(\mathfrak{p} + \mathfrak{f}_{\ell(\mathfrak{p})}) & \text{if } \ell(\mathfrak{p}) \neq \ell(\sim(\mathfrak{p} + \mathfrak{f}_{\ell(\mathfrak{p})})), \\ \sim(2\mathfrak{p}) & \text{otherwise} \end{cases}$$

This **completely eliminates** 2-cycles.

EC doubling is more expensive compared to a EC addition
(in affine Weierstrass).

What is used in practice?

- perform $w > 0$ steps before checking for a cycle
- enter a cycle with probability p at each step
- once we enter a cycle at step $0 \leq i \leq w$ all subsequent $w - i$ steps are fruitless

After w steps we expect to have computed

$$W(w, p) = \sum_{i=0}^{w-1} p(1-p)^i (w-i)$$

fruitless steps.

Estimate the maximum speedup possible
(ignoring various implementation overheads)

What is used in practice?

Cost EC-addition: 6 multiplications

Cost EC-doubling: 7 multiplications

Setting I

$$\alpha = 3000, \beta = 10, r = 128$$

2-cycle reduction, cycle escape by doubling

$$\Pr[\text{enter 2-cycle}] \approx 1/(2r^3)$$

$$\Pr[\text{enter 4-cycle}] \approx (r-1)/(4r^3)$$

$$\frac{\text{fruitful}}{\text{total}}\sqrt{2} = \frac{6(\alpha - W(\alpha, \frac{r-1}{4r^3}))}{\frac{r+1}{r}6\alpha + 7}\sqrt{2} = 0.97\sqrt{2}$$

What is used in practice?

Cost EC-addition: 6 multiplications

Cost EC-doubling: 7 multiplications

Setting I

$$\alpha = 3000, \beta = 10, r = 128$$

2-cycle reduction, cycle escape by doubling

$$\Pr[\text{enter 2-cycle}] \approx 1/(2r^3)$$

$$\Pr[\text{enter 4-cycle}] \approx (r-1)/(4r^3)$$

$$\frac{\text{fruitful}}{\text{total}}\sqrt{2} = \frac{6(\alpha - W(\alpha, \frac{r-1}{4r^3}))}{\frac{r+1}{r}6\alpha + 7}\sqrt{2} = 0.97\sqrt{2}$$

In practice the observed speedup was $0.91\sqrt{2}$

What is used in practice?

- No cycle reduction, check frequently for cycles.
- Large r value: look for special precomputed points (x, y) such that $x \equiv y \equiv 0 \pmod{2^c}$

Setting II

Check for 2-cycles every $\alpha = 48$ steps, escape by doubling, $r = 2048$

$$\frac{\text{fruitful}}{\text{total}}\sqrt{2} = \frac{6(\alpha - W(\alpha, \frac{1}{2r}))}{6\alpha + 7}\sqrt{2} = 0.97\sqrt{2}$$

D. J. Bernstein, T. Lange, and P. Schwabe. *On the correct use of the negation map in the Pollard rho method*. PKC, LNCS 6571, Springer, 2011.

Extending this approach

The idea behind the negation map applies to larger efficiently computable cyclic automorphism groups

- Assume the target curve comes equipped with such an automorphism group of cardinality m and generator ψ
- Define an equivalence relation \sim on $\langle g \rangle$ by $R \sim R'$ iff $R = \psi^i(R')$ for some $0 \leq i < m$
- Modify Pollard rho:
Find the unique representative \tilde{R} of the class containing R (i.e. $\tilde{R}_1 = \tilde{R}_2$ iff $R_1 \sim R_2$), then call $f(\tilde{R})$ as usual
- We always have the identity and the negation map

Extending this approach

The idea behind the negation map applies to larger **efficiently computable** cyclic automorphism groups

- Assume the target curve comes equipped with such an automorphism group of cardinality m and generator ψ
- Define an equivalence relation \sim on $\langle g \rangle$ by $R \sim R'$ iff $R = \psi^i(R')$ for some $0 \leq i < m$
- Modify Pollard rho:
Find the unique representative \tilde{R} of the class containing R (i.e. $\tilde{R}_1 = \tilde{R}_2$ iff $R_1 \sim R_2$), then call $f(\tilde{R})$ as usual
- We always have the identity and the negation map

Extending this approach

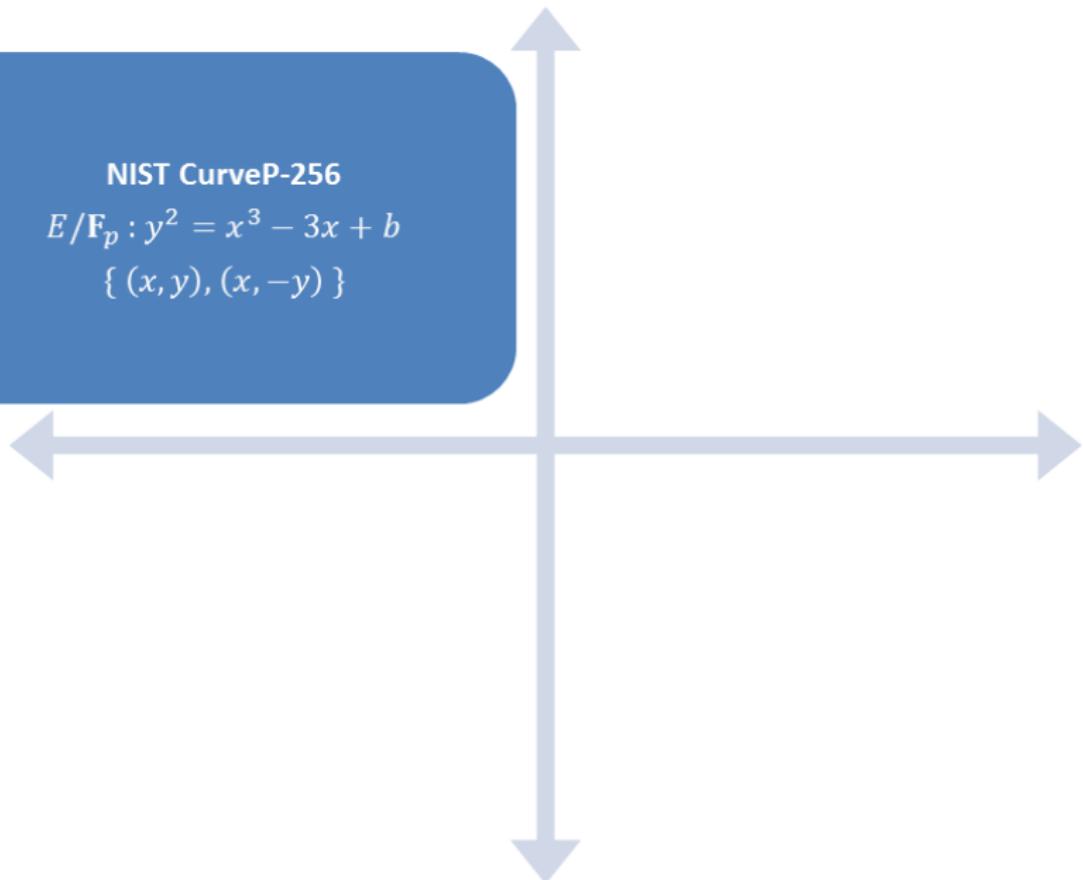
The idea behind the negation map applies to larger **efficiently computable** cyclic automorphism groups

- Assume the target curve comes equipped with such an automorphism group of cardinality m and generator ψ
- Define an equivalence relation \sim on $\langle g \rangle$ by $R \sim R'$ iff $R = \psi^i(R')$ for some $0 \leq i < m$
- Modify Pollard rho:
Find the unique representative \tilde{R} of the class containing R (i.e. $\tilde{R}_1 = \tilde{R}_2$ iff $R_1 \sim R_2$), then call $f(\tilde{R})$ as usual
- We always have the identity and the negation map

speedup	slowdown
\sqrt{m} fewer iterations	find the unique representative → more costly iteration
	overhead to deal with fruitless cycles

Target Curves

NIST CurveP-256
 $E/\mathbf{F}_p : y^2 = x^3 - 3x + b$
 $\{ (x, y), (x, -y) \}$



Target Curves

NIST CurveP-256

$$E/\mathbf{F}_p : y^2 = x^3 - 3x + b$$

$$\{ (x, y), (x, -y) \}$$

Generic1271

$$C/\mathbf{F}_p : y^2 = x^5 + a_3x^3 + a_2x^2 + a_1x + a_0$$

Mumford representation:

$$\{ (x^2 + u_1x + u_0, v_1x + v_0), (x^2 + u_1x + u_0, -(v_1x + v_0)) \}$$

Target Curves

NIST CurveP-256

$$E/\mathbf{F}_p : y^2 = x^3 - 3x + b$$

$$\{ (x, y), (x, -y) \}$$

Generic1271

$$C/\mathbf{F}_p : y^2 = x^5 + a_3x^3 + a_2x^2 + a_1x + a_0$$

Mumford representation:

$$\{ (x^2 + u_1x + u_0, v_1x + v_0), (x^2 + u_1x + u_0, -(v_1x + v_0)) \}$$

BN254

$$E/\mathbf{F}_p : y^2 = x^3 + 2$$

Since $p \equiv 1 \pmod{3} \rightarrow \zeta \neq 1 \in \mathbf{F}_p$
s.t. $\zeta^3 = 1$

$$\{ (x, y), (x, -y), (\zeta x, y), (\zeta x, -y), (\zeta^2 x, y), (\zeta^2 x, -y) \}$$

Target Curves

NIST CurveP-256

$$E/\mathbf{F}_p : y^2 = x^3 - 3x + b$$

$$\{ (x, y), (x, -y) \}$$

Generic1271

$$C/\mathbf{F}_p : y^2 = x^5 + a_3x^3 + a_2x^2 + a_1x + a_0$$

Mumford representation:

$$\{ (x^2 + u_1x + u_0, v_1x + v_0), (x^2 + u_1x + u_0, -(v_1x + v_0)) \}$$

BN254

$$E/\mathbf{F}_p : y^2 = x^3 + 2$$

Since $p \equiv 1 \pmod{3} \rightarrow \zeta \neq 1 \in \mathbf{F}_p$
s.t. $\zeta^3 = 1$

$$\{ (x, y), (x, -y), (\zeta x, y), (\zeta x, -y), (\zeta^2 x, y), (\zeta^2 x, -y) \}$$

4GLV127-BK

$$C/\mathbf{F}_p : y^2 = x^5 + 17$$

Since $p \equiv 1 \pmod{5} \rightarrow \zeta \neq 1 \in \mathbf{F}_p$
s.t. $\zeta^5 = 1$

$$\phi : (x^2 + u_1x + u_0, v_1x + v_0) \mapsto (x^2 + \zeta u_1x + \zeta^2 u_0, \zeta^4 v_1x + v_0)$$

Updated Speedup Estimate

curve	(g, m)	cost of one step		
		divisor addition	compute worst	representative average
CurveP-256	(1, 2)	$5M + S + 6a$	1a	$\frac{1}{2}a$
CurveP-256		original $\sqrt{2}$	\rightarrow \rightarrow	updated estimate $\sqrt{2}$

Representative point with odd y -coordinate (when $0 \leq y < p$)

Updated Speedup Estimate

curve	(g, m)	cost of one step		
		divisor addition	compute worst	representative average
CurveP-256	(1, 2)	$5M + S + 6a$	$1a$	$\frac{1}{2}a$
	(1, 6)	$5M + S + 6a$	$1M + 3a$	$1M + 2\frac{1}{2}a$
CurveP-256		original	\rightarrow	updated estimate
		$\sqrt{2}$	\rightarrow	$\sqrt{2}$
BN254		$\sqrt{6}$	\rightarrow	$\frac{6}{7}\sqrt{6} \approx 0.857\sqrt{6}$

Representative point whose x -coordinate has least absolute value *and* whose y -coordinate is odd

- 1 neg $(x, y) \rightarrow (x, -y)$
- 1 mul $(\zeta x, y) \leftrightarrow (\zeta x, -y)$
- 1 mul $(\zeta^2 x, y) \leftrightarrow (\zeta^2 x, -y)$

Updated Speedup Estimate

curve	(g, m)	cost of one step		
		divisor addition	compute worst	representative average
CurveP-256	(1, 2)	$5M + S + 6a$	$1a$	$\frac{1}{2}a$
BN254	(1, 6)	$5M + S + 6a$	$1M + 3a$	$1M + 2\frac{1}{2}a$
		original	\rightarrow	updated estimate
CurveP-256		$\sqrt{2}$	\rightarrow	$\sqrt{2}$
BN254		$\sqrt{6}$	\rightarrow	$\frac{6}{7}\sqrt{6} \approx 0.857\sqrt{6}$

Representative point whose x -coordinate has least absolute value *and* whose y -coordinate is odd. $\zeta^2 x = -(\zeta + 1)x$

$$1 \text{ neg} \quad (x, y) \rightarrow (x, -y)$$

$$1 \text{ mul} \quad (\zeta x, y) \leftrightarrow (\zeta x, -y)$$

$$1 \text{ neg, 1 add} \quad (-(\zeta x + x), y) \leftrightarrow (-(\zeta x + x), -y)$$

Updated Speedup Estimate

curve	(g, m)	cost of one step		
		divisor addition	compute worst	representative average
CurveP-256	(1, 2)	$5M + S + 6a$	$1a$	$\frac{1}{2}a$
BN254	(1, 6)	$5M + S + 6a$	$1M + 3a$	$1M + 2\frac{1}{2}a$
Generic1271	(2, 2)	$20M + 4S + 48a$	$2a$	$1a$

	original	\rightarrow	updated estimate
CurveP-256	$\sqrt{2}$	\rightarrow	$\sqrt{2}$
BN254	$\sqrt{6}$	\rightarrow	$\frac{6}{7}\sqrt{6} \approx 0.857\sqrt{6}$
Generic1271	$\sqrt{2}$	\rightarrow	$\sqrt{2}$

Representative divisor with odd v_0 -coordinate

Updated Speedup Estimate

curve	(g, m)	cost of one step		
		divisor addition	compute worst	representative average
CurveP-256	(1, 2)	$5M + S + 6a$	$1a$	$\frac{1}{2}a$
BN254	(1, 6)	$5M + S + 6a$	$1M + 3a$	$1M + 2\frac{1}{2}a$
Generic1271	(2, 2)	$20M + 4S + 48a$	$2a$	$1a$
4GLV127-BK	(2, 10)	$20M + 4S + 48a$	$6M + 1S + 5a$	$5\frac{2}{5}M + \frac{4}{5}S + \frac{3}{5}a$
original		\rightarrow	updated estimate	
CurveP-256		$\sqrt{2}$	\rightarrow	$\sqrt{2}$
BN254		$\sqrt{6}$	\rightarrow	$\frac{6}{7}\sqrt{6} \approx 0.857\sqrt{6}$
Generic1271		$\sqrt{2}$	\rightarrow	$\sqrt{2}$
4GLV127-BK		$\sqrt{10}$	\rightarrow	$\frac{120}{151}\sqrt{10} \approx 0.784\sqrt{10}$

Representative divisor whose u_1 -coordinate has least absolute value *and* whose v_0 -coordinate is odd. Use: $\zeta^4 = -(\zeta^3 + \zeta^2 + \zeta + 1)$
 $u_1 u_0$ and u_1^2 are required for the efficient formulas

Other (popular) cryptographic curves?

Genus 1

- Curve25519 (Bernstein)
no additional automorphisms → identical analysis as CurveP-256
- j -invariant zero curves (not pairing-friendly) using GLV techniques
 - $E/F_p : y^2 = x^3 + 2$ with $p = 2^{256} - 11733$ (Longa and Sica)
 - $E/F_p : y^2 = x^3 + 7$ with $p = 2^{256} - 2^{32} - 977$ standard curve used in Bitcoin

Automorphism group the same as BN254 so identical analysis.

Other (popular) cryptographic curves?

Genus 1

- Curve25519 (Bernstein)
no additional automorphisms → identical analysis as CurveP-256
- j -invariant zero curves (not pairing-friendly) using GLV techniques
 - $E/F_p : y^2 = x^3 + 2$ with $p = 2^{256} - 11733$ (Longa and Sica)
 - $E/F_p : y^2 = x^3 + 7$ with $p = 2^{256} - 2^{32} - 977$ standard curve used in Bitcoin

Automorphism group the same as BN254 so identical analysis.

Genus 2

Kummer surface over F_p with $p = 2^{127} - 1$ (Gaudry and Schost)

- No known way how to exploit the fast arithmetic on the Kummer surface (only pseudo-additions exist)
- Map DLP back to the Jacobian group → same situation as Generic1271 (except cofactor of 16)

Results

Curve	Performance (10^6 it/sec)		speedup	
	without	with	expected	real
NIST CurveP-256	2.569	2.447	$\sqrt{2}$	$0.947\sqrt{2}$
BN254	2.816	2.238	$0.857\sqrt{6}$	$0.790\sqrt{6}$
Generic1271	2.941	2.780	$\sqrt{2}$	$0.940\sqrt{2}$
4GLV127-BK	2.074	1.643	$0.795\sqrt{10}$	$0.784\sqrt{10}$

Results

Curve	Performance (10^6 it/sec)		speedup	
	without	with	expected	real
NIST CurveP-256	2.569	2.447	$\sqrt{2}$	$0.947\sqrt{2}$
BN254	2.816	2.238	$0.857\sqrt{6}$	$0.790\sqrt{6}$
Generic1271	2.941	2.780	$\sqrt{2}$	$0.940\sqrt{2}$
4GLV127-BK	2.074	1.643	$0.795\sqrt{10}$	$0.784\sqrt{10}$

Results

Curve	Performance (10^6 it/sec)		speedup	
	without	with	expected	real
NIST CurveP-256	2.569	2.447	$\sqrt{2}$	$0.947\sqrt{2}$
BN254	2.816	2.238	$0.857\sqrt{6}$	$0.790\sqrt{6}$
Generic1271	2.941	2.780	$\sqrt{2}$	$0.940\sqrt{2}$
4GLV127-BK	2.074	1.643	$0.795\sqrt{10}$	$0.784\sqrt{10}$

Results

Curve	Performance (10^6 it/sec)		speedup	
	without	with	expected	real
NIST CurveP-256	2.569	2.447	$\sqrt{2}$	$0.947\sqrt{2}$
BN254	2.816	2.238	$0.857\sqrt{6}$	$0.790\sqrt{6}$
Generic1271	2.941	2.780	$\sqrt{2}$	$0.940\sqrt{2}$
4GLV127-BK	2.074	1.643	$0.795\sqrt{10}$	$0.784\sqrt{10}$

$$\text{real / expected} = 0.922 \text{ to } 0.986$$

Results

Curve	Performance (10^6 it/sec)		speedup	
	without	with	expected	real
NIST CurveP-256	2.569	2.447	$\sqrt{2}$	$0.947\sqrt{2}$
BN254	2.816	2.238	$0.857\sqrt{6}$	$0.790\sqrt{6}$
Generic1271	2.941	2.780	$\sqrt{2}$	$0.940\sqrt{2}$
4GLV127-BK	2.074	1.643	$0.795\sqrt{10}$	$0.784\sqrt{10}$

	CurveP-256	BN254	Generic1271	4GLV127-BK
core years	$3.946 \cdot 10^{24}$	$9.486 \cdot 10^{23}$	$1.736 \cdot 10^{24}$	$1.309 \cdot 10^{24}$
security	128.0	125.9	126.8	126.4

Security

	CurveP-256	BN254	Generic1271	4GLV127-BK
core years	$3.946 \cdot 10^{24}$	$9.486 \cdot 10^{23}$	$1.736 \cdot 10^{24}$	$1.309 \cdot 10^{24}$
security	128.0	125.9	126.8	126.4

Interesting

- Certicom challenge over a 239-bit prime field: estimate $1.4 \cdot 10^{27}$ Pentium-100 core years

Security

	CurveP-256	BN254	Generic1271	4GLV127-BK
core years	$3.946 \cdot 10^{24}$	$9.486 \cdot 10^{23}$	$1.736 \cdot 10^{24}$	$1.309 \cdot 10^{24}$
security	128.0	125.9	126.8	126.4

Interesting

- Certicom challenge over a 239-bit prime field: estimate $1.4 \cdot 10^{27}$ Pentium-100 core years
- RSA-768 2000 core years. Estimate for RSA-3072:

$$\frac{N(3072)}{N(768)} T_{768} = 5 \cdot 10^{18} \cdot 2 \cdot 10^3 = 10^{22} \text{ core years}$$

where $N(k) = \exp(1.923 \log(2^k)^{1/3} \log(\log(2^k))^{2/3})$

Conclusions

One should use the automorphism group of cardinality m when solving the DLP for genus $\{1, 2\}$ curves.

Conclusions

One should use the automorphism group of cardinality m when solving the DLP for genus $\{1, 2\}$ curves.

Advantage

Reduces the number of expected iterations by a factor \sqrt{m}

Conclusions

One should use the automorphism group of cardinality m when solving the DLP for genus $\{1, 2\}$ curves.

Advantage

Reduces the number of expected iterations by a factor \sqrt{m}

Disadvantages

- More expensive iteration function: find the unique representative
 - *Side-effect*: curves with larger automorphism groups loose less security than previously thought:
e.g. BN254 $\sqrt{6} \rightarrow 0.790\sqrt{6} \approx \sqrt{3.7}$
- Deal with fruitless cycles: overhead

Conclusions

One should use the automorphism group of cardinality m when solving the DLP for genus $\{1, 2\}$ curves.

Advantage

Reduces the number of expected iterations by a factor \sqrt{m}

Disadvantages

- More expensive iteration function: find the unique representative
 - *Side-effect*: curves with larger automorphism groups loose less security than previously thought:
e.g. BN254 $\sqrt{6} \rightarrow 0.790\sqrt{6} \approx \sqrt{3.7}$
- Deal with fruitless cycles: overhead

Given these estimates even the 131-bit prime field Certicom challenge seems out of reach by an academic effort.