
Elliptic and Hyperelliptic Curves
a Practical Security Analysis

Joppe W. Bos

Conference on the
Theoretical and Practical Aspects of the Discrete Logarithm Problem

1 / 26

Elliptic and Hyperelliptic Curves
a Practical Security Analysis

Joppe W. Bos

Conference on the
Theoretical and Practical Aspects of the Discrete Logarithm Problem

2 / 26

Outline

Practical issues when using Pollard rho and the negation map to solve
the ECDLP (genus 1).
J. W. Bos, T. Kleinjung, A. K. Lenstra. On the Use of the Negation Map in the Pollard Rho Method, ANTS-IX,

LNCS 6197, Springer, 2010.

How does this look for genus 2 curves?
J. W. Bos, C. Costello, A. Miele. Elliptic and Hyperelliptic Curves: a Practical Security Analysis, PKC 2014, LNCS 8383,

pp. 203-220, Springer, 2014.

Motivation – Common belief

When computing the DLP on curves with an automorphism group of
cardinality m, one can obtain a constant-factor speedup of

√
m.

How accurate is this factor
√
m for various cryptographic genus 1 and

genus 2 curves in practice?

3 / 26

Outline

Practical issues when using Pollard rho and the negation map to solve
the ECDLP (genus 1).
J. W. Bos, T. Kleinjung, A. K. Lenstra. On the Use of the Negation Map in the Pollard Rho Method, ANTS-IX,

LNCS 6197, Springer, 2010.

How does this look for genus 2 curves?
J. W. Bos, C. Costello, A. Miele. Elliptic and Hyperelliptic Curves: a Practical Security Analysis, PKC 2014, LNCS 8383,

pp. 203-220, Springer, 2014.

Motivation – Common belief

When computing the DLP on curves with an automorphism group of
cardinality m, one can obtain a constant-factor speedup of

√
m.

How accurate is this factor
√
m for various cryptographic genus 1 and

genus 2 curves in practice?

3 / 26

Preliminaries

The Elliptic Curve Discrete Logarithm Problem

Let p be an odd prime and E (Fp) an elliptic curve over Fp. Given
g ∈ E (Fp) of prime order q and h ∈ 〈g〉 find m ∈ Z such that mg = h.

Believed to be a hard problem (O(
√
q)).

Algorithms to solve the ECDLP:
Baby-step Giant-step, Pollard ρ, Pollard Kangaroo

Basic Idea

Pick random objects: ug + vh ∈ 〈g〉 (u, v ∈ Z)
Find duplicate / collision: ug + vh = ūg + v̄h.
If v̄ 6≡ v mod q, m = u−ū

v̄−v mod q solves the discrete logarithm problem.

Expected number of random objects:
√
πq/2

4 / 26

Xλ+1
Xλ+µ+1

Xλ+2

Xλ+µ+2

Xλ+3Xλ+µ+3

Xλ+µ−2
Xλ+µ−1

X0

X1

X2

Xλ−1

Xλ Xλ+µ
Pollard Rho

“Walk” through the set 〈g〉.
Xi = u · g + v · h
Iteration function f : 〈g〉 → 〈g〉
This sequence eventually collides.

Expected number of steps

(iterations):

√
π·|〈g〉|

2

Pollard ρ

Approximate random walk in 〈g〉
Index function ` : 〈g〉 = G0 ∪ . . . ∪Gt−1 7→ [0, t − 1]

Gi = {x : x ∈ 〈g〉, `(x) = i}, |Gi | ≈
q

t
Precomputed partition constants: f0, . . . , ft−1

r-adding walk r + s-mixed walk
t = r t = r + s

pi+1 = pi + f`(pi) pi+1 =

{
pi + f`(pi), if 0 ≤ `(pi) < r

2pi , if `(pi) ≥ r

r ≥ 20 performance close to a random walk

J. M. Pollard, Monte Carlo methods for index computation (modp), Math. Comp. 32 (1978)

E. Teske: On random walks for Pollard’s rho method, Math. Comp. 70 (2001)

6 / 26

Pollard ρ

Approximate random walk in 〈g〉
Index function ` : 〈g〉 = G0 ∪ . . . ∪Gt−1 7→ [0, t − 1]

Gi = {x : x ∈ 〈g〉, `(x) = i}, |Gi | ≈
q

t
Precomputed partition constants: f0, . . . , ft−1

r-adding walk r + s-mixed walk
t = r t = r + s

pi+1 = pi + f`(pi) pi+1 =

{
pi + f`(pi), if 0 ≤ `(pi) < r

2pi , if `(pi) ≥ r

r ≥ 20 performance close to a random walk

J. M. Pollard, Monte Carlo methods for index computation (modp), Math. Comp. 32 (1978)
E. Teske: On random walks for Pollard’s rho method, Math. Comp. 70 (2001)

6 / 26

The Negation Map

M. J. Wiener, R. J. Zuccherato: Faster attacks on elliptic curve cryptosystems. SAC, LNCS 1556, Springer, 1999

Equivalence relation ∼ on 〈g〉 by p ∼ −p for p ∈ 〈g〉.

〈g〉 of size q versus 〈g〉/∼ of size about q
2 .

Advantage: Reduces the number of steps by a factor of
√

2.
Efficient to compute: Given (x , y) ∈ 〈g〉 → −(x , y) = (x ,−y)

7 / 26

Observation

Certicom challenges

79-bit exercise December 1997
89-bit exercise February 1998
97-bit exercise September 1999

109-bit level 1 November 2002

112-bit, standard curve, July 2009

8 / 26

Observation

Certicom challenges

79-bit exercise December 1997
89-bit exercise February 1998
97-bit exercise September 1999

109-bit level 1 November 2002

112-bit, standard curve, July 2009

Textbook optimization

Negation map (
√

2 speed-up for EC) published in 1999.
Not used in any of the above mentioned ECDLP records.

8 / 26

Observation

Certicom challenges

79-bit exercise December 1997
89-bit exercise February 1998
97-bit exercise September 1999

109-bit level 1 November 2002

112-bit, standard curve, July 2009

No theoretical improvement:
complexity still O(

√
q)

Practical implications: e.g. 112-bit ECDLP
took us ≈ 58.3 PS3 years. The negation map
could have saved up to 17.1 PS3 years

8 / 26

Negation Map, Side-Effects

Well-known disadvantage: as presented no solution to large ECDLPs

p
(i ,−)−→ −(p + fi)

(i ,−)−→ p.

Fruitless 2-cycle starts from a random point with probability 1
2r

I. M. Duursma, P. Gaudry, F. Morain. Speeding up the discrete log computation on curves with automorphisms. ASIACRYPT,

LNCS 1716, Springer, 1999.

2-cycle reduction technique: look ahead

f (p) =

{
E (p) if j = `(∼(p + fj)) for 0 ≤ j < r
∼(p + fi) with i ≥ `(p) minimal s.t. `(∼(p + fi)) 6= i mod r .

once every r r steps: E : 〈g〉 → 〈g〉 may restart the walk

Cost increase c =
r∑

i=0

1

r i
with 1 + 1

r ≤ c ≤ 1 + 1
r−1 .

9 / 26

Negation Map, Side-Effects

Well-known disadvantage: fruitless cycles

p
(i ,−)−→ −(p + fi)

(i ,−)−→ p.

Fruitless 2-cycle starts from a random point with probability 1
2r

I. M. Duursma, P. Gaudry, F. Morain. Speeding up the discrete log computation on curves with automorphisms. ASIACRYPT,

LNCS 1716, Springer, 1999.

2-cycle reduction technique: look ahead

f (p) =

{
E (p) if j = `(∼(p + fj)) for 0 ≤ j < r
∼(p + fi) with i ≥ `(p) minimal s.t. `(∼(p + fi)) 6= i mod r .

once every r r steps: E : 〈g〉 → 〈g〉 may restart the walk

Cost increase c =
r∑

i=0

1

r i
with 1 + 1

r ≤ c ≤ 1 + 1
r−1 .

9 / 26

Negation Map, Side-Effects

Well-known disadvantage: fruitless cycles

p
(i ,−)−→ −(p + fi)

(i ,−)−→ p.

Fruitless 2-cycle starts from a random point with probability 1
2r

I. M. Duursma, P. Gaudry, F. Morain. Speeding up the discrete log computation on curves with automorphisms. ASIACRYPT,

LNCS 1716, Springer, 1999.

2-cycle reduction technique: look ahead

f (p) =

{
E (p) if j = `(∼(p + fj)) for 0 ≤ j < r
∼(p + fi) with i ≥ `(p) minimal s.t. `(∼(p + fi)) 6= i mod r .

once every r r steps: E : 〈g〉 → 〈g〉 may restart the walk

Cost increase c =
r∑

i=0

1

r i
with 1 + 1

r ≤ c ≤ 1 + 1
r−1 .

9 / 26

Dealing with Fruitless Cycles in General

Cycle detection

︸ ︷︷ ︸
α steps

β steps︷ ︸︸ ︷ p

Compare p to all β points. Detect cycles of length ≤ β.

α too small: frequent cycle-checking (expensive)
α too large: higher probability of trapped walks (useless steps)

Cycle Escaping

Add

f`(p)+c for a fixed c ∈ Z

a precomputed value f′

f′′`(p) from a distinct list of r precomputed values f′′0, f
′′
1, . . . , f

′′
r−1.

to a representative element of this cycle.

10 / 26

Dealing with Fruitless Cycles in General

Cycle detection

︸ ︷︷ ︸
α steps

β steps︷ ︸︸ ︷ p

Compare p to all β points. Detect cycles of length ≤ β.

Cycle Escaping

Add

f`(p)+c for a fixed c ∈ Z

a precomputed value f′

f′′`(p) from a distinct list of r precomputed values f′′0, f
′′
1, . . . , f

′′
r−1.

to a representative element of this cycle.

10 / 26

2-cycles when using the 2-cycle reduction technique

p −p−fi = q

(i−1, ..) (i−1, ..)

ℓ(∼(p+fi−1))
= i−1

ℓ(∼(q+fi−1))
= i−1.

(i,−)

(i,−)

Lemma

The probability to enter a fruitless 2-cycle when looking ahead to reduce
2-cycles while using an r-adding walk is

1

2r

(
r−1∑
i=1

1

r i

)2

=
(r r−1 − 1)2

2r2r−1(r − 1)2
=

1

2r3
+O

(
1

r4

)
.

11 / 26

Size of the Random Walk

Probability to enter cycle depends on the number of partitions r

Why not simply increase r?

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 2 4 6 8 10 12 14 16 18

st
ep

s
/

se
co

n
d

log2 (r)

Practical performance penalty (cache-misses)

Fruitless cycles still occur

12 / 26

Size of the Random Walk

Probability to enter cycle depends on the number of partitions r

Why not simply increase r?

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 2 4 6 8 10 12 14 16 18

st
ep

s
/

se
co

n
d

log2 (r)

Practical performance penalty (cache-misses)

Fruitless cycles still occur

12 / 26

Recurring Cycles

Using

r -adding walk with a medium sized r and
{ 2, 4 }-reduction technique and
cycle escaping techniques

it is expected that many walks will never find a DTP.

−p− fi − fj

p

−p− fj

(i,+)

(j,−)

p+ fi

(j,−)

(i,+)

p+ fk

(k,+) −p− fk − fj

(j,−)

(k,+)

−p− fi − fk

(i,−)

(k,−)

13 / 26

Recurring Cycles

Using

r -adding walk with a medium sized r and
{ 2, 4 }-reduction technique and
cycle escaping techniques

it is expected that many walks will never find a DTP.
−p− fi − fj

p

−p− fj

(i,+)

(j,−)

p+ fi

(j,−)

(i,+)

p+ fk

(k,+) −p− fk − fj

(j,−)

(k,+)

−p− fi − fk

(i,−)

(k,−)

13 / 26

Probabilities Overview

Cycle reduction method: none 2-cycle 4-cycle

Probability to enter

{
2-cycle

4-cycle

1
2r

1
2r3

2(r−2)2

(r−1)r4

r−1
4r3

r−1
4r3

4(r−2)4(r−1)
r11

Probability to recur
to escape point using


f`(p)+c

f′

f′′`(p)

1
2r

1
2r2

(r−2)2

r4

1
8r

1
8r3

(r−2)2

2r5

1
8r2

1
8r4

(r−2)2

2r6

Slowdown factor of iteration function n/a r+1
r

r+4
r

14 / 26

Dealing with Recurring Cycles

Heuristic

A cycle with at least one doubling is most likely not fruitless.

f̄ (p) =

{
∼(p + f`(p)) if `(p) 6= `(∼(p + f`(p))),
∼(2p) otherwise

This completely eliminates 2-cycles.
EC doubling is more expensive compared to a EC addition
(in affine Weierstrass).

15 / 26

Dealing with Recurring Cycles

Heuristic

A cycle with at least one doubling is most likely not fruitless.

f̄ (p) =

{
∼(p + f`(p)) if `(p) 6= `(∼(p + f`(p))),
∼(2p) otherwise

This completely eliminates 2-cycles.
EC doubling is more expensive compared to a EC addition
(in affine Weierstrass).

15 / 26

Dealing with Recurring Cycles

Heuristic

A cycle with at least one doubling is most likely not fruitless.

f̄ (p) =

{
∼(p + f`(p)) if `(p) 6= `(∼(p + f`(p))),
∼(2p) otherwise

This completely eliminates 2-cycles.
EC doubling is more expensive compared to a EC addition
(in affine Weierstrass).

15 / 26

What is used in practice?

perform w > 0 steps before checking for a cycle

enter a cycle with probability p at each step

once we enter a cycle at step 0 ≤ i ≤ w all subsequent w − i steps
are fruitless

After w steps we expect to have computed

W (w , p) =
w−1∑
i=0

p(1− p)i (w − i)

fruitless steps.

Estimate the maximum speedup possible
(ignoring various implementation overheads)

16 / 26

What is used in practice?

Cost EC-addition: 6 multiplications
Cost EC-doubling: 7 multiplications

Setting I

α = 3000, β = 10, r = 128
2-cycle reduction, cycle escape by doubling
Pr [enter 2-cycle] ≈ 1/(2r3)
Pr [enter 4-cycle] ≈ (r − 1)/(4r3)

fruitful

total

√
2 =

6(α−W (α, r−1
4r3))

r+1
r 6α + 7

√
2 = 0.97

√
2

J. W. Bos, T. Kleinjung, A. K. Lenstra: On the Use of the Negation Map in the Pollard Rho Method, ANTS-IX,

LNCS 6197, pp. 66-82, Springer, 2010.

16 / 26

What is used in practice?

Cost EC-addition: 6 multiplications
Cost EC-doubling: 7 multiplications

Setting I

α = 3000, β = 10, r = 128
2-cycle reduction, cycle escape by doubling
Pr [enter 2-cycle] ≈ 1/(2r3)
Pr [enter 4-cycle] ≈ (r − 1)/(4r3)

fruitful

total

√
2 =

6(α−W (α, r−1
4r3))

r+1
r 6α + 7

√
2 = 0.97

√
2

In practice the observed speedup was 0.91
√

2

J. W. Bos, T. Kleinjung, A. K. Lenstra: On the Use of the Negation Map in the Pollard Rho Method, ANTS-IX,

LNCS 6197, pp. 66-82, Springer, 2010.

16 / 26

What is used in practice?

No cycle reduction, check frequently for cycles.

Large r value: look for special precomputed points (x , y) such that
x ≡ y ≡ 0 (mod 2c)

Setting II

Check for 2-cycles every α = 48 steps, escape by doubling, r = 2048

fruitful

total

√
2 =

6(α−W (α, 1
2r))

6α + 7

√
2 = 0.97

√
2

D. J. Bernstein, T. Lange, and P. Schwabe. On the correct use of the negation map in the Pollard rho method. PKC, LNCS

6571, Springer, 2011.

16 / 26

Extending this approach

The idea behind the negation map applies to larger
efficiently computable cyclic automorphism groups

Assume the target curve comes equipped with such an automorphism
group of cardinality m and generator ψ

Define an equivalence relation ∼ on 〈g〉 by R ∼ R ′ iff R = ψi (R ′) for
some 0 ≤ i < m

Modify Pollard rho:
Find the unique representative R̃ of the class containing R (i.e.
R̃1 = R̃2 iff R1 ∼ R2), then call f (R̃) as usual

We always have the identity and the negation map

speedup slowdown√
m fewer iterations find the unique representative

→ more costly iteration

overhead to deal with fruitless cycles

17 / 26

Extending this approach

The idea behind the negation map applies to larger
efficiently computable cyclic automorphism groups

Assume the target curve comes equipped with such an automorphism
group of cardinality m and generator ψ

Define an equivalence relation ∼ on 〈g〉 by R ∼ R ′ iff R = ψi (R ′) for
some 0 ≤ i < m

Modify Pollard rho:
Find the unique representative R̃ of the class containing R (i.e.
R̃1 = R̃2 iff R1 ∼ R2), then call f (R̃) as usual

We always have the identity and the negation map

speedup slowdown√
m fewer iterations find the unique representative

→ more costly iteration

overhead to deal with fruitless cycles

17 / 26

Extending this approach

The idea behind the negation map applies to larger
efficiently computable cyclic automorphism groups

Assume the target curve comes equipped with such an automorphism
group of cardinality m and generator ψ

Define an equivalence relation ∼ on 〈g〉 by R ∼ R ′ iff R = ψi (R ′) for
some 0 ≤ i < m

Modify Pollard rho:
Find the unique representative R̃ of the class containing R (i.e.
R̃1 = R̃2 iff R1 ∼ R2), then call f (R̃) as usual

We always have the identity and the negation map

speedup slowdown√
m fewer iterations find the unique representative

→ more costly iteration

overhead to deal with fruitless cycles

17 / 26

Target Curves

18 / 26

Target Curves

19 / 26

Target Curves

20 / 26

Target Curves

21 / 26

Updated Speedup Estimate

cost of one step
curve (g ,m) divisor compute representative

addition worst average

CurveP-256 (1, 2) 5M + S + 6a 1a 1
2
a

BN254 (1, 6) 5M + S + 6a 1M + 3a 1M + 2 1
2
a

Generic1271 (2, 2) 20M + 4S + 48a 2a 1a
4GLV127-BK (2, 10) 20M + 4S + 48a 6M + 1S + 5a 5 2

5
M + 4

5
S + 3

5
a

original → updated estimate

CurveP-256
√
2 →

√
2

BN254
√
6 → 6

7

√
6 ≈ 0.857

√
6

Generic1271
√
2 →

√
2

4GLV127-BK
√
10 → 120

151

√
10 ≈ 0.784

√
10

Representative point with odd y -coordinate (when 0 ≤ y < p)

22 / 26

Updated Speedup Estimate

cost of one step
curve (g ,m) divisor compute representative

addition worst average

CurveP-256 (1, 2) 5M + S + 6a 1a 1
2
a

BN254 (1, 6) 5M + S + 6a 1M + 3a 1M + 2 1
2
a

Generic1271 (2, 2) 20M + 4S + 48a 2a 1a
4GLV127-BK (2, 10) 20M + 4S + 48a 6M + 1S + 5a 5 2

5
M + 4

5
S + 3

5
a

original → updated estimate

CurveP-256
√
2 →

√
2

BN254
√
6 → 6

7

√
6 ≈ 0.857

√
6

Generic1271
√
2 →

√
2

4GLV127-BK
√
10 → 120

151

√
10 ≈ 0.784

√
10

Representative point whose x-coordinate has least absolute value and
whose y -coordinate is odd

1 neg (x , y)→ (x ,−y)
1 mul (ζx , y)↔ (ζx ,−y)
1 mul (ζ2x , y)↔ (ζ2x ,−y)

22 / 26

Updated Speedup Estimate

cost of one step
curve (g ,m) divisor compute representative

addition worst average

CurveP-256 (1, 2) 5M + S + 6a 1a 1
2
a

BN254 (1, 6) 5M + S + 6a 1M + 3a 1M + 2 1
2
a

Generic1271 (2, 2) 20M + 4S + 48a 2a 1a
4GLV127-BK (2, 10) 20M + 4S + 48a 6M + 1S + 5a 5 2

5
M + 4

5
S + 3

5
a

original → updated estimate

CurveP-256
√
2 →

√
2

BN254
√
6 → 6

7

√
6 ≈ 0.857

√
6

Generic1271
√
2 →

√
2

4GLV127-BK
√
10 → 120

151

√
10 ≈ 0.784

√
10

Representative point whose x-coordinate has least absolute value and
whose y -coordinate is odd. ζ2x = −(ζ + 1)x

1 neg (x , y)→ (x ,−y)
1 mul (ζx , y)↔ (ζx ,−y)
1 neg, 1 add (−(ζx + x), y)↔ (−(ζx + x),−y)

22 / 26

Updated Speedup Estimate

cost of one step
curve (g ,m) divisor compute representative

addition worst average

CurveP-256 (1, 2) 5M + S + 6a 1a 1
2
a

BN254 (1, 6) 5M + S + 6a 1M + 3a 1M + 2 1
2
a

Generic1271 (2, 2) 20M + 4S + 48a 2a 1a

4GLV127-BK (2, 10) 20M + 4S + 48a 6M + 1S + 5a 5 2
5
M + 4

5
S + 3

5
a

original → updated estimate

CurveP-256
√
2 →

√
2

BN254
√
6 → 6

7

√
6 ≈ 0.857

√
6

Generic1271
√
2 →

√
2

4GLV127-BK
√
10 → 120

151

√
10 ≈ 0.784

√
10

Representative divisor with odd v0-coordinate

22 / 26

Updated Speedup Estimate

cost of one step
curve (g ,m) divisor compute representative

addition worst average

CurveP-256 (1, 2) 5M + S + 6a 1a 1
2
a

BN254 (1, 6) 5M + S + 6a 1M + 3a 1M + 2 1
2
a

Generic1271 (2, 2) 20M + 4S + 48a 2a 1a
4GLV127-BK (2, 10) 20M + 4S + 48a 6M + 1S + 5a 5 2

5
M + 4

5
S + 3

5
a

original → updated estimate

CurveP-256
√
2 →

√
2

BN254
√
6 → 6

7

√
6 ≈ 0.857

√
6

Generic1271
√
2 →

√
2

4GLV127-BK
√
10 → 120

151

√
10 ≈ 0.784

√
10

Representative divisor whose u1-coordinate has least absolute value and
whose v0-coordinate is odd. Use: ζ4 = −(ζ3 + ζ2 + ζ + 1)
u1u0 and u2

1 are required for the efficient formulas

22 / 26

Other (popular) cryptographic curves?

Genus 1

Curve25519 (Bernstein)
no additional automorphisms → identical analysis as CurveP-256

j-invariant zero curves (not pairing-friendly) using GLV techniques

E/Fp : y2 = x3 + 2 with p = 2256 − 11733 (Longa and Sica)
E/Fp : y2 = x3 + 7 with p = 2256 − 232 − 977 standard curve used in
Bitcoin

Automorphism group the same as BN254 so identical analysis.

Genus 2

Kummer surface over Fp with p = 2127 − 1 (Gaudry and Schost)

No known way how to exploit the fast arithmetic on the Kummer
surface (only pseudo-additions exist)

Map DLP back to the Jacobian group → same situation as
Generic1271 (except cofactor of 16)

23 / 26

Other (popular) cryptographic curves?

Genus 1

Curve25519 (Bernstein)
no additional automorphisms → identical analysis as CurveP-256

j-invariant zero curves (not pairing-friendly) using GLV techniques

E/Fp : y2 = x3 + 2 with p = 2256 − 11733 (Longa and Sica)
E/Fp : y2 = x3 + 7 with p = 2256 − 232 − 977 standard curve used in
Bitcoin

Automorphism group the same as BN254 so identical analysis.

Genus 2

Kummer surface over Fp with p = 2127 − 1 (Gaudry and Schost)

No known way how to exploit the fast arithmetic on the Kummer
surface (only pseudo-additions exist)

Map DLP back to the Jacobian group → same situation as
Generic1271 (except cofactor of 16)

23 / 26

Results

Curve Performance (106 it/sec) speedup
without with expected real

NIST CurveP-256 2.569 2.447
√

2 0.947
√

2

BN254 2.816 2.238 0.857
√

6 0.790
√

6

Generic1271 2.941 2.780
√

2 0.940
√

2

4GLV127-BK 2.074 1.643 0.795
√

10 0.784
√

10

CurveP-256 BN254 Generic1271 4GLV127-BK

core years 3.946 · 1024 9.486 · 1023 1.736 · 1024 1.309 · 1024

security 128.0 125.9 126.8 126.4

24 / 26

Results

Curve Performance (106 it/sec) speedup
without with expected real

NIST CurveP-256 2.569 2.447
√

2 0.947
√

2

BN254 2.816 2.238 0.857
√

6 0.790
√

6

Generic1271 2.941 2.780
√

2 0.940
√

2

4GLV127-BK 2.074 1.643 0.795
√

10 0.784
√

10

CurveP-256 BN254 Generic1271 4GLV127-BK

core years 3.946 · 1024 9.486 · 1023 1.736 · 1024 1.309 · 1024

security 128.0 125.9 126.8 126.4

24 / 26

Results

Curve Performance (106 it/sec) speedup
without with expected real

NIST CurveP-256 2.569 2.447
√

2 0.947
√

2

BN254 2.816 2.238 0.857
√

6 0.790
√

6

Generic1271 2.941 2.780
√

2 0.940
√

2

4GLV127-BK 2.074 1.643 0.795
√

10 0.784
√

10

CurveP-256 BN254 Generic1271 4GLV127-BK

core years 3.946 · 1024 9.486 · 1023 1.736 · 1024 1.309 · 1024

security 128.0 125.9 126.8 126.4

24 / 26

Results

Curve Performance (106 it/sec) speedup
without with expected real

NIST CurveP-256 2.569 2.447
√

2 0.947
√

2

BN254 2.816 2.238 0.857
√

6 0.790
√

6

Generic1271 2.941 2.780
√

2 0.940
√

2

4GLV127-BK 2.074 1.643 0.795
√

10 0.784
√

10

real / expected = 0.922 to 0.986

CurveP-256 BN254 Generic1271 4GLV127-BK

core years 3.946 · 1024 9.486 · 1023 1.736 · 1024 1.309 · 1024

security 128.0 125.9 126.8 126.4

24 / 26

Results

Curve Performance (106 it/sec) speedup
without with expected real

NIST CurveP-256 2.569 2.447
√

2 0.947
√

2

BN254 2.816 2.238 0.857
√

6 0.790
√

6

Generic1271 2.941 2.780
√

2 0.940
√

2

4GLV127-BK 2.074 1.643 0.795
√

10 0.784
√

10

CurveP-256 BN254 Generic1271 4GLV127-BK

core years 3.946 · 1024 9.486 · 1023 1.736 · 1024 1.309 · 1024

security 128.0 125.9 126.8 126.4

24 / 26

Security

CurveP-256 BN254 Generic1271 4GLV127-BK

core years 3.946 · 1024 9.486 · 1023 1.736 · 1024 1.309 · 1024

security 128.0 125.9 126.8 126.4

Interesting

Certicom challenge over a 239-bit prime field: estimate 1.4 · 1027

Pentium-100 core years

RSA-768 2000 core years. Estimate for RSA-3072:

N(3072)

N(768)
T768 = 5 · 1018 · 2 · 103 = 1022 core years

where N(k) = exp(1.923 log(2k)1/3 log(log(2k))2/3)

25 / 26

Security

CurveP-256 BN254 Generic1271 4GLV127-BK

core years 3.946 · 1024 9.486 · 1023 1.736 · 1024 1.309 · 1024

security 128.0 125.9 126.8 126.4

Interesting

Certicom challenge over a 239-bit prime field: estimate 1.4 · 1027

Pentium-100 core years

RSA-768 2000 core years. Estimate for RSA-3072:

N(3072)

N(768)
T768 = 5 · 1018 · 2 · 103 = 1022 core years

where N(k) = exp(1.923 log(2k)1/3 log(log(2k))2/3)

25 / 26

Conclusions

One should use the automorphism group of cardinality m when solving the
DLP for genus {1, 2} curves.

Advantage

Reduces the number of expected iterations by a factor
√
m

Disadvantages

More expensive iteration function: find the unique representative

Side-effect: curves with larger automorphism groups loose less security
then previously thought:
e.g. BN254

√
6→ 0.790

√
6 ≈
√

3.7

Deal with fruitless cycles: overhead

Given these estimates even the 131-bit prime field Certicom challenge
seems out of reach by an academic effort.

26 / 26

Conclusions

One should use the automorphism group of cardinality m when solving the
DLP for genus {1, 2} curves.

Advantage

Reduces the number of expected iterations by a factor
√
m

Disadvantages

More expensive iteration function: find the unique representative

Side-effect: curves with larger automorphism groups loose less security
then previously thought:
e.g. BN254

√
6→ 0.790

√
6 ≈
√

3.7

Deal with fruitless cycles: overhead

Given these estimates even the 131-bit prime field Certicom challenge
seems out of reach by an academic effort.

26 / 26

Conclusions

One should use the automorphism group of cardinality m when solving the
DLP for genus {1, 2} curves.

Advantage

Reduces the number of expected iterations by a factor
√
m

Disadvantages

More expensive iteration function: find the unique representative

Side-effect: curves with larger automorphism groups loose less security
then previously thought:
e.g. BN254

√
6→ 0.790

√
6 ≈
√

3.7

Deal with fruitless cycles: overhead

Given these estimates even the 131-bit prime field Certicom challenge
seems out of reach by an academic effort.

26 / 26

Conclusions

One should use the automorphism group of cardinality m when solving the
DLP for genus {1, 2} curves.

Advantage

Reduces the number of expected iterations by a factor
√
m

Disadvantages

More expensive iteration function: find the unique representative

Side-effect: curves with larger automorphism groups loose less security
then previously thought:
e.g. BN254

√
6→ 0.790

√
6 ≈
√

3.7

Deal with fruitless cycles: overhead

Given these estimates even the 131-bit prime field Certicom challenge
seems out of reach by an academic effort.

26 / 26

