Sieving for Shortest Vectors in Ideal Lattices:
a Practical Perspective

Joppe W. Bos

\ ¥ 4
A

LACAL@RISC Seminar on Cryptologic Algorithms
CWI, Amsterdam, Netherlands

Joint work with Michael Naehrig and Joop van de Pol

Bl University of

Microsoft Research BRISTOL

Sieving for Shortest Vectors in Ideal Lattices:
a Practical Perspective

Joppe W. Bos
(Ex-LACAL, April 2007 - February 2012)

LACAL@RISC Seminar on Cryptologic Algorithms
CWI, Amsterdam, Netherlands

Joint work with Michael Naehrig and Joop van de Pol

Elic University of

Microsoft Research BRISTOL

Motivation

* Shortest Vector Problem (SVP) used as a theoretical foundation in many
PQ-crypto schemes

* Lattice based encryption / signature schemes, fully homomorphic encryption
* Often compute in an ideal lattice for performance reasons

R =Z[X]/(X™ + 1)

e Exact SVP is known to be NP-complete
(In most applications approximations are enough)

* How efficient can we find short vectors in ideal lattices?

SVP solvers

Asymptotic rigorous proven runtimes (ignoring poly-log factors in the exponent)

Time Memory
Voronoi 22n omn
List Sieve 22.465n 21.233n
Enumeration 20(nlog(n)) poly(n)

Asymptotic heuristic runtimes
BKZ 2.0 n-N -svp(k) poly(n)

+ Enumeration with

extreme pruning n-N- 2009 poly(n)
Gauss Sieve «20.48n7 20.2075n
Decomposition 20.3374n 20.2925n
Voronoi “up to dimension 8”

Only sieving algorithms take advantage of the ideal lattice structure

Sample a list of vectors and Gauss reduce all vectors with respect to each other

N7
e o .
o Vl Q V"} [
[] : . []
® o | °
f‘..;‘ ot
e) .t‘- V_2 o
-0 q
2 Vg 2 N
z - NG
NG
] -Q: L]
e .W‘Ol"]

Each vector corresponds to two half spaces.
If a vector is in half-space of another previous vector, it can be reduced.

[] o .
3 REESRRTSS vy
[] . . ([]
. o | °
Q ‘- O o °
S . - VI s
- = N X
. .
NG
L] AQ"]
) ."O_")

Each vector corresponds to two half spaces.
If a vector is in a half-space of another previous vector, it can be reduced.

When two vectors can reduce each other, the shorter one reduces the longer

one.

() . .
() . (]
° - | '
e “ O) . °
(]) _q\\ V2 .
. N \ A\ \
.."' Q
3 : Z SRR
% o o
; V§
L] -Q"' []
] .]

When two vectors can reduce each other, the shorter one reduces the longer
one. The half-spaces increasingly cover more space.

All vectors become pairwise Gauss reduced.

10

All vectors become pairwise Gauss reduced and the list consists of shorter and

shorter vectors.

11

ions.

IS

Repeat until we find a short vector or enough coll

12

Repeat until we find a short vector or enough collisions.
Nothing can be proven about the collisions.

Gauss Sieve

start with an initial list of vectors L (all pair-wise Gauss reduced)
sample a new vector V from N
do {

reduce v with respect to all vectors ¢; in L

if v is reduced start from the beginning of the list L

reduce all #; with respect tov

if £; is reduced move it to the stack S

continue with new v from S and if empty sample a new one from N
} while (shortest vector has not been found)

P. Voulgaris and D. Micciancio. Faster exponential time algorithms for the shortest vector problem. Electronic Colloquium on Computational Complexity, 2009 14

Parallel Gauss Sieve

A 4

L

Pros __________________|Cons

Easy parallel algorithm U; L; are not necessarily pair-wise Gauss reduced
Total list size (U; L;) is distributed One node might sample a lot of new vectors:
among nodes “traffic jams” + idle nodes

Suggested solution: skip jams
— more vectors in (U; L;) are not pair-wise Gauss reduced
— increased list size — increased running time

B. Milde and M. Schneider. A parallel implementation of Gauss Sieve for the shortest vector problem in lattices. In Parallel Computing Technologies, 2011 15

Parallel Gauss Sieve —another approach

Step 3

Step 1 Step 2

Reduce samples wrt list
Reduce samples wrt samples
Reduce list wrt samples

Use S as new vectors and L
as the new list

v’ After step 3 all vectors in L are
pairwise Gauss reduced
v Avoids the traffic jam problem

v Every node requires the complete
list L and all samples S

v' Conservative estimated max. list
size for (non-ideal) dim. 128 is
2?8 - 64 GB

v Used to solve ideal lattice
challenge of dim. 128 in
~ 15 days on 1344 CPUs
~ 55 CPU years

T. Ishiguro, S. Kiyomoto, Y. Miyake, and T. Takagi. Parallel Gauss sieve algorithm: Solving the SVP challenge over a 128-dimensional ideal lattice. In PKC, 2014

Parallel Gauss Sieve — combining both approaches

Collectively obtain new batch Q;

Reduce vectors from Q; wrt £; and vice-versa
Reduced vectors from £; go to s;

Reduced vectors from Q; go to Q;

Reduce Q wrt to Q

Locally #; is replaced by £;\S;
Compute j s.t. [£;] is minimal and
update £; as £; U N; Q;

This avoids traffic jams

Total list size (U, L;) is distributed among
nodes

All vectors are pairwise Gauss reduced

The same vector v € Q) might be
reduced by different £; at different
nodes — collisions

Propagate the vector with minimal norm

17

|deal lattice

v’ |deal lattice: additional structure — also ideals in a ring R
v'Most crypto settings restrict to
R = Z[X]/(@n (X)),
wherem =2n,n=2"¢>0st.®,,(X) =X"+1

* If a(X) belongs to an ideal then X'a for i € Z also belongs to the ideal

* Negative exponents: X1 = —x"~1

Notation: An element a € R is of the form
n—1
a(X) = z a; X
i=0
and given by the coefficient vector
a = (ao, ai, ..., an_l)

|deal lattice

Previous work: store one vector, represent n vectors.

Observation 1: Checking if all n? pairs of rotations of a vector a with a vector b are Gauss
reduced can be done with only n comparisons and n scalar products.

Lemma 1.
leta,b € R =R =7Z|X]/(X™ + 1) forn a power of 2 and i,j € Z. Then we have:

X'-(X)-a)=X*-a, X-(a-b)=X'-a+X'-b, X".a=—a,
(X'-a,X'-b)=(a,b), (X' -a,X'-b)=(a,—X""'".b).

Lemma 2.
leta,b € R = Z[X]/(X™ + 1) forn a powerof 2and i,j € Z.

If 2|{a, X* - b)| < min{(a, a), (b, b)} forall 0 < £ < n, then X' - @and X’ - b are Gauss
reduced for all i,j € Z.

|deal lattice

Observation 1. Checking if all n? pairs of rotations of a vector a with a vector b are Gauss
reduced can be done with only n comparisons and n scalar products.

Observation 2. The n scalar products can be computed using a single ring product.

Define the reflex polynomial b® (X) as
bBI(X) =X""1.p(X~ 1) suchthat b®® = (b, 1, b, o, ..., bo)

Lemma 3. Let
c(X) =a(X) - (=X -b® X)) mod (X" + 1)

And let ¢ = (cqy,Cq, ..., Ch—1) € Z" be its coefficient vector. Then ¢; = (a,Xi . b) for0 <i <n.

|deal lattice

Observation 1. Checking if all n* pairs of rotations of a vector a with a vector b are Gauss
reduced can be done with only n comparisons and n scalar products.

Observation 2. The n scalar products can be computed using a single ring product.

Observation 3. Since the ring product is a negacyclic convolution we can use a (symbolic) FFT

Nussbaumer’s symbolic FFT
Decompose Z[X]/(X™ + 1) into two extensions. Let n = 2% = s - r such that s|r. Then

R=S=T[X]|/(X°—Z),whereT =Z|Z]/(Z" + 1)

Note: Z7/Sisan st rootof —1inTand XS =Zin S

Allows to compute the DFT symbolically in T

Use O(nlnn) instead of O(n?) arithmetic operations

H. J. Nussbaumer. Fast polynomial transform algorithms for digital convolution. Acoustics, Speech and Signal Processing, IEEE Transactions on, 1980

Pe rfo r m a n Ce Dimension 96

500000 | | \
450000 —Jw,(_
400000 F | .

350000 ~ | .
300000 ".I‘ .
250000 - .
200000 - .

Time (seconds)

150000 | .
100000 | .
50000 |- e N B

0 | | | | \ | |
32 64 96 128 160 192 224 256

Number of cores

8 CPU versus 32 CPU 3.6
8 CPU versus 256 CPU 22.1

Lattices obtained from the SVP challenge, preprocess with BKZ with blocksize 30.

Experiments run on the BlueCrystal Phase 2 cluster of the Advanced Computing Research Centre at the University of Bristol
22

vectors

Performance

7e+07

6e+07

5e+07

4e+07

3e+07

2e+07

le+07

I I
Non-ideal —+—
FFT+SSE

Naive rotations —¥—

5000 10000 15000 20000 25000 30000 35000 40000 4500C

time (s)

Ishiguro et al. found a short
vector in a dim. 128 ideal lattice
in 14.88 days on 1334 CPUs

~ 55 CPU years

Our algorithm using FFT on the
same lattice challenge on the
same hardware (Bristol cluster)
on 8.69 days on 1024 CPUs

~ 25 CPU years

More than twice as efficient
Running challenge again with

better load balancing, expect
better results soon

23

Conclusions, Remarks & Future Work

O Better algorithms for the Gauss Sieve approach
O Symbolic FFT approach for Gauss Sieve approach in ideal lattices

O However, BKZ and variants of enumeration techniques appear to give best results in currently tractable
dimensions (up to dim. 140)

O Unlike BKZ, enumeration etc. with sieving we can take advantage of the ideal lattice structure
O What about larger dimensions? Sieving algorithms seem to have asymptotically better run-time.
Pinpointing this cross-over point is an important question for the security assessment of lattice-based

crypto systems

o For more information see our paper: http://eprint.iacr.org/2014/880
o Source code will be made available in the upcoming weeks

Possible future work
Recent paper: locality-sensitive hash-sieve, try similar approach to divide list size

T. Laarhoven. Sieving for shortest vectors in lattices using angular locality-sensitive hashing. Cryptology ePrint Archive, Report 2014/744

http://eprint.iacr.org/2014/880

