
High-Performance Modular Multiplication on the Cell
Processor

Joppe W. Bos

Laboratory for Cryptologic Algorithms
EPFL, Lausanne, Switzerland

joppe.bos@epfl.ch

1 / 19

Outline

Motivation and previous work

Applications for multi-stream modular multiplication

Background

Fast reduction with special primes
The Cell broadband engine

Modular multiplications in the Cell

Performance results

Conclusions

2 / 19

Motivation

Modular multiplication is time-critical in cryptography
• RSA (≥ 2048 bits)
• ElGamal (≥ 2048 bits)

• ECC (≥ 224 bits)

and in cryptanalysis
• ECDLP (≈ 100− 200 bits)

• ECM (≈ 200 bits)

3 / 19

Motivation

Multi-stream modular multiplication is time-critical in cryptography
• RSA (≥ 2048 bits)
• ElGamal (≥ 2048 bits)

2, ElGamal encryption (ElGamal, CRYP84)
3, Damg̊ard ElGamal (Damg̊ard, CRYP91)
4, “Double” hybrid Damg̊ard ElGamal (Kiltz et al., EUR09)

• ECC (≥ 224 bits)
∞, Batch decryption PSEC, ECIES

and in cryptanalysis
• ECDLP (≈ 100− 200 bits)
∞, Pollard ρ

• ECM (≈ 200 bits)
∞, different curves

3 / 19

Previous works

Misc. Platforms

Lots of performance results for many platforms

GNU Multiple Precision (GMP) Arithmetic Library
many platforms, no Montgomery multiplication

Bernstein et al. (EUR09): NVIDIA GPUs

Brown et al. (CT-RSA01): NIST primes on x86

On the Cell Broadband Engine

Optimize for one specific bit-size

The Multi-Precision Math (MPM) Library by IBM (single stream)

Costigan and Schwabe (AFR09): special 255-bit prime (multi-stream)

Bernstein et al. (SHARCS09): 195-bit generic moduli (multi-stream)

4 / 19

Contributions

Fast algorithms for modular multiplication on platforms with a
multiply-and-add.

Target a range of moduli: 192− 521 bits.

Compare generic and special modular multiplication

All implementations set new speed records for the Cell Broadband
Engine

How much faster is using special moduli compared to generic ones?

5 / 19

Special Primes

Faster reduction exploiting the structure of the special prime.

By US National Institute of Standards

Five recommended primes in the FIPS 186-3 (Digital Signature Standard)

P192 = 2192 − 264 − 1
P224 = 2224 − 296 + 1
P256 = 2256 − 2224 + 2192 + 296 − 1
P384 = 2384 − 2128 − 296 + 232 − 1
P521 = 2521 − 1

Prime used in Curve25519

Proposed by Bernstein at PKC 2006

P255 = 2255 − 19

6 / 19

Example: P192 = 2192 − 264 − 1

0 ≤ x < P2
192

x = xH · 2192 + xL
≡ xH · 2192 + xL − xH · P192 mod P192

= xL + xH · 264 + xH

xH · 264 =
⌊
xH ·264

2192

⌋
·2192 + (xH · 264 mod P192)

= x̃H ·2192 + x̃L
≡ x̃H · 2192 + x̃L − x̃H · P192 mod P192

= x̃L + x̃H · 264 + x̃H

Solinas, technical report 1999

7 / 19

Example: P192 = 2192 − 264 − 1

0 ≤ x < P2
192

x = xH · 2192 + xL
≡ xH · 2192 + xL − xH · P192 mod P192

= xL + xH · 264 + xH

xH · 264 =
⌊
xH ·264

2192

⌋
·2192 + (xH · 264 mod P192)

= x̃H ·2192 + x̃L
≡ x̃H · 2192 + x̃L − x̃H · P192 mod P192

= x̃L + x̃H · 264 + x̃H

Solinas, technical report 1999

7 / 19

Example: P192 = 2192 − 264 − 1

0 ≤ x < P2
192

x = xH · 2192 + xL
≡ xH · 2192 + xL − xH · P192 mod P192

= xL + xH · 264 + xH

xH · 264 =
⌊
xH ·264

2192

⌋
·2192 + (xH · 264 mod P192)

= x̃H ·2192 + x̃L
≡ x̃H · 2192 + x̃L − x̃H · P192 mod P192

= x̃L + x̃H · 264 + x̃H

x = (c11, . . . , c0)
s1 = (c5, c4, c3, c2, c1, c0), s2 = (c11, c10, c9, c8, c7, c6),
s3 = (c9, c8, c7, c6, 0, 0), s4 = (0, 0, c11, c10, 0, 0),
s5 = (0, 0, 0, 0, c11, c10) Return s1 + s2 + s3 + s4 + s5

Solinas, technical report 1999

7 / 19

Example: P192 = 2192 − 264 − 1

0 ≤ x < P2
192

x = xH · 2192 + xL
≡ xH · 2192 + xL − xH · P192 mod P192

= xL + xH · 264 + xH

xH · 264 =
⌊
xH ·264

2192

⌋
·2192 + (xH · 264 mod P192)

= x̃H ·2192 + x̃L
≡ x̃H · 2192 + x̃L − x̃H · P192 mod P192

= x̃L + x̃H · 264 + x̃H

x = (c11, . . . , c0)
s1 = (c5, c4, c3, c2, c1, c0), s2 = (0, 0, c7, c6, c7, c6),
s3 = (c9, c8, c9, c8, 0, 0), s4 = (c11, c10, c11, c10, c11, c10)

Return 0 ≤ s1 + s2 + s3 + s4 < 4 · P192

Solinas, technical report 1999

7 / 19

The Cell Broadband Engine

Cell architecture in the PlayStation 3 (@ 3.2 GHz):

Broadly available (24.6 million)

Relatively cheap (US$ 300)

PS3 Slim or the newest firmware disables another OS!
Also available in blade servers and PCI express boards.

The Cell contains

eight “Synergistic Processing Elements” (SPEs)
six (maybe seven) available to the user in the PS3

one “Power Processor Element” (PPE)

the Element Interconnect Bus (EIB)
a specialized high-bandwidth circular data bus

8 / 19

Cell architecture, the SPEs

The SPEs contain

a Synergistic Processing Unit (SPU)

Access to 128 registers of 128-bit
SIMD operations
Dual pipeline (odd and even)
Rich instruction set
In-order processor

256 KB of fast local memory (Local Store)

Memory Flow Controller (MFC)

9 / 19

Programming Challenges

Memory

The executable and all data should fit in the LS
Or perform manual DMA requests to the main memory (max. 214 MB)

Branching

No “smart” dynamic branch prediction
Instead “prepare-to-branch” instructions to redirect instruction prefetch
to branch targets

Instruction set limitations

16× 16→ 32 bit multipliers (4-SIMD)

Dual pipeline

One odd and one even instruction can be dispatched per clock cycle.

10 / 19

Modular Multiplication on the Cell I

Four (16 ·m)-bit integers in m vectors: xi =
m−1∑
j=0

xi ,j · 216·j

x[0] =

128-bit wide register︷ ︸︸ ︷
︸ ︷︷ ︸

the 32 (or 16) least significant bits of x2 are located in
this 32-bit word (or in its 16 least significant bits)

.

.

.

.

.

.

x[j] = 16-bit︸ ︷︷ ︸
high
order

16-bit︸ ︷︷ ︸
low

order

.

.

.

.

.

.

x[n − 1] = ︸ ︷︷ ︸
↑

(x1,

︸ ︷︷ ︸
↑
x2,

︸ ︷︷ ︸
↑
x3,

︸ ︷︷ ︸
↑
x4)

11 / 19

Modular Multiplication on the Cell II

Implementation

use the multiply-and-add instruction,

if 0 ≤ a, b, c , d < 216, then a · b + c + d < 232.

try to fill both the odd and even pipelines,

are branch-free.

Do not fully reduce modulo (m-bits) P,

Montgomery and special reduction [0, 2m〉,
These numbers can be used as input again,

Reduce to [0,P〉 at the cost of a single comparison + subtraction.

12 / 19

Modular Multiplication on the Cell III

Special reduction → [0, t · P〉 (t ∈ Z and small)

How to reduce to [0, 2m〉? (2m−1 < P < 2m)

Apply special reduction again

Repeated subtraction ((t − 1) times)

For a constant modulus m-bit P

Select the four values to subtract simultaneously
using select and cmpgt instructions and a look-up table.

13 / 19

Modular Multiplication on the Cell IV

For the special primes this can be done even faster.

t t · P224 = t ·
(
2224 − 296 + 1

)
= {c7, . . . , c0}

c7 c6 c5 c4 c3 c2 c1 c0

0 0 0 0 0 0 0 0 0

1 0 232 − 1 232 − 1 232 − 1 232 − 1 0 0 1

2 1 232 − 1 232 − 1 232 − 1 232 − 2 0 0 2

3 2 232 − 1 232 − 1 232 − 1 232 − 3 0 0 3

4 3 232 − 1 232 − 1 232 − 1 232 − 4 0 0 4

c0 = t, c1 = c2 = 0 and c3 = (unsigned int) (0− t).

If t > 0 then c4 = c5 = c6 = 232 − 1 else c4 = c5 = c6 = 0.

Use a single select.

14 / 19

Modular Multiplication on the Cell V

P255 = 2255 − 19

Original approach

Proposed by Bernstein and implemented on the SPE by Costigan and
Schwabe (Africacrypt 2009):

Here x ∈ F2255−19 is represented as x =
19∑
i=0

xi2
d12.75ie.

Redundant representation

Following ideas from Bos, Kaihara and Montgomery (SHARCS 2009),

Calculate modulo 2 · P255 = 2256 − 38 =
15∑
i=0

xi2
16,

Reduce to [0, 2256〉.
15 / 19

 0

 200

 400

 600

 800

 1000

 1200

 1400

 150 200 250 300 350 400 450 500 550

N
um

be
r

of
 c

yc
le

s

Bitsize of the modulus

Modular Multiplication Performance Results

NIST primes
Generic primes

Generic primes estimates
Curve25519 prime

Performance Results

Montgomery multiplication
multiplication + fast reduction ≈ 1.4 – 1.7, (512 bits: 2.2 times faster) 16 / 19

Comparison Special Moduli

Number of cycles for what?

Measurements over millions of multi-stream modular multiplications,

Cycles for a single modular multiplication,

include benchmark overhead, function call, loading (storing) the input
(output), converting from radix-232 to radix-216.

Special prime P255

Costigan and Schwabe (Africacrypt 2009), 255 bit.

single-stream: 444 cycles (144 mul, 244 reduction, 56 overhead).

multi-stream: 168 cycles.

no function call, loading and storing,
“perfectly” scheduled (filled both pipelines)

this work, multi-stream: 175 cycles (< 168 + 56),

=⇒ both approaches are comparable in terms of speed (on the Cell).

17 / 19

Comparison Special Moduli

Number of cycles for what?

Measurements over millions of multi-stream modular multiplications,

Cycles for a single modular multiplication,

include benchmark overhead, function call, loading (storing) the input
(output), converting from radix-232 to radix-216.

Special prime P255

Costigan and Schwabe (Africacrypt 2009), 255 bit.

single-stream: 444 cycles (144 mul, 244 reduction, 56 overhead).

multi-stream: 168 cycles.

no function call, loading and storing,
“perfectly” scheduled (filled both pipelines)

this work, multi-stream: 175 cycles (< 168 + 56),

=⇒ both approaches are comparable in terms of speed (on the Cell).

17 / 19

Comparison Generic Moduli

Generic 195-bit moduli

Bernstein et al. (SHARCS 2009): multi-stream, 189 cycles

This work: multi-stream, 176 cycles (for 192-bit generic moduli)
Scale: (195

192)2 · 176 = 182 cycles.

Generic moduli: single vs. multi stream

Bitsize #cycles

New MPM uMPM

192 176 1,188 877

224 234 1,188 877

256 297 1,188 877

384 665 2,092 1,610

512 1,393 3,275 2,700

18 / 19

Conclusions

We presented SIMD algorithms for Montgomery and
{ schoolbook, Karatsuba } multiplication plus fast reduction.

Algorithms are optimized for architectures with a multiply-and-add
instruction.

Implementation results on the Cell: moduli of size 192 to 521 bits
show that special primes are at least 1.4 times faster compared to
generic primes.

Future work

Similair speed-up on other multi-core platforms like GPUs?

19 / 19

	The Cell Broadband Engine

