OpenCL 2.0 Reference Guide

www.khronos.org/opencl.

OpenCL API Reference

The OpenCL Platform Layer

The OpenCL platform layer implements platform-specific
features that allow applications to query OpenCL
devices, device configuration information, and to create
OpenCL contexts using one or more devices. Items in
blue apply when the appropriate extension is supported.

Querying Platform Info & Devices [4.1-2] [9.16.9]
cl_int clGetPlatformIDs (cl_uint num_entries,
cl_platform_id *platforms, cl_uint *num_platforms)

cl_int clicdGetPlatformIDsKHR (cl_uint num_entries,
cl_platform_id * platfoms, cl_uint *num_platforms)

cl_int clGetPlatforminfo (cl_platform_id platform,
cl_platform_info param_name,
size_t param_value_size, void *param_value,
size_t *param_value_size_ret)

param_name: CL_PLATFORM_{PROFILE, VERSION},
CL_PLATFORM_{NAME, VENDOR, EXTENSIONS},
CL_PLATFORM_ICD_SUFFIX_KHR [Table 4.1]

cl_int clGetDevicelDs (cl_platform_id platform,
cl_device_type device_type, cl_uint num_entries,
cl_device_id *devices, cl_uint *num_devices)

device_type: [Table 4.2]
CL_DEVICE_TYPE_{ACCELERATOR, ALL, CPU},
CL_DEVICE_TYPE_{CUSTOM, DEFAULT, GPU}

cl_int clGetDevicelnfo (cl_device_id device,
cl_device_info param_name,
size_t param_value_size, void *param_value,
size_t *param_value_size_ret)

param_name: [Table 4.3]
CL_DEVICE_ADDRESS_BITS, CL_DEVICE_AVAILABLE,
CL_DEVICE_BUILT_IN_KERNELS,
CL DEVICE COMPILER AVAILABLE
CL_DEVICE {DOUBLE HALF, SINGLE} FP_CONFIG,
CL DEVICE_ENDIAN_LITTLE, CL_DEVICE_| EXTENSIONS,
CL_DEVICE_ERROR_CORRECTION_SUPPORT
CL_DEVICE_EXECUTION_CAPABILITIES,
CL_DEVICE_GLOBAL_MEM_CACHE_{SIZE, TYPE},
CL DEVICE GLOBAL MEM {CACHELINE SIZE, SIZE},
CL_DEVICE_GLOBAL_VARIABLE_PREFERRED_TOTAL_SIZE
CL_DEVICE_PREFERRED_{PLATFORM, LOCAL,
GLOBAL}_ATOMIC_ALIGNMENT,
CL_DEVICE_GLOBAL_ VARIABLE _SHARING,
CL_DEVICE_HOST_UNIFIED_MEMORY
CL_DEVICE_IMAGE_MAX_{ARRAY, BUFFER}_SIZE,
CL DEVICE IMAGE_ _SUPPORT,
CL DEVICE II\/IAGEZD MAX {WIDTH HEIGHT},
CL_DEVICE_IMAGE3D_MAX_{WIDTH HEIGHT, DEPTH]},
CL_DEVICE_IMAGE_BASE_ADDRESS_ALIGNMENT,
CL DEVICE IMAGE PITCH. _ALIGNMENT,
CL_DEVICE LINKER_ _AVAILABLE,
CL_DEVICE_LOCAL_MEM_{TYPE SIZE},
CL_DEVICE_MAX_READ_IMAGE_ARGS,
CL_DEVICE_MAX_WRITE_IMAGE_ARGS,
CL_DEVICE_MAX_{CLOCK_FREQUENCY, PIPE_ARGS},
CL_DEVICE_MAX_{COMPUTE_UNITS, SAMPLERS},
CL_DEVICE_MAX_CONSTANT_{ARGS, BUFFER_SIZE},
CL_DEVICE_MAX_{MEM_ALLOC, PARAMETER}_SIZE,
CL DEVICE MAX_GLOBAL_VARIABLE_SIZE,
CL DEVICE MAX_| _ON_| DEVICE (QUEUES EVENTS}
CL_DEVICE_MAX_WORK_GROUP_SIZE
CL_DEVICE_MAX_WORK_ITEM_{DIMENSIONS, SIZES},
CL_DEVICE_MEM_BASE_ADDR_ALIGN,
CL_DEVICE_NAME,
CL_DEVICE_NATIVE_VECTOR_WIDTH_{CHAR, INT},
CL_DEVICE_NATIVE_VECTOR_WIDTH_{LONG, SHORT},
CL DEVICE_ _NATIVE VECTOR “WIDTH | {DOUBLE, HALF},
CL DEVICE NATIVE VECTOR WIDTH_FLOAT,
CL DEVICE {OPENCL C VERSION PARENT _DEVICE},
CL_DEVICE_PARTITION_AFFINITY_DOMAIN
CL_DEVICE_PARTITION_MAX_SUB_DEVICES,
CL_DEVICE_PARTITION_{PROPERTIES, TYPE},
CL DEVICE_ PIPE MAX_ACTIVE_RESERVATIONS,
CL DEVICE PIPE MAX PACKET SIZE,

©2015 Khronos Group - Rev. 1118

OpenCL (Open Computing Language) is a multi-vendor

open standard for general-purpose parallel programming of
heterogeneous systems that include CPUs, GPUs, and other
processors. OpenCL provides a uniform programming environment
for software developers to write efficient, portable code for high-
performance compute servers, desktop computer systems, and
handheld devices. Specifications and online reference available at

KHRCONOS

GROUP

[n.n.n] and purple text: sections and text in the OpenCL API Spec.
[n.n.n] and green text: sections and text in the OpenCL C Spec.

[n.n.n] and blue text: sections and text in the OpenCL Extension Spec.

CL_DEVICE_{PLATFORM, PRINTF_BUFFER_SIZE},
CL_DEVICE_PREFERRED_VECTOR_WIDTH_{CHAR, INT},
CL_DEVICE_PREFERRED_VECTOR_WIDTH_DOUBLE,
CL_DEVICE_PREFERRED_VECTOR_WIDTH_HALF,
CL_DEVICE_PREFERRED_VECTOR_WIDTH_LONG,
CL_DEVICE_PREFERRED_VECTOR_WIDTH_SHORT,
CL_DEVICE_PREFERRED_VECTOR_WIDTH_FLOAT,
CL_DEVICE_PREFERRED_INTEROP_USER_SYNC,
CL_DEVICE_PROFILE,
CL_DEVICE_PROFILING_TIMER_RESOLUTION,
CL_DEVICE_SPIR_VERSIONS,
CL_DEVICE_QUEUE_ON_DEVICE_PROPERTIES,
CL_DEVICE_QUEUE_ON_HOST_PROPERTIES,
CL_DEVICE_QUEUE_ON_DEVICE_MAX_SIZE,

CL_DEVICE_QUEUE_ON_DEVICE_PREFERRED_SIZE,

CL_DEVICE_{REFERENCE_COUNT, VENDOR_|D},
CL_DEVICE_SVM_CAPABILITIES,
CL_DEVICE_TERMINATE_CAPABILITY_KHR,
CL_DEVICE_{TYPE, VENDOR},

CL_{DEVICE, DRIVER}_VERSION

Partitioning a Device [4.3]

cl_int clCreateSubDevices (cl_device_id in_device,
const cl_device_partition_property *properties,
cl_uint num_devices, cl_device_id *out_devices,
cl_uint *num_devices_ret)

properties: CL_DEVICE_PARTITION_EQUALLY,

CL_DEVICE_PARTITION_BY_COUNTS,
CL_DEVICE_PARTITION_BY_AFFINITY_DOMAIN

cl_int clRetainDevice (cl_device_id device)
cl_int cIReleaseDevice (cl_device_id device)

Contexts [4.4]
cl_context clCreateContext (
const cl_context_properties *properties,
cl_uint num_devices, const cl_device_id *devices,
void (CL_CALLBACK*pfn_nonfy)
(const char *errinfo, const void *private_info,
size_t cb, void *user_data),
void *user_ data cl_int *errcode_ret)

The OpenCL Runtime

API calls that manage OpenCL objects such as
command-queues, memory objects, program objects,
kernel objects for __kernel functions in a program
and calls that allow you to enqueue commands to a
command-queue such as executing a kernel, reading,
or writing a memory object.

Command Queues [5.1]

cl_command_queue
clCreateCommandQueueWithProperties (
cl_context context, cl_device_id device,
const cl_command_queue_properties *properties,
cl_int *errcode_ret)

properties: [Table 5.1] CL_QUEUE_SIZE,
CL_QUEUE_PROPERTIES (bitfield which may be
set to an OR of CL_QUEUE_* where * may
be: OUT_OF_ORDER_EXEC_MODE_ENABLE,
PROFILING_ENABLE, ON_DEVICE[_DEFAULT])

cl_int cIRetainCommandQueue (
cl_command_queue command_queue)

cl_int cIReleaseCommandQueue (
cl_command_queue command_queue)

cl_int clGetCommandQueuelnfo (
cl_command_queue command_queue,
cl_command_queue_info param_name,
size_t param_value_size, void *param_value,
size_t *param_value_size_ret)

param_name: [Table 5.2] CL_QUEUE_CONTEXT,

CL_QUEUE_DEVICE, CL_QUEUE_SIZE,

CL_QUEUE_REFERENCE_COUNT,

CL_QUEUE_PROPERTIES

properties: [Table 4.5]
NULL or CL_CONTEXT_PLATFORM,
CL_CONTEXT_INTEROP_USER_SYNC,
CL_CONTEXT {D3D10, D3D11} DEVICE_KHR,
CL_CONTEXT_ADAPTER {D3D9, DSD9EX}_KHR
CL_CONTEXT_ADAPTER_DXVA_KHR,
CL_CONTEXT_MEMORY_INITIALIZE_KHR,
CL_CONTEXT_TERMINATE_KHR,
CL_GL_CONTEXT_KHR, CL_CGL_SHAREGROUP_KHR,
CL_{EGL, GLX}_DISPLAY_KHR, CL_WGL_HDC_KHR

cl_context cICreateContextFromType(
const cl_context_properties *properties,
cl_device_type device_type,
void (CL_CALLBACK *pfn_notify)
(const char *errinfo, const void *private_info,
size_t cb, void *user_data),
void *user_data, cl_int *errcode_ret)
properties: See clCreateContext
device_type: See clGetDevicelDs

cl_int clRetainContext (cl_context context)
cl_int clReleaseContext (cl_context context)

cl_int clGetContextiInfo (cl_context context,

cl_context_info param_name,
size_t param_value_size, void *param_value,
size_t *param_value_size_ret)

param_name: CL_CONTEXT_REFERENCE_COUNT,
CL_CONTEXT_{DEVICES, NUM_DEVICES,
PROPERTIES}, CL_CONTEXT_{D3D10, D3D11}
PREFER_SHARED_RESOURCES_KHR [Table 4.6]

cl_int cITerminateContextKHR (cl context context)
Get CL Extension Function Pointers [9.2]

void* clGetExtensionFunctionAddressForPlatform (
cl_platform_id platform, const char *funcname)

Buffer Objects

Elements are stored sequentially and accessed using a
pointer by a kernel executing on a device.

Create Buffer Objects [5.2.1]

cl_mem clCreateBuffer (cl_context context,
cl_mem_flags flags, size_t size, void *host_ptr,
cl_int *errcode_ret)

flags: [Table 5.3] CL_MEM_READ_WRITE,
CL_MEM_{WRITE, READ}_ONLY,
CL_MEM_HOST_NO_ACCESS,
CL_MEM_HOST_{READ, WRITE}_ONLY,
CL_MEM_{USE, ALLOC, COPY} HOST PTR

cl_mem clCreateSubBuffer (c|_mem buffer,
cl_mem_flags flags,
cl_buffer_create_type buffer_create_type,
const void *buffer_create_info, cl_int *errcode_ret)
flags: See clCreateBuffer
buffer_create_type: CL_BUFFER_CREATE_TYPE_REGION

Read, Write, Copy Buffer Objects [5.2.2]
cl_int clEnqueueReadBuffer (
cl_command_queue command_queue,
cl_mem buffer,
cl_bool blocking_read, size_t offset, size_t size,
void *ptr, cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueReadBufferRect (
cl_command_queue command_queue,
cl_mem buffer, cl_bool blocking_read,

const size_t *region, size_t buffer_row_pitch,
size_t buffer_slice_pitch, size_t host_row_pitch,
size_t host_slice_pitch, void *ptr,

cl_uint num_events_in_wait_list,

const cl_event *event_wait_list, cl_event *event)

www.khronos.org/opencl

const size_t *buffer_origin, const size_t *host_origin,

(Continued on next page >)

I1dV 10uado

o
<
-
(%)
c
@
Q.
o

OpenCL 2.0 Reference Guide
Buffer Objects (continued)

cl_int clEnqueueWriteBuffer (
cl_command_queue command_queue, cl_mem buffer, cl_bool blocking_write,
size_t offset, size_t size, const void *ptr, cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueWriteBufferRect (

cl_command_queue command_gqueue, cl_mem buffer, cl_bool blocking_write,
const size_t *buffer_origin, const size_t *host_origin, const size_t *region,
size_t buffer_row_pitch, size_t buffer_slice_pitch, size_t host_row_pitch,
size_t host_slice_pitch, const void *ptr, cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueFillBuffer (
cl_command_queue command_queue, cl_mem buffer, const void *pattern,
size_t pattern_size, size_t offset, size_t size, cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueCopyBuffer (
cl_command_queue command_queue, c|_mem src_buffer, c|_mem dst_buffer,
size_t src_offset, size_t dst_offset, size_t size, cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueCopyBufferRect (
cl_command_queue command_queue, cl_mem src_buffer, c|_mem dst_buffer,
const size_t *src_origin, const size_t *dst_origin, const size_t *region,
size_t src_row_pitch, size_t src_slice_pitch, size_t dst_row_pitch,
size_t dst_slice_pitch, cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

Map Buffer Objects [5.2.4]

void * clEnqueueMapBuffer (
cl_command_queue command_queue, c|_mem buffer, cl_bool blocking_map,
cl_map_flags map_flags, size_t offset, size_t size,
cl_uint num_events_in_wait_list, const cl_event *event_wait_list,
cl_event *event, cl_int *errcode_ret)

map_flags: CL_MAP_{READ, WRITE}, CL_MAP_WRITE_INVALIDATE_REGION

Conversions and Type Casting Examples [s.2]
Ta=(T)b; //Scalar to scalar,
// or scalar to vector
T a = convert_T(b);
T a = convert_T_R(b);
Ta=as_T(b);
Ta = convert_T_sat_R(b);
R: one of the following rounding modes:

_rte to nearest even
_rtz toward zero
_rtp toward + infinity
_rtn toward - infinity

Memory Objects

A memory object is a handle to a reference counted region of global memory.

the appropriate extension is supported.

Memory Objects [5.5.1,5.5.2]
cl_int cIRetainMemObject (c|_mem memobyj)

cl_int clReleaseMemObject (cI_mem memobj)

cl_int cISetMemObjectDestructorCallback (c|_mem memobj,
void (CL_CALLBACK *pfn_notify)

(cl_mem memobj, void *user_data),
void *user_data)

cl_int clEnqueueUnmapMemObject (c|_command_queue command_queue,
cl_mem memobyj, void *mapped_ptr, cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

Migrate Memory Objects [5.5.4]

cl_int clEnqueueMigrateMemObjects (c|_command_queue command_queue,
cl_uint num_mem_objects, const cI|_mem *mem_objects,
cl_mem_migration_flags flags, cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

flags: CL_MIGRATE_MEM_OBJECT_HOST,
CL_MIGRATE_MEM_OBJECT_CONTENT_UNDEFINED

Query Memory Object [5.5.5]

cl_int clGetMemObjectinfo (c|_mem memobj, c|_mem_info param_name,
size_t param_value_size, void *param_value, size_t *param_value_size_ret)

param_name: CL_MEM_{TYPE, FLAGS, SIZE, HOST_PTR}, CL_MEM_OFFSET,
CL_MEM_{MAP, REFERENCE}_COUNT, CL_MEM_ASSOCIATED_MEMOBJECT,
CL_MEM_CONTEXT, CL_MEM_USES_SVM_ POINTER,

CL_MEM_{D3D10, D3D11} RESOURCE_KHR,
CL_MEM_DX9_MEDIA_{ADAPTER_TYPE, SURFACE_INFO}_KHR [Table 5.12]

©2015 Khronos Group - Rev. 1118

Includes Buffer Objects, Image Objects, and Pipe Objects. Items in blue apply when

OpenCL Class Diagram

The figure below describes the OpenCL specification as a class diagram using the Unified
Modeling Language! (UML) notation. The diagram shows both nodes and edges which
are classes and their relationships. As a simplification it shows only classes, and no

attributes or operations.
Platform |1

Annotations
+ Command Queue

!%}l Event I

Relationships

1
abstract classes {abstract} ¥ : ¥)
aggregations ¢ M 1} o.a{

3 |
inheritance A Devige D | _Context |
relationship ~ 1
navigability . . o
Program | MemObject |
{abstract} Sampler |
Cardinality T]
many * £
oneandonlyone | 1 Kernel
- i 1, Buffer | Image | Pipe |
optionally one 0.1 1 | 1
]) 1)
one or more 1.* *

! Unified Modeling Language (http://www.uml.org/) is a trademark of Object Management Group (OMG).

OpenCL Device Architecture Diagram

The table below shows memory regions with allocation and memory access capabilities.
R=Read, W=Write

This conceptual OpenCL device architecture diagram
shows processing elements (PE), compute units
(CU), and devices. The host is not shown.

Host Kernel

Global No allocation

R/W access

Dynamic
allocation
R/W access

Compute Device

CUI [Pprivate Private
memory 1 memory M

pE1 |""[PEM pE1 |

I

Static allocation | Global/Constant Memory Data Cache
R/W access

Private
memory M|

CUN [Pprivate
memory 1

Static allocation
R-only access

Constant | Dynamic
allocation

R/W access

PEM

Dynamic
allocation
No access

Compute Device Memory
[Global Memory

Static allocation

No allocation
R/W access |

No access

Private

ConstantMemory

Pipes

A pipe is a memory object that stores data organized as a FIFO. Pipe objects can only be
accessed using built-in functions that read from and write to a pipe. Pipe objects are not
accessible from the host.

Create Pipe Objects [5.4.1]
cl_mem clCreatePipe (cl_context context, cl_mem_flags flags, cl_uint pipe_packet_size,
cl_uint pipe_max_packets, const cl_pipe_properties *properties, cl_int *errcode_ret)

flags:
0or CL_MEM_READ_WRITE, CL_MEM_{READ, WRITE}_ONLY,
CL_MEM_HOST_NO_ACCESS

Pipe Object Queries [5.4.2]

cl_int clGetPipelnfo (c|_mem pipe, cl_pipe_info param_name, size_t param_value_size,
void *param_value, size_t *param_value_size_ret)

param_name:
CL_PIPE_PACKET_SIZE, CL_PIPE_MAX_PACKETS

Shared Virtual Memory
Shared Virtual Memory (SVM) allows the host and kernels executing on devices to directly
share complex, pointer-containing data structures such as trees and linked lists.

SVM Sharing Granularity [5.6.1]

void* cISVMAIloc (cl_context context, cl_svm_mem_flags flags, size_t size,
unsigned int alignment)

flags: [Table 5.13]
CL_MEM_READ_WRITE, CL_MEM_{WRITE, READ}_ONLY,
CL_MEM_SVM_FINE_GRAIN_BUFFER, CL_MEM_SVM_ATOMICS

void cISVMFree (cl_context context, void *svm_pointer)

Enqueuing SVM Operations [5.6.2]

cl_int clEnqueueSVMFree (
cl_command_queue command_queue,
cl_uint num_svm_pointers, void *sym_pointers[],
void (CL_CALLBACK*pfn_free_func{(
cl_command_queue command_queue,
cl_uint num_svm_pointers,
void *sym_pointers[], void *user_data),
void *user_data, cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

(Continued on next page >)

www.khronos.org/opencl

OpenCL 2.0 Reference Guide

Shared Virtual Memory (continued)

cl_int clEnqueueSVMMemcpy (
cl_command_queue command_queue,
cl_bool blocking_copy, void *dst_ptr,
const void *src_ptr, size_t size,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueSVMMemFill
cl_command_queue command_queue,
void *svm_ptr, const void *pattern,
size_t pattern_size, size_t size,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueSVMMap (
“cl_command_queue command_queue,
cl_bool blocking_map, cI_map_flags map_flags,
void *svm_ptr, size_t size,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueSVMUnmap (
cl_command_queue command_queue,
void *svm_ptr, cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

Kernel Objects

A kernel is a function declared in a program, identified

by the __kernel qualifier. A kernel object encapsulates

the specific __kernel function and the argument values
to be used when executing it. Items in blue apply when
the appropriate extension is supported.

Create Kernel Objects [5.9.1]

cl_kernel clCreateKernel (cl_program program,
const char *kernel_name, cl_int *errcode_ret)

cl_int clCreateKernelsInProgram (cl_program program,
cl_uint num_kernels, cl_kernel *kernels,
cl_uint *num_kernels_ret)

cl_int clRetainKernel (cl_kernel kernel)
cl_int clReleaseKernel (cl_kernel kernel)

Kernel Arguments and Queries [5.9.2,5.9.3]

cl_int clSetKernelArg (cl_kernel kernel,
cl_uint arg_index, size_t arg_size,
const void *arg_value)

cl_int clSetKernelArgSVMPointer (cl_kernel kernel,
cl_uint arg_index, const void *arg_value)

cl_int clSetKernelExecInfo (cl_kernel kernel,
cl_kernel_exec_info param_name,
size_t param_value_size, const void *param_value)

param_name: CL_KERNEL_EXEC_INFO_SVM_PTRS,
CL_KERNEL_EXEC_INFO_SVM_FINE_GRAIN_SYSTEM

cl_int clGetKernellnfo (cl_kernel kernel,
cl_kernel_info param_name,
size_t param_value_size, void *param_value,
size_t *param_value_size_ret)

param_name: [Table 5.19]

CL_KERNEL_FUNCTION_NAME,
CL_KERNEL_NUM_ARGS,
CL_KERNEL_REFERENCE_COUNT,
CL_KERNEL_{ATTRIBUTES, CONTEXT, PROGRAM}

cl_int clGetKernelWorkGrouplnfo (cl_kernel kernel,
cl_device_id device,
cl_kernel_work_group_info param_name,
size_t param_value_size, void *param_value,
size_t *param_value_size_ret)

param_name: CL_KERNEL_GLOBAL_WORK_SIZE,
CL_KERNEL_[COMPILE_]WORK_GROUP_SIZE,
CL_KERNEL_{LOCAL, PRIVATE}_MEM_SIZE,
CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_-
MULTIPLE [Table 5.20]

cl_int clGetKernelArginfo (cl_kernel kernel,
“cl_uint arg_indx, cl_kernel _arg_| info param_name,
size tparam valué. _size, void ¥param_value,
size_t *param_value_size_ret)

param_name:
CL_KERNEL_ARG_{ACCESS, ADDRESS} QUALIFIER,
CL_KERNEL_ARG_NAME,
CL_KERNEL_ARG_TYPE_{NAME, QUALIFIER} [Table 5.21]

©2015 Khronos Group - Rev. 1118

Program Objects

An OpenCL program consists of a set of kernels that
are identified as functions declared with the __kernel
qualifier in the program source.

Create Program Objects [5.8.1]

cl_program clCreateProgramWithSource (
cl_context context, cl_uint count,
const char **strings, const size_t *lengths,
cl_int *errcode_ret)

cl_program clCreateProgramWithBinary (
cl_context context, cl_uint num_devices,

const unsigned char **binaries,
cl_int *binary_status, cl_int *errcode_ret)

cl_program clCreateProgramWithBuiltinKernels (
cl_context context, cl_uint num_devices,
const cl_device_id *device_list,
const char *kernel_names, cl_int *errcode_ret)

cl_int clRetainProgram (cl_program program)
cl_int cIReleaseProgram (cl_program program)

Building Program Executables [5.8.2]

cl_int clBuildProgram (cl_program program,
“cl_uint num_devices, const cl_device_id *device_list,
const char *options, oid (CL_CALLBACK*pfn_ nonfy)
(cl_program program, void *user_data),
void *user_data)

Separate Compilation and Linking [5.8.3]

cl_int clCompileProgram (cl_program program,

cl_uint num_devices, const cl_device_id *device_list,
const char *options, cl_uint num_input_headers,
const cl_program *input_headers,
const char **header_include_names,
void (CL_CALLBACK*pfn_notify)

(cl_program program, void *user_data),
void *user_data)

const cl_device_id *device_list, const size_t *lengths,

cl_int clGetKernelSubGroupInfoKHR
(cl_kernel kernel, cl_device_id device,
cl_kernel_sub_group_info param_name,
size_t input_value_size, const void *input_value,
size_t param_value_size, void *param_value,
size_t *param_value_size_ret)

param_name:

CL_KERNEL_MAX_SUB_GROUP_SIZE_FOR_NDRANGE,

CL_KERNEL_SUB_GROUP_COUNT FOR_NDRANGE

Execute Kernels [5.10]
cl_int clEnqueueNDRangeKernel (
cl_command_queue command_queue,
cl_kernel kernel, cl_uint work_dim,
const size_t *global_work_offset,
const size_t *global_work_size,
const size_t *local_work_size,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueNativeKernel (
“cl_command_queue command_queue,
void (CL_CALLBACK *user_func)(void *), void *args,
size_t cb_args, cl_uint num_mem_objects,

const cl_mem *mem_list, constvoid **args_mem_loc,

cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

Flush and Finish s.15]
cl_int clFlush (c|_command_queue command_queue)
cl_int clFinish (cl_command_queue command_queue)

Event Objects
Event objects can be used to refer to a kernel execution
command, and read, write, map and copy commands
on memory objects or user events.

Event Objects [5.11]

cl_event clCreateUserEvent (cl_context context,
cl_int *errcode_ret)

Page 3

cl_program clLinkProgram (cl_context context,
cl_uint num_devices, const cl_device_id *device_list,
const char *options, cl_uint num_input_programs,
const cl_program *input_programs,
void (CL_CALLBACK*pfn_notify)
(cl_program program, void *user_data),
void *user_data, cl_int *errcode_ret)

Unload the OpenCL Compiler [5.5.6]

cl_int clUnloadPlatformCompiler (
cl_platform_id platform)

Query Program Objects [5.8.7]

cl_int clGetPrograminfo (cl_program program,
cl_program_info param_name,
size_t param_value_size, void *param_value,
size_t *param_value_size_ret)

param_name: [Table 5.16]
CL_PROGRAM_REFERENCE_COUNT,
CL_PROGRAM_{CONTEXT, NUM_DEVICES, DEVICES},
CL_PROGRAM_{SOURCE, BINARY_SIZES, BINARIES},
CL_PROGRAM_{NUM_KERNELS, KERNEL_NAMES}

cl_int clGetProgramBuildinfo (
cl_program program, cl_device_id device,
cl_program_build_info param_name,
size_t param_value_size, void *param_value,
size_t *param_value_size_ret)

param_name: [Table 5.17]
CL_PROGRAM_BINARY_TYPE,
CL_PROGRAM_BUILD_{STATUS, OPTIONS, LOG},
CL_PROGRAM_BUILD_GLOBAL_VARIABLE_TOTAL_SIZE

Compiler Options [5.8.4]
SPIR options require the cl_khr_spir extension.
Preprocessor: (-D processed in order for cIBuildProgram or
clCompileProgram)
-D name -D name=definition
Math intrinsics:
-cl-single-precision-constant
-cl-denorms-are-zero
-cl-fp32-correctly-rounded-divide-sqrt
Optimization options:
-cl-opt-disable -cl-mad-enable
-cl-no-signed-zeros -cl-finite-math-only
-cl-unsafe-math-optimizations -cl-fast-relaxed-math
-cl-uniform-work-group-size
Warning request/suppress:
-w -Werror

Control OpenCL C language version:

-| dir

-cl-std=CL1.1 // OpenCL 1.1 specification
-cl-std=CL1.2 // OpenCL 1.2 specification
-cl-std=CL2.0 // OpenCL 2.0 specification

Query kernel argument information:
-cl-kernel-arg-info
Debugging options:
-g // generate additional errors for built-in
// functions that allow you to enqueue
// commands on a device
SPIR binary options:
-X spir // indicate that binary is in SPIR format
-spir-std=x //x is SPIR spec version, e.g.: 1.2

Linker Options [5.8.5]

Library linking options:

-create-library -enable-link-options

Program linking options:
-cl-denorms-are-zero -cl-no-signed-zeroes
-cl-finite-math-only -cl-fast-relaxed-math
-cl-unsafe-math-optimizations

cl_int clSetUserEventStatus (cl_event event,
cl_int execution_status)

cl_int clWaitForEvents (cl_uint num_events,
const cl_event *event _list)

cl_int clGetEventinfo (cl_event event,
cl_event_info param_name, size_t param_value_size,
void *param_value, size_t *param_value_size_ret)
param_name: CL_EVENT_COMMAND_{QUEUE, TYPE},
CL_EVENT_{CONTEXT, REFERENCE_COUNT},
CL_EVENT_COMMAND_EXECUTION_STATUS [Table 5.22]

cl_int clRetainEvent (cl_event event)

(Continued on next page >)

www.khronos.org/opencl

I1dV 12uadQ

OpenCL 2.0 Reference Guide

Event Objects (continued)
cl_int clReleaseEvent (cl_event event)

cl_int clSetEventCallback (cl_event event,
cl_int command_exec_callback_type,
void (CL_CALLBACK *pfn_event_notify)
(cl_event event, cl_int event_command_exec_status,
void *user_data), void *user_data)

a
<
-
(@)
=
]
o
(o]

Markers, Barriers, Waiting for Events [5.12]

cl_int clEnqueueMarkerWithWaitList (
cl_command_queue command_queue,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueBarrierWithWaitList (
cl_command_queue command_queue,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

Profiling Operations [5.14]

cl_int clGetEventProfilinglnfo (cl_event event,
cl_profiling_info param_name,
size_t param_value_size, void *param_value,
size_t *param_value_size_ret)

param_name: [Table 5.23]

CL_PROFILING_COMMAND_QUEUED, CL_PROFILING_
COMMAND_ COMPLETE,
CL_PROFILING_COMMAND_{SUBMIT, START, END}

OpenCL C Language Reference

Supported Data Types
The optional double scalar and vector types are
supported if CL_DEVICE_DOUBLE_FP_CONFIG is not zero.

Built-in Scalar Data Types [6.1.1]
API Type

OpenCL Type
bool

Description

true (1) or false (0)

8-bit signed

8-bit unsigned

16-bit signed

16-bit unsigned

32-bit signed

32-bit unsigned

64-bit signed

64-bit unsigned

32-bit float

64-bit IEEE 754

16-bit float (storage only)
32- or 64-bit unsigned integer
32- or 64-bit signed integer
32- or 64-bit signed integer
32- or 64-bit unsigned integer
void

char cl_char

unsigned char, uchar | cl_uchar
short cl_short
unsigned short, ushort | cl_ushort
int cl_int
unsigned int, uint cl_uint
long cl_long
unsigned long, ulong | cl_ulong
float cl_float
double cl_double
half cl_half
size_t

ptrdiff_t

intptr_t

uintptr_t

void

OPTIONAL

OpenCL C Language

Vector Component Addressing [s.1.7]
Vector Components

0 1
float2 v; v.x, V.sO vy, v.sl
float3 v;
float4 v;

float8 v;

v.x, v.s0 vy, vsl vz, v.s2
v.x, v.s0 vy, v.sl

v.s0 v.sl

V.Z, V.52 | V.W, V.S3

V.52 v.s3 v.s4 | v.s5

float16 v; v.s0 v.sl V.52 v.s3 v.s4 v.sh

Vector Addressing Equivalences

Numeric indices are preceded by the letter s or S, e.g.: s1. Swizzling, duplication, and nesting are allowed, e.g.: v.yx,

V.XX, V.l0.x

v.odd

vy, v.s1
v.s13, vyw

v.s13, vyw

v.lo v.hi v.even

float2
float3*
floatd

V.X, V.50
v.s01, v.xy

v.s01, v.xy

vy, v.s1
V.523, v.Zzw

V.X, V.50
v.502, v.xz

V.523, v.zw v.s02, v.xz

Operators and Qualifiers
Operators [6.3]

These operators behave similarly as in C99 except
operands may include vector types when possible:

+ - * % / -
++ == 1= & ~ 2
> < >= <= | |
&& [? >> << =
, op= sizeof

Blocks [5.12]
A result value type with a list of parameter types, similar to
a function type. In this example:

1. The * declares variable “myBlock” is a Block.
. The return type for the Block “myBlock”is int.
. myBlock takes a single argument of type int.
. The argument is named “num.”
. Multiplier captured from block’s environment.

b wN

©2015 Khronos Group - Rev. 1118

float8
float16

Address Space Qualifiers [6.5]

Built-in Vector Data Types [6.1.2]

OpenCL Type API Type Description
charn cl_charn 8-bit signed
ucharn cl_ucharn 8-bit unsigned
shortn cl_shortn 16-bit signed
ushortn cl_ushortn | 16-hit unsigned
intn cl_intn 32-bit signed
uintn cl_uintn 32-bit unsigned
longn cl_longn 64-bit signed
ulongn cl_ulongn 64-bit unsigned
floatn cl_floatn 32-bit float
doublen cl_doublen | 64-bit float
halfn Requires the cl_khr_fp16 extension

OPTIONAL

Other Built-in Data Types [6.1.3]

The OPTIONAL types shown below are only defined if

CL_DEVICE_IMAGE_SUPPORT is CL_TRUE. API type for

application shown in italics where applicable. Items in

blue require the cl_khr_gl_msaa_sharing extension.
OpenCL Type
image2d_[msaa_]t
image3d_t
image2d_array_ [msaa_]t
imageld_t
imageld_buffer_t

Description

2D image handle
3D image handle
2D image array
1D image handle
1D image buffer

OPTIONAL
OPTIONAL
OPTIONAL
OPTIONAL
OPTIONAL

v.s6 v.s7

v.sa, V.sh, wvsc, vsd, vse,
VSA vsB vsC vsD wvsE

v.sf,

v.s6 v.s7 v.s8 v.s9 V.sF

v.lo v.hi v.odd v.even

v.s0123 Vv.s4567 v.s1357 v.50246
v.s01234567 v.s89abcdef v.s13579bdf v.s02468ace

*When using .lo or .hi with a 3-component vector, the .w component is undefined.

__global, global
__constant, constant

__local, local
__private, private

Function Qualifiers [6.7]
_ kernel, kernel
__attribute__((vec_type_hint(type)))
//type defaults to int
__attribute__((work_group_size_hint(X, Y, 2)))
__attribute__((reqd_work_group_size(X, Y, 2)))

® O €}
int (“myBlock) (int) =
~(int num)

bi

{return num * multiplier;
@ ®

imageld_array_t OPTIONAL
image2d_ [msaa_]depth_t OPTIONAL
image2d_array_ [msaa_]depth_t oPTIONAL
sampler_t OPTIONAL
queue_t

ndrange_t

clk_event_t

reserve_id_t

event_t

cl_mem_fence_flags

1D image array
2D depth image
2D depth image array
sampler handle

event handle

Reserved Data Types [6.1.4]
OpenCL Type

booln

halfn

quad, quadn

complex half, complex halfn
imaginary half, imaginary halfn
complex float, complex floatn
imaginary float, imaginary floatn
complex double, complex doublen
imaginary double, imaginary doublen
complex quad, complex quadn
imaginary quad, imaginary quadn
floatnxm

doublenxm

Description
boolean vector
16-bit, vector
128-bit float, vector

16-bit complex, vector
32-hit complex, vector
64-bit complex, vector

128-bit complex, vector

n*m matrix of 32-bit floats
n*m matrix of 64-bit floats

Preprocessor Directives & Macros (s.10]

#pragma OPENCL FP_CONTRACT on-off-switch
on-off-switch: ON, OFF, DEFAULT

FILE

_ func__

_LINE__

__OPENCL_VERSION__
CL_VERSION_1 0
CL_VERSION_1_1
CL_VERSION_1 2
CL_VERSION_2_0
__OPENCL_C_VERSION__
__ENDIAN_LITTLE_
__IMAGE_SUPPORT__
__FAST_RELAXED_MATH__

Current source file
Current function name
Integer line number

Integer version number, e.g: 200
Substitutes integer 100 for 1.0
Substitutes integer 110 for 1.1
Substitutes integer 120 for 1.2
Substitutes integer 200 for 2.0
Sub. integer for OpenCL C version
1if device is little endian

1if images are supported

1if —cl-fast-relaxed-math
optimization option is specified

FP_FAST_FMA Defined if double fma is fast
FP_FAST_FMAF
FP_FAST_FMA_HALF

__kernel_exec (X, typen) Same as:
_ kernel __attribute__((work_group_size_hint(X, 1, 1)))
__ attribute__((vec_type_hint(typen)))

Defined if float fma is fast
Defined if half fma is fast

Work-Item Built-in Functions [5.13.1]

Query the number of dimensions, global and local work size
specified to clEnqueueNDRangeKernel, and global and local
identifier of each work-item when this kernel is executed on a
device. Sub-groups require the cl_khr_subgroups extension.

uint get_work_dim () Number of dimensions in use

size_t get_global_size (
uint dimindx)

size_t get_global_id (
uint dimindx)

Number of global work-items

Global work-item ID value

Number of local work-items if
kernel executed with uniform
work-group size

(Continued on next page >)

size_t get_local_size (
uint dimindx)

www.khronos.org/opencl

OpenCL 2.0 Reference Guide

dimindx)

size_t get_num_groups (
uint dimindx)

size_t get_group_id (
uint dimindx)

size_t get_global_offset (
uint dimindx)

size_t get_local_id (uint dimindx)

Work-ltem Functions (continued)

size_t get_enqueued_local_size (uint

Number of local work-
items

Local work-item 1D

Number of work-groups
Work-group ID

Global offset

Math Built-in Functions [6.13.21 [9.4.2]

Ts is type float, optionally double, or half if the
cl_khr_fp16 extension is enabled. Tn is the vector form
of Ts, where nis 2, 3,4, 8, or 16. T'is Ts and Th.

HN indicates that half and native variants are available
using only the float or floatn types by prepending
“half_" or “native_" to the function name. Prototypes
shown in brown text are available in half_ and native_
forms only using the float or floatn types.

Tacos (T)

Tacosh (7)

T acospi (T x)

Tasin (7)

Tasinh (7)

T asinpi (Tx)

Tatan (Ty_over_x)
Tatan2 (Ty, Tx)

T atanh (7)

T atanpi (T x)

T atan2pi (Tx, Ty)
Tcbrt (7)

T ceil (T)

T copysign (Tx, Ty)
Tcos (T) HN
T cosh (7)

T cospi (T x)

T half_divide (Tx, Ty)

T native_divide (Tx, Ty)
Terfc (T)

Terf(T)

Texp (Tx) HN
Texp2 (T) HN
Texpl0(7) HN

Arc cosine

Inverse hyperbolic cosine
acos (x) /m

Arc sine

Inverse hyperbolic sine

asin (x) /m

Arc tangent

Arc tangent of y / x
Hyperbolic arc tangent

atan (x) /1t

atan2 (y,x) /

Cube root

Round to integer toward +
infinity

x with sign changed to sign of y
Cosine

Hyperbolic cosine

cos (mx)

x|y

(T may only be float or floatn)
Complementary error function
Calculates error function of T
Exponential base e
Exponential base 2
Exponential base 10

Math Constants 6.13.2] (9.4.2]
The values of the following symbolic constants are

single-precision float.
MAXFLOAT

Value of maximum non-infinite single-precision

floating-point number

HUGE_VALF

HUGE_VAL
OPTIONAL

INFINITY
infinity

NAN

Positive float expression, evaluates to +infinity

Positive double expression, evals. to +infinity
Constant float expression, positive or unsigned

Constant float expression, quiet NaN

When double precision is supported, macros ending
in _F are available in type doublﬁ b\ﬁremoving F from
w

the macro name, and in type ha

en the cl_khr_fp16

extension is enabled by replacing _F with _H.

M_E_F
M_LOG2E_F
M_LOG10E_F
M_LN2_F
M_LN10_F
M_PI_F
M_PI_2_F
M_PI_4 F
M_1_PIF
M_2_PIF
M_2_SQRTPI_F
M_SQRT2_F
M_SQRT1_2_F

Value of e
Value of log,e
Value of log, ;e
Value of log 2
Value of log 10
Value of t
Value of i/ 2
Value of i/ 4
Valueof 1/m
Valueof 2/ 1
Value of 2 /vt
Value of v2
Value of 1/v2

©2015 Khronos Group - Rev. 1118

size_t get_global_linear_id ()
size_t get_local_linear_id ()
uint get_sub_group_size ()

uint get_max_sub_group_size ()

uint get_num_sub_groups ()

Work-items
1-dimensional global ID
Work-items
1-dimensional local ID
Number of work-items
in the subgroup
Maximum size of a
subgroup

Number of subgroups

uint get_enqueued_num_sub_groups ()

uint get_sub_group_id ()
uint get_sub_group_local_id ()

Texpml (T x)
T fabs (7)

Tfdim (Tx, Ty)

T floor ()
Tfma(Ta,Th,Tc)
Tfmax (Tx, Ty)

Tn fmax (Tn x, Ts y)
Tfmin (Tx, Ty)

Tn fmin (Tn x, Ts y)

Tfmod (Tx, Ty)

Tfract (Tx, T *iptr)

Ts frexp (T x, int *exp)

Tn frexp (T x, intn *exp)
Thypot (Tx, Ty)

int[n] ilogh (T x)

Ts Idexp (T x, int n)

Tn Idexp (T x, intn n)
Tlgamma (T x)

Ts lgamma_r (Ts x, int *signp)
Tnlgamma_r (Tn x, intn *signp)

Tlog (T) HN
Tlog2 (7) HN
Tlogl0 (T) HN
Tloglp (Tx)

Tlogb (Tx)
Tmad(To,Th,Tc)

Tmaxmag (Tx, Ty)
Tminmag (Tx, Ty)

Tmodf (T x, T *iptr)
float[n] nan (uint[n] nancode)

half[n] nan (ushort[n] nancode)
double[n] nan (ulong[n] nancode)

Integer Built-in Fu

Sub-group ID
Unigque work-item ID

e*-1.0

Absolute value

Positive difference between x
andy

Round to integer toward infinity
Multiply and add, then round
Return yif x<y,

otherwise it returns x

Return yif y <x,

otherwise it returns x
Modulus. Returns x —y * trunc
(x/y)

Fractional value in x
Extract mantissa and exponent

Square root of x* + 2
Return exponent as an integer
value

x *2"

Log gamma function

Natural logarithm

Base 2 logarithm

Base 10 logarithm

In(1.0+x)

Exponent of x

Approximatesa * b+ ¢
Maximum magnitude of x and y
Minimum magnitude of x and y
Decompose floating-point
number

Quiet NaN

(Return is scalar when nancode
is scalar)

nctions [6.13.3]

T is type char, charn, uchar, ucharn, short, shortn,

ushort, ushortn, int, intn,

uint, uintn, long, longn,

ulong, or ulongn, where nis 2, 3, 4, 8, or 16. Tu is the
unsigned version of T. Tsc is the scalar version of T.

Tu abs (T x)

Tu abs_diff (T x, Ty)
Tadd_sat (Tx, Ty)
Thadd (Tx, Ty)
Trhadd (Tx, Ty)

Tclamp (T x, T min, T max)
T clamp (T x, Tsc min, Tsc max)

Tclz(Tx)

Tetz (Tx)
Tmad_hi(Ta, Th, Tc)
Tmad_sat(Ta,Th, Tc)
Tmax(Tx, Ty)

Tmax (Tx, Tscy)

Tmin(Tx, Ty)
Tmin (Tx, Tscy)

Tmul_hi (Tx, Ty)
Trotate (Tv, Ti)
Tsub_sat(Tx, Ty)
T popcount (T x)

[x]

| x—y | without modulo overflow
x+y and saturates the result

(x +y) >> 1 without mod. overflow
(x+y+1)>>1

min(max(x, minval), maxval)

number of leading 0-bits in x
number of trailing 0-bits in x
mul_hi(a, b) + ¢

a* b+ cand saturates the result

yif x <y, otherwise it returns x

yif y < x, otherwise it returns x

high half of the product of x and y
result[indx] = v[indx] << i[indx]

X -y and saturates the result
Number of non-zero bits in x

For upsample, return type is scalar when the parameters are scalar.

short[n] upsample (
char[n] hi, uchar[n] lo)

ushort[n] upsample (
uchar([n] hi, uchar[n] lo)

result[i]= ((short)hi[i]<< 8)|lo[i]

result[i]=((ushort)hi[/]<< 8) | lo[i]

Attribute Qualifiers;

types.
__attribute__((aligned(n)))

__attribute__((aligned))
__attribute__((packed))

6.11]

Use to specify special attributes of enum, struct and union

__attribute__((endian(host)))
__attribute__((endian(device)))
__attribute__((endian))

Use to specify special attributes of variables or structure

fields.

__attribute__((aligned(alignment)))

__attribute__((nosvm))

Use to specify basic blocks a
__attribute__(((attr1)) {...}

to be affected.)
__attribute__((opencl_unrol
__attribute__((opencl_unrol

T nextafter (Tx, Ty)

Tpow (Tx, Ty)

Ts pown (T x, int y)

Tn pown (T x, intn y)
Tpowr (Tx, Ty) HN
T half_recip (T x)

T native_recip (T x)
Tremainder (Tx, Ty)

Ts remquo (75 x, Ts y, int *quo)
Tn remquo (Th x, Ty, intn *quo)
Trint (7)

Ts rootn (T x, inty)
Tn rootn (T x, intn y)

Tround (T x)

Trsqrt (7) HN
Tsin (T) HN
Tsincos (T x, T *cosval)
Tsinh (T)

T sinpi (T x)

Tsqrt (7) HN
Ttan (7) HN
Ttanh (7)

T tanpi (T x)

Ttgamma (7)

T trunc (7)

int[n] upsample (
short[n] hi, ushort[n] lo)

uint[n] upsample (
ushort[n] hi, ushort[n] lo)

long[n] upsample (
int[n] hi, uint[n] lo)

ulong([n] upsample (
uint[n] hi, uint[n] lo)

nd control-flow-statements.

Use to specify that a loop (for, while and do loops) can be
unrolled. (Must must appear immediately before the loop

I_hint(n)))
I_hint))

Next representable floating-
point value after x in the
direction of y

Compute x to the power of y

Compute x”, where yis an
integer

Compute x”, where x is >= 0

1/x

(T may only be float or floatn)
Floating point remainder
Remainder and quotient
Round to nearest even integer
Compute x to the power of 1/y
Integral value nearest to x
rounding

Inverse square root

Sine

Sine and cosine of x
Hyperbolic sine

sin (mx)

Square root

Tangent

Hyperbolic tangent

tan (mx)

Gamma function

Round to integer toward zero

result[i]=((int)hi[i]<< 16)|/o[i]
result[i]=((uint)hi[i]<< 16) | lo[i]
result[i]=((long)hili]<< 32) | lo[/]

result[i]=((ulong)hili]<< 32)| lo[]

The following fast integer functions optimize the

performance of kernels. In these functions, T is type int,
uint, intn or intn,where n i

Tmad24 (Tx, Ty, T2)

Tmul24 (Tx, Ty)

s2,3,4,8 or16.

Multiply 24-bit integer values , y, add
32-bit int. result to 32-bit integer z

Multiply 24-bit integer values x and y

Common Built-in Functions [6.13.4] [9.4.3]

These functions operate component-wise and use round
to nearest even rounding mode. Ts is type float, optionally
double, or half if cl_khr_fp16 is enabled. Tn is the vector
form of Ts, where nis 2, 3, 4, 8, or 16.

Tis Ts and Th.

T clamp (T x, T min, T max)
Tn clamp (Tn x, Ts min, Ts max)

Clamp x to range given by
min, max

T degrees (T radians)

radians to degrees

Tmax(Tx, Ty)
Tnmax (Tnx, Ts y)

Max of xand y

Tmin(Tx,Ty)
Tnmin (Thx, Ts y)

Min of xand y

(Continued on next page >)

www.khronos.org/opencl

?8en3ueq) 1yuadp

OpenCL C Language

OpenCL 2.0 Reference Guide

Common Functions (continued)
Tmix (Tx, Ty, Ta)
Tnmix (Tnx, Tny, Ts a)
T radians (T degrees)

T step (T edge, T x)
Tn step (Ts edge, Tn x)

T smoothstep (T edge0, T edgel, T x)
T smoothstep (75 edge0, Ts edgel, T x)

Linear blend of x and y

degrees to radians

0.0if x < edge, else 1.0

Step and interpolate

Tsign (T x) Sign of x

Relational Built-in Functions (s.13.6]
These functions can be used with built-in scalar or vector types
as arguments and return a scalar or vector integer result. T

is type float, floatn, char, charn, uchar, ucharn, short, shortn,
ushort, ushortn, int, intn, uint, uintn, long, longn, ulong,
ulongn, or optionally double or doublen. Tiis type char, charn,
short, shortn, int, intn, long, or longn. Tu is type uchar, ucharn,
ushort, ushortn, uint, uintn, ulong, or ulongn. nis 2, 3,4, 8, or
16. half and halfn types require the cl_khr_fp16 extension.

int isequal (float x, float y)

intn isequal (floatn x, floatn y)

int isequal (double x, double y)

longn isequal (doublen x, doublen y)

int isequal (half x, half y)

shortn isequal (halfn x, halfn y)

int isnotequal (float x, float y)

intn isnotequal (floatn x, floatn y)

int isnotequal (double x, double y)
longn isnotequal (doublen x, doublen y)
int isnotequal (half x, half y)

shortn isnotequal (halfn x, halfn y)

int isgreater (float x, float y)

intn isgreater (floatn x, floatn y)

int isgreater (double x, double y)

longn isgreater (doublen x, doublen y)
int isgreater (half x, half y)

shortn isgreater (halfn x, halfn y)

int isgreaterequal (float x, float y)

intn isgreaterequal (floatn x, floatn y)
int isgreaterequal (double x, double y)
longn isgreaterequal (doublen x, doublen y)
int isgreaterequal (half x, half y)

shortn isgreaterequal (halfn x, halfn y)

Compare of
X==y

Compare of x 1=y

Compare of
x>y

Compare of

x>=y

Compare of
X>=y

Vector Data Load/Store [6.13.7 [9.4.6]
Tis type char, uchar, short, ushort, int, uint, Ion% ulong,
p

or float, optionally double, or half if the cl_khr_fp16
extension is enabled. Th refers to the vector form of
type T, where nis 2, 3, 4, 8, or 16. R defaults to current
rounding mode, or is one of the rounding modes listed in
6.2.3.2.

Read vector data from
address (p + (offset * n))

Tn vloadn (size_t offset,
const [constant] T *p)

void vstoren (Tn data, Write vector data to address

Geometric Built-in Functions [6.13.5] [9.4.4]

Ts is scalar type float, optionally double, or half if the half
extension is enabled. Tis Ts and the 2-, 3-, or 4-component
vector forms of Ts.

float{3,4} cross (float{3,4} p0, float{3,4} p1)
double{3,4} cross (double{3,4} p0, double{3,4} p1)
half{3,4} cross (half{3,4} p0, half{3,4} p1)

Ts distance (T p0, T p1)

Tsdot (T pO, T p1)

Cross product

Vector distance
Dot product

int isless (float x, float y)

intn isless (floatn x, floatn y)

int isless (double x, double y)

longn isless (doublen x, doublen y)
int isless (half x, half y)

shortn isless (halfn x, halfn y)

int islessequal (float x, float y)

intn islessequal (floatn x, floatn y)

int islessequal (double x, double y)
longn islessequal (doublen x, doublen y)
int islessequal (half x, half y)

shortn islessequal (halfn x, halfn y)
int islessgreater (float x, float)

intn islessgreater (floatn x, floatn y)
int islessgreater (double x, double y)
longn islessgreater (doublen x, doublen y)
int islessgreater (half x, half y)
shortn islessgreater (halfn x, halfn y)
int isfinite (float)

intn isfinite (floatn)

int isfinite (double)

longn isfinite (doublen)

int isfinite (half)

shortn isfinite (halfn)

int isinf (float)

intn isinf (floatn)

int isinf (double)

longn isinf (doublen)

int isinf (half)

shortn isinf (halfn)

Compare of x<y

Compare of x<y

Compare of x<=y

Compare of
(x<y) [(x>y)

Test for finite
value

Test for + or
—infinity

int isnan (float)

intn isnan (floatn) iz e

Write a half to address
(p + offset)

void vstore_half_R (double data,
size_t offset, half *p)

void vstore_halfn (floatn data,
size_t offset, half *p)

void vstore_halfn_R (floatn data,
size_t offset, half *p)

void vstore_halfn (doublen data,
size_t offset, half *p)

void vstore_halfn_R (doublen
data, size_t offset, half *p)

Write a half vector to
address (p + (offset * n))

Ts length (T p)
T normalize (T p)

float fast_distance (float p0, float p1)
float fast_distance (floatn p0, floatn p1)
float fast_length (float p)

float fast_length (floatn p)

float fast_normalize (float p)

floatn fast_normalize (floatn p)

int isnan (double)

longn isnan (doublen)

int isnan (half)

shortn isnan (halfn)

int isnormal (float)

intn isnormal (floatn)

int isnormal (double)

longn isnormal (doublen)

int isnormal (half)

shortn isnormal (halfn)

int isordered (float x, float y)

intn isordered (floatn x, floatn y)

int isordered (double x, double y)
longn isordered (doublen x, doublen y)
int isordered (half x, half y)

shortn isordered (halfn x, halfn y)

int isunordered (float x, float y)

intn isunordered (floatn x, floatn y)
int isunordered (double x, double y)

longn isunordered (doublen x, doublen y)

int isunordered (half x, half y)
shortn isunordered (halfn x, halfn y)
int signbit (float)

intn signbit (floatn)

int signbit (double)

longn signbit (doublen)

int signbit (half)

shortn signbit (halfn)

int any (Ti x)

intall (Ti x)

Tbitselect (Ta, Th, Tc)
half bitselect (half o, half b, half c)
halfn bitselect (halfn a, halfn b, halfn c)

Tselect (Ta, Th, Tic)

Tselect(Ta, Th, Tuc)

halfn select (halfn a, halfn b, shortn c)
half select (half g, half b, short c)

halfn select (halfn a, halfn b, ushortn c)
half select (half a, half b, ushort c)

Vector length

Normal vector
length 1

Vector distance

Vector length

Normal vector
length 1

Test for a NaN

Test for a normal
value

Test for a normal
value

Test if arguments are
ordered

Test if arguments are
unordered

Test for sign bit

1if MSB in
component of x is
set; else 0

1if MSBiin all
components of x are
set; else 0

Each bit of result is
corresponding bit of
a if corresponding bit
of cis0

For each component
of a vector type,
result(i] = if MSB

of c[i] is set ? b[i] :
ali] For scalar type,
result=c?b:a

Async Copies and Prefetch [6.13.10] [9.4.7]

size_t offset, T *p)

float vload_half (size_t offset,
const [constant] half *p)

(o + (offset * n)
Read a half from address
(p + offset)

Read a halfn from address
(p + (offset * n))

T s type char, charn, uchar, ucharn, short, shortn, ushort,
ushortn, int, intn, uint, uintn, long, longn, ulong, ulongn,
float, floatn, optionally double or doublen, or half or halfn
if the cl_khr_fp16 extension is enabled.

Read half vector data from
(0 + (offset * n)). For half3,
read from (p + (offset * 4)).

floatn vloada_halfn (size_t offset,
const [constant] half *p)

floatn vload_halfn (size_t offset,

const [constant] half *p) void vstorea_halfn (floatn data,

size_t offset, half *p)

void vstorea_halfn_R (floatn data,
size_t offset, half *p)

void vstorea_halfn (doublen data,
size_t offset, half *p)

void vstorea_halfn_R (doublen
data, size_t offset, half *p)

event_t async_work_group_copy (
__local T*dst, const __global T *src,

- Copies
size_t num_gentypes, event_t event)

num_gentypes T
elements from src
to dst

void vstore_half (float data,
size_t offset, half *p)

void vstore_half_R (float data,
size_t offset, half *p)

void vstore_half (double data,
size_t offset, half *p)

Write half vector data to (p +
(offset * n)). For half3, write
to (p + (offset * 4)).

Write a half to address

event_t async_work_group_copy (
(b + offset)

__global T *dst, const __local T *src,
size_t num_gentypes, event_t event)

event_t async_work_group_strided_copy (
__local T *dst, const __global T *src,
size_t num_gentypes, size_t src_stride,

Copies
event_t event)

num_gentypes T
elements from src

Synchronization & Memory Fence Functions s.12.5] clemne
0 asi

flags argument is the memory address space, set to a 0 or an OR'd combination of CLK_X MEM_FENCE where X
may be LOCAL, GLOBAL, or IMAGE. Memory fence functions provide ordering between memory operations of a
work-item. Sub-groups require the cl_khr_subgroups extension.

event_t async_work_group_strided_copy (
__global T *dst, const __local T *src,
size_t num_gentypes,
size_t dst_stride, event_t event)

Wait for async_-
work_group_copy to
complete

void wait_group_events (
int num_events, event_t *event_list)

Work-items in a work-group must execute this

void work_group_barrier (cI_mem_fence_flags flags[, memory_scope scope]) before any can continue

void atomic_work_item_fence (cl_mem_fence_flags flags
[, memory_scope scope])

Orders loads and stores of a work-item executing

Y Prefetch

num_gentypes *
sizeof(T) bytes into
global cache

void prefetch (const __global T *p,
Work-items in a sub-group must execute this size_t num_gentypes)

void sub_group_barrier (cI_mem_fence_flags flags[, memory_scope scope]) before any can continue

©2015 Khronos Group - Rev. 1118 www.khronos.org/opencl

OpenCL 2.0 Reference Guide

Atomic Functions (s.13.11] Address Space Qualifier Functions [s.13.9]
OpenCL C implements a subset of the C11 atomics (see 7.17 of the C11 spec.) and synchronization operations. T refers to any of the built-in data types supported by

o q OpenCLC -defined type.
Atomic Functions penCL C or a user-defined type

In the following definitions, A refers to one of the atomic_* types. C refers to its corresponding non-atomic type. [const] global T * to_global(
M refers to the type of the other argument for arithmetic operations. For atomic integer types, M is C. For atomic [const] T *ptr)

pointer types, M is ptrdiff_t. The type atomic_* is a 32-bit integer. atomic_long and atomic_ulong require extension
cl_khr_int64_base_atomics or cl_khr_int64_extended_atomics. The atomic_double type requires double precision
support. The default scope is work_group for local atomics and all_svm_devices for global atomics.

global address space

[const] local T * to_local(

[const] T *ptr) local address space

[const] private T * to_private(

See the table under Atomic Types and Enum Constants for information about parameter types memory_order, [const] T *ptr)

memory_scope, and memory_flag.

private address space

Memory fence value:

- - = fence(const] T *pt7) CLK_GLOBAL_MEM_FENCE,
void atomic_work_item_fence(cl_mem_fence_flags flags, Effects based on value of order. flags must be CLK_{GLOBAL, LOCAL, CLK_LOCAL_MEM_FENCE
memory_order order, memory_scope scope) IMAGE}_MEM_FENCE or a combination of these.

void atomic_store(volatile A *object, C desired))) . .
. . e e /o Yol Atomically replace the value pointed to by object with the value of a q
void atomic_store_explicit(volatile A *object, desired. Memory is affected according to the value of order. prlntf Function [6.13.13]

C desired, memory_order order{, memory_scope scopel) Writes output to an implementation-defined stream.

C atomic_load(volatile A *object))) . L)
- (- 4) . Atomically returns the value pointed to by object. Memory is ‘ int printf (constant char * restrict format, ...)
C atomic_load_explicit(volatile A *object, affected according to the value of order.

memory_order order{ , memory_scope scope]) printf output synchronization

C atomic_exchange(volatile A *object, C desired) Atomically replace the value pointed o by object with desired. When the event associated with a particular kernel

C atomic_exchange_explicit(volatile A *object, Memory Pg af?ected accordingto the valuz ijordEh ' invocation completes, the output of applicable printf calls
C desired, memory_order order[, memory_scope scope)) is flushed to the implementation-defined output stream.

bool atomic_compare_exchange_strong(volatile A *object, printf format string

2 3
¢ EXpe.CtEd’ ¢ desired) - The format string follows C99 conventions and supports
bool atqmlc_*compare_sxchange_strong_expl|C|t(Atomically compares the value pointed to by object for equality an optional vector specifier:
volatile A *object, C *expected, C desired, with that in expected, and if true, replaces the value pointed to by - — .
memory_order success, object with desired, and if false, updates the value in expected %![flags][width][.precision][vector][length] conversion
memory_order failure[, memory_scope scope]) with the value pointed to by object. Examples-

bool atomic_compare_exchange_weak(volatile A *object, Further, if the comparison is true, memory is affected according A
C *expected, C desired) to the value of success, and if the comparison is false, memory is The following examples show the use of the vector
bool atomic_compare_exchange_weak_explicit(affected acgordiggfto the value of failure. These operations are specifier in the printf format string.
s = I o atomic read-modify-write operations.
volatile A *object, C *expected, C desired, floatd f = (floatd)(1.0f, 2.0f, 3.0, 4.0f);

memory_order success, printf(“f4 = %2.2v4f\n”, f);
memory_order failure[, memory_scope scope]) Output: 4 : 1.00 2’00’3 00.4.00
utput: f4 =1.00,2.00,3.00,4.

C atomic_fetch_<key>(volatile A *object, M operand) Atomically replaces the value pointed to by object with the result

. - - e of the computation applied to the value pointed to by object and

C atomic_fetch_<key>_explicit(volatile A *object, the given operand. Memory is affected according to the value of uchar4 uc = (uchar4)(0xFA, OxFB, OxFC, OxFD);
M operand, memory_order order[, memory_scope scope]) order. <key> is to be defined. printf(“uc = %#vax\n”, uc);

bool atomic_flag_test_and_set(volatile atomic_flag *object))))) Output: uc = 0xfa,0xfb,0xfc,0xfd
bool atomic_flag_test_and_set_explicit{ Atomically sets the value pointed to by object to true. Memory is

mic_tiag_f SRS B affected according to the value of order. Returns atomically, the . X .
volatile atomic_flag *object, value of the object immediately before the effects. uint2 ui = (uint2)(0x12345678, 0x87654321);

memory_order order[, memory_scope scopel) printf(“unsigned short value = (%#v2hx)\n”, ui);
void atomic_flag_clear(volatile atomic_flag *object) Atomica“tv shetﬁ thi tV)alue pointed tg by object to false. The order Output: unsigned short value = (0x5678,0x4321)
void atomic_flag_clear_explicit(volatile atomic_flag *object, argument sha not be memory_order, acquire nor

memory_order_acq_rel. Memory is affected according to the
memory_order order[, memory_scope scope]) value of order.

void atomic_init(volatile A *obj, C value) Initializes the atomic object pointed to by obj to the value value. [const] cI_mem_fence_flags get_

9?8en3ueq) 1puadp

Workgroup Functions [s.13.15] [9.17.3.4]
Tis type int, uint, long, ulong, or float, optionally double,
key op computation key op computation op computation or half if the cl_khr_fp16 extension is supported. Sub-

add + addition or | bitwise inclusive or and & bitwise and groups require the cl_khr_subgroups extension. Double
and vector types require double precision support.

Values for key for atomic_fetch* functions

sub - subtraction xor A bitwise exclusive or i min compute min
max max compute max Returns a non-zero value if predicate evaluates to non-zero for
Atomic Types and Enum Constants all or any workitems in the work-group or sub-group.

int work_group_all (int predicate)
int work_group_any (int predicate)

Parameter Type Values Description

memory_order memory_order_relaxed ~ memory_order_acquire Enum which identifies memory ordering constraints.)) .
memory_order_release memory_order_acq_rel int sub_group_all (int predicate)

memory_order_seq_cst int sub_group_any (int predicate)

memory_scope memory_scope_work_item Enum which identifies scope of memory ordering . .
memory_scope_work_group constraints. memory_scope_sub_group requires the Broadcast the value of a to all work-items in the work-group or
memory_scope_sub_group cl_khr_subgroups extension. sub_group. local_id must be the same value for all workitems in
memory_scope_device (default for functions thatdonot | ~ the work-group. n may be 2 or 3.

take a memory_scope argument) T work_group_broadcast (T g, size_t local_id)
memory_scope_all_svm_devices

T work_group_broadcast (T g, size_t local_id_x,
Atomic integer and floating-point types size_t local_id_y)

t indicates types supported by a limited subset of atomic operations T work_group_broadcast (T g, size_t local_id_x,

t indicates size depends on whether implemented on 64-bit or 32-bit architecture. size_t local_id_y, size_t local_id_z)

§ indicates types supported only if both 64-bit extensions are supported. T sub_group_broadcast (T x, uint sub_group_local_id)
atomic_int atomic_long § atomic_float T atomic_intptr t ¥§ | atomic_size_t ¥§

atomic_uint atomic_ulong § atomic_double t§ atomic_uintptr_t $§ atomic_ptrdiff_t +§ Return resuitt of reduction operation specified by <op>farall
atomic_flag - = - = - - values of x specified by workitems in work-group or sub_group.

<op> may be min, max, or add.

Atomic Macros Twork_group_reduce_<op> (T x)
T sub_group_reduce_<op> (T x)

#define ATOMIC_VAR_INIT(C value) Expands to a token sequence to initialize an atomic object of a type that is initialization-

compatible with value. Do an exclusive or inclusive scan operation specified by <op>
#define ATOMIC_FLAG_INIT Initialize an atomic_flag to the clear state. of all values specified by work-items in the work-group or sub-
group. The scan results are returned for each work-item. <op>

64-bit Atomics [9.3] may be min, max, or add.

The cl_khr_int64_base_atomics extension enables 64-bit versions of the following functions: atom_add, atom_sub, Twork_group_scan_exclusive_<op>(Tx)
atom_inc, atom_dec, atom_xchg, atom_cmpxchg T work_group_scan_inclusive_<op> (T x)

The cl_khr_int64_extended_atomics extension enables 64-bit versions of the following functions: atom_min, atom_max, T sub_group_scan_exclusive_<op> (T x)
atom_and, atom_or, atom_xor T sub_group_scan_inclusive_<op> (T x)

©2015 Khronos Group - Rev. 1118 www.khronos.org/opencl

OpenCL C Language

OpenCL 2.0 Reference Guide

Pipe Built-in Functions [6.13.16.24]

T represents the built-in OpenCL C scalar or vector integer or floating-point data types or any user defined type built from
these scalar and vector data types. Half scalar and vector types require the cl_khr_fp16 extension. Sub-groups require
the cl_khr_subgroups extension. Double or vector double types require double precision support.

The macro CLK_NULL_RESERVE_ID refers to an invalid reservation ID.

int read_pipe (pipe T p, T *ptr)

Read packet from p into
ptr.

int read_pipe (pipe T p,
reserve_id_t reserve_id,
uint index, T *ptr)

Read packet from reserved
area of the pipe reserve_id
and index into ptr.

reserve_id_t reserve_read_pipe (
pipe T p, uint num_packets)

reserve_id_t reserve_write_pipe (
pipe T p, uint num_packets)

Reserve num_packets
entries for reading from or
writing to p.

int write_pipe (pipe T p,
const T *ptr)

Write packet specified by
ptrtop.

int write_pipe (pipe T p,
reserve_id_t reserve_id,
uint index, const T *ptr)

Write packet specified
by ptr to reserved area
reserve_id and index.

void commit_read_pipe (pipe T p,
reserve_id_t reserve_id)

void commit_write_pipe (pipe Tp,
reserve_id_t reserve_id)

Indicates that all reads and
writes to num_packets
associated with reservation
reserve_id are completed.

bool is_valid_reserve_id (
reserve_id_t reserve_id)

Return true if reserve_id is
a valid reservation ID and
false otherwise.

uint get_pipe_max_packets (
pipe Tp)

Returns maximum number
of packets specified when
p was created.

uint get_pipe_num_packets (
pipe Tp)

Returns the number of
available entries in p.

void work_group_commit_read_pipe (pipe T p, reserve_id_t reserve_id)

Miscellaneous Vector Functions (6.13.12]
Tm and Th are type charn, ucharn, shortn, ushortn,
intn, uintn, longn, ulongn, floatn, optionally doublen, or
halfn if the cl_khr_fp16 extension is supported, where n
is 2,4,8, or 16 except in vec_step it may also be 3. TUn
is ucharn, ushortn, uintn, or ulongn.

int vec_step (Th a)
int vec_step (typename)

Tn shuffle (Tm x, TUn mask)

Tn shuffle2 (Tm x, Tm y,
TUn mask)

Takes a built-in scalar or vector
data type argument. Returns 1 for
scalar, 4 for 3-component vector,
else number of elements in the
specified type.

Construct permutation of elements
from one or two input vectors,
return a vector with same element
type as input and length that is the
same as the shuffle mask.

Event Built-in Functions [s.13.17.5]
Tis type int, uint, long, ulong, or float, optionally
double, or half if the cl_khr_fp16 extension is enabled.

void work_group_commit_write_pipe (pipe T p, reserve_id_t reserve_id)
void sub_group_commit_read_pipe (pipe T p, reserve_id_t reserve_id)
void sub_group_commit_write_pipe (pipe T p, reserve_id_t reserve_id)

Indicates that all reads and writes
to num_packets associated with
reservation reserve_id are completed.

reserve_id_t work_group_reserve_read_pipe (pipe T p, uint num_packets)
reserve_id_t work_group_reserve_write_pipe (pipe T p, uint num_packets)
reserve_id_t sub_group_reserve_read_pipe (pipe T p, uint num_packets)
reserve_id_t sub_group_reserve_write_pipe (pipe T p, uint num_packets)

Reserve num_packets entries for
reading from or writing to p. Returns a
valid reservation ID if the reservation
is successful.

Enqueing and Kernel Query Built-in Functions [s.13.17) [9.17.3.6)

A kernel may enqueue code represented by Block syntax, and control execution order with event dependencies

including user events and markers. There are several advantages to using the Block

syntax: it is more compact; it

does not require a cl_kernel object; and enqueuing can be done as a single semantic step. Sub-groups require the
cl_khr_subgroups extension. The macro CLK_NULL_EVENT refers to an invalid device event. The macro

CLK_NULL_QUEUE refers to an invalid device queue.

int enqueue_kernel (queue_t queue, kernel_enqueue_flags_t flags, const ndrange_t ndrange,
void (Ablock)(void))

int enqueue_kernel (queue_t queue, kernel_enqueue_flags_t flags, const ndrange_t ndrange,
uint num_events_in_wait_list, const clk_event_t *event_wait_list, clk_event_t *event _ret,
void (Ablock)(void))

int enqueue_kernel (queue_t queue, kernel_enqueue_flags_t flags, const ndrange_t ndrange,
void (Ablock)(local void *, ...), uint size0, ...)

int enqueue_kernel (queue_t queue, kernel_ enqueue_flags_t flags, const ndrange_t ndrange,
uint num_events_in_wait_list, const clk_event_t *event_wait_list, clk_event_t *event_ret,
void (Ablock)(local void *, ...), uint size0, ...)

uint get_kernel_work_group_size (void (block)(void))

uint get_kernel_work_group_size (void (*block)(local void *, ...))

uint get_kernel_preferred_work_group_size_multiple (void (*block)(void))
uint get_kernel_preferred_work_group_size_multiple (void (*block)(local void ¥, ...))

int enqueue_marker (queue_t queue, uint num_events_in_wait_list, const clk_event_t *event_wait_list,

clk_event_t *event_ret)

uint get_kernel_sub_group_count_for_ndrange (const ndrange_t ndrange, void (block)(void))

uint get_kernel_sub_group_count_for_ndrange (const ndrange_t ndrange, void (block)(local void *, ...))

uint get_kernel_max_sub_group_size_for_ndrange (const ndrange_t ndrange, void ("block)(void))

uint get_kernel_max_sub_group_size_for_ndrange (const ndrange_t ndrange, void (block)
(local void *, ...))

Allows a work-item to
enqueue a block for
execution to queue.
Work-items can enqueue
multiple blocks to a device
queue(s).

flags may be one of
CLK_ENQUEUE_FLAGS_
{NO_WAIT, WAIT_KERNEL,
WAIT_WORK_GROUP}

Query the maximum work-
group size that can be
used to execute a block.

Returns the preferred
multiple of work-group
size for launch.

Enqueue a marker
command to queve.
Returns number of
subgroups in each
workgroup of the dispatch.

Returns the maximum
sub-group size for a block.

void retain_event (
clk_event_t event)

void release_event (
clk_event_t event)
clk_event_t create_user_event ()

bool is_valid_event (
clk_event_t event)

void set_user_event_status (
clk_event_t event, int status)

void capture_event_profiling_-
info (clk_event_t event,
clk_profiling_info name,
global void *value)

Increments event reference
count.

Decrements event
reference count.

Create a user event.
True for valid event.

Sets the execution status of
a user event.

status: CL_COMPLETE or a
negative error value.
Captures profiling
information for command
associated with event in
value.

Helper Built-in Functi

queue_t get_default_queue (void)

OnNS [6.13.17.9]

Default queue or
CLK_NULL_QUEUE

ndrange_t ndrange_1D (size_t global_work_size)

ndrange_t ndrange_1D (size_t global_work_size,

size_t local_work_size)

ndrange_t ndrange_1D (
size_t global_work_offset,

Builds a 1D
ND-range
descriptor.

size_t global_work_size, size_t local_work_size)

ndrange_t ndrange_nD (

const size_t global_work_size[n])

ndrange_t ndrange_nD (size_t global_work_size,

const size_t local_work_size[n])
ndrange_t ndrange_nD (

const size_t global_work_offset,

const size_t global_work_size,
const size_t local_work_size[n])

Builds a 2D or
3D ND-range
descriptor.

n may be 2
or3.

OpenCL Image Processing Reference A subset of the OpenCL APl and C Language specifications pertaining to image processing and graphics

Image Objects Read, Write, Copy,

Items in blue apply when the appropriate extension is
supported.
Create Image Objects [5.3.1]
cl_mem clCreatelmage (cl_context context,
cl_mem_flags flags,
const cl_image_format *imagg_format,
const cl_image_desc *image_desc,
void *host_ptr, cl_int *errcode_ret)

cl_command_queue

Fill Image Objects [5.3.4]

cl_int clEnqueueReadimage (

command_queue,

cl_mem image, cl_bool blocking_read,

const size_t *origin, const size_t *region,

size_t row_pitch, size_t slice_pitch, void *ptr,
cl_uint num_events_in_wait _list,

const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueCopylmage (

cl_command_queue command_queue,

cl_mem src_image, cl_mem dst image

const size_t *src_origin, const size_t a/st_origin,
const size_t *reg?on, cl_uint num_events_in_wait_list,

const cl_event

event_wait_list, cl_event *event)

Copy Between Image, Buffer Objects [5.3.5]

cl_int clEnqueueCopylmageToBuffer (
cl_command_queue command_queue,

flags: See clCreateBuffer

Query List of Supported Image Formats [5.3.2]

cl_int clGetSupportedimageFormats
cl_context context, cl_mem_flags flags,
cl_mem_object_type image_type,
cl_uint num_entries, cl_image_format *image_formats,

cl_uint *num_image_formats)

flags: See clCreateBuffer

image_type: CL_MEM_OBJECT_IMAGE{1D, 2D, 3D},
CL_MEM_OBJECT_IMAGE1D_BUFFER,

CL_MEM_OBJECT_IMAGE{1D,

2D}_ARRAY

©2015 Khronos Group - Rev. 1118

_int clEnqueueWritelmage (
cl_command_queue command_queue,
cl_mem image, cl_bool blocking_write,
const size_t *origin, const size_t *region,
size_t input_row._pitch, size_t input_slice_pitch,
const void *ptr, cl_uint num_events_in_wait_list
const cl_event *event_wait ist, c|_event *event,

cl_int clEnqueueFilllmage (

cl_command_queue command_queue,
cl_mem image, const void *fill_color,
const size_t *origin, const size_t *region,
cl_uint num_events_in_wait_[ist,

const cl_event *event wait Tist,
cl_event *event)

cl_mem src_image, cl_mem dst_buffer,

const size_t *src_origin, const size_t *region,
size_t dst_offset, cl_uint num_events_in_wait_list,
const cl_event *event_wait_ist, cl_event *event)

cl_int clEnqueueCopyBufferTolmage (

cl_command_queue command_queue,

cl_mem src_buffer, c|_mem dst_image,

size_t src_offset, const size_t *dst_origin,

const size_t *region,

cl_uint num_events_in_wait_list,

const cl_event *event_wait_list, cl_event *event)

(Continued on next page >)

www.khronos.org/opencl

OpenCL 2.0 Reference Guide

Image Objects (continued)

Map and Unmap Image Objects [5.3.6]

void * clEnqueueMaplmage (
cl_command_queue command_queue,
cl_mem image, cl_bool blocking_map,
cl_map_flags map_flags, const size_t *origin,
const size_t *region, size_t *image_row_pitch,
size_t *image_slice_pitch,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event,
cl_int *errcode_ret)

map_flags: CL_MAP_{READ, WRITE},
CL_MAP_WRITE_INVALIDATE_REGION

Query Image Objects [5.3.7]

cl_int clGetlmagelnfo (c|_mem image,
cl_image_info param_name, size_t param_value_size,
void *param_value, size_t *param_value_size_ret)

param_name: [Table 5.9] CL_IMAGE_{FORMAT, BUFFER},
CL_IMAGE_{ARRAY, ELEMENT}_SIZE,
CL_IMAGE_{ROW, SLICE} PITCH,
CL_IMAGE_{HEIGHT, WIDTH, DEPTH},
CL_IMAGE_NUM_{SAMPLES, MIP_LEVELS},
CL_IMAGE_DX9_MEDIA_PLANE_KHR,
CL_IMAGE_{D3D10, D3D11} SUBRESOURCE_KHR

Also see clGetMemObjectinfo [5.4.5]

Image Read and Write Functions [s.13.14]
The built-in functions defined in this section can only
be used with image memory objects created with
clCreatelmage. sampler specifies the addressing and
filtering mode to use. Writing to sRGB images from a
kernel requires the cl_khr_srgb_image_writes extension.
read_imageh and write_imageh require the
cl_khr_fp16 extension. MSAA images require the
cl_khr_gl_msaa_sharing extension, and image 3D writes
require the extension cl_khr_3d_image_writes.

Read and write functions for 1D images
Read an element from a 1D image, or write a color value
to a location in a 1D image.

float4 read_imagef (imageld_t image, sampler_t sampler,
{int, float} coord)

float4 read_imagef (imageld_t image, int coord)

float4 read_imagef (imageld_array_t image,
sampler_t sampler, {int2, float4} coord)

float4 read_imagef (imageld_array_t image, int2 coord)
float4 read_imagef (imageld_buffer_t image, int coord)

int4 read_imagei (imageld_t image, sampler_t sampler,
{int, float} coord)

int4 read_imagei (imageld_t image, int coord)

int4 read_imagei (imageld_array_t image, sampler_t sampler,
{int2, float2} coord)

int4 read_imagei (imageld_array_t image, int2 coord)
int4 read_imagei (imageld_buffer_t image, int coord)

uint4 read_imageui (imageld_t image, sampler_t sampler,
{int, float} coord)

uint4 read_imageui (image1d_t image, int coord)

uint4 read_imageui (imageld_array_t image,
sampler_t sampler, {int2, float2} coord)

uint4 read_imageui (image1d_array_t image, int2 coord)
uint4 read_imageui (image1d_buffer_t image, int coord)

half4 read_imageh (imageld_t image, sampler_t sampler,
{int, float} coord)

half4 read_imageh (imageld_t image, int coord)

half4 read_imageh (imageld_array_t image,
sampler_t sampler, {int2, float4} coord)

half4 read_imageh (imageld_array_t image, int2 coord)

half4 read_imageh (imageld_buffer_t image, int coord)

void write_imagef (imageld_t image, int coord, float4 color)

void write_imagef (imageld_array_t image, int2 coord,
float4 color)

void write_imagef (imageld_buffer_t image, int coord,
float4 color)

Image Formats [s.3.1.1]
Supported image formats: image_channel_order with
image_channel_data_type.

Built-in support: [Table 5.8]

CL_R (read + write): CL_HALF_FLOAT, CL_FLOAT,
CL_UNORM_INT{8,16}, CL_SNORM_INT(8, 16},
CL_SIGNED_INT{8,16,32}, CL_UNSIGNED_INT{8,16,32}

CL_DEPTH (read + write): CL_FLOAT, CL_UNORM_INT16

CL_DEPTH_STENCIL (read only): CL_FLOAT,
CL_UNORM_INT24
(Requires the extension cl_khr_gl_depth_images)

Optional support: [Table 5.6]

CL_R, CL_A: CL_HALF_FLOAT, CL_FLOAT, CL_UNORM_INT{8,16},
CL_SIGNED_INT{8,16,32}, CL_UNSIGNED_INT{8,16,32},
CL_SNORM_INT{8,16}

CL_INTENSITY: CL_HALF_FLOAT, CL_FLOAT,
CL_UNORM_INT{8,16}, CL_SNORM_INT{8| 16}

CL_DEPTH_STENCIL: Only used if extension
cl_khr_gl_depth_images is enabled and
channel data type = CL_UNORM_INT24 or CL_FLOAT

CL_RG (read + write): CL_HALF_FLOAT, CL_FLOAT,
CL_UNORM_INT{8,16}, CL_SNORM_INT{8,16},
CL_SIGNED_INT{8,16,32}, CL_UNSIGNED_INT{8,16,32}

CL_LUMINANCE: CL_UNORM_INT{8,16}, CL_HALF_FLOAT,
CL_FLOAT, CL_SNORM_INT{8,16}

CL_RGBA (read + write): CL_HALF_FLOAT, CL_FLOAT,
CL_UNORM_INT{8,16}, CL_SNORM_INT{8, 16},
CL_SIGNED_INT{8,16,32}, CL_UNSIGNED_INT{8,16,32}

CL_RG, CL_RA: CL_HALF_FLOAT, CL_FLOAT,
CL_UNORM_INT{8,16}, CL_SIGNED_INT{8,16, 32},
CL_UNSIGNED_INT{8,16,32}, CL_SNORM_INT{8,16}

CL_RGB: CL_UNORM_SHORT {555,565},
CL_UNORM_INT_101010

CL_BGRA (read + write): CL_UNORM_INT8

CL_sRGBA (read only): CL_UNORM_INT8
(Requires the extension cl_khr_srgb_image_writes)

CL_ARGB: CL_UNORM_INTS, CL_SIGNED_INTS,
CL_UNSIGNED_INTS, CL_SNORM_INT8

CL_BGRA: CL_{SIGNED, UNSIGNED} INT8, CL_SNORM_INT8

void write_imagei (imageld_t image, int coord, int4 color)

void write_imagei (imageld_array_t image, int2 coord,
int4 color)

void write_imagei (imageld_buffer_t image, int coord,
int4 color)

void write_imageh (imageld_t image, int coord, half4 color)

void write_imageh (imageld_array_t image, int2 coord,
half4 color)

void write_imageh (imageld_buffer_t image, int coord,
half color)

void write_imageui (imageld_t image, int coord, uint4 color)

void write_imageui (imageld_array_t image, int2 coord,
uint4 color)

void write_imageui (imageld_buffer_t image, int coord,
uint4 color)

Read and write functions for 2D images
Read an element from a 2D image, or write a color value
to a location in a 2D image.

float4 read_imagef (image2d_t image, sampler_t sampler,
{int2, float2} coord)

float4 read_imagef (image2d_t image, int2 coord)

float4 read_imagef (image2d_array_t image,
sampler_t sampler, {int4, float4} coord)

float4 read_imagef (image2d_array_t image, int4 coord)

float read_imagef (image2d_depth_t image, sampler_t sampler,
{int2, float2} coord)

float read_imagef (image2d_array_depth_t image,
sampler_t sampler, {int4, float4} coord)

float read_imagef (image2d_depth_t image, int2 coord)
float read_imagef (image2d_array_depth_t image, int4 coord)

int4 read_imagei (image2d_t image, sampler_t sampler,
{int2, float2} coord)

int4 read_imagei (image2d_t image, int2 coord)

int4 read_imagei (image2d_array_t image, sampler_t sampler,
{int4, float4} coord)

int4 read_imagei (image2d_array_t image, int4 coord)

uint4 read_imageui (image2d_t image, sampler_t sampler,
{int2, float2} coord)

uint4 read_imageui (image2d_t image, int2 coord)

uint4 read_imageui (image2d_array_t image,
sampler_t sampler, {int4, float4} coord)

uint4 read_imageui (image2d_array_t image, int4 coord)

©2015 Khronos Group - Rev. 1118

Read and write functions for 2D images (continued)

half4 read_imageh (image2d_t image, sampler_t sampler,
{int2, float2} coord)

half4 read_imageh (image2d_t image, int2 coord)

half4 read_imageh (image2d_array_t image,
sampler_t sampler, {int4, float4} coord)

half4 read_imageh (image2d_array_t image, int4 coord)

void write_imagef (image2d_t image, int2 coord, float4 color)

void write_imagef (image2d_array_t image, int4 coord,
float4 color)

void write_imagef (image2d_depth_t image, int2 coord, int lod,
float depth)

void write_imagef (image2d_array_depth_t image, int4 coord,
int lod, float depth)

void write_imagei (image2d_t image, int2 coord, int4 color)

void write_imagei (image2d_array_t image, int4 coord,
int4 color)

void write_imageui (image2d_t image, int2 coord, uint4 color)

void write_imageui (image2d_array_t image, int4 coord,
uint4 color)

void write_imageh (image2d_t image, int2 coord, half4 color)

void write_imageh (image2d_array_t image, int4 coord,
half4 color)

Read and write functions for 3D images

Read an element from a 3D image, or write a color value
to a location in a 3D image. Writing to 3D images requires
the cl_kh3_3d_image_writes extension.

float4 read_imagef (image3d_t image, sampler_t sampler,
{int4, float4} coord)

float4 read_imagef (image3d_t image, int4 coord)

int4 read_imagei (image3d_t image, sampler_t sampler,
{int4, float4} coord)

int4 read_imagei (image3d_t image, int4 coord)

uint4 read_imageui (image3d_t image, sampler_t sampler,
{int4, float4} coord)

uint4 read_imageui (image3d_t image, int4 coord)

half4 read_imageh (image3d_t image, sampler_t sampler,
{int4, float4} coord)

half4 read_imageh (image3d_t image, int4 coord)

void write_imagef (image3d_t image, int4 coord, float4 color)
void write_imagei (image3d_t image, int4 coord, int4 color)
void write_imageui (image3d_t image, int4 coord, uint4 color)

void write_imageh (image3d_t image, int4 coord, half4 color)

(Continued on next page >)

www.khronos.org/opencl

OpenCL 2.0 Reference Guide

Image Read and Write (continued)

Extended mipmap read and write functions [9.18.2.1]
These functions require the cl_khr_mipmap_image and
cl_khr_mipmap_image_writes extensions.

Image Query Functions [6.13.14.5] [9.12]
The MSAA forms require the extension
cl_khr_gl_msaa_sharing. Mipmap requires the
extension cl_khr_mipmap_image.

int4 read_imagei (imageld_array_t image, sampler_t sampler,
float2 coord, float gradient_x, float gradient_y)

uint4 read_imageui(imageld_array_t image, sampler_t sampler,
float2 coord, float gradient_x, float gradient_y)

float read_imagef (image2d_[depth_]t image,
sampler_t sampler, float2 coord, float lod)

int4 read_imagei (image2d_t image, sampler_t sampler,
float2 coord, float lod)

uint4 read_imageui (image2d_t image, sampler_t sampler,
float2 coord, float lod)

float read_imagef (image2d_ [depth_]t image,
sampler_t sampler, float2 coord, float2 gradient_x,
float2 gradient_y)

int4 read_imagei (image2d_t image, sampler_t sampler,
float2 coord, float2 gradient_x, float2 gradient_y)

uint4 read_imageui (image2d_t image, sampler_t sampler,
float2 coord, float2 gradient_x, float2 gradient_y)

float4 read_imagef (imageld_t image, sampler_t sampler,
float coord, float lod)

int4 read_imagei (imageld_t image, sampler_t sampler,
float coord, float lod)

uint4 read_imageui(imageld_t image, sampler_t sampler,
float coord, float lod)

float4 read_imagef (imageld_t image, sampler_t sampler,
float coord, float gradient_x, float gradient_y)

int4 read_imagei (imageld_t image, sampler_t sampler,
float coord, float gradient_x, float gradient_y)

uint4 read_imageui(imageld_t image, sampler_t sampler,
float coord, float gradient_x, float gradient_y)

float4 read_imagef (image3d_t image, sampler_t sampler,
float4 coord, float lod)

int4 read_imagei(image3d_t image, sampler_t sampler,
float4 coord, float lod)

uint4 read_imageui(image3d_t image, sampler_t sampler,
float4 coord, float lod)

float4 read_imagef (image3d_t image, sampler_t sampler,
float4 coord, float4 gradient_x, float4 gradient_y)

int4 read_imagei(image3d_t image, sampler_t sampler,
float4 coord, float4 gradient_x, float4 gradient_y)

uint4 read_imageui(image3d_t image, sampler_t sampler,
float4 coord, float4 gradient_x, float4 gradient_y)

float4 read_imagef (imageld_array_t image, sampler_t sampler,
float2 coord, float lod)

int4 read_imagei (imageld_array_t image, sampler_t sampler,
float2 coord, float lod)

uint4 read_imageui(imageld_array_t image, sampler_t sampler,
float2 coord, float lod)

float4 read_imagef (imageld_array_t image, sampler_t sampler,
float2 coord, float gradient_x, float gradient y)

float read_imagef (image2d_array_ [depth_]t image,
sampler_t sampler, float4 coord, float lod)

int4 read_imagei (image2d_array_t image, sampler_t sampler,
float4 coord, float lod)

uint4 read_imageui (image2d_array_t image,
sampler_t sampler, float4 coord, float lod)

float read_imagef (image2d_array_ [depth_]t image,
sampler_t sampler, float4 coord, float2 gradient_x,
float2 gradient_y)

int4 read_imagei (image2d_array_t image, sampler_t sampler,
float4 coord, float2 gradient_x, float2 gradient_y)

uint4 read_imageui (image2d_array_t image, sampler_t
sampler, float4 coord, float2 gradient_x, float2 gradient_y)

void write_imagef (image2d_ [depth_]t image, int2 coord,
int lod, float4 color)

void write_imagei (image2d_t image, int2 coord, int lod,
int4 color)

void write_imageui (image2d_t image, int2 coord, int lod,
uint4 color)

void write_imagef (imageld_t image, int coord, int lod, float4 color)
void write_imagei (imageld_t image, int coord, int lod, int4 color)
void write_imageui (imageld_t image, int coord, int lod, uint4 color)

void write_imagef (imageld_array_timage, int2 coord, int lod,
float4 color)

void write_imagei (imageld_array_t image, int2 coord, int lod,
int4 color)

void write_imageui (imageld_array_t image, int2 coord, int lod,
uint4 color)

void write_imagef (image2d_array_ [depth_]t image, int4 coord,
int lod, float4 color)

void write_imagei (image2d_array_t image, int4 coord, int lod,
int4 color)

void write_imageui (image2d_array_t image, int4 coord, int lod,
uint4 color)

void write_imagef (image3d_t image, int4 coord, int lod,
float4 coord)

void write_imagei (image3d_t image, int4 coord, int lod,
int4 color)

void write_imageui (image3d_t image, int4 coord, int lod,
uint4 color)

Extended multi-sample image read functions [9.12.3]
The extension cl_khr_gl_msaa_sharing adds the following
built-in functions.

float read_imagef (image2d_msaa_depth_t image,
int2 coord, int sample)

float read_imagef (image2d_array_depth_msaa_t image,
int4 coord, int sample)

float4 read_imageff, i, ui} (image2d_msaa_t image,
int2 coord, int sample)

Query image width, height, and depth in pixels
int get_image_width (image{1,2,3}d_t image)

int get_image_width (image1d_buffer_t image)

int get_image_width (image{1,2}d_array_t image)

int get_image_width (image2d_[array_]depth_t image)
int get_image_width (image2d_[array_]msaa_t image)
int get_image_width (image2d_ [array_]msaa_depth_t
image)

int get_image_height (image{2,3}d_t image)

int get_image_height (image2d_array_t image)

int get_image_height (image2d_[array_]depth_t image)
int get_image_height (image2d_[array_]msaa_t image)
int get_image_height (image2d_[array_]msaa_depth_t
image)

int get_image_depth (image3d_t image)

Query image array size
size_t get_image_array_size (imageld_array_t image)
size_t get_image_array_size (image2d_array_t image)
size_t get_image_array_size (image2d_array_depth_t image)
size_t get_image_array_size (
image2d_array_msaa_depth_t image)
Query image dimensions
int2 get_image_dim (image2d_t image)
int2 get_image_dim (image2d_array_t image)
int4 get_image_dim (image3d_t image)
int2 get_image_dim (image2d_[array_]depth_t image)
int2 get_image_dim (image2d_[array_]msaa_t image)
int2 get_image_dim (image2d_ [array_]msaa_depth_t image)

Query image Channel data type and order
int get_image_channel_data_type (image{1,2,3}d_t image)
int get_image_channel_data_type (imageld_buffer_t image)
int get_image_channel_data_type (image{1,2}d_array_timage)
int get_image_channel_data_type

(image2d_[array_]depth_t image)

int get_image_channel_data_type (
image2d_[array_]msaa_t image)

int get_image_channel_data_type (
image2d_[array_]msaa_depth_t image)
int get_image_channel_order (image{1,2,3}d_t image)
int get_image_channel_order (imageld_buffer_t image)
int get_image_channel_order (image{1,2}d_array_t image)
int get_image_channel_order
(image2d_[array_]depth_t image)
int get_image_channel_order (image2d_[array_]msaa_t image)
int get_image_channel_order(
image2d_[array_]msaa_depth_t image)
Extended query functions [9.18.2.1]
These functions require the cl_khr_mipmap_image

Sampler Objects (5.7
Items in blue require the cl_khr_mipmap_image
extension.

float4 read_imageff, i, ui} (image2d_array_msaa_t image, I

int4 coord, int sample)

int get_image_num_mip_levels (imageld_t image)
int get_image_num_mip_levels (image2d_ [depth_]t image)
int get_image_num_mip_levels (image3d_t image)
int get_image_num_mip_levels (imageld_array_t image)
int get_image_num_mip_levels (

image2d_array_[depth_]t image)

cl_sampler clCreateSamplerWithProperties
(cl_context context,
const cl_sampler_properties *sampler_properties,
cl_int *errcode_ret)

sampler_properties: [Table 5.14]
CL_SAMPLER_NORMALIZED_COORDS,
CL_SAMPLER_{ADDRESSING, FILTER}_MODE,
CL_SAMPLER_MIP_FILTER_MODE,
CL_SAMPLER_LOD_{MIN, MAX}

Sampler Declaration Fields [6.13.14.1]
The sampler can be passed as an argument to the kernel
using clSetKernelArg, or can be declared in the outermost
scope of kernel functions, or it can be a constant variable
of type sampler_t declared in the program source. int get_image_num_samples (
image2d_[array_]msaa_t image)
int get_image_num_samples (
image2d_ [array_]msaa_depth_t image)

const sampler_t <sampler-name> =

<normalized-mode> | <address-mode> | <filter-mode>
normalized-mode:

CLK_NORMALIZED_COORDS_{TRUE, FALSE}

address-mode:
CLK_ADDRESS_{REPEAT, CLAMP, NONE},
CLK_ADDRESS_{CLAMP_TO_EDGE},
CLK_ADDRESS_{MIRRORED_REPEAT}

filter-mode: CLK_FILTER_NEAREST, CLK_FILTER_LINEAR

cl_int clRetainSampler (cl_sampler sampler)

cl_int cIReleaseSampler (cl_sampler sampler) Access Qualiﬁers [6.6]
Apply to 2D and 3D image types to declare if the image
memory object is being read or written by a kernel.
__read_only, read_only
__write_only, write_only

cl_int clGetSamplerinfo (cl_sampler sampler,
cl_sampler_info param_name,
size_t param_value_size, void *param_value,
size_t *param_value_size_ret)

param_name: CL_SAMPLER_REFERENCE_COUNT,
CL_SAMPLER_{CONTEXT, FILTER_MODE},
CL_SAMPLER_ADDRESSING_MODE,
CL_SAMPLER_NORMALIZED_COORDS [Table 5.15]

A C++ wrapper is available for developing OpenCL applications in C++.
See www.khronos.org/registry/cl/

©2015 Khronos Group - Rev. 1118 www.khronos.org/opencl

OpenCL 2.0 Reference Guide

OpenCL Extensions Reference

Using OpenCL Extensions (9]

The following extensions extend the OpenCL API.
Extensions shown in italics provide core features.

To control an extension: #pragma OPENCL EXTENSION
extension_name : {enable | disable}

To test if an extension is supported:
clGetPlatforminfo() or clGetDevicelnfo()

To get the address of the extension function:
clGetExtensionFunctionAddressForPlatform()

cl_khr_context_abort

cl_khr_global_int32_extended_atomics - atomic_*()

cl_khr_d3d10_sharing

cl_khr_icd

cl_khr_d3d11_sharing

cl_khr_image2d_from_buffer

cl_khr_depth_images

cl_khr_initialize_memory

cl_khr_dx9_media_sharing

cl_khr_int64_base_atomics - atom_*()

cl_khr_egl_event

cl_khr_int64_extended_atomics - atom_*()

cl_khr_egl_image

cl_khr_local_int32_base_atomics - atomic_*()

cl_khr_fp16

cl_khr_local_int32_extended_atomics - atomic_*()

cl_apple_gl_sharing (see cl_khr_gl_sharing)

cl_khr_fp64

cl_khr_mipmap_image

cl_khr_3d_image_writes

cl_khr_gl_depth_images

cl_khr_mipmap_image_writes

cl_khr_byte_addressable_store

cl_khr_gl_event

cl_khr_srgh_image_writes

cl_khr_gl_msaa_sharing

OpenGL Sharing 19:5-9.71
These functions require the cl_khr_g|_sharing or
cl_apple_ gl_sharing extension.

CL Context > GL Context, Sharegroup [9.5.5]

cl_int clGetGLContextInfoKHR (
const cl_context_properties *properties,
cl_gl_context_info param_name,
size_t param_value_size, void *param_value,
size_t *param_value_size_ret)

param_name: CL_DEVICES_FOR_GL_CONTEXT_KHR,

CL_CURRENT_DEVICE_FOR_GL_CONTEXT_KHR

CL Buffer Objects > GL Buffer Objects [9.6.2]

cl_mem clCreateFromGLBuffer (cl_context context,
cl_mem_flags flags, GLuint bufobj, cl_int *errcode_ret)

flags: CL_MEM_{READ_ONLY, WRITE_ONLY, READ_WRITE}

CL Image Objects > GL Textures [9.6.3]

cl_mem clCreateFromGLTexture (cl_context context,
cl_mem_flags flags, GLenum texture_target,
GLint miplevel, GLuint texture, cl_int *errcode_ret)

flags: See clCreateFromGLBuffer

texture_target: GL_TEXTURE_{1D, 2D}[_ARRAY],
GL_TEXTURE_{3D, BUFFER, RECTANGLE},
GL_TEXTURE_CUBE_MAP_POSITIVE_{X, Y, Z},
GL_TEXTURE_CUBE_MAP_NEGATIVE_{X, Y, Z},
GL_TEXTURE_2D_MULTISAMPLE{_ARRAY} (Requires
extension cl_khr_gl_msaa_sharing)

DX9 Media Surface Sharing (0.9

These functions require the extension
cl_khr_dx9_media_sharing. The associated header file is
cl_dx9_media_sharing.h.

cl_int clGetDevicelDsFromDX9MediaAdapterKHR (

cl_platform_id platform, cl_uint num_media_adapters,
cl_dx9_media_adapter_type_khr *media_adapters_type,
void *media_adapters,
cl_dx9_media_adapter_set_khr media_adapter_set,
cl_uint num_entries, cl_device_id *devices,
cl_int *num_devices)

media_adapter_type:
CL_ADAPTER_{D3D9, D3D9EX, DXVA}_KHR

media_adapter_set: CL_{ALL, PREFERRED}_DEVICES_-
FOR_DX9_MEDIA_ADAPTER_KHR

cl_mem clCreateFromDX9MediaSurfaceKHR (
cl_context context, c|_mem_flags flags,
cl_dx9_media_adapter_type_khr adapter_type,
void *surface_info, cl_uint plane, cl_int *errcode_ret)
flags: See clCreateFromGLBuffer
adapter_type: CL_ADAPTER_{D3D9, D3D9EX, DXVA}_KHR

cl_int clEnqueue{Acquire, Release}DX9MediaSurfacesKHR(
cl_command_queue command_queue,
cl_uint num_objects, const cl_mem *mem_objects,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

EGL Interoperabililty [s.15,9.201
Create CL Image Objects from EGL [9.19]
These functions require the extension cl_khr_egl_image.
cl_mem clCreateFromEGLImageKHR (
cl_context context, CLegIDisplayKHR display,
CLeglimageKHR image, cl_mem_flags flags,
const cl_egl_image_properties_khr *properties,
cl_int *errcode_ret)

©2015 Khronos Group - Rev. 1118

cl_khr_spir

cl_khr_gl_sharing

cl_khr_subgroups

cl_khr_global_int32_base_atomics - atomic_*()

cl_khr_terminate_context

CL Image Objects > GL Renderbuffers [9.6.4]

cl_mem clCreateFromGLRenderbuffer (
cl_context context, cl_mem_flags flags,
GLuint renderbuffer, cl_int *errcode_ret)

flags: See clCreateFromGLBuffer

Query Information [9.6.5]

cl_int clGetGLObjectInfo (c|_mem memobj,
cl_gl_object_type *gl_object_type,
GLuint *gl_object_name)

*gl_object_type returns:
CL_GL_OBJECT_TEXTURE_BUFFER,
CL_GL_OBJECT_TEXTURE{1D, 2D, 3D},
CL_GL_OBJECT_TEXTURE{1D, 2D} ARRAY,
CL_GL_OBJECT_{BUFFER, RENDERBUFFER}

cl_int clGetGLTexturelnfo (c|_mem memobyj,

cl_gl_texture_info param_name,

size_t param_value_size, void *param_value,

size_t *param_value_size_ret)

param_name:

CL_GL_{TEXTURE_TARGET, MIPMAP_LEVEL},

CL_GL_NUM_SAMPLES (Requires extension
cl_khr_gl_msaa_sharing)

Share Objects [9.6.6]

cl_int clEnqueue{Acquire, Release}GLObjects (
cl_command_queue command_queue,
cl_uint num_objects, const cl_mem *mem_objects,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

CL Event Objects > GL Sync Objects [9.7.4]
cl_event clCreateEventFromGLsyncKHR (
cl_context context, GLsync sync,
cl_int *errcode_ret)
Requires the cl_khr_gl_event extension.

Direct3D 11 Sharing [s.10.7.3-9.10.7.6]
These functions require the cl_khr_d3d11 sharing
extension. Associated header file is c|_d3d11.h.

cl_int clGetDevicelDsFromD3D11KHR (

cl_platform_id platform,
cl_d3d11_device_source_khr d3d_device_source,
void *d3d_object,
cl_d3d11_device_set_khr d3d_device_set,
cl_uint num_entries, cl_device_id *devices,
cl_uint *num_devices)

d3d_device_source: CL_D3D11_DEVICE_KHR,
CL_D3D11_DXGI_ADAPTER_KHR

d3d_device_set: CL_ALL_DEVICES_FOR_D3D11_KHR,
CL_PREFERRED_DEVICES_FOR_D3D11_KHR

cl_mem clCreateFromD3D11BufferKHR (
cl_context context, cl_mem_flags flags,
ID3D11Buffer *resource, cl_int *errcode_ret)
flags: See clCreateFromGLBuffer

cl_int clEnqueue{Acquire, Release}EGLObjectsKHR (
cl_command_queue command_queue,
cl_uint num_objects, const cl_mem *mem_objects,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list,
cl_event *event)

Direct3D 10 Sharing [0.5.7]

These functions require the cl_khr_d3d10_sharing
extension. The associated header file is cI_d3d10.h.

cl_int clGetDevicelDsFromD3D10KHR (

cl_platform_id platform,
cl_d3d10_device_source_khr d3d_device_source,
void *d3d_object,
cl_d3d10_device_set_khr d3d_device_set,
cl_uint num_entries, cl_device_id *devices,
cl_uint *num_devices)

d3d_device_source:
CL_D3D10_{DEVICE, DXGI_ADAPTER}_KHR

d3d_device_set:
CL_{ALL, PREFERRED} DEVICES_FOR_D3D10_KHR

cl_mem clCreateFromD3D10BufferKHR (
cl_context context, cl_mem_flags flags,
ID3D10Buffer *resource, cl_int *errcode_ret)

flags: See clCreateFromGLBuffer

cl_mem clCreateFromD3D10Texture2DKHR (
cl_context context, cl_mem_flags flags,
ID3D10Texture2D *resource, UINT subresource,
cl_int *errcode_ret)

flags: See clCreateFromD3D10BufferKHR

cl_mem clCreateFromD3D10Texture3DKHR (
cl_context context, cI_mem_flags flags,
ID3D10Texture3D *resource, UINT subresource,
cl_int *errcode_ret)

flags: See clCreateFromGLBuffer

cl_int clEnqueue{Acquire, Release}D3D100bjectsKHR (
cl_command_queue command_queue,
cl_uint num_objects, const c|_mem *mem_objects,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

cl_mem clCreateFromD3D11Texture3DKHR (
cl_context context, cl_mem_flags flags,
ID3D11Texture3D *resource, UINT subresource,
cl_int *errcode_ret)

flags: See clCreateFromGLBuffer

cl_mem clCreateFromD3D11Texture2DKHR (
cl_context context, cl_mem_flags flags,
ID3D11Texture2D *resource,
UINT subresource, cl_int *errcode_ret)

flags: See clCreateFromGLBuffer

cl_int clEnqueue{Acquire, Release}D3D110bjectsKHR (
cl_command_queue command_queue,
cl_uint num_objects, const c|_mem *mem_objects,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

Create CL Event Objects from EGL [9.20]
This function requires the extension cl_khr_egl_event.

cl_event clCreateEventFromEGLsyncKHR (
cl_context context, CLegISyncKHR sync,
ClLeglIDisplayKHR display, cl_int *errcode_ret)

www.khronos.org/opencl

1x3 puado

suolIsua

OpenCL 2.0 Reference Guide

OpenCL Reference Card Index

The following index shows each item included on this card along with the page on which it is described. The color of the row in the table below is the color of the box to which

you should refer.

A

Access Qualifiers

Address Space Qualifier Functions
Aligned attribute qualifiers

Async Copies and Prefetch
Atomic Functions

Attribute Qualifiers

B

Barriers
Blocks

Buffer Objects

C

cl_KHR

clBuildProgram

clCompileProgram

clCreateBuffer
clCreateCommandQueueWithProperties
clCreateContext
clCreateContextFromType
clCreateEventFromEGLsynckKHR
clCreateEventFromGLsynckHR
clCreateFromD3D10BufferKHR
clCreateFromD3D10Texture2DKHR
clCreateFromD3D10Texture3DKHR
clCreateFromD3D11BufferKHR
clCreateFromD3D11Texture2DKHR
clCreateFromD3D11Texture3DKHR
clCreateFromDX9MediaSurfaceKHR
clCreateFromEGLImageKHR
clCreateFromGLBuffer
clCreateFromGLRenderbuffer
clCreateFromGLTexture
clCreatelmage

clCreateKernel
clCreateKernelsinProgram
clCreatePipe
clCreateProgramWithBinary
clCreateProgramWithBuiltinKernels
clCreateProgramWithSource
clCreateSamplerWithProperties
clCreateSubBuffer
clCreateSubDevices
clCreateUserEvent
clEnqueueAcquireD3D100bjectsKHR
clEnqueueAcquireD3D110bjectsKHR
clEnqueueAcquireDX9MediaSurfaceskHR
clEnqueueAcquireEGLObjectsKHR
clEnqueueAcquireGLObjects
clEnqueueBarrierWithWaitList
clEnqueueCopyBuffer
clEnqueueCopyBufferTolmage
clEnqueueCopylmage
clEnqueueCopylmageToBuffer
clEnqueueFillBuffer
clEnqueueFilllmage
clEnqueueMapBuffer
clEnqueueMaplmage
clEnqueueMarkerWithWaitList
clEnqueueMigrateMemObjects
clEnqueueNativeKernel

W N B WO N 00 N 00 0N

clEnqueueNDRangeKernel
clEnqueueReadBuffer
clEnqueueReadBufferRect
clEnqueueReadimage
clEnqueueReleaseD3D100bjectsKHR
clEnqueueReleaseD3D110bjectskHR
clEnqueueReleaseDX9MediaSurfaceskHR
clEnqueueReleaseEGLObjectsKHR
clEnqueueReleaseGLObjects
clEnqueueSVM[Un]Map
clEnqueueSVMFree
clEnqueueSVMMem{cpy, Fill}
clEnqueueUnmapMemObject
clEnqueueWriteBuffer
clEnqueueWriteBufferRect
clEnqueueWritelmage

clFinish

clFlush

clGetCommandQueuelnfo
clGetContextInfo

clGetDevicelDs
clGetDevicelDsFromD3D10KHR
clGetDevicelDsFromD3D11KHR
clGetDevicelDsFromDX9MediaAdapterKHR
clGetDevicelnfo

clGetEventinfo
clGetEventProfilingInfo
clGetExtensionFunctionAddressForPlatform
clGetGLContextInfokHR
clGetGLObjectInfo
clGetGLTexturelnfo
clGetKernelArgInfo
clGetKernellnfo
clGetKernelSubGrouplnfokKHR
clGetKernelWorkGrouplnfo
clGetMemObjectinfo
clGetMemObjectinfo
clGetPipelnfo

clGetPlatformIDs
clGetPlatforminfo
clGetProgramBuildinfo
clGetPrograminfo
clGetSamplerinfo
clGetSupportedimageFormats
clicdGetPlatformIDskHR
clLinkProgram
clReleaseCommandQueue
clReleaseContext

clReleaseDevice

clReleaseEvent

clReleaseKernel
clReleaseMemObject
clReleaseProgram
clReleaseSampler
clRetainCommandQueue
clRetainContext

clRetainDevice

clRetainEvent

clRetainKernel
clRetainMemObject

clRetainProgram

clRetainSampler

clSetEventCallback

clSetKernelArg
clSetKernelArgSVMPointer
clSetKernelExeclnfo
clSetMemObjectDestructorCallback
clSetUserEventStatus

cISVMAlloc

clSVMFree

clTerminateContextKHR
clUnloadPlatformCompiler
clWaitForEvents

Command Queues

Common Built-in Functions
Compiler Options

const sampler_t

Contexts

Conversions and Type Casting

Copy Between Image, Buffer Objects

B R R W W0 N NN WN W

D
Data Types

=
SN

Debugging options

-
=

Device Architecture Diagram
Direct3D 10 Sharing
Direct3D 11 Sharing

DX9 Media Surface Sharing

(R U

E-F
EGL Interoperability

= e
[EN N

Enqueing & Kernel Query Built-in Functions
Event Built-in Functions

Event Objects

Execute Kernels

-
[

Extension Function Pointers
Extensions
Fence Functions

G-H
Geometric Built-in Functions
Helper Built-in Functions

|

Image Formats

Image Objects

Image Query Functions

Image Read and Write Functions

W Wk RPN ON W W W w

=
o

Integer Built-in Functions

K

Kernel Arguments and Queries
Kernel Objects

Kernel Query Built-in Functions

L
Library linking options
Linker Options

W N WA P PP WL

=
o

M

Map and Unmap Image Objects
Map Buffer Objects

Markers, Barriers, Waiting for Events
Math Built-in Functions

Math Constants

=
S w

P W W REr NN WN W W w s

= w1
N = w
[e] o &

Memory Fence Functions
Memory Objects
Migrate Memory Objects

(o]

OpenCL Class Diagram
OpenCL Extensions
OpenGL Sharing
Operators

Optimization options

p

Partitioning a Device
Pipe Built-in Functions
Pipes

Prefetch

Preprocessor
Preprocessor Directives & Macros
printf Function
Profiling Operations
Program linking options

W W s N B WO N -

Program Objects

Q

Qualifiers

Query Image Objects

Query Image Functions

Query List of Supported Image Formats
Query Memory Object

Query Program Objects

Querying Platform Info & Devices

R

Read, Write, Copy Buffer Objects
Read, Write, Copy, Fill Image Objects
Read and Write Image Objects
Relational Built-in Functions

S-T

Sampler Objects, Declaration Fields
Scalar Data Types

Separate Compilation and Linking
Share Objects

Shared Virtual Memory

SPIR compiler options

Supported Data Types

SVM Sharing Granularity
Synchronization & Memory Fence Functions
Type Casting Examples

Types

u-v

Unload the OpenCL Compiler
Unroll attribute qualifiers

Vector Component Addressing
Vector Data Load/Store

Vector Functions

Vector Data Types

Version

W

Waiting for Events

Warning request/suppress
Workgroup Functions
Work-Item Built-in Functions

©2015 Khronos Group - Rev. 1118

KHRCONOS

GROUP

The Khronos Group is an industry consortium creating open standards for the authoring and
acceleration of parallel computing, graphics and dynamic media on a wide variety of platforms and
devices. See www.khronos.org to learn more about the Khronos Group.

Khronos Group and the Khronos Group logo are registered trademarks of the Khronos Group, and
the Khronos OpenCL logo is a trademark of Apple Inc. and is used under license by Khronos.

Reference card production by Miller & Mattson www.millermattson.com

www.khronos.org/opencl

