OpenCL 2.1 Reference Guide

Page 1

OpenCL (Open Computing Language) is a multi-vendor
open standard for general-purpose parallel programming of “gh ’
heterogeneous systems that include CPUs, GPUs, and other S ‘/‘
processors. OpenCL provides a uniform programming environment "
for software developers to write efficient, portable code for high-
performance compute servers, desktop computer systems, and

handheld devices.

Specification documents and online reference are available at

www.khronos.org/opencl.

[n.n.n] and purple text: sections and text in the OpenCL API 2.1 Spec.
[n.n.n] and green text: sections and text in the OpenCL C 2.0 Spec.
[n.n.n] and blue text: sections and text in the OpenCL Extension 2.1 Spec.

KHRCONOS

GROUP

IdV 1Juado

OpenCL API Reference Section and table references are to the OpenCL APl 2.1 specification.

The OpenCL Platform Layer

The OpenCL platform layer implements platform-specific
features that allow applications to query OpenCL
devices, device configuration information, and to create
OpenCL contexts using one or more devices. Items in
blue apply when the appropriate extension is supported.

Querying Platform Info & Devices [4.1-2] [9.16.9]

cl_int clGetPlatformIDs (cl_uint num_entries,
cl_platform_id *platforms, cl_uint *num_platforms)

cl_int clicdGetPlatformIDsKHR (cl_uint num_entries,
cl_platform_id * platfoms, cl_uint *num_platforms)

cl_int clGetPlatforminfo (cl_platform_id platform,
cl_platform_info param_name,
size_t param_value_size, void *param_value,
size_t *param_value_size_ret)

param_name: CL_PLATFORM_{PROFILE, VERSION},
CL_PLATFORM_{NAME, VENDOR, EXTENSIONS},
CL_PLATFORM_HOST_TIMER_RESOLUTION,
CL_PLATFORM_ICD_SUFFIX_KHR [Table 4.1]

cl_int clGetDevicelDs (cl_platform_id platform,
cl_device_type device_type, cl_uint num_entries,
cl_device_id *devices, cl_uint ¥*num_devices)

device_type: [Table 4.2]
CL_DEVICE_TYPE_{ACCELERATOR, ALL, CPU},
CL_DEVICE_TYPE_{CUSTOM, DEFAULT, GPU}

cl_int clGetDevicelnfo (cl_device_id device,
cl_device_info param_name,
size_t param_value_size, void *param_value,
size_t *param_value_size_ret)

param_name: [Table 4.3]

CL_DEVICE_ADDRESS_BITS, CL_DEVICE_AVAILABLE,

CL_DEVICE_BUILT_IN KERNELS

CL DEVICE COMPILER AVAILABLE,

CL_DEVICE_{DOUBLE HALF, SINGLE}_FP_CONFIG,

CL_DEVICE_ENDIAN_LITTLE, CL_DEVICE_EXTENSIONS,

CL_DEVICE_ERROR_CORRECTION_SUPPORT,

CL_DEVICE_EXECUTION_CAPABILITIES,

CL_DEVICE_GLOBAL_MEM_CACHE_{SIZE, TYPE},

CL DEVICE GLOBAL MEM {CACHELINE SIZE, SIZE},

CL_DEVICE GLOBAL VARIABLE_PREFERRED_TOTAL_SIZE,

CL_DEVICE_IL_VERSION,

CL_DEVICE_IMAGE_MAX_{ARRAY, BUFFER}_SIZE,

CL_DEVICE_IMAGE_SUPPORT,

CL_DEVICE_IMAGE2D_MAX_{WIDTH, HEIGHT},

CL_DEVICE_IMAGE3D_MAX_{WIDTH, HEIGHT, DEPTH},

CL_DEVICE_IMAGE_BASE_ADDRESS_ALIGNMENT,

CL_DEVICE_IMAGE_PITCH_ALIGNMENT,

CL_DEVICE_LINKER_AVAILABLE,

CL_DEVICE_LOCAL_MEM_{TYPE, SIZE},

CL_DEVICE_MAX_{CLOCK_FREQUENCY, PIPE_ARGS},

CL_DEVICE_MAX_{COMPUTE_UNITS, SAMPLERS},

CL_DEVICE_MAX_CONSTANT_{ARGS, BUFFER_SIZE},

CL_DEVICE_MAX_GLOBAL_VARIABLE_SIZE,

CL_DEVICE_MAX_{MEM_ALLOC, PARAMETER}_SIZE,

CL_DEVICE_MAX_NUM_SUB_GROUPS,

CL_DEVICE_MAX_ON_DEVICE_{QUEUES, EVENTS},

CL_DEVICE_MAX_{READ, WRITE} IMAGE_ARGS,

CL_DEVICE_MAX_READ_WRITE_IMAGE_ARGS,

CL_DEVICE_MAX_SUB_GROUPS,

CL_DEVICE_MAX_WORK_GROUP_SIZE,

CL_DEVICE_MAX_WORK_ITEM_{DIMENSIONS, SIZES},

CL_DEVICE_MEM_BASE_ADDR_ALIGN,

CL_DEVICE_NAME,

CL_DEVICE NATIVE VECTOR_WIDTH_X
(whereXmay be CHAR, INT, DOUBLE, HALF, LONG,
SHORT, FLOAT),

CL_DEVICE_NATIVE_VECTOR_WIDTH_FLOAT,

©2015 Khronos Group - Rev. 1118

CL_DEVICE_{OPENCL_C_VERSION, PARENT_DEVICE},

CL_DEVICE_PARTITION_AFFINITY_DOMAIN,

CL_DEVICE_PARTITION_MAX_SUB_DEVICES,

CL_DEVICE_PARTITION_{PROPERTIES, TYPE},

CL_DEVICE_PIPE_MAX_ACTIVE_RESERVATIONS,

CL DEVICE PIPE_MAX_PACKET_SIZE,

CL DEVICE_ {PLATFORM PRINTF BUFFER_SIZE},

CL_| DEVICE_PREFERRED_Y ATOMIC ALIGNMENT
(where Y may be LOCAL, GLOBAL, PLATFORM),

CL_DEVICE_PREFERRED_VECTOR_WIDTH_Z
(whereZmay be CHAR, INT, DOUBLE, HALF, LONG,
SHORT, FLOAT),

CL_DEVICE_PREFERRED_INTEROP_USER_SYNC,

CL_DEVICE_PROFILE,

CL DEVICE PROFILING_TIMER_RESOLUTION,

CL DEVICE SPIR VERSIONS

CL_DEVICE_SUBGROUP_INDEPENDENT _FORWARD_-

PROGRESS

CL_DEVICE_QUEUE_ON_{DEVICE, HOST}_PROPERTIES,

CL DEVICE_QUEUE_ON_DEVICE_MAX_SIZE,

CL_DEVICE_QUEUE_ON_DEVICE_PREFERRED_SIZE,

CL DEVICE {REFERENCE COUNT, VENDOR_ID}

CL DEVICE_SVM_CAPABILITIES,

CL DEVICE_ _TERMINATE CAPABILITY KHR,

CL_DEVICE_{TYPE, VENDORY},

CL DEVICE_VENDOR_ID,

CL {DEVICE DRIVER} VERSION

cl_int clGetDeviceAndHostTimer (cl_device_id device,
cl_ulong *device_timestamp,
cl_ulong *host_timestamp)

cl_int clGetHostTimer (cl_device_id device,
cl_ulong *host_timestamp)

Partitioning a Device [4.3]

cl_int clCreateSubDevices (cI_device_id in_device,
const cl_device_partition_property *properties,
cl_uint num_devices, cl_device_id *out_devices,
cl_uint *num_ devices _ret)

properties: [Table 4.4] CL_DEVICE_PARTITION_EQUALLY,
CL_DEVICE_PARTITION_BY_ COUNTS,
CL DEVICE PARTITION BY AFFINITY_DOMAIN

The OpenCL Runtime
API calls that manage OpenCL objects such as
command-queues, memory objects, program objects,

kernel objects for __kernel functions in a program
and calls that allow you to enqueue commands to a
command-queue such as executing a kernel, reading,
or writing a memory object.

Command Queues [5.1]

cl_command_queue
clCreateCommandQueueWithProperties (
cl_context context, cl_device_id device,
const cl_command_queue_properties *properties,
cl_int *errcode_ret)

properties: [Table 5.1] CL_QUEUE_SIZE,
CL_QUEUE_PROPERTIES (bitfield which may be

set to an OR of CL_QUEUE_* where * may
be: OUT_OF ORDER_EXEC_MODE_ENABLE,
PROFILING_ENABLE, ON_DEVICE[_DEFAULT]),
CL_QUEUE_THROTTLE_{HIGH, MED, LOW}_KHR
(requires the cl_khr_throttle_hint extension),
CL_QUEUE_PRIORITY_KHR (bitfield which may be
one of CL_QUEUE_PRIORITY_HIGH_KHR,
CL_QUEUE_PRIORITY_MED_KHR,
CL_QUEUE_PRIORITY_LOW_KHR
(requires the cl_khr_priority_hints extension))

cl_int clRetainDevice (cl_device_id device)
cl_int clReleaseDevice (cl_device_id device)

Contexts [4.4]
cl_context clCreateContext (
const cl_context_properties *properties,
cl_uint num_devices, const cl_device_id *devices,
void (CL_CALLBACK*pfn_notify)
(const char *errinfo, const void *private_info,
size_t cb, void *user_data),
void *user_data, cl_int *errcode_ret)

properties: [Table 4.5]
NULL or CL_CONTEXT_PLATFORM,
CL_CONTEXT_INTEROP_USER SYNC
CL_CONTEXT_{D3D10, D3D11}_DEVICE_KHR,
CL_CONTEXT_ADAPTER_{D3D9, DSDQEX}_KHR
CL_CONTEXT_ADAPTER_DXVA_KHR,
CL_CONTEXT_MEMORY_INITIALIZE_KHR,
CL_CONTEXT_TERMINATE_KHR,
CL_GL_CONTEXT_KHR, CL_CGL_SHAREGROUP_KHR,
CL_{EGL GLX}_DISPLAY_KHR CL_WGL_HDC_KHR

cl_context cICreateContextFromType(
const cl_context_properties *properties,
cl_device_type device_type,
void (CL_CALLBACK *pfn_notify)
(const char *errinfo, const void *private_info,
size_t cb, void *user_data),
void *user_data, cl_int *errcode_ret)
properties: See clCreateContext
device_type: See clGetDevicelDs

cl_int clRetainContext (cl_context context)
cl_int clReleaseContext (cl_context context)

cl_int clGetContextlInfo (cl_context context,

cl_context_info param_name,
size_t param_value_size, void *param_value,
size_t *param_value_size_ret)

param_name: CL_CONTEXT_REFERENCE_COUNT,
CL_CONTEXT_{DEVICES, NUM_DEVICES,
PROPERTIES}, CL_CONTEXT_{D3D10, D3D11} -
PREFER_SHARED_RESOURCES_KHR [Table 4.6]

cl_int cITerminateContextKHR (cl_context context)

Get CL Extension Function Pointers [9.2]
void* clGetExtensionFunctionAddressForPlatform (
cl_platform_id platform, const char *funcname)

cl_int clSetDefaultDeviceCommandQueue (
cl_context context, cl_device_id device,
cl_command_queue command_queue)

cl_int clRetainCommandQueue (
cl_command_queue command_queue)

cl_int clReleaseCommandQueue (
cl_command_queue command_queue)

cl_int clGetCommandQueuelnfo (
cl_command_queue command_queue,
cl_command_queue_info param_name,
size_t param_value_size, void *param_value,
size_t *param_value_size_ret)

param_name: [Table 5.2]

CL_QUEUE_CONTEXT,
CL_QUEUE_DEVICE[_DEFAULT], CL_QUEUE_SIZE,
CL_QUEUE_REFERENCE_COUNT,
CL_QUEUE_PROPERTIES

www.khronos.org/opencl

OpenCL API

Page 2

Buffer Objects

Elements of buffer objects are stored sequentially and accessed using a pointer by a
kernel executing on a device.

Create Buffer Objects [5.2.1]

cl_mem clCreateBuffer (cl_context context, cl_mem_flags flags, size_t size,
void *host_ptr, cl_int *errcode_ret)

flags: [Table 5.3] CL_MEM_READ_WRITE, CL_MEM_{WRITE, READ} ONLY,
CL_MEM_HOST_NO_ACCESS, CL_MEM_HOST _{READ, WRITE} ONLY,
CL_MEM_{USE, ALLOC, COPY} HOST_PTR

cl_mem clCreateSubBuffer (
cl_mem buffer, cl_mem_flags flags, cl_buffer_create_type buffer_create_type,
const void *buffer_create_info, cl_int *errcode_ret)
flags: See clCreateBuffer
buffer_create_type: CL_BUFFER_CREATE_TYPE_REGION

Read, Write, Copy, Fill Buffer Objects [5.2.2-3]

cl_int clEnqueueReadBuffer (
cl_command_queue command_queue, c|_mem buffer, cl_bool blocking_read,
size_t offset, size_t size, void *ptr, cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueReadBufferRect (
cl_command_queue command_queue, cl_mem buffer, cl_bool blocking_read,
const size_t *buffer_origin, const size_t *host_origin, const size_t *region,
size_t buffer_row_pitch, size_t buffer_slice_pitch, size_t host_row_pitch,
size_t host_slice_pitch, void *ptr, cI_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueWriteBuffer (
cl_command_queue command_queue, cl_mem buffer, cl_bool blocking_write,
size_t offset, size_t size, const void *ptr, cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueWriteBufferRect (

cl_command_queue command_queue, cl_mem buffer, c|_bool blocking_write,
const size_t *buffer_origin, const size_t *host_origin, const size_t *region,
size_t buffer_row_pitch, size_t buffer_slice_pitch, size_t host_row_pitch,
size_t host_slice_pitch, const void *ptr, cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueFillBuffer (
cl_command_queue command_queue, cl_mem buffer, const void *pattern,
size_t pattern_size, size_t offset, size_t size, cl_uint num_events_in_wait_list,

const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueCopyBuffer (

cl_command_queue command_queue, cl_mem src_buffer, cI_mem dst_buffer,
size_t src_offset, size_t dst_offset, size_t size, cl_uint num_events_in_wait_list,

const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueCopyBufferRect (

cl_command_queue command_queue, cl_mem src_buffer, cI|_mem dst_buffer,

const size_t *src_origin, const size_t *dst_origin, const size_t *region,
size_t src_row_pitch, size_t src_slice_pitch, size_t dst_row_pitch,
size_t dst_slice_pitch, cl_uint num_events_in_wait_list,

const cl_event *event_wait_list, cl_event *event)

Map Buffer Objects [5.2.4]
void * clEnqueueMapBuffer (
cl_command_queue command_queue, cl_mem buffer, cI_bool blocking_map,
cl_map_flags map_flags, size_t offset, size_t size,
cl_uint num_events_in_wait_list, const cl_event *event_wait_list,
cl_event *event, cl_int *errcode_ret)
map._flags: CL_MAP_{READ, WRITE}, CL_MAP_WRITE_INVALIDATE_REGION

Memory Objects

A memory object is a handle to a reference counted region of global memory.
the appropriate extension is supported.

Memory Objects [5.5.1,5.5.2]

cl_int cIRetainMemObject (c|_mem memobj)

cl_int clReleaseMemObject (c|_mem memobyj)

cl_int cISetMemObjectDestructorCallback (c|_mem memobj,
void (CL_CALLBACK *pfn_notify)
(cl_mem memobyj, void *user_data),
void *user_data)

cl_int clEnqueueUnmapMemObject (c|_command_queue command_queue,
cl_mem memobj, void *mapped_ptr, cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

Migrate Memory Objects [5.5.4]

cl_int clEnqueueMigrateMemObjects (c|_command_queue command_queue,
cl_uint num_mem_objects, const cI|_mem *mem_objects,
cl_mem_migration_flags flags, cl_uint num_events_in_wait_list,

const cl_event *event_wait_list, cl_event *event)

©2015 Khronos Group - Rev. 1118

Includes Buffer Objects, Image Objects, and Pipe Objects. Items in blue apply when

OpenCL Class Diagram

The figure below describes the OpenCL specification as a class diagram using the Unified
Modeling Language! (UML) notation. The diagram shows both nodes and edges which
are classes and their relationships. As a simplification it shows only classes, and no
attributes or operations.

Annotations Platform |1
Relationships * Command Queue l&'}l Event I
abstract classes {abstract} j *]
aggregations ¢ 1
inheritance A DeVlce ID Context
relationship ~
navigability
Program * MemOb]ect -

{abstract} Sampler |
Cardinality]
many * é
oneandonlyone | 1 Keme'
optionally one 0.1 Buffer Image ! Pipe !
one or more il g,] .

! Unified Modeling Language (http://www.uml.org/) is a trademark of Object Management Group (OMG).

OpenCL Device Architecture Diagram

The table below shows memory regions with allocation and memory access capabilities.
R=Read, W=Write

The conceptual OpenCL device architecture diagram

Host Kernel ° .
shows processing elements (PE), compute units
Global |Dynamic No allocation |(CU), and devices. The host is not shown.
allocation R/W access _
R/W access Compute Device

Private
memory M,

CUI [Pprivate Private
memory 1 | |memory M

pE1 | PEM pE1 |"" [PEM

CUN [Pprivate
] . . a
Constant | Dynamic Static allocation

allocation R-only access
biecees h | CEwer]
Local mem 1 local mem N
Local Dynamic Static allocation Global/Constant Memory Data Cache
allocation R/W access
No access Compute Device Memory
. . . . [Global Memory |
Private | No allocation | Static allocation
Noaccess R/W access | Eonstanthemoty |

Conversions and Type Casting Examples [6.2]

Ta=(T)b; //Scalar to scalar,
// or scalar to vector

T a = convert_T(b);

Ta = convert_T_R(b);

Ta=as_T(b);

Ta = convert_T_sat_R(b);

R: one of the following rounding modes:
_rte to nearest even

_rtz toward zero
_rtp toward + infinity
_rtn toward - infinity

Pipes

A pipe is a memory object that stores data organized as a FIFO. Pipe objects can only be
accessed using built-in functions that read from and write to a pipe. Pipe objects are not
accessible from the host.

Create Pipe Objects [5.4.1]

cl_mem clCreatePipe (cl_context context, c|_mem_flags flags, cl_uint pipe_packet_size,
cl_uint pipe_max_packets, const cl_pipe_properties *properties, cl_int *errcode_ret)

flags: 0 or CL_MEM_READ_WRITE, CL_MEM_{READ, WRITE}_ONLY,
CL_MEM_HOST_NO_ACCESS

Pipe Object Queries [5.4.2]

cl_int clGetPipelnfo (c|_mem pipe, cl_pipe_info param_name, size_t param_value_size,
void *param_value, size_t *param_value_size_ret)

param_name:
CL_PIPE_PACKET_SIZE, CL_PIPE_MAX_PACKETS

flags: CL_MIGRATE_MEM_OBJECT_HOST,
CL_MIGRATE_MEM_OBJECT_CONTENT UNDEFINED

Query Memory Object [5.5.5]

cl_int clGetMemObjectinfo (c|_mem memobj, c|_mem_info param_name,
size_t param_value_size, void *param_value, size_t *param_value_size_ret)
param_name: CL_MEM_{TYPE, FLAGS, SIZE, HOST_PTR}, CL_MEM_OFFSET,
CL_MEM_{MAP, REFERENCE}_COUNT, CL_MEM_ASSOCIATED_MEMOBIJECT,
CL_MEM_CONTEXT, CL_MEM_USES_SVM_ POINTER,
CL_MEM_{D3D10, D3D11} RESOURCE_KHR,
CL_MEM_DX9_MEDIA_{ADAPTER_TYPE, SURFACE_INFO}_KHR [Table 5.13]

www.khronos.org/opencl

OpenCL 2.1 Reference Guide

Shared Virtual Memory

Shared Virtual Memory (SVM) allows the host and kernels
executing on devices to directly share complex, pointer-
containing data structures such as trees and linked lists.
See more on SVM on page 4 of this reference guide.

SVM Sharing Granularity [5.6.1]

void* cISVMAIloc (
cl_context context, cl_svm_mem_flags flags,
size_t size, cl_uint alignment)

flags: [Table 5.14]
CL_MEM_READ_WRITE,
CL_MEM_{WRITE, READ} ONLY,
CL_MEM_SVM_FINE_GRAIN_BUFFER,
CL_MEM_SVM_ATOMICS

void cISVMFree (cl_context context, void *svm_pointer)

Program Objects

An OpenCL program consists of a set of kernels that
are identified as functions declared with the __kernel
qualifier in the program source.

Create Program Objects [5.8.1]

cl_program clCreateProgramWithSource (
cl_context context, cl_uint count,
const char **strings, const size_t *lengths,
cl_int *errcode_ret)

cl_program clCreateProgramWithiL (
cl_context context, const void *il,
size_t length, cl_int *errcode_ret)

cl_program clCreateProgramWithBinary (
cl_context context, cl_uint num_devices,
const cl_device_id *device_list, const size_t *lengths,
const unsigned char **binaries,
cl_int *binary_status, cl_int *errcode_ret)

cl_program clCreateProgramWithBuiltinKernels (
cl_context context, cl_uint num_devices,
const cl_device_id *device_list,
const char *kernel_names, cl_int *errcode_ret)

cl_int clRetainProgram (cl_program program)
cl_int cIReleaseProgram (cl_program program)

Building Program Executables [5.5.2]

cl_int clBuildProgram (cl_program program,
cl_uint num_devices, const cl_device_id *device_list,
const char *options, void (CL_CALLBACK*pfn_notify)
(cl_program program, void *user_data),
void *user_data)

Separate Compilation and Linking [5.8.3]

cl_int clCompileProgram (cl_program program,
cl_uint num_devices, const cl_device_id *device_list,
const char *options, cl_uint num_input_headers,
const cl_program *input_headers,
const char **header_include_names,
void (CL_CALLBACK*pfn_notify)
(cl_program program, void *user_data),
void *user_data)

Kernel Objects

A kernel object encapsulates the specific__kernel
function and the argument values to be used when
executing it. Items in blue apply when the appropriate
extension is supported.

Create Kernel Objects [5.9.1]
cl_kernel clCreateKernel (cl_program program,
const char *kernel_name, cl_int *errcode_ret)

cl_int clCreateKernelsInProgram (cl_program program,
cl_uint num_kernels, cl_kernel *kernels,
cl_uint *num_kernels_ret)

cl_int cIRetainKernel (cl_kernel kernel)

cl_int cIReleaseKernel (cl_kernel kernel)

Kernel Arguments and Queries [5.9.2-4]

cl_int clSetKernelArg (cl_kernel kernel, cl_uint arg_index,
size_t arg_size, const void *arg_value)

©2015 Khronos Group - Rev. 1118

Enqueuing SVM Operations [5.6.2]

cl_int clEnqueueSVMFree (
cl_command_queue command_queue,
cl_uint num_svm_pointers, void *sym_pointers][],
void (CL_CALLBACK*pfn_free _func{(
cl_command_queue command_queue,
cl_uint num_svm_pointers,
void *sym_pointers[], void *user_data),
void *user_data, cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueSVMMemcpy (
cl_command_queue command_queue,
cl_bool blocking_copy, void *dst_ptr,
const void *src_ptr, size_t size,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

cl_program clLinkProgram (cl_context context,
cl_uint num_devices, const cl_device_id *device_list,
const char *options, cl_uint num_input_programs,
const cl_program *input_programs,
void (CL_CALLBACK*pfn_notify)
(cl_program program, void *user_data),
void *user_data, cl_int *errcode_ret)

Unload the OpenCL Compiler [5.8.6]

cl_int clUnloadPlatformCompiler (
cl_platform_id platform)

Query Program Objects [5.8.7]

cl_int clGetPrograminfo (cl_program program,
cl_program_info param_name,
size_t param_value_size, void *param_value,
size_t *param_value_size_ret)

param_name: [Table 5.17]
CL_PROGRAM_REFERENCE_COUNT,
CL_PROGRAM_{CONTEXT, NUM_DEVICES, DEVICES},
CL_PROGRAM_{SOURCE, BINARY_SIZES, BINARIES},
CL_PROGRAM_{NUM_KERNELS, KERNEL_NAMES},
CL_PROGRAM_IL

cl_int clGetProgramBuildinfo (
cl_program program, cl_device_id device,
cl_program_build_info param_name,
size_t param_value_size, void *param_value,
size_t *param_value_size_ret)

param_name: [Table 5.18]

CL_PROGRAM_BINARY_TYPE,
CL_PROGRAM_BUILD_{STATUS, OPTIONS, LOG},
CL_PROGRAM BUILD_GLOBAL_VARIABLE_TOTAL_ SIZE

Compiler Options [5.8.4]
SPIR options require the cl_khr_spir extension.
Preprocessor: (-D processed in order for clBuildProgram or
clCompileProgram)
-D name -D name=definition
Math intrinsics:
-cl-single-precision-constant
-cl-denorms-are-zero
-cl-fp32-correctly-rounded-divide-sqrt

-l dir

cl_int clSetKernelArgSVMPointer (cl_kernel kernel,
cl_uint arg_index, const void *arg_value)

cl_int clSetKernelExeclInfo (cl_kernel kernel,
cl_kernel_exec_info param_name,
size_t param_value_size, const void *param_value)
param_name: CL_KERNEL_EXEC_INFO_SVM_PTRS,
CL_KERNEL_EXEC_INFO_SVM_FINE_GRAIN_SYSTEM

cl_kernel clCloneKernel (cl_kernel source_kernel,
cl_int *errcode_ret)

cl_int clGetKernelinfo (cl_kernel kernel,

cl_kernel_info param_name, size_t param_value_size,

void *param_value, size_t *param_value_size_ret)

param_name: [Table 5.20]
CL_KERNEL_FUNCTION_NAME,
CL_KERNEL_NUM_ARGS,
CL_KERNEL_REFERENCE_COUNT,
CL_KERNEL_{ATTRIBUTES, CONTEXT, PROGRAM}

cl_int clEnqueueSVMMemFill
cl_command_queue command_queue,
void *svm_ptr, const void *pattern,
size_t pattern_size, size_t size,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueSVMMap (
cl_command_queue command_queue,
cl_bool blocking_map, cl_map_flags map_flags,
void *svm_ptr, size_t size,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueSVMUnmap (
cl_command_queue command_queue,
void *svm_ptr, cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueSVMMigrateMem (
cl_command_queue command_queue,

cl_uint num_svm_pointers, const void **svm_pointers,

const size_t *sizes, cl_mem_migration_flags flags,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

Optimization options:
-cl-opt-disable -cl-mad-enable
-cl-no-signed-zeros -cl-finite-math-only
-cl-unsafe-math-optimizations -cl-fast-relaxed-math
-cl-uniform-work-group-size

Warning request/suppress:
-wW -Werror

Control OpenCL C language version:

-cl-std=CL1.1 // OpenCL 1.1 specification
-cl-std=CL1.2 // OpenCL 1.2 specification
-cl-std=CL2.0 // OpenCL 2.0 specification

Query kernel argument information:
-cl-kernel-arg-info

Debugging options:
-g // generate additional errors for built-in
// functions that allow you to enqueue
// commands on a device
SPIR binary options:
-X spir // indicate that binary is in SPIR format
-spir-std=x //x is SPIR spec version, e.g.: 1.2

Linker Options [5.8.5]
Library linking options:

-create-library -enable-link-options

Program linking options:
-cl-denorms-are-zero -cl-no-signed-zeroes

-cl-finite-math-only -cl-fast-relaxed-math
-cl-unsafe-math-optimizations

Flush and Finish s.15)

cl_int clFlush (c|_command_queue command_queue)

cl_int clFinish (cl_command_queue command_queue)

cl_int clGetKernelWorkGrouplnfo (cl_kernel kernel,
cl_device_id device,
cl_kernel_work_group_info param_name,
size_t param_value_size, void *param_value,
size_t *param_value_size_ret)

param_name: CL_KERNEL_GLOBAL_WORK_SIZE,
CL_KERNEL_[COMPILE_]WORK_GROUP_SIZE,
CL_KERNEL_{COMPILE, MAX}_NUM_SUB_GROUPS,
CL_KERNEL_{LOCAL, PRIVATE}_MEM_SIZE,
CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE
[Table 5.21]

cl_int clGetKernelArginfo (cl_kernel kernel,
cl_uint arg_indx, cl_kernel_arg_info param_name,
size_t param_value_size, void *param_value,
size_t *param_value_size_ret)

param_name: [Table 5.23]

CL_KERNEL_ARG_{ACCESS, ADDRESS} QUALIFIER,
CL_KERNEL_ARG_NAME,
CL_KERNEL_ARG_TYPE_{NAME, QUALIFIER}

(Continued on next page >)

www.khronos.org/opencl

IdV 12uado

OpenCL API

Page 4

Kernel Objects (continued)

- cl_int clEnqueueNDRangeKernel (cl_command_queue command_queue,
e 19 GG e, vl o,
dl lemal ifs éroﬁp info param e cl_kernel kernel, cI_uint work_dim, size_t cb_argsi cI_umt'num_mem__gEjects,
size_t input_value_size, const void *input_value const size_t *global_work_offset, constcl_mem *merm_list, constvoid™*args_mem_loc,
size_t param_value_size, void *param_value, const size_t *global_work_size, sl um_eve el *
size"t *param, value sire ref) - ’ const size_t *local_work_size, const cl_event *event_wait_list, cl_event *event)
- - — = cl_uint num_events_in_wait_list,
Pacf ET(_EE?\IIELGIS’?AEL-‘?-;IZZ]E FOR SUB GROUP COUNT const cl_event *event_wait_list, cl_event *event)
CL_KERNEL_MAX_SUB_GROUP_SIZE_FOR_ Markers, Barriers, Waiting for Events [5.12]
NDRANGE : : i
, cl_int clEnqueueMarkerWithWaitList
CL_KERNEL_SUB_GROUP_COUNT_FOR_NDRANGE cl_int ciGetEventinfo (cl_event event, . _cl_comrqnand_queue L quéue‘
cI__evsnt_mfo param_name, size_t param_value_size, cl_uint num_events_in_wait_list,
. void *param_value, size_t *param_value_size_ret) const cl_event *event_wait list, cl_event *event)
Event Objects param_name: CL_EVENT_COMMAND_{QUEUE, TYPE},) o o
Event objects can be used to refer to a kernel execution CL_EVENT_{CONTEXT, REFERENCE_COUNT}, cl_int clEnqueueBarrierWithWaitList (
command, and read, write, map, and copy commands CL_EVENT_COMMAND_EXECUTION_STATUS [Table 5.24] cl_command_queue command_queve,

on memory objects or user events.

cl_event clCreateUserEvent (cl_context context,

cl_int clWaitForEvents (cl_uint num_events,
const cl_event *event Tist)

Memory Model: Shared Virtual Memory (3.3

Execute Kernels [5.10]

cl_int clRetainEvent (cl_event event) const cl_event *event_wait_list, c|_event *event)
Event Objects [5.11] cl_int cIReleaseEvent (c|_event event)

cl_int *errcode_ret) cl_int cISetEventCallback (cl_event event, cl_int clGetEventProfilingInfo (cl_event event,
- - cl_int command_exec_callback_type, cl_profiling_info param_name,
cl_int clSetUserEventStatus (c|_event event, void (CL_CALLBACK *pfn_event_notify) size_t param_value_size, void *param_value,
cl_int execution_status) (cl_event event, size_t *param_value_size_ret)
cl_int event_command_exec_status,

void *user_data), void *user_data) CL_PROFILING_COMMAND_{COMPLETE, QUEUED},

cl_int clEnqueueNativeKernel (

cl_uint num_events_in_wait_list,

Profiling Operations [5.14]

param_name: [Table 5.25]

CL_PROFILING_COMMAND_{SUBMIT, START, END}

OpenCL extends the global memory region into the host memory region through a shared * Fine-Grained buffer SVM: Sharing occurs at the granularity of individual loads/
virtual memory (SVM) mechanism. There are three types of SVM in OpenCL stores into bytes within OpenCL buffer memory objects. Loads and stores may

¢ Coarse-Grained buffer SVM: Sharing occurs at the granularity of regions of
OpenCL buffer memory objects. Consistency is enforced at synchronization
points and with map/unmap commands to drive updates between the host and

be cached. This means consistency is guaranteed at synchronization points. If the
optional OpenCL atomics are supported, they can be used to provide fine-grained
control of memory consistency.

the device. This form of SVM is similar to the use of c|_mem buffers, with two Fine-Grained system SVM: Sharing occurs at the granularity of individual loads/
differences. First, it lets kernel-instances share pointer-based data structures stores into bytes occurring anywhere within the host memory. Loads and stores
(such as linked-lists) with the host program. Second, concurrent access by may be cached so consistency is guaranteed at synchronization points. If the
multiple kernels on the same device is valid as long as the set of concurrently optional OpenCL atomics are supported, they can be used to provide fine-grained
executing kernels is bounded by synchronization points. Concurrent access control of memory consistency.

by multiple kernels on the same device is valid as long as the set of kernels is
bounded by synchronization points. This form of SVM is similar to non-SVM use
of memory; however, it lets kernel-instances share pointer-based data structures
(such as linked-lists) with the host program. Program scope global variables are
treated as per-device coarse-grained SVM for addressing and sharing purposes.

Summary of SVM Options in OpenCL [3.3.3, Table 3-2]
SVM Granularity of sharing

Non-SVM buffers OpenCL Memory objects (buffer)
Coarse-Grained buffer SVM OpenCL Memory objects (buffer)
Fine Grained buffer SYM Bytes within OpenCL Memory objects (buffer)

Fine-Grained system SVM Bytes within Host memory (system)

©2015 Khronos Group - Rev. 1118

Coarse-Grained buffer SVM is required in the core OpenCL specification. The two finer
grained approaches are optional features in OpenCL. The various SVM mechanisms

to access host memory from the work-items associated with a kernel instance are
summarized in table 3-2 below.

Memory allocation Mechanisms to enforce consistency Explicit updates between host and device?

Host synchronization points on the same

clCreateBuffer or between devices.

Yes, through Map and Unmap commands.
Host synchronization points between

clSVMAlloc devi
evices

Yes, through Map and Unmap commands.
Synchronization points plus atomics (if

cISVMAlloc supported)

No
Host memory allocation Synchronization points plus atomics (if

mechanisms (e.g. malloc) supported) No

www.khronos.org/opencl

OpenCL 2.1 Reference Guide Page 5

OpenCL Cla nguage Reference Section and table references are to the OpenCL C Language 2.0 specification.

Supported Data Types Built-in Vector Data Types [6.1.2] imageld_array_t OPTIONAL | 1D image array
The optional double scalar and vector types are OpenCL Type API Type Description image2d_ [msaa_]depth_t oPTIONAL | 2D depth image
supported if CL_DEVICE_DOUBLE_FP_CONFIG is not zero. charn cl_charn 8-bit signed image2d_array_[msaa_]depth_t opmionaL| 2D depth image array
oy - ucharn cl_ucharn 8-bit unsigned sampler_t OPTIONAL | sampler handle
Built-in Scalar Data Types [6'1.'1]. shortn cl_shortn 16-bit signed queue_t
RoSrCRIES PGS | R ushortn cl_ushortn 16-bit unsigned ndrange_t
bool - true (1) or false (0) intn cl_intn 32-bit signed clk_event_t
char cl_char | 8-bit signed uintn cl_uintn 32-bit unsigned reserve_id_t
unsigned char, uchar | cl_uchar | 8-bit unsigned longn cl_longn 64-bit signed event_t event handle
short cl_short | 16-bit signed ulongn cl_ulongn 64-bit unsigned cl_mem_fence_flags
unsigned short, ushort | cl_ushort | 16-bit unsigned floatn cl_floatn 32-bit float Reserved Data Types [6.1.4]
. . o doublen OPTIONAL | cl_doublen | 64-bit float - -
int cl_int 32-bit signed : - OpenCL Type Description
; T : : . halfn Requires the cl_khr_fp16 extension
unsigned int, uint cl_uint | 32-bit unsigned booln boolean vector
long c_long | 64-bit signed Other Built-in Data Types [6.1.3] halfn 16-bit, vector
; P The OPTIONAL types shown below are only defined if ’
unsigned long, ulon cl_ulong | 64-bit unsigned . uad, quadn 128-bit float, vector
gnecions, uong § [>T R NS CL_DEVICE_IMAGE_SUPPORT is CL_TRUE. APl type for 2%
float cl_float | 32-bit float application shown in italics where applicable. Items in icr(r)\?g%eaxr?%I;'lf(imgl?:aﬁm|fn 16-bit complex, vector
double OPTIONAL | ¢l_double 64-bit IEEE 754 blue require the cl_khr_gl_msaa_sharing extension. o : o |
) complex float, complex floatn .
half cl_half | 16-bit float (storage only) OpenCL Type Description imagpinary float, ime?ginary floatn 32-bit complex, vector
size_t - 32- or 64-bit unsigned integer image2d_[msaa_]t OPTIONAL | 2D image handle
- fun g . g ' ge2d_[msaa_] ! g complex d(()jublg:'l, complex dotablegl 64-bit complex, vector
ptrdiff_t - 32- or 64-bit signed integer image3d_t OPTIONAL | 3D image handle imaginanyidotbieAImagindnyicou ey
i - - -bit si i image2d_array_ [msaa_]t OPTIONAL | 2D image arra complex quad, complex quadn i
intptr_t 32- or 64-bit signed integer - ge2d_array_ [msaa_] A 8 y imaginary quad, imaginary quadn 128-bit complex, vector
uintptr_t - 32- or 64-bit unsigned integer imageld_t OPTIONAL | 1D image handle

floatnxm n*m matrix of 32-bit floats

void void imageld_buffer_t opTIONAL | 1D image buffer

doublenxm n*m matrix of 64-bit floats

9?8en3ueq) 1puadp

Vector Component Addressing [6.1.7]
Vector Components

0 1

v.x, v.s0 vy, v.sl

Preprocessor Directives & Macros [s.10]

#pragma OPENCL FP_CONTRACT on-off-switch
on-off-switch: ON, OFF, DEFAULT

float2 v; _FILE__ Current source file

float3 v; V., v.s0 vy, vsl vz, v.s2

_ func__ Current function name

float4 v; VX, VS0 vy, vsl vz, vs2 vw, v.s3

_LINE__ Integer line number

float8 v; v.s0 v.sl V.52 v.s3 v.sd vs5 vsb vs7

__OPENCL_VERSION__ Integer version number, e.g: 200

v.sa, Vv.sb, wvsc, wvsd, vse, v.sf,

float16 v; v.s0 v.sl V.52 v.s3 vsd vs5 vs6 vs7 vs8 vs9 vsA | vsB | vsC | visD | vsE | visF

CL_VERSION_1_0 Substitutes integer 100 for 1.0

CL_VERSION_1_1 Substitutes integer 110 for 1.1

Vector Addressing Equivalences
Numeric indices are preceded by the letter s or S, e.g.: s1. Swizzling, duplication, and nesting are allowed, e.g.: v.yx,
V.XX, V.l0.X

CL_VERSION_1_2 Substitutes integer 120 for 1.2

CL_VERSION_2_0 Substitutes integer 200 for 2.0

v.lo v.hi v.odd v.even v.lo v.hi v.odd v.even

__OPENCL_C_VERSION__ Sub. integer for OpenCL C version

float2 V.X, V.50 vy, v.s1 vy, v.s1 V.X, V.50 float8 v.s0123 Vv.s4567 v.s1357 v.s0246) o -
float3* | vsOLvxy vs23,vaw vsl3vyw vs02,vxz floatle vs01234567 v.s89abedef v.s13579bdf v.s02468ace —ENDIAN_UTTLE_ Aijeaieats [HEEm
float4 v.s01, vxy v.s23,vazw v.s13, vyw v.s02, v.xz *When using .lo or .hi with a 3-component vector, the .w component is undefined. __IMAGE_SUPPORT__ 1if images are supported

1if —cl-fast-relaxed-math
optimization option is specified

__FAST_RELAXED_MATH__

Attribute Qualifiers s.11]
Use to specify special attributes of enum, struct, and
union types.

__attribute__((aligned(n))) __attribute__((endian(host)))

Operators and Qualifiers

Operators [6.3]
These operators behave similarly as in C99 except

operands may include vector types when possible:

FP_FAST_FMA Defined if double fma is fast

FP_FAST_FMAF Defined if float fma is fast

+ - * % / - _ attribute_ ((aligned)) __attribute_((endian(device))) FP_FAST_FMA_HALF Defined if half fma s fast
++ == I= & - A __attribute__((packed)) ~ __attribute__((endian)) U S
= = i i i i __kernel __attribute__((work_group_size_hint(X, 1, 1))
> < >= <= | | #ZI% ';o specify special attributes of variables or structure attrbaiz. {tvet te. htiooont]
& I £ >> << = __attribute__((aligned(alignment)))
op= sizeof __attribute__((nosvm))
,

Use to specify basic blocks and control-flow-statements.

Address Space Qualifiers [6.
P Quali B __ attribute__(((attr1)) {...}

__global, global __local, local
__constant, constant __private, private

Use to specify that a loop (for, while, and do loops) can be
unrolled. (Must appear immediately before the loop to be
affected.)

__attribute__((opencl_unroll_hint(n)))
__attribute__((opencl_unroll_hint))

Function Qualifiers [6.7]
__kernel, kernel
__attribute__((vec_type_hint(type)))

//type defaults to int
__attribute__((work_group_size_hint(X, Y, 2)))
__attribute__((reqd_work_group_size(X, Y, 2)))

©2015 Khronos Group - Rev. 1118 www.khronos.org/opencl

OpenCL C Language

Blocks [6.12]

A result value type with a list of parameter types, similar
to a function type. In this example:

. The A declares variable “myBlock” is a Block.

. The return type for the Block “myBlock”is int.
. myBlock takes a single argument of type int.

. The argument is named “num.”

. Multiplier captured from block’s environment.

O ®
("myBlock) (int) =
~(int num)

i

int
{return num * multiplier;

Math Built-in Functions [6.13.2] [9.4.2]

Ts is type float, optionally double, or half if the
cl_khr_fp16 extension is enabled. Tn is the vector form
of Ts, where nis 2, 3, 4, 8, or 16. Tis Ts and Tn. All angles
are in radians.

HN indicates that half and native variants are available
using only the float or floatn types by prepending “half_”
or “native_" to the function name. Prototypes shown in
brown text are available in half_ and native_ forms only
using the float or floatn types.

Tacos (T)
Tacosh (7)

Arc cosine

Inverse hyperbolic cosine
T acospi (T x) acos (x) /m
Tasin (T)

Tasinh (7)

Arc sine

Inverse hyperbolic sine
T asinpi (T x) asin (x) /m
Tatan (Ty_over x) Arc tangent
Tatan2 (Ty, Tx) Arc tangent of y / x
Tatanh (7) Hyperbolic arc tangent
T atanpi (T x) atan (x) /nt
Tatan2pi (Tx, Ty)
Tcbrt (7)

Tceil (T)

atan2 (y,x) / m

Cube root

Round to integer toward + infinity
T copysign (Tx, Ty) x with sign changed to sign of y
Tcos (T)

Tcosh (T)

Cosine
Hyperbolic cosine
T cospi (T x) cos (mx)

Thalf_divide (Tx, Ty)
T native_divide (T x, Ty)

Terfc (T)
Terf(T)
Texp (Tx)
Texp2 (T)
Texpl0(7)

x/y
(T may only be float or floatn)

Complementary error function
Calculates error function of T
Exponential base e
Exponential base 2
Exponential base 10

Texpml (Tx) e*-1.0
Tfabs (T)

Tfdim (Tx, Ty)
Tfloor (7)
Tfma(Ta, Th, Tc)

Absolute value

Positive difference between x and y
Round to integer toward infinity
Multiply and add, then round

Tfmax (Tx, Ty)
Tn fmax (Tn x, Ts y)

Return yif x <y,
otherwise it returns x

©2015 Khronos Group - Rev. 1118

Work-Item Built-in Functions [s.13.1]

Query the number of dimensions, global, and local work size
specified to clEnqueueNDRangeKernel, and global and local
identifier of each work-item when this kernel is executed on a
device. Sub-groups require the cl_khr_subgroups extension.

uint get_work_dim ()

size_t get_global_size (
uint dimindx)

size_t get_global_id (
uint dimindx)

size_t get_local_size (
uint dimindx)

size_t get_enqueued_local_size (

uint dimindx)

size_t get_local_id (uint dimindx)

size_t get_num_groups (
uint dimindx)

Tfmin (Tx, Ty)
Tn fmin (T x, Ts y)

Tfmod (Tx, Ty)
Tfract (Tx, T *iptr)

Ts frexp (T x, int *exp)
Tn frexp (T x, intn *exp)

Thypot (Tx, Ty)
int[n] ilogb (T x)

Ts Idexp (T x, int n)
Tn Idexp (T x, intn n)

Tlgamma (T x)
Ts lgamma_r (Ts x, int *signp)
Tnlgamma_r (Th x, intn *signp)

Tlog (T) HN
Tlog2 (7) HN
Tlog10 (7)

Tloglp (T x)

Tlogb (T x)

Tmad(Ta, Th,Tc)
Tmaxmag (Tx, Ty)
Tminmag (Tx, Ty)

Tmodf (T x, T *iptr)
float[n] nan (uint[n] nancode)

half[n] nan (ushort[n]
nancode)

double[n] nan (ulong[n]
nancode)

T nextafter (Tx, Ty)

Tpow (Tx, Ty)

Ts pown (T x, int y)
Tn pown (T x, intn y)

Tpowr (Tx, Ty)

T half_recip (T x)
T native_recip (T x)

Tremainder (Tx, Ty)

Ts remquo (75 x, Ts y, int *quo)
Tnremquo (Thx, Ty, intn
*quo)

Trint (T)

Ts rootn (T x, inty)
Tn rootn (T x, intn y)

Number of dimensions in use

Number of global work-items

Global work-item ID value

Number of local work-items if kernel
executed with uniform work-group size

Number of local work-
items

Local work-item ID

Number of work-groups

Returnyify <x,
otherwise it returns x

Modulus. Returns x —y * trunc (x/y)

Fractional value in x
Extract mantissa and exponent

Square root of x? + 2

Return exponent as an integer value

x *2"

Log gamma function

Natural logarithm

Base 2 logarithm

Base 10 logarithm

In (1.0 +x)

Exponent of x

Approximates a * b + ¢

Maximum magnitude of x and y
Minimum magnitude of x and y
Decompose floating-point number

Quiet NaN (Return is scalar when
nancode is scalar)

Quiet NaN
(Return is scalar when nancode
is scalar)

Next representable floating-point
value after x in the direction of y

Compute x to the power of y
Compute x”, where y is an integer

Compute x”, where xis >=0

1/x
(T may only be float or floatn)

Floating point remainder

Remainder and quotient

Round to nearest even integer

Compute x to the power of 1/y

OpenCL 2.1 Reference Guide

size_t get_group_id (

uint dimindx) Work-group ID

size_t get_global_offset (

uint dimindx) Gobalofset

Work-items 1-dimensional

size_t get_global_linear_id () global ID

Work-items 1-dimensional

size_t get_local_linear_id () local ID

Number of work-items in

uint get_sub_group_size () dhesibgn

Maximum size of a

uint get_max_sub_group_size () SN

uint get_num_sub_groups () Number of subgroups
uint get_enqueued_num_sub_groups ()
uint get_sub_group_id () Sub-group ID

uint get_sub_group_local_id () Unique work-item ID

Tround (T x) Integral value nearest to x rounding

Trsqrt (7) HN | Inverse square root
Tsin (T) HN | Sine
Tsincos (T x, T *cosval) Sine and cosine of x
Tsinh (T) Hyperbolic sine
T sinpi (T x)
Tsqrt (7)

Ttan (T)

Ttanh (7)

sin (m x)

Square root
Tangent
Hyperbolic tangent
T tanpi (T x) tan (mx)
Ttgamma (7) Gamma function

Ttrunc (7) Round to integer toward zero

Math Constants 5.13.21[9.4.2]

The values of the following symbolic constants are
single-precision float.

Value of maximum non-infinite single-precision

RAXELOAY floating-point number

HUGE_VALF Positive float expression, evaluates to +infinity

Positive double expression, evals. to +infinity

HUGERVAL OPTIONAL

Constant float expression, positive or unsigned

INFINITY infinity

NAN Constant float expression, quiet NaN

When double precision is supported, macros ending

in _F are available in type double by removing _F from
the macro name, and in type half when the cl_khr_fp16
extension is enabled by replacing _F with _H.

M_E_F
M_LOG2E_F
M_LOG10E_F
M_LN2_F
M_LN10_F
M_PI_F
M_PI_2_F
M_PI_4_F
M_1_PIF
M_2_PLF
M_2_SQRTPI_F
M_SQRT2_F
M_SQRT1_2_F

Value of e
Value of log,e
Value of log, ;e
Value of log 2
Value of log 10
Value of it
Value of t/2
Value of i/ 4
Valueof 1/1
Value of 2 /1
Value of 2/ Vit
Value of v2
Value of 1/v2

www.khronos.org/opencl

OpenCL 2.1 Reference Guide

Integer Built-in Functions [6.13.3]

Tis type char, charn, uchar, ucharn, short, shortn,
ushort, ushortn, int, intn, uint, uintn, long, longn, ulong,
or ulongn, where nis 2, 3, 4, 8, or 16. Tu is the unsigned

Tsub_sat(Tx, Ty) x -y and saturates the result

T popcount (T x) Number of non-zero bits in x

For upsample, return type is scalar when the parameters are scalar.

Common Built-in Functions [6.13.4] [9.4.3]

These functions operate component-wise and use round
to nearest even rounding mode. Ts is type float, optionally
double, or half if cl_khr_fp16 is enabled. Tn is the vector

version of T. Tsc is the scalar version of T. e form of Ts, where nis 2, 3,4, 8, or 16. Tis Ts and Tn.

char[n] hi, uchar[n] fo) result[i]= ((short)hi[i]<< 8)|lo[i]

Tu abs (T x) | x|
Tu abs_diff (T x, Ty)
Tadd_sat (Tx, Ty)
Thadd (Tx, Ty)
Trhadd (Tx, Ty)

Tclamp (T x, T min, T max)
T clamp (T x, Tsc min, Tsc max)

Tclz(Tx)
Tetz (Tx)
Tmad_hi(Ta,Th,Tc)
Tmad_sat(Ta,Th, Tc)

Tmax(Tx, Ty)
Tmax (Tx, Tscy)

Tmin (Tx, Ty)

T clamp (T x, T min, T max)
Tn clamp (Tn x, Ts min, Ts max)

Clamp x to range given by
ushort[n] upsample (min, max

uchar[n] hi, uchar[n] o)

| x=y | without modulo overflow result[i]=((ushort)hi[i]<< 8) | lo[i]

x +y and saturates the result - T degrees (T radians) radians to degrees
int[n] upsample (

short[n] hi, ushort[n] lo)

(x +y) >> 1 without mod. overflow result[i]=((int)hi[i]<< 16) | lo[i]

Tmax (Tx, Ty)

Tnmax (Tn x, Ts y) Max of x and y

X+y+1)>>1
bty +1) uint[n] upsample (

ushort[n] hi, ushort[n] lo)

result[i]=((uint)hi[i]<< 16) | lo[i]
min(max(x, minval), maxval) Tmin (Tx, Ty) A
long[n] upsample (Tnmin (Tn x, Ts y) y

int{n] hi, uint[n] lo) result[i]=((long)hili]<< 32) | lo[i]

number of leading 0-bits in x
Tmix (Tx, Ty, Ta)

T mix (T x, T y, T a) Linear blend of x and y

number of trailing 0-bits in x ulongn] upsample (

uint[n] i, uint{n] lo) result[i]=((ulong)hili]<< 32) | lo[i]

mul_hi(a, b) + ¢
T radians (T degrees) degrees to radians

a* b+ cand saturates the result

The following fast integer functions optimize the
performance of kernels. In these functions, T is type int,
uint, intn or intn,where nis 2, 3, 4, 8, or 16.

Tstep (T edge, Tx)

Tn step (Ts edge, Tn x) 0.0if x < edge, else 1.0

y if x <y, otherwise it returns x

Tmin(Tx, Tscy) yif y < x, otherwise it returns x

Tmul_hi(Tx, Ty)
Trotate (Tv, Ti)

high half of the product of x and y

result[indx] = v[indx] << i[indx]

Relational Built-in Functions [s.13.6]

These functions can be used with built-in scalar or vector types
as arguments and return a scalar or vector integer result. T

is type float, floatn, char, charn, uchar, ucharn, short, shortn,
ushort, ushortn, int, intn, uint, uintn, long, longn, ulong, ulongn,
or optionally double or doublen. Ti is type char, charn, short,
shortn, int, intn, long, or longn. Tu is type uchar, ucharn, ushort,
ushortn, uint, uintn, ulong, or ulongn. nis 2, 3, 4, 8, or 16. half
and halfn types require the cl_khr_fp16 extension [9.4.5].

int isequal (float x, float y)

intn isequal (floatn x, floatn y)

int isequal (double x, double y)
longn isequal (doublen x, doublen y)
int isequal (half x, half y)

shortn isequal (halfn x, halfn y)

Compare of
X==y

int isnotequal (float x, float y)

intn isnotequal (floatn x, floatn y)

int isnotequal (double x, double y)
longn isnotequal (doublen x, doublen y)
int isnotequal (half x, half y)

shortn isnotequal (halfn x, halfn y)

Compare of x I=y

int isgreater (float x, float)

intn isgreater (floatn x, floatn y)

int isgreater (double x, double y)
longn isgreater (doublen x, doublen y)
int isgreater (half x, half y)

shortn isgreater (halfn x, halfn y)

Compare of
x>y

int isgreaterequal (float x, float y)
intn isgreaterequal (floatn x, floatn y)
int isgreaterequal (double x, double y)

Compare of
X>=y

longn isgreaterequal (doublen x, doublen y)
int isgreaterequal (half x, half y)
shortn isgreaterequal (halfn x, halfn y)

Compare of
X>=y

int isless (float x, float y)
intn isless (floatn x, floatn y)
int isless (double x, double y)

Compare of x<y

Geometric Built-in Functions (s.13.51[9.4.4]
Ts is scalar type float, optionally double, or half if the half

extension is enabled. Tis Ts and the 2-, 3-, or 4-component

vector forms of Ts.

float{3,4} cross (float{3,4} p0, float{3,4} p1)
double{3,4} cross (double{3,4} p0, double(3,4} p1)
half{3,4} cross (half{3,4} p0, half{3,4} p1)

Cross product

©2015 Khronos Group - Rev. 1118

Multiply 24-bit integer values x, y, add

Tmad24(Tx, Ty, T2) 32-bit int. result to 32-bit integer z

Tmul24 (Tx, Ty) Multiply 24-bit integer values x and y

longn isless (doublen x, doublen y)
int isless (half x, half y)
shortn isless (halfn x, halfn y)

Compare of x<y

int islessequal (float x, float)

intn islessequal (floatn x, floatn y)

int islessequal (double x, double y)
longn islessequal (doublen x, doublen y)
int islessequal (half x, half y)

shortn islessequal (halfn x, halfn y)

Compare of x <=y

int islessgreater (float x, float y)

intn islessgreater (floatn x, floatn y)

int islessgreater (double x, double y) Compare of
longn islessgreater (doublen x, doublen y) (x<y) || (x>y)
int islessgreater (half x, half y)
shortn islessgreater (halfn x, halfn y)
int isfinite (float)

intn isfinite (floatn)

int isfinite (double)

longn isfinite (doublen)

int isfinite (half)

shortn isfinite (halfn)

int isinf (float)

intn isinf (floatn)

int isinf (double)

longn isinf (doublen)

int isinf (half)

shortn isinf (halfn)

Test for finite
value

Test for + or
—infinity

int isnan (float)

R Test for a NaN
intn isnan (floatn)

int isnan (double)
longn isnan (doublen)
int isnan (half)
shortn isnan (halfn)

Test for a NaN

int isnormal (float)
intn isnormal (floatn)
int isnormal (double)

Test for a normal
value

Ts distance (T p0, T p1) Vector distance

Tsdot (T p0, T p1) Dot product

Ts length (T p) Vector length
Normal vector

T normalize (T p) length 1

T smoothstep (T edge0, T edgel, T x)
T smoothstep (75 edgel, Ts edgel, T x)

Step and interpolate

Tsign (T x)

Sign of x

longn isnormal (doublen)
int isnormal (half)
shortn isnormal (halfn)

int isordered (float x, float)

intn isordered (floatn x, floatn y)

int isordered (double x, double y)
longn isordered (doublen x, doublen y)
int isordered (half x, half y)

shortn isordered (halfn x, halfn y)

int isunordered (float x, float y)
intn isunordered (floatn x, floatn y)
int isunordered (double x, double y)

longn isunordered (doublen x, doublen y)

int isunordered (half x, half y)
shortn isunordered (halfn x, halfn y)

int signbit (float)
intn signbit (floatn)

int signbit (double)
longn signbit (doublen)
int signbit (half)
shortn signbit (halfn)

intany (77 x)

int all (Ti x)

T bitselect (Ta, Th, Tc)
half bitselect (half a, half b, half c)
halfn bitselect (halfn a, halfn b, halfn c)

Tselect (Ta, Th, Tic)

Tselect (Ta, Th, Tuc)

halfn select (halfn a, halfn b, shortn c)
half select (half g, half b, short c)

halfn select (halfn a, halfn b, ushortn c)
half select (half a, half b, ushort c)

float fast_distance (float p0, float p1)

float fast_distance (floatn p0, floatn p1)

float fast_length (float p)
float fast_length (floatn p)

float fast_normalize (float p)
floatn fast_normalize (floatn p)

Test for a normal
value

Test if arguments are
ordered

Test if arguments are
unordered

Test for sign bit

1if MSB in component

of xis set; else 0

1if MSBin all
components of x are
set; else 0

Each bit of result is
corresponding bit of
aif corresponding bit
of cisO

For each component
of a vector type,
result(i] = if MSB of
c[i] is set ? b[i] : ai]
For scalar type, result
=c?h:a

Vector distance

Vector length

Normal vector

9?8en3ueq) 1puadp

OpenCL C Language

Vector Data Load/Store (5.13.7] [9.4.6]

Tis type char, uchar, short, ushort, int, uint, long, ulong,

or float, optionally double, or half if the cl_khr_fp16
extension is enabled. Th refers to the vector form of type T,
where nis 2, 3, 4, 8, or 16. R defaults to current rounding
mode, or is one of the rounding modes listed in 6.2.3.2.

void vstore_half (float data,
size_t offset, half *p)

void vstore_half_R (float data,
size_t offset, half *p)

void vstore_half (double data,
size_t offset, half *p)

void vstore_half_R (double data,

Read vector data from size_t offset, half *p)

address (p + (offset * n))

Tn vloadn (size_t offset,
const [constant] T *p)

void vstore_halfn (floatn data,
size_t offset, half *p)

void vstore_halfn_R (floatn data,
size_t offset, half *p)

void vstore_halfn (doublen data,
size_t offset, half *p)

Write vector data to address
(p + (offset * n)

Read a half from address

(p + offset)

Read a halfn from address
(p + (offset * n))

void vstoren (Tn data,
size_t offset, T *p)

float vload_half (size_t offset,
const [constant] half *p)

floatn vload_halfn (size_t offset,
const [constant] half *p)

Synchronization & Memory Fence Functions [s.13.5)

flags argument is the memory address space, set to a 0 or an OR’d combination of
CLK_X_MEM_FENCE where X may be LOCAL, GLOBAL, or IMAGE. Memory fence
functions provide ordering between memory operations of a work-item. Sub-groups
require the cl_khr_subgroups extension.

void work_group_barrier (cI_mem_fence_flags flags|,
memory_scope scope])

Work-items in a work-group must

execute this before any can continue

void atomic_work_item_fence (c|_mem_fence_flags flags
[, memory_scope scope])

Orders loads and stores of a work-

item executing a kernel

void sub_group_barrier (cl_mem_fence_flags flags|,
memory_scope scope])

Work-items in a sub-group must
execute this before any can continue

Atomic Functions [6.13.11]
OpenCL C implements a subset of the C11 atomics (see section 7.17 of the C11
specification) and synchronization operations.

In the following tables, A refers to an atomic_* type (not including atomic_flag).

C refers to its corresponding non-atomic type. M refers to the type of the other
argument for arithmetic operations. For atomic integer types, M is C. For atomic
pointer types, M is ptrdiff_t.

The type atomic_* is a 32-bit integer. atomic_long and atomic_ulong require extension
cl_khr_int64_base_atomics or cl_khr_int64_extended_atomics. The atomic_double type
requires double precision support. The default scope is work_group for local atomics
and all_svm_devices for global atomics. The extensions cl_khr_int64_base_atomics and
cl_khr_int64_extended_atomics implement atomic operations on 64-bit signed and
unsigned integers to locations in __global and __local memory.

See the table under Atomic Types and Enum Constants for information about
parameter types memory_order, memory_scope, and memory_flag.

Initializes the atomic object pointed to by obj to

void atomic_init(volatile A *obj, C value) the value value

void atomic_work_item_fence(
cl_mem_fence_flags flags, memory_order
order, memory_scope scope)

Effects based on value of order. flags must be
CLK_{GLOBAL, LOCAL, IMAGE} MEM_FENCE or a
combination of these.

void atomic_store(volatile A *object, C desired)

void atomic_store_explicit(volatile A *object,
C desired, memory_order orderf,
memory_scope scope))

Atomically replace the value pointed to by object
with the value of desired. Memory is affected
according to the value of order.

C atomic_load(volatile A *object)

C atomic_load_explicit(volatile A *object,
memory_order order{ , memory_scope scope])

Atomically returns the value pointed to by
object. Memory is affected according to the
value of order.

C atomic_exchange(volatile A *object, C desired)

C atomic_exchange_explicit(volatile A *object,
C desired, memory_order order|,
memory_scope scope])

Atomically replace the value pointed to by object
with desired. Memory is affected according to
the value of order.

bool atomic_compare_exchange_strong(
volatile A *object, C *expected, C desired)

bool atomic_compare_exchange_strong_explicit(
volatile A *object, C *expected, C desired,
memory_order success,
memory_order failure[, memory_scope scope])

Atomically compares the value pointed to by
object for equality with that in expected, and

if true, replaces the value pointed to by object
with desired, and if false, updates the value

in expected with the value pointed to by object.

IThese operations are atomic read-modify-
write operations.

bool atomic_compare_exchange_weak(
volatile A *object,
C *expected, C desired)

bool atomic_compare_exchange_weak_explicit(
volatile A *object, C *expected, C desired,
memory_order success,
memory_order failure[, memory_scope scope])

Catomic_fetch_ckey>(volatile A *object, M operand) | Atomically replaces the value pointed to by

C atomic_fetch_<key>_explicit(volatile A *object, | object with the result of the computation
M operand, memory_order orderf, applied to the value pointed to by object and
memory_scope scope]) the given operand.

©2015 Khronos Group - Rev. 1118

OpenCL 2.1 Reference Guide

Write a half vector to address
(p + (offset * n))

void vstore_halfn_R (doublen
data, size_t offset, half *p)

Write a half to address
(p + offset) Read half vector data from (p
+ (offset * n)). For half3, read

from (p + (offset * 4)).

floatn vloada_halfn (size_t offset,
const [constant] half *p)

Write a half to address

(0 + offset) void vstorea_halfn (floatn data,

size_t offset, half *p)
void vstorea_halfn_R (floatn data, i
Write half vector data to (p +

ize_t t, half *
'5|ze_ offset half *p) (offset * n)). For half3, write
void vstorea_halfn (doublen data, | 1y (p + (offset * 4).

size_t offset, half *p)
void vstorea_halfn_R (doublen
data, size_t offset, half *p)

Write a half vector to address
(p + (offset * n))

Async Copies and Prefetch (6.13.101 [9.4.7]
T is type char, charn, uchar, ucharn, short, shortn, ushort, ushortn, int, intn, uint,

uintn, long, longn, ulong, ulongn, float, floatn, optionally double or doublen, or half
or halfn if the cl_khr_fp16 extension is enabled.

event_t async_work_group_copy (__local T *dst,
const __global T *src, size_t num_gentypes, event_t event)
event_t async_work_group_copy (__global T *dst,

: Copies
const __local T *src, size_t num_gentypes, event_t event) P

num_gentypes
T elements from
srcto dst

event_t async_work_group_strided_copy (__local T *dst, const __global T *src,
size_t num_gentypes, size_t src_stride, event_t event)

event_t async_work_group_strided_copy (__global T *dst, const __local T *src,
size_t num_gentypes, size_t dst_stride, event_t event)

void wait_group_events (
int num_events, event_t *event_list)

Wait for completion of
async_work_group_copy

void prefetch (const __ global T *p,

Prefetch num_gentypes * sizeof(T) bytes
size_t num_gentypes)

into global cache

bool atomic_flag_test_and_set(
volatile atomic_flag *object)
bool atomic_flag_test_and_set_explicit(
volatile atomic_flag *object,
memory_order order[, memory_scope scope])

Atomically sets the value pointed to by object
to true. Memory is affected according to the
value of order. Returns atomically, the value of
the object immediately before the effects.

Atomically sets the value pointed to by object
to false. The order argument shall not be
memory_order_acquire nor
memory_order_acq_rel. Memory is affected
according to the value of order.

void atomic_flag_clear(volatile atomic_flag *object)

void atomic_flag_clear_explicit(
volatile atomic_flag *object,
memory_order order[, memory_scope scope])

Values for key for atomic_fetch and modify functions

key op
add +
sub -

computation
addition
subtraction

key op
and &
i min

computation
bitwise and

compute min
bitwise inclusive or max

or | compute max

xor A hitwise exclusive or
Atomic Types and Enum Constants

memory_scope_sub_group requires the cl_khr_subgroups extension.
Parameter Type | Values
memory_order_relaxed memory_order_acquire

memory_order_seq_cst

memory_order_release
memory_order
memory_order_ acq_rel

memory_scope_work_item
memory_scope_sub_group

memory_scope_work_group
memory_scope memory_scope_all_svm_devices
memory_scope_device (default for functions that do not take a memory_scope
argument)

Atomic integer and floating-point types

t indicates types supported by a limited subset of atomic operations

t indicates size depends on whether implemented on 64-bit or 32-bit architecture.
§ indicates types supported only if both 64-bit extensions are supported.
atomic_int
atomic_uint
atomic_flag

atomic_long §
atomic_ulong §

atomic_float t | atomic_intptr_t 1§ |atomic_size_t 1§
atomic_double 1§ | atomic_uintptr_t $§ | atomic_ptrdiff_t +§

Atomic Macros

Expands to a token sequence to initialize an atomic object of

#define ATOMIC_VAR_INIT(C value) a type that is initialization-compatible with value.

#define ATOMIC_FLAG_INIT Initialize an atomic_flag to the clear state.

www.khronos.org/opencl

OpenCL 2.1 Reference Guide

Address Space Qualifier Functions [s.13.9]

T refers to any of the built-in data types supported by
OpenCL C or a user-defined type.

*
[COFCS;LE:]O.?Z’,J’L) to_global (global address space
*

[cochg!\IS%caTl ;r pnt)o_local (local address space

. " "
[COFCS;LEJJ'\{%;;) to_private (private address space
Memory fence value:
CLK_GLOBAL_MEM_FENCE,
CLK_LOCAL_MEM_FENCE

[const] cl_mem_fence_flags
get_fence([const] T *ptr)

printf Function [6.13.13]
Writes output to an implementation-defined stream.

int printf (constant char * restrict format, ...)

printf output synchronization

When the event associated with a particular kernel
invocation completes, the output of applicable printf calls
is flushed to the implementation-defined output stream.

printf format string
The format string follows C99 conventions and supports
an optional vector specifier:

%!|flags)[width][.precision][vector][length] conversion

Examples:
The following examples show the use of the vector
specifier in the printf format string.

float4 f = (float4)(1.0f, 2.0f, 3.0f, 4.0f);
printf(“f4 = %2.2v4f\n", f);

Output: f4 =1.00,2.00,3.00,4.00

uchar4 uc = (uchar4)(0xFA, OxFB, OxFC, OxFD);
printf(“uc = %#vax\n”, uc);
Output: uc = 0xfa,0xfb,0xfc,0xfd

uint2 ui = (uint2)(0x12345678, 0x87654321);
printf(“unsigned short value = (%#v2hx)\n”, ui);

Output: unsigned short value = (0x5678,0x4321)

Miscellaneous Vector Functions (s.13.12]
Tm and Tn are type charn, ucharn, shortn, ushortn, intn,
uintn, longn, ulongn, floatn, optionally doublen, or halfn
if the cl_khr_fp16 extension is supported, where n is
2,4,8, or 16 except in vec_step it may also be 3. TUn is
ucharn, ushortn, uintn, or ulongn.

Takes built-in scalar or vector data type
argument. Returns 1 for scalar, 4 for
3-component vector, else number of
elements in the specified type.

int vec_step (7n a)
int vec_step (typename)

Construct permutation of elements
from one or two input vectors, return
a vector with same element type as
input and length that is the same as
the shuffle mask.

Tn shuffle (Tm x,
TUn mask)

Tn shuffle2 (Tm x, Tmy,
TUn mask)

Workgroup Functions [6.13.15] [9.17.3.4]

Tis type int, uint, long, ulong, or float, optionally double,
or half if the cl_khr_fp16 extension is supported. Sub-
groups require the cl_khr_subgroups extension. Double
and vector types require double precision support.

Returns a non-zero value if predicate evaluates to non-zero for
all or any workitems in the work-group or sub-group.

int work_group_all (int predicate)

int work_group_any (int predicate)

int sub_group_all (int predicate)

int sub_group_any (int predicate)

Return result of reduction operation specified by <op> for all
values of x specified by workitems in work-group or sub_group.
<op>may be min, max, or add.

T work_group_reduce_<op> (T x)

T sub_group_reduce_<op> (T x)

Pipe Built-in Functions [s.13.16.24]

T represents the built-in OpenCL C scalar or vector integer
or floating-point data types or any user defined type built
from these scalar and vector data types. Half scalar and
vector types require the cl_khr_fp16 extension. Sub-
groups require the cl_khr_subgroups extension. Double or
vector double types require double precision support.
The macro CLK_NULL_RESERVE_ID refers to an invalid
reservation ID.

Broadcast the value of a to all work-items in the work-group or
sub_group. local_id must be the same value for all workitems in
the work-group. n may be 2 or 3.

T work_group_broadcast (T g, size_t local_id)

T work_group_broadcast (T g, size_t local_id_x,
size_t local_id_y)

Twork_group_broadcast (T g, size_t local_id_x,
size_t local_id_y, size_t local_id_z)

T sub_group_broadcast (T x, size_t local_id)

Do an exclusive or inclusive scan operation specified by <op>
of all values specified by work-items in the work-group or sub-
group. The scan results are returned for each work-item. <op>
may be min, max, or add.

T work_group_scan_exclusive_<op> (T x)
T work_group_scan_inclusive_<op> (T x)
T sub_group_scan_exclusive_<op> (T x)

T sub_group_scan_inclusive_<op> (T x)

Return true if reserve_
id is a valid reservation
ID and false otherwise.

bool is_valid_reserve_id (
reserve_id_t reserve_id)

reserve_id_t reserve_read_pipe (
__read_only pipe Tp,
uint num_packets) Reserve num_packets
entries for reading from
reserve_id_t reserve_write_pipe (or writing to p.
__write_only pipe Tp,
uint num_packets)

int read_pipe (
__read_only pipe Tp, T *ptr)

Read packet from p
into ptr.

Read packet from
reserved area of the
pipe reserve_id and
index into ptr.

int read_pipe (__read_only pipe Tp,
reserve_id_t reserve_id,
uint index, T *ptr)

int write_pipe (
__write_only pipe T p, const T *ptr)

Write packet specified
by ptrto p.

int write_pipe (
__write_only pipe Tp,
reserve_id_t reserve_id,
uint index, const T *ptr)

Write packet specified
by ptr to reserved area
reserve_id and index.

void commit_read_pipe (
__read_only pipe Tp,
reserve_id_t reserve_id)

Indicates that all reads
and writes to num_
packets associated with
reservation reserve_id
are completed.

void commit_write_pipe (
__write_only pipe Tp,
reserve_id_t reserve_id)

Returns maximum
number of packets
specified when p was
created.

uint get_pipe_max_packets (
pipe T p)

uint get_pipe_num_packets (Returns the number of

pipe T p)

available entries in p.

void work_group_commit_read_pipe (pipe T p, reserve_id_t reserve_id)
void work_group_commit_write_pipe (pipe T p, reserve_id_t reserve_id)
void sub_group_commit_read_pipe (pipe T p, reserve_id_t reserve_id)
void sub_group_commit_write_pipe (pipe T p, reserve_id_t reserve_id)

Indicates that all reads and writes
to num_packets associated with
reservation reserve_id are completed.

reserve_id_t work_group_reserve_read_pipe (pipe T p, uint num_packets)
reserve_id_t work_group_reserve_write_pipe (pipe T p, uint num_packets)
reserve_id_t sub_group_reserve_read_pipe (pipe T p, uint num_packets)
reserve_id_t sub_group_reserve_write_pipe (pipe T p, uint num_packets)

Reserve num_packets entries for
reading from or writing to p. Returns a
valid reservation ID if the reservation
is successful.

Enqueuing and Kernel Query Built-in Functions [6.13.17[9.17.3.6]

A kernel may enqueue code represented by Block syntax, and control execution

order with event dependencies including user events and markers. There are several
advantages to using the Block syntax: it is more compact; it does not require a cl_kernel
object; and enqueuing can be done as a single semantic step. Sub-groups require the
cl_khr_subgroups extension. The macro CLK_NULL_EVENT refers to an invalid device
event. The macro CLK_NULL_QUEUE refers to an invalid device queue.

void (Ablock)(void))

uint get_kernel_work_group_size (void (*block)(void))
uint get_kernel_work_group_size (void (*block)(local void ¥, ...))

Query the maximum work-
group size that can be
used to execute a block.

uint get_kernel_preferred_work_group_size_multiple (

Returns the preferred
multiple of work-group

int enqueue_kernel (queue_t queue, kernel_enqueue_flags_t flags,
const ndrange_t ndrange, void (*block)(void))

int enqueue_kernel (queue_t queue, kernel_enqueue_flags_t flags,
const ndrange_t ndrange, uint num_events_in_wait_list,
const clk_event_t *event_wait_list, clk_event_t *event_ret,
void (Ablock)(void))

int enqueue_kernel (queue_t queue, kernel_enqueue_flags_t flags,
const ndrange_t ndrange,
void (*block)(local void *, ...), uint size0, ...)

int enqueue_kernel (queue_t queue, kernel_ enqueue_flags_t flags,

const ndrange_t ndrange,

Allows a work-item to
enqueue a block for
execution to queue.
Work-items can enqueue
multiple blocks to a device
queue(s).

flags may be one of
CLK_ENQUEUE_FLAGS_
{NO_WAIT, WAIT_KERNEL,
WAIT_WORK_GROUP}

uint get_kernel_preferred_work_group_size_multiple (
void (Ablock)(local void *, ...))

int enqueue_marker (queue_t queue, uint num_events_in_wait_list,

const clk_event_t *event_wait_list, clk_event_t *event _ret)

uint get_kernel_sub_group_count_for_ndrange
(const ndrange_t ndrange, void (*block)(void))

uint get_kernel_sub_group_count_for_ndrange
(const ndrange_t ndrange, void (*block)(local void *, ...))

uint get_kernel_max_sub_group_size_for_ndrange
(const ndrange_t ndrange, void (*block)(void))

uint get_kernel_max_sub_group_size_for_ndrange

size for launch.

Enqueue a marker
command to queue.

Returns number of
subgroups in each
workgroup of the dispatch.

Returns the maximum
sub-group size for a block.

?8en8ueq 5§ 1puadp

uint num_events_in_wait_list, const clk_event_t *event_wait_list,

! s _wal (const ndrange_t ndrange, void (*block)
clk_event_t *event_ret, void (Ablock)(local void ¥, ...), uint sizeO0, ...)

(local void *, ...))

©2015 Khronos Group - Rev. 1118

OpenCL C Language

Event Built-in Functions 6.13.17.8]

Helper Built-in Functions [6.13.17.9]

Tis type int, uint, long, ulong, or float, optionally double, or half if the cl_khr_fp16

extension is enabled.
void retain_event (clk_event_t event)
void release_event (clk_event_t event)

clk_event_t create_user_event ()

bool is_valid_event (clk_event_t event)

Sets the execution status of a user event.
status: CL_COMPLETE or a negative error

void set_user_event_status (

clk_event_t event, int status) value

void capture_event_profiling_info (
clk_event_t event, clk_profiling_info name,
global void *value)

OpenCL Image Processing Reference

Image Objects
Items in blue apply when the appropriate extension is
supported.
Create Image Objects [5.3.1]
cl_mem clCreatelmage (cl_context context,
cl_mem_flags flags,
const cl_image_format *image_format,
const cl_image_desc *image_desc,
void *host_ptr, cl_int *errcode ret)
flags: See clCreateBuffer

Query List of Supported Image Formats [5.3.2]
cl_int clGetSupportedimageFormats (
“cl_context context, cl_mem_flags flags,
cl_mem_object_type image_type,

cl_uint num_entries, cl_image_format *image_formats,

cl_uint *num_image_formats)

flags: See clCreateBuffer

image_type: CL_MEM_OBJECT_IMAGE{1D, 2D, 3D},
CL_MEM_OBJECT_IMAGE1D_BUFFER,
CL MEM_ _OBJECT | IIVIAGE{lD 2D}_ARRAY

Read, Write, Copy, Fill Image Objects [5.3.3-4]

cl_int clEnqueueReadlmage (
cl_command_queue command_queue,
cl_mem /mage cl_bool blockmg read,
const size_t *origin, const size t_*regron
size_t row_pitch, size_t slice_pitch, void *ptr,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

Image Formats [5.3.1.1)

Supported image formats: image_channel_order with

image_channel_data_type.

Built-in support [Table 5.8]
CL_R (read or write): CL_HALF_FLOAT, CL_FLOAT,
CL_UNORM_INT{8,16}, CL_SNORM_INT{8,16},
CL_SIGNED_INT{8,16,32}, CL_UNSIGNED_INT{8,16,32}

CL_DEPTH (read or write): CL_FLOAT, CL_UNORM_INT16

CL_DEPTH_STENCIL (read only): CL_FLOAT,
CL_UNORM_INT24
(Requires the extension cl_khr_gl_depth_images)

CL_RG (read or write): CL_HALF_FLOAT, CL_FLOAT,
CL_UNORM_INT{8,16}, CL_SNORM_INT{8,16},
CL_SIGNED_INT{8,16,32}, CL_UNSIGNED_INT{8,16,32}

CL_RGBA (read or write): CL_HALF_FLOAT, CL_FLOAT,
CL_UNORM_INT{8,16}, CL_SNORM_INT{8,16},
CL_SIGNED_INT{8,16,32}, CL_UNSIGNED_INT{8,16,32}

CL_BGRA (read or write): CL_UNORM_INT8

CL_sRGBA (read only): CL_UNORM_INT8
(Requires the extension cl_khr_srgh_image_writes)

©2015 Khronos Group - Rev. 1118

Increments event reference count.
Decrements event reference count.

Create a user event.

True for valid event.

Captures profiling information for command
associated with event in value.

queue_t get_default_queue (void)

size_t local_work_size)

Default queue or CLK_NULL_QUEUE

ndrange_t ndrange_1D (size_t global_work_size)
ndrange_t ndrange_1D (size_t global_work_size,

Builds a 1D ND-range
descriptor.

ndrange_t ndrange_1D (size_t global_work_offset,
size_t global_work_size, size_t local_work_size)

const size_t local_work_size[n])

ndrange_t ndrange_nD (const size_t global_work_offset,
const size_t global_work_size, const size_t local_work_

size[n])

ndrange_t ndrange_nD (const size_t global_work_size[n])
ndrange_t ndrange_nD (size_t global_work_size,

Builds a 2D or 3D ND-range descriptor.
nmaybe2or3.

A subset of the OpenCL API 2.1 and C Language 2.0 specifications pertaining to image processing and graphics.

cl_int clEnqueueWritelmage (
cl_command_queue command_queue,
cl_mem image, cl_bool blocking_write,
const size_t *origin, const size_t *region,
size t/nput row_pitch, size_t input_slice_pitch,
const void *ptr, cl_uint num_events_in_wait_list,
const cI_event *event_ wait_list, cl_event *event)

cl_int clEnqueueFilllmage (
cl_command_queue command_queue,
cl_mem image, const void *fill_color,
const size_t *origin, const size_t *region,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueCopylmage (
cl_command_queue command_queue,
cl_mem src_image, cl_mem dst_image,
const size_t *src_origin, const size_t *dst_origin,
const size_t *region, cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

Copy Between Image, Buffer Objects [5.3.5]
cl_int clEnqueueCopylmageToBuffer (
cl_command_queue command_queue,
cl_mem src_image, cl_mem dst_buffer,
const size_t *src_origin, const size_t *region,
size_t dst_offset, cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

Optional support [Table 5.6]

CL_R, CL_A (read and write): CL_HALF_FLOAT, CL_FLOAT,
CL_UNORM_INT{8,16},

CL_SIGNED_INT{8,16,32}, CL_UNSIGNED_INT{8,16,32},
CL_SNORM_INT{8,16}

CL_INTENSITY: CL_HALF_FLOAT, CL_FLOAT,
CL_UNORM_INT{8,16}, CL_SNORM_INT{8| 16}

CL_DEPTH_STENCIL: Only used if extension
cl_khr_gl_depth_images is enabled and
channel data type = CL_UNORM_INT24 or CL_FLOAT

CL_LUMINANCE: CL_UNORM_INT{8,16}, CL_HALF_FLOAT,
CL_FLOAT, CL_SNORM_INT{8,16}

CL_RG, CL_RA: CL_HALF_FLOAT, CL_FLOAT,
CL_UNORM_INT{8,16}, CL_SIGNED_INT{8,16, 32},
CL_UNSIGNED_INT{8,16,32}, CL_SNORM_INT{8,16}

CL_RGB: CL_UNORM_SHORT {555,565},
CL_UNORM_INT_101010

CL_ARGB: CL_UNORM_INTS, CL_SIGNED_INTS,
CL_UNSIGNED_INT8, CL_SNORM_INT8

CL_BGRA: CL_{SIGNED, UNSIGNED} INT8, CL_SNORM_INT8

cl_int clEnqueueCopyBufferTolmage (
cl_command_queue command_queue,
cl_mem src_buffer, cIl_mem dst_image,
size_t src_offset, const size_t *dst_origin,
const size_t *region,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

Map and Unmap Image Objects [5.3.6]
void * clEnqueueMaplimage (
cl_command_queue command_queue,
cl_mem image, cl_bool blockmg_map,
cl_map_flags map_flags, const size_t *origin,
const size_t *region, size_t *image_row_pitch,
size_t *image_slice_pitch,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event,
cl_int *errcode_ret)

map_flags: CL_MAP_{READ, WRITE},
CL_MAP_WRITE_INVALIDATE_REGION

Query Image Objects [5.3.7]
cl_int clGetlmagelnfo (c|_mem image,
cl_image_info param_name, size_t param_value_size,
void *param_value, size_t *param_value_size_ret)
param_name: [Table 5.10] CL_IMAGE_FORMAT,
CL_IMAGE_{ARRAY, ELEMENT}_SIZE,
CL IMAGE_{ROW, SLICE}_PITCH,
CL_IMAGE_{HEIGHT, WIDTH, DEPTH}
CL_IMAGE_NUM (SAMPLES MIP_LEVELS},
CL_IMAGE_DX9_MEDIA_PLANE_KHR,
CL IMAGE {D3D10 D3D11} SUBRESOURCE KHR

www.khronos.org/opencl

OpenCL 2.1 Reference Guide

Image Read and Write Functions s.13.14]
The built-in functions defined in this section can only
be used with image memory objects created with
clCreatelmage. sampler specifies the addressing and
filtering mode to use. aQual refers to one of the access
qualifiers. For samplerless read functions this may be
read_only or read_write.

o Writes to images with sSRGB channel orders requires
device support of the cl_khr_srgb_image_writes
extension.

¢ read_imageh and write_imageh require the
cl_khr_fp16 extension.

¢ MSAA images require the cl_khr_gl_msaa_sharing
extension.

¢ Image 3D writes require the extension
cl_khr_3d_image_writes. [9.4.8]

Read and write functions for 2D images
Read an element from a 2D image, or write a color value
to a location in a 2D image.

float4 read_imagef (read_only image2d_t image,
sampler_t sampler, {int2, float2} coord)

int4 read_imagei (read_only image2d_t image,
sampler_t sampler, {int2, float2} coord)

uint4 read_imageui (read_only image2d_t image,
sampler_t sampler, {int2, float2} coord)

float4 read_imagef (read_only image2d_array_t image,
sampler_t sampler, {int4, float4} coord)

int4 read_imagei (read_only image2d_array_t image,
sampler_t sampler, {int4, float4} coord)

uint4 read_imageui (read_only image2d_array_t image,
sampler_t sampler, {int4, float4} coord)

float read_imagef (read_only image2d_depth_t image,
sampler_t sampler, {int2, float2} coord)

float read_imagef (read_only image2d_array_depth_t image,
sampler_t sampler, {int4, float4} coord)

float4 read_imagef (aQual image2d_t image, int2 coord)

int4 read_imagei (aQual image2d_t image, int2 coord)

uint4 read_imageui (aQual image2d_t image, int2 coord)
float4 read_imagef (aQual image2d_array_t image, int4 coord)
int4 read_imagei (aQual image2d_array_t image, int4 coord)
uint4 read_imageui (aQual image2d_array_t image, int4 coord)
float read_imagef (¢Qual image2d_depth_t image, int2 coord)

float read_imagef (¢Qual image2d_array_depth_t image,
int4 coord)

void write_imagef (aQual image2d_depth_t image,
int2 coord, float depth)

void write_imagef (aQual image2d_array_depth_t image,
int4 coord, float depth)

void write_imageh (aQual image2d_array_t image,
int4 coord, half4 color)

Read and write functions for 1D images
Read an element from a 1D image, or write a color value
to a location in a 1D image.

float4 read_imagef (read_only imageld_t image,
sampler_t sampler, {int, float} coord)

int4 read_imagei (read_only imageld_t image,
sampler_t sampler, {int, float} coord)

uint4 read_imageui (read_only imageld_t image,
sampler_t sampler, {int, float} coord)

float4 read_imagef (read_only imageld_array_t image,
sampler_t sampler, {int2, float4} coord)

int4 read_imagei (read_only imageld_array_t image,
sampler_t sampler, {int2, float2} coord)

uint4 read_imageui (read_only imageld_array_t image,
sampler_t sampler, {int2, float2} coord)

float4 read_imagef (aQual imageld_t image, int coord)
float4 read_imagef (aQual imageld_buffer_t image, int coord)

int4 read_imagei (aQual imageld_t image, int coord)

uint4 read_imageui (aQual image1d_t image, int coord)

int4 read_imagei (aQual imageld_buffer_t image, int coord)
uint4 read_imageui (aQual image1d_buffer_t image, int coord)
float4 read_imagef (aQual imageld_array_t image, int2 coord)
int4 read_imagei (aQual imageld_array_t image, int2 coord)
uint4 read_imageui (aQual imageld_array_t image, int2 coord)

half4 read_imageh (read_only imageld_t image,
sampler_t sampler, {int, float} coord)

half4 read_imageh (aQual imageld_t image, int coord)

half4 read_imageh (read_only imageld_array_t image,
sampler_t sampler, {int2, float4} coord)

half4 read_imageh (aQual imageld_array_t image, int2 coord)

half4 read_imageh (¢Qual image1d_buffer_t image, int coord)

half4 read_imageh (read_only image2d_t image,
sampler_t sampler, {int2, float2} coord)

half4 read_imageh (aQual image2d_t image, int2 coord)

half4 read_imageh (read_only image2d_array_t image,
sampler_t sampler, {int4, float4} coord)

half4 read_imageh (aQual image2d_array_t image,
int4 coord)

void write_imagef (aQual image2d_t image,
int2 coord, float color)

void write_imagei (¢Qual image2d_t image,
int2 coord, int4 color)

void write_imageui (aQual image2d_t image,
int2 coord, uint4 color)

void write_imageh (aQual image2d_t image,
int2 coord, half4 color)

void write_imagef (aQual image2d_array_t image,
int4 coord, float4 color)

void write_imagei (¢Qual image2d_array_t image,
int4 coord, int4 color)

void write_imageui (aQual image2d_array_t image,
int4 coord, uint4 color)

void write_imagef (aQual imageld_t image,
int coord, float4 color)

void write_imagei (0Qual imageld_t image,
int coord, int4 color)

void write_imageui (aQual imageld_t image,
int coord, uint4 color)

void write_imageh (aQual imageld_t image,
int coord, half4 color)

void write_imagef (aQual imageld_buffer_t image,
int coord, float4 color)

void write_imagei (¢Qual imageld_buffer_t image,
int coord, int4 color)

void write_imageui (aQual imageld_buffer_t image,
int coord, uint4 color)

void write_imageh (aQual imageld_buffer_t image,
int coord, half4 color)

void write_imagef (aQual imageld_array_t image,
int2 coord, float4 color)

void write_imagei (¢Qual imageld_array_t image,
int2 coord, int4 color)

void write_imageui (aQual imageld_array_t image,
int2 coord, uint4 color)

void write_imageh (aQual imageld_array_t image,
int2 coord, half4 color)

Read and write functions for 3D images

Read an element from a 3D image, or write a color value
to a location in a 3D image. Writing to 3D images requires
the cl_khr_3d_image_writes extension [9.4.8].

float4 read_imagef (read_only image3d_t image,
sampler_t sampler, {int4, float4} coord)

int4 read_imagei (read_only image3d_t image,
sampler_t sampler, int4 coord)

int4 read_imagei (read_only image3d_t image,
sampler_t sampler, float4 coord)

uint4 read_imageui (read_only image3d_t image,
sampler_t sampler, {int4, float4} coord)

float4 read_imagef (aQual image3d_t image, int4 coord)
int4 read_imagei (aQual image3d_t image, int4 coord)
uint4 read_imageui (¢Qual image3d_t image, int4 coord)

half4 read_imageh (read_only image3d_t image,
sampler_t sampler, {int4, float4} coord)

half4 read_imageh (aQual image3d_t image, int4 coord)

void write_imagef (aQual image3d_t image,
int4 coord, float4 color)

void write_imagei (¢Qual image3d_t image,
int4 coord, int4 color)

void write_imageui (aQual image3d_t image,
int4 coord, uint4 color)

void write_imageh (aQual image3d_t image,
int4 coord, half4 color)

Extended mipmap read and write functions [9.17.2.1]
These functions require the cl_khr_mipmap_image and
cl_khr_mipmap_image_writes extensions.

float read_imagef (read_only image2d_[depth_]t image,
sampler_t sampler, float2 coord, float lod)

int4 read_imagei (read_only image2d_t image,
sampler_t sampler, float2 coord, float lod)

uint4 read_imageui (read_only image2d_t image,
sampler_t sampler, float2 coord, float lod)

float read_imagef (read_only image2d_ [depth_]t image,
sampler_t sampler, float2 coord, float2 gradient_x,
float2 gradient_y)

int4 read_imagei (read_only image2d_t image,
sampler_t sampler, float2 coord, float2 gradient_x,
float2 gradient_y)

uint4 read_imageui (read_only image2d_t image,
sampler_t sampler, float2 coord, float2 gradient_x,
float2 gradient_y)

float4 read_imagef (read_only imageld_t image,
sampler_t sampler, float coord, float lod)

int4 read_imagei (read_only imageld_t image,
sampler_t sampler, float coord, float lod)

uint4 read_imageui(read_only imageld_t image,
sampler_t sampler, float coord, float lod)

float4 read_imagef (read_only imageld_t image,
sampler_t sampler, float coord, float gradient_x,
float gradient_y)

int4 read_imagei (read_only imageld_t image,
sampler_t sampler, float coord, float gradient_x,
float gradient_y)

uint4 read_imageui(read_only imageld_t image,
sampler_t sampler, float coord, float gradient_x,
float gradient _y)

float4 read_imagef (read_only image3d_t image,
sampler_t sampler, float4 coord, float lod)

int4 read_imagei(read_only image3d_t image,
sampler_t sampler, float4 coord, float lod)

uint4 read_imageui(read_only image3d_t image,
sampler_t sampler, float4 coord, float lod)

float4 read_imagef (read_only image3d_t image,
sampler_t sampler, float4 coord, float4 gradient_x,
float4 gradient_y)

©2015 Khronos Group - Rev. 1118

(Continued on next page >)

www.khronos.org/opencl

Image Read and Write (continued)

Extended mipmap read and write functions (cont’d)

int4 read_imagei(read_only image3d_t image,
sampler_t sampler, float4 coord, float4 gradient_x,
float4 gradient_y)

uint4 read_imageui(read_only image3d_t image,
sampler_t sampler, float4 coord, float4 gradient_x,
float4 gradient y)

float4 read_imagef (read_only imageld_array_t image,
sampler_t sampler, float2 coord, float lod)

int4 read_imagei (read_only imageld_array_t image,
sampler_t sampler, float2 coord, float lod)

uint4 read_imageui(read_only imageld_array_t image,
sampler_t sampler, float2 coord, float lod)

float4 read_imagef (read_only imageld_array_t image,
sampler_t sampler, float2 coord, float gradient_x,
float gradient_y)

int4 read_imagei (read_only imageld_array_t image,
sampler_t sampler, float2 coord, float gradient x,
float gradient_y)

uint4 read_imageui(read_only imageld_array_t image,
sampler_t sampler, float2 coord, float gradient x,
float gradient_y)

float read_imagef (read_only image2d_array_ [depth_]t image,
sampler_t sampler, float4 coord, float lod)

int4 read_imagei (read_only image2d_array_t image,
sampler_t sampler, float4 coord, float lod)

Image Query Functions [s.13.12.5] [9.12]
The MSAA forms require the extension

cl_khr_gl_msaa_sharing. Mipmap requires the extension

cl_khr_mipmap_image.

Query image width, height, and depth in pixels
int get_image_width (aQual image{1,2,3}d_t image)

int get_image_width (aQual imageld_buffer_t image)
int get_image_width (aQual image{1,2}d_array_t image)

int get_image_width (
aQual image2d_[array_]depth_t image)

int get_image_width (aQual image2d_[array_]msaa_t image)
int get_image_width (
aQual image2d_ [array_]msaa_depth_t image)
int get_image_height (aQual image{2,3}d_t image)
int get_image_height (aQual image2d_array_t image)
int get_image_height (
aQual image2d_[array_]depth_t image)

int get_image_height (
aQual image2d_[array_]msaa_t image)

int get_image_height (
aQual image2d_[array_]msaa_depth_t image)

int get_image_depth (image3d_t image)

Query image array size
size_t get_image_array_size (aQual imageld_array_t image)

uint4 read_imageui (read_only image2d_array_t image,
sampler_t sampler, float4 coord, float lod)

float read_imagef (
read_only image2d_array_ [depth_]t image,
sampler_t sampler, float4 coord, float2 gradient_x,
float2 gradient_y)

int4 read_imagei (read_only image2d_array_t image,
sampler_t sampler, float4 coord, float2 gradient_x,
float2 gradient y)

uint4 read_imageui (read_only image2d_array_t image,
sampler_t sampler, float4 coord, float2 gradient_x,
float2 gradient y)

void write_imagef (aQual image2d_ [depth_]t image,
int2 coord, int lod, float4 color)

void write_imagei (aQual image2d_t image, int2 coord, int lod,
int4 color)

void write_imageui (aQual image2d_t image, int2 coord, int lod,
uint4 color)

void write_imagef (aQual imageld_t image, int coord, int lod,
float4 color)

void write_imagei (aQual imageld_t image, int coord, int lod,
int4 color)

void write_imageui (aQual imageld_t image, int coord, int lod,
uint4 color)

void write_imagef (aQual imageld_array_t image, int2 coord,
int /od, float4 color)

void write_imagei (aQual imageld_array_t image, int2 coord,
int lod, int4 color)

void write_imageui (aQual imageld_array_t image, int2 coord,
int lod, uint4 color)

Query image Channel data type and order

int get_image_channel_data_type (
aQual image{1,2,3}d_t image)

int get_image_channel_data_type (
aQual imageld_buffer_t image)

int get_image_channel_data_type (
aQual image{1,2}d_array_t image)

int get_image_channel_data_type (aQual
image2d_[array_]depth_t image)

int get_image_channel_data_type (
aQual image2d_[array_]msaa_t image)

int get_image_channel_data_type (
aQual image2d_[array_]msaa_depth_t image)
int get_image_channel_order (aQual image{1,2,3}d_t image)

int get_image_channel_order (
aQual imageld_buffer_t image)

int get_image_channel_order (
aQual image{1,2}d_array_t image)

int get_image_channel_order (
aQual image2d_[array_]depth_t image)

int get_image_channel_order (
aQual image2d_[array_]msaa_t image)
int get_image_channel_order(
aQual image2d_[array_]msaa_depth_t image)

void write_imagef (aQual image2d_array_ [depth_]t image,
int4 coord, int lod, float4 color)

void write_imagei (aQual image2d_array_t image, int4 coord,
int lod, int4 color)

void write_imageui (aQual image2d_array_t image, int4 coord,
int lod, uint4 color)

void write_imagef (aQual image3d_t image, int4 coord, int lod,
float4 coord)

void write_imagei (aQual image3d_t image, int4 coord, int lod,
int4 color)

void write_imageui (aQual image3d_t image, int4 coord, int lod,
uint4 color)

Extended multi-sample image read functions [9.12.3]

The extension cl_khr_gl_msaa_sharing adds the following
built-in functions.

float read_imagef (aQual image2d_msaa_depth_t image,
int2 coord, int sample)

float read_imagef (aQual image2d_array_depth_msaa_t image,
int4 coord, int sample)

float4 read_imageff, i, ui} (image2d_msaa_t image,
int2 coord, int sample)

float4 read_imageff, i, ui} (image2d_array_msaa_t image,
int4 coord, int sample)

Access Qualifiers [s.6]
Apply to 2D and 3D image types to declare if the image
memory object is being read or written by a kernel.
__read_only, read_only
__write_only, write_only

Sampler Objects [5.7]
[tems in blue require the cl_khr_mipmap_image extension.

cl_sampler clCreateSamplerWithProperties
(cl_context context,
const cl_sampler_properties *sampler_properties,
cl_int *errcode_ret)

sampler_properties: [Table 5.15]
CL_SAMPLER_NORMALIZED_COORDS,
CL_SAMPLER_{ADDRESSING, FILTER} MODE,
CL_SAMPLER_MIP_FILTER_MODE,
CL_SAMPLER_LOD_{MIN, MAX}

cl_int cIRetainSampler (cl_sampler sampler)
cl_int cIReleaseSampler (cl_sampler sampler)

cl_int clGetSamplerinfo (cl_sampler sampler,

cl_sampler_info param_name,
size_t param_value_size, void *param_value,
size_t *param_value_size_ret)

param_name: CL_SAMPLER_REFERENCE_COUNT,
CL_SAMPLER_{CONTEXT, FILTER_MODE},
CL_SAMPLER_ADDRESSING_MODE,
CL_SAMPLER_NORMALIZED_COORDS ([Table 5.16]

Extended query functions [9.18.2.1]
These functions require the cl_khr_mipmap_image
extension.

Sampler Declaration Fields [6.13.14.1]

The sampler can be passed as an argument to the
kernel using clSetKernelArg, or can be declared in
the outermost scope of kernel functions, or it can be
a constant variable of type sampler_t declared in the
program source.

size_t get_image_array_size (aQual image2d_array_t image)
size_t get_image_array_size (

aQual image2d_array_depth_t image)
size_t get_image_array_size (

aQual image2d_array_msaa_depth_t image)

int get_image_num_mip_levels (aQual imageld_t image)
int get_image_num_mip_levels (

aQual image2d_ [depth_]t image)
const sampler_t <sampler-name> =

<normalized-mode> | <address-mode> | <filter-
mode>

. . . int get_image_num_mip_levels (aQual image3d_t image)
Query image dimensions .) .
) . .) . int get_image_num_mip_levels
int2 get_image_dim (¢Qual image2d_t image) aQualimageld_array_timage)
normalized-mode:

CLK_NORMALIZED_COORDS_{TRUE, FALSE}

address-mode:
CLK_ADDRESS_X, whereX may be NONE, REPEAT,
CLAMP, CLAMP_TO_EDGE, MIRRORED_REPEAT

filter-mode: CLK_FILTER_NEAREST, CLK_FILTER_LINEAR

int2 get_image_dim (¢Qual image2d_array_t image) int get_image_num_mip_levels (

int4 get_image_dim (aQual image3d_t image) aQual image2d_array_[depth_t image)
int2 get_image_dim (¢Qual image2d_[array_]depth_t image)
int2 get_image_dim (aQual image2d_[array_]msaa_t image)
int2 get_image_dim (

aQual image2d_ [array_]msaa_depth_t image)

int get_image_num_samples (
aQual image2d_[array_]msaa_t image)
int get_image_num_samples (
aQual image2d_ [array_]msaa_depth_t image)

©2015 Khronos Group - Rev. 1118 www.khronos.org/opencl

OpenCL 2.1 Reference Guide

OpenCL Extensions Reference

Using OpenCL Extensions (9]
The following extensions extend the OpenCL API.
Extensions shown in italics provide core features.
To control an extension: #pragma OPENCL EXTENSION
extension_name : {enable | disable}
To test if an extension is supported, use
clGetPlatformInfo() or clGetDevicelnfo()
To get the address of the extension function:
clGetExtensionFunctionAddressForPlatform()
cl_apple_gl_sharing (see cl_khr_gl_sharing)
cl_khr_3d_image_writes
cl_khr_byte_addressable_store
cl_khr_context_abort
cl_khr_d3d10_sharing

Page 13

Section and table references are to the OpenCL Extensions 2.1 specification.

cl_khr_d3d11_sharing

cl_khr_depth_images
cl_khr_device_enqueue_local_arg_types
cl_khr_dx9_media_sharing

cl_khr_egl_event

cl_khr_egl_image

cl_khr_fp16

cl_khr_fp64

cl_khr_gl_depth_images

cl_khr_gl_event

cl_khr_gl_msaa_sharing

cl_khr_gl_sharing
cl_khr_global_int32_base_atomics - atomic_*()
cl_khr_global_int32_extended_atomics - atomic_*()
cl_khr_icd

OpenGL Sharing 19.5-9.71
These functions require the cl_khr_gl_sharing or
cl_apple_ gl sharing extension.

CL Context > GL Context, Sharegroup [9.5.5]
cl_int clGetGLContextInfoKHR (
const cl_context_properties *properties,
cl_gl_context_info param_name,
size_t param_value_size, void *param_value,
size_t *param_value_size_ret)
param_name: CL_DEVICES_FOR_GL_CONTEXT_KHR,
CL_CURRENT_DEVICE_FOR_GL_CONTEXT_KHR

CL Buffer Objects > GL Buffer Objects [9.6.2]
cl_mem clCreateFromGLBuffer (cl_context context,

“cl_mem_flags flags, GLuint bufobj, cl_int *errcode. > ret)
flags: CL_MEM_{READ_ONLY, WRITE_ONLY, READ_WRITE}

CL Image Objects > GL Textures [9.6.3]

cl_mem clCreateFromGLTexture (cl_context context,
“cl_mem_flags flags, GLenum texture target
GLint miplevel, GLuint texture, cl_int *errcode_ret)

flags: See clCreateFromGLBuffer

texture_target: GL_TEXTURE_{1D, 2D}[_ARRAY],
GL_TEXTURE_{3D, BUFFER, RECTANGLE},
GL_TEXTURE_CUBE_MAP_POSITIVE_{X, Y, Z},
GL_TEXTURE_CUBE_MAP_NEGATIVE_{X, Y, Z},
GL_TEXTURE_2D_MULTISAMPLE[_ARRAY] (Requires
extension cl_khr_gl_msaa_sharing)

DX9 Media Surface Sharing [9.9]
The header file is c|_dx9_media_sharing.h. Enable the
extension cl_khr_dx9_media_sharing.

cl_int clGetDevicelDsFromDX9MediaAdapterKHR (

“cl_platform_id platform, cl_uint num_media_adapters,
cl_dx9_media_adapter_type_khr *media_adapters_type,

void *media_adapters,

cl_dx9_media_adapter_set_khr media_adapter_set,

cl_uint num_entries, cl_device_id *devices,
cl_int *num_devices)
media_adapter_type:
CL_ADAPTER_{D3D9, D3D9EX, DXVA} KHR
media_adapter_set: CL_{ALL, PREFERRED}_DEVICES_-
FOR_DX9_MEDIA_ADAPTER_KHR

cl_mem clCreateFromDX9MediaSurfaceKHR (
cl_context context, cl_mem_flags flags,
cl_dx9_media adapter type_| khradapter type,

CL Image Objects > GL Renderbuffers [9.6.4]

cl_mem clCreateFromGLRenderbuffer (
cl_context context, cl_mem_flags flags,
GLuint renderbuffer, cl_int *errcode_ret)

flags: See clCreateFromGLBuffer

Query Information [9.6.5]

cl_int clGetGLObjectInfo (c|_mem memobj,
cl_gl_object_type *gl_object_type,
GLuint *g/_object_name)

*gl_object_type returns:
CL_GL_OBJECT_TEXTURE_BUFFER,
CL_GL_OBJECT_TEXTURE{1D, 2D, 3D},

CL GL OBJECT_TEXTURE{1D, 2D} ARRAY,
CL_GL_OBJECT_{BUFFER, RENDERBUFFER}

cl_int clGetGLTexturelnfo (c|_mem memobyj,
cl_gl_texture_info param_name,
size_t param_value_size, void *param_value,
size_t *param_value_size_ret)
param_name: CL_GL_{TEXTURE_TARGET,
MIPMAP LEVEL} CL_GL_NUM_SAMPLES
(Requires extension cl_khr_gl_msaa_sharing)

Share Objects [9.6.6]

cl_int clEnqueue{Acquire, Release}GLObjects (
cl_command_queue command_queue,
cl_uint num_objects, const cl_mem *mem_objects,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

CL Event Objects > GL Sync Objects [9.7.4]
cl_event clCreateEventFromGLsyncKHR (
cl_context context, GLsync sync,
cl_int *errcode_ret)
Requires the cl_khr_gl_event extension.

Direct3D 11 Sharing [9.10.7.3-9.10.7.6]
These functions require the cl_khr_d3d11_sharing
extension. Associated header file is c|_d3d11.h.

cl_int clGetDevicelDsFromD3D11KHR (

cl_platform_id platform,
cl_d3d11_device_source_khr d3d_device_source,
void *d3d_object,
cl_d3d11_device_set_khr d3d_device_set,
cl_uint num_entries, cl_device_id *devices,
cl_uint *num_devices)

d3d_device_source: CL_D3D11_DEVICE_KHR,

cl_khr_image2d_from_buffer
cl_khr_initialize_memory
cl_khr_int64_base_atomics - atom_*()
cl_khr_int64_extended_atomics - atom_*()
cl_khr_local_int32_base_atomics - atomic_*()
cl_khr_local_int32_extended_atomics - atomic_*()
cl_khr_mipmap_image
cl_khr_mipmap_image_writes
cl_khr_priority_hints
cl_khr_srgh_image_writes

cl_khr_spir

cl_khr_subgroups

cl_khr_terminate_context
cl_khr_throttle_hints

Direct3D 10 Sharing [s.5.7]

These functions require the cl_khr_d3d10_sharing
extension. The associated header file is cl_d3d10.h.

cl_int clGetDevicelDsFromD3D10KHR (
cI _platform_id platform,
cl_d3d10_device_source_khr d3d_device_source,

v0|d *d3d_object,
cl_d3d10_deV|ce_set_khr d3d_device_set,
cl_uint num_entries, cl_device_id *devices,
cl_uint *num_devices)

d3d_device_source:
CL_D3D10_{DEVICE, DXGI_ADAPTER}_KHR

d3d_device_set:
cL _{ALL, PREFERRED} DEVICES_FOR_D3D10_KHR

cl_mem clCreateFromD3D10BufferKHR (
“cl_context context, cl_mem ﬂagsﬂags
ID3D10Buffer *resource, cl_int *errcode_ret)

flags: See clCreateFromGLBuffer

cl_mem clCreateFromD3D10Texture2DKHR (
cl_context context, cl_mem_flags flags,
ID3D10Texture2D *resource, UINT subresource,
cl_int *errcode_ret)

flags: See clCreateFromD3D10BufferKHR

cl_mem clCreateFromD3D10Texture3DKHR (
cl_context context, cI_mem_flags flags,
ID3D10Texture3D *resource, UINT subresource,
cl_int *errcode_ret)

flags: See clCreateFromGLBuffer

cl_int clEnqueue{Acquire, Release}D3D100bjectsKHR (
cl_command_queue command_queue,
cl_uint num_objects, const cl_mem *mem_objects,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

cl_mem clCreateFromD3D11Texture3DKHR (
cl_context context, cl_mem_flags flags,
ID3D11Texture3D *resource, UINT subresource,
cl_int *errcode_ret)

flags: See clCreateFromGLBuffer
cl_mem clCreateFromD3D11Texture2DKHR (
cl_context context, cl_mem_flags flags,

ID3D11Texture2D *resource,
UINT subresource, cl_int *errcode_ret)

flags: See clCreateFromGLBuffer

void *surface “info, cl_uint plane, cl_int *errcode_ret)
flags: See clCreateFromGLBuffer
adapter_type: CL_ADAPTER_{D3D9, D3D9EX, DXVA} KHR

cl_int clEnqueue{Acquire, Release}DX9MediaSurfacesKHR(
“cl_command_queue command_queue,
cl_uint num_objects, const cl_mem *mem_objects,
cl_uint num_events_in_wait_Tist,
const cl_event *event wait _Jist, cl_event *event)

CL D3D11_DXGI_ADAPTER_KHR
d3d_device_set: CL_ALL_DEVICES_FOR_D3D11_KHR,
CL_PREFERRED_DEVICES_FOR_D3D11_KHR

cl_mem clCreateFromD3D11BufferKHR (
cl_context context, cl_mem_flags flags,
ID3D11Buffer *resource, cl_int *errcode_ret)

flags: See clCreateFromGLBuffer

cl_int clEnqueue{Acquire, Release}D3D110bjectsKHR (
cl_command_queue command_queue,
cl_uint num_objects, const cI|_mem *mem_objects,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

EGL Interoperabililty [o.15, 9.19]

Create CL Image Objects from EGL
These functions require the extension cl_khr_egl_image.

cl_mem clCreateFromEGLImageKHR (
cl_context context, CLeglDisplayKHR display,
CLegIImageKHR/mage cl_mem ﬂagsﬂags
const cl_egl_image_properties_khr *properties,
cl_int *errcode_ret)

©2015 Khronos Group - Rev. 1118

Create CL Event Objects from EGL

This function requires the extension cl_khr_egl_event.

cl_event clCreateEventFromEGLsyncKHR (
cl_context context, CLegISyncKHR sync,
CLeglDisplayKHR display, cl_int *errcode_ret)

cl_int clEnqueue{Acquire, Release}EGLObjectsKHR (
cl_command_queue command_queue,
cl_uint num_objects, const cl_mem *mem_objects,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list,
cl_event *event)

www.khronos.org/opencl

Example of Enqueuing Kernels

Arguments that are a pointer type to local address space [6.13.17.2]

A block passed to enqueue_kernel can have arguments declared to be a pointer

to local memory. The enqueue_kernel built-in function variants allow blocks to be
enqueued with a variable number of arguments. Each argument must be declared to
be a void pointer to local memory. These enqueue_kernel built-in function variants
also have a corresponding number of arguments each of type uint that follow the
block argument. These arguments specify the size of each local memory pointer
argument of the enqueued block.

kernel void
my_func_A_Tocal_argl(global int *a, local int *Iptr, .)
{

kernel void
my_func_A_Tlocal_arg2(global int *a,
local int *Iptrl, Tocal float4 *Iptr2, .)

kernel void
my_func_B(global int *a, ..)
{

ndrange_t ndrange = ndrange_1d(...);
uint Tocal_mem_size = compute_Tocal_mem_size();
enqueue_kernel(get_default_queue(),
CLK_ENQUEUE_FLAGS_WAIT_KERNEL,
ndrange,
A(Tocal void *p){
my_func_A_local_argl(a, (Tocal int *)p, ...);},
Tocal_mem_size);

kernel void
my_func_C(global int *a, ...
{

ndrange_t ndrange = ndrange_1d(...);
void (Amy_blk_A) (Tocal void *, local void *) =
A(local void *Tptrl, Tocal void *Iptr2){
my_func_A_local_arg2(
a,
(Tocal int *)1ptrl,
(Tocal floatd *)Iptr2, ...);};
// calculate Tocal memory size for Tptr
// argument in local address space for my_blk_A
uint Tocal_mem_size = compute_Tocal_mem_size();
enqueue_kernel(get_default_queue(),
CLK_ENQUEUE_FLAGS_WAIT_KERNEL,
ndrange,
my_bTk_A,
Tocal_mem_size, local_mem_size * 4);

©2015 Khronos Group - Rev. 1118

OpenCL 2.1 Reference Guide

A Complete Example [6.13.17.3]

The example below shows how to implement an iterative algorithm where the host
enqueues the first instance of the nd-range kernel (dp_func_A). The kernel dp_func_A
will launch a kernel (evaluate_dp_work_A) that will determine if new nd-range work
needs to be performed. If new nd-range work does need to be performed, then
evaluate_dp_work_A will enqueue a new instance of dp_func_A . This process is
repeated until all the work is completed.

kernel void
dp_func_A(queue_t q, ...
{

// queue a single instance of evaluate_dp_work_A to
// device queue q. queued kernel begins execution after
// kernel dp_func_A finishes

if (get_global_id(0) == 0)
{
enqueue_kernel(q,
CLK_ENQUEUE_FLAGS_WAIT_KERNEL,
ndrange_1d(1),
AMevaluate_dp_work_A(q, ...);1);

}
kernel void
evaluate_dp_work_A(queue_t q,...)
{
// check if more work needs to be performed
bool more_work = check_new_work(...);
if (more_work)
{
size_t global_work_size = compute_global_size(...);
void (Adp_func_A_b1k) (void) =
Mdp_func_ACq, ...1);

// get Tocal WG-size for kernel dp_func_A
size_t local_work_size =
get_kernel_work_group_size(dp_func_A_bTk);

// build nd-range descriptor
ndrange_t ndrange = ndrange_1D(global_work_size,
Tocal_work_size);

// enqueue dp_func_A

enqueue_kernel(q,
CLK_ENQUEUE_FLAGS_WAIT_KERNEL,
ndrange,
dp_func_A_b1k);

www.khronos.org/opencl

OpenCL 2.1 Reference Guide

©2015 Khronos Group - Rev. 1118 www.khronos.org/opencl

OpenCL Reference Card Index

OpenCL 2.1 Reference Guide

The following index shows the page number for each item included in this guide. The color of the row in the table below is the color of the box to which you should refer.

A

Access Qualifiers

Address Space Qualifiers

Address Space Qualifier Functions
Architecture Diagram

Async Copies and Prefetch
Atomic Functions

Attribute Qualifiers

B

Barriers
Blocks

Buffer Objects

C

cl_khr_*

clBuildProgram

clCloneKernel

clCompileProgram

clCreateBuffer
clCreateCommandQueueWithProperties
clCreateContext
clCreateContextFromType
clCreateEventFromEGLsyncKHR
clCreateEventFromGLsynckHR
clCreateFromD3D10BufferKHR
clCreateFromD3D10Texture2DKHR
clCreateFromD3D10Texture3DKHR
clCreateFromD3D11BufferKHR
clCreateFromD3D11Texture2DKHR
clCreateFromD3D11Texture3DKHR
clCreateFromDX9MediaSurfaceKHR
clCreateFromEGLImagekHR
clCreateFromGLBuffer
clCreateFromGLRenderbuffer
clCreateFromGLTexture
clCreatelmage

clCreateKernel
clCreateKernelsinProgram
clCreatePipe
clCreateProgramWithBinary
clCreateProgramWithBuiltinKernels
clCreateProgramWithIL
clCreateProgramWithSource
clCreateSamplerWithProperties
clCreateSubBuffer
clCreateSubDevices
clCreateUserEvent
clEnqueueAcquireD3D100bjectsKkHR
clEnqueueAcquireD3D110bjectskHR
clEnqueueAcquireDX9MediaSurfacesKkHR
clEnqueueAcquireEGLObjectskHR
clEnqueueAcquireGLObjects
clEnqueueBarrierWithWaitList
clEnqueueCopyBuffer[Rect]
clEnqueueCopyBufferTolmage
clEnqueueCopylmage
clEnqueueCopylmageToBuffer
clEnqueueFillBuffer
clEnqueueFilllmage
clEnqueueMapBuffer
clEnqueueMaplmage
clEnqueueMarkerWithWaitList
clEnqueueMigrateMemObjects
clEnqueueNativeKernel
clEnqueueNDRangeKernel

©2015 Khronos Group - Rev. 1118

clEnqueueReadBuffer[Rect]
clEnqueueReadimage
clEnqueueReleaseD3D100bjectsKHR
clEnqueueReleaseD3D110bjectskHR
clEnqueueReleaseDX9MediaSurfacesKHR
clEnqueueReleaseEGLObjectsKHR
clEnqueueReleaseGLObjects
clEnqueueSVM[Un]Map
clEnqueueSVMFree
clEnqueueSVMMem({cpy, Fill}
clEnqueueUnmapMemObject
clEnqueueWriteBuffer[Rect]
clEnqueueWritelmage

clFinish

clFlush

clGetCommandQueuelnfo
clGetContextInfo

clGetDevicelDs
clGetDevicelDsFromD3D10KHR
clGetDevicelDsFromD3D11KHR
clGetDevicelDsFromDX9MediaAdapterKHR
clGetDevicelnfo
clGetDeviceAndHostTimer
clGetEventlnfo
clGetEventProfilingInfo
clGetExtensionFunctionAddressForPlatform
clGetGLContextInfoKHR
clGetGLObjectInfo
clGetGLTexturelnfo
clGetHostTimer

clGetimagelnfo
clGetKernelArginfo
clGetKernellnfo
clGetKernelSubGrouplnfo
clGetKernelWorkGrouplnfo
clGetMemObjectinfo
clGetPipelnfo

clGetPlatformIDs
clGetPlatforminfo
clGetProgramBuildinfo
clGetPrograminfo
clGetSamplerinfo
clGetSupportedimageFormats
clicdGetPlatformIDsKHR
clLinkProgram
clReleaseCommandQueue
clReleaseContext
cIReleaseDevice

clReleaseEvent

clReleaseKernel
clReleaseMemObject
cIReleaseProgram
clReleaseSampler
clRetainCommandQueue
clRetainContext

clRetainDevice

clRetainEvent

clRetainKernel
clRetainMemObject

KHRCONOS

GROUP

2 clRetainProgram
10 clRetainSampler
13 clSetDefaultDeviceCommandQueue
13 clSetEventCallback
clSetKernelArg
clSetKernelArgSVMPointer
clSetKernelExeclnfo
clSetMemObjectDestructorCallback
clSetUserEventStatus
cISVMAlloc
clSVMFree
clTerminateContextKHR
clUnloadPlatformCompiler
clWaitForEvents
Code Examples
Command Queues
Common Built-in Functions
Compiler Options
Contexts
Conversions and Type Casting
Copy Between Image, Buffer Objects

D

Data Types

Debugging options

Device Architecture Diagram
Direct3D 10 Sharing
Direct3D 11 Sharing

DX9 Media Surface Sharing

E-F

EGL Interoperability

Enqueuing & Kernel Query Built-in Functions
Enqueuing Kernels Code Examples
Event Built-in Functions

Event Objects

Execute Kernels

Extension Function Pointers
Extensions

Fence Functions

Flush and Finish

Function Qualifiers

W W Rk P NN W R WWw

G-H
Geometric Built-in Functions
Helper Built-in Functions

|

Image Formats

Image Objects

Image Query Functions

Image Read and Write Functions
Integer Built-in Functions

K

Kernel Arguments and Queries
Kernel Objects

Kernel Query Built-in Functions

L

Library linking options
Linker Options

M

Map and Unmap Image Objects
Map Buffer Objects

= e
o N

W W R R R R Wk

=
N

B W R WW A NWW W s

Markers, Barriers, Waiting for Events
Math Built-in Functions

Math Constants

Memory Fence Functions

Memory Objects

Migrate Memory Objects

0]

OpenCL Class Diagram
OpenCL Extensions
OpenGL Sharing
Operators

Optimization options

[

Partitioning a Device
Pipe Built-in Functions
Pipes

Prefetch

Preprocessor
Preprocessor Directives & Macros
printf Function

Profiling Operations
Program linking options

W W s O U W N -

Program Objects

Q

Qualifiers

Query Image Objects

Query Image Functions

Query List of Supported Image Formats
Query Memory Object

Query Program Objects

Querying Platform Info & Devices

R

Read, Write, Copy Buffer Objects
Read, Write, Copy, Fill Image Objects
Relational Built-in Functions

S-T

Sampler Objects, Declaration Fields
Scalar Data Types

Separate Compilation and Linking
Shared Virtual Memory

SPIR binary options

Supported Data Types

SVM Sharing Granularity
Synchronization & Memory Fence Functions
Type Casting Examples

Types

u-v

Unload the OpenCL Compiler
Unroll attribute qualifiers

Vector Component Addressing
Vector Data Load/Store

Vector Functions

Vector Data Types

w

Waiting for Events

Warning request/suppress
Workgroup Functions
Work-Item Built-in Functions

The Khronos Group is an industry consortium creating open standards for the authoring and
acceleration of parallel computing, graphics and dynamic media on a wide variety of platforms and
devices. See www.khronos.org to learn more about the Khronos Group.

Khronos Group and the Khronos Group logo are registered trademarks of the Khronos Group, and
the Khronos OpenCL logo is a trademark of Apple Inc. and is used under license by Khronos.

Reference card production by Miller & Mattson www.millermattson.com

www.khronos.org/opencl

