
OpenCL 2.1 Reference Guide Page 1

©2015 Khronos Group - Rev. 1118 www.khronos.org/opencl

The OpenCL Runtime
API calls that manage OpenCL objects such as
command-queues, memory objects, program objects,
kernel objects for __kernel functions in a program
and calls that allow you to enqueue commands to a
command-queue such as executing a kernel, reading,
or writing a memory object.

Command Queues [5.1]

cl_command_queue
clCreateCommandQueueWithProperties (
cl_context context, cl_device_id device,
const cl_command_queue_properties *properties,
cl_int *errcode_ret)

properties: [Table 5.1] CL_QUEUE_SIZE,
CL_QUEUE_PROPERTIES (bitfield which may be

set to an OR of CL_QUEUE_* where * may
be: OUT_OF_ORDER_EXEC_MODE_ENABLE,
PROFILING_ENABLE, ON_DEVICE[_DEFAULT]),
CL_QUEUE_THROTTLE_{HIGH, MED, LOW}_KHR
(requires the cl_khr_throttle_hint extension),
CL_QUEUE_PRIORITY_KHR (bitfield which may be
one of CL_QUEUE_PRIORITY_HIGH_KHR,
CL_QUEUE_PRIORITY_MED_KHR,
CL_QUEUE_PRIORITY_LOW_KHR
(requires the cl_khr_priority_hints extension))

cl_int clSetDefaultDeviceCommandQueue (
cl_context context, cl_device_id device,
cl_command_queue command_queue)

cl_int clRetainCommandQueue (
cl_command_queue command_queue)

cl_int clReleaseCommandQueue (
cl_command_queue command_queue)

cl_int clGetCommandQueueInfo (
cl_command_queue command_queue,
cl_command_queue_info param_name,
size_t param_value_size, void *param_value,
size_t *param_value_size_ret)

param_name: [Table 5.2]
CL_QUEUE_CONTEXT,
CL_QUEUE_DEVICE[_DEFAULT], CL_QUEUE_SIZE,
CL_QUEUE_REFERENCE_COUNT,
CL_QUEUE_PROPERTIES

OpenCL API Reference Section and table references are to the OpenCL API 2.1 specification.

OpenCL (Open Computing Language) is a multi-vendor
open standard for general-purpose parallel programming of
heterogeneous systems that include CPUs, GPUs, and other
processors. OpenCL provides a uniform programming environment
for software developers to write efficient, portable code for high-
performance compute servers, desktop computer systems, and
handheld devices.

Specification documents and online reference are available at
www.khronos.org/opencl.

[n.n.n] and purple text: sections and text in the OpenCL API 2.1 Spec.
[n.n.n] and green text: sections and text in the OpenCL C 2.0 Spec.
[n.n.n] and blue text: sections and text in the OpenCL Extension 2.1 Spec.

O
penCL A

PI

The OpenCL Platform Layer
The OpenCL platform layer implements platform-specific
features that allow applications to query OpenCL
devices, device configuration information, and to create
OpenCL contexts using one or more devices. Items in
blue apply when the appropriate extension is supported.

Querying Platform Info & Devices [4.1-2] [9.16.9]

cl_int clGetPlatformIDs (cl_uint num_entries,
cl_platform_id *platforms, cl_uint *num_platforms)

cl_int clIcdGetPlatformIDsKHR (cl_uint num_entries,
cl_platform_id * platfoms, cl_uint *num_platforms)

cl_int clGetPlatformInfo (cl_platform_id platform,
cl_platform_info param_name,
size_t param_value_size, void *param_value,
size_t *param_value_size_ret)

param_name: CL_PLATFORM_{PROFILE, VERSION},
CL_PLATFORM_{NAME, VENDOR, EXTENSIONS},
CL_PLATFORM_HOST_TIMER_RESOLUTION,
CL_PLATFORM_ICD_SUFFIX_KHR [Table 4.1]

cl_int clGetDeviceIDs (cl_platform_id platform,
cl_device_type device_type, cl_uint num_entries,
cl_device_id *devices, cl_uint *num_devices)

device_type: [Table 4.2]
CL_DEVICE_TYPE_{ACCELERATOR, ALL, CPU},
CL_DEVICE_TYPE_{CUSTOM, DEFAULT, GPU}

cl_int clGetDeviceInfo (cl_device_id device,
cl_device_info param_name,
size_t param_value_size, void *param_value,
size_t *param_value_size_ret)

param_name: [Table 4.3]
CL_DEVICE_ADDRESS_BITS, CL_DEVICE_AVAILABLE,
CL_DEVICE_BUILT_IN_KERNELS,
CL_DEVICE_COMPILER_AVAILABLE,
CL_DEVICE_{DOUBLE, HALF, SINGLE}_FP_CONFIG,
CL_DEVICE_ENDIAN_LITTLE, CL_DEVICE_EXTENSIONS,
CL_DEVICE_ERROR_CORRECTION_SUPPORT,
CL_DEVICE_EXECUTION_CAPABILITIES,
CL_DEVICE_GLOBAL_MEM_CACHE_{SIZE, TYPE},
CL_DEVICE_GLOBAL_MEM_{CACHELINE_SIZE, SIZE},
CL_DEVICE_GLOBAL_VARIABLE_PREFERRED_TOTAL_SIZE,
CL_DEVICE_IL_VERSION,
CL_DEVICE_IMAGE_MAX_{ARRAY, BUFFER}_SIZE,
CL_DEVICE_IMAGE_SUPPORT,
CL_DEVICE_IMAGE2D_MAX_{WIDTH, HEIGHT},
CL_DEVICE_IMAGE3D_MAX_{WIDTH, HEIGHT, DEPTH},
CL_DEVICE_IMAGE_BASE_ADDRESS_ALIGNMENT,
CL_DEVICE_IMAGE_PITCH_ALIGNMENT,
CL_DEVICE_LINKER_AVAILABLE,
CL_DEVICE_LOCAL_MEM_{TYPE, SIZE},
CL_DEVICE_MAX_{CLOCK_FREQUENCY, PIPE_ARGS},
CL_DEVICE_MAX_{COMPUTE_UNITS, SAMPLERS},
CL_DEVICE_MAX_CONSTANT_{ARGS, BUFFER_SIZE},
CL_DEVICE_MAX_GLOBAL_VARIABLE_SIZE,
CL_DEVICE_MAX_{MEM_ALLOC, PARAMETER}_SIZE,
CL_DEVICE_MAX_NUM_SUB_GROUPS,
CL_DEVICE_MAX_ON_DEVICE_{QUEUES, EVENTS},
CL_DEVICE_MAX_{READ, WRITE}_IMAGE_ARGS,
CL_DEVICE_MAX_READ_WRITE_IMAGE_ARGS,
CL_DEVICE_MAX_SUB_GROUPS,
CL_DEVICE_MAX_WORK_GROUP_SIZE,
CL_DEVICE_MAX_WORK_ITEM_{DIMENSIONS, SIZES},
CL_DEVICE_MEM_BASE_ADDR_ALIGN,
CL_DEVICE_NAME,
CL_DEVICE_NATIVE_VECTOR_WIDTH_X
 (where X may be CHAR, INT, DOUBLE, HALF, LONG,
 SHORT, FLOAT),
CL_DEVICE_NATIVE_VECTOR_WIDTH_FLOAT,

CL_DEVICE_{OPENCL_C_VERSION, PARENT_DEVICE},
CL_DEVICE_PARTITION_AFFINITY_DOMAIN,
CL_DEVICE_PARTITION_MAX_SUB_DEVICES,
CL_DEVICE_PARTITION_{PROPERTIES, TYPE},
CL_DEVICE_PIPE_MAX_ACTIVE_RESERVATIONS,
CL_DEVICE_PIPE_MAX_PACKET_SIZE,
CL_DEVICE_{PLATFORM, PRINTF_BUFFER_SIZE},
CL_DEVICE_PREFERRED_Y_ATOMIC_ALIGNMENT
 (where Y may be LOCAL, GLOBAL, PLATFORM),
CL_DEVICE_PREFERRED_VECTOR_WIDTH_Z
 (where Z may be CHAR, INT, DOUBLE, HALF, LONG,
 SHORT, FLOAT),
CL_DEVICE_PREFERRED_INTEROP_USER_SYNC,
CL_DEVICE_PROFILE,
CL_DEVICE_PROFILING_TIMER_RESOLUTION,
CL_DEVICE_SPIR_VERSIONS,
CL_DEVICE_SUBGROUP_INDEPENDENT_FORWARD_-
PROGRESS
CL_DEVICE_QUEUE_ON_{DEVICE, HOST}_PROPERTIES,
CL_DEVICE_QUEUE_ON_DEVICE_MAX_SIZE,
CL_DEVICE_QUEUE_ON_DEVICE_PREFERRED_SIZE,
CL_DEVICE_{REFERENCE_COUNT, VENDOR_ID},
CL_DEVICE_SVM_CAPABILITIES,
CL_DEVICE_TERMINATE_CAPABILITY_KHR,
CL_DEVICE_{TYPE, VENDOR},
CL_DEVICE_VENDOR_ID,
CL_{DEVICE, DRIVER}_VERSION

cl_int clGetDeviceAndHostTimer (cl_device_id device,
cl_ulong *device_timestamp,
cl_ulong *host_timestamp)

cl_int clGetHostTimer (cl_device_id device,
cl_ulong *host_timestamp)

Partitioning a Device [4.3]

cl_int clCreateSubDevices (cl_device_id in_device,
const cl_device_partition_property *properties,
cl_uint num_devices, cl_device_id *out_devices,
cl_uint *num_devices_ret)

properties: [Table 4.4] CL_DEVICE_PARTITION_EQUALLY,
CL_DEVICE_PARTITION_BY_COUNTS,
CL_DEVICE_PARTITION_BY_AFFINITY_DOMAIN

cl_int clRetainDevice (cl_device_id device)
cl_int clReleaseDevice (cl_device_id device)

Contexts [4.4]
cl_context clCreateContext (

const cl_context_properties *properties,
cl_uint num_devices, const cl_device_id *devices,
void (CL_CALLBACK*pfn_notify)
 (const char *errinfo, const void *private_info,
 size_t cb, void *user_data),
void *user_data, cl_int *errcode_ret)

properties: [Table 4.5]
NULL or CL_CONTEXT_PLATFORM,
CL_CONTEXT_INTEROP_USER_SYNC,
CL_CONTEXT_{D3D10, D3D11}_DEVICE_KHR,
CL_CONTEXT_ADAPTER_{D3D9, D3D9EX}_KHR,
CL_CONTEXT_ADAPTER_DXVA_KHR,
CL_CONTEXT_MEMORY_INITIALIZE_KHR,
CL_CONTEXT_TERMINATE_KHR,
CL_GL_CONTEXT_KHR, CL_CGL_SHAREGROUP_KHR,
CL_{EGL, GLX}_DISPLAY_KHR, CL_WGL_HDC_KHR

cl_context clCreateContextFromType (
const cl_context_properties *properties,
cl_device_type device_type,
void (CL_CALLBACK *pfn_notify)
 (const char *errinfo, const void *private_info,
 size_t cb, void *user_data),
void *user_data, cl_int *errcode_ret)

properties: See clCreateContext
device_type: See clGetDeviceIDs

cl_int clRetainContext (cl_context context)
cl_int clReleaseContext (cl_context context)
cl_int clGetContextInfo (cl_context context,

cl_context_info param_name,
size_t param_value_size, void *param_value,
size_t *param_value_size_ret)

param_name: CL_CONTEXT_REFERENCE_COUNT,
CL_CONTEXT_{DEVICES, NUM_DEVICES,
PROPERTIES}, CL_CONTEXT_{D3D10, D3D11}_-
PREFER_SHARED_RESOURCES_KHR [Table 4.6]

cl_int clTerminateContextKHR (cl_context context)

Get CL Extension Function Pointers [9.2]
void* clGetExtensionFunctionAddressForPlatform (

cl_platform_id platform, const char *funcname)

OpenCL 2.1 Reference GuidePage 2

©2015 Khronos Group - Rev. 1118 www.khronos.org/opencl

Memory Objects
A memory object is a handle to a reference counted region of global memory.
Includes Buffer Objects, Image Objects, and Pipe Objects. Items in blue apply when
the appropriate extension is supported.

Memory Objects [5.5.1, 5.5.2]

cl_int clRetainMemObject (cl_mem memobj)

cl_int clReleaseMemObject (cl_mem memobj)

cl_int clSetMemObjectDestructorCallback (cl_mem memobj,
void (CL_CALLBACK *pfn_notify)
 (cl_mem memobj, void *user_data),
 void *user_data)

cl_int clEnqueueUnmapMemObject (cl_command_queue command_queue,
cl_mem memobj, void *mapped_ptr, cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

Migrate Memory Objects [5.5.4]

cl_int clEnqueueMigrateMemObjects (cl_command_queue command_queue,
cl_uint num_mem_objects, const cl_mem *mem_objects,
cl_mem_migration_flags flags, cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

flags: CL_MIGRATE_MEM_OBJECT_HOST,
CL_MIGRATE_MEM_OBJECT_CONTENT_UNDEFINED

Query Memory Object [5.5.5]

cl_int clGetMemObjectInfo (cl_mem memobj, cl_mem_info param_name,
size_t param_value_size, void *param_value, size_t *param_value_size_ret)

param_name: CL_MEM_{TYPE, FLAGS, SIZE, HOST_PTR}, CL_MEM_OFFSET,
CL_MEM_{MAP, REFERENCE}_COUNT, CL_MEM_ASSOCIATED_MEMOBJECT,
CL_MEM_CONTEXT, CL_MEM_USES_SVM_ POINTER,
CL_MEM_{D3D10, D3D11}_RESOURCE_KHR,
CL_MEM_DX9_MEDIA_{ADAPTER_TYPE, SURFACE_INFO}_KHR [Table 5.13]

Pipes
A pipe is a memory object that stores data organized as a FIFO. Pipe objects can only be
accessed using built-in functions that read from and write to a pipe. Pipe objects are not
accessible from the host.

Create Pipe Objects [5.4.1]

cl_mem clCreatePipe (cl_context context, cl_mem_flags flags, cl_uint pipe_packet_size,
cl_uint pipe_max_packets, const cl_pipe_properties *properties, cl_int *errcode_ret)

flags: 0 or CL_MEM_READ_WRITE, CL_MEM_{READ, WRITE}_ONLY,
CL_MEM_HOST_NO_ACCESS

Pipe Object Queries [5.4.2]

cl_int clGetPipeInfo (cl_mem pipe, cl_pipe_info param_name, size_t param_value_size,
void *param_value, size_t *param_value_size_ret)

param_name:
CL_PIPE_PACKET_SIZE, CL_PIPE_MAX_PACKETS

Conversions and Type Casting Examples [6.2]

T a = (T)b; // Scalar to scalar,
 // or scalar to vector

T a = convert_T(b);	
T a = convert_T_R(b);	
T a = as_T(b);	
T a = convert_T_sat_R(b);

R: one of the following rounding modes:
_rte 	 to nearest even
_rtz 	 toward zero
_rtp 	 toward + infinity
_rtn 	 toward - infinity

OpenCL Class Diagram
The figure below describes the OpenCL specification as a class diagram using the Unified
Modeling Language1 (UML) notation. The diagram shows both nodes and edges which
are classes and their relationships. As a simplification it shows only classes, and no
attributes or operations.

Annotations
Relationships
abstract classes {abstract}
aggregations

inheritance
relationship
navigability

Cardinality
many *
one and only one 1
optionally one 0..1
one or more 1..*

1 Unified Modeling Language (http://www.uml.org/) is a trademark of Object Management Group (OMG).

OpenCL Device Architecture Diagram
The table below shows memory regions with allocation and memory access capabilities.
R=Read, W=Write

Host Kernel The conceptual OpenCL device architecture diagram
shows processing elements (PE), compute units
(CU), and devices. The host is not shown. Global Dynamic

allocation
R/W access

No allocation
R/W access

Constant Dynamic
allocation
R/W access

Static allocation
R-only access

Local Dynamic
allocation
No access

Static allocation
R/W access

Private No allocation
No access

Static allocation
R/W access

O
pe

nC
L

A
PI

Buffer Objects
Elements of buffer objects are stored sequentially and accessed using a pointer by a
kernel executing on a device.

Create Buffer Objects [5.2.1]
cl_mem clCreateBuffer (cl_context context, cl_mem_flags flags, size_t size,

void *host_ptr, cl_int *errcode_ret)
flags: [Table 5.3] CL_MEM_READ_WRITE, CL_MEM_{WRITE, READ}_ONLY,

CL_MEM_HOST_NO_ACCESS, CL_MEM_HOST_{READ, WRITE}_ONLY,
CL_MEM_{USE, ALLOC, COPY}_HOST_PTR

cl_mem clCreateSubBuffer (
cl_mem buffer, cl_mem_flags flags, cl_buffer_create_type buffer_create_type,
const void *buffer_create_info, cl_int *errcode_ret)

flags: See clCreateBuffer
buffer_create_type: CL_BUFFER_CREATE_TYPE_REGION

Read, Write, Copy, Fill Buffer Objects [5.2.2-3]
cl_int clEnqueueReadBuffer (

cl_command_queue command_queue, cl_mem buffer, cl_bool blocking_read,
size_t offset, size_t size, void *ptr, cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueReadBufferRect (
cl_command_queue command_queue, cl_mem buffer, cl_bool blocking_read,
const size_t *buffer_origin, const size_t *host_origin, const size_t *region,
size_t buffer_row_pitch, size_t buffer_slice_pitch, size_t host_row_pitch,
size_t host_slice_pitch, void *ptr, cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueWriteBuffer (
cl_command_queue command_queue, cl_mem buffer, cl_bool blocking_write,
size_t offset, size_t size, const void *ptr, cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueWriteBufferRect (
cl_command_queue command_queue, cl_mem buffer, cl_bool blocking_write,
const size_t *buffer_origin, const size_t *host_origin, const size_t *region,
size_t buffer_row_pitch, size_t buffer_slice_pitch, size_t host_row_pitch,
size_t host_slice_pitch, const void *ptr, cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueFillBuffer (
cl_command_queue command_queue, cl_mem buffer, const void *pattern,
size_t pattern_size, size_t offset, size_t size, cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueCopyBuffer (
cl_command_queue command_queue, cl_mem src_buffer, cl_mem dst_buffer,
size_t src_offset, size_t dst_offset, size_t size, cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueCopyBufferRect (
cl_command_queue command_queue, cl_mem src_buffer, cl_mem dst_buffer,
const size_t *src_origin, const size_t *dst_origin, const size_t *region,
size_t src_row_pitch, size_t src_slice_pitch, size_t dst_row_pitch,
size_t dst_slice_pitch, cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

Map Buffer Objects [5.2.4]
void * clEnqueueMapBuffer (

cl_command_queue command_queue, cl_mem buffer, cl_bool blocking_map,
cl_map_flags map_flags, size_t offset, size_t size,
cl_uint num_events_in_wait_list, const cl_event *event_wait_list,
cl_event *event, cl_int *errcode_ret)

map_flags: CL_MAP_{READ, WRITE}, CL_MAP_WRITE_INVALIDATE_REGION

OpenCL 2.1 Reference Guide Page 3

©2015 Khronos Group - Rev. 1118 www.khronos.org/opencl

Shared Virtual Memory
Shared Virtual Memory (SVM) allows the host and kernels
executing on devices to directly share complex, pointer-
containing data structures such as trees and linked lists.
See more on SVM on page 4 of this reference guide.

SVM Sharing Granularity [5.6.1]

void* clSVMAlloc (
cl_context context, cl_svm_mem_flags flags,
size_t size, cl_uint alignment)

flags: [Table 5.14]
CL_MEM_READ_WRITE,
CL_MEM_{WRITE, READ}_ONLY,
CL_MEM_SVM_FINE_GRAIN_BUFFER,
CL_MEM_SVM_ATOMICS

void clSVMFree (cl_context context, void *svm_pointer)

Enqueuing SVM Operations [5.6.2]

cl_int clEnqueueSVMFree (
cl_command_queue command_queue,
cl_uint num_svm_pointers, void *sym_pointers[],
void (CL_CALLBACK*pfn_free_func)(
	 cl_command_queue command_queue,
	 cl_uint num_svm_pointers,
	 void *sym_pointers[], void *user_data),
void *user_data, cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueSVMMemcpy (
cl_command_queue command_queue,
cl_bool blocking_copy, void *dst_ptr,
const void *src_ptr, size_t size,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueSVMMemFill (
cl_command_queue command_queue,
void *svm_ptr, const void *pattern,
size_t pattern_size, size_t size,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueSVMMap (
cl_command_queue command_queue,
cl_bool blocking_map, cl_map_flags map_flags,
void *svm_ptr, size_t size,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueSVMUnmap (
cl_command_queue command_queue,
void *svm_ptr, cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueSVMMigrateMem (
cl_command_queue command_queue,
cl_uint num_svm_pointers, const void **svm_pointers,
const size_t *sizes, cl_mem_migration_flags flags,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)



O
penCL A

PI

Program Objects
An OpenCL program consists of a set of kernels that
are identified as functions declared with the __kernel
qualifier in the program source.

Create Program Objects [5.8.1]

cl_program clCreateProgramWithSource (
cl_context context, cl_uint count,
const char **strings, const size_t *lengths,
cl_int *errcode_ret)

cl_program clCreateProgramWithIL (
cl_context context, const void *il,
size_t length, cl_int *errcode_ret)

cl_program clCreateProgramWithBinary (
cl_context context, cl_uint num_devices,
const cl_device_id *device_list, const size_t *lengths,
const unsigned char **binaries,
cl_int *binary_status, cl_int *errcode_ret)

cl_program clCreateProgramWithBuiltInKernels (
cl_context context, cl_uint num_devices,
const cl_device_id *device_list,
const char *kernel_names, cl_int *errcode_ret)

cl_int clRetainProgram (cl_program program)
cl_int clReleaseProgram (cl_program program)

Building Program Executables [5.8.2]

cl_int clBuildProgram (cl_program program,
cl_uint num_devices, const cl_device_id *device_list,
const char *options, void (CL_CALLBACK*pfn_notify)
	 (cl_program program, void *user_data),
 void *user_data)

Separate Compilation and Linking [5.8.3]

cl_int clCompileProgram (cl_program program,
cl_uint num_devices, const cl_device_id *device_list,
const char *options, cl_uint num_input_headers,
const cl_program *input_headers,
const char **header_include_names,
void (CL_CALLBACK*pfn_notify)
	 (cl_program program, void *user_data),
 void *user_data)

cl_program clLinkProgram (cl_context context,
cl_uint num_devices, const cl_device_id *device_list,
const char *options, cl_uint num_input_programs,
const cl_program *input_programs,
void (CL_CALLBACK*pfn_notify)
	 (cl_program program, void *user_data),
void *user_data, cl_int *errcode_ret)

Unload the OpenCL Compiler [5.8.6]

cl_int clUnloadPlatformCompiler (
cl_platform_id platform)

Query Program Objects [5.8.7]

cl_int clGetProgramInfo (cl_program program,
cl_program_info param_name,
size_t param_value_size, void *param_value,
size_t *param_value_size_ret)

param_name: [Table 5.17]
CL_PROGRAM_REFERENCE_COUNT,
CL_PROGRAM_{CONTEXT, NUM_DEVICES, DEVICES},
CL_PROGRAM_{SOURCE, BINARY_SIZES, BINARIES},
CL_PROGRAM_{NUM_KERNELS, KERNEL_NAMES},
CL_PROGRAM_IL

cl_int clGetProgramBuildInfo (
cl_program program, cl_device_id device,
cl_program_build_info param_name,
size_t param_value_size, void *param_value,
size_t *param_value_size_ret)

param_name: [Table 5.18]
CL_PROGRAM_BINARY_TYPE,
CL_PROGRAM_BUILD_{STATUS, OPTIONS, LOG},
CL_PROGRAM_BUILD_GLOBAL_VARIABLE_TOTAL_SIZE

Compiler Options [5.8.4]
SPIR options require the cl_khr_spir extension.
Preprocessor: (-D processed in order for clBuildProgram or

clCompileProgram)
-D name 	 -D name=definition	 -I dir

Math intrinsics:
-cl-single-precision-constant	
-cl-denorms-are-zero
-cl-fp32-correctly-rounded-divide-sqrt

Optimization options:
-cl-opt-disable		 -cl-mad-enable 	
-cl-no-signed-zeros 		 -cl-finite-math-only
-cl-unsafe-math-optimizations	 -cl-fast-relaxed-math
-cl-uniform-work-group-size

Warning request/suppress:
-w -Werror

Control OpenCL C language version:
 -cl-std=CL1.1 // OpenCL 1.1 specification
 -cl-std=CL1.2 // OpenCL 1.2 specification
 -cl-std=CL2.0 // OpenCL 2.0 specification

Query kernel argument information:
-cl-kernel-arg-info

Debugging options:
-g	 // generate additional errors for built-in
	 // functions that allow you to enqueue 	
	 // commands on a device

SPIR binary options:
-x spir // indicate that binary is in SPIR format
-spir-std=x //x is SPIR spec version, e.g.: 1.2

Linker Options [5.8.5]

Library linking options:
-create-library	 -enable-link-options

Program linking options:
-cl-denorms-are-zero	 -cl-no-signed-zeroes
-cl-finite-math-only	 -cl-fast-relaxed-math
-cl-unsafe-math-optimizations

Flush and Finish [5.15]

cl_int clFlush (cl_command_queue command_queue)
cl_int clFinish (cl_command_queue command_queue)

Kernel Objects
A kernel object encapsulates the specific __kernel
function and the argument values to be used when
executing it. Items in blue apply when the appropriate
extension is supported.

Create Kernel Objects [5.9.1]

cl_kernel clCreateKernel (cl_program program,
const char *kernel_name, cl_int *errcode_ret)

cl_int clCreateKernelsInProgram (cl_program program,
cl_uint num_kernels, cl_kernel *kernels,
cl_uint *num_kernels_ret)

cl_int clRetainKernel (cl_kernel kernel)
cl_int clReleaseKernel (cl_kernel kernel)

Kernel Arguments and Queries [5.9.2-4]

cl_int clSetKernelArg (cl_kernel kernel, cl_uint arg_index,
size_t arg_size, const void *arg_value)

cl_int clSetKernelArgSVMPointer (cl_kernel kernel,
cl_uint arg_index, const void *arg_value)

cl_int clSetKernelExecInfo (cl_kernel kernel,
cl_kernel_exec_info param_name,
size_t param_value_size, const void *param_value)

param_name: CL_KERNEL_EXEC_INFO_SVM_PTRS,
CL_KERNEL_EXEC_INFO_SVM_FINE_GRAIN_SYSTEM

cl_kernel clCloneKernel (cl_kernel source_kernel,
cl_int *errcode_ret)

cl_int clGetKernelInfo (cl_kernel kernel,
cl_kernel_info param_name, size_t param_value_size,
void *param_value, size_t *param_value_size_ret)

param_name: [Table 5.20]
CL_KERNEL_FUNCTION_NAME,
CL_KERNEL_NUM_ARGS,
CL_KERNEL_REFERENCE_COUNT,
CL_KERNEL_{ATTRIBUTES, CONTEXT, PROGRAM}

cl_int clGetKernelWorkGroupInfo (cl_kernel kernel,
cl_device_id device,
cl_kernel_work_group_info param_name,
size_t param_value_size, void *param_value,
size_t *param_value_size_ret)

param_name: CL_KERNEL_GLOBAL_WORK_SIZE,
CL_KERNEL_[COMPILE_]WORK_GROUP_SIZE,
CL_KERNEL_{COMPILE, MAX}_NUM_SUB_GROUPS,
CL_KERNEL_{LOCAL, PRIVATE}_MEM_SIZE,
CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE
[Table 5.21]

cl_int clGetKernelArgInfo (cl_kernel kernel,
cl_uint arg_indx, cl_kernel_arg_info param_name,
size_t param_value_size, void *param_value,
size_t *param_value_size_ret)

param_name: [Table 5.23]
CL_KERNEL_ARG_{ACCESS, ADDRESS}_QUALIFIER,
CL_KERNEL_ARG_NAME,
CL_KERNEL_ARG_TYPE_{NAME, QUALIFIER}

(Continued on next page >)

OpenCL 2.1 Reference GuidePage 4

©2015 Khronos Group - Rev. 1118 www.khronos.org/opencl

Summary of SVM Options in OpenCL [3.3.3, Table 3-2]

SVM Granularity of sharing Memory allocation Mechanisms to enforce consistency Explicit updates between host and device?

Non-SVM buffers OpenCL Memory objects (buffer) clCreateBuffer Host synchronization points on the same
or between devices. Yes, through Map and Unmap commands.

Coarse-Grained buffer SVM OpenCL Memory objects (buffer) clSVMAlloc Host synchronization points between
devices Yes, through Map and Unmap commands.

Fine Grained buffer SVM Bytes within OpenCL Memory objects (buffer) clSVMAlloc Synchronization points plus atomics (if
supported) No

Fine-Grained system SVM Bytes within Host memory (system) Host memory allocation
mechanisms (e.g. malloc)

Synchronization points plus atomics (if
supported) No

O
pe

nC
L

A
PI



Event Objects
Event objects can be used to refer to a kernel execution
command, and read, write, map, and copy commands
on memory objects or user events.

Event Objects [5.11]

cl_event clCreateUserEvent (cl_context context,
cl_int *errcode_ret)

cl_int clSetUserEventStatus (cl_event event,
cl_int execution_status)

cl_int clWaitForEvents (cl_uint num_events,
const cl_event *event_list)

cl_int clGetEventInfo (cl_event event,
cl_event_info param_name, size_t param_value_size,
void *param_value, size_t *param_value_size_ret)

param_name: CL_EVENT_COMMAND_{QUEUE, TYPE},
CL_EVENT_{CONTEXT, REFERENCE_COUNT},
CL_EVENT_COMMAND_EXECUTION_STATUS [Table 5.24]

cl_int clRetainEvent (cl_event event)

cl_int clReleaseEvent (cl_event event)

cl_int clSetEventCallback (cl_event event,
cl_int command_exec_callback_type,
void (CL_CALLBACK *pfn_event_notify)
 (cl_event event,
cl_int event_command_exec_status,
 void *user_data), void *user_data)

Markers, Barriers, Waiting for Events [5.12]

cl_int clEnqueueMarkerWithWaitList (
cl_command_queue command_queue,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueBarrierWithWaitList (
cl_command_queue command_queue,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

Profiling Operations [5.14]

cl_int clGetEventProfilingInfo (cl_event event,
cl_profiling_info param_name,
size_t param_value_size, void *param_value,
size_t *param_value_size_ret)

param_name: [Table 5.25]
CL_PROFILING_COMMAND_{COMPLETE, QUEUED},
CL_PROFILING_COMMAND_{SUBMIT, START, END}

Kernel Objects (continued)
cl_int clGetKernelSubGroupInfo (

cl_kernel kernel, cl_device_id device,
cl_kernel_sub_group_info param_name,
size_t input_value_size, const void *input_value,
size_t param_value_size, void *param_value,
size_t *param_value_size_ret)

param_name: [Table 5.22]
CL_KERNEL_LOCAL_SIZE_FOR_SUB_GROUP_COUNT,
CL_KERNEL_MAX_SUB_GROUP_SIZE_FOR_
NDRANGE,
CL_KERNEL_SUB_GROUP_COUNT_FOR_NDRANGE

Execute Kernels [5.10]
cl_int clEnqueueNDRangeKernel (

cl_command_queue command_queue,
cl_kernel kernel, cl_uint work_dim,
const size_t *global_work_offset,
const size_t *global_work_size,
const size_t *local_work_size,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueNativeKernel (
cl_command_queue command_queue,
void (CL_CALLBACK *user_func)(void *), void *args,
size_t cb_args, cl_uint num_mem_objects,
const cl_mem *mem_list, const void **args_mem_loc,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

Notes

Memory Model: Shared Virtual Memory [3.3.3]

OpenCL extends the global memory region into the host memory region through a shared
virtual memory (SVM) mechanism. There are three types of SVM in OpenCL

•	 Coarse-Grained buffer SVM: Sharing occurs at the granularity of regions of
OpenCL buffer memory objects. Consistency is enforced at synchronization
points and with map/unmap commands to drive updates between the host and
the device. This form of SVM is similar to the use of cl_mem buffers, with two
differences. First, it lets kernel-instances share pointer-based data structures
(such as linked-lists) with the host program. Second, concurrent access by
multiple kernels on the same device is valid as long as the set of concurrently
executing kernels is bounded by synchronization points. Concurrent access
by multiple kernels on the same device is valid as long as the set of kernels is
bounded by synchronization points. This form of SVM is similar to non-SVM use
of memory; however, it lets kernel-instances share pointer-based data structures
(such as linked-lists) with the host program. Program scope global variables are
treated as per-device coarse-grained SVM for addressing and sharing purposes.

•	 Fine-Grained buffer SVM: Sharing occurs at the granularity of individual loads/
stores into bytes within OpenCL buffer memory objects. Loads and stores may
be cached. This means consistency is guaranteed at synchronization points. If the
optional OpenCL atomics are supported, they can be used to provide fine-grained
control of memory consistency.

•	 Fine-Grained system SVM: Sharing occurs at the granularity of individual loads/
stores into bytes occurring anywhere within the host memory. Loads and stores
may be cached so consistency is guaranteed at synchronization points. If the
optional OpenCL atomics are supported, they can be used to provide fine-grained
control of memory consistency.

Coarse-Grained buffer SVM is required in the core OpenCL specification. The two finer
grained approaches are optional features in OpenCL. The various SVM mechanisms
to access host memory from the work-items associated with a kernel instance are
summarized in table 3-2 below.

OpenCL 2.1 Reference Guide Page 5

©2015 Khronos Group - Rev. 1118 www.khronos.org/opencl

Supported Data Types
The optional double scalar and vector types are
supported if CL_DEVICE_DOUBLE_FP_CONFIG is not zero.

Built-in Scalar Data Types [6.1.1]

OpenCL Type API Type Description

bool -- true (1) or false (0)

char cl_char 8-bit signed

unsigned char, uchar cl_uchar 8-bit unsigned

short cl_short 16-bit signed

unsigned short, ushort cl_ushort 16-bit unsigned

int cl_int 32-bit signed

unsigned int, uint cl_uint 32-bit unsigned

long cl_long 64-bit signed

unsigned long, ulong cl_ulong 64-bit unsigned

float cl_float 32-bit float

double OPTIONAL cl_double 64-bit IEEE 754

half cl_half 16-bit float (storage only)

size_t -- 32- or 64-bit unsigned integer

ptrdiff_t -- 32- or 64-bit signed integer

intptr_t -- 32- or 64-bit signed integer

uintptr_t -- 32- or 64-bit unsigned integer

void void void

Built-in Vector Data Types [6.1.2]

OpenCL Type API Type Description
charn cl_charn 8-bit signed
ucharn cl_ucharn 8-bit unsigned
shortn cl_shortn 16-bit signed
ushortn cl_ushortn 16-bit unsigned
intn cl_intn 32-bit signed
uintn cl_uintn 32-bit unsigned
longn cl_longn 64-bit signed
ulongn cl_ulongn 64-bit unsigned
floatn cl_floatn 32-bit float
doublen OPTIONAL cl_doublen 64-bit float
halfn Requires the cl_khr_fp16 extension

Other Built-in Data Types [6.1.3]
The OPTIONAL types shown below are only defined if
CL_DEVICE_IMAGE_SUPPORT is CL_TRUE. API type for
application shown in italics where applicable. Items in
blue require the cl_khr_gl_msaa_sharing extension.
OpenCL Type Description

image2d_[msaa_]t 	 OPTIONAL 2D image handle

image3d_t 	 OPTIONAL 3D image handle

image2d_array_ [msaa_]t	 OPTIONAL 2D image array

image1d_t	 OPTIONAL 1D image handle

image1d_buffer_t	 OPTIONAL 1D image buffer

image1d_array_t	 OPTIONAL 1D image array
image2d_ [msaa_]depth_t	 OPTIONAL 2D depth image
image2d_array_ [msaa_]depth_t	 OPTIONAL 2D depth image array
sampler_t 	 OPTIONAL sampler handle
queue_t
ndrange_t
clk_event_t
reserve_id_t
event_t event handle
cl_mem_fence_flags

Reserved Data Types [6.1.4]

OpenCL Type Description

booln boolean vector

halfn 16-bit, vector

quad, quadn 128-bit float, vector

complex half, complex halfn
imaginary half, imaginary halfn 16-bit complex, vector

complex float, complex floatn
imaginary float, imaginary floatn 32-bit complex, vector

complex double, complex doublen
imaginary double, imaginary doublen 64-bit complex, vector

complex quad, complex quadn
imaginary quad, imaginary quadn 128-bit complex, vector

floatnxm n*m matrix of 32-bit floats

doublenxm n*m matrix of 64-bit floats

Vector Component Addressing [6.1.7]
Vector Components

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

float2 v; v.x, v.s0 v.y, v.s1

float3 v; v.x, v.s0 v.y, v.s1 v.z, v.s2

float4 v; v.x, v.s0 v.y, v.s1 v.z, v.s2 v.w, v.s3

float8 v; v.s0 v.s1 v.s2 v.s3 v.s4 v.s5 v.s6 v.s7

float16 v; v.s0 v.s1 v.s2 v.s3 v.s4 v.s5 v.s6 v.s7 v.s8 v.s9 v.sa,
v.sA

v.sb,
v.sB

v.sc,
v.sC

v.sd,
v.sD

v.se,
v.sE

v.sf,
v.sF

Vector Addressing Equivalences
Numeric indices are preceded by the letter s or S, e.g.: s1. Swizzling, duplication, and nesting are allowed, e.g.: v.yx,
v.xx, v.lo.x

v.lo v.hi v.odd v.even v.lo v.hi v.odd v.even

float2 v.x, v.s0 v.y, v.s1 v.y, v.s1 v.x, v.s0 float8 v.s0123 v.s4567 v.s1357 v.s0246

float3 * v.s01, v.xy v.s23, v.zw v.s13, v.yw v.s02, v.xz float16 v.s01234567 v.s89abcdef v.s13579bdf v.s02468ace

float4 v.s01, v.xy v.s23, v.zw v.s13, v.yw v.s02, v.xz *When using .lo or .hi with a 3-component vector, the .w component is undefined.

Operators and Qualifiers
Operators [6.3]
These operators behave similarly as in C99 except
operands may include vector types when possible:

+ - * % / --
++ == != & ~ ^
> < >= <= | !

&& || ?: >> << =

, op= sizeof

Address Space Qualifiers [6.5]
 __global, global __local, local
 __constant, constant __private, private

Function Qualifiers [6.7]
 __kernel, kernel
 __attribute__((vec_type_hint(type)))

 //type defaults to int
 __attribute__((work_group_size_hint(X, Y, Z)))
 __attribute__((reqd_work_group_size(X, Y, Z)))

O
penCL C Language

OpenCL C Language Reference Section and table references are to the OpenCL C Language 2.0 specification.

Attribute Qualifiers [6.11]
Use to specify special attributes of enum, struct, and
union types.

__attribute__((aligned(n)))	 __attribute__((endian(host)))
__attribute__((aligned))	 __attribute__((endian(device)))
__attribute__((packed))	 __attribute__((endian))

Use to specify special attributes of variables or structure
fields.

__attribute__((aligned(alignment)))
__attribute__((nosvm))

Use to specify basic blocks and control-flow-statements.
__attribute__(((attr1)) {…}

Use to specify that a loop (for, while, and do loops) can be
unrolled. (Must appear immediately before the loop to be
affected.)

__attribute__((opencl_unroll_hint(n)))
__attribute__((opencl_unroll_hint))

Preprocessor Directives & Macros [6.10]

#pragma OPENCL FP_CONTRACT on-off-switch
 on-off-switch: ON, OFF, DEFAULT

__FILE__ Current source file

__func__ Current function name

__LINE__ Integer line number

__OPENCL_VERSION__ Integer version number, e.g: 200

CL_VERSION_1_0 Substitutes integer 100 for 1.0

CL_VERSION_1_1 Substitutes integer 110 for 1.1

CL_VERSION_1_2 Substitutes integer 120 for 1.2

CL_VERSION_2_0 Substitutes integer 200 for 2.0

__OPENCL_C_VERSION__ Sub. integer for OpenCL C version

__ENDIAN_LITTLE__ 1 if device is little endian

__IMAGE_SUPPORT__ 1 if images are supported

__FAST_RELAXED_MATH__ 1 if –cl-fast-relaxed-math
optimization option is specified

FP_FAST_FMA Defined if double fma is fast

FP_FAST_FMAF Defined if float fma is fast

FP_FAST_FMA_HALF Defined if half fma is fast

__kernel_exec (X, typen) 	 Same as:
	 __kernel __attribute__((work_group_size_hint(X, 1, 1)))

__attribute__((vec_type_hint(typen)))

OpenCL 2.1 Reference GuidePage 6

©2015 Khronos Group - Rev. 1118 www.khronos.org/opencl

O
pe

nC
L

C
La

ng
ua

ge

Math Constants [6.13.2] [9.4.2]

The values of the following symbolic constants are
single-precision float.

MAXFLOAT Value of maximum non-infinite single-precision
floating-point number

HUGE_VALF Positive float expression, evaluates to +infinity

HUGE_VAL Positive double expression, evals. to +infinity
OPTIONAL

INFINITY Constant float expression, positive or unsigned
infinity

NAN Constant float expression, quiet NaN

When double precision is supported, macros ending
in _F are available in type double by removing _F from
the macro name, and in type half when the cl_khr_fp16
extension is enabled by replacing _F with _H.

M_E_F Value of e

M_LOG2E_F Value of log2e

M_LOG10E_F Value of log10e

M_LN2_F Value of loge2

M_LN10_F Value of loge10

M_PI_F Value of π

M_PI_2_F Value of π / 2

M_PI_4_F Value of π / 4

M_1_PI_F Value of 1 / π

M_2_PI_F Value of 2 / π

M_2_SQRTPI_F Value of 2 / √π

M_SQRT2_F Value of √2

M_SQRT1_2_F Value of 1 / √2

Math Built-in Functions [6.13.2] [9.4.2]

Ts is type float, optionally double, or half if the
cl_khr_fp16 extension is enabled. Tn is the vector form
of Ts, where n is 2, 3, 4, 8, or 16. T is Ts and Tn. All angles
are in radians.
HN indicates that half and native variants are available
using only the float or floatn types by prepending “half_”
or “native_” to the function name. Prototypes shown in
brown text are available in half_ and native_ forms only
using the float or floatn types.

T acos (T) Arc cosine

T acosh (T) Inverse hyperbolic cosine

T acospi (T x) acos (x) / π

T asin (T) Arc sine

T asinh (T) Inverse hyperbolic sine

T asinpi (T x) asin (x) / π

T atan (T y_over_x) Arc tangent

T atan2 (T y, T x) Arc tangent of y / x

T atanh (T) Hyperbolic arc tangent

T atanpi (T x) atan (x) / π

T atan2pi (T x, T y) atan2 (y, x) / π

T cbrt (T) Cube root

T ceil (T) Round to integer toward + infinity

T copysign (T x, T y) x with sign changed to sign of y

T cos (T) HN Cosine

T cosh (T) Hyperbolic cosine

T cospi (T x) cos (π x)

T half_divide (T x, T y)
T native_divide (T x, T y)

x / y
(T may only be float or floatn)

T erfc (T) Complementary error function

T erf (T) Calculates error function of T

T exp (T x) HN Exponential base e

T exp2 (T) HN Exponential base 2

T exp10 (T) HN Exponential base 10

T expm1 (T x) ex -1.0

T fabs (T) Absolute value

T fdim (T x, T y) Positive difference between x and y

T floor (T) Round to integer toward infinity

T fma (T a, T b, T c) Multiply and add, then round

T fmax (T x, T y)
Tn fmax (Tn x, Ts y)

Return y if x < y,
otherwise it returns x

T fmin (T x, T y)
Tn fmin (Tn x, Ts y)

Return y if y < x,
otherwise it returns x

T fmod (T x, T y) Modulus. Returns x – y * trunc (x/y)

T fract (T x, T *iptr) Fractional value in x

Ts frexp (T x, int *exp)
Tn frexp (T x, intn *exp) Extract mantissa and exponent

T hypot (T x, T y) Square root of x2 + y2

int[n] ilogb (T x) Return exponent as an integer value

Ts ldexp (T x, int n)
Tn ldexp (T x, intn n) x * 2n

T lgamma (T x)
Ts lgamma_r (Ts x, int *signp)
Tn lgamma_r (Tn x, intn *signp)

Log gamma function

T log (T) HN Natural logarithm

T log2 (T) HN Base 2 logarithm

T log10 (T) HN Base 10 logarithm

T log1p (T x) ln (1.0 + x)

T logb (T x) Exponent of x

T mad (T a, T b, T c) Approximates a * b + c

T maxmag (T x, T y) Maximum magnitude of x and y

T minmag (T x, T y) Minimum magnitude of x and y

T modf (T x, T *iptr) Decompose floating-point number

float[n] nan (uint[n] nancode) Quiet NaN (Return is scalar when
nancode is scalar)

half[n] nan (ushort[n]
nancode)
double[n] nan (ulong[n]
nancode)

Quiet NaN
(Return is scalar when nancode
is scalar)

T nextafter (T x, T y) Next representable floating-point
value after x in the direction of y

T pow (T x, T y) Compute x to the power of y

Ts pown (T x, int y)
Tn pown (T x, intn y) Compute x y, where y is an integer

T powr (T x, T y) HN Compute x y, where x is >= 0

T half_recip (T x)
T native_recip (T x)

1 / x
(T may only be float or floatn)

T remainder (T x, T y) Floating point remainder

Ts remquo (Ts x, Ts y, int *quo)
Tn remquo (Tn x, Tn y, intn
*quo)

Remainder and quotient

T rint (T) Round to nearest even integer

Ts rootn (T x, int y)
Tn rootn (T x, intn y) Compute x to the power of 1/y

T round (T x) Integral value nearest to x rounding

T rsqrt (T) HN Inverse square root

T sin (T) HN Sine

T sincos (T x, T *cosval) Sine and cosine of x

T sinh (T) Hyperbolic sine

T sinpi (T x) sin (π x)

T sqrt (T) HN Square root

T tan (T) HN Tangent

T tanh (T) Hyperbolic tangent

T tanpi (T x) tan (π x)

T tgamma (T) Gamma function

T trunc (T) Round to integer toward zero

Work-Item Built-in Functions [6.13.1]

Query the number of dimensions, global, and local work size
specified to clEnqueueNDRangeKernel, and global and local
identifier of each work-item when this kernel is executed on a
device. Sub-groups require the cl_khr_subgroups extension.

uint get_work_dim () Number of dimensions in use

size_t get_global_size (
uint dimindx) Number of global work-items

size_t get_global_id (
uint dimindx) Global work-item ID value

size_t get_local_size (
uint dimindx)

Number of local work-items if kernel
executed with uniform work-group size

size_t get_enqueued_local_size (
uint dimindx)

Number of local work-
items

size_t get_local_id (uint dimindx) Local work-item ID

size_t get_num_groups (
uint dimindx) Number of work-groups

size_t get_group_id (
uint dimindx) Work-group ID

size_t get_global_offset (
uint dimindx) Global offset

size_t get_global_linear_id () Work-items 1-dimensional
global ID

size_t get_local_linear_id () Work-items 1-dimensional
local ID

uint get_sub_group_size () Number of work-items in
the subgroup

uint get_max_sub_group_size () Maximum size of a
subgroup

uint get_num_sub_groups () Number of subgroups

uint get_enqueued_num_sub_groups ()

uint get_sub_group_id () Sub-group ID

uint get_sub_group_local_id () Unique work-item ID

Blocks [6.12]

A result value type with a list of parameter types, similar
to a function type. In this example:

1.	 The ^ declares variable “myBlock” is a Block.
2.	 The return type for the Block “myBlock”is int.
3.	 myBlock takes a single argument of type int.
4.	 The argument is named “num.”
5.	 Multiplier captured from block’s environment.

int (^myBlock)(int) =
 ^(int num) {return num * multiplier;
};

jk l

m n

OpenCL 2.1 Reference Guide Page 7

©2015 Khronos Group - Rev. 1118 www.khronos.org/opencl

Relational Built-in Functions [6.13.6]
These functions can be used with built-in scalar or vector types
as arguments and return a scalar or vector integer result. T
is type float, floatn, char, charn, uchar, ucharn, short, shortn,
ushort, ushortn, int, intn, uint, uintn, long, longn, ulong, ulongn,
or optionally double or doublen. Ti is type char, charn, short,
shortn, int, intn, long, or longn. Tu is type uchar, ucharn, ushort,
ushortn, uint, uintn, ulong, or ulongn. n is 2, 3, 4, 8, or 16. half
and halfn types require the cl_khr_fp16 extension [9.4.5].

int isequal (float x, float y)
intn isequal (floatn x, floatn y)
int isequal (double x, double y)
longn isequal (doublen x, doublen y)
int isequal (half x, half y)
shortn isequal (halfn x, halfn y)

Compare of
x == y

int isnotequal (float x, float y)
intn isnotequal (floatn x, floatn y)
int isnotequal (double x, double y)
longn isnotequal (doublen x, doublen y)
int isnotequal (half x, half y)
shortn isnotequal (halfn x, halfn y)

Compare of x != y

int isgreater (float x, float y)
intn isgreater (floatn x, floatn y)
int isgreater (double x, double y)
longn isgreater (doublen x, doublen y)
int isgreater (half x, half y)
shortn isgreater (halfn x, halfn y)

Compare of
x > y

int isgreaterequal (float x, float y)
intn isgreaterequal (floatn x, floatn y)
int isgreaterequal (double x, double y)

Compare of
x >= y

longn isgreaterequal (doublen x, doublen y)
int isgreaterequal (half x, half y)
shortn isgreaterequal (halfn x, halfn y)

Compare of
x >= y

int isless (float x, float y)
intn isless (floatn x, floatn y)
int isless (double x, double y)

Compare of x < y

longn isless (doublen x, doublen y)
int isless (half x, half y)
shortn isless (halfn x, halfn y)

Compare of x < y

int islessequal (float x, float y)
intn islessequal (floatn x, floatn y)
int islessequal (double x, double y)
longn islessequal (doublen x, doublen y)
int islessequal (half x, half y)
shortn islessequal (halfn x, halfn y)

Compare of x <= y

int islessgreater (float x, float y)
intn islessgreater (floatn x, floatn y)
int islessgreater (double x, double y)
longn islessgreater (doublen x, doublen y)
int islessgreater (half x, half y)
shortn islessgreater (halfn x, halfn y)

Compare of
(x < y) || (x > y)

int isfinite (float)
intn isfinite (floatn)
int isfinite (double)
longn isfinite (doublen)
int isfinite (half)
shortn isfinite (halfn)

Test for finite
 value

int isinf (float)
intn isinf (floatn)
int isinf (double)
longn isinf (doublen)
int isinf (half)
shortn isinf (halfn)

Test for + or
 – infinity

int isnan (float)
intn isnan (floatn)

Test for a NaN

int isnan (double)
longn isnan (doublen)
int isnan (half)
shortn isnan (halfn)

Test for a NaN

int isnormal (float)
intn isnormal (floatn)
int isnormal (double)

Test for a normal
value

longn isnormal (doublen)
int isnormal (half)
shortn isnormal (halfn)

Test for a normal
value

int isordered (float x, float y)
intn isordered (floatn x, floatn y)
int isordered (double x, double y)
longn isordered (doublen x, doublen y)
int isordered (half x, half y)
shortn isordered (halfn x, halfn y)

Test if arguments are
ordered

int isunordered (float x, float y)
intn isunordered (floatn x, floatn y)
int isunordered (double x, double y)
longn isunordered (doublen x, doublen y)
int isunordered (half x, half y)
shortn isunordered (halfn x, halfn y)

Test if arguments are
unordered

int signbit (float)
intn signbit (floatn)
int signbit (double)
longn signbit (doublen)
int signbit (half)
shortn signbit (halfn)

Test for sign bit

int any (Ti x) 1 if MSB in component
of x is set; else 0

int all (Ti x)
1 if MSB in all
components of x are
set; else 0

T bitselect (T a, T b, T c)
half bitselect (half a, half b, half c)
halfn bitselect (halfn a, halfn b, halfn c)

Each bit of result is
corresponding bit of
a if corresponding bit
of c is 0

T select (T a, T b, Ti c)
T select (T a, T b, Tu c)
halfn select (halfn a, halfn b, shortn c)
half select (half a, half b, short c)
halfn select (halfn a, halfn b, ushortn c)
half select (half a, half b, ushort c)

For each component
of a vector type,
result[i] = if MSB of
c[i] is set ? b[i] : a[i]
For scalar type, result
= c ? b : a

O
penCL C Language

Integer Built-in Functions [6.13.3]

T is type char, charn, uchar, ucharn, short, shortn,
ushort, ushortn, int, intn, uint, uintn, long, longn, ulong,
or ulongn, where n is 2, 3, 4, 8, or 16. Tu is the unsigned
version of T. Tsc is the scalar version of T.

Tu abs (T x) | x |

Tu abs_diff (T x, T y) | x – y | without modulo overflow

T add_sat (T x, T y) x + y and saturates the result

T hadd (T x, T y) (x + y) >> 1 without mod. overflow

T rhadd (T x, T y) (x + y + 1) >> 1

T clamp (T x, T min, T max)
T clamp (T x, Tsc min, Tsc max) min(max(x, minval), maxval)

T clz (T x) number of leading 0-bits in x

T ctz (T x) number of trailing 0-bits in x

T mad_hi (T a, T b, T c) mul_hi(a, b) + c

T mad_sat (T a, T b, T c) a * b + c and saturates the result

T max (T x, T y)
T max (T x, Tsc y) y if x < y, otherwise it returns x

T min (T x, T y)
T min (T x, Tsc y) y if y < x, otherwise it returns x

T mul_hi (T x, T y) high half of the product of x and y

T rotate (T v, T i) result[indx] = v[indx] << i[indx]

T sub_sat (T x, T y) x - y and saturates the result

T popcount (T x) Number of non-zero bits in x

For upsample, return type is scalar when the parameters are scalar.

short[n] upsample (
 char[n] hi, uchar[n] lo) result[i]= ((short)hi[i]<< 8) | lo[i]

ushort[n] upsample (
 uchar[n] hi, uchar[n] lo) result[i]=((ushort)hi[i]<< 8) | lo[i]

int[n] upsample (
 short[n] hi, ushort[n] lo) result[i]=((int)hi[i]<< 16) | lo[i]

uint[n] upsample (
 ushort[n] hi, ushort[n] lo) result[i]=((uint)hi[i]<< 16) | lo[i]

long[n] upsample (
 int[n] hi, uint[n] lo) result[i]=((long)hi[i]<< 32) | lo[i]

ulong[n] upsample (
 uint[n] hi, uint[n] lo) result[i]=((ulong)hi[i]<< 32) | lo[i]

The following fast integer functions optimize the
performance of kernels. In these functions, T is type int,
uint, intn or intn,where n is 2, 3, 4, 8, or 16.

T mad24 (T x, T y, T z) Multiply 24-bit integer values x, y, add
32-bit int. result to 32-bit integer z

T mul24 (T x, T y) Multiply 24-bit integer values x and y

Common Built-in Functions [6.13.4] [9.4.3]

These functions operate component-wise and use round
to nearest even rounding mode. Ts is type float, optionally
double, or half if cl_khr_fp16 is enabled. Tn is the vector
form of Ts, where n is 2, 3, 4, 8, or 16. T is Ts and Tn.

T clamp (T x, T min, T max)
Tn clamp (Tn x, Ts min, Ts max)

Clamp x to range given by
min, max

T degrees (T radians) radians to degrees

T max (T x, T y)
Tn max (Tn x, Ts y) Max of x and y

T min (T x, T y)
Tn min (Tn x, Ts y) Min of x and y

T mix (T x, T y, T a)
Tn mix (Tn x, Tn y, Ts a) Linear blend of x and y

T radians (T degrees) degrees to radians

T step (T edge, T x)
Tn step (Ts edge, Tn x) 0.0 if x < edge, else 1.0

T smoothstep (T edge0, T edge1, T x)
T smoothstep (Ts edge0, Ts edge1, T x) Step and interpolate

T sign (T x) Sign of x

Geometric Built-in Functions [6.13.5] [9.4.4]

Ts is scalar type float, optionally double, or half if the half
extension is enabled. T is Ts and the 2-, 3-, or 4-component
vector forms of Ts.

float{3,4} cross (float{3,4} p0, float{3,4} p1)
double{3,4} cross (double{3,4} p0, double{3,4} p1)
half{3,4} cross (half{3,4} p0, half{3,4} p1)

Cross product

Ts distance (T p0, T p1) Vector distance

Ts dot (T p0, T p1) Dot product

Ts length (T p) Vector length

T normalize (T p) Normal vector
length 1

float fast_distance (float p0, float p1)
float fast_distance (floatn p0, floatn p1) Vector distance

float fast_length (float p)
float fast_length (floatn p) Vector length

float fast_normalize (float p)
floatn fast_normalize (floatn p)

Normal vector
length 1

OpenCL 2.1 Reference GuidePage 8

©2015 Khronos Group - Rev. 1118 www.khronos.org/opencl

O
pe

nC
L

C
La

ng
ua

ge

Vector Data Load/Store [6.13.7] [9.4.6]

T is type char, uchar, short, ushort, int, uint, long, ulong,
or float, optionally double, or half if the cl_khr_fp16
extension is enabled. Tn refers to the vector form of type T,
where n is 2, 3, 4, 8, or 16. R defaults to current rounding
mode, or is one of the rounding modes listed in 6.2.3.2.

Tn vloadn (size_t offset,
const [constant] T *p)

Read vector data from
address (p + (offset * n))

void vstoren (Tn data,
size_t offset, T *p)

Write vector data to address
(p + (offset * n)

float vload_half (size_t offset,
const [constant] half *p)

Read a half from address
(p + offset)

floatn vload_halfn (size_t offset,
const [constant] half *p)

Read a halfn from address
(p + (offset * n))

void vstore_half (float data,
size_t offset, half *p)

void vstore_half_R (float data,
size_t offset, half *p)

void vstore_half (double data,
size_t offset, half *p)

Write a half to address
(p + offset)

void vstore_half_R (double data,
size_t offset, half *p)

Write a half to address
(p + offset)

void vstore_halfn (floatn data,
size_t offset, half *p)

void vstore_halfn_R (floatn data,
size_t offset, half *p)

void vstore_halfn (doublen data,
size_t offset, half *p)

Write a half vector to address
(p + (offset * n))

void vstore_halfn_R (doublen
data, size_t offset, half *p)

Write a half vector to address
(p + (offset * n))

floatn vloada_halfn (size_t offset,
const [constant] half *p)

Read half vector data from (p
+ (offset * n)). For half3, read
from (p + (offset * 4)).

void vstorea_halfn (floatn data,
size_t offset, half *p)

void vstorea_halfn_R (floatn data,
size_t offset, half *p)

void vstorea_halfn (doublen data,
size_t offset, half *p)

void vstorea_halfn_R (doublen
data, size_t offset, half *p)

Write half vector data to (p +
(offset * n)). For half3, write
to (p + (offset * 4)).

Atomic Functions [6.13.11]
OpenCL C implements a subset of the C11 atomics (see section 7.17 of the C11
specification) and synchronization operations.
In the following tables, A refers to an atomic_* type (not including atomic_flag).
C refers to its corresponding non-atomic type. M refers to the type of the other
argument for arithmetic operations. For atomic integer types, M is C. For atomic
pointer types, M is ptrdiff_t.
The type atomic_* is a 32-bit integer. atomic_long and atomic_ulong require extension
cl_khr_int64_base_atomics or cl_khr_int64_extended_atomics. The atomic_double type
requires double precision support. The default scope is work_group for local atomics
and all_svm_devices for global atomics. The extensions cl_khr_int64_base_atomics and
cl_khr_int64_extended_atomics implement atomic operations on 64-bit signed and
unsigned integers to locations in __global and __local memory.
See the table under Atomic Types and Enum Constants for information about
parameter types memory_order, memory_scope, and memory_flag.

void atomic_init(volatile A *obj, C value) Initializes the atomic object pointed to by obj to
the value value.

void atomic_work_item_fence(
cl_mem_fence_flags flags, memory_order
order, memory_scope scope)

Effects based on value of order. flags must be
CLK_{GLOBAL, LOCAL, IMAGE}_MEM_FENCE or a
combination of these.

void atomic_store(volatile A *object, C desired)
void atomic_store_explicit(volatile A *object,

C desired, memory_order order[,
memory_scope scope])

Atomically replace the value pointed to by object
with the value of desired. Memory is affected
according to the value of order.

C atomic_load(volatile A *object)
C atomic_load_explicit(volatile A *object,

memory_order order[, memory_scope scope])

Atomically returns the value pointed to by
object. Memory is affected according to the
value of order.

C atomic_exchange(volatile A *object, C desired)
C atomic_exchange_explicit(volatile A *object,

C desired, memory_order order[,
memory_scope scope])

Atomically replace the value pointed to by object
with desired. Memory is affected according to
the value of order.

bool atomic_compare_exchange_strong(
volatile A *object, C *expected, C desired)

bool atomic_compare_exchange_strong_explicit(
volatile A *object, C *expected, C desired,
memory_order success,
memory_order failure[, memory_scope scope])

bool atomic_compare_exchange_weak(
volatile A *object,
C *expected, C desired)

bool atomic_compare_exchange_weak_explicit(
volatile A *object, C *expected, C desired,
memory_order success,
memory_order failure[, memory_scope scope])

Atomically compares the value pointed to by
object for equality with that in expected, and
if true, replaces the value pointed to by object
with desired, and if false, updates the value
in expected with the value pointed to by object.
IThese operations are atomic read-modify-
write operations.

C atomic_fetch_<key>(volatile A *object, M operand)
C atomic_fetch_<key>_explicit(volatile A *object,

M operand, memory_order order[,
memory_scope scope])

Atomically replaces the value pointed to by
object with the result of the computation
applied to the value pointed to by object and
the given operand.

bool atomic_flag_test_and_set(
volatile atomic_flag *object)

bool atomic_flag_test_and_set_explicit(
volatile atomic_flag *object,
memory_order order[, memory_scope scope])

Atomically sets the value pointed to by object
to true. Memory is affected according to the
value of order. Returns atomically, the value of
the object immediately before the effects.

void atomic_flag_clear(volatile atomic_flag *object)
void atomic_flag_clear_explicit(

volatile atomic_flag *object,
memory_order order[, memory_scope scope])

Atomically sets the value pointed to by object
to false. The order argument shall not be
memory_order_acquire nor
memory_order_acq_rel. Memory is affected
according to the value of order.

Values for key for atomic_fetch and modify functions

key op computation key op computation
add +	 addition and &	 bitwise and
sub -	 subtraction min min	 compute min
or |	 bitwise inclusive or max max	 compute max
xor ^	 bitwise exclusive or

Atomic Types and Enum Constants
memory_scope_sub_group requires the cl_khr_subgroups extension.	

Parameter Type Values

memory_order
memory_order_relaxed	 memory_order_acquire	 memory_order_release	
memory_order_ acq_rel	 memory_order_seq_cst

memory_scope

memory_scope_work_item	 memory_scope_work_group
memory_scope_sub_group memory_scope_all_svm_devices
memory_scope_device (default for functions that do not take a memory_scope

argument)

Atomic integer and floating-point types
† indicates types supported by a limited subset of atomic operations
‡ indicates size depends on whether implemented on 64-bit or 32-bit architecture.
§ indicates types supported only if both 64-bit extensions are supported.
atomic_int
atomic_uint
atomic_flag

atomic_long §
atomic_ulong §

atomic_float †
atomic_double †§

atomic_intptr_t ‡§
atomic_uintptr_t ‡§

atomic_size_t ‡§
atomic_ptrdiff_t ‡§

Atomic Macros

#define ATOMIC_VAR_INIT(C value) Expands to a token sequence to initialize an atomic object of
a type that is initialization-compatible with value.

#define ATOMIC_FLAG_INIT Initialize an atomic_flag to the clear state.

Async Copies and Prefetch [6.13.10] [9.4.7]
T is type char, charn, uchar, ucharn, short, shortn, ushort, ushortn, int, intn, uint,
uintn, long, longn, ulong, ulongn, float, floatn, optionally double or doublen, or half
or halfn if the cl_khr_fp16 extension is enabled.

event_t async_work_group_copy (__local T *dst,
const __global T *src, size_t num_gentypes, event_t event)

event_t async_work_group_copy (__global T *dst,
const __local T *src, size_t num_gentypes, event_t event)

Copies
num_gentypes
T elements from
src to dst

event_t async_work_group_strided_copy (__local T *dst, const __global T *src,
size_t num_gentypes, size_t src_stride, event_t event)

event_t async_work_group_strided_copy (__global T *dst, const __local T *src,
size_t num_gentypes, size_t dst_stride, event_t event)

void wait_group_events (
int num_events, event_t *event_list)

Wait for completion of
async_work_group_copy

void prefetch (const __global T *p,
size_t num_gentypes)

Prefetch num_gentypes * sizeof(T) bytes
into global cache

Synchronization & Memory Fence Functions [6.13.8]

flags argument is the memory address space, set to a 0 or an OR’d combination of
CLK_X_MEM_FENCE where X may be LOCAL, GLOBAL, or IMAGE. Memory fence
functions provide ordering between memory operations of a work-item. Sub-groups
require the cl_khr_subgroups extension.

void work_group_barrier (cl_mem_fence_flags flags[,
memory_scope scope])

Work-items in a work-group must
execute this before any can continue

void atomic_work_item_fence (cl_mem_fence_flags flags
[, memory_scope scope])

Orders loads and stores of a work-
item executing a kernel

void sub_group_barrier (cl_mem_fence_flags flags[,
memory_scope scope])

Work-items in a sub-group must
execute this before any can continue

OpenCL 2.1 Reference Guide Page 9

©2015 Khronos Group - Rev. 1118 www.khronos.org/opencl

O
penCL C Language

Address Space Qualifier Functions [6.13.9]

T refers to any of the built-in data types supported by
OpenCL C or a user-defined type.

[const] global T * to_global (
[const] T *ptr) global address space

[const] local T * to_local (
[const] T *ptr) local address space

[const] private T * to_private (
[const] T *ptr) private address space

[const] cl_mem_fence_flags
get_fence([const] T *ptr)

Memory fence value:
CLK_GLOBAL_MEM_FENCE,
CLK_LOCAL_MEM_FENCE

printf Function [6.13.13]
Writes output to an implementation-defined stream.
int printf (constant char * restrict format, …)

printf output synchronization
When the event associated with a particular kernel
invocation completes, the output of applicable printf calls
is flushed to the implementation-defined output stream.

printf format string
The format string follows C99 conventions and supports
an optional vector specifier:
%[flags][width][.precision][vector][length] conversion

Examples:
The following examples show the use of the vector
specifier in the printf format string.

float4 f = (float4)(1.0f, 2.0f, 3.0f, 4.0f);
printf(“f4 = %2.2v4f\n”, f);

Output: f4 = 1.00,2.00,3.00,4.00

uchar4 uc = (uchar4)(0xFA, 0xFB, 0xFC, 0xFD);
printf(“uc = %#v4x\n”, uc);

Output: uc = 0xfa,0xfb,0xfc,0xfd

uint2 ui = (uint2)(0x12345678, 0x87654321);
printf(“unsigned short value = (%#v2hx)\n”, ui);

Output: unsigned short value = (0x5678,0x4321)

Workgroup Functions [6.13.15] [9.17.3.4]
T is type int, uint, long, ulong, or float, optionally double,
or half if the cl_khr_fp16 extension is supported. Sub-
groups require the cl_khr_subgroups extension. Double
and vector types require double precision support.

Returns a non-zero value if predicate evaluates to non-zero for
all or any workitems in the work-group or sub-group.

int work_group_all (int predicate)

int work_group_any (int predicate)

int sub_group_all (int predicate)

int sub_group_any (int predicate)

Return result of reduction operation specified by <op> for all
values of x specified by workitems in work-group or sub_group.
<op> may be min, max, or add.

T work_group_reduce_<op> (T x)

T sub_group_reduce_<op> (T x)

Broadcast the value of a to all work-items in the work-group or
sub_group. local_id must be the same value for all workitems in
the work-group. n may be 2 or 3.

T work_group_broadcast (T a, size_t local_id)

T work_group_broadcast (T a, size_t local_id_x,
size_t local_id_y)

T work_group_broadcast (T a, size_t local_id_x,
size_t local_id_y, size_t local_id_z)

T sub_group_broadcast (T x, size_t local_id)

Do an exclusive or inclusive scan operation specified by <op>
of all values specified by work-items in the work-group or sub-
group. The scan results are returned for each work-item. <op>
may be min, max, or add.

T work_group_scan_exclusive_<op> (T x)

T work_group_scan_inclusive_<op> (T x)

T sub_group_scan_exclusive_<op> (T x)

T sub_group_scan_inclusive_<op> (T x)

Pipe Built-in Functions [6.13.16.2-4]

T represents the built-in OpenCL C scalar or vector integer
or floating-point data types or any user defined type built
from these scalar and vector data types. Half scalar and
vector types require the cl_khr_fp16 extension. Sub-
groups require the cl_khr_subgroups extension. Double or
vector double types require double precision support.
The macro CLK_NULL_RESERVE_ID refers to an invalid
reservation ID.

int read_pipe (
__read_only pipe T p, T *ptr)

Read packet from p
into ptr.

int read_pipe (__read_only pipe T p,
reserve_id_t reserve_id,
uint index, T *ptr)

Read packet from
reserved area of the
pipe reserve_id and
index into ptr.

int write_pipe (
__write_only pipe T p, const T *ptr)

Write packet specified
by ptr to p.

int write_pipe (
__write_only pipe T p,
reserve_id_t reserve_id,
uint index, const T *ptr)

Write packet specified
by ptr to reserved area
reserve_id and index.

bool is_valid_reserve_id (
reserve_id_t reserve_id)

Return true if reserve_
id is a valid reservation
ID and false otherwise.

reserve_id_t reserve_read_pipe (
__read_only pipe T p,
uint num_packets)

reserve_id_t reserve_write_pipe (
__write_only pipe T p,
uint num_packets)

Reserve num_packets
entries for reading from
or writing to p.

void commit_read_pipe (
__read_only pipe T p,
reserve_id_t reserve_id)

void commit_write_pipe (
__write_only pipe T p,
reserve_id_t reserve_id)

Indicates that all reads
and writes to num_
packets associated with
reservation reserve_id
are completed.

uint get_pipe_max_packets (
pipe T p)

Returns maximum
number of packets
specified when p was
created.

uint get_pipe_num_packets (
pipe T p)

Returns the number of
available entries in p.

void work_group_commit_read_pipe (pipe T p, reserve_id_t reserve_id)
void work_group_commit_write_pipe (pipe T p, reserve_id_t reserve_id)
void sub_group_commit_read_pipe (pipe T p, reserve_id_t reserve_id)
void sub_group_commit_write_pipe (pipe T p, reserve_id_t reserve_id)

Indicates that all reads and writes
to num_packets associated with
reservation reserve_id are completed.

reserve_id_t work_group_reserve_read_pipe (pipe T p, uint num_packets)
reserve_id_t work_group_reserve_write_pipe (pipe T p, uint num_packets)
reserve_id_t sub_group_reserve_read_pipe (pipe T p, uint num_packets)
reserve_id_t sub_group_reserve_write_pipe (pipe T p, uint num_packets)

Reserve num_packets entries for
reading from or writing to p. Returns a
valid reservation ID if the reservation
is successful.

Miscellaneous Vector Functions [6.13.12]
Tm and Tn are type charn, ucharn, shortn, ushortn, intn,
uintn, longn, ulongn, floatn, optionally doublen, or halfn
if the cl_khr_fp16 extension is supported, where n is
2,4,8, or 16 except in vec_step it may also be 3. TUn is
ucharn, ushortn, uintn, or ulongn.

int vec_step (Tn a)
int vec_step (typename)

Takes built-in scalar or vector data type
argument. Returns 1 for scalar, 4 for
3-component vector, else number of
elements in the specified type.

Tn shuffle (Tm x,
 TUn mask)
Tn shuffle2 (Tm x, Tm y,

TUn mask)

Construct permutation of elements
from one or two input vectors, return
a vector with same element type as
input and length that is the same as
the shuffle mask.

Enqueuing and Kernel Query Built-in Functions [6.13.17] [9.17.3.6]

A kernel may enqueue code represented by Block syntax, and control execution
order with event dependencies including user events and markers. There are several
advantages to using the Block syntax: it is more compact; it does not require a cl_kernel
object; and enqueuing can be done as a single semantic step. Sub-groups require the
cl_khr_subgroups extension. The macro CLK_NULL_EVENT refers to an invalid device
event. The macro CLK_NULL_QUEUE refers to an invalid device queue.

int enqueue_kernel (queue_t queue, kernel_enqueue_flags_t flags,
const ndrange_t ndrange, void (^block)(void))

int enqueue_kernel (queue_t queue, kernel_enqueue_flags_t flags,
const ndrange_t ndrange, uint num_events_in_wait_list,
const clk_event_t *event_wait_list, clk_event_t *event_ret,
void (^block)(void))

int enqueue_kernel (queue_t queue, kernel_enqueue_flags_t flags,
const ndrange_t ndrange,
void (^block)(local void *, …), uint size0, …)

int enqueue_kernel (queue_t queue, kernel_ enqueue_flags_t flags,
const ndrange_t ndrange,
uint num_events_in_wait_list, const clk_event_t *event_wait_list,
 clk_event_t *event_ret, void (^block)(local void *, …), uint size0, …)

Allows a work-item to
enqueue a block for
execution to queue.
Work-items can enqueue
multiple blocks to a device
queue(s).

flags may be one of
CLK_ENQUEUE_FLAGS_
{NO_WAIT, WAIT_KERNEL,
WAIT_WORK_GROUP}

uint get_kernel_work_group_size (void (^block)(void))

uint get_kernel_work_group_size (void (^block)(local void *, …))

Query the maximum work-
group size that can be
used to execute a block.

uint get_kernel_preferred_work_group_size_multiple (
void (^block)(void))

uint get_kernel_preferred_work_group_size_multiple (
void (^block)(local void *, …))

Returns the preferred
multiple of work-group
size for launch.

int enqueue_marker (queue_t queue, uint num_events_in_wait_list,
const clk_event_t *event_wait_list, clk_event_t *event_ret)

Enqueue a marker
command to queue.

uint get_kernel_sub_group_count_for_ndrange
(const ndrange_t ndrange, void (^block)(void))

uint get_kernel_sub_group_count_for_ndrange
(const ndrange_t ndrange, void (^block)(local void *, …))

Returns number of
subgroups in each
workgroup of the dispatch.

uint get_kernel_max_sub_group_size_for_ndrange
(const ndrange_t ndrange, void (^block)(void))

uint get_kernel_max_sub_group_size_for_ndrange
(const ndrange_t ndrange, void (^block)
(local void *, …))

Returns the maximum
sub-group size for a block.

OpenCL 2.1 Reference GuidePage 10

©2015 Khronos Group - Rev. 1118 www.khronos.org/opencl

Image Objects
Items in blue apply when the appropriate extension is
supported.
Create Image Objects [5.3.1]
cl_mem clCreateImage (cl_context context,

cl_mem_flags flags,
const cl_image_format *image_format,
const cl_image_desc *image_desc,
void *host_ptr, cl_int *errcode_ret)

flags: See clCreateBuffer

Query List of Supported Image Formats [5.3.2]
cl_int clGetSupportedImageFormats (

cl_context context, cl_mem_flags flags,
cl_mem_object_type image_type,
cl_uint num_entries, cl_image_format *image_formats,
cl_uint *num_image_formats)

flags: See clCreateBuffer
image_type: CL_MEM_OBJECT_IMAGE{1D, 2D, 3D},

CL_MEM_OBJECT_IMAGE1D_BUFFER,
CL_MEM_OBJECT_IMAGE{1D, 2D}_ARRAY

Read, Write, Copy, Fill Image Objects [5.3.3-4]
cl_int clEnqueueReadImage (

cl_command_queue command_queue,
cl_mem image, cl_bool blocking_read,
const size_t *origin, const size_t *region,
size_t row_pitch, size_t slice_pitch, void *ptr,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueWriteImage (
cl_command_queue command_queue,
cl_mem image, cl_bool blocking_write,
const size_t *origin, const size_t *region,
size_t input_row_pitch, size_t input_slice_pitch,
const void *ptr, cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueFillImage (
cl_command_queue command_queue,
cl_mem image, const void *fill_color,
const size_t *origin, const size_t *region,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueCopyImage (
cl_command_queue command_queue,
cl_mem src_image, cl_mem dst_image,
const size_t *src_origin, const size_t *dst_origin,
const size_t *region, cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

Copy Between Image, Buffer Objects [5.3.5]

cl_int clEnqueueCopyImageToBuffer (
cl_command_queue command_queue,
cl_mem src_image, cl_mem dst_buffer,
const size_t *src_origin, const size_t *region,
size_t dst_offset, cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueCopyBufferToImage (
cl_command_queue command_queue,
cl_mem src_buffer, cl_mem dst_image,
size_t src_offset, const size_t *dst_origin,
const size_t *region,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

Map and Unmap Image Objects [5.3.6]
void * clEnqueueMapImage (

cl_command_queue command_queue,
cl_mem image, cl_bool blocking_map,
cl_map_flags map_flags, const size_t *origin,
const size_t *region, size_t *image_row_pitch,
size_t *image_slice_pitch,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event,
cl_int *errcode_ret)

map_flags: CL_MAP_{READ, WRITE},
CL_MAP_WRITE_INVALIDATE_REGION

Query Image Objects [5.3.7]
cl_int clGetImageInfo (cl_mem image,

cl_image_info param_name, size_t param_value_size,
void *param_value, size_t *param_value_size_ret)

param_name: [Table 5.10] CL_IMAGE_FORMAT,
CL_IMAGE_{ARRAY, ELEMENT}_SIZE,
CL_IMAGE_{ROW, SLICE}_PITCH,
CL_IMAGE_{HEIGHT, WIDTH, DEPTH},
CL_IMAGE_NUM_{SAMPLES, MIP_LEVELS},
CL_IMAGE_DX9_MEDIA_PLANE_KHR,
CL_IMAGE_{D3D10, D3D11}_SUBRESOURCE_KHR

OpenCL Image Processing Reference A subset of the OpenCL API 2.1 and C Language 2.0 specifications pertaining to image processing and graphics.

Image Formats [5.3.1.1]
Supported image formats: image_channel_order with
image_channel_data_type.

Built-in support [Table 5.8]

CL_R (read or write): CL_HALF_FLOAT, CL_FLOAT,
CL_UNORM_INT{8,16}, CL_SNORM_INT{8,16},
CL_SIGNED_INT{8,16,32}, CL_UNSIGNED_INT{8,16,32}

CL_DEPTH (read or write): CL_FLOAT, CL_UNORM_INT16

CL_DEPTH_STENCIL (read only): CL_FLOAT,
CL_UNORM_INT24
(Requires the extension cl_khr_gl_depth_images)

CL_RG (read or write): CL_HALF_FLOAT, CL_FLOAT,
CL_UNORM_INT{8,16}, CL_SNORM_INT{8,16},
CL_SIGNED_INT{8,16,32}, CL_UNSIGNED_INT{8,16,32}

CL_RGBA (read or write): CL_HALF_FLOAT, CL_FLOAT,
CL_UNORM_INT{8,16}, CL_SNORM_INT{8,16},
CL_SIGNED_INT{8,16,32}, CL_UNSIGNED_INT{8,16,32}

CL_BGRA (read or write): CL_UNORM_INT8

CL_sRGBA (read only): CL_UNORM_INT8
(Requires the extension cl_khr_srgb_image_writes)

Optional support [Table 5.6]

CL_R, CL_A (read and write): CL_HALF_FLOAT, CL_FLOAT,
CL_UNORM_INT{8,16},
CL_SIGNED_INT{8,16,32} , CL_UNSIGNED_INT{8,16,32},
CL_SNORM_INT{8,16}

CL_INTENSITY: CL_HALF_FLOAT, CL_FLOAT,
CL_UNORM_INT{8,16}, CL_SNORM_INT{8|16}

CL_DEPTH_STENCIL: Only used if extension
cl_khr_gl_depth_images is enabled and
channel data type = CL_UNORM_INT24 or CL_FLOAT

CL_LUMINANCE: CL_UNORM_INT{8,16}, CL_HALF_FLOAT,
CL_FLOAT, CL_SNORM_INT{8,16}

CL_RG, CL_RA: CL_HALF_FLOAT, CL_FLOAT,
CL_UNORM_INT{8,16}, CL_SIGNED_INT{8,16, 32} ,
CL_UNSIGNED_INT{8,16,32}, CL_SNORM_INT{8,16}

CL_RGB: CL_UNORM_SHORT_{555,565} ,
CL_UNORM_INT_101010

CL_ARGB: CL_UNORM_INT8, CL_SIGNED_INT8,
CL_UNSIGNED_INT8, CL_SNORM_INT8

CL_BGRA: CL_{SIGNED, UNSIGNED}_INT8, CL_SNORM_INT8

O
pe

nC
L

C
La

ng
ua

ge
O

pe
nC

L
Im

ag
e

Pr
oc

es
si

ng

Event Built-in Functions [6.13.17.8]
T is type int, uint, long, ulong, or float, optionally double, or half if the cl_khr_fp16
extension is enabled.

void retain_event (clk_event_t event) Increments event reference count.

void release_event (clk_event_t event) Decrements event reference count.

clk_event_t create_user_event () Create a user event.

bool is_valid_event (clk_event_t event) True for valid event.

void set_user_event_status (
clk_event_t event, int status)

Sets the execution status of a user event.
status: CL_COMPLETE or a negative error
value.

void capture_event_profiling_info (
clk_event_t event, clk_profiling_info name,
global void *value)

Captures profiling information for command
associated with event in value.

Helper Built-in Functions [6.13.17.9]

queue_t get_default_queue (void) Default queue or CLK_NULL_QUEUE

ndrange_t ndrange_1D (size_t global_work_size)
ndrange_t ndrange_1D (size_t global_work_size,

size_t local_work_size)
ndrange_t ndrange_1D (size_t global_work_offset,

size_t global_work_size, size_t local_work_size)

Builds a 1D ND-range
descriptor.

ndrange_t ndrange_nD (const size_t global_work_size[n])
ndrange_t ndrange_nD (size_t global_work_size,

const size_t local_work_size[n])
ndrange_t ndrange_nD (const size_t global_work_offset,

const size_t global_work_size, const size_t local_work_
size[n])

Builds a 2D or 3D ND-range descriptor.
n may be 2 or 3.

Notes

OpenCL 2.1 Reference Guide Page 11

©2015 Khronos Group - Rev. 1118 www.khronos.org/opencl



Image Read and Write Functions [6.13.14]
The built-in functions defined in this section can only
be used with image memory objects created with
clCreateImage. sampler specifies the addressing and
filtering mode to use. aQual refers to one of the access
qualifiers. For samplerless read functions this may be
read_only or read_write.
•	Writes to images with sRGB channel orders requires

device support of the cl_khr_srgb_image_writes
extension.

•	 read_imageh and write_imageh require the
cl_khr_fp16 extension.

•	MSAA images require the cl_khr_gl_msaa_sharing
extension.

•	Image 3D writes require the extension
cl_khr_3d_image_writes. [9.4.8]

Read and write functions for 2D images
Read an element from a 2D image, or write a color value
to a location in a 2D image.

float4 read_imagef (read_only image2d_t image,
sampler_t sampler, {int2, float2} coord)

int4 read_imagei (read_only image2d_t image,
sampler_t sampler, {int2, float2} coord)

uint4 read_imageui (read_only image2d_t image,
sampler_t sampler, {int2, float2} coord)

float4 read_imagef (read_only image2d_array_t image,
sampler_t sampler, {int4, float4} coord)

int4 read_imagei (read_only image2d_array_t image,
sampler_t sampler, {int4, float4} coord)

uint4 read_imageui (read_only image2d_array_t image,
sampler_t sampler, {int4, float4} coord)

float read_imagef (read_only image2d_depth_t image,
sampler_t sampler, {int2, float2} coord)

float read_imagef (read_only image2d_array_depth_t image,
sampler_t sampler, {int4, float4} coord)

float4 read_imagef (aQual image2d_t image, int2 coord)

int4 read_imagei (aQual image2d_t image, int2 coord)

uint4 read_imageui (aQual image2d_t image, int2 coord)

float4 read_imagef (aQual image2d_array_t image, int4 coord)

int4 read_imagei (aQual image2d_array_t image, int4 coord)

uint4 read_imageui (aQual image2d_array_t image, int4 coord)

float read_imagef (aQual image2d_depth_t image, int2 coord)

float read_imagef (aQual image2d_array_depth_t image,
int4 coord)

half4 read_imageh (read_only image2d_t image,
sampler_t sampler, {int2, float2} coord)

half4 read_imageh (aQual image2d_t image, int2 coord)

half4 read_imageh (read_only image2d_array_t image,
sampler_t sampler, {int4, float4} coord)

half4 read_imageh (aQual image2d_array_t image,
int4 coord)

void write_imagef (aQual image2d_t image,
int2 coord, float4 color)

void write_imagei (aQual image2d_t image,
int2 coord, int4 color)

void write_imageui (aQual image2d_t image,
 int2 coord, uint4 color)

void write_imageh (aQual image2d_t image,
int2 coord, half4 color)

void write_imagef (aQual image2d_array_t image,
int4 coord, float4 color)

void write_imagei (aQual image2d_array_t image,
int4 coord, int4 color)

void write_imageui (aQual image2d_array_t image,
int4 coord, uint4 color)

void write_imagef (aQual image2d_depth_t image,
int2 coord, float depth)

void write_imagef (aQual image2d_array_depth_t image,
int4 coord, float depth)

void write_imageh (aQual image2d_array_t image,
int4 coord, half4 color)

Read and write functions for 1D images
Read an element from a 1D image, or write a color value
to a location in a 1D image.

float4 read_imagef (read_only image1d_t image,
sampler_t sampler, {int, float} coord)

int4 read_imagei (read_only image1d_t image,
sampler_t sampler, {int, float} coord)

uint4 read_imageui (read_only image1d_t image,
sampler_t sampler, {int, float} coord)

float4 read_imagef (read_only image1d_array_t image,
sampler_t sampler, {int2, float4} coord)

int4 read_imagei (read_only image1d_array_t image,
sampler_t sampler, {int2, float2} coord)

uint4 read_imageui (read_only image1d_array_t image,
sampler_t sampler, {int2, float2} coord)

float4 read_imagef (aQual image1d_t image, int coord)

float4 read_imagef (aQual image1d_buffer_t image, int coord)

int4 read_imagei (aQual image1d_t image, int coord)

uint4 read_imageui (aQual image1d_t image, int coord)

int4 read_imagei (aQual image1d_buffer_t image, int coord)

uint4 read_imageui (aQual image1d_buffer_t image, int coord)

float4 read_imagef (aQual image1d_array_t image, int2 coord)

int4 read_imagei (aQual image1d_array_t image, int2 coord)

uint4 read_imageui (aQual image1d_array_t image, int2 coord)

half4 read_imageh (read_only image1d_t image,
sampler_t sampler, {int, float} coord)

half4 read_imageh (aQual image1d_t image, int coord)

half4 read_imageh (read_only image1d_array_t image,
sampler_t sampler, {int2, float4} coord)

half4 read_imageh (aQual image1d_array_t image, int2 coord)

half4 read_imageh (aQual image1d_buffer_t image, int coord)

void write_imagef (aQual image1d_t image,
int coord, float4 color)

void write_imagei (aQual image1d_t image,
int coord, int4 color)

void write_imageui (aQual image1d_t image,
int coord, uint4 color)

void write_imageh (aQual image1d_t image,
int coord, half4 color)

void write_imagef (aQual image1d_buffer_t image,
int coord, float4 color)

void write_imagei (aQual image1d_buffer_t image,
int coord, int4 color)

void write_imageui (aQual image1d_buffer_t image,
int coord, uint4 color)

void write_imageh (aQual image1d_buffer_t image,
int coord, half4 color)

void write_imagef (aQual image1d_array_t image,
int2 coord, float4 color)

void write_imagei (aQual image1d_array_t image,
int2 coord, int4 color)

void write_imageui (aQual image1d_array_t image,
int2 coord, uint4 color)

void write_imageh (aQual image1d_array_t image,
int2 coord, half4 color)

Read and write functions for 3D images
Read an element from a 3D image, or write a color value
to a location in a 3D image. Writing to 3D images requires
the cl_khr_3d_image_writes extension [9.4.8].

float4 read_imagef (read_only image3d_t image,
sampler_t sampler, {int4, float4} coord)

int4 read_imagei (read_only image3d_t image,
sampler_t sampler, int4 coord)

int4 read_imagei (read_only image3d_t image,
sampler_t sampler, float4 coord)

uint4 read_imageui (read_only image3d_t image,
sampler_t sampler, {int4, float4} coord)

float4 read_imagef (aQual image3d_t image, int4 coord)

int4 read_imagei (aQual image3d_t image, int4 coord)

uint4 read_imageui (aQual image3d_t image, int4 coord)

half4 read_imageh (read_only image3d_t image,
sampler_t sampler, {int4, float4} coord)

half4 read_imageh (aQual image3d_t image, int4 coord)

void write_imagef (aQual image3d_t image,
int4 coord, float4 color)

void write_imagei (aQual image3d_t image,
int4 coord, int4 color)

void write_imageui (aQual image3d_t image,
int4 coord, uint4 color)

void write_imageh (aQual image3d_t image,
int4 coord, half4 color)

Extended mipmap read and write functions [9.17.2.1]
These functions require the cl_khr_mipmap_image and
cl_khr_mipmap_image_writes extensions.

float read_imagef (read_only image2d_[depth_]t image,
sampler_t sampler, float2 coord, float lod)

int4 read_imagei (read_only image2d_t image,
sampler_t sampler, float2 coord, float lod)

uint4 read_imageui (read_only image2d_t image,
sampler_t sampler, float2 coord, float lod)

float read_imagef (read_only image2d_ [depth_]t image,
sampler_t sampler, float2 coord, float2 gradient_x,
float2 gradient_y)

int4 read_imagei (read_only image2d_t image,
sampler_t sampler, float2 coord, float2 gradient_x,
float2 gradient_y)

uint4 read_imageui (read_only image2d_t image,
sampler_t sampler, float2 coord, float2 gradient_x,
float2 gradient_y)

float4 read_imagef (read_only image1d_t image,
sampler_t sampler, float coord, float lod)

int4 read_imagei (read_only image1d_t image,
sampler_t sampler, float coord, float lod)

uint4 read_imageui(read_only image1d_t image,
sampler_t sampler, float coord, float lod)

float4 read_imagef (read_only image1d_t image,
sampler_t sampler, float coord, float gradient_x,
float gradient_y)

int4 read_imagei (read_only image1d_t image,
sampler_t sampler, float coord, float gradient_x,
float gradient_y)

uint4 read_imageui(read_only image1d_t image,
sampler_t sampler, float coord, float gradient_x,
float gradient_y)

float4 read_imagef (read_only image3d_t image,
sampler_t sampler, float4 coord, float lod)

int4 read_imagei(read_only image3d_t image,
sampler_t sampler, float4 coord, float lod)

uint4 read_imageui(read_only image3d_t image,
sampler_t sampler, float4 coord, float lod)

float4 read_imagef (read_only image3d_t image,
sampler_t sampler, float4 coord, float4 gradient_x,
float4 gradient_y)

(Continued on next page >)

O
penCL Im

age Processing

OpenCL 2.1 Reference GuidePage 12

©2015 Khronos Group - Rev. 1118 www.khronos.org/opencl

O
pe

nC
L

Im
ag

e
Pr

oc
es

si
ng



Access Qualifiers [6.6]
Apply to 2D and 3D image types to declare if the image
memory object is being read or written by a kernel.

__read_only, read_only
__write_only, write_only

Image Query Functions [6.13.14.5] [9.12]
The MSAA forms require the extension
cl_khr_gl_msaa_sharing. Mipmap requires the extension
cl_khr_mipmap_image.

Query image width, height, and depth in pixels

int get_image_width (aQual image{1,2,3}d_t image)
int get_image_width (aQual image1d_buffer_t image)
int get_image_width (aQual image{1,2}d_array_t image)
int get_image_width (

aQual image2d_[array_]depth_t image)
int get_image_width (aQual image2d_[array_]msaa_t image)
int get_image_width (

aQual image2d_ [array_]msaa_depth_t image)

int get_image_height (aQual image{2,3}d_t image)
int get_image_height (aQual image2d_array_t image)
int get_image_height (

aQual image2d_[array_]depth_t image)
int get_image_height (

aQual image2d_[array_]msaa_t image)
int get_image_height (

aQual image2d_[array_]msaa_depth_t image)

int get_image_depth (image3d_t image)

Query image array size

size_t get_image_array_size (aQual image1d_array_t image)
size_t get_image_array_size (aQual image2d_array_t image)
size_t get_image_array_size (

aQual image2d_array_depth_t image)
size_t get_image_array_size (
 aQual image2d_array_msaa_depth_t image)

Query image dimensions

int2 get_image_dim (aQual image2d_t image)

int2 get_image_dim (aQual image2d_array_t image)

int4 get_image_dim (aQual image3d_t image)

int2 get_image_dim (aQual image2d_[array_]depth_t image)
int2 get_image_dim (aQual image2d_[array_]msaa_t image)
int2 get_image_dim (

aQual image2d_ [array_]msaa_depth_t image)

Query image Channel data type and order

int get_image_channel_data_type (
aQual image{1,2,3}d_t image)

int get_image_channel_data_type (
aQual image1d_buffer_t image)

int get_image_channel_data_type (
aQual image{1,2}d_array_t image)

int get_image_channel_data_type (aQual
image2d_[array_]depth_t image)

int get_image_channel_data_type (
aQual image2d_[array_]msaa_t image)

int get_image_channel_data_type (
aQual image2d_[array_]msaa_depth_t image)

int get_image_channel_order (aQual image{1,2,3}d_t image)

int get_image_channel_order (
aQual image1d_buffer_t image)

int get_image_channel_order (
aQual image{1,2}d_array_t image)

int get_image_channel_order (
aQual image2d_[array_]depth_t image)

int get_image_channel_order (
aQual image2d_[array_]msaa_t image)

int get_image_channel_order(
aQual image2d_[array_]msaa_depth_t image)

Extended query functions [9.18.2.1]
These functions require the cl_khr_mipmap_image
extension.

int get_image_num_mip_levels (aQual image1d_t image)

int get_image_num_mip_levels (
aQual image2d_ [depth_]t image)

int get_image_num_mip_levels (aQual image3d_t image)

int get_image_num_mip_levels (
aQual image1d_array_t image)

int get_image_num_mip_levels (
aQual image2d_array_[depth_]t image)

int get_image_num_samples (
aQual image2d_[array_]msaa_t image)

int get_image_num_samples (
aQual image2d_ [array_]msaa_depth_t image)

Sampler Objects [5.7]
Items in blue require the cl_khr_mipmap_image extension.

cl_sampler clCreateSamplerWithProperties
(cl_context context,
const cl_sampler_properties *sampler_properties,
cl_int *errcode_ret)

sampler_properties: [Table 5.15]
CL_SAMPLER_NORMALIZED_COORDS,
CL_SAMPLER_{ADDRESSING, FILTER}_MODE,
CL_SAMPLER_MIP_FILTER_MODE,
CL_SAMPLER_LOD_{MIN, MAX}

cl_int clRetainSampler (cl_sampler sampler)
cl_int clReleaseSampler (cl_sampler sampler)

cl_int clGetSamplerInfo (cl_sampler sampler,
cl_sampler_info param_name,
size_t param_value_size, void *param_value,
size_t *param_value_size_ret)

param_name: CL_SAMPLER_REFERENCE_COUNT,
CL_SAMPLER_{CONTEXT, FILTER_MODE},
CL_SAMPLER_ADDRESSING_MODE,
CL_SAMPLER_NORMALIZED_COORDS [Table 5.16]

Sampler Declaration Fields [6.13.14.1]
The sampler can be passed as an argument to the
kernel using clSetKernelArg, or can be declared in
the outermost scope of kernel functions, or it can be
a constant variable of type sampler_t declared in the
program source.

const sampler_t <sampler-name> =
<normalized-mode> | <address-mode> | <filter-
mode>

normalized-mode:
CLK_NORMALIZED_COORDS_{TRUE, FALSE}

address-mode:
CLK_ADDRESS_X, whereX may be NONE, REPEAT,
CLAMP, CLAMP_TO_EDGE, MIRRORED_REPEAT

filter-mode: CLK_FILTER_NEAREST, CLK_FILTER_LINEAR

Image Read and Write (continued)
Extended mipmap read and write functions (cont’d)

int4 read_imagei(read_only image3d_t image,
sampler_t sampler, float4 coord, float4 gradient_x,
float4 gradient_y)

uint4 read_imageui(read_only image3d_t image,
sampler_t sampler, float4 coord, float4 gradient_x,
float4 gradient_y)

float4 read_imagef (read_only image1d_array_t image,
sampler_t sampler, float2 coord, float lod)

int4 read_imagei (read_only image1d_array_t image,
sampler_t sampler, float2 coord, float lod)

uint4 read_imageui(read_only image1d_array_t image,
sampler_t sampler, float2 coord, float lod)

float4 read_imagef (read_only image1d_array_t image,
sampler_t sampler, float2 coord, float gradient_x,
float gradient_y)

int4 read_imagei (read_only image1d_array_t image,
sampler_t sampler, float2 coord, float gradient_x,
float gradient_y)

uint4 read_imageui(read_only image1d_array_t image,
sampler_t sampler, float2 coord, float gradient_x,
float gradient_y)

float read_imagef (read_only image2d_array_ [depth_]t image,
sampler_t sampler, float4 coord, float lod)

int4 read_imagei (read_only image2d_array_t image,
sampler_t sampler, float4 coord, float lod)

uint4 read_imageui (read_only image2d_array_t image,
sampler_t sampler, float4 coord, float lod)

float read_imagef (
read_only image2d_array_ [depth_]t image,
sampler_t sampler, float4 coord, float2 gradient_x,
float2 gradient_y)

int4 read_imagei (read_only image2d_array_t image,
sampler_t sampler, float4 coord, float2 gradient_x,
float2 gradient_y)

uint4 read_imageui (read_only image2d_array_t image,
sampler_t sampler, float4 coord, float2 gradient_x,
float2 gradient_y)

void write_imagef (aQual image2d_ [depth_]t image,
int2 coord, int lod, float4 color)

void write_imagei (aQual image2d_t image, int2 coord, int lod,
int4 color)

void write_imageui (aQual image2d_t image, int2 coord, int lod,
uint4 color)

void write_imagef (aQual image1d_t image, int coord, int lod,
float4 color)

void write_imagei (aQual image1d_t image, int coord, int lod,
int4 color)

void write_imageui (aQual image1d_t image, int coord, int lod,
uint4 color)

void write_imagef (aQual image1d_array_t image, int2 coord,
int lod, float4 color)

void write_imagei (aQual image1d_array_t image, int2 coord,
int lod, int4 color)

void write_imageui (aQual image1d_array_t image, int2 coord,
int lod, uint4 color)

void write_imagef (aQual image2d_array_ [depth_]t image,
int4 coord, int lod, float4 color)

void write_imagei (aQual image2d_array_t image, int4 coord,
int lod, int4 color)

void write_imageui (aQual image2d_array_t image, int4 coord,
int lod, uint4 color)

void write_imagef (aQual image3d_t image, int4 coord, int lod,
float4 coord)

void write_imagei (aQual image3d_t image, int4 coord, int lod,
int4 color)

void write_imageui (aQual image3d_t image, int4 coord, int lod,
uint4 color)

Extended multi-sample image read functions [9.12.3]
The extension cl_khr_gl_msaa_sharing adds the following
built-in functions.

float read_imagef (aQual image2d_msaa_depth_t image,
int2 coord, int sample)

float read_imagef (aQual image2d_array_depth_msaa_t image,
int4 coord, int sample)

float4 read_image{f, i, ui} (image2d_msaa_t image,
int2 coord, int sample)

float4 read_image{f, i, ui} (image2d_array_msaa_t image,
int4 coord, int sample)

OpenCL 2.1 Reference Guide Page 13

©2015 Khronos Group - Rev. 1118 www.khronos.org/opencl

O
penCL Im

age Processing

DX9 Media Surface Sharing [9.9]
The header file is cl_dx9_media_sharing.h. Enable the
extension cl_khr_dx9_media_sharing.

cl_int clGetDeviceIDsFromDX9MediaAdapterKHR (
cl_platform_id platform, cl_uint num_media_adapters,
cl_dx9_media_adapter_type_khr *media_adapters_type,
void *media_adapters,
cl_dx9_media_adapter_set_khr media_adapter_set,
cl_uint num_entries, cl_device_id *devices,
cl_int *num_devices)

media_adapter_type:
CL_ADAPTER_{D3D9, D3D9EX, DXVA}_KHR

media_adapter_set: CL_{ALL, PREFERRED}_DEVICES_-
FOR_DX9_MEDIA_ADAPTER_KHR

cl_mem clCreateFromDX9MediaSurfaceKHR (
cl_context context, cl_mem_flags flags,
cl_dx9_media_adapter_type_khr adapter_type,
void *surface_info, cl_uint plane, cl_int *errcode_ret)

flags: See clCreateFromGLBuffer
adapter_type: CL_ADAPTER_{D3D9, D3D9EX, DXVA}_KHR

cl_int clEnqueue{Acquire, Release}DX9MediaSurfacesKHR(
cl_command_queue command_queue,
cl_uint num_objects, const cl_mem *mem_objects,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

Direct3D 11 Sharing [9.10.7.3 - 9.10.7.6]
These functions require the cl_khr_d3d11_sharing
extension. Associated header file is cl_d3d11.h.
cl_int clGetDeviceIDsFromD3D11KHR (

cl_platform_id platform,
cl_d3d11_device_source_khr d3d_device_source,
void *d3d_object,
cl_d3d11_device_set_khr d3d_device_set,
cl_uint num_entries, cl_device_id *devices,
cl_uint *num_devices)

d3d_device_source: CL_D3D11_DEVICE_KHR,
CL_D3D11_DXGI_ADAPTER_KHR

d3d_device_set: CL_ALL_DEVICES_FOR_D3D11_KHR,
CL_PREFERRED_DEVICES_FOR_D3D11_KHR

cl_mem clCreateFromD3D11BufferKHR (
cl_context context, cl_mem_flags flags,
ID3D11Buffer *resource, cl_int *errcode_ret)

flags: See clCreateFromGLBuffer

cl_mem clCreateFromD3D11Texture3DKHR (
cl_context context, cl_mem_flags flags,
ID3D11Texture3D *resource, UINT subresource,
cl_int *errcode_ret)

flags: See clCreateFromGLBuffer

cl_mem clCreateFromD3D11Texture2DKHR (
cl_context context, cl_mem_flags flags,
ID3D11Texture2D *resource,
UINT subresource, cl_int *errcode_ret)

flags: See clCreateFromGLBuffer

cl_int clEnqueue{Acquire, Release}D3D11ObjectsKHR (
cl_command_queue command_queue,
cl_uint num_objects, const cl_mem *mem_objects,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

Direct3D 10 Sharing [9.8.7]
These functions require the cl_khr_d3d10_sharing
extension. The associated header file is cl_d3d10.h.
cl_int clGetDeviceIDsFromD3D10KHR (

cl_platform_id platform,
cl_d3d10_device_source_khr d3d_device_source,
void *d3d_object,
cl_d3d10_device_set_khr d3d_device_set,
cl_uint num_entries, cl_device_id *devices,
cl_uint *num_devices)

d3d_device_source:
CL_D3D10_{DEVICE, DXGI_ADAPTER}_KHR

d3d_device_set:
CL_{ALL, PREFERRED}_DEVICES_FOR_D3D10_KHR

cl_mem clCreateFromD3D10BufferKHR (
cl_context context, cl_mem_flags flags,
ID3D10Buffer *resource, cl_int *errcode_ret)

flags: See clCreateFromGLBuffer

cl_mem clCreateFromD3D10Texture2DKHR (
cl_context context, cl_mem_flags flags,
ID3D10Texture2D *resource, UINT subresource,
cl_int *errcode_ret)

flags: See clCreateFromD3D10BufferKHR

cl_mem clCreateFromD3D10Texture3DKHR (
cl_context context, cl_mem_flags flags,
ID3D10Texture3D *resource, UINT subresource,
cl_int *errcode_ret)

flags: See clCreateFromGLBuffer

cl_int clEnqueue{Acquire, Release}D3D10ObjectsKHR (
cl_ command_queue command_queue,
cl_uint num_objects, const cl_mem *mem_objects,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

Using OpenCL Extensions [9]
The following extensions extend the OpenCL API.
Extensions shown in italics provide core features.
To control an extension: #pragma OPENCL EXTENSION
extension_name : {enable | disable}
To test if an extension is supported, use
clGetPlatformInfo() or clGetDeviceInfo()
To get the address of the extension function:
clGetExtensionFunctionAddressForPlatform()

cl_apple_gl_sharing (see cl_khr_gl_sharing)
cl_khr_3d_image_writes
cl_khr_byte_addressable_store
cl_khr_context_abort
cl_khr_d3d10_sharing

cl_khr_d3d11_sharing
cl_khr_depth_images
cl_khr_device_enqueue_local_arg_types
cl_khr_dx9_media_sharing
cl_khr_egl_event
cl_khr_egl_image
cl_khr_fp16
cl_khr_fp64
cl_khr_gl_depth_images
cl_khr_gl_event
cl_khr_gl_msaa_sharing
cl_khr_gl_sharing
cl_khr_global_int32_base_atomics - atomic_*()
cl_khr_global_int32_extended_atomics - atomic_*()
cl_khr_icd

cl_khr_image2d_from_buffer
cl_khr_initialize_memory
cl_khr_int64_base_atomics - atom_*()
cl_khr_int64_extended_atomics - atom_*()
cl_khr_local_int32_base_atomics - atomic_*()
cl_khr_local_int32_extended_atomics - atomic_*()
cl_khr_mipmap_image
cl_khr_mipmap_image_writes
cl_khr_priority_hints
cl_khr_srgb_image_writes
cl_khr_spir
cl_khr_subgroups
cl_khr_terminate_context
cl_khr_throttle_hints

OpenCL Extensions Reference Section and table references are to the OpenCL Extensions 2.1 specification.

CL Image Objects > GL Renderbuffers [9.6.4]
cl_mem clCreateFromGLRenderbuffer (

cl_context context, cl_mem_flags flags,
GLuint renderbuffer, cl_int *errcode_ret)

flags: See clCreateFromGLBuffer

Query Information [9.6.5]
cl_int clGetGLObjectInfo (cl_mem memobj,

cl_gl_object_type *gl_object_type,
GLuint *gl_object_name)

*gl_object_type returns:
CL_GL_OBJECT_TEXTURE_BUFFER,
CL_GL_OBJECT_TEXTURE{1D, 2D, 3D},
CL_GL_OBJECT_TEXTURE{1D, 2D}_ARRAY,
CL_GL_OBJECT_{BUFFER, RENDERBUFFER}

cl_int clGetGLTextureInfo (cl_mem memobj,
cl_gl_texture_info param_name,
size_t param_value_size, void *param_value,
size_t *param_value_size_ret)

param_name: CL_GL_{TEXTURE_TARGET,
MIPMAP_LEVEL}, CL_GL_NUM_SAMPLES
(Requires extension cl_khr_gl_msaa_sharing)

Share Objects [9.6.6]
cl_int clEnqueue{Acquire, Release}GLObjects (

cl_command_queue command_queue,
cl_uint num_objects, const cl_mem *mem_objects,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event)

CL Event Objects > GL Sync Objects [9.7.4]
cl_event clCreateEventFromGLsyncKHR (

cl_context context, GLsync sync,
cl_int *errcode_ret)

Requires the cl_khr_gl_event extension.

OpenGL Sharing [9.5 - 9.7]
These functions require the cl_khr_gl_sharing or
cl_apple_ gl_sharing extension.

CL Context > GL Context, Sharegroup [9.5.5]
cl_int clGetGLContextInfoKHR (

const cl_context_properties *properties,
cl_gl_context_info param_name,
size_t param_value_size, void *param_value,
size_t *param_value_size_ret)

param_name: CL_DEVICES_FOR_GL_CONTEXT_KHR,
CL_CURRENT_DEVICE_FOR_GL_CONTEXT_KHR

CL Buffer Objects > GL Buffer Objects [9.6.2]
cl_mem clCreateFromGLBuffer (cl_context context,

cl_mem_flags flags, GLuint bufobj, cl_int *errcode_ret)
flags: CL_MEM_{READ_ONLY, WRITE_ONLY, READ_WRITE}

CL Image Objects > GL Textures [9.6.3]
cl_mem clCreateFromGLTexture (cl_context context,

cl_mem_flags flags, GLenum texture_target,
GLint miplevel, GLuint texture, cl_int *errcode_ret)

flags: See clCreateFromGLBuffer
texture_target: GL_TEXTURE_{1D, 2D}[_ARRAY],

GL_TEXTURE_{3D, BUFFER, RECTANGLE},
GL_TEXTURE_CUBE_MAP_POSITIVE_{X, Y, Z},
GL_TEXTURE_CUBE_MAP_NEGATIVE_{X, Y, Z},
GL_TEXTURE_2D_MULTISAMPLE[_ARRAY] (Requires
extension cl_khr_gl_msaa_sharing)

EGL Interoperabililty [9.18, 9.19]

Create CL Image Objects from EGL
These functions require the extension cl_khr_egl_image.
cl_mem clCreateFromEGLImageKHR (

cl_context context, CLeglDisplayKHR display,
CLeglImageKHR image, cl_mem_flags flags,
const cl_egl_image_properties_khr *properties,
cl_int *errcode_ret)

cl_int clEnqueue{Acquire, Release}EGLObjectsKHR (
cl_command_queue command_queue,
cl_uint num_objects, const cl_mem *mem_objects,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list,
cl_event *event)

Create CL Event Objects from EGL
This function requires the extension cl_khr_egl_event.
cl_event clCreateEventFromEGLsyncKHR (

cl_context context, CLeglSyncKHR sync,
CLeglDisplayKHR display, cl_int *errcode_ret)

OpenCL 2.1 Reference GuidePage 14

©2015 Khronos Group - Rev. 1118 www.khronos.org/opencl

Example of Enqueuing Kernels

Arguments that are a pointer type to local address space [6.13.17.2]
A block passed to enqueue_kernel can have arguments declared to be a pointer
to local memory. The enqueue_kernel built-in function variants allow blocks to be
enqueued with a variable number of arguments. Each argument must be declared to
be a void pointer to local memory. These enqueue_kernel built-in function variants
also have a corresponding number of arguments each of type uint that follow the
block argument. These arguments specify the size of each local memory pointer
argument of the enqueued block.

kernel void

my_func_A_local_arg1(global int *a, local int *lptr, …)

{

	 ...

}

kernel void

my_func_A_local_arg2(global int *a,

	 local int *lptr1, local float4 *lptr2, …)

{

	 ...

}

kernel void

my_func_B(global int *a, …)

{

	 ...

	 ndrange_t ndrange = ndrange_1d(...);

	 uint local_mem_size = compute_local_mem_size();

	 enqueue_kernel(get_default_queue(),

		 CLK_ENQUEUE_FLAGS_WAIT_KERNEL,

		 ndrange,

		 ^(local void *p){

			 my_func_A_local_arg1(a, (local int *)p, ...);},

		 local_mem_size);

}

kernel void

my_func_C(global int *a, ...)

{

	 ...

	 ndrange_t ndrange = ndrange_1d(...);

	 void (^my_blk_A)(local void *, local void *) =

		 ^(local void *lptr1, local void *lptr2){

			 my_func_A_local_arg2(

				 a,

				 (local int *)lptr1,

				 (local float4 *)lptr2, ...);};

	 // calculate local memory size for lptr

	 // argument in local address space for my_blk_A

	 uint local_mem_size = compute_local_mem_size();

	 enqueue_kernel(get_default_queue(),

		 CLK_ENQUEUE_FLAGS_WAIT_KERNEL,

		 ndrange,

		 my_blk_A,

		 local_mem_size, local_mem_size * 4);

}

A Complete Example [6.13.17.3]
The example below shows how to implement an iterative algorithm where the host
enqueues the first instance of the nd-range kernel (dp_func_A). The kernel dp_func_A
will launch a kernel (evaluate_dp_work_A) that will determine if new nd-range work
needs to be performed. If new nd-range work does need to be performed, then
evaluate_dp_work_A will enqueue a new instance of dp_func_A . This process is
repeated until all the work is completed.

kernel void

dp_func_A(queue_t q, ...)

{

	 ...

	 // queue a single instance of evaluate_dp_work_A to

	 // device queue q. queued kernel begins execution after

	 // kernel dp_func_A finishes

	 if (get_global_id(0) == 0)

	 {

		 enqueue_kernel(q,

						 CLK_ENQUEUE_FLAGS_WAIT_KERNEL,

		 				 ndrange_1d(1),

						 ^{evaluate_dp_work_A(q, ...);});

	 }

}

kernel void

evaluate_dp_work_A(queue_t q,...)

{

	 // check if more work needs to be performed

	 bool more_work = check_new_work(...);

	 if (more_work)

	 {

		 size_t global_work_size = compute_global_size(...);

		 void (^dp_func_A_blk)(void) =

			 ^{dp_func_A(q, ...});

		 // get local WG-size for kernel dp_func_A

		 size_t local_work_size =

			 get_kernel_work_group_size(dp_func_A_blk);

		 // build nd-range descriptor

		 ndrange_t ndrange = ndrange_1D(global_work_size,

									 local_work_size);

		 // enqueue dp_func_A

		 enqueue_kernel(q,

						 CLK_ENQUEUE_FLAGS_WAIT_KERNEL,

						 ndrange,

						 dp_func_A_blk);

	 }

	 ...

}

OpenCL 2.1 Reference Guide Page 15

©2015 Khronos Group - Rev. 1118 www.khronos.org/opencl

Notes

OpenCL 2.1 Reference GuidePage 16

©2015 Khronos Group - Rev. 1118 www.khronos.org/opencl

The Khronos Group is an industry consortium creating open standards for the authoring and
acceleration of parallel computing, graphics and dynamic media on a wide variety of platforms and
devices. See www.khronos.org to learn more about the Khronos Group.

Khronos Group and the Khronos Group logo are registered trademarks of the Khronos Group, and
the Khronos OpenCL logo is a trademark of Apple Inc. and is used under license by Khronos.

Reference card production by Miller & Mattson www.millermattson.com

OpenCL Reference Card Index
The following index shows the page number for each item included in this guide. The color of the row in the table below is the color of the box to which you should refer.

A
Access Qualifiers 12
Address Space Qualifiers 5
Address Space Qualifier Functions 9
Architecture Diagram 2
Async Copies and Prefetch 8
Atomic Functions 8
Attribute Qualifiers 5

B
Barriers 4
Blocks 6
Buffer Objects 2

C
cl_khr_* 13
clBuildProgram 3
clCloneKernel 3
clCompileProgram 3
clCreateBuffer 2
clCreateCommandQueueWithProperties 1
clCreateContext 1
clCreateContextFromType 1
clCreateEventFromEGLsyncKHR 13
clCreateEventFromGLsyncKHR 13
clCreateFromD3D10BufferKHR 13
clCreateFromD3D10Texture2DKHR 13
clCreateFromD3D10Texture3DKHR 13
clCreateFromD3D11BufferKHR 13
clCreateFromD3D11Texture2DKHR 13
clCreateFromD3D11Texture3DKHR 13
clCreateFromDX9MediaSurfaceKHR 13
clCreateFromEGLImageKHR 13
clCreateFromGLBuffer 13
clCreateFromGLRenderbuffer 13
clCreateFromGLTexture 13
clCreateImage 10
clCreateKernel 3
clCreateKernelsInProgram 3
clCreatePipe 2
clCreateProgramWithBinary 3
clCreateProgramWithBuiltInKernels 3
clCreateProgramWithIL 3
clCreateProgramWithSource 3
clCreateSamplerWithProperties 12
clCreateSubBuffer 2
clCreateSubDevices 1
clCreateUserEvent 4
clEnqueueAcquireD3D10ObjectsKHR 13
clEnqueueAcquireD3D11ObjectsKHR 13
clEnqueueAcquireDX9MediaSurfacesKHR 13
clEnqueueAcquireEGLObjectsKHR 13
clEnqueueAcquireGLObjects 13
clEnqueueBarrierWithWaitList 4
clEnqueueCopyBuffer[Rect] 2
clEnqueueCopyBufferToImage 10
clEnqueueCopyImage 10
clEnqueueCopyImageToBuffer 10
clEnqueueFillBuffer 2
clEnqueueFillImage 10
clEnqueueMapBuffer 2
clEnqueueMapImage 10
clEnqueueMarkerWithWaitList 4
clEnqueueMigrateMemObjects 2
clEnqueueNativeKernel 4
clEnqueueNDRangeKernel 4

clEnqueueReadBuffer[Rect] 2

clEnqueueReadImage 10

clEnqueueReleaseD3D10ObjectsKHR 13

clEnqueueReleaseD3D11ObjectsKHR 13

clEnqueueReleaseDX9MediaSurfacesKHR 13

clEnqueueReleaseEGLObjectsKHR 13

clEnqueueReleaseGLObjects 12

clEnqueueSVM[Un]Map 3

clEnqueueSVMFree 3

clEnqueueSVMMem{cpy, Fill} 3

clEnqueueUnmapMemObject 2

clEnqueueWriteBuffer[Rect] 2

clEnqueueWriteImage 10

clFinish 3

clFlush 3

clGetCommandQueueInfo 1

clGetContextInfo 1

clGetDeviceIDs 1

clGetDeviceIDsFromD3D10KHR 13

clGetDeviceIDsFromD3D11KHR 13

clGetDeviceIDsFromDX9MediaAdapterKHR 13

clGetDeviceInfo 1

clGetDeviceAndHostTimer 1

clGetEventInfo 4

clGetEventProfilingInfo 4

clGetExtensionFunctionAddressForPlatform 1

clGetGLContextInfoKHR 13

clGetGLObjectInfo 13

clGetGLTextureInfo 13

clGetHostTimer 1

clGetImageInfo 10

clGetKernelArgInfo 3

clGetKernelInfo 3

clGetKernelSubGroupInfo 4

clGetKernelWorkGroupInfo 3

clGetMemObjectInfo 2

clGetPipeInfo 2

clGetPlatformIDs 1

clGetPlatformInfo 1

clGetProgramBuildInfo 3

clGetProgramInfo 3

clGetSamplerInfo 12

clGetSupportedImageFormats 10

clIcdGetPlatformIDsKHR 1

clLinkProgram 3

clReleaseCommandQueue 1

clReleaseContext 1

clReleaseDevice 1

clReleaseEvent 4

clReleaseKernel 3

clReleaseMemObject 2

clReleaseProgram 3

clReleaseSampler 12

clRetainCommandQueue 1

clRetainContext 1

clRetainDevice 1

clRetainEvent 4

clRetainKernel 3

clRetainMemObject 2

clRetainProgram 3

clRetainSampler 12
clSetDefaultDeviceCommandQueue 1
clSetEventCallback 4

clSetKernelArg 3

clSetKernelArgSVMPointer 3

clSetKernelExecInfo 3

clSetMemObjectDestructorCallback 2

clSetUserEventStatus 4

clSVMAlloc 3

clSVMFree 3

clTerminateContextKHR 1

clUnloadPlatformCompiler 3

clWaitForEvents 4

Code Examples 14

Command Queues 1

Common Built-in Functions 7

Compiler Options 3

Contexts 1

Conversions and Type Casting 2

Copy Between Image, Buffer Objects 10

D
Data Types 5

Debugging options 3

Device Architecture Diagram 2

Direct3D 10 Sharing 13

Direct3D 11 Sharing 13

DX9 Media Surface Sharing 13

E - F
EGL Interoperability 13
Enqueuing & Kernel Query Built-in Functions 9
Enqueuing Kernels Code Examples 14
Event Built-in Functions 10
Event Objects 4
Execute Kernels 4
Extension Function Pointers 1
Extensions 13
Fence Functions 8
Flush and Finish 3
Function Qualifiers 5

G - H
Geometric Built-in Functions 7
Helper Built-in Functions 10

I
Image Formats 10
Image Objects 10
Image Query Functions 12
Image Read and Write Functions 11-12
Integer Built-in Functions 7

K
Kernel Arguments and Queries 3
Kernel Objects 3
Kernel Query Built-in Functions 9

L
Library linking options 3
Linker Options 3

M
Map and Unmap Image Objects 10
Map Buffer Objects 2

Markers, Barriers, Waiting for Events 4
Math Built-in Functions 6
Math Constants 6
Memory Fence Functions 8
Memory Objects 2
Migrate Memory Objects 2

O
OpenCL Class Diagram 2
OpenCL Extensions 13
OpenGL Sharing 13
Operators 5
Optimization options 3

P
Partitioning a Device 1

Pipe Built-in Functions 9

Pipes 2

Prefetch 8

Preprocessor 3

Preprocessor Directives & Macros 5

printf Function 9

Profiling Operations 4

Program linking options 3

Program Objects 3

Q
Qualifiers 5
Query Image Objects 10
Query Image Functions 12
Query List of Supported Image Formats 10
Query Memory Object 2
Query Program Objects 3
Querying Platform Info & Devices 1

R
Read, Write, Copy Buffer Objects 2
Read, Write, Copy, Fill Image Objects 10
Relational Built-in Functions 7

S - T
Sampler Objects, Declaration Fields 12

Scalar Data Types 5

Separate Compilation and Linking 3

Shared Virtual Memory 3,4

SPIR binary options 3

Supported Data Types 5

SVM Sharing Granularity 3

Synchronization & Memory Fence Functions 8

Type Casting Examples 2

Types 5

U - V
Unload the OpenCL Compiler 3
Unroll attribute qualifiers 5
Vector Component Addressing 5
Vector Data Load/Store 8
Vector Functions 9
Vector Data Types 5

W
Waiting for Events 4
Warning request/suppress 3
Workgroup Functions 9
Work-Item Built-in Functions 6

