The OpenCL "~ Specification

Khronos® OpenCL Working Group

Version V2.2-11, Fri, 19 Jul 2019 14:08:05 +0000

Table of Contents

1. Introduction
1.1. Normative References
1.2. Version Numbers
2. Glossary
3. The OpenCL Architecture
3.1. Platform Model
3.2. Execution Model
3.3. Memory Model
3.4. The OpenCL Framework
4. The OpenCL Platform Layer
4.1. Querying Platform Info
4.2. Querying Devices
4.3. Partitioning a Device
4.4. Contexts
5. The OpenCL Runtime
5.1. Command Queues
5.2. Buffer Objects
5.3. Image Objects
5.4. Pipes
5.5. Querying, Unmapping, Migrating, Retaining and Releasing Memory Objects
5.6. Shared Virtual Memory
5.7. Sampler Objects
5.8. Program Objects
5.9. Kernel Objects
5.10. Executing Kernels
5.11. Event Objects
5.12. Markers, Barriers and Waiting for Events
5.13. Out-of-order Execution of Kernels and Memory Object Commands
5.14. Profiling Operations on Memory Objects and Kernels
5.15. Flush and Finish
6. Associated OpenCL specification
6.1. SPIR-V Intermediate language
6.2. Extensions to OpenCL
6.3. Support for earlier OpenCL C kernel languages
7. OpenCL Embedded Profile
Appendix A: Shared Objects, Thread Safety
Shared OpenCL Objects
Multiple Host Threads

=W W N

18
18
19
29
49
51
51
33
72
76
83
83
89
109
138
140
151
163
168
196
217
222
232
234
235
237
239
239
239
239
240
246
246
246

Appendix B: Portability
Appendix C: Application Data Types
Supported Application Scalar Data Types
Supported Application Vector Data Types
Alignment of Application Data Types
Vector Literals
Vector Components
Implicit Conversions
Explicit Casts
Other operators and functions
Application constant definitions
Appendix D: Checking for Memory Copy Overlap
Appendix E: Changes to OpenCL
Summary of changes from OpenCL 1.0 to OpenCL 1.1
Summary of changes from OpenCL 1.1 to OpenCL 1.2
Summary of changes from OpenCL 1.2 to OpenCL 2.0
Summary of changes from OpenCL 2.0 to OpenCL 2.1
Summary of changes from OpenCL 2.1 to OpenCL 2.2
Appendix F: Error Codes

Acknowledgements

248
253
253
253
254
254
254
256
256
256
256
259
261
261
262
263
264
265
266
270

Copyright 2008-2019 The Khronos Group.

This specification is protected by copyright laws and contains material proprietary to the Khronos
Group, Inc. Except as described by these terms, it or any components may not be reproduced,
republished, distributed, transmitted, displayed, broadcast or otherwise exploited in any manner
without the express prior written permission of Khronos Group.

Khronos Group grants a conditional copyright license to use and reproduce the unmodified
specification for any purpose, without fee or royalty, EXCEPT no licenses to any patent, trademark
or other intellectual property rights are granted under these terms. Parties desiring to implement
the specification and make use of Khronos trademarks in relation to that implementation, and
receive reciprocal patent license protection under the Khronos IP Policy must become Adopters and
confirm the implementation as conformant under the process defined by Khronos for this
specification; see https://www.khronos.org/adopters.

Khronos Group makes no, and expressly disclaims any, representations or warranties, express or
implied, regarding this specification, including, without limitation: merchantability, fitness for a
particular purpose, non-infringement of any intellectual property, correctness, accuracy,
completeness, timeliness, and reliability. Under no circumstances will the Khronos Group, or any of
its Promoters, Contributors or Members, or their respective partners, officers, directors, employees,
agents or representatives be liable for any damages, whether direct, indirect, special or
consequential damages for lost revenues, lost profits, or otherwise, arising from or in connection
with these materials.

Vulkan and Khronos are registered trademarks, and OpenXR, SPIR, SPIR-V, SYCL, WebGL, WebCL,
OpenVX, OpenVG, EGL, COLLADA, gITF, NNEF, OpenKODE, OpenKCAM, StreamInput, OpenWF,
OpenSL ES, OpenMAX, OpenMAX AL, OpenMAX IL, OpenMAX DL, OpenML and DevU are
trademarks of the Khronos Group Inc. ASTC is a trademark of ARM Holdings PLC, OpenCL is a
trademark of Apple Inc. and OpenGL and OpenML are registered trademarks and the OpenGL ES
and OpenGL SC logos are trademarks of Silicon Graphics International used under license by
Khronos. All other product names, trademarks, and/or company names are used solely for
identification and belong to their respective owners.

https://www.khronos.org/adopters

Chapter 1. Introduction

Modern processor architectures have embraced parallelism as an important pathway to increased
performance. Facing technical challenges with higher clock speeds in a fixed power envelope,
Central Processing Units (CPUs) now improve performance by adding multiple cores. Graphics
Processing Units (GPUs) have also evolved from fixed function rendering devices into
programmable parallel processors. As todays computer systems often include highly parallel CPUs,
GPUs and other types of processors, it is important to enable software developers to take full
advantage of these heterogeneous processing platforms.

Creating applications for heterogeneous parallel processing platforms is challenging as traditional
programming approaches for multi-core CPUs and GPUs are very different. CPU-based parallel
programming models are typically based on standards but usually assume a shared address space
and do not encompass vector operations. General purpose GPU programming models address
complex memory hierarchies and vector operations but are traditionally platform-, vendor- or
hardware-specific. These limitations make it difficult for a developer to access the compute power
of heterogeneous CPUs, GPUs and other types of processors from a single, multi-platform source
code base. More than ever, there is a need to enable software developers to effectively take full
advantage of heterogeneous processing platforms from high performance compute servers,
through desktop computer systems to handheld devices - that include a diverse mix of parallel
CPUs, GPUs and other processors such as DSPs and the Cell/B.E. processor.

OpenCL (Open Computing Language) is an open royalty-free standard for general purpose parallel
programming across CPUs, GPUs and other processors, giving software developers portable and
efficient access to the power of these heterogeneous processing platforms.

OpenCL supports a wide range of applications, ranging from embedded and consumer software to
HPC solutions, through a low-level, high-performance, portable abstraction. By creating an efficient,
close-to-the-metal programming interface, OpenCL will form the foundation layer of a parallel
computing ecosystem of platform-independent tools, middleware and applications. OpenCL is
particularly suited to play an increasingly significant role in emerging interactive graphics
applications that combine general parallel compute algorithms with graphics rendering pipelines.

OpenCL consists of an API for coordinating parallel computation across heterogeneous processors;
and a cross-platform intermediate language with a well-specified computation environment. The
OpenCL standard:

» Supports both data- and task-based parallel programming models

» Utilizes a portable and self-contained intermediate representation with support for parallel
execution

* Defines consistent numerical requirements based on IEEE 754
* Defines a configuration profile for handheld and embedded devices
* Efficiently interoperates with OpenGL, OpenGL ES and other graphics APIs
This document begins with an overview of basic concepts and the architecture of OpenCL, followed

by a detailed description of its execution model, memory model and synchronization support. It
then discusses the OpenCL platform and runtime API. Some examples are given that describe

sample compute use-cases and how they would be written in OpenCL. The specification is divided
into a core specification that any OpenCL compliant implementation must support; a
handheld/embedded profile which relaxes the OpenCL compliance requirements for handheld and
embedded devices; and a set of optional extensions that are likely to move into the core
specification in later revisions of the OpenCL specification.

1.1. Normative References

Normative references are references to external documents or resources to which implementers of
OpenCL must comply with all, or specified portions of, as described in this specification.

ISO/IEC 9899:2011 - Information technology - Programming languages - C, https://www.iso.org/
standard/57853.html (final specification), http://www.open-std.org/jtc1/sc22/WG14/www/docs/
n1570.pdf (last public draft).

1.2. Version Numbers

The OpenCL version number follows a major.minor-revision scheme. When this version number is
used within the API it generally only includes the major.minor components of the version number.

A difference in the major or minor version number indicates that some amount of new
functionality has been added to the specification, and may also include behavior changes and bug
fixes. Functionality may also be deprecated or removed when the major or minor version changes.

A difference in the revision number indicates small changes to the specification, typically to fix a
bug or to clarify language. When the revision number changes there may be an impact on the
behavior of existing functionality, but this should not affect backwards compatibility. Functionality
should not be added or removed when the revision number changes.

https://www.iso.org/standard/57853.html
https://www.iso.org/standard/57853.html
http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1570.pdf
http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1570.pdf

Chapter 2. Glossary

Application

The combination of the program running on the host and OpenCL devices.

Acquire semantics

One of the memory order semantics defined for synchronization operations. Acquire semantics
apply to atomic operations that load from memory. Given two units of execution, A and B, acting
on a shared atomic object M, if A uses an atomic load of M with acquire semantics to
synchronize-with an atomic store to M by B that used release semantics, then A's atomic load
will occur before any subsequent operations by A. Note that the memory orders release,
sequentially consistent, and acquire_release all include release semantics and effectively pair with
a load using acquire semantics.

Acquire release semantics

A memory order semantics for synchronization operations (such as atomic operations) that has
the properties of both acquire and release memory orders. It is used with read-modify-write
operations.

Atomic operations

Operations that at any point, and from any perspective, have either occurred completely, or not
at all. Memory orders associated with atomic operations may constrain the visibility of loads and
stores with respect to the atomic operations (see relaxed semantics, acquire semantics, release
semantics or acquire release semantics).

Blocking and Non-Blocking Enqueue API calls

A non-blocking enqueue API call places a command on a command-queue and returns
immediately to the host. The blocking-mode enqueue API calls do not return to the host until the
command has completed.

Barrier

There are three types of barriers a command-queue barrier, a work-group barrier and a sub-
group barrier.

* The OpenCL API provides a function to enqueue a command-queue barrier command. This
barrier command ensures that all previously enqueued commands to a command-queue
have finished execution before any following commands enqueued in the command-queue
can begin execution.

* The OpenCL kernel execution model provides built-in work-group barrier functionality. This
barrier built-in function can be used by a kernel executing on a device to perform
synchronization between work-items in a work-group executing the kernel. All the work-
items of a work-group must execute the barrier construct before any are allowed to continue
execution beyond the barrier.

* The OpenCL kernel execution model provides built-in sub-group barrier functionality. This
barrier built-in function can be used by a kernel executing on a device to perform
synchronization between work-items in a sub-group executing the kernel. All the work-items
of a sub-group must execute the barrier construct before any are allowed to continue

execution beyond the barrier.

Buffer Object

A memory object that stores a linear collection of bytes. Buffer objects are accessible using a
pointer in a kernel executing on a device. Buffer objects can be manipulated by the host using
OpenCL API calls. A buffer object encapsulates the following information:

+ Size in bytes.
» Properties that describe usage information and which region to allocate from.

e Buffer data.

Built-in Kernel

A built-in kernel is a kernel that is executed on an OpenCL device or custom device by fixed-
function hardware or in firmware. Applications can query the built-in kernels supported by a
device or custom device. A program object can only contain kernels written in OpenCL C or built-
in kernels but not both. See also Kernel and Program.

Child kernel

See Device-side enqueue.

Command

The OpenCL operations that are submitted to a command-queue for execution. For example,
OpenCL commands issue kernels for execution on a compute device, manipulate memory
objects, etc.

Command-queue

An object that holds commands that will be executed on a specific device. The command-queue is
created on a specific device in a context. Commands to a command-queue are queued in-order but
may be executed in-order or out-of-order. Refer to In-order Execution_and_Out-of-order
Execution.

Command-queue Barrier

See Barrier.

Command synchronization

Constraints on the order that commands are launched for execution on a device defined in
terms of the synchronization points that occur between commands in host command-queues
and between commands in device-side command-queues. See synchronization points.

Complete

The final state in the six state model for the execution of a command. The transition into this
state occurs is signaled through event objects or callback functions associated with a command.

Compute Device Memory

This refers to one or more memories attached to the compute device.

Compute Unit

An OpenCL device has one or more compute units. A work-group executes on a single compute

unit. A compute unit is composed of one or more processing elements and local memory. A
compute unit may also include dedicated texture filter units that can be accessed by its
processing elements.

Concurrency

A property of a system in which a set of tasks in a system can remain active and make progress
at the same time. To utilize concurrent execution when running a program, a programmer must
identify the concurrency in their problem, expose it within the source code, and then exploit it
using a notation that supports concurrency.

Constant Memory

A region of global memory that remains constant during the execution of a kernel. The host
allocates and initializes memory objects placed into constant memory.

Context

The environment within which the kernels execute and the domain in which synchronization
and memory management is defined. The context includes a set of devices, the memory
accessible to those devices, the corresponding memory properties and one or more command-
queues used to schedule execution of a kernel(s) or operations on memory objects.

Control flow

The flow of instructions executed by a work-item. Multiple logically related work items may or
may not execute the same control flow. The control flow is said to be converged if all the work-
items in the set execution the same stream of instructions. In a diverged control flow, the work-
items in the set execute different instructions. At a later point, if a diverged control flow
becomes converged, it is said to be a re-converged control flow.

Converged control flow

See Control flow.

Custom Device

An OpenCL device that fully implements the OpenCL Runtime but does not support programs
written in OpenCL C. A custom device may be specialized non-programmable hardware that is
very power efficient and performant for directed tasks or hardware with limited programmable
capabilities such as specialized DSPs. Custom devices are not OpenCL conformant. Custom
devices may support an online compiler. Programs for custom devices can be created using the
OpenCL runtime APIs that allow OpenCL programs to be created from source (if an online
compiler is supported) and/or binary, or from built-in kernels supported by the device. See also
Device.

Data Parallel Programming Model

Traditionally, this term refers to a programming model where concurrency is expressed as
instructions from a single program applied to multiple elements within a set of data structures.
The term has been generalized in OpenCL to refer to a model wherein a set of instructions from
a single program are applied concurrently to each point within an abstract domain of indices.

Data race

The execution of a program contains a data race if it contains two actions in different work

items or host threads where (1) one action modifies a memory location and the other action
reads or modifies the same memory location, and (2) at least one of these actions is not atomic,
or the corresponding memory scopes are not inclusive, and (3) the actions are global actions
unordered by the global-happens-before relation or are local actions unordered by the local-
happens before relation.

Deprecation

Existing features are marked as deprecated if their usage is not recommended as that feature is
being de-emphasized, superseded and may be removed from a future version of the
specification.

Device

A device is a collection of compute units. A command-queue is used to queue commands to a
device. Examples of commands include executing kernels, or reading and writing memory objects.
OpenCL devices typically correspond to a GPU, a multi-core CPU, and other processors such as
DSPs and the Cell/B.E. processor.

Device-side enqueue

A mechanism whereby a kernel-instance is enqueued by a kernel-instance running on a device
without direct involvement by the host program. This produces nested parallelism; i.e. additional
levels of concurrency are nested inside a running kernel-instance. The kernel-instance executing
on a device (the parent kernel) enqueues a kernel-instance (the child kernel) to a device-side
command queue. Child and parent kernels execute asynchronously though a parent kernel does
not complete until all of its child-kernels have completed.

Diverged control flow

See Control flow.

Ended

The fifth state in the six state model for the execution of a command. The transition into this
state occurs when execution of a command has ended. When a Kernel-enqueue command ends,
all of the work-groups associated with that command have finished their execution.

Event Object

An event object encapsulates the status of an operation such as a command. It can be used to
synchronize operations in a context.

Event Wait List

An event wait list is a list of event objects that can be used to control when a particular command
begins execution.

Fence

A memory ordering operation without an associated atomic object. A fence can use the acquire
semantics, release semantics, or acquire release semantics.

Framework

A software system that contains the set of components to support software development and
execution. A framework typically includes libraries, APIs, runtime systems, compilers, etc.

Generic address space

An address space that include the private, local, and global address spaces available to a device.
The generic address space supports conversion of pointers to and from private, local and global
address spaces, and hence lets a programmer write a single function that at compile time can
take arguments from any of the three named address spaces.

Global Happens before
See Happens before.

Global ID

A global ID is used to uniquely identify a work-item and is derived from the number of global
work-items specified when executing a kernel. The global ID is a N-dimensional value that starts
at (0,0, ... 0). See also Local ID.

Global Memory

A memory region accessible to all work-items executing in a context. It is accessible to the host
using commands such as read, write and map. Global memory is included within the generic
address space that includes the private and local address spaces.

GL share group

A GL share group object manages shared OpenGL or OpenGL ES resources such as textures,
buffers, framebuffers, and renderbuffers and is associated with one or more GL context objects.
The GL share group is typically an opaque object and not directly accessible.

Handle

An opaque type that references an object allocated by OpenCL. Any operation on an object
occurs by reference to that objects handle.

Happens before

An ordering relationship between operations that execute on multiple units of execution. If an
operation A happens-before operation B then A must occur before B; in particular, any value
written by A will be visible to B. We define two separate happens before relations: global-
happens-before and local-happens-before. These are defined in Memory Model: Memory Ordering
Rules.

Host
The host interacts with the context using the OpenCL APIL

Host-thread

The unit of execution that executes the statements in the host program.

Host pointer

A pointer to memory that is in the virtual address space on the host.

Illegal

Behavior of a system that is explicitly not allowed and will be reported as an error when
encountered by OpenCL.

Image Object

A memory object that stores a two- or three-dimensional structured array. Image data can only
be accessed with read and write functions. The read functions use a sampler.

The image object encapsulates the following information:

» Dimensions of the image.
* Description of each element in the image.
» Properties that describe usage information and which region to allocate from.

* Image data.
The elements of an image are selected from a list of predefined image formats.

Implementation Defined

Behavior that is explicitly allowed to vary between conforming implementations of OpenCL. An
OpenCL implementor is required to document the implementation-defined behavior.

Independent Forward Progress

If an entity supports independent forward progress, then if it is otherwise not dependent on any
actions due to be performed by any other entity (for example it does not wait on a lock held by,
and thus that must be released by, any other entity), then its execution cannot be blocked by the
execution of any other entity in the system (it will not be starved). Work items in a subgroup, for
example, typically do not support independent forward progress, so one work item in a
subgroup may be completely blocked (starved) if a different work item in the same subgroup
enters a spin loop.

In-order Execution

A model of execution in OpenCL where the commands in a command-queue are executed in
order of submission with each command running to completion before the next one begins. See
Out-of-order Execution.

Intermediate Language

A lower-level language that may be used to create programs. SPIR-V is a required IL for OpenCL
2.2 runtimes. Additional ILs may be accepted on an implementation-defined basis.

Kernel

A kernel is a function declared in a program and executed on an OpenCL device. A kernel is
identified by the kernel or kernel qualifier applied to any function defined in a program.

Kernel-instance

The work carried out by an OpenCL program occurs through the execution of kernel-instances
on devices. The kernel instance is the kernel object, the values associated with the arguments to
the kernel, and the parameters that define the NDRange index space.

Kernel Object

A kernel object encapsulates a specific kernel function declared in a program and the argument
values to be used when executing this kernel function.

Kernel Language

A language that is used to create source code for kernel. Supported kernel languages include
OpenCL C, OpenCL C++, and OpenCL dialect of SPIR-V.

Launch

The transition of a command from the submitted state to the ready state. See Ready.

Local ID

A local ID specifies a unique work-item ID within a given work-group that is executing a kernel.
The local ID is a N-dimensional value that starts at (0, O, ... 0). See also Global ID.

Local Memory

A memory region associated with a work-group and accessible only by work-items in that work-
group. Local memory is included within the generic address space that includes the private and
global address spaces.

Marker

A command queued in a command-queue that can be used to tag all commands queued before the
marker in the command-queue. The marker command returns an event which can be used by the
application to queue a wait on the marker event i.e. wait for all commands queued before the
marker command to complete.

Memory Consistency Model

Rules that define which values are observed when multiple units of execution load data from
any shared memory plus the synchronization operations that constrain the order of memory
operations and define synchronization relationships. The memory consistency model in OpenCL
is based on the memory model from the ISO C11 programming language.

Memory Objects

A memory object is a handle to a reference counted region of Global Memory. Also see Buffer
Object and Image Object.

Memory Regions (or Pools)

A distinct address space in OpenCL. Memory regions may overlap in physical memory though
OpenCL will treat them as logically distinct. The memory regions are denoted as private, local,
constant, and global.

Memory Scopes

These memory scopes define a hierarchy of visibilities when analyzing the ordering constraints
of memory operations. They are defined by the values of the memory_scope enumeration
constant. Current values are memory_scope_work_item (memory constraints only apply to a
single work-item and in practice apply only to image operations), memory_scope_sub_group
(memory-ordering constraints only apply to work-items executing in a sub-group),
memory_scope_work_group (memory-ordering constraints only apply to work-items executing
in a work-group), memory_scope_device (memory-ordering constraints only apply to work-
items executing on a single device) and memory_scope_all svin_devices (memory-ordering
constraints only apply to work-items executing across multiple devices and when using shared
virtual memory).

10

Modification Order

All modifications to a particular atomic object M occur in some particular total order, called the
modification order of M. If A and B are modifications of an atomic object M, and A happens-
before B, then A shall precede B in the modification order of M. Note that the modification order
of an atomic object M is independent of whether M is in local or global memory.

Nested Parallelism

See device-side enqueue.

Object

Objects are abstract representation of the resources that can be manipulated by the OpenCL API.
Examples include program objects, kernel objects, and memory objects.

Out-of-Order Execution

A model of execution in which commands placed in the work queue may begin and complete
execution in any order consistent with constraints imposed by event wait lists_and_command-
queue barrier. See In-order Execution.

Parent device

The OpenCL device which is partitioned to create sub-devices. Not all parent devices are root
devices. A root device might be partitioned and the sub-devices partitioned again. In this case, the
first set of sub-devices would be parent devices of the second set, but not the root devices. Also see
Device, parent device and root device.

Parent kernel

see Device-side enqueue.

Pipe
The pipe memory object conceptually is an ordered sequence of data items. A pipe has two
endpoints: a write endpoint into which data items are inserted, and a read endpoint from which
data items are removed. At any one time, only one kernel instance may write into a pipe, and
only one kernel instance may read from a pipe. To support the producer consumer design
pattern, one kernel instance connects to the write endpoint (the producer) while another kernel
instance connects to the reading endpoint (the consumer).

Platform

The host plus a collection of devices managed by the OpenCL framework that allow an
application to share resources and execute kernels on devices in the platform.

Private Memory

A region of memory private to a work-item. Variables defined in one work-items private memory
are not visible to another work-item.

Processing Element

A virtual scalar processor. A work-item may execute on one or more processing elements.

Program

An OpenCL program consists of a set of kernels. Programs may also contain auxiliary functions

11

called by the __kernel functions and constant data.

Program Object

A program object encapsulates the following information:

» Areference to an associated context.
* A program source or binary.

» The latest successfully built program executable, the list of devices for which the program
executable is built, the build options used and a build log.

» The number of kernel objects currently attached.

Queued

The first state in the six state model for the execution of a command. The transition into this
state occurs when the command is enqueued into a command-queue.

Ready

The third state in the six state model for the execution of a command. The transition into this
state occurs when pre-requisites constraining execution of a command have been met; i.e. the
command has been launched. When a kernel-enqueue command is launched, work-groups
associated with the command are placed in a devices work-pool from which they are scheduled
for execution.

Re-converged Control Flow

see Control flow.

Reference Count

The life span of an OpenCL object is determined by its reference count, an internal count of the
number of references to the object. When you create an object in OpenCL, its reference count is
set to one. Subsequent calls to the appropriate retain API (such as clRetainContext,
clRetainCommandQueue) increment the reference count. Calls to the appropriate release API
(such as clReleaseContext, clReleaseCommandQueue) decrement the reference count.
Implementations may also modify the reference count, e.g. to track attached objects or to ensure
correct operation of in-progress or scheduled activities. The object becomes inaccessible to host
code when the number of release operations performed matches the number of retain
operations plus the allocation of the object. At this point the reference count may be zero but
this is not guaranteed.

Relaxed Consistency

A memory consistency model in which the contents of memory visible to different work-items or
commands may be different except at a barrier or other explicit synchronization points.

Relaxed Semantics

A memory order semantics for atomic operations that implies no order constraints. The
operation is atomic but it has no impact on the order of memory operations.

Release Semantics

One of the memory order semantics defined for synchronization operations. Release semantics

12

apply to atomic operations that store to memory. Given two units of execution, A and B, acting
on a shared atomic object M, if A uses an atomic store of M with release semantics to
synchronize-with an atomic load to M by B that used acquire semantics, then A's atomic store
will occur after any prior operations by A. Note that the memory orders acquire, sequentially
consistent, and acquire_release all include acquire semantics and effectively pair with a store
using release semantics.

Remainder work-groups

When the work-groups associated with a kernel-instance are defined, the sizes of a work-group
in each dimension may not evenly divide the size of the NDRange in the corresponding
dimensions. The result is a collection of work-groups on the boundaries of the NDRange that are
smaller than the base work-group size. These are known as remainder work-groups.

Running

The fourth state in the six state model for the execution of a command. The transition into this
state occurs when the execution of the command starts. When a Kernel-enqueue command
starts, one or more work-groups associated with the command start to execute.

Root device

A root device is an OpenCL device that has not been partitioned. Also see Device, Parent device
and Root device.

Resource

A class of objects defined by OpenCL. An instance of a resource is an object. The most common
resources are the context, command-queue, program objects, kernel objects, and memory objects.
Computational resources are hardware elements that participate in the action of advancing a
program counter. Examples include the host, devices, compute units and processing elements.

Retain, Release

The action of incrementing (retain) and decrementing (release) the reference count using an
OpenCL object. This is a book keeping functionality to make sure the system doesn’t remove an
object before all instances that use this object have finished. Refer to Reference Count.

Sampler

An object that describes how to sample an image when the image is read in the kernel. The image
read functions take a sampler as an argument. The sampler specifies the image addressing-mode
i.e. how out-of-range image coordinates are handled, the filter mode, and whether the input
image coordinate is a normalized or unnormalized value.

Scope inclusion

Two actions A and B are defined to have an inclusive scope if they have the same scope P such
that: (1) if P is memory_scope_sub_group, and A and B are executed by work-items within the
same sub-group, or (2) if P is memory_scope_work_group, and A and B are executed by work-
items within the same work-group, or (3) if P is memory_scope_device, and A and B are
executed by work-items on the same device, or (4) if P is memory_scope_all_svm_devices, if A
and B are executed by host threads or by work-items on one or more devices that can share SVM
memory with each other and the host process.

13

Sequenced before

A relation between evaluations executed by a single unit of execution. Sequenced-before is an
asymmetric, transitive, pair-wise relation that induces a partial order between evaluations.
Given any two evaluations A and B, if A is sequenced-before B, then the execution of A shall
precede the execution of B.

Sequential consistency

Sequential consistency interleaves the steps executed by each unit of execution. Each access to a
memory location sees the last assignment to that location in that interleaving.

Sequentially consistent semantics

One of the memory order semantics defined for synchronization operations. When using
sequentially-consistent synchronization operations, the loads and stores within one unit of
execution appear to execute in program order (i.e., the sequenced-before order), and loads and
stores from different units of execution appear to be simply interleaved.

Shared Virtual Memory (SVM)

An address space exposed to both the host and the devices within a context. SVM causes
addresses to be meaningful between the host and all of the devices within a context and
therefore supports the use of pointer based data structures in OpenCL kernels. It logically
extends a portion of the global memory into the host address space therefore giving work-items
access to the host address space. There are three types of SVM in OpenCL:

Coarse-Grained buffer SVM

Sharing occurs at the granularity of regions of OpenCL buffer memory objects.

Fine-Grained buffer SVM

Sharing occurs at the granularity of individual loads/stores into bytes within OpenCL buffer
memory objects.

Fine-Grained system SVM

Sharing occurs at the granularity of individual loads/stores into bytes occurring anywhere
within the host memory.

SIMD

Single Instruction Multiple Data. A programming model where a kernel is executed concurrently
on multiple processing elements each with its own data and a shared program counter. All
processing elements execute a strictly identical set of instructions.

Specialization constants

14

Specialization is intended for constant objects that will not have known constant values until
after initial generation of a module in an intermediate representation format (e.g. SPIR-V). Such
objects are called specialization constants. Application might provide values for the
specialization constants that will be used when program is built from the intermediate format.
Specialization constants that do not receive a value from an application shall use default values
as defined in OpenCL C++ or SPIR-V specification.

SPMD

Single Program Multiple Data. A programming model where a kernel is executed concurrently
on multiple processing elements each with its own data and its own program counter. Hence,
while all computational resources run the same kernel they maintain their own instruction
counter and due to branches in a kernel, the actual sequence of instructions can be quite
different across the set of processing elements.

Sub-device

An OpencCL device can be partitioned into multiple sub-devices. The new sub-devices alias specific
collections of compute units within the parent device, according to a partition scheme. The sub-
devices may be used in any situation that their parent device may be used. Partitioning a device
does not destroy the parent device, which may continue to be used along side and intermingled
with its child sub-devices. Also see Device, Parent device and Root device.

Sub-group

Sub-groups are an implementation-dependent grouping of work-items within a work-group. The
size and number of sub-groups is implementation-defined.

Sub-group Barrier

See Barrier.

Submitted

The second state in the six state model for the execution of a command. The transition into this
state occurs when the command is flushed from the command-queue and submitted for
execution on the device. Once submitted, a programmer can assume a command will execute
once its prerequisites have been met.

SVM Buffer

A memory allocation enabled to work with Shared Virtual Memory (SVM). Depending on how the
SVM bulffer is created, it can be a coarse-grained or fine-grained SVM buffer. Optionally it may
be wrapped by a Buffer Object. See Shared Virtual Memory (SVM).

Synchronization

Synchronization refers to mechanisms that constrain the order of execution and the visibility of
memory operations between two or more units of execution.

Synchronization operations

Operations that define memory order constraints in a program. They play a special role in
controlling how memory operations in one unit of execution (such as work-items or, when using
SVM a host thread) are made visible to another. Synchronization operations in OpenCL include
atomic operations and fences.

Synchronization point

A synchronization point between a pair of commands (A and B) assures that results of command
A happens-before command B is launched (i.e. enters the ready state) .

Synchronizes with

A relation between operations in two different units of execution that defines a memory order

15

constraint in global memory (global-synchronizes-with) or local memory (local-synchronizes-
with).

Task Parallel Programming Model

A programming model in which computations are expressed in terms of multiple concurrent
tasks executing in one or more command-queues. The concurrent tasks can be running different
kernels.

Thread-safe

An OpenCL API call is considered to be thread-safe if the internal state as managed by OpenCL
remains consistent when called simultaneously by multiple host threads. OpenCL API calls that
are thread-safe allow an application to call these functions in multiple host threads without
having to implement mutual exclusion across these host threads i.e. they are also re-entrant-
safe.

Undefined

The behavior of an OpenCL API call, built-in function used inside a kernel or execution of a
kernel that is explicitly not defined by OpenCL. A conforming implementation is not required to
specify what occurs when an undefined construct is encountered in OpenCL.

Unit of execution

A generic term for a process, OS managed thread running on the host (a host-thread), kernel-
instance, host program, work-item or any other executable agent that advances the work
associated with a program.

Work-group

A collection of related work-items that execute on a single compute unit. The work-items in the
group execute the same kernel-instance and share local memory and work-group functions.

Work-group Barrier

See Barrier.

Work-group Function

A function that carries out collective operations across all the work-items in a work-group.
Available collective operations are a barrier, reduction, broadcast, prefix sum, and evaluation of
a predicate. A work-group function must occur within a converged control flow; i.e. all work-
items in the work-group must encounter precisely the same work-group function.

Work-group Synchronization

Constraints on the order of execution for work-items in a single work-group.

Work-pool

A logical pool associated with a device that holds commands and work-groups from kernel-
instances that are ready to execute. OpenCL does not constrain the order that commands and
work-groups are scheduled for execution from the work-pool; i.e. a programmer must assume
that they could be interleaved. There is one work-pool per device used by all command-queues
associated with that device. The work-pool may be implemented in any manner as long as it
assures that work-groups placed in the pool will eventually execute.

16

Work-item

One of a collection of parallel executions of a kernel invoked on a device by a command. A work-
item is executed by one or more processing elements as part of a work-group executing on a
compute unit. A work-item is distinguished from other work-items by its global ID or the
combination of its work-group ID and its local ID within a work-group.

17

Chapter 3. The OpenCL Architecture

OpenCL is an open industry standard for programming a heterogeneous collection of CPUs, GPUs
and other discrete computing devices organized into a single platform. It is more than a language.
OpenCL is a framework for parallel programming and includes a language, API, libraries and a
runtime system to support software development. Using OpenCL, for example, a programmer can
write general purpose programs that execute on GPUs without the need to map their algorithms
onto a 3D graphics API such as OpenGL or DirectX.

The target of OpenCL is expert programmers wanting to write portable yet efficient code. This
includes library writers, middleware vendors, and performance oriented application programmers.
Therefore OpenCL provides a low-level hardware abstraction plus a framework to support
programming and many details of the underlying hardware are exposed.

To describe the core ideas behind OpenCL, we will use a hierarchy of models:

Platform Model

* Memory Model
* Execution Model

* Programming Model

3.1. Platform Model

The Platform model for OpenCL is defined below. The model consists of a host connected to one or
more OpenCL devices. An OpenCL device is divided into one or more compute units (CUs) which
are further divided into one or more processing elements (PEs). Computations on a device occur
within the processing elements.

An OpenCL application is implemented as both host code and device kernel code. The host code
portion of an OpenCL application runs on a host processor according to the models native to the
host platform. The OpenCL application host code submits the kernel code as commands from the
host to OpenCL devices. An OpenCL device executes the commands computation on the processing
elements within the device.

An OpenCL device has considerable latitude on how computations are mapped onto the devices
processing elements. When processing elements within a compute unit execute the same sequence
of statements across the processing elements, the control flow is said to be converged. Hardware
optimized for executing a single stream of instructions over multiple processing elements is well
suited to converged control flows. When the control flow varies from one processing element to
another, it is said to be diverged. While a kernel always begins execution with a converged control
flow, due to branching statements within a kernel, converged and diverged control flows may occur
within a single kernel. This provides a great deal of flexibility in the algorithms that can be
implemented with OpenCL.

18

Processing Host
Element ™.,
!
b i
Cmpub;Urit Compute Device

Figure 1. Platform Model ... one host plus one or more compute devices each with one or more compute
units composed of one or more processing elements.

Programmers provide programs in the form of SPIR-V source binaries, OpenCL C or OpenCL C++
source strings or implementation-defined binary objects. The OpenCL platform provides a compiler
to translate program input of either form into executable program objects. The device code
compiler may be online or offline. An online compiler is available during host program execution
using standard APIs. An offline compiler is invoked outside of host program control, using platform-
specific methods. The OpenCL runtime allows developers to get a previously compiled device
program executable and be able to load and execute a previously compiled device program
executable.

OpenCL defines two kinds of platform profiles: a full profile and a reduced-functionality embedded
profile. A full profile platform must provide an online compiler for all its devices. An embedded
platform may provide an online compiler, but is not required to do so.

A device may expose special purpose functionality as a built-in function. The platform provides APIs
for enumerating and invoking the built-in functions offered by a device, but otherwise does not
define their construction or semantics. A custom device supports only built-in functions, and cannot
be programmed via a kernel language.

All device types support the OpenCL execution model, the OpenCL memory model, and the APIs
used in OpenCL to manage devices.

The platform model is an abstraction describing how OpenCL views the hardware. The relationship
between the elements of the platform model and the hardware in a system may be a fixed property
of a device or it may be a dynamic feature of a program dependent on how a compiler optimizes
code to best utilize physical hardware.

3.2. Execution Model

The OpenCL execution model is defined in terms of two distinct units of execution: kernels that
execute on one or more OpenCL devices and a host program that executes on the host. With regard
to OpenCL, the kernels are where the "work" associated with a computation occurs. This work
occurs through work-items that execute in groups (work-groups).

A kernel executes within a well-defined context managed by the host. The context defines the
environment within which kernels execute. It includes the following resources:

* Devices: One or more devices exposed by the OpenCL platform.

19

* Kernel Objects:The OpenCL functions with their associated argument values that run on
OpenCL devices.

* Program Objects:The program source and executable that implement the kernels.

* Memory Objects:Variables visible to the host and the OpenCL devices. Instances of kernels
operate on these objects as they execute.

The host program uses the OpenCL API to create and manage the context. Functions from the
OpenCL API enable the host to interact with a device through a command-queue. Each command-
queue is associated with a single device. The commands placed into the command-queue fall into
one of three types:

* Kernel-enqueue commands: Enqueue a kernel for execution on a device.

* Memory commands: Transfer data between the host and device memory, between memory
objects, or map and unmap memory objects from the host address space.

* Synchronization commands: Explicit synchronization points that define order constraints
between commands.

In addition to commands submitted from the host command-queue, a kernel running on a device
can enqueue commands to a device-side command queue. This results in child kernels enqueued by
a kernel executing on a device (the parent kernel). Regardless of whether the command-queue
resides on the host or a device, each command passes through six states.

1. Queued: The command is enqueued to a command-queue. A command may reside in the queue
until it is flushed either explicitly (a call to clFlush) or implicitly by some other command.

2. Submitted: The command is flushed from the command-queue and submitted for execution on
the device. Once flushed from the command-queue, a command will execute after any
prerequisites for execution are met.

3. Ready: All prerequisites constraining execution of a command have been met. The command,
or for a kernel-enqueue command the collection of work groups associated with a command, is
placed in a device work-pool from which it is scheduled for execution.

4. Running: Execution of the command starts. For the case of a kernel-enqueue command, one or
more work-groups associated with the command start to execute.

5. Ended: Execution of a command ends. When a Kernel-enqueue command ends, all of the work-
groups associated with that command have finished their execution. Immediate side effects, i.e.
those associated with the kernel but not necessarily with its child kernels, are visible to other
units of execution. These side effects include updates to values in global memory.

6. Complete: The command and its child commands have finished execution and the status of the
event object, if any, associated with the command is set to CL_COMPLETE.

The execution states and the transitions between them are summarized below. These states and the
concept of a device work-pool are conceptual elements of the execution model. An implementation
of OpenCL has considerable freedom in how these are exposed to a program. Five of the transitions,
however, are directly observable through a profiling interface. These profiled states are shown
below.

20

Submit

Launch

Ready

Start

End

<::> States

(Transitions

| I Profiled transitions
L I Complete

: Complete

C_Ready D
C Running >
C_Endea >
CComplete >

Figure 2. The states and transitions between states defined in the OpenCL execution model. A subset of these
transitions is exposed through the profiling interface.

Commands communicate their status through Event objects. Successful completion is indicated by
setting the event status associated with a command to CL_COMPLETE. Unsuccessful completion results
in abnormal termination of the command which is indicated by setting the event status to a
negative value. In this case, the command-queue associated with the abnormally terminated
command and all other command-queues in the same context may no longer be available and their
behavior is implementation defined.

A command submitted to a device will not launch until prerequisites that constrain the order of
commands have been resolved. These prerequisites have three sources:

* They may arise from commands submitted to a command-queue that constrain the order in
which commands are launched. For example, commands that follow a command queue barrier
will not launch until all commands prior to the barrier are complete.

* The second source of prerequisites is dependencies between commands expressed through
events. A command may include an optional list of events. The command will wait and not
launch until all the events in the list are in the state CL COMPLETE. By this mechanism, event
objects define order constraints between commands and coordinate execution between the host
and one or more devices.

* The third source of prerequisites can be the presence of non-trivial C initializers or C++
constructors for program scope global variables. In this case, OpenCL C/C++ compiler shall
generate program initialization kernels that perform C initialization or C++ construction. These
kernels must be executed by OpenCL runtime on a device before any kernel from the same
program can be executed on the same device. The ND-range for any program initialization
kernel is (1,1,1). When multiple programs are linked together, the order of execution of program
initialization kernels that belong to different programs is undefined.

21

Program clean up may result in the execution of one or more program clean up kernels by the
OpenCL runtime. This is due to the presence of non-trivial C++ destructors for program scope
variables. The ND-range for executing any program clean up Kkernel is (1,1,1). The order of
execution of clean up kernels from different programs (that are linked together) is undefined.

Note that C initializers, C++ constructors, or C++ destructors for program scope variables cannot use
pointers to coarse grain and fine grain SVM allocations.

A command may be submitted to a device and yet have no visible side effects outside of waiting on
and satisfying event dependences. Examples include markers, kernels executed over ranges of no
work-items or copy operations with zero sizes. Such commands may pass directly from the ready
state to the ended state.

Command execution can be blocking or non-blocking. Consider a sequence of OpenCL commands.
For blocking commands, the OpenCL API functions that enqueue commands don’t return until the
command has completed. Alternatively, OpenCL functions that enqueue non-blocking commands
return immediately and require that a programmer defines dependencies between enqueued
commands to ensure that enqueued commands are not launched before needed resources are
available. In both cases, the actual execution of the command may occur asynchronously with
execution of the host program.

Commands within a single command-queue execute relative to each other in one of two modes:

* In-order Execution: Commands and any side effects associated with commands appear to the
OpenCL application as if they execute in the same order they are enqueued to a command-
queue.

* Out-of-order Execution: Commands execute in any order constrained only by explicit
synchronization points (e.g. through command queue barriers) or explicit dependencies on
events.

Multiple command-queues can be present within a single context. Multiple command-queues
execute commands independently. Event objects visible to the host program can be used to define
synchronization points between commands in multiple command queues. If such synchronization
points are established between commands in multiple command-queues, an implementation must
assure that the command-queues progress concurrently and correctly account for the dependencies
established by the synchronization points. For a detailed explanation of synchronization points, see
Execution Model: Synchronization.

The core of the OpenCL execution model is defined by how the kernels execute. When a kernel-
enqueue command submits a kernel for execution, an index space is defined. The kernel, the
argument values associated with the arguments to the kernel, and the parameters that define the
index space define a kernel-instance. When a kernel-instance executes on a device, the kernel
function executes for each point in the defined index space. Each of these executing kernel
functions is called a work-item. The work-items associated with a given kernel-instance are
managed by the device in groups called work-groups. These work-groups define a coarse grained
decomposition of the Index space. Work-groups are further divided into sub-groups, which provide
an additional level of control over execution.

Work-items have a global ID based on their coordinates within the Index space. They can also be

22

defined in terms of their work-group and the local ID within a work-group. The details of this
mapping are described in the following section.

3.2.1. Execution Model: Mapping work-items onto an NDRange

The index space supported by OpenCL is called an NDRange. An NDRange is an N-dimensional
index space, where N is one, two or three. The NDRange is decomposed into work-groups forming
blocks that cover the Index space. An NDRange is defined by three integer arrays of length N:

* The extent of the index space (or global size) in each dimension.
» An offset index F indicating the initial value of the indices in each dimension (zero by default).

* The size of a work-group (local size) in each dimension.

Each work-items global ID is an N-dimensional tuple. The global ID components are values in the
range from F, to F plus the number of elements in that dimension minus one.

If a kernel is created from OpenCL 2.0 or SPIR-V, the size of work-groups in an NDRange (the local
size) need not be the same for all work-groups. In this case, any single dimension for which the
global size is not divisible by the local size will be partitioned into two regions. One region will have
work-groups that have the same number of work items as was specified for that dimension by the
programmer (the local size). The other region will have work-groups with less than the number of
work items specified by the local size parameter in that dimension (the remainder work-groups).
Work-group sizes could be non-uniform in multiple dimensions, potentially producing work-groups
of up to 4 different sizes in a 2D range and 8 different sizes in a 3D range.

Each work-item is assigned to a work-group and given a local ID to represent its position within the
work-group. A work-item’s local ID is an N-dimensional tuple with components in the range from
zero to the size of the work-group in that dimension minus one.

Work-groups are assigned IDs similarly. The number of work-groups in each dimension is not
directly defined but is inferred from the local and global NDRanges provided when a kernel-
instance is enqueued. A work-group’s ID is an N-dimensional tuple with components in the range 0
to the ceiling of the global size in that dimension divided by the local size in the same dimension. As
a result, the combination of a work-group ID and the local-ID within a work-group uniquely defines
a work-item. Each work-item is identifiable in two ways; in terms of a global index, and in terms of
a work-group index plus a local index within a work group.

For example, consider the 2-dimensional index space shown below. We input the index space for
the work-items (Gy, Gy), the size of each work-group (S,, S;) and the global ID offset (F,, Fy). The
global indices define an G,by G, index space where the total number of work-items is the product of
G, and G,. The local indices define an S, by S, index space where the number of work-items in a
single work-group is the product of S, and S,. Given the size of each work-group and the total
number of work-items we can compute the number of work-groups. A 2-dimensional index space is
used to uniquely identify a work-group. Each work-item is identified by its global ID (g, g,) or by
the combination of the work-group ID (w,, wy), the size of each work-group (S,,S,) and the local ID
(Sx, 8y) inside the work-group such that

(8x, 8y) = (Wy Sy + 8, + Fy, Wy Sy + 5, + F)

23

The number of work-groups can be computed as:
(W, Wy) = (ceil(Gy/ Sy, ceil(Gy / Sy))

Given a global ID and the work-group size, the work-group ID for a work-item is computed as:

(W, Wy) = ((8x Sx Fx) / Si, (8y 8y Fy) /Sy)

mgmp sire
e > |
i work-group (w, , w,J
& f’
/! work-item work-item
;r; fir & 8 0F, . Srffr-r’; (LS E R ", sr".r'F)
,
o foy 8y = 0.0} (5. 8y = (B 1,00
J‘r"
] £ :,x‘ : 1 : m-gmms?
|+ o 5
' = work-item work-item
NDRange size G}_ oy Sy m Spa oty g Bypagel m 8 pa ot)
LTt e| | Byesp=080) (518 = 1,1, 5,1}
1 Fog
» ”)
NDRange size G:

Figure 3. An example of an NDRange index space showing work-items, their global IDs and their mapping
onto the pair of work-group and local IDs. In this case, we assume that in each dimension, the size of the
work-group evenly divides the global NDRange size (i.e. all work-groups have the same size) and that the
offset is equal to zero.

Within a work-group work-items may be divided into sub-groups. The mapping of work-items to
sub-groups is implementation-defined and may be queried at runtime. While sub-groups may be
used in multi-dimensional work-groups, each sub-group is 1-dimensional and any given work-item
may query which sub-group it is a member of.

Work items are mapped into sub-groups through a combination of compile-time decisions and the
parameters of the dispatch. The mapping to sub-groups is invariant for the duration of a kernels
execution, across dispatches of a given kernel with the same work-group dimensions, between
dispatches and query operations consistent with the dispatch parameterization, and from one
work-group to another within the dispatch (excluding the trailing edge work-groups in the presence
of non-uniform work-group sizes). In addition, all sub-groups within a work-group will be the same
size, apart from the sub-group with the maximum index which may be smaller if the size of the
work-group is not evenly divisible by the size of the sub-groups.

In the degenerate case, a single sub-group must be supported for each work-group. In this situation
all sub-group scope functions are equivalent to their work-group level equivalents.

24

3.2.2. Execution Model: Execution of kernel-instances

The work carried out by an OpenCL program occurs through the execution of kernel-instances on
compute devices. To understand the details of OpenCLs execution model, we need to consider how
a kernel object moves from the kernel-enqueue command, into a command-queue, executes on a
device, and completes.

A kernel-object is defined from a function within the program object and a collection of arguments
connecting the kernel to a set of argument values. The host program enqueues a kernel-object to
the command queue along with the NDRange, and the work-group decomposition. These define a
kernel-instance. In addition, an optional set of events may be defined when the kernel is enqueued.
The events associated with a particular kernel-instance are used to constrain when the kernel-
instance is launched with respect to other commands in the queue or to commands in other queues
within the same context.

A kernel-instance is submitted to a device. For an in-order command queue, the kernel instances
appear to launch and then execute in that same order; where we use the term appear to emphasize
that when there are no dependencies between commands and hence differences in the order that
commands execute cannot be observed in a program, an implementation can reorder commands
even in an in-order command queue. For an out of order command-queue, kernel-instances wait to
be launched until:

» Synchronization commands enqueued prior to the kernel-instance are satisfied.

* Each of the events in an optional event list defined when the kernel-instance was enqueued are
set to CL_COMPLETE.

Once these conditions are met, the kernel-instance is launched and the work-groups associated
with the kernel-instance are placed into a pool of ready to execute work-groups. This pool is called
a work-pool. The work-pool may be implemented in any manner as long as it assures that work-
groups placed in the pool will eventually execute. The device schedules work-groups from the
work-pool for execution on the compute units of the device. The kernel-enqueue command is
complete when all work-groups associated with the kernel-instance end their execution, updates to
global memory associated with a command are visible globally, and the device signals successful
completion by setting the event associated with the kernel-enqueue command to CL_COMPLETE.

While a command-queue is associated with only one device, a single device may be associated with
multiple command-queues all feeding into the single work-pool. A device may also be associated
with command queues associated with different contexts within the same platform, again all
feeding into the single work-pool. The device will pull work-groups from the work-pool and execute
them on one or several compute units in any order; possibly interleaving execution of work-groups
from multiple commands. A conforming implementation may choose to serialize the work-groups
so a correct algorithm cannot assume that work-groups will execute in parallel. There is no safe
and portable way to synchronize across the independent execution of work-groups since once in
the work-pool, they can execute in any order.

The work-items within a single sub-group execute concurrently but not necessarily in parallel (i.e.
they are not guaranteed to make independent forward progress). Therefore, only high-level
synchronization constructs (e.g. sub-group functions such as barriers) that apply to all the work-
items in a sub-group are well defined and included in OpenCL.

25

Sub-groups execute concurrently within a given work-group and with appropriate device support
(see Querying Devices), may make independent forward progress with respect to each other, with
respect to host threads and with respect to any entities external to the OpenCL system but running
on an OpenCL device, even in the absence of work-group barrier operations. In this situation, sub-
groups are able to internally synchronize using barrier operations without synchronizing with
each other and may perform operations that rely on runtime dependencies on operations other
sub-groups perform.

The work-items within a single work-group execute concurrently but are only guaranteed to make
independent progress in the presence of sub-groups and device support. In the absence of this
capability, only high-level synchronization constructs (e.g. work-group functions such as barriers)
that apply to all the work-items in a work-group are well defined and included in OpenCL for
synchronization within the work-group.

In the absence of synchronization functions (e.g. a barrier), work-items within a sub-group may be
serialized. In the presence of sub -group functions, work-items within a sub -group may be
serialized before any given sub -group function, between dynamically encountered pairs of sub-
group functions and between a work-group function and the end of the kernel.

In the absence of independent forward progress of constituent sub-groups, work-items within a
work-group may be serialized before, after or between work-group synchronization functions.

3.2.3. Execution Model: Device-side enqueue

Algorithms may need to generate additional work as they execute. In many cases, this additional
work cannot be determined statically; so the work associated with a kernel only emerges at
runtime as the kernel-instance executes. This capability could be implemented in logic running
within the host program, but involvement of the host may add significant overhead and/or
complexity to the application control flow. A more efficient approach would be to nest kernel-
enqueue commands from inside other kernels. This nested parallelism can be realized by
supporting the enqueuing of kernels on a device without direct involvement by the host program;
so-called device-side enqueue.

Device-side kernel-enqueue commands are similar to host-side kernel-enqueue commands. The
kernel executing on a device (the parent kernel) enqueues a kernel-instance (the child kernel) to a
device-side command queue. This is an out-of-order command-queue and follows the same
behavior as the out-of-order command-queues exposed to the host program. Commands enqueued
to a device side command-queue generate and use events to enforce order constraints just as for
the command-queue on the host. These events, however, are only visible to the parent kernel
running on the device. When these prerequisite events take on the value CL_COMPLETE, the work-
groups associated with the child kernel are launched into the devices work pool. The device then
schedules them for execution on the compute units of the device. Child and parent kernels execute
asynchronously. However, a parent will not indicate that it is complete by setting its event to CL_
COMPLETE until all child kernels have ended execution and have signaled completion by setting any
associated events to the value CL_COMPLETE. Should any child kernel complete with an event status
set to a negative value (i.e. abnormally terminate), the parent kernel will abnormally terminate and
propagate the childs negative event value as the value of the parents event. If there are multiple
children that have an event status set to a negative value, the selection of which childs negative
event value is propagated is implementation-defined.

26

3.2.4. Execution Model: Synchronization

Synchronization refers to mechanisms that constrain the order of execution between two or more
units of execution. Consider the following three domains of synchronization in OpenCL:

* Work-group synchronization: Constraints on the order of execution for work-items in a single
work-group

» Sub-group synchronization: Constraints on the order of execution for work-items in a single
sub-group

* Command synchronization: Constraints on the order of commands launched for execution

Synchronization across all work-items within a single work-group is carried out using a work-group
function. These functions carry out collective operations across all the work-items in a work-group.
Available collective operations are: barrier, reduction, broadcast, prefix sum, and evaluation of a
predicate. A work-group function must occur within a converged control flow; i.e. all work-items in
the work-group must encounter precisely the same work-group function. For example, if a work-
group function occurs within a loop, the work-items must encounter the same work-group function
in the same loop iterations. All the work-items of a work-group must execute the work-group
function and complete reads and writes to memory before any are allowed to continue execution
beyond the work-group function. Work-group functions that apply between work-groups are not
provided in OpenCL since OpenCL does not define forward-progress or ordering relations between
work-groups, hence collective synchronization operations are not well defined.

Synchronization across all work-items within a single sub-group is carried out using a sub-group
function. These functions carry out collective operations across all the work-items in a sub-group.
Available collective operations are: barrier, reduction, broadcast, prefix sum, and evaluation of a
predicate. A sub-group function must occur within a converged control flow; i.e. all work-items in
the sub-group must encounter precisely the same sub-group function. For example, if a work-group
function occurs within a loop, the work-items must encounter the same sub-group function in the
same loop iterations. All the work-items of a sub-group must execute the sub-group function and
complete reads and writes to memory before any are allowed to continue execution beyond the
sub-group function. Synchronization between sub-groups must either be performed using work-
group functions, or through memory operations. Using memory operations for sub-group
synchronization should be used carefully as forward progress of sub-groups relative to each other
is only supported optionally by OpenCL implementations.

Command synchronization is defined in terms of distinct synchronization points. The
synchronization points occur between commands in host command-queues and between
commands in device-side command-queues. The synchronization points defined in OpenCL
include:

* Launching a command: A kernel-instance is launched onto a device after all events that kernel
is waiting-on have been set to CL_COMPLETE.

* Ending a command: Child kernels may be enqueued such that they wait for the parent kernel
to reach the end state before they can be launched. In this case, the ending of the parent
command defines a synchronization point.

* Completion of a command: A kernel-instance is complete after all of the work-groups in the

27

kernel and all of its child kernels have completed. This is signaled to the host, a parent kernel or
other kernels within command queues by setting the value of the event associated with a kernel
to CL_COMPLETE.

* Blocking Commands: A blocking command defines a synchronization point between the unit of
execution that calls the blocking API function and the enqueued command reaching the
complete state.

 Command-queue barrier: The command-queue barrier ensures that all previously enqueued
commands have completed before subsequently enqueued commands can be launched.

* clFinish: This function blocks until all previously enqueued commands in the command queue
have completed after which clFinish defines a synchronization point and the clFinish function
returns.

A synchronization point between a pair of commands (A and B) assures that results of command A
happens-before command B is launched. This requires that any updates to memory from command
A complete and are made available to other commands before the synchronization point completes.
Likewise, this requires that command B waits until after the synchronization point before loading
values from global memory. The concept of a synchronization point works in a similar fashion for
commands such as a barrier that apply to two sets of commands. All the commands prior to the
barrier must complete and make their results available to following commands. Furthermore, any
commands following the barrier must wait for the commands prior to the barrier before loading
values and continuing their execution.

These happens-before relationships are a fundamental part of the OpenCL memory model. When
applied at the level of commands, they are straightforward to define at a language level in terms of
ordering relationships between different commands. Ordering memory operations inside different
commands, however, requires rules more complex than can be captured by the high level concept
of a synchronization point. These rules are described in detail in Memory Ordering Rules.

3.2.5. Execution Model: Categories of Kernels

The OpenCL execution model supports three types of kernels:

* OpenCL kernels are managed by the OpenCL API as kernel-objects associated with kernel
functions within program-objects. OpenCL kernels are provided via a kernel language. All
OpenCL implementations must support OpenCL kernels supplied in the standard SPIR-V
intermediate language with the appropriate environment specification, and the OpenCL C
programming language defined in earlier versions of the OpenCL specification.
Implementations must also support OpenCL kernels in SPIR-V intermediate language. SPIR-V
binaries nay be generated from an OpenCL kernel language or by a third party compiler from
an alternative input.

* Native kernels are accessed through a host function pointer. Native kernels are queued for
execution along with OpenCL kernels on a device and share memory objects with OpenCL
kernels. For example, these native kernels could be functions defined in application code or
exported from a library. The ability to execute native kernels is optional within OpenCL and the
semantics of native kernels are implementation-defined. The OpenCL API includes functions to
query capabilities of a device(s) and determine if this capability is supported.

* Built-in kernels are tied to particular device and are not built at runtime from source code in a

28

program object. The common use of built in kernels is to expose fixed-function hardware or
firmware associated with a particular OpenCL device or custom device. The semantics of a
built-in kernel may be defined outside of OpenCL and hence are implementation defined.

All three types of kernels are manipulated through the OpenCL command queues and must
conform to the synchronization points defined in the OpenCL execution model.

3.3. Memory Model

The OpenCL memory model describes the structure, contents, and behavior of the memory exposed
by an OpenCL platform as an OpenCL program runs. The model allows a programmer to reason
about values in memory as the host program and multiple kernel-instances execute.

An OpenCL program defines a context that includes a host, one or more devices, command-queues,
and memory exposed within the context. Consider the units of execution involved with such a
program. The host program runs as one or more host threads managed by the operating system
running on the host (the details of which are defined outside of OpenCL). There may be multiple
devices in a single context which all have access to memory objects defined by OpenCL. On a single
device, multiple work-groups may execute in parallel with potentially overlapping updates to
memory. Finally, within a single work-group, multiple work-items concurrently execute, once again
with potentially overlapping updates to memory.

The memory model must precisely define how the values in memory as seen from each of these
units of execution interact so a programmer can reason about the correctness of OpenCL programs.
We define the memory model in four parts.

* Memory regions: The distinct memories visible to the host and the devices that share a context.

* Memory objects: The objects defined by the OpenCL API and their management by the host and
devices.

» Shared Virtual Memory: A virtual address space exposed to both the host and the devices within
a context.

* Consistency Model: Rules that define which values are observed when multiple units of
execution load data from memory plus the atomic/fence operations that constrain the order of
memory operations and define synchronization relationships.

3.3.1. Memory Model: Fundamental Memory Regions
Memory in OpenCL is divided into two parts.

* Host Memory: The memory directly available to the host. The detailed behavior of host
memory is defined outside of OpenCL. Memory objects move between the Host and the devices
through functions within the OpenCL API or through a shared virtual memory interface.

* Device Memory: Memory directly available to kernels executing on OpenCL devices.
Device memory consists of four named address spaces or memory regions:

* Global Memory: This memory region permits read/write access to all work-items in all work-
groups running on any device within a context. Work-items can read from or write to any

29

element of a memory object. Reads and writes to global memory may be cached depending on
the capabilities of the device.

* Constant Memory: A region of global memory that remains constant during the execution of a
kernel-instance. The host allocates and initializes memory objects placed into constant memory.

* Local Memory: A memory region local to a work-group. This memory region can be used to
allocate variables that are shared by all work-items in that work-group.

* Private Memory: A region of memory private to a work-item. Variables defined in one work-
items private memory are not visible to another work-item.

The memory regions and their relationship to the OpenCL Platform model are summarized below.
Local and private memories are always associated with a particular device. The global and constant
memories, however, are shared between all devices within a given context. An OpenCL device may
include a cache to support efficient access to these shared memories.

To understand memory in OpenCL, it is important to appreciate the relationships between these
named address spaces. The four named address spaces available to a device are disjoint meaning
they do not overlap. This is a logical relationship, however, and an implementation may choose to
let these disjoint named address spaces share physical memory.

Programmers often need functions callable from kernels where the pointers manipulated by those
functions can point to multiple named address spaces. This saves a programmer from the error-
prone and wasteful practice of creating multiple copies of functions; one for each named address
space. Therefore the global, local and private address spaces belong to a single generic address
space. This is closely modeled after the concept of a generic address space used in the embedded C
standard (ISO/IEC 9899:1999). Since they all belong to a single generic address space, the following
properties are supported for pointers to named address spaces in device memory:

* A pointer to the generic address space can be cast to a pointer to a global, local or private
address space

* A pointer to a global, local or private address space can be cast to a pointer to the generic
address space.

* A pointer to a global, local or private address space can be implicitly converted to a pointer to
the generic address space, but the converse is not allowed.

The constant address space is disjoint from the generic address space.

The addresses of memory associated with memory objects in Global memory are not preserved
between kernel instances, between a device and the host, and between devices. In this regard
global memory acts as a global pool of memory objects rather than an address space. This
restriction is relaxed when shared virtual memory (SVM) is used.

SVM causes addresses to be meaningful between the host and all of the devices within a context
hence supporting the use of pointer based data structures in OpenCL kernels. It logically extends a
portion of the global memory into the host address space giving work-items access to the host
address space. On platforms with hardware support for a shared address space between the host
and one or more devices, SVM may also provide a more efficient way to share data between devices
and the host. Details about SVM are presented in Shared Virtual Memory.

30

Compute Device 7

Compute unit 1 | Compite unit N ' Te ﬂ%
ﬂ Compute Device b&,@
Compute unit 1 | .| Compute unit N | S
em] Compute Device - _
Compute unit 1 Compute unit N
= Private Private | Private | Private
memory 1 memary M memory 1 memaory M
-2}] (] t LN [e I
L!.. | Pe1 | | PEM | | eE1 | | PEM |
~Tocal Locai
| memory 1 g _memory N
| Global/Constant Memory Cache
¥ £ 1
1
Global Memory ; Constant Memory
1
Host Memory
Host 5

Figure 4. The named address spaces exposed in an OpenCL Platform. Global and Constant memories are
shared between the one or more devices within a context, while local and private memories are associated
with a single device. Each device may include an optional cache to support efficient access to their view of
the global and constant address spaces.

A programmer may use the features of the memory consistency model to manage safe access to
global memory from multiple work-items potentially running on one or more devices. In addition,
when using shared virtual memory (SVM), the memory consistency model may also be used to
ensure that host threads safely access memory locations in the shared memory region.

3.3.2. Memory Model: Memory Objects

The contents of global memory are memory objects. A memory object is a handle to a reference
counted region of global memory. Memory objects use the OpenCL type cl_mem and fall into three
distinct classes.

» Buffer: A memory object stored as a block of contiguous memory and used as a general purpose
object to hold data used in an OpenCL program. The types of the values within a buffer may be
any of the built in types (such as int, float), vector types, or user-defined structures. The buffer
can be manipulated through pointers much as one would with any block of memory in C.

* Image: An image memory object holds one, two or three dimensional images. The formats are
based on the standard image formats used in graphics applications. An image is an opaque data
structure managed by functions defined in the OpenCL API. To optimize the manipulation of
images stored in the texture memories found in many GPUs, OpenCL kernels have traditionally
been disallowed from both reading and writing a single image. In OpenCL 2.0, however, we
have relaxed this restriction by providing synchronization and fence operations that let
programmers properly synchronize their code to safely allow a kernel to read and write a single
image.

31

* Pipe: The pipe memory object conceptually is an ordered sequence of data items. A pipe has two
endpoints: a write endpoint into which data items are inserted, and a read endpoint from which
data items are removed. At any one time, only one kernel instance may write into a pipe, and
only one kernel instance may read from a pipe. To support the producer consumer design
pattern, one kernel instance connects to the write endpoint (the producer) while another kernel
instance connects to the reading endpoint (the consumer).

Memory objects are allocated by host APIs. The host program can provide the runtime with a
pointer to a block of continuous memory to hold the memory object when the object is created (CL_
MEM_USE_HOST_PTR). Alternatively, the physical memory can be managed by the OpenCL runtime and
not be directly accessible to the host program.

Allocation and access to memory objects within the different memory regions varies between the
host and work-items running on a device. This is summarized in the Memory Regions table, which
describes whether the kernel or the host can allocate from a memory region, the type of allocation
(static at compile time vs. dynamic at runtime) and the type of access allowed (i.e. whether the
kernel or the host can read and/or write to a memory region).

Table 1. Memory Regions

Global Constant Local Private

Host Dynamic Dynamic Dynamic No Allocation
Allocation Allocation Allocation
Read/Write Read/Write No access No access
access to access

buffers and
images but not

pipes
Kernel Static Static Static Static

Allocation for Allocation Allocation. Allocation
program scope
variables Dynamic

allocation for

child kernel
Read/Write Read-only Read/Write Read/Write
access access access. access

No access to
child’s local
memory.

Caption

The Memory Regions table shows the different memory regions in OpenCL and how memory
objects are allocated and accessed by the host and by an executing instance of a kernel. For
the case of kernels, we distinguish between the behavior of local memory with respect to a
kernel (self) and its child kernels.

32

Once allocated, a memory object is made available to kernel-instances running on one or more
devices. In addition to Shared Virtual Memory, there are three basic ways to manage the contents
of buffers between the host and devices.

* Read/Write/Fill commands: The data associated with a memory object is explicitly read and
written between the host and global memory regions using commands enqueued to an OpenCL
command queue.

* Map/Unmap commands: Data from the memory object is mapped into a contiguous block of
memory accessed through a host accessible pointer. The host program enqueues a map
command on block of a memory object before it can be safely manipulated by the host program.
When the host program is finished working with the block of memory, the host program
enqueues an unmap command to allow a kernel-instance to safely read and/or write the buffer.

* Copy commands: The data associated with a memory object is copied between two buffers,
each of which may reside either on the host or on the device.

With Read/Write/Map, the commands can be blocking or non-blocking operations. The OpenCL
function call for a blocking memory transfer returns once the command (memory transfer) has
completed. At this point the associated memory resources on the host can be safely reused, and
following operations on the host are guaranteed that the transfer has already completed. For a non-
blocking memory transfer, the OpenCL function call returns as soon as the command is enqueued.

Memory objects are bound to a context and hence can appear in multiple kernel-instances running
on more than one physical device. The OpenCL platform must support a large range of hardware
platforms including systems that do not support a single shared address space in hardware; hence
the ways memory objects can be shared between kernel-instances is restricted. The basic principle
is that multiple read operations on memory objects from multiple kernel-instances that overlap in
time are allowed, but mixing overlapping reads and writes into the same memory objects from
different kernel instances is only allowed when fine grained synchronization is used with Shared
Virtual Memory.

When global memory is manipulated by multiple kernel-instances running on multiple devices, the
OpenCL runtime system must manage the association of memory objects with a given device. In
most cases the OpenCL runtime will implicitly associate a memory object with a device. A kernel
instance is naturally associated with the command queue to which the kernel was submitted. Since
a command-queue can only access a single device, the queue uniquely defines which device is
involved with any given kernel-instance; hence defining a clear association between memory
objects, kernel-instances and devices. Programmers may anticipate these associations in their
programs and explicitly manage association of memory objects with devices in order to improve
performance.

3.3.3. Memory Model: Shared Virtual Memory

OpenCL extends the global memory region into the host memory region through a shared virtual
memory (SVM) mechanism. There are three types of SVM in OpenCL

» Coarse-Grained buffer SVM: Sharing occurs at the granularity of regions of OpenCL buffer
memory objects. Consistency is enforced at synchronization points and with map/unmap
commands to drive updates between the host and the device. This form of SVM is similar to

33

non-SVM use of memory; however, it lets kernel-instances share pointer-based data structures
(such as linked-lists) with the host program. Program scope global variables are treated as per-
device coarse-grained SVM for addressing and sharing purposes.

* Fine-Grained buffer SVM: Sharing occurs at the granularity of individual loads/stores into
bytes within OpenCL buffer memory objects. Loads and stores may be cached. This means
consistency is guaranteed at synchronization points. If the optional OpenCL atomics are
supported, they can be used to provide fine-grained control of memory consistency.

* Fine-Grained system SVM: Sharing occurs at the granularity of individual loads/stores into
bytes occurring anywhere within the host memory. Loads and stores may be cached so
consistency is guaranteed at synchronization points. If the optional OpenCL atomics are
supported, they can be used to provide fine-grained control of memory consistency.

Table 2. A summary of shared virtual memory (SVM) options in OpenCL

Granularity of Memory Mechanisms to Explicit updates
sharing Allocation enforce between host and
Consistency device
Non-SVM buffers OpenCL Memory clCreateBuffer Host yes, through Map
objects(buffer) synchronization and Unmap
points on the same commands.
or between
devices.
Coarse-Grained = OpenCL Memory cISVMAlloc Host yes, through Map
buffer SVM objects (buffer) synchronization and Unmap
points between commands.
devices
Fine-Grained Bytes within cISVMAlloc Synchronization No
buffer SVM OpenCL Memory points plus
objects (buffer) atomics (if
supported)
Fine-Grained Bytes within Host Host memory Synchronization No
system SVM memory (system) allocation points plus
mechanisms (e.g. atomics (if
malloc) supported)

Coarse-Grained buffer SVM is required in the core OpenCL specification. The two finer grained
approaches are optional features in OpenCL. The various SVM mechanisms to access host memory
from the work-items associated with a kernel instance are summarized above.

3.3.4. Memory Model: Memory Consistency Model

The OpenCL memory model tells programmers what they can expect from an OpenCL
implementation; which memory operations are guaranteed to happen in which order and which
memory values each read operation will return. The memory model tells compiler writers which
restrictions they must follow when implementing compiler optimizations; which variables they can
cache in registers and when they can move reads or writes around a barrier or atomic operation.
The memory model also tells hardware designers about limitations on hardware optimizations; for
example, when they must flush or invalidate hardware caches.

34

The memory consistency model in OpenCL is based on the memory model from the ISO C11
programming language. To help make the presentation more precise and self-contained, we include
modified paragraphs taken verbatim from the ISO C11 international standard. When a paragraph is
taken or modified from the C11 standard, it is identified as such along with its original location in
the C11 standard.

For programmers, the most intuitive model is the sequential consistency memory model. Sequential
consistency interleaves the steps executed by each of the units of execution. Each access to a
memory location sees the last assignment to that location in that interleaving. While sequential
consistency is relatively straightforward for a programmer to reason about, implementing
sequential consistency is expensive. Therefore, OpenCL implements a relaxed memory consistency
model; i.e. it is possible to write programs where the loads from memory violate sequential
consistency. Fortunately, if a program does not contain any races and if the program only uses
atomic operations that utilize the sequentially consistent memory order (the default memory
ordering for OpenCL), OpenCL programs appear to execute with sequential consistency.

Programmers can to some degree control how the memory model is relaxed by choosing the
memory order for synchronization operations. The precise semantics of synchronization and the
memory orders are formally defined in Memory Ordering Rules. Here, we give a high level
description of how these memory orders apply to atomic operations on atomic objects shared
between units of execution. OpenCL memory_order choices are based on those from the ISO C11
standard memory model. They are specified in certain OpenCL functions through the following
enumeration constants:

* memory_order_relaxed: implies no order constraints. This memory order can be used safely to
increment counters that are concurrently incremented, but it doesn’t guarantee anything about
the ordering with respect to operations to other memory locations. It can also be used, for
example, to do ticket allocation and by expert programmers implementing lock-free algorithms.

* memory_order_acquire: A synchronization operation (fence or atomic) that has acquire
semantics "acquires" side-effects from a release operation that synchronises with it: if an
acquire synchronises with a release, the acquiring unit of execution will see all side-effects
preceding that release (and possibly subsequent side-effects.) As part of carefully-designed
protocols, programmers can use an "acquire" to safely observe the work of another unit of
execution.

* memory_order_release: A synchronization operation (fence or atomic operation) that has
release semantics "releases" side effects to an acquire operation that synchronises with it. All
side effects that precede the release are included in the release. As part of carefully-designed
protocols, programmers can use a '"release” to make changes made in one unit of execution
visible to other units of execution.

In general, no acquire must always synchronise with any particular release.
However, synchronisation can be forced by certain executions. See Memory Order
Rules: Fence Operations for detailed rules for when synchronisation must occur.

* memory_order_acq_rel: A synchronization operation with acquire-release semantics has the

properties of both the acquire and release memory orders. It is typically used to order read-
modify-write operations.

35

* memory_order_seq_cst: The loads and stores of each unit of execution appear to execute in
program (i.e., sequenced-before) order, and the loads and stores from different units of
execution appear to be simply interleaved.

Regardless of which memory_order is specified, resolving constraints on memory operations across
a heterogeneous platform adds considerable overhead to the execution of a program. An OpenCL
platform may be able to optimize certain operations that depend on the features of the memory
consistency model by restricting the scope of the memory operations. Distinct memory scopes are
defined by the values of the memory_scope enumeration constant:

« memory_scope_work_item: memory-ordering constraints only apply within the work-item'.

1

This value for memory_scope can only be used with atomic_work_item_fence with flags set
to CLK_IMAGE_MEM_FENCE.

* memory_scope_sub_group:memory-ordering constraints only apply within the sub-group.

* memory_scope_work_group: memory-ordering constraints only apply to work-items executing
within a single work-group.

* memory_scope_device: memory-ordering constraints only apply to work-items executing on a
single device

* memory_scope_all svm_devices: memory-ordering constraints apply to work-items executing
across multiple devices and (when using SVM) the host. A release performed with
memory_scope_all_svm_devices to a buffer that does not have the CL_MEM_SVM_ATOMICS flag set
will commit to at least memory_scope_device visibility, with full synchronization of the buffer
at a queue synchronization point (e.g. an OpenCL event).

These memory scopes define a hierarchy of visibilities when analyzing the ordering constraints of
memory operations. For example if a programmer knows that a sequence of memory operations
will only be associated with a collection of work-items from a single work-group (and hence will
run on a single device), the implementation is spared the overhead of managing the memory orders
across other devices within the same context. This can substantially reduce overhead in a program.
All memory scopes are valid when used on global memory or local memory. For local memory, all
visibility is constrained to within a given work-group and scopes wider than
memory_scope_work_group carry no additional meaning.

In the following subsections (leading up to OpenCL Framework), we will explain the
synchronization constructs and detailed rules needed to use OpenCL’s relaxed memory models. It is
important to appreciate, however, that many programs do not benefit from relaxed memory
models. Even expert programmers have a difficult time using atomics and fences to write correct
programs with relaxed memory models. A large number of OpenCL programs can be written using
a simplified memory model. This is accomplished by following these guidelines.

* Write programs that manage safe sharing of global memory objects through the
synchronization points defined by the command queues.

* Restrict low level synchronization inside work-groups to the work-group functions such as
barrier.

36

* If you want sequential consistency behavior with system allocations or fine-grain SVM buffers
with atomics support, use only memory_order_seq cst operations with the scope
memory_scope_all_svm_devices.

 If you want sequential consistency behavior when not using system allocations or fine-grain
SVM buffers with atomics support, use only memory_order_seq_cst operations with the scope
memory_scope_device or memory_scope_all_svm_devices.

« Ensure your program has no races.

If these guidelines are followed in your OpenCL programs, you can skip the detailed rules behind
the relaxed memory models and go directly to OpenCL Framework.

3.3.5. Memory Model: Overview of atomic and fence operations

The OpenCL 2.0 specification defines a number of synchronization operations that are used to
define memory order constraints in a program. They play a special role in controlling how memory
operations in one unit of execution (such as work-items or, when using SVM a host thread) are
made visible to another. There are two types of synchronization operations in OpenCL; atomic
operations and fences.

Atomic operations are indivisible. They either occur completely or not at all. These operations are
used to order memory operations between units of execution and hence they are parameterized
with the memory_order and memory_scope parameters defined by the OpenCL memory
consistency model. The atomic operations for OpenCL Kkernel languages are similar to the
corresponding operations defined by the C11 standard.

The OpenCL 2.0 atomic operations apply to variables of an atomic type (a subset of those in the C11
standard) including atomic versions of the int, uint, long, ulong, float, double, half, intptr_t,
uintptr_t, size_t, and ptrdiff t types. However, support for some of these atomic types depends on
support for the corresponding regular types.

An atomic operation on one or more memory locations is either an acquire operation, a release
operation, or both an acquire and release operation. An atomic operation without an associated
memory location is a fence and can be either an acquire fence, a release fence, or both an acquire
and release fence. In addition, there are relaxed atomic operations, which do not have
synchronization properties, and atomic read-modify-write operations, which have special
characteristics. [C11 standard, Section 5.1.2.4, paragraph 5, modified.]

The orders memory_order_acquire (used for reads), memory_order_release (used for writes),
and memory_order_acq rel (used for read-modify-write operations) are used for simple
communication between units of execution using shared variables. Informally, executing a
memory_order_release on an atomic object A makes all previous side effects visible to any unit of
execution that later executes a memory_order_acquire on A. The orders memory_order_acquire,
memory_order_release, and memory_order_acq _rel do not provide sequential consistency for
race-free programs because they will not ensure that atomic stores followed by atomic loads
become visible to other threads in that order.

The fence operation is atomic_work_item_fence, which includes a memory_order argument as well
as the memory_scope and cl _mem_fence_flags arguments. Depending on the memory_order

37

argument, this operation:

* has no effects, if memory_order_relaxed;

* is an acquire fence, if memory_order_acquire;

* is arelease fence, if memory_order_release;

* is both an acquire fence and a release fence, if memory_order_acq_rel;

* is a sequentially-consistent fence with both acquire and release semantics, if
memory_order_seq_cst.

If specified, the cl_mem_fence_flags argument must be CLK IMAGE_MEM_FENCE,
CLK_GLOBAL_MEM_FENCE, CLK LOCAL_MEM FENCE, or CLK GLOBAL_MEM_FENCE |
CLK_LOCAL_MEM_FENCE.

The atomic_work_item_fence(CLK_IMAGE_MEM_FENCE) built-in function must be used to make
sure that sampler-less writes are visible to later reads by the same work-item. Without use of the
atomic_work_item_fence function, write-read coherence on image objects is not guaranteed: if a
work-item reads from an image to which it has previously written without an intervening
atomic_work_item_fence, it is not guaranteed that those previous writes are visible to the work-
item.

The synchronization operations in OpenCL can be parameterized by a memory_scope. Memory
scopes control the extent that an atomic operation or fence is visible with respect to the memory
model. These memory scopes may be used when performing atomic operations and fences on
global memory and local memory. When used on global memory visibility is bounded by the
capabilities of that memory. When used on a fine-grained non-atomic SVM buffer, a coarse-grained
SVM buffer, or a non-SVM buffer, operations parameterized with memory_scope_all_svm_devices
will behave as if they were parameterized with memory_scope_device. When used on local
memory, visibility is bounded by the work-group and, as a result, memory_scope with wider
visibility than memory_scope_work_group will be reduced to memory_scope_work_group.

Two actions A and B are defined to have an inclusive scope if they have the same scope P such that:

* P is memory_scope_sub_group and A and B are executed by work-items within the same sub-
group.

* P is memory_scope_work_group and A and B are executed by work-items within the same
work-group.

* P is memory_scope_device and A and B are executed by work-items on the same device when
A and B apply to an SVM allocation or A and B are executed by work-items in the same kernel
or one of its children when A and B apply to a cl_mem buffer.

* P is memory_scope_all_svm_devices if A and B are executed by host threads or by work-items
on one or more devices that can share SVM memory with each other and the host process.

3.3.6. Memory Model: Memory Ordering Rules

Fundamentally, the issue in a memory model is to understand the orderings in time of
modifications to objects in memory. Modifying an object or calling a function that modifies an
object are side effects, i.e. changes in the state of the execution environment. Evaluation of an

38

expression in general includes both value computations and initiation of side effects. Value
computation for an lvalue expression includes determining the identity of the designated object.
[C11 standard, Section 5.1.2.3, paragraph 2, modified.]

We assume that the OpenCL kernel language and host programming languages have a sequenced-
before relation between the evaluations executed by a single unit of execution. This sequenced-
before relation is an asymmetric, transitive, pair-wise relation between those evaluations, which
induces a partial order among them. Given any two evaluations A and B, if A is sequenced-before B,
then the execution of A shall precede the execution of B. (Conversely, if A is sequenced-before B,
then B is sequenced-after A.) If A is not sequenced-before or sequenced-after B, then A and B are
unsequenced. Evaluations A and B are indeterminately sequenced when A is either sequenced-
before or sequenced-after B, but it is unspecified which. [C11 standard, Section 5.1.2.3, paragraph 3,
modified.]

Sequenced-before is a partial order of the operations executed by a single unit of

0 execution (e.g. a host thread or work-item). It generally corresponds to the source
program order of those operations, and is partial because of the undefined
argument evaluation order of OpenCLs kernel C language.

In an OpenCL kernel language, the value of an object visible to a work-item W at a particular point
is the initial value of the object, a value stored in the object by W, or a value stored in the object by
another work-item or host thread, according to the rules below. Depending on details of the host
programming language, the value of an object visible to a host thread may also be the value stored
in that object by another work-item or host thread. [C11 standard, Section 5.1.2.4, paragraph 2,
modified.]

Two expression evaluations conflict if one of them modifies a memory location and the other one
reads or modifies the same memory location. [C11 standard, Section 5.1.2.4, paragraph 4.]

All modifications to a particular atomic object M occur in some particular total order, called the
modification order of M. If A and B are modifications of an atomic object M, and A happens-before
B, then A shall precede B in the modification order of M, which is defined below. Note that the
modification order of an atomic object M is independent of whether M is in local or global memory.
[C11 standard, Section 5.1.2.4, paragraph 7, modified.]

A release sequence begins with a release operation A on an atomic object M and is the maximal
contiguous sub-sequence of side effects in the modification order of M, where the first operation is
A and every subsequent operation either is performed by the same work-item or host thread that
performed the release or is an atomic read-modify-write operation. [C11 standard, Section 5.1.2.4,
paragraph 10, modified.]

OpenCLs local and global memories are disjoint. Kernels may access both kinds of memory while
host threads may only access global memory. Furthermore, the flags argument of OpenCLs
work_group_barrier function specifies which memory operations the function will make visible:
these memory operations can be, for example, just the ones to local memory, or the ones to global
memory, or both. Since the visibility of memory operations can be specified for local memory
separately from global memory, we define two related but independent relations, global-
synchronizes-with and local-synchronizes-with. Certain operations on global memory may global-
synchronize-with other operations performed by another work-item or host thread. An example is

39

a release atomic operation in one work- item that global-synchronizes-with an acquire atomic
operation in a second work-item. Similarly, certain atomic operations on local objects in kernels can
local-synchronize- with other atomic operations on those local objects. [C11 standard, Section
5.1.2.4, paragraph 11, modified.]

We define two separate happens-before relations: global-happens-before and local-happens-before.
A global memory action A global-happens-before a global memory action B if

* Aissequenced before B, or
* A global-synchronizes-with B, or

» For some global memory action C, A global-happens-before C and C global-happens-before B.
Alocal memory action A local-happens-before a local memory action B if

* Aissequenced before B, or
* Alocal-synchronizes-with B, or

» For some local memory action C, A local-happens-before C and C local-happens-before B.

An OpenCL implementation shall ensure that no program execution demonstrates a cycle in either
the local-happens-before relation or the global-happens-before relation.

The global- and local-happens-before relations are critical to defining what values
are read and when data races occur. The global-happens-before relation, for
example, defines what global memory operations definitely happen before what

0 other global memory operations. If an operation A global-happens-before
operation B then A must occur before B; in particular, any write done by A will be
visible to B. The local-happens-before relation has similar properties for local
memory. Programmers can use the local- and global-happens-before relations to
reason about the order of program actions.

A visible side effect A on a global object M with respect to a value computation B of M satisfies the
conditions:
* A global-happens-before B, and
* there is no other side effect X to M such that A global-happens-before X and X global-happens-
before B.

We define visible side effects for local objects M similarly. The value of a non-atomic scalar object
M, as determined by evaluation B, shall be the value stored by the visible side effect A. [C11
standard, Section 5.1.2.4, paragraph 19, modified.]

The execution of a program contains a data race if it contains two conflicting actions A and B in
different units of execution, and

* (1) at least one of A or B is not atomic, or A and B do not have inclusive memory scope, and

* (2) the actions are global actions unordered by the global-happens-before relation or are local
actions unordered by the local-happens-before relation.

40

Any such data race results in undefined behavior. [C11 standard, Section 5.1.2.4, paragraph 25,
modified.]

We also define the visible sequence of side effects on local and global atomic objects. The remaining
paragraphs of this subsection define this sequence for a global atomic object M; the visible
sequence of side effects for a local atomic object is defined similarly by using the local-happens-
before relation.

The visible sequence of side effects on a global atomic object M, with respect to a value
computation B of M, is a maximal contiguous sub-sequence of side effects in the modification order
of M, where the first side effect is visible with respect to B, and for every side effect, it is not the
case that B global-happens-before it. The value of M, as determined by evaluation B, shall be the
value stored by some operation in the visible sequence of M with respect to B. [C11 standard,
Section 5.1.2.4, paragraph 22, modified.]

If an operation A that modifies an atomic object M global-happens before an operation B that
modifies M, then A shall be earlier than B in the modification order of M. This requirement is
known as write-write coherence.

If a value computation A of an atomic object M global-happens-before a value computation B of M,
and A takes its value from a side effect X on M, then the value computed by B shall either equal the
value stored by X, or be the value stored by a side effect Y on M, where Y follows X in the
modification order of M. This requirement is known as read-read coherence. [C11 standard, Section
5.1.2.4, paragraph 22, modified.]

If a value computation A of an atomic object M global-happens-before an operation B on M, then A
shall take its value from a side effect X on M, where X precedes B in the modification order of M.
This requirement is known as read-write coherence.

If a side effect X on an atomic object M global-happens-before a value computation B of M, then the
evaluation B shall take its value from X or from a side effect Y that follows X in the modification
order of M. This requirement is known as write-read coherence.

Memory Ordering Rules: Atomic Operations

This and following sections describe how different program actions in kernel C code and the host
program contribute to the local- and global-happens-before relations. This section discusses
ordering rules for OpenCL 2.0 atomic operations.

Device-side enqueue defines the enumerated type memory_order.

* For memory_order_relaxed, no operation orders memory.

* For memory_order_release, memory_order_acq_rel, and memory_order_seq_cst, a store
operation performs a release operation on the affected memory location.

* For memory_order_acquire, memory_order_acq rel, and memory_order_seq_cst, a load
operation performs an acquire operation on the affected memory location. [C11 standard,
Section 7.17.3, paragraphs 2-4, modified.]

Certain built-in functions synchronize with other built-in functions performed by another unit of

41

execution. This is true for pairs of release and acquire operations under specific circumstances. An
atomic operation A that performs a release operation on a global object M global-synchronizes-with
an atomic operation B that performs an acquire operation on M and reads a value written by any
side effect in the release sequence headed by A. A similar rule holds for atomic operations on
objects in local memory: an atomic operation A that performs a release operation on a local object
M local-synchronizes-with an atomic operation B that performs an acquire operation on M and
reads a value written by any side effect in the release sequence headed by A. [C11 standard, Section
5.1.2.4, paragraph 11, modified.]

Atomic operations specifying memory_order_relaxed are relaxed only with

0 respect to memory ordering. Implementations must still guarantee that any given
atomic access to a particular atomic object be indivisible with respect to all other
atomic accesses to that object.

There shall exist a single total order S for all memory_order_seq_cst operations that is consistent
with the modification orders for all affected locations, as well as the appropriate global-happens-
before and local-happens-before orders for those locations, such that each memory_order_seq
operation B that loads a value from an atomic object M in global or local memory observes one of
the following values:

* the result of the last modification A of M that precedes B in S, if it exists, or

 if A exists, the result of some modification of M in the visible sequence of side effects with
respect to B that is not memory_order_seq_cst and that does not happen before A, or

« if A does not exist, the result of some modification of M in the visible sequence of side effects
with respect to B that is not memory_order_seq_cst. [C11 standard, Section 7.17.3, paragraph 6,
modified.]

Let X and Y be two memory_order_seq_cst operations. If X local-synchronizes-with or global-
synchronizes-with Y then X both local-synchronizes-with Y and global-synchronizes-with Y.

If the total order S exists, the following rules hold:

* For an atomic operation B that reads the value of an atomic object M, if there is a
memory_order_seq_cst fence X sequenced-before B, then B observes either the last
memory_order_seq_cst modification of M preceding X in the total order S or a later
modification of M in its modification order. [C11 standard, Section 7.17.3, paragraph 9.]

» For atomic operations A and B on an atomic object M, where A modifies M and B takes its value,
if there is a memory_order_seq_cst fence X such that A is sequenced-before X and B follows X
in S, then B observes either the effects of A or a later modification of M in its modification
order. [C11 standard, Section 7.17.3, paragraph 10.]

» For atomic operations A and B on an atomic object M, where A modifies M and B takes its value,
if there are memory_order_seq_cst fences X and Y such that A is sequenced-before X, Y is
sequenced-before B, and X precedes Y in S, then B observes either the effects of A or a later
modification of M in its modification order. [C11 standard, Section 7.17.3, paragraph 11.]

* For atomic operations A and B on an atomic object M, if there are memory_order_seq_cst
fences X and Y such that A is sequenced-before X, Y is sequenced-before B, and X precedes Y in
S, then B occurs later than A in the modification order of M.

42

memory_order_seq_cst ensures sequential consistency only for a program that is
(1) free of data races, and (2) exclusively uses memory_order_seq_cst
synchronization operations. Any use of weaker ordering will invalidate this

0 guarantee unless extreme care is used. In particular, memory_order_seq_cst
fences ensure a total order only for the fences themselves. Fences cannot, in
general, be used to restore sequential consistency for atomic operations with
weaker ordering specifications.

Atomic read-modify-write operations should always read the last value (in the modification order)
stored before the write associated with the read-modify-write operation. [C11 standard, Section
7.17.3, paragraph 12.]

Implementations should ensure that no "out-of-thin-air" values are computed that circularl
depend on their own computation.

Note: Under the rules described above, and independent to the previously footnoted C++ issue, it is
known that x ==y == 42 is a valid final state in the following problematic example:

global atomic_int x = ATOMIC_VAR_INIT(0);
local atomic_int y = ATOMIC_VAR_INIT(9);

unit_of_execution_1:

... [execution not reading or writing x or y, leading up to:]
int t = atomic_load_explicit(&y, memory_order_acquire);
atomic_store_explicit(&x, t, memory_order_release);

unit_of_execution_2:

... [execution not reading or writing x or y, leading up to:]
int t = atomic_load_explicit(&x, memory_order_acquire);
atomic_store_explicit(&y, t, memory_order_release);

This is not useful behavior and implementations should not exploit this phenomenon. It should be
expected that in the future this may be disallowed by appropriate updates to the memory model
description by the OpenCL committee.

Implementations should make atomic stores visible to atomic loads within a reasonable amount of
time. [C11 standard, Section 7.17.3, paragraph 16.]

As long as the following conditions are met, a host program sharing SVM memory with a kernel
executing on one or more OpenCL devices may use atomic and synchronization operations to
ensure that its assignments, and those of the kernel, are visible to each other:

1. Either fine-grained buffer or fine-grained system SVM must be used to share memory. While
coarse-grained buffer SVM allocations may support atomic operations, visibility on these
allocations is not guaranteed except at map and unmap operations.

2. The optional OpenCL 2.0 SVM atomic-controlled visibility specified by provision of the CL_MEM_
SVM_ATOMICS flag must be supported by the device and the flag provided to the SVM buffer on
allocation.

43

3. The host atomic and synchronization operations must be compatible with those of an OpenCL
kernel language. This requires that the size and representation of the data types that the host
atomic operations act on be consistent with the OpenCL kernel language atomic types.

If these conditions are met, the host operations will apply at all_svm_devices scope.

Memory Ordering Rules: Fence Operations

This section describes how the OpenCL 2.0 fence operations contribute to the local- and global-
happens-before relations.

Earlier, we introduced synchronization primitives called fences. Fences can utilize the acquire
memory_order, release memory_order, or both. A fence with acquire semantics is called an acquire
fence; a fence with release semantics is called a release fence. The overview of atomic and fence
operations section describes the memory orders that result in acquire and release fences.

A global release fence A global-synchronizes-with a global acquire fence B if there exist atomic
operations X and Y, both operating on some global atomic object M, such that A is sequenced-
before X, X modifies M, Y is sequenced-before B, Y reads the value written by X or a value written
by any side effect in the hypothetical release sequence X would head if it were a release operation,
and that the scopes of A, B are inclusive. [C11 standard, Section 7.17.4, paragraph 2, modified.]

A global release fence A global-synchronizes-with an atomic operation B that performs an acquire
operation on a global atomic object M if there exists an atomic operation X such that A is
sequenced-before X, X modifies M, B reads the value written by X or a value written by any side
effect in the hypothetical release sequence X would head if it were a release operation, and the
scopes of A and B are inclusive. [C11 standard, Section 7.17.4, paragraph 3, modified.]

An atomic operation A that is a release operation on a global atomic object M global-synchronizes-
with a global acquire fence B if there exists some atomic operation X on M such that X is
sequenced-before B and reads the value written by A or a value written by any side effect in the
release sequence headed by A, and the scopes of A and B are inclusive. [C11 standard, Section
7.17.4, paragraph 4, modified.]

A local release fence A local-synchronizes-with a local acquire fence B if there exist atomic
operations X and Y, both operating on some local atomic object M, such that A is sequenced-before
X, X modifies M, Y is sequenced-before B, and Y reads the value written by X or a value written by
any side effect in the hypothetical release sequence X would head if it were a

release operation, and the scopes of A and B are inclusive. [C11 standard, Section 7.17.4, paragraph
2, modified.]

A local release fence A local-synchronizes-with an atomic operation B that performs an acquire
operation on a local atomic object M if there exists an atomic operation X such that A is sequenced-
before X, X modifies M, and B reads the value written by X or a value written by any side effect in
the hypothetical release sequence X would head if it were a release operation, and the scopes of A
and B are inclusive. [C11 standard, Section 7.17.4, paragraph 3, modified.]

An atomic operation A that is a release operation on a local atomic object M local-synchronizes-
with a local acquire fence B if there exists some atomic operation X on M such that X is sequenced-

44

before B and reads the value written by A or a value written by any side effect in the release
sequence headed by A, and the scopes of A and B are inclusive. [C11 standard, Section 7.17.4,
paragraph 4, modified.]

Let X and Y be two work item fences that each have both the CLK GLOBAL_MEM FENCE and
CLK_LOCAL_MEM_FENCE flags set. X global-synchronizes-with Y and X local synchronizes with Y if
the conditions required for X to global-synchronize with Y are met, the conditions required for X to
local-synchronize-with Y are met, or both sets of conditions are met.

Memory Ordering Rules: Work-group Functions

The OpenCL kernel execution model includes collective operations across the work-items within a
single work-group. These are called work-group functions. Besides the work-group barrier function,
they include the scan, reduction and pipe work-group functions described in the SPIR-V IL
specifications. We will first discuss the work-group barrier. The other work-group functions are
discussed afterwards.

The barrier function provides a mechanism for a kernel to synchronize the work-items within a
single work-group: informally, each work-item of the work-group must execute the barrier before
any are allowed to proceed. It also orders memory operations to a specified combination of one or
more address spaces such as local memory or global memory, in a similar manner to a fence.

To precisely specify the memory ordering semantics for barrier, we need to distinguish between a
dynamic and a static instance of the call to a barrier. A call to a barrier can appear in a loop, for
example, and each execution of the same static barrier call results in a new dynamic instance of the
barrier that will independently synchronize a work-groups work-items.

A work-item executing a dynamic instance of a barrier results in two operations, both fences, that
are called the entry and exit fences. These fences obey all the rules for fences specified elsewhere in
this chapter as well as the following:

* The entry fence is a release fence with the same flags and scope as requested for the barrier.
» The exit fence is an acquire fence with the same flags and scope as requested for the barrier.
» For each work-item the entry fence is sequenced before the exit fence.

o If the flags have CLK_GLOBAL_MEM_FENCE set then for each work-item the entry fence global-
synchronizes-with the exit fence of all other work-items in the same work-group.

o If the flags have CLK_LOCAL_MEM_FENCE set then for each work-item the entry fence local-
synchronizes-with the exit fence of all other work-items in the same work-group.

The other work-group functions include such functions as work group_all) and
work_group_broadcast() and are described in the kernel language and IL specifications. The use of
these work-group functions implies sequenced-before relationships between statements within the
execution of a single work-item in order to satisfy data dependencies. For example, a work item
that provides a value to a work-group function must behave as if it generates that value before
beginning execution of that work-group function. Furthermore, the programmer must ensure that
all work items in a work group must execute the same work-group function call site, or dynamic
work-group function instance.

45

Memory Ordering Rules: Sub-group Functions

The OpenCL kernel execution model includes collective operations across the work-items within a
single sub-group. These are called sub-group functions. Besides the sub-group-barrier function,
they include the scan, reduction and pipe sub-group functions described in the SPIR-V IL
specification. We will first discuss the sub-group barrier. The other sub-group functions are
discussed afterwards.

The barrier function provides a mechanism for a kernel to synchronize the work-items within a
single sub-group: informally, each work-item of the sub-group must execute the barrier before any
are allowed to proceed. It also orders memory operations to a specified combination of one or more
address spaces such as local memory or global memory, in a similar manner to a fence.

To precisely specify the memory ordering semantics for barrier, we need to distinguish between a
dynamic and a static instance of the call to a barrier. A call to a barrier can appear in a loop, for
example, and each execution of the same static barrier call results in a new dynamic instance of the
barrier that will independently synchronize a sub-groups work-items.

A work-item executing a dynamic instance of a barrier results in two operations, both fences, that
are called the entry and exit fences. These fences obey all the rules for fences specified elsewhere in
this chapter as well as the following:

* The entry fence is a release fence with the same flags and scope as requested for the barrier.
» The exit fence is an acquire fence with the same flags and scope as requested for the barrier.
» For each work-item the entry fence is sequenced before the exit fence.

o If the flags have CLK_GLOBAL_MEM_FENCE set then for each work-item the entry fence global-
synchronizes-with the exit fence of all other work-items in the same sub-group.

« If the flags have CLK_LOCAL_MEM_FENCE set then for each work-item the entry fence local-
synchronizes-with the exit fence of all other work-items in the same sub-group.

The other sub-group functions include such functions as sub_group_all() and sub_group_broadcast()
and are described in OpenCL kernel languages specifications. The use of these sub-group functions
implies sequenced-before relationships between statements within the execution of a single work-
item in order to satisfy data dependencies. For example, a work item that provides a value to a sub-
group function must behave as if it generates that value before beginning execution of that sub-
group function. Furthermore, the programmer must ensure that all work items in a sub-group must
execute the same sub-group function call site, or dynamic sub-group function instance.

Memory Ordering Rules: Host-side and Device-side Commands

This section describes how the OpenCL API functions associated with command-queues contribute
to happens-before relations. There are two types of command queues and associated API functions
in OpenCL 2.0; host command-queues and device command-queues. The interaction of these
command queues with the memory model are for the most part equivalent. In a few cases, the rules
only applies to the host command-queue. We will indicate these special cases by specifically
denoting the host command-queue in the memory ordering rule. SVM memory consistency in such
instances is implied only with respect to synchronizing host commands.

46

Memory ordering rules in this section apply to all memory objects (buffers, images and pipes) as
well as to SVM allocations where no earlier, and more fine-grained, rules apply.

In the remainder of this section, we assume that each command C enqueued onto a command-
queue has an associated event object E that signals its execution status, regardless of whether E was
returned to the unit of execution that enqueued C. We also distinguish between the API function
call that enqueues a command C and creates an event E, the execution of C, and the completion of
C(which marks the event E as complete).

The ordering and synchronization rules for API commands are defined as following:

1.

If an API function call X enqueues a command C, then X global-synchronizes-with C. For
example, a host API function to enqueue a kernel global-synchronizes-with the start of that
kernel-instances execution, so that memory updates sequenced-before the enqueue kernel
function call will global-happen-before any kernel reads or writes to those same memory
locations. For a device-side enqueue, global memory updates sequenced before X happens-
before C reads or writes to those memory locations only in the case of fine-grained SVM.

If E is an event upon which a command C waits, then E global-synchronizes-with C. In
particular, if C waits on an event E that is tracking the execution status of the command C1,
then memory operations done by C1 will global-happen-before memory operations done by C.
As an example, assume we have an OpenCL program using coarse-grain SVM sharing that
enqueues a kernel to a host command-queue to manipulate the contents of a region of a buffer
that the host thread then accesses after the kernel completes. To do this, the host thread can call
clEnqueueMapBuffer to enqueue a blocking-mode map command to map that buffer region,
specifying that the map command must wait on an event signaling the kernels completion.
When clEnqueueMapBuffer returns, any memory operations performed by the kernel to that
buffer region will global- happen-before subsequent memory operations made by the host
thread.

If a command C has an event E that signals its completion, then C global- synchronizes-with E.

For a command C enqueued to a host-side command queue, if C has an event E that signals its
completion, then E global-synchronizes-with an API call X that waits on E. For example, if a host
thread or kernel-instance calls the wait-for-events function on E (e.g. the clWaitForEvents
function called from a host thread), then E global-synchronizes-with that wait-for-events
function call.

If commands C and C1 are enqueued in that sequence onto an in-order command-queue, then
the event (including the event implied between C and C1 due to the in-order queue) signaling
C's completion global-synchronizes-with C1. Note that in OpenCL 2.0, only a host command-
queue can be configured as an in-order queue.

If an API call enqueues a marker command C with an empty list of events upon which C should
wait, then the events of all commands enqueued prior to C in the command-queue global-
synchronize-with C.

If a host API call enqueues a command-queue barrier command C with an empty list of events
on which C should wait, then the events of all commands enqueued prior to C in the command-
queue global-synchronize-with C. In addition, the event signaling the completion of C global-
synchronizes-with all commands enqueued after C in the command-queue.

If a host thread executes a clFinish call X, then the events of all commands enqueued prior to X

47

in the command-queue global-synchronizes-with X.

9. The start of a kernel-instance K global-synchronizes-with all operations in the work items of K.
Note that this includes the execution of any atomic operations by the work items in a program
using fine-grain SVM.

10. All operations of all work items of a kernel-instance K global-synchronizes-with the event
signaling the completion of K. Note that this also includes the execution of any atomic
operations by the work items in a program using fine-grain SVM.

11. If a callback procedure P is registered on an event E, then E global-synchronizes-with all
operations of P. Note that callback procedures are only defined for commands within host
command-queues.

12. If C is a command that waits for an event E's completion, and API function call X sets the status
of a user event E's status to CL_COMPLETE (for example, from a host thread using a
clSetUserEventStatus function), then X global-synchronizes-with C.

13. If a device enqueues a command C with the CLK_ENQUEUE_FLAGS_WAIT_KERNEL flag, then
the end state of the parent kernel instance global-synchronizes with C.

14. If a work-group enqueues a command C with the CLK_ENQUEUE_FLAGS_WAIT_WORK_GROUP
flag, then the end state of the work-group global-synchronizes with C.

When using an out-of-order command queue, a wait on an event or a marker or command-queue
barrier command can be used to ensure the correct ordering of dependent commands. In those
cases, the wait for the event or the marker or barrier command will provide the necessary global-
synchronizes-with relation.

In this situation:

* access to shared locations or disjoint locations in a single cl_mem object when using atomic
operations from different kernel instances enqueued from the host such that one or more of the
atomic operations is a write is implementation-defined and correct behavior is not guaranteed
except at synchronization points.

* access to shared locations or disjoint locations in a single cl_mem object when using atomic
operations from different kernel instances consisting of a parent kernel and any number of
child kernels enqueued by that kernel is guaranteed under the memory ordering rules
described earlier in this section.

* access to shared locations or disjoint locations in a single program scope global variable, coarse-
grained SVM allocation or fine-grained SVM allocation when using atomic operations from
different kernel instances enqueued from the host to a single device is guaranteed under the
memory ordering rules described earlier in this section.

If fine-grain SVM is used but without support for the OpenCL 2.0 atomic operations, then the host
and devices can concurrently read the same memory locations and can concurrently update non-
overlapping memory regions, but attempts to update the same memory locations are undefined.
Memory consistency is guaranteed at the OpenCL synchronization points without the need for calls
to clEnqueueMapBuffer and clEnqueueUnmapMemObject. For fine-grained SVM buffers it is
guaranteed that at synchronization points only values written by the kernel will be updated. No
writes to fine-grained SVM buffers can be introduced that were not in the original program.

48

In the remainder of this section, we discuss a few points regarding the ordering rules for
commands with a host command queue.

The OpenCL 1.2 standard describes a synchronization point as a kernel-instance or host program
location where the contents of memory visible to different work-items or command-queue
commands are the same. It also says that waiting on an event and a command-queue barrier are
synchronization points between commands in command- queues. Four of the rules listed above (2,
4,7, and 8) cover these OpenCL synchronization points.

A map operation (clEnqueueMapBuffer or clEnqueueMapImage) performed on a non-SVM buffer
or a coarse-grained SVM buffer is allowed to overwrite the entire target region with the latest
runtime view of the data as seen by the command with which the map operation synchronizes,
whether the values were written by the executing kernels or not. Any values that were changed
within this region by another kernel or host thread while the kernel synchronizing with the map
operation was executing may be overwritten by the map operation.

Access to non-SVM cl_mem buffers and coarse-grained SVM allocations is ordered at
synchronization points between host commands. In the presence of an out-of-order command
queue or a set of command queues mapped to the same device, multiple kernel instances may
execute concurrently on the same device.

3.4. The OpenCL Framework

The OpenCL framework allows applications to use a host and one or more OpenCL devices as a
single heterogeneous parallel computer system. The framework contains the following
components:

* OpenCL Platform layer: The platform layer allows the host program to discover OpenCL
devices and their capabilities and to create contexts.

* OpenCL Runtime: The runtime allows the host program to manipulate contexts once they have
been created.

* OpenCL Compiler: The OpenCL compiler creates program executables that contain OpenCL
kernels. SPIR-V intermediate language, OpenCL C, OpenCL C++, and OpenCL C language versions
from earlier OpenCL specifications are supported by the compiler. Other input languages may
be supported by some implementations.

3.4.1. OpenCL Framework: Mixed Version Support

OpenCL supports devices with different capabilities under a single platform. This includes devices
which conform to different versions of the OpenCL specification. There are three version identifiers
to consider for an OpenCL system: the platform version, the version of a device, and the version(s)
of the kernel language or IL supported on a device.

The platform version indicates the version of the OpenCL runtime that is supported. This includes
all of the APIs that the host can use to interact with resources exposed by the OpenCL runtime;
including contexts, memory objects, devices, and command queues.

The device version is an indication of the device’s capabilities separate from the runtime and

49

compiler as represented by the device info returned by clGetDevicelnfo. Examples of attributes
associated with the device version are resource limits (e.g., minimum size of local memory per
compute unit) and extended functionality (e.g., list of supported KHR extensions). The version
returned corresponds to the highest version of the OpenCL specification for which the device is
conformant, but is not higher than the platform version.

The language version for a device represents the OpenCL programming language features a
developer can assume are supported on a given device. The version reported is the highest version
of the language supported.

Backwards compatibility is an important goal for the OpenCL standard. Backwards compatibility is
expected such that a device will consume earlier versions of the SPIR-V and OpenCL C
programming languages with the following minimum requirements:

1. An OpenCL 1.x device must support at least one 1.x version of the OpenCL C programming
language.

2. An OpenCL 2.0 device must support all the requirements of an OpenCL 1.x device in addition to
the OpenCL C 2.0 programming language. If multiple language versions are supported, the
compiler defaults to using the highest OpenCL 1.x language version supported for the device
(typically OpenCL 1.2). To utilize the OpenCL 2.0 Kernel programming language, a programmer
must specifically set the appropriate compiler flag (-cl-std=CL2.0). The language version must
not be higher than the platform version, but may exceed the device version.

3. An OpenCL 2.1 device must support all the requirements of an OpenCL 2.0 device in addition to
the SPIR-V intermediate language at version 1.0 or above. Intermediate language versioning is
encoded as part of the binary object and no flags are required to be passed to the compiler.

4. An OpenCL 2.2 device must support all the requirements of an OpenCL 2.0 device in addition to
the SPIR-V intermediate language at version 1.2 or above. Intermediate language versioning is
encoded as a part of the binary object and no flags are required to be passed to the compiler.

50

Chapter 4. The OpenCL Platform Layer

This section describes the OpenCL platform layer which implements platform-specific features that
allow applications to query OpenCL devices, device configuration information, and to create
OpenCL contexts using one or more devices.

4.1. Querying Platform Info

The list of platforms available can be obtained with the function:

cl_int clGetPlatformIDs(
cl_uint num_entries,
cl_platform_id* platforms,
cl_uint* num_platforms);

* num_entries is the number of cl_platform_id entries that can be added to platforms. If platforms
is not NULL, the num_entries must be greater than zero.

¢ platforms returns a list of OpenCL platforms found. The cl_platform_id values returned in
platforms can be used to identify a specific OpenCL platform. If platforms is NULL, this argument
is ignored. The number of OpenCL platforms returned is the minimum of the value specified by
num_entries or the number of OpenCL platforms available.

* num_platforms returns the number of OpenCL platforms available. If num_platforms is NULL, this
argument is ignored.

clGetPlatformIDs returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns
one of the following errors:

o CL_INVALID_VALUE if num_entries is equal to zero and platforms is not NULL or if both
num_platforms and platforms are NULL.

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

Specific information about an OpenCL platform can be obtained with the function:

cl_int clGetPlatformInfo(
cl_platform_id platform,
cl_platform_info param_name,
size_t param_value_size,
void* param_value,
Size_t* param_value_size_ret);

* platform refers to the platform ID returned by clGetPlatformIDs or can be NULL. If platform is
NULL, the behavior is implementation-defined.

* param_name is an enumeration constant that identifies the platform information being queried.
It can be one of the following values as specified in the Platform Queries table.

51

* param_value is a pointer to memory location where appropriate values for a given
param_name, as specified in the Platform Queries table, will be returned. If param_value is NULL,
it is ignored.

» param_value_size specifies the size in bytes of memory pointed to by param_value. This size in
bytes must be > size of return type specified in the Platform Queries table.

» param_value_size_ret returns the actual size in bytes of data being queried by param_name. If
param_value_size_ret is NULL, it is ignored.

The information that can be queried using clGetPlatformInfo is specified in the Platform Queries
table.

Table 3. List of supported param_names by clGetPlatformInfo

cl_platform_info Return Description
Type
CL_PLATFORM_PROFILE char[]' OpenCL profile string. Returns the

profile name supported by the
implementation. The profile name
returned can be one of the following
strings:

FULL_PROFILE - if the implementation
supports the OpenCL specification
(functionality defined as part of the
core specification and does not
require any extensions to be
supported).

EMBEDDED_PROFILE - if the
implementation supports the OpenCL
embedded profile. The embedded
profile is defined to be a subset for
each version of OpenCL. The
embedded profile for OpenCL 2.2 is
described in OpenCL Embedded
Profile.

CL_PLATFORM_VERSION char(] OpenCL version string. Returns the
OpenCL version supported by the
implementation. This version string
has the following format:

OpenCL<space><major_version.minor._
version><space><platform-specific
information>

The major_version.minor_version
value returned will be 2.2.
CL_PLATFORM_NAME char(] Platform name string.

CL_PLATFORM_VENDOR char(] Platform vendor string.

52

cl_platform_info Return Description
Type

CL_PLATFORM_EXTENSIONS char[] Returns a space separated list of
extension names (the extension names
themselves do not contain any spaces)
supported by the platform. Each
extension that is supported by all
devices associated with this platform
must be reported here.

CL_PLATFORM_HOST_TIMER_RESOLUTION cl_ulong Returns the resolution of the host
timer in nanoseconds as used by
clGetDeviceAndHostTimer.

clGetPlatformInfo returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns
one of the following errors®.

o CL_INVALID_PLATFORM if platform is not a valid platform.

o CL_INVALID_VALUE if param_name is not one of the supported values or if size in bytes specified
by param_value_size is < size of return type as specified in the OpenCL Platform Queries table,
and param_value is not a NULL value.

e CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

1

A null terminated string is returned by OpenCL query function calls if the return type of the
information being queried is a charf[].

The OpenCL specification does not describe the order of precedence for error codes returned
by API calls.

4.2. Querying Devices

The list of devices available on a platform can be obtained using the function®:

cl_int clGetDeviceIDs(
cl_platform_id platform,
cl_device_type device_type,
c¢l_uint num_entries,
cl_device_id* devices,
cl_uint* num_devices);

* platform refers to the platform ID returned by clGetPlatformIDs or can be NULL. If platform is
NULL, the behavior is implementation-defined.

* device_type is a bitfield that identifies the type of OpenCL device. The device_type can be used to
query specific OpenCL devices or all OpenCL devices available. The valid values for device_type

53

are specified in the Device Categories table.

* num_entries is the number of cl_device_id entries that can be added to devices. If devices is not
NULL, the num_entries must be greater than zero.

* devices returns a list of OpenCL devices found. The cl_device_id values returned in devices can
be used to identify a specific OpenCL device. If devices is NULL, this argument is ignored. The
number of OpenCL devices returned is the minimum of the value specified by num_entries or
the number of OpenCL devices whose type matches device_type.

* num_devices returns the number of OpenCL devices available that match device type. If
num_devices is NULL, this argument is ignored.

3

clGetDevicelDs may return all or a subset of the actual physical devices present in the
platform and that match device_type.

Table 4. List of supported device_types by clGetDevicelDs
cl_device_type Description

CL_DEVICE_TYPE_CPU An OpenCL device that is the host processor. The
host processor runs the OpenCL
implementations and is a single or multi-core
CPU.

CL_DEVICE_TYPE_GPU An OpenCL device that is a GPU. By this we
mean that the device can also be used to
accelerate a 3D API such as OpenGL or DirectX.

CL_DEVICE_TYPE_ACCELERATOR Dedicated OpenCL accelerators (for example the
IBM CELL Blade). These devices communicate
with the host processor using a peripheral
interconnect such as PCle.

CL_DEVICE _TYPE_CUSTOM Dedicated accelerators that do not support
programs written in an OpenCL kernel language,

CL_DEVICE _TYPE_DEFAULT The default OpenCL device in the system. The
default device cannot be a CL_DEVICE_TYPE_CUSTOM
device.

CL_DEVICE_TYPE_ALL All OpenCL devices available in the system

except CL_DEVICE_TYPE_CUSTOM devices..

clGetDevicelDs returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns
one of the following errors:

CL_INVALID_PLATFORM if platform is not a valid platform.

CL_INVALID_DEVICE_TYPE if device_type is not a valid value.

CL_INVALID_VALUE if num_entries is equal to zero and devices is not NULL or if both num_devices
and devices are NULL.

CL_DEVICE_NOT_FOUND if no OpenCL devices that matched device_type were found.

CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL

54

implementation on the device.

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

The application can query specific capabilities of the OpenCL device(s) returned by
clGetDevicelDs. This can be used by the application to determine which device(s) to use.

To get specific information about an OpenCL device, call the function:

cl_int clGetDeviceInfo(
¢l _device id device,
cl_device_info param_name,
size_t param_value_size,
void* param_value,
Size_t* param_value_size_ret);

* device may be a device returned by clGetDevicelDs or a sub-device created by
clCreateSubDevices. If device is a sub-device, the specific information for the sub-device will be
returned. The information that can be queried using clGetDevicelnfo is specified in the Device
Queries table.

* param_name is an enumeration constant that identifies the device information being queried. It
can be one of the following values as specified in the Device Queries table.

* param_value is a pointer to memory location where appropriate values for a given
param_name, as specified in the Device Queries table, will be returned. If param_value is NULL, it
is ignored.

» param_value_size specifies the size in bytes of memory pointed to by param_value. This size in
bytes must be > size of return type specified in the Device Queries table.

» param_value_size_ret returns the actual size in bytes of data being queried by param_name. If
param_value_size_ret is NULL, it is ignored.

The device queries described in the Device Queries table should return the same information for a
root-level device i.e. a device returned by clGetDevicelDs and any sub-devices created from this
device except for the following queries:

o CL_DEVICE_GLOBAL_MEM_CACHE_SIZE
o CL_DEVICE_BUILT_IN_KERNELS

o CL_DEVICE_PARENT_DEVICE

o CL_DEVICE_PARTITION_TYPE

o CL_DEVICE_REFERENCE_COUNT

Table 5. List of supported param_names by clGetDevicelnfo

55

cl_device_info

CL_DEVICE_TYPE

CL_DEVICE_VENDOR_ID

CL_DEVICE_MAX_COMPUTE_UNITS

CL_DEVICE_MAX_WORK_ITEM_
DIMENSIONS

CL_DEVICE_MAX_WORK_ITEM_
SIZES

CL_DEVICE_MAX_WORK_GROUP_
SIZE

56

Return Type
cl_device_type

cl uint

cl_uint

cl uint

size t[]

size t

Description

The OpenCL device type. Currently supported
values are:

CL_DEVICE_TYPE_CPU, CL_DEVICE_TYPE_GPU, CL_
DEVICE_TYPE_ACCELERATOR, CL_DEVICE_TYPE_DEFAULT,
a combination of the above types, or CL_DEVICE_
TYPE_CUSTOM.

A unique device vendor identifier. An example
of a unique device identifier could be the PCle
ID.

The number of parallel compute units on the
OpenCL device. A work-group executes on a
single compute unit. The minimum value is 1.

Maximum dimensions that specify the global
and local work-item IDs used by the data
parallel execution model. (Refer to
clEnqueueNDRangeKernel). The minimum
value is 3 for devices that are not of type CL_
DEVICE_TYPE_CUSTOM.

Maximum number of work-items that can be
specified in each dimension of the work-group
to clEnqueueNDRangeKernel.

Returns n size_t entries, where n is the value
returned by the query for CL_DEVICE_MAX_WORK_
ITEM_DIMENSIONS.

The minimum value is (1, 1, 1) for devices that
are not of type CL_DEVICE_TYPE_CUSTOM.

Maximum number of work-items in a work-
group that a device is capable of executing on a
single compute unit, for any given kernel-
instance running on the device. (Refer also to
clEnqueueNDRangeKernel and CL_KERNEL_WORK_
GROUP_SIZE). The minimum value is 1. The
returned value is an upper limit and will not
necessarily maximize performance. This
maximum may be larger than supported by a
specific kernel (refer to the CL_KERNEL_WORK_
GROUP_SIZE query of
clGetKernelWorkGroupInfo).

cl_device_info

Return Type

CL_DEVICE_PREFERRED_VECTOR_ cl_uint

WIDTH_CHAR

CL_DEVICE_PREFERRED_VECTOR_

WIDTH_SHORT

CL_DEVICE_PREFERRED_VECTOR_

WIDTH_INT

CL_DEVICE_PREFERRED_VECTOR_

WIDTH_LONG

CL_DEVICE_PREFERRED_VECTOR_

WIDTH_FLOAT

CL_DEVICE_PREFERRED_VECTOR_

WIDTH_DOUBLE

CL_DEVICE_PREFERRED_VECTOR_

WIDTH_HALF

CL_DEVICE_NATIVE_VECTOR_
WIDTH_CHAR
CL_DEVICE_NATIVE_VECTOR_
WIDTH_SHORT
CL_DEVICE_NATIVE_VECTOR_
WIDTH_INT
CL_DEVICE_NATIVE_VECTOR_
WIDTH_LONG
CL_DEVICE_NATIVE_VECTOR_
WIDTH_FLOAT
CL_DEVICE_NATIVE_VECTOR_
WIDTH_DOUBLE

CL_DEVICE_NATIVE_VECTOR_
WIDTH_HALF

CL_DEVICE_MAX_CLOCK_
FREQUENCY

CL_DEVICE_ADDRESS_BITS

CL_DEVICE_MAX_MEM_ALLOC_
SIZE

CL_DEVICE_IMAGE_SUPPORT

cl uint

cl_uint

cl_uint

cl_ulong

cl bool

Description

Preferred native vector width size for built-in
scalar types that can be put into vectors. The
vector width is defined as the number of scalar
elements that can be stored in the vector.

If double precision is not supported, CL_DEVICE _
PREFERRED_VECTOR_WIDTH_DOUBLE must return O.

If the cl_khr_fp16 extension is not supported,
CL_DEVICE_PREFERRED VECTOR_WIDTH HALF must
return 0.

Returns the native ISA vector width. The vector
width is defined as the number of scalar
elements that can be stored in the vector.

If double precision is not supported, CL_DEVICE _
NATIVE _VECTOR_WIDTH_DOUBLE must return O.

If the cl_khr_fp16 extension is not supported,
CL_DEVICE NATIVE_VECTOR_WIDTH HALF must return
0.

Clock frequency of the device in MHz. The
meaning of this value is implementation-
defined. For devices with multiple clock
domains, the clock frequency for any of the
clock domains may be returned. For devices that
dynamically change frequency for power or
thermal reasons, the returned clock frequency
may be any valid frequency.

The default compute device address space size
of the global address space specified as an
unsigned integer value in bits. Currently
supported values are 32 or 64 bits.

Max size of memory object allocation in bytes.
The minimum value is max(min(1024 x 1024 x
1024, 1/4™ of CL_DEVICE_GLOBAL_MEM_SIZE), 32 x
1024 x 1024) for devices that are not of type CL_
DEVICE_TYPE_CUSTOM.

Is CL_TRUE if images are supported by the
OpenCL device and CL_FALSE otherwise.

57

cl_device_info

CL_DEVICE_MAX_READ IMAGE
ARGS*

CL_DEVICE_MAX_WRITE_IMAGE_
ARGS

CL_DEVICE_MAX_READ WRITE_
IMAGE _ARGS’

CL_DEVICE_IL_VERSION

CL_DEVICE_IMAGE2D_MAX_WIDTH

CL_DEVICE_IMAGE2D_MAX_
HEIGHT

CL_DEVICE_IMAGE3D_MAX_WIDTH

CL_DEVICE_IMAGE3D_MAX_

HEIGHT

CL_DEVICE_IMAGE3D_MAX_DEPTH

CL_DEVICE_IMAGE_MAX_BUFFER_
SIZE

58

Return Type

cl_uint

cl_uint

cl_uint

charf]

size t

size t

size t

size t

size t

size t

Description

Max number of image objects arguments of a
kernel declared with the read_only qualifier.
The minimum value is 128 if CL_DEVICE IMAGE _
SUPPORT is CL_TRUE.

Max number of image objects arguments of a
kernel declared with the write_only qualifier.
The minimum value is 64 if CL_DEVICE_IMAGE

SUPPORT is CL_TRUE.

Max number of image objects arguments of a
kernel declared with the write_only or
read_write qualifier. The minimum value is 64 if
CL_DEVICE_IMAGE_SUPPORT is CL_TRUE.

The intermediate languages that can be
supported by clCreateProgramWithlIL for this
device. Returns a space-separated list of IL
version strings of the form
<IL_Prefix>_<Major_Version>.<Minor_Version>.
For OpenCL 2.2, SPIR-V is a required IL prefix.

Max width of 2D image or 1D image not created
from a buffer object in pixels.

The minimum value is 16384 if CL_DEVICE_IMAGE_
SUPPORT is CL_TRUE.

Max height of 2D image in pixels.

The minimum value is 16384 if CL_DEVICE_IMAGE_
SUPPORT is CL_TRUE.

Max width of 3D image in pixels.

The minimum value is 2048 if CL_DEVICE_IMAGE _
SUPPORT is CL_TRUE.

Max height of 3D image in pixels.

The minimum value is 2048 if CL_DEVICE_IMAGE _
SUPPORT is CL_TRUE.

Max depth of 3D image in pixels.

The minimum value is 2048 if CL_DEVICE_IMAGE _
SUPPORT is CL_TRUE.

Max number of pixels for a 1D image created

from a buffer object.

The minimum value is 65536 if CL_DEVICE IMAGE _
SUPPORT is CL_TRUE.

cl device_info

CL_DEVICE_IMAGE_MAX_ARRAY_
SIZE

CL_DEVICE_MAX_SAMPLERS

CL_DEVICE_IMAGE_PITCH_
ALIGNMENT

CL_DEVICE_IMAGE_BASE_
ADDRESS_ALIGNMENT

CL_DEVICE_MAX_PIPE_ARGS

CL_DEVICE_PIPE_MAX_ACTIVE_
RESERVATIONS

CL_DEVICE_PIPE_MAX_PACKET_
SIZE

CL_DEVICE_MAX_PARAMETER_
SIZE

Return Type

size t

cl_uint

cl_uint

cl_uint

cl uint

cl_uint

cl uint

size t

Description

Max number of images in a 1D or 2D image
array.

The minimum value is 2048 if CL_DEVICE IMAGE
SUPPORT is CL_TRUE.

Maximum number of samplers that can be used
in a kernel.

The minimum value is 16 if CL_DEVICE _IMAGE
SUPPORT is CL_TRUE.

The row pitch alignment size in pixels for 2D
images created from a buffer. The value
returned must be a power of 2.

If the device does not support images, this value
must be 0.

This query should be used when a 2D image is
created from a buffer which was created using
CL_MEM_USE_HOST_PTR. The value returned must be
a power of 2.

This query specifies the minimum alignment in
pixels of the host_ptr specified to
clCreateBuffer.

If the device does not support images, this value
must be 0.

The maximum number of pipe objects that can
be passed as arguments to a kernel. The
minimum value is 16.

The maximum number of reservations that can
be active for a pipe per work-item in a kernel. A
work-group reservation is counted as one
reservation per work-item. The minimum value
is 1.

The maximum size of pipe packet in bytes. The
minimum value is 1024 bytes.

Max size in bytes of all arguments that can be
passed to a kernel.

The minimum value is 1024 for devices that are
not of type CL_DEVICE_TYPE_CUSTOM. For this
minimum value, only a maximum of 128
arguments can be passed to a kernel

59

cl_device_info

CL_DEVICE_MEM_BASE_ADDR_
ALIGN

Return Type

cl_uint

CL_DEVICE_SINGLE_FP_CONFIG® cl_device_fp_confi
g

60

Description

Alignment requirement (in bits) for sub-buffer
offsets. The minimum value is the size (in bits)
of the largest OpenCL built-in data type
supported by the device (long16 in FULL profile,
long16 or int16 in EMBEDDED profile) for
devices that are not of type CL_DEVICE_TYPE_
CUSTOM.

Describes single precision floating-point
capability of the device. This is a bit-field that
describes one or more of the following values:

CL_FP_DENORM - denorms are supported

CL_FP_INF_NAN - INF and quiet NaNs are
supported.

CL_FP_ROUND_TO_NEAREST-- round to nearest even
rounding mode supported

CL_FP_ROUND_TO_ZERO - round to zero rounding
mode supported

CL_FP_ROUND_TO_INF - round to positive and
negative infinity rounding modes supported

CL_FP_FMA - IEEE754-2008 fused multiply-add is
supported.

CL_FP_CORRECTLY_ROUNDED_DIVIDE_SQRT - divide
and sqrt are correctly rounded as defined by the
IEEE754 specification.

CL_FP_SOFT_FLOAT - Basic floating-point
operations (such as addition, subtraction,
multiplication) are implemented in software.

For the full profile, the mandated minimum
floating-point capability for devices that are not
of type CL_DEVICE_TYPE_CUSTOM is: CL_FP_ROUND_TO_
NEAREST | CL_FP_INF_NAN.

For the embedded profile, see the dedicated
table.

cl_device_info Return Type Description

CL_DEVICE_DOUBLE_FP_CONFIG’ cl_device_fp_confi Describes double precision floating-point
g capability of the OpenCL device. This is a bit-
field that describes one or more of the following
values:

CL_FP_DENORM - denorms are supported
CL_FP_INF_NAN - INF and NaNs are supported.

CL_FP_ROUND_TO_NEAREST - round to nearest even
rounding mode supported.

CL_FP_ROUND_TO_ZERO - round to zero rounding
mode supported.

CL_FP_ROUND_TO_INF - round to positive and
negative infinity rounding modes supported.

CL_FP_FMA - IEEE754-2008 fused multiply-add is
supported.

CL_FP_SOFT_FLOAT - Basic floating-point
operations (such as addition, subtraction,
multiplication) are implemented in software.

Double precision is an optional feature so the
mandated minimum double precision floating-
point capability is 0.

If double precision is supported by the device,
then the minimum double precision floating-
point capability must be:

CL_FP_FMA |

CL_FP_ROUND_TO_NEAREST |

CL_FP_INF_NAN |

CL_FP_DENORM.

CL_DEVICE_GLOBAL_MEM_CACHE_ cl_device_mem_ca Type of global memory cache supported. Valid

TYPE che_type values are: CL_NONE, CL_READ_ONLY_CACHE, and CL_
READ_WRITE_CACHE.

CL_DEVICE_GLOBAL_MEM_ cl_uint Size of global memory cache line in bytes.

CACHELINE SIZE

CL_DEVICE_GLOBAL_MEM_CACHE_ cl_ulong Size of global memory cache in bytes.

SIZE

CL_DEVICE_GLOBAL_MEM_SIZE cl_ulong Size of global device memory in bytes.

CL_DEVICE_MAX_CONSTANT _ cl_ulong Max size in bytes of a constant buffer allocation.

BUFFER_SIZE The minimum value is 64 KB for devices that are

not of type CL_DEVICE_TYPE_CUSTOM.

61

cl device_info

CL_DEVICE_MAX_CONSTANT_ARGS

CL_DEVICE_MAX_GLOBAL_
VARIABLE_SIZE

CL_DEVICE_GLOBAL_VARIABLE_
PREFERRED_TOTAL_SIZE

CL_DEVICE_LOCAL_MEM_TYPE

CL_DEVICE_LOCAL_MEM_SIZE

CL_DEVICE_ERROR_CORRECTION_
SUPPORT

CL_DEVICE_PROFILING_TIMER_
RESOLUTION

CL_DEVICE_ENDIAN_LITTLE

CL_DEVICE_AVAILABLE

62

Return Type

cl_uint

size t

size t

cl_device_local me
m_type

cl_ulong

cl bool

size t

cl bool

cl bool

Description

Max number of arguments declared with the
__constant qualifier in a kernel. The minimum
value is 8 for devices that are not of type CL_
DEVICE_TYPE_CUSTOM.

The maximum number of bytes of storage that
may be allocated for any single variable in
program scope or inside a function in an
OpenCL kernel language declared in the global
address space.

The minimum value is 64 KB.

Maximum preferred total size, in bytes, of all
program variables in the global address space.
This is a performance hint. An implementation
may place such variables in storage with
optimized device access. This query returns the
capacity of such storage. The minimum value is
0.

Type of local memory supported. This can be set
to CL_LOCAL implying dedicated local memory
storage such as SRAM, or CL_GLOBAL.

For custom devices, CL_NONE can also be returned
indicating no local memory support.

Size of local memory region in bytes. The
minimum value is 32 KB for devices that are not
of type CL_DEVICE_TYPE_CUSTOM.

Is CL_TRUE if the device implements error
correction for all accesses to compute device
memory (global and constant). Is CL_FALSE if the
device does not implement such error
correction.

Describes the resolution of device timer. This is
measured in nanoseconds. Refer to Profiling
Operations for details.

Is CL_TRUE if the OpenCL device is a little endian
device and CL_FALSE otherwise

Is CL_TRUE if the device is available and CL_FALSE
otherwise. A device is considered to be available
if the device can be expected to successfully
execute commands enqueued to the device.

cl device_info

CL_DEVICE_COMPILER_
AVAILABLE

CL_DEVICE_LINKER_AVAILABLE

CL_DEVICE_EXECUTION_
CAPABILITIES

CL_DEVICE_QUEUE_ON_HOST
PROPERTIES®

Return Type
cl _bool

cl bool

cl_device_exec_ca
pabilities

cl_command_queu
e_properties

Description

Is CL_FALSE if the implementation does not have
a compiler available to compile the program
source.

Is CL_TRUE if the compiler is available. This can
be CL_FALSE for the embedded platform profile
only.

Is CL_FALSE if the implementation does not have
a linker available. Is CL_TRUE if the linker is
available.

This can be CL_FALSE for the embedded platform
profile only.

This must be CL_TRUE if CL_DEVICE_COMPILER_
AVAILABLE is CL_TRUE.

Describes the execution capabilities of the
device. This is a bit-field that describes one or
more of the following values:

CL_EXEC_KERNEL - The OpenCL device can execute
OpenCL kernels.

CL_EXEC_NATIVE_KERNEL - The OpenCL device can
execute native kernels.

The mandated minimum capability is: CL_EXEC_
KERNEL.

Describes the on host command-queue
properties supported by the device. This is a bit-
field that describes one or more of the following
values:

CL_QUEUE_OUT_OF _ORDER_EXEC_MODE_ENABLE
CL_QUEUE_PROFILING_ENABLE

These properties are described in the Queue
Properties table.

The mandated minimum capability is: CL_QUEUE _
PROFILING_ENABLE.

63

cl device_info

CL_DEVICE_QUEUE_ON_DEVICE_
PROPERTIES

CL_DEVICE_QUEUE_ON_DEVICE_
PREFERRED_SIZE

CL_DEVICE_QUEUE_ON_DEVICE_
MAX_SIZE

CL_DEVICE_MAX_ON_DEVICE_
QUEUES

CL_DEVICE_MAX_ON_DEVICE_
EVENTS

CL_DEVICE_BUILT_IN_KERNELS

CL_DEVICE_PLATFORM
CL_DEVICE_NAME
CL_DEVICE_VENDOR
CL_DRIVER_VERSION

64

Return Type

cl_command_queu
e_properties

cl_uint

cl_uint

cl uint

cl uint

charf]

cl_platform_id
char(]
charf(]
char(]

Description

Describes the on device command-queue
properties supported by the device. This is a bit-
field that describes one or more of the following
values:

CL_QUEUE_OUT_OF _ORDER_EXEC_MODE_ENABLE
CL_QUEUE_PROFILING_ENABLE

These properties are described in the Queue
Properties table.

The mandated minimum capability is: CL_QUEUE _
OUT_OF _ORDER_EXEC_MODE _ENABLE | CL_QUEUE_
PROFILING_ENABLE.

The size of the device queue in bytes preferred
by the implementation. Applications should use
this size for the device queue to ensure good
performance.

The minimum value is 16 KB

The max. size of the device queue in bytes. The
minimum value is 256 KB for the full profile and
64 KB for the embedded profile

The maximum number of device queues that
can be created for this device in a single context.

The minimum value is 1.

The maximum number of events in use by a
device queue. These refer to events returned by
the enqueuve_ built-in functions to a device queue
or user events returned by the create_user_event
built-in function that have not been released.

The minimum value is 1024.

A semi-colon separated list of built-in kernels
supported by the device. An empty string is
returned if no built-in kernels are supported by
the device.

The platform associated with this device.
Device name string.
Vendor name string.

OpenCL software driver version string. Follows
a vendor-specific format.

cl_device_info

CL_DEVICE_PROFILE®

CL_DEVICE_VERSION

CL_DEVICE_OPENCL_C_VERSION

Return Type
char(]

charf]

charf]

Description

OpenCL profile string. Returns the profile name
supported by the device. The profile name
returned can be one of the following strings:

FULL_PROFILE - if the device supports the
OpenCL specification (functionality defined as
part of the core specification and does not
require any extensions to be supported).

EMBEDDED_PROFILE - if the device supports the
OpenCL embedded profile.

OpenCL version string. Returns the OpenCL
version supported by the device. This version
string has the following format:

OpenCL<space><major_version.minor._version><s
pace><vendor-specific information>

The major_version.minor_version value
returned will be one 0of 1.0, 1.1, 1.2, 2.0, 2.1 or 2.2.

OpenCL C version string. Returns the highest
OpenCL C version supported by the compiler for
this device that is not of type CL_DEVICE_TYPE_
CUSTOM. This version string has the following
format:

OpenCL<space>C<space><major_version.minor._v
ersion><space><vendor-specific information>

The major_version.minor_version value
returned must be 2.0 if CL_DEVICE VERSION is
OpenCL 2.0, OpenCL 2.1, or OpenCL 2.2.

The major_version.minor_version value
returned must be 1.2 if CL_DEVICE _VERSION is
OpenCL 1.2.

The major_version.minor_version value
returned must be 1.1 if CL_DEVICE VERSION is
OpenCL 1.1.

The major_version.minor_version value

returned can be 1.0 or 1.1 if CL_DEVICE_VERSION is
OpenCL 1.0.

65

cl_device_info

CL_DEVICE_EXTENSIONS

CL_DEVICE_PRINTF_BUFFER_
SIZE

CL_DEVICE_PREFERRED_
INTEROP_USER_SYNC

66

Return Type
char(]

size t

cl bool

Description

Returns a space separated list of extension
names (the extension names themselves do not
contain any spaces) supported by the device. The
list of extension names returned can be vendor
supported extension names and one or more of
the following Khronos approved extension
names:

cl_khr int64 base_atomics
cl_khr_int64_extended_atomics
cl_khr_fp16

cl_khr_gl sharing
cl_khr_gl_event
cl_khr_d3d10_sharing
cl_khr_dx9 _media_sharing
cl_khr _d3d11_sharing
cl_khr_gl_depth_images
cl_khr_gl msaa_sharing
cl_khr_initialize_memory
cl_khr_terminate_context
cl_khr_spir
cl_khr_srgb_image_writes

The following approved Khronos extension
names must be returned by all devices that
support OpenCL C 2.0:

cl_khr_byte_addressable_store
cl_khr_fp64 (for backward compatibility if
double precision is supported)
cl_khr_3d_image_writes
cl_khr_image2d_from_buffer
cl_khr_depth_images

Please refer to the OpenCL Extension
Specification for a detailed description of these
extensions.

Maximum size in bytes of the internal buffer
that holds the output of printf calls from a
kernel. The minimum value for the FULL profile
is 1 MB.

Is CL_TRUE if the devices preference is for the
user to be responsible for synchronization,
when sharing memory objects between OpenCL
and other APIs such as DirectX, CL_FALSE if the
device / implementation has a performant path
for performing synchronization of memory
object shared between OpenCL and other APIs
such as DirectX.

cl_device_info

CL_DEVICE_PARENT_DEVICE

CL_DEVICE_PARTITION_MAX_
SUB_DEVICES

CL_DEVICE_PARTITION_
PROPERTIES

CL_DEVICE_PARTITION_
AFFINITY_DOMAIN

Return Type

cl device_id

cl uint

cl_device_partition
_ propertyl]

cl_device_affinity_
domain

Description

Returns the cl_device_id of the parent device to
which this sub-device belongs. If device is a root-
level device, a NULL value is returned.

Returns the maximum number of sub-devices
that can be created when a device is partitioned.

The value returned cannot exceed CL_DEVICE
MAX_COMPUTE _UNITS.

Returns the list of partition types supported by
device. This is an array of
cl_device_partition_property values drawn from
the following list:

CL_DEVICE_PARTITION_EQUALLY
CL_DEVICE_PARTITION_BY_COUNTS
CL_DEVICE_PARTITION_BY_AFFINITY_DOMAIN

If the device cannot be partitioned (i.e. there is
no partitioning scheme supported by the device
that will return at least two subdevices), a value
of 0 will be returned.

Returns the list of supported affinity domains
for partitioning the device using CL_DEVICE_
PARTITION_BY_AFFINITY_DOMAIN. This is a bit-field
that describes one or more of the following
values:

CL_DEVICE_AFFINITY_DOMAIN_NUMA
CL_DEVICE_AFFINITY_DOMAIN_L4_CACHE
CL_DEVICE_AFFINITY_DOMAIN_L3_CACHE
CL_DEVICE_AFFINITY_DOMAIN_L2_CACHE
CL_DEVICE_AFFINITY_DOMAIN_L1_CACHE
CL_DEVICE_AFFINITY_DOMAIN_NEXT_PARTITIONABLE

If the device does not support any affinity
domains, a value of 0 will be returned.

67

cl_device_info

CL_DEVICE_PARTITION_TYPE

CL_DEVICE_REFERENCE_COUNT

68

Return Type

cl_device_partition
_property([]

cl uint

Description

Returns the properties argument specified in
clCreateSubDevices if device is a sub-device. In
the case where the properties argument to
clCreateSubDevices is CL_DEVICE _PARTITION BY_
AFFINITY_DOMAIN, CL_DEVICE_AFFINITY_DOMAIN_
NEXT_PARTITIONABLE, the affinity domain used to
perform the partition will be returned. This can
be one of the following values:

CL_DEVICE_AFFINITY_DOMAIN_NUMA

CL_DEVICE_AFFINITY_DOMAIN_L4_CACHE
CL_DEVICE_AFFINITY_DOMAIN_L3_CACHE
CL_DEVICE_AFFINITY_DOMAIN_L2_CACHE
CL_DEVICE_AFFINITY_DOMAIN_L1_CACHE

Otherwise the implementation may either
return a param_value_size_ret of 0 i.e. there is no
partition type associated with device or can
return a property value of 0 (where 0 is used to
terminate the partition property list) in the
memory that param_value points to.

Returns the device reference count. If the device
is a root-level device, a reference count of one is
returned.

cl_device_info

CL_DEVICE_SVM_CAPABILITIES

Return Type

cl_device_svm_cap
abilities

CL_DEVICE_PREFERRED_
PLATFORM_ATOMIC_ALIGNMENT

cl_uint

CL_DEVICE_PREFERRED_GLOBAL_ cl_uint
ATOMIC_ALIGNMENT

CL_DEVICE_PREFERRED_LOCAL_
ATOMIC_ALIGNMENT

cl_uint

Description

Describes the various shared virtual memory
(a.k.a. SVM) memory allocation types the device
supports. Coarse-grain SVM allocations are
required to be supported by all OpenCL 2.0
devices. This is a bit-field that describes a
combination of the following values:

CL_DEVICE_SVM_COARSE_GRAIN_BUFFER - Support for
coarse-grain buffer sharing using cISVMAlloc.
Memory consistency is guaranteed at
synchronization points and the host must use
calls to clEnqueueMapBuffer and
clEnqueueUnmapMemODbject.

CL_DEVICE_SVM_FINE_GRAIN_BUFFER - Support for
fine-grain buffer sharing using cISVMAlloc.
Memory consistency is guaranteed at
synchronization points without need for
clEnqueueMapBuffer and
clEnqueueUnmapMemObject.

CL_DEVICE_SVM_FINE_GRAIN_SYSTEM - Support for
sharing the host’s entire virtual memory
including memory allocated using malloc.
Memory consistency is guaranteed at
synchronization points.

CL_DEVICE_SVM_ATOMICS - Support for the OpenCL
2.0 atomic operations that provide memory
consistency across the host and all OpenCL
devices supporting fine-grain SVM allocations.

The mandated minimum capability is CL_DEVICE_
SVM_COARSE_GRAIN BUFFER.

Returns the value representing the preferred
alignment in bytes for OpenCL 2.0 fine-grained
SVM atomic types. This query can return 0
which indicates that the preferred alignment is
aligned to the natural size of the type.

Returns the value representing the preferred
alignment in bytes for OpenCL 2.0 atomic types
to global memory. This query can return 0 which
indicates that the preferred alignment is aligned
to the natural size of the type.

Returns the value representing the preferred
alignment in bytes for OpenCL 2.0 atomic types
to local memory. This query can return 0 which
indicates that the preferred alignment is aligned
to the natural size of the type.

69

cl_device_info Return Type Description

CL_DEVICE_MAX_NUM_SUB_ cl_uint Maximum number of sub-groups in a work-
GROUPS group that a device is capable of executing on a

single compute unit, for any given kernel-
instance running on the device. The minimum
value is 1. (Refer also to
clGetKernelSubGroupInfo.)

CL_DEVICE_SUB_GROUP_ cl bool Is CL_TRUE if this device supports independent
gggEEEQQENT_FORWARD_ forward progress of sub-groups, CL_FALSE

otherwise. If cl_khr_subgroups is supported by
the device this must return CL_TRUE.

A kernel that uses an image argument with the write_only or read_write image qualifier may
result in additional read_only images resources being created internally by an implementation.
The internally created read_only image resources will count against the max supported read
image arguments given by CL_DEVICE_MAX_READ_IMAGE_ARGS. Enqueuing a kernel that requires
more images than the implementation can support will result in a CL_OUT_OF_RESOURCES error
being returned.

NOTE: CL_DEVICE_MAX_WRITE_IMAGE_ARGS is only there for backward compatibility. CL_DEVICE_MAX_
READ_WRITE_IMAGE_ARGS should be used instead.

The optional rounding modes should be included as a device capability only if it is supported
natively. All explicit conversion functions with specific rounding modes must still operate
correctly.

The optional rounding modes should be included as a device capability only if it is supported
natively. All explicit conversion functions with specific rounding modes must still operate
correctly.

CL_DEVICE_QUEUE_PROPERTIES is deprecated and replaced by CL_DEVICE_QUEUE_ON_HOST_PROPERTIES.

The platform profile returns the profile that is implemented by the OpenCL framework. If the
platform profile returned is FULL_PROFILE, the OpenCL framework will support devices that
are FULL_PROFILE and may also support devices that are EMBEDDED_PROFILE. The compiler
must be available for all devices i.e. CL_DEVICE_COMPILER_AVAILABLE is CL_TRUE. If the platform
profile returned is EMBEDDED_PROFILE, then devices that are only EMBEDDED_PROFILE are
supported.

clGetDeviceInfo returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns
one of the following errors:

70

e CL_INVALID DEVICE if device is not valid.

o CL_INVALID_VALUE if param_name is not one of the supported values or if size in bytes specified
by param_value_size is < size of return type as specified in the Device Queries table and
param_value is not a NULL value or if param_name is a value that is available as an extension and
the corresponding extension is not supported by the device.

o CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To query device and host timestamps, call the function:

cl_int clGetDeviceAndHostTimer(
¢l _device_id device,
cl_ulong* device_timestamp,
cl_ulong* host_timestamp);

* device is a device returned by clGetDevicelDs.

* device_timestamp will be updated with the value of the device timer in nanoseconds. The
resolution of the timer is the same as the device profiling timer returned by clGetDeviceInfo
and the CL_DEVICE_PROFILING_TIMER_RESOLUTION query.

* host_timestamp will be updated with the value of the host timer in nanoseconds at the closest
possible point in time to that at which device_timer was returned. The resolution of the timer
may be queried via clGetPlatformInfo and the flag CL_PLATFORM_HOST_TIMER_RESOLUTION.

clGetDeviceAndHostTimer returns a reasonably synchronized pair of timestamps from the device
timer and the host timer as seen by device. Implementations may need to execute this query with a
high latency in order to provide reasonable synchronization of the timestamps. The host timestamp
and device timestamp returned by this function and clGetHostTimer each have an
implementation defined timebase. The timestamps will always be in their respective timebases
regardless of which query function is used. The timestamp returned from clGetEventProfilingInfo
for an event on a device and a device timestamp queried from the same device will always be in the
same timebase.

clGetDeviceAndHostTimer will return CL_SUCCESS with a time value in host_timestamp if provided.
Otherwise, it returns one of the following errors:

CL_INVALID_DEVICE if device is not a valid OpenCL device.

CL_INVALID_VALUE if host_timestamp or device_timestamp is NULL.

CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To query the host clock, call the function:

71

cl_int clGetHostTimer (
c¢l_device_id device,
cl_ulong* host_timestamp);

* device is a device returned by clGetDevicelDs.

* host_timestamp will be updated with the value of the current timer in nanoseconds. The
resolution of the timer may be queried via clGetPlatformInfo and the flag CL_PLATFORM_HOST_
TIMER_RESOLUTION.

clGetHostTimer returns the current value of the host clock as seen by device. This value is in the
same timebase as the host timestamp returned from clGetDeviceAndHostTimer. The
implementation will return with as low a latency as possible to allow a correlation with a
subsequent application sampled time. The host timestamp and device timestamp returned by this
function and clGetDeviceAndHostTimer each have an implementation defined timebase. The
timestamps will always be in their respective timebases regardless of which query function is used.
The timestamp returned from clGetEventProfilingInfo for an event on a device and a device
timestamp queried from the same device will always be in the same timebase.

clGetHostTimer will return CL_SUCCESS with a time value in host_timestamp if provided. Otherwise,
it returns one of the following errors:

CL_INVALID_DEVICE if device is not a valid OpenCL device.

CL_INVALID_VALUE if host_timestamp is NULL.

CL_OUT_OF _RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

4.3. Partitioning a Device

To create sub-devices partitioning an OpenCL device, call the function:

cl_int clCreateSubDevices(
cl_device_id in_device,
const cl_device_partition_property* properties,
cl_uint num_devices,
¢l _device_id* out_devices,
cl_uint* num_devices ret);

* in_device is the device to be partitioned.

* properties specifies how in_device is to be partitioned, described by a partition name and its
corresponding value. Each partition name is immediately followed by the corresponding
desired value. The list is terminated with 0. The list of supported partitioning schemes is
described in the Subdevice Partition table. Only one of the listed partitioning schemes can be
specified in properties.

72

* num_devices is the size of memory pointed to by out_devices specified as the number of

cl device_id entries.

* out_devices is the buffer where the OpenCL sub-devices will be returned. If out_devices is NULL,
this argument is ignored. If out_devices is not NULL, num_devices must be greater than or equal to
the number of sub-devices that device may be partitioned into according to the partitioning

scheme specified in properties.

* num_devices_ret returns the number of sub-devices that device may be partitioned into
according to the partitioning scheme specified in properties. If num_devices_ret is NULL, it is

ignored.

clCreateSubDevices creates an array of sub-devices that each reference a non-intersecting set of
compute units within in_device, according to the partition scheme given by properties. The output
sub-devices may be used in every way that the root (or parent) device can be used, including
creating contexts, building programs, further calls to clCreateSubDevices and creating command-
queues. When a command-queue is created against a sub-device, the commands enqueued on the

queue are executed only on the sub-device.

Table 6. List of supported partition schemes by clCreateSubDevices

cl_device_partition_proper Partition value

ty enum

CL_DEVICE_PARTITION_EQUALLY cl_uint

CL_DEVICE_PARTITION_BY_ cl_uint
COUNTS

Description

Split the aggregate device into as many smaller
aggregate devices as can be created, each
containing n compute units. The value n is
passed as the value accompanying this property.
If n does not divide evenly into CL_DEVICE_MAX_
COMPUTE_UNITS, then the remaining compute units
are not used.

This property is followed by a list of compute
unit counts terminated with 0 or CL_DEVICE _
PARTITION_BY_COUNTS_LIST_END. For each non-zero
count m in the list, a sub-device is created with
m compute units in it.

The number of non-zero count entries in the list
may not exceed CL_DEVICE_PARTITION_MAX_SUB_
DEVICES.

The total number of compute units specified
may not exceed CL_DEVICE_MAX_COMPUTE_UNITS.

73

cl_device_partition_proper Partition value Description

ty enum
CL_DEVICE_PARTITION_BY_ cl_device_affinity_ Split the device into smaller aggregate devices
AFFINITY_DOMAIN domain containing one or more compute units that all

share part of a cache hierarchy. The value
accompanying this property may be drawn from
the following list:

CL_DEVICE_AFFINITY_DOMAIN_NUMA - Split the device
into sub-devices comprised of compute units
that share a NUMA node.

CL_DEVICE_AFFINITY_DOMAIN_L4_CACHE - Split the
device into sub-devices comprised of compute
units that share a level 4 data cache.

CL_DEVICE_AFFINITY_DOMAIN_L3_CACHE - Split the
device into sub-devices comprised of compute
units that share a level 3 data cache.

CL_DEVICE_AFFINITY_DOMAIN_L2_CACHE - Split the
device into sub-devices comprised of compute
units that share a level 2 data cache.

CL_DEVICE_AFFINITY_DOMAIN_L1_CACHE - Split the
device into sub-devices comprised of compute
units that share a level 1 data cache.

CL_DEVICE_AFFINITY_DOMAIN_NEXT_PARTITIONABLE -
Split the device along the next partitionable
affinity domain. The implementation shall find
the first level along which the device or sub-
device may be further subdivided in the order
NUMA, 14, L3, L2, L1, and partition the device
into sub-devices comprised of compute units
that share memory subsystems at this level.

The user may determine what happened by
calling clGetDeviceInfo(CL_DEVICE_PARTITION_
TYPE) on the sub-devices.

clCreateSubDevices returns CL_SUCCESS if the partition is created successfully. Otherwise, it returns
a NULL value with the following error values returned in errcode_ret:

CL_INVALID DEVICE if in_device is not valid.

CL_INVALID_VALUE if values specified in properties are not valid or if values specified in properties
are valid but not supported by the device.

CL_INVALID VALUE if out devices is not NULL and num_devices is less than the number of sub-
devices created by the partition scheme.

CL_DEVICE_PARTITION_FAILED if the partition name is supported by the implementation but

74

in_device could not be further partitioned.

o CL_INVALID_DEVICE_PARTITION_COUNT if the partition name specified in properties is CL_DEVICE_
PARTITION_BY_COUNTS and the number of sub-devices requested exceeds CL_DEVICE_PARTITION_MAX_
SUB_DEVICES or the total number of compute units requested exceeds CL_DEVICE_MAX_COMPUTE_
UNITS for in_device, or the number of compute units requested for one or more sub-devices is
less than zero or the number of sub-devices requested exceeds CL_DEVICE_MAX_COMPUTE_UNITS for
in_device.

* CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

A few examples that describe how to specify partition properties in properties argument to
clCreateSubDevices are given below:

To partition a device containing 16 compute units into two sub-devices, each containing 8 compute
units, pass the following in properties:

{ CL_DEVICE_PARTITION_EQUALLY, 8, @ }

To partition a device with four compute units into two sub-devices with one sub-device containing
3 compute units and the other sub-device 1 compute unit, pass the following in properties
argument:

{ CL_DEVICE_PARTITION_BY_COUNTS,
3, 1, CL_DEVICE_PARTITION_BY_COUNTS_LIST_END, @ }

To split a device along the outermost cache line (if any), pass the following in properties argument:

{ CL_DEVICE_PARTITION_BY_AFFINITY_DOMAIN,
CL_DEVICE_AFFINITY_DOMAIN_NEXT_PARTITIONABLE,

0}

To retain a device, call the function:

cl_int clRetainDevice(
¢l _device_id device);

* device is the OpenCL device to retain.

clRetainDevice increments the device reference count if device is a valid sub-device created by a
call to clCreateSubDevices. If device is a root level device i.e. a cl_device_id returned by
clGetDevicelDs, the device reference count remains unchanged.

75

clRetainDevice returns CL_SUCCESS if the function is executed successfully or the device is a root-
level device. Otherwise, it returns one of the following errors:

» CL_INVALID_DEVICE if device is not a valid sub-device created by a call to clCreateSubDevices.

* CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To release a device, call the function:

cl_int clReleaseDevice(
cl_device_id device);

* device is the OpenCL device to retain.

clReleaseDevice decrements the device reference count if device is a valid sub-device created by a
call to clCreateSubDevices. If device is a root level device i.e. a cl_device_id returned by
clGetDevicelDs, the device reference count remains unchanged.

clReleaseDevice returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns
one of the following errors:

o CL_INVALID_DEVICE if device is not a valid sub-device created by a call to clCreateSubDevices.

o CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

After the device reference count becomes zero and all the objects attached to device (such as
command-queues) are released, the device object is deleted. Using this function to release a
reference that was not obtained by creating the object or by calling clRetainDevice causes
undefined behavior.

4.4. Contexts

To create an OpenCL context, call the function:

cl_context clCreateContext(
const cl_context_properties* properties,
cl_uint num_devices,
const cl_device_id* devices,
void (CL_CALLBACK* pfn_notify)(const char*, const void*, size_t, void*),
void* user_data,
cl_int* errcode ret);

76

» properties specifies a list of context property names and their corresponding values. Each
property name is immediately followed by the corresponding desired value. The list is
terminated with 0. The list of supported properties is described in the Context Properties table.
properties can be NULL in which case the platform that is selected is implementation-defined.

» num_devices is the number of devices specified in the devices argument.
« devices is a pointer to a list of unique devices'’ returned by clGetDeviceIDs or sub-devices

created by clCreateSubDevices for a platform.

10

Duplicate devices specified in devices are ignored.

* pfn_notify is a callback function that can be registered by the application. This callback function
will be used by the OpenCL implementation to report information on errors during context
creation as well as errors that occur at runtime in this context. This callback function may be
called asynchronously by the OpenCL implementation. It is the applications responsibility to
ensure that the callback function is thread-safe. If pfn_notify is NULL, no callback function is
registered.

» user_data will be passed as the user_data argument when pfn_notify is called. user_data can be
NULL.

* errcode_ret will return an appropriate error code. If errcode ret is NULL, no error code is
returned.

The parameters to the callback function pfn_notify are:

* errinfo is a pointer to an error string.

* private_info and cb represent a pointer to binary data that is returned by the OpenCL
implementation that can be used to log additional information helpful in debugging the error.

* user_data is a pointer to user supplied data.
Contexts are used by the OpenCL runtime for managing objects such as command-queues, memory,
program and kernel objects and for executing kernels on one or more devices specified in the
context.
Table 7. List of supported context creation properties by clCreateContext
cl_context_properties enum Property value Description

CL_CONTEXT_PLATFORM cl_platform_id Specifies the platform to use.

77

cl_context_properties enum Property value Description

CL_CONTEXT_INTEROP_USER_SYNC cl _bool Specifies whether the user is

responsible for
synchronization between
OpenCL and other APIs. Please
refer to the specific sections in
the OpenCL Extension
Specification that describe
sharing with other APIs for
restrictions on using this flag.

If CL_CONTEXT_INTEROP_USER_SYNC
is not specified, a default of CL_
FALSE is assumed.

There are a number of cases where error notifications need to be delivered due to

0 an error that occurs outside a context. Such notifications may not be delivered
through the pfn_notify callback. Where these notifications go is implementation-
defined.

clCreateContext returns a valid non-zero context and errcode_ret is set to CL_SUCCESS if the context
is created successfully. Otherwise, it returns a NULL value with the following error values returned
in errcode_ret:

To

78

CL_INVALID_PLATFORM if properties is NULL and no platform could be selected or if platform value
specified in properties is not a valid platform.

CL_INVALID_PROPERTY if context property name in properties is not a supported property name, if
the value specified for a supported property name is not valid, or if the same property name is
specified more than once.

CL_INVALID_VALUE if devices is NULL.

CL_INVALID_VALUE if num devices is equal to zero.
CL_INVALID_VALUE if pfn_notify is NULL but user_data is not NULL.
CL_INVALID_DEVICE if devices contains an invalid device.

CL_DEVICE_NOT_AVAILABLE if a device in devices is currently not available even though the device
was returned by clGetDevicelDs.

CL_OUT_OF _RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

create an OpenCL context from a specific device type', call the function:

cl_context clCreateContextFromType(
const cl_context_properties* properties,
cl_device_type device_type,
void (CL_CALLBACK* pfn_notify)(const char*, const void*, size_t, void¥*),
void* user_data,
cl_int* errcode_ret);

* properties specifies a list of context property names and their corresponding values. Each
property name is immediately followed by the corresponding desired value. The list of
supported properties is described in the Context Properties table. properties can also be NULL in
which case the platform that is selected is implementation-defined.

* device_type is a bit-field that identifies the type of device and is described in the Device
Categories table.

» pfn_notify and user_data are described in clCreateContext.
* errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is

returned.

Only devices that are returned by clGetDevicelDs for device_type are used to create the context.
The context does not reference any sub-devices that may have been created from these devices.

11

clCreateContextFromType may return all or a subset of the actual physical devices present in
the platform and that match device_type.

clCreateContextFromType returns a valid non-zero context and errcode_ret is set to CL_SUCCESS if
the context is created successfully. Otherwise, it returns a NULL value with the following error values
returned in errcode_ret:

* CL_INVALID_PLATFORM if properties is NULL and no platform could be selected or if platform value
specified in properties is not a valid platform.

» CL_INVALID_PROPERTY if context property name in properties is not a supported property name, if
the value specified for a supported property name is not valid, or if the same property name is
specified more than once.

o CL_INVALID_VALUE if pfn_notify is NULL but user_data is not NULL.
o CL_INVALID_DEVICE_TYPE if device_type is not a valid value.

o CL_DEVICE_NOT_AVAILABLE if no devices that match device_type and property values specified in
properties are currently available.

* CL_DEVICE_NOT_FOUND if no devices that match device type and property values specified in
properties were found.

o CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

79

To retain a context, call the function:

cl_int clRetainContext(
cl_context context);

* context specifies the OpenCL context to retain.
clRetainContext increments the context reference count.

clCreateContext and clCreateContextFromType perform an implicit retain. This is very helpful
for 3™ party libraries, which typically get a context passed to them by the application. However, it is
possible that the application may delete the context without informing the library. Allowing
functions to attach to (i.e. retain) and release a context solves the problem of a context being used
by a library no longer being valid.

clRetainContext returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns
one of the following errors:
o CL_INVALID_CONTEXT if context is not a valid OpenCL context.

o CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL

implementation on the host.

To release a context, call the function:

cl_int clReleaseContext(
¢l _context context);

 context specifies the OpenCL context to release.

clReleaseContext decrements the context reference count. After the reference count becomes zero
and all the objects attached to context (such as memory objects, command-queues) are released, the
context is deleted. Using this function to release a reference that was not obtained by creating the
object or by calling clRetainContext causes undefined behavior.

clReleaseContext returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns
one of the following errors:
o CL_INVALID_CONTEXT if context is not a valid OpenCL context.

o CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

* CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To query information about a context, call the function:

80

cl_int clGetContextInfo(
cl_context context,
cl_context_info param_name,
size_t param_value_size,
void* param_value,
size_t* param_value_size_ret);

* context specifies the OpenCL context being queried.
* param_name is an enumeration constant that specifies the information to query.

» param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

» param_value_size specifies the size in bytes of memory pointed to by param value. This size
must be greater than or equal to the size of return type as described in the Context Attributes
table.

* param_value_size_ret returns the actual size in bytes of data being queried by param_name. If
param_value_size_ret is NULL, it is ignored.

The list of supported param_name values and the information returned in param_value by
clGetContextInfo is described in the Context Attributes table.

Table 8. List of supported param_names by clGetContextInfo

cl_context_info Return Type Information returned in
param_value

CL_CONTEXT_REFERENCE_COUNT" cl_uint Return the context reference
count.

CL_CONTEXT_NUM_DEVICES cl_uint Return the number of devices
in context.

CL_CONTEXT_DEVICES cl_device_id[] Return the list of devices and

sub-devices in context.

81

cl_context_info Return Type Information returned in

param_value

CL_CONTEXT_PROPERTIES cl_context_properties|] Return the properties

12

argument specified in
clCreateContext or
clCreateContextFromType.

If the properties argument
specified in clCreateContext
or clCreateContextFromType
used to create context is not
NULL, the implementation must
return the values specified in
the properties argument.

If the properties argument
specified in clCreateContext
or clCreateContextFromType
used to create context is NULL,
the implementation may return
either a param_value_size_ret of
0 i.e. there is no context
property value to be returned
or can return a context
property value of 0 (where 0 is
used to terminate the context
properties list) in the memory
that param_value points to.

The reference count returned should be considered immediately stale. It is unsuitable for
general use in applications. This feature is provided for identifying memory leaks.

clGetContextInfo returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns
one of the following errors:

82

CL_INVALID_CONTEXT if context is not a valid context.

CL_INVALID_VALUE if param_name is not one of the supported values or if size in bytes specified
by param_value_size is < size of return type as specified in the Context Attributes table and
param_value is not a NULL value.

CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

Chapter 5. The OpenCL Runtime

In this section we describe the API calls that manage OpenCL objects such as command-queues,
memory objects, program objects, kernel objects for kernel functions in a program and calls that
allow you to enqueue commands to a command-queue such as executing a kernel, reading, or
writing a memory object.

5.1. Command Queues

OpenCL objects such as memory, program and kernel objects are created using a context.
Operations on these objects are performed using a command-queue. The command-queue can be
used to queue a set of operations (referred to as commands) in order. Having multiple command-
queues allows applications to queue multiple independent commands without requiring
synchronization. Note that this should work as long as these objects are not being shared. Sharing
of objects across multiple command-queues will require the application to perform appropriate
synchronization. This is described in Shared OpenCL Objects

To create a host or device command-queue on a specific device, call the function:

cl_command_queue clCreateCommandQueueWithProperties(
cl_context context,
¢l _device_id device,
const cl_queue_properties* properties,
cl_int* errcode_ret);

* context must be a valid OpenCL context.

* device must be a device or sub-device associated with context. It can either be in the list of
devices and sub-devices specified when context is created using clCreateContext or be a root
device with the same device type as specified when context is created using
clCreateContextFromType.

* properties specifies a list of properties for the command-queue and their corresponding values.
Each property name is immediately followed by the corresponding desired value. The list is
terminated with 0. The list of supported properties is described in the table below. If a
supported property and its value is not specified in properties, its default value will be used.
properties can be NULL in which case the default values for supported command-queue
properties will be used.

Table 9. List of supported queue creation properties by clCreateCommandQueueWithProperties

83

Queue Properties
CL_QUEUE_PROPERTIES

84

Property Value
cl_bitfield

Description

This is a bitfield and can be set
to a combination of the
following values:

CL_QUEUE_OUT_OF _ORDER_EXEC_
MODE_ENABLE - Determines
whether the commands queued
in the command-queue are
executed in-order or out-of-
order. If set, the commands in
the command-queue are
executed out-of-order.
Otherwise, commands are
executed in-order.

CL_QUEUE_PROFILING_ENABLE -
Enable or disable profiling of
commands in the command-
queue. If set, the profiling of
commands is enabled.
Otherwise profiling of
commands is disabled.

CL_QUEUE_ON_DEVICE - Indicates
that this is a device queue. If

CL_QUEUE_ON_DEVICE is set, CL_
QUEUE_OUT_OF _ORDER_EXEC_MODE _

ENABLE' must also be set.

CL_QUEUE_ON_DEVICE_DEFAULT*-
indicates that this is the default
device queue. This can only be
used with CL_QUEUE_ON_DEVICE.

If CL_QUEUE_PROPERTIES is not
specified an in-order host
command queue is created for
the specified device

Queue Properties Property Value Description

CL_QUEUE_SIZE cl_uint Specifies the size of the device
queue in bytes.

This can only be specified if CL_
QUEUE _ON_DEVICE is setin CL_
QUEUE_PROPERTIES. This must be
a value < CL_DEVICE_QUEUE_ON_
DEVICE_MAX_SIZE.

For best performance, this
should be < CL_DEVICE_QUEUE _
ON_DEVICE PREFERRED_SIZE.

If CL_QUEUE_SIZE is not specified,
the device queue is created
with CL_DEVICE_QUEUE_ON_
DEVICE_PREFERRED_SIZE as the
size of the queue.

Only out-of-order device queues are supported.

The application must create the default device queue if any kernels containing calls to
get_default_queue are enqueued. There can only be one default device queue for each device
within a context. clCreateCommandQueueWithProperties with CL_QUEUE_PROPERTIES set to CL_
QUEUE_ON_DEVICE or CL_QUEUE_ON_DEVICE_DEFAULT will return the default device queue that has
already been created and increment its retain count by 1.

* errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

clCreateCommandQueueWithProperties returns a valid non-zero command-queue and
errcode_ret is set to CL_SUCCESS if the command-queue is created successfully. Otherwise, it returns a
NULL value with one of the following error values returned in errcode_ret:

o CL_INVALID_CONTEXT if context is not a valid context.

e CL_INVALID DEVICE if device is not a valid device or is not associated with context.

o CL_INVALID_VALUE if values specified in properties are not valid.

o CL_INVALID_QUEUE_PROPERTIES if values specified in properties are valid but are not supported by
the device.

o CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

e CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To replace the default command queue on a device, call the function

85

cl_int clSetDefaultDeviceCommandQueue(
cl_context context,
¢l _device id device,
cl_command_queue command_queue);

 context is the OpenCL context used to create command_queue.
* device is a valid OpenCL device associated with context.
* command_queue specifies a command queue object which replaces the default device command

queue

clSetDefaultDeviceCommandQueue may be used to replace a default device command queue
created with clCreateCommandQueueWithProperties and the CL_QUEUE_ON_DEVICE_DEFAULT flag.

clSetDefaultDeviceCommandQueue returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

o CL_INVALID CONTEXT if context is not a valid context.

CL_INVALID DEVICE if device is not a valid device or is not associated with context.

CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue for device.

CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To retain a command queue, call the function

cl_int clRetainCommandQueue(
cl_command_queue command_queue);

» command_queue specifies the command-queue to be retained.

The command_queue reference count is incremented.

clCreateCommandQueueWithProperties performs an implicit retain. This is very helpful for 3"

party libraries, which typically get a command-queue passed to them by the application. However,
it is possible that the application may delete the command-queue without informing the library.
Allowing functions to attach to (i.e. retain) and release a command-queue solves the problem of a
command-queue being used by a library no longer being valid.

clRetainCommandQueue returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

o CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

» CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

86

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To release a command queue, call the function

cl_int clReleaseCommandQueue(
cl_command_queue command_queue);

* command_queue specifies the command-queue to be released.
The command_queue reference count is decremented.

After the command_queue reference count becomes zero and all commands queued to
command_queue have finished (eg. kernel-instances, memory object updates etc.), the command-
queue is deleted.

clReleaseCommandQueue performs an implicit flush to issue any previously queued OpenCL
commands in command_queue. Using this function to release a reference that was not obtained by
creating the object or by calling clRetainCommandQueue causes undefined behavior.

clReleaseCommandQueue returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:
o CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

o CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

e CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL

implementation on the host.

To query information about a command-queue, call the function

cl_int clGetCommandQueueInfo(
cl_command_queue command_queue,
cl_command_queue_info param_name,
size_t param_value_size,
void* param_value,
size_t* param_value_size_ret);

» command_queue specifies the command-queue being queried.
» param_name specifies the information to query.

* param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

» param_value_size is used to specify the size in bytes of memory pointed to by param_value. This
size must be > size of return type as described in the Command Queue Parameter table. If
param_value is NULL, it is ignored.

» param_value_size_ret returns the actual size in bytes of data being queried by param_name. If

87

param_value_size_ret is NULL, it is ignored.

The list of supported param_name values and the information returned in param_value by
clGetCommandQueuelnfo is described in the Command Queue Parameter table.

Table 10. List of supported param_names by clGetCommandQueuelnfo

cl_command_queue_info Return Type Information returned in
param_value

CL_QUEUE_CONTEXT cl_context Return the context specified
when the command-queue is
created.

CL_QUEUE_DEVICE cl device_id Return the device specified
when the command-queue is
created.

CL_QUEUE_REFERENCE_COUNT? cl_uint Return the command-queue
reference count.

CL_QUEUE_PROPERTIES cl_command_queue_properties Return the currently specified
properties for the command-
queue. These properties are
specified by the value
associated with the CL_QUEUE _
PROPERTIES passed in properties
argument in
clCreateCommandQueueWith
Properties.

CL_QUEUE_SIZE cl uint Return the currently specified
size for the device command-
queue. This query is only
supported for device command
queues.

CL_QUEUE_DEVICE DEFAULT cl_command_queue Return the current default
command queue for the
underlying device.

The reference count returned should be considered immediately stale. It is unsuitable for
general use in applications. This feature is provided for identifying memory leaks.

clGetCommandQueuelnfo returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:
o CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

o CL_INVALID_VALUE if param_name is not one of the supported values or if size in bytes specified
by param_value_size is < size of return type as specified in the Command Queue Parameter
table, and param_value is not a NULL value.

o CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

88

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

It is possible that a device(s) becomes unavailable after a context and command-
queues that use this device(s) have been created and commands have been queued
to command-queues. In this case the behavior of OpenCL API calls that use this

0 context (and command-queues) are considered to be implementation-defined. The
user callback function, if specified, when the context is created can be used to
record appropriate information in the errinfo, private_info arguments passed to
the callback function when the device becomes unavailable.

5.2. Buffer Objects

A buffer object stores a one-dimensional collection of elements. Elements of a buffer object can be a
scalar data type (such as an int, float), vector data type, or a user-defined structure.

5.2.1. Creating Buffer Objects

A buffer object is created using the following function

cl_mem clCreateBuffer(
cl_context context,
cl_mem_flags flags,
size t size,
void* host_ptr,
cl_int* errcode_ret);

* context is a valid OpenCL context used to create the buffer object.

* flags is a bit-field that is used to specify allocation and usage information such as the memory
arena that should be used to allocate the buffer object and how it will be used. The Memory
Flags table describes the possible values for flags. If the value specified for flags is 0, the default
is used which is CL_MEM _READ_WRITE.

* size is the size in bytes of the buffer memory object to be allocated.
* host_ptr is a pointer to the buffer data that may already be allocated by the application. The size
of the buffer that host_ptr points to must be > size bytes.
Table 11. List of supported memory flag values

cl_mem_flags Description

CL_MEM_READ_WRITE This flag specifies that the memory object will be
read and written by a kernel. This is the default.

89

cl_mem_flags
CL_MEM_WRITE_ONLY

CL_MEM_READ_ONLY

CL_MEM_USE_HOST_PTR

CL_MEM_ALLOC_HOST_PTR

90

Description

This flag specifies that the memory object will be
written but not read by a kernel.

Reading from a buffer or image object created
with CL_MEM_WRITE_ONLY inside a kernel is
undefined.

CL_MEM_READ_WRITE and CL_MEM_WRITE_ONLY are
mutually exclusive.

This flag specifies that the memory object is a
readonly memory object when used inside a
kernel.

Writing to a buffer or image object created with
CL_MEM_READ_ONLY inside a kernel is undefined.

CL_MEM_READ_WRITE or CL_MEM_WRITE_ONLY and CL_
MEM_READ_ONLY are mutually exclusive.

This flag is valid only if host_ptr is not NULL. If
specified, it indicates that the application wants
the OpenCL implementation to use memory
referenced by host_ptr as the storage bits for the
memory object.

The contents of the memory pointed to by
host_ptr at the time of the clCreateBuffer call
define the initial contents of the buffer object.

OpenCL implementations are allowed to cache
the buffer contents pointed to by host_ptr in
device memory. This cached copy can be used
when kernels are executed on a device.

The result of OpenCL commands that operate on
multiple buffer objects created with the same
host_ptr or from overlapping host or SVM
regions is considered to be undefined.

This flag specifies that the application wants the
OpenCL implementation to allocate memory
from host accessible memory.

CL_MEM_ALLOC_HOST_PTR and CL_MEM_USE_HOST_PTR
are mutually exclusive.

cl_mem_flags
CL_MEM_COPY_HOST_PTR

CL_MEM_HOST_WRITE_ONLY

CL_MEM_HOST_READ_ONLY

CL_MEM_HOST_NO_ACCESS

CL_MEM_KERNEL_READ_AND_WRITE

Description

This flag is valid only if host_ptr is not NULL. If
specified, it indicates that the application wants
the OpenCL implementation to allocate memory
for the memory object and copy the data from
memory referenced by host_ptr. The
implementation will copy the memory
immediately and host_ptr is available for reuse
by the application when the clCreateBuffer or
clCreateImage operation returns.

CL_MEM_COPY_HOST_PTR and CL_MEM_USE_HOST_PTR
are mutually exclusive.

CL_MEM_COPY_HOST_PTR can be used with CL_MEM_
ALLOC_HOST_PTR to initialize the contents of the

cl_mem object allocated using host-accessible

(e.g. PCIe) memory.

This flag specifies that the host will only write to
the memory object (using OpenCL APIs that
enqueue a write or a map for write). This can be
used to optimize write access from the host (e.g.
enable write-combined allocations for memory
objects for devices that communicate with the
host over a system bus such as PCle).

This flag specifies that the host will only read the
memory object (using OpenCL APIs that
enqueue a read or a map for read).

CL_MEM_HOST_WRITE_ONLY and CL_MEM_HOST_READ_
ONLY are mutually exclusive.

This flag specifies that the host will not read or
write the memory object.

CL_MEM_HOST _WRITE_ONLY or CL_MEM_HOST_READ_ONLY
and CL_MEM_HOST_NO_ACCESS are mutually
exclusive.

This flag is only used by
clGetSupportedimageFormats to query image
formats that may be both read from and written
to by the same kernel instance. To create a
memory object that may be read from and
written to use CL_MEM_READ_WRITE.

The user is responsible for ensuring that data passed into and out of OpenCL images are natively
aligned relative to the start of the buffer as per kernel language or IL requirements. OpenCL buffers
created with CL_MEM_USE_HOST_PTR need to provide an appropriately aligned host memory pointer
that is aligned to the data types used to access these buffers in a kernel(s).

errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is returned.

91

If clCreateBuffer is called with CL_MEM_USE_HOST_PTR set in its flags argument, the contents of the
memory pointed to by host_ptr at the time of the clCreateBuffer call define the initial contents of
the buffer object.

If clCreateBuffer is called with a pointer returned by cISVMAlloc as its host_ptr argument, and CL _
MEM_USE_HOST_PTR is set in its flags argument, clCreateBuffer will succeed and return a valid non-
zero buffer object as long as the size argument to clCreateBuffer is no larger than the size
argument passed in the original cISVMAlloc call. The new buffer object returned has the shared
memory as the underlying storage. Locations in the buffers underlying shared memory can be
operated on using atomic operations to the devices level of support as defined in the memory
model.

clCreateBuffer returns a valid non-zero buffer object and errcode_ret is set to CL_SUCCESS if the
buffer object is created successfully. Otherwise, it returns a NULL value with one of the following
error values returned in errcode_ret:

e CL_INVALID_CONTEXT if context is not a valid context.
» CL_INVALID_VALUE if values specified in flags are not valid as defined in the Memory Flags table.
* CL_INVALID_BUFFER_SIZE if size is 0"

o CL_INVALID_HOST_PTR if host_ptr is NULL and CL_MEM_USE_HOST_PTR or CL_MEM_COPY_HOST_PTR are set
in flags or if host_ptr is not NULL but CL_MEM_COPY_HOST_PTR or CL_MEM_USE_HOST_PTR are not set in
flags.

o CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for buffer object.

o CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

e CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

4

Implementations may return CL_INVALID_BUFFER_SIZE if size is greater than CL_DEVICE_MAX_
MEM_ALLOC_SIZE value specified in the Device Queries table for all devices in context.

To create a new buffer object (referred to as a sub-buffer object) from an existing buffer object, call
the function

cl_mem clCreateSubBuffer(
c¢l_mem buffer,
cl_mem_flags flags,
cl_buffer_create_type buffer_create_type,
const void* buffer_create_info,
cl_int* errcode_ret);

* buffer must be a valid buffer object and cannot be a sub-buffer object.

* flags is a bit-field that is used to specify allocation and usage information about the sub-buffer
memory object being created and is described in the Memory Flags table. If the CL_MEM_READ_

92

WRITE, CL_MEM_READ_ONLY, or CL_MEM_WRITE_ONLY values are not specified in flags, they are inherited
from the corresponding memory access qualifiers associated with buffer. The CL_MEM_USE_HOST_
PTR, CL_MEM_ALLOC_HOST_PTR, and CL_MEM_COPY_HOST_PTR values cannot be specified in flags but are
inherited from the corresponding memory access qualifiers associated with buffer. If CL_MEM_
COPY_HOST_PTR is specified in the memory access qualifier values associated with buffer it does
not imply any additional copies when the sub-buffer is created from buffer. If the CL_MEM_HOST_
WRITE_ONLY, CL_MEM_HOST_READ_ONLY, or CL_MEM_HOST_NO_ACCESS values are not specified in flags,
they are inherited from the corresponding memory access qualifiers associated with buffer.

* buffer_create_type and buffer_create_info describe the type of buffer object to be created. The list
of supported values for buffer_create_type and corresponding descriptor that buffer_create_info
points to is described in the SubBuffer Attributes table.

Table 12. List of supported buffer creation types by clCreateSubBuffer

cl_buffer_create_type Description

CL_BUFFER_CREATE _TYPE_REGION Create a buffer object that represents a specific
region in buffer.

buffer_create_info is a pointer to a
cl_buffer_region structure specifying a region
of the buffer.

If buffer is created with CL_MEM_USE_HOST_PTR, the
host_ptr associated with the buffer object
returned is host_ptr + origin.

The buffer object returned references the data
store allocated for buffer and points to the
region specified by buffer_create_info in this data
store.

clCreateSubBuffer returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns
one of the following errors in errcode_ret:

o CL_INVALID_MEM_OBJECT if buffer is not a valid buffer object or is a sub-buffer object.

* CL_INVALID_VALUE if buffer was created with CL_MEM_WRITE_ONLY and flags specifies CL_MEM_READ_
WRITE or CL_MEM_READ_ONLY, or if buffer was created with CL_MEM_READ_ONLY and flags specifies CL_
MEM_READ_WRITE or CL_MEM_WRITE_ONLY, or if flags specifies CL_MEM_USE_HOST_PTR or CL_MEM_ALLOC_
HOST_PTR or CL_MEM_COPY_HOST_PTR.

o CL_INVALID_VALUE if buffer was created with CL_MEM_HOST_WRITE_ONLY and flags specify CL_MEM_
HOST_READ_ONLY, or if buffer was created with CL_MEM_HOST_READ_ONLY and flags specify CL_MEM_
HOST_WRITE_ONLY, or if buffer was created with CL_MEM_HOST_NO_ACCESS and flags specify CL_MEM_
HOST_READ_ONLY or CL_MEM_HOST_WRITE_ONLY.

o CL_INVALID_VALUE if the value specified in buffer_create_type is not valid.

o CL_INVALID_VALUE if value(s) specified in buffer_create_info (for a given buffer_create_type) is not
valid or if buffer_create_info is NULL.

o CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for sub-buffer object.

93

o CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL

implementation on the device.

e CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL

implementation on the host.

o CL_INVALID_VALUE if the region specified by the cl buffer region structure passed in

buffer_create_info is out of bounds in buffer.

o CL_INVALID_BUFFER_SIZE if the size field of the cl buffer region structure passed in

buffer_create_info is 0.

o CL_MISALIGNED_SUB_BUFFER_OFFSET if there are no devices in context associated with buffer for

which the origin field of the cl_buffer_region structure passed in buffer_create_info is aligned to
the CL_DEVICE_MEM_BASE_ADDR_ALIGN value.

Concurrent reading from, writing to and copying between both a buffer object and
its sub-buffer object(s) is undefined. Concurrent reading from, writing to and

0 copying between overlapping sub-buffer objects created with the same buffer
object is undefined. Only reading from both a buffer object and its sub-buffer
objects or reading from multiple overlapping sub-buffer objects is defined.

The cl_buffer_region structure specifies a region of a buffer object:

typedef struct cl_buffer_region {
size t origin;
size_ t size;

} cl_buffer_region;

* origin is the offset in bytes of the region.

* size is the size in bytes of the region.

Constraints on the values of origin and size are specified for the clCreateSubBuffer function to
which this structure is passed.

3.

2.2. Reading, Writing and Copying Buffer Objects

The following functions enqueue commands to read from a buffer object to host memory or write

to

a buffer object from host memory.

To read from a buffer object to host memory, call one of the functions

94

cl_int clEnqueueReadBuffer(

cl_command_queue command_queue,
cl_mem buffer,

cl_bool blocking_read,

size t offset,

size_t size,

void* ptr,

cl_uint num_events_in_wait_list,
const cl_event* event _wait_list,
cl_event* event);

cl_int clEnqueueWriteBuffer(

cl_command_queue command_queue,
c¢l_mem buffer,

cl_bool blocking_write,

size t offset,

size_t size,

const void* ptr,

¢l _uint num_events_in wait_list,
const cl_event* event wait_list,
cl_event* event);

command_queue is a valid host command-queue in which the read / write command will be
queued. command_queue and buffer must be created with the same OpenCL context.

buffer refers to a valid buffer object.

blocking read and blocking write indicate if the read and write operations are blocking or non-
blocking (see below).

offset is the offset in bytes in the buffer object to read from or write to.
size is the size in bytes of data being read or written.
ptr is the pointer to buffer in host memory where data is to be read into or to be written from.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must
be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must be valid
and num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act
as synchronization points. The context associated with events in event wait list and
command_queue must be the same. The memory associated with event_wait_list can be reused
or freed after the function returns.

event returns an event object that identifies this particular read / write command and can be
used to query or queue a wait for this particular command to complete. event can be NULL in
which case it will not be possible for the application to query the status of this command or
queue a wait for this command to complete. If the event_wait_list and the event arguments are
not NULL, the event argument should not refer to an element of the event_wait_list array.

95

If blocking read is CL_TRUE i.e. the read command is blocking, clEnqueueReadBuffer does not
return until the buffer data has been read and copied into memory pointed to by ptr.

If blocking read is CL_FALSE i.e. the read command is non-blocking, clEnqueueReadBuffer queues a
non-blocking read command and returns. The contents of the buffer that ptr points to cannot be
used until the read command has completed. The event argument returns an event object which
can be used to query the execution status of the read command. When the read command has
completed, the contents of the buffer that ptr points to can be used by the application.

If blocking write is CL_TRUE, the write command is blocking and does not return until the command
is complete, including transfer of the data. The memory pointed to by ptr can be reused by the
application after the clEnqueueWriteBuffer call returns.

If blocking write is CL_FALSE, the OpenCL implementation will use ptr to perform a non-blocking
write. As the write is non-blocking the implementation can return immediately. The memory
pointed to by ptr cannot be reused by the application after the call returns. The event argument
returns an event object which can be used to query the execution status of the write command.
When the write command has completed, the memory pointed to by ptr can then be reused by the
application.

clEnqueueReadBuffer and clEnqueueWriteBuffer return CL_SUCCESS if the function is executed
successfully. Otherwise, it returns one of the following errors:

o CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

o CL_INVALID_CONTEXT if the context associated with command_queue and buffer are not the same or
if the context associated with command_queue and events in event_wait_list are not the same.

o CL_INVALID_MEM_OBJECT if buffer is not a valid buffer object.

o CL_INVALID_VALUE if the region being read or written specified by (offset, size) is out of bounds or
if ptr is a NULL value.

e CL_INVALID _EVENT WAIT_LIST if event wait list is NULL and num_events in wait list > 0, or
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

o CL_MISALIGNED_SUB_BUFFER_OFFSET if buffer is a sub-buffer object and offset specified when the
sub-buffer object is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device
associated with queue.

o CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST if the read and write operations are blocking and
the execution status of any of the events in event_wait_list is a negative integer value.

o CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for data store
associated with buffer.

o CL_INVALID_OPERATION if clEnqueueReadBuffer is called on buffer which has been created with
CL_MEM_HOST_WRITE_ONLY or CL_MEM_HOST_NO_ACCESS.

o CL_INVALID_OPERATION if clEnqueueWriteBuffer is called on buffer which has been created with
CL_MEM_HOST_READ_ONLY or CL_MEM_HOST_NO_ACCESS.

o CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

96

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

The following functions enqueue commands to read a 2D or 3D rectangular region from a buffer
object to host memory or write a 2D or 3D rectangular region to a buffer object from host memory.

cl_int clEnqueueReadBufferRect(
cl_command_queue command_queue,
cl_mem buffer,
cl_bool blocking_read,
const size t* buffer_offset,
const size_t* host_offset,
const size_t* region,
size_t buffer_row_pitch,
size_t buffer_slice_pitch,
size_t host_row_pitch,
size_t host_slice_pitch,
void* ptr,
cl_uint num_events_in_wait_list,
const cl_event* event wait_list,
cl_event* event);

cl_int clEnqueueWriteBufferRect(
cl_command_queue command_queue,
c¢l_mem buffer,
cl_bool blocking_write,
const size t* buffer_offset,
const size_t* host_offset,
const size_t* region,
size_t buffer_row_pitch,
size_t buffer_slice_pitch,
size_t host_row_pitch,
size_t host_slice_pitch,
const void* ptr,
cl_uint num_events_in_wait_list,
const cl_event* event _wait_list,
cl_event* event);

» command_queue refers is a valid host command-queue in which the read / write command will
be queued. command_queue and buffer must be created with the same OpenCL context.

* buffer refers to a valid buffer object.

* blocking read and blocking write indicate if the read and write operations are blocking or non-
blocking (see below).

* buffer_origin defines the (x, y, z) offset in the memory region associated with buffer. For a 2D
rectangle region, the z value given by buffer_origin[2] should be 0. The offset in bytes is
computed as buffer_origin[2] x buffer_slice pitch + buffer_origin[1] x buffer_row_pitch +
buffer_origin[0].

97

* host_origin defines the (x, y, z) offset in the memory region pointed to by ptr. For a 2D rectangle
region, the z value given by host origin[2] should be 0. The offset in bytes is computed as
host_origin[2] x host_slice_pitch + host_origin[1] x host_row_pitch + host_origin[0].

* region defines the (width in bytes, height in rows, depth in slices) of the 2D or 3D rectangle being
read or written. For a 2D rectangle copy, the depth value given by region[2] should be 1. The
values in region cannot be 0.

* buffer_row_pitch is the length of each row in bytes to be used for the memory region associated
with buffer. If buffer_row_pitch is 0, buffer_row_pitch is computed as region[0].

* buffer_slice_pitch is the length of each 2D slice in bytes to be used for the memory region
associated with buffer. If buffer_slice_pitch is 0, buffer_slice_pitch is computed as region[1] x
buffer_row_pitch.

* host_row_pitch is the length of each row in bytes to be used for the memory region pointed to by
ptr. If host_row_pitch is 0, host_row_pitch is computed as region[0].

* host_slice_pitch is the length of each 2D slice in bytes to be used for the memory region pointed
to by ptr. If host_slice_pitch is 0, host_slice_pitch is computed as region[1] x host_row_pitch.

* ptris the pointer to buffer in host memory where data is to be read into or to be written from.

» event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must
be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must be valid
and num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act
as synchronization points. The context associated with events in event wait list and
command_queue must be the same. The memory associated with event_wait_list can be reused
or freed after the function returns.

* event returns an event object that identifies this particular read / write command and can be
used to query or queue a wait for this particular command to complete. event can be NULL in
which case it will not be possible for the application to query the status of this command or
queue a wait for this command to complete. If the event_wait_list and the event arguments are
not NULL, the event argument should not refer to an element of the event_wait_list array.

If blocking read is CL_TRUE i.e. the read command is blocking, clEnqueueReadBufferRect does not
return until the buffer data has been read and copied into memory pointed to by ptr.

If blocking read is CL_FALSE i.e. the read command is non-blocking, clEnqueueReadBufferRect
queues a non-blocking read command and returns. The contents of the buffer that ptr points to
cannot be used until the read command has completed. The event argument returns an event object
which can be used to query the execution status of the read command. When the read command
has completed, the contents of the buffer that ptr points to can be used by the application.

If blocking write is CL_TRUE, the write command is blocking and does not return until the command
is complete, including transfer of the data. The memory pointed to by ptr can be reused by the
application after the clEnqueueWriteBufferRect call returns.

If blocking write is CL_FALSE, the OpenCL implementation will use ptr to perform a non-blocking
write. As the write is non-blocking the implementation can return immediately. The memory

98

pointed to by ptr cannot be reused by the application after the call returns. The event argument
returns an event object which can be used to query the execution status of the write command.
When the write command has completed, the memory pointed to by ptr can then be reused by the
application.

clEnqueueReadBufferRect and clEnqueueWriteBufferRect return CL_SUCCESS if the function is
executed successfully. Otherwise, it returns one of the following errors:

o CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

o CL_INVALID_CONTEXT if the context associated with command_queue and buffer are not the same or
if the context associated with command_queue and events in event_wait_list are not the same.

o CL_INVALID_MEM_OBIJECT if buffer is not a valid buffer object.

o CL_INVALID_VALUE if the region being read or written specified by (buffer_origin, region,
buffer_row_pitch, buffer_slice_pitch) is out of bounds.

o CL_INVALID_VALUE if ptris a NULL value.

o CL_INVALID_VALUE if any region array element is 0.

o CL_INVALID_VALUE if buffer_row_pitch is not 0 and is less than region[0].
o CL_INVALID_VALUE if host_row_pitch is not 0 and is less than region[0].

o CL_INVALID_VALUE if buffer_slice_pitch is not 0 and is less than region[1] x buffer_row_pitch and
not a multiple of buffer_row_pitch.

* CL_INVALID_VALUE if host_slice_pitch is not 0 and is less than region[1] x host_row_pitch and not a
multiple of host_row_pitch.

e CL_INVALID _EVENT WAIT_LIST if event wait list is NULL and num_events in wait list > 0, or
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

o CL_MISALIGNED_SUB_BUFFER_OFFSET if buffer is a sub-buffer object and offset specified when the
sub-buffer object is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device
associated with queue.

o CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST if the read and write operations are blocking and
the execution status of any of the events in event_wait_list is a negative integer value.

o CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for data store
associated with buffer.

o CL_INVALID_OPERATION if clEnqueueReadBufferRect is called on buffer which has been created
with CL_MEM_HOST_WRITE _ONLY or CL_MEM_HOST_NO_ACCESS.

o CL_INVALID_OPERATION if clIEnqueueWriteBufferRect is called on buffer which has been created
with CL_MEM_HOST_READ ONLY or CL_MEM_HOST_NO_ACCESS.

o CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

99

100

Calling clEnqueueReadBuffer to read a region of the buffer object with the ptr
argument value set to host_ptr + offset, where host_ptr is a pointer to the memory
region specified when the buffer object being read is created with CL_MEM_USE_
HOST_PTR, must meet the following requirements in order to avoid undefined
behavior:

* All commands that use this buffer object or a memory object (buffer or image)
created from this buffer object have finished execution before the read
command begins execution.

» The buffer object or memory objects created from this buffer object are not
mapped.

* The buffer object or memory objects created from this buffer object are not
used by any command-queue until the read command has finished execution.

Calling clEnqueueReadBufferRect to read a region of the buffer object with the
ptr argument value set to host_ptr and host_origin, buffer_origin values are the
same, where host_ptr is a pointer to the memory region specified when the buffer
object being read is created with CL_MEM_USE_HOST_PTR, must meet the same
requirements given above for clEnqueueReadBuffer.

Calling clEnqueueWriteBuffer to update the latest bits in a region of the buffer
object with the ptr argument value set to host_ptr + offset, where host_ptr is a
pointer to the memory region specified when the buffer object being written is
created with CL_MEM_USE_HOST_PTR, must meet the following requirements in order
to avoid undefined behavior:

* The host memory region given by (host_ptr + offset, cb) contains the latest bits
when the enqueued write command begins execution.

» The buffer object or memory objects created from this buffer object are not
mapped.

» The buffer object or memory objects created from this buffer object are not
used by any command-queue until the write command has finished execution.

Calling clEnqueueWriteBufferRect to update the latest bits in a region of the
buffer object with the ptr argument value set to host ptr and host_origin,
buffer_origin values are the same, where host_ptr is a pointer to the memory
region specified when the buffer object being written is created with CL_MEM_USE_
HOST_PTR, must meet the following requirements in order to avoid undefined
behavior:

* The host memory region given by (buffer_origin region) contains the latest bits
when the enqueued write command begins execution.

» The buffer object or memory objects created from this buffer object are not
mapped.

» The buffer object or memory objects created from this buffer object are not
used by any command-queue until the write command has finished execution.

To enqueue a command to copy a buffer object identified by src_buffer to another buffer object
identified by dst_buffer, call the function

cl_int clEnqueueCopyBuffer(

cl_command_queue command_queue,
c¢l_mem src_buffer,

cl_mem dst_buffer,

size_t src_offset,

size t dst_offset,

size_t size,

¢l _uint num_events_in wait_list,
const cl_event* event wait_list,
cl_event* event);

command_queue refers to a host command-queue in which the copy command will be queued.
The OpenCL context associated with command_queue, src_buffer and dst_buffer must be the
same.

src_offset refers to the offset where to begin copying data from src_buffer.
dst_offset refers to the offset where to begin copying data into dst_buffer.
size refers to the size in bytes to copy.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must
be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must be valid
and num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act
as synchronization points. The context associated with events in event wait list and
command_queue must be the same. The memory associated with event_wait_list can be reused
or freed after the function returns.

event returns an event object that identifies this particular copy command and can be used to
query or queue a wait for this particular command to complete. event can be NULL in which case
it will not be possible for the application to query the status of this command or queue a wait
for this command to complete. clEnqueueBarrierWithWaitList can be used instead. If the
event_wait_list and the event arguments are not NULL, the event argument should not refer to an
element of the event_wait_list array.

clEnqueueCopyBuffer returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

CL_INVALID_CONTEXT if the context associated with command_queue, src_buffer and dst_buffer are
not the same or if the context associated with command_queue and events in event_wait_list are
not the same.

CL_INVALID_MEM_OBIJECT if src_buffer and dst_buffer are not valid buffer objects.

CL_INVALID_VALUE if src_offset, dst_offset, size, src_offset + size or dst offset + size require
accessing elements outside the src_buffer and dst_buffer buffer objects respectively.

101

CL_INVALID _EVENT WAIT_LIST if event wait list is NULL and num events_ in wait list > 0, or
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

CL_MISALIGNED_SUB_BUFFER_OFFSET if src_buffer is a sub-buffer object and offset specified when the
sub-buffer object is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device
associated with queue.

CL_MISALIGNED_SUB_BUFFER_OFFSET if dst_buffer is a sub-buffer object and offset specified when the
sub-buffer object is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device
associated with queue.

CL_MEM_COPY_OVERLAP if src_buffer and dst_buffer are the same buffer or sub-buffer object and the
source and destination regions overlap or if src_buffer and dst_buffer are different sub-buffers
of the same associated buffer object and they overlap. The regions overlap if src_offset <
dst_offset < src_offset + size 1 or if dst_offset < src_offset < dst_offset + size 1.

CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for data store
associated with src_buffer or dst_buffer.

CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To enqueue a command to copy a 2D or 3D rectangular region from the buffer object identified by
src_buffer to a 2D or 3D region in the buffer object identified by dst_buffer, call the function

cl_int clEnqueueCopyBufferRect(

102

cl_command_queue command_queue,
c¢l_mem src_buffer,

c¢l_mem dst_buffer,

const size_t* src_origin,

const size_t* dst_origin,

const size_t* region,

size_t src_row_pitch,

size_t src_slice_pitch,

size_t dst_row_pitch,

size_t dst_slice_pitch,

¢l _uint num_events_in wait_list,
const cl_event* event wait_list,
cl_event* event);

command_queue refers to the host command-queue in which the copy command will be queued.
The OpenCL context associated with command_queue, src_buffer and dst_buffer must be the
same.

src_origin defines the (x, y, z) offset in the memory region associated with src_buffer. For a 2D
rectangle region, the z value given by src_origin[2] should be 0. The offset in bytes is computed
as src_origin[2] x src_slice_pitch + src_origin[1] x src_row_pitch + src_origin[0].

dst_origin defines the (x, y, z) offset in the memory region associated with dst_buffer. For a 2D

rectangle region, the z value given by dst_origin[2] should be 0. The offset in bytes is computed
as dst_origin[2] x dst_slice_pitch + dst_origin[1] x dst_row_pitch + dst_origin[0].

* region defines the (width in bytes, height in rows, depth in slices) of the 2D or 3D rectangle being
copied. For a 2D rectangle, the depth value given by region[2] should be 1. The values in region
cannot be 0.

» src_row_pitch is the length of each row in bytes to be used for the memory region associated
with src_buffer. If src_row_pitch is 0, src_row_pitch is computed as region[0].

* src_slice_pitch is the length of each 2D slice in bytes to be used for the memory region associated
with src_buffer. If src_slice_pitch is 0, src_slice_pitch is computed as region[1] x src_row_pitch.

* dst_row_pitch is the length of each row in bytes to be used for the memory region associated
with dst_buffer. If dst_row_pitch is 0, dst_row_pitch is computed as region[0].

* dst_slice_pitch is the length of each 2D slice in bytes to be used for the memory region associated
with dst_buffer. If dst_slice_pitch is 0, dst_slice_pitch is computed as region[1] x dst_row_pitch.

* event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must
be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must be valid
and num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act
as synchronization points. The context associated with events in event wait list and
command_queue must be the same. The memory associated with event_wait_list can be reused
or freed after the function returns.

* event returns an event object that identifies this particular copy command and can be used to
query or queue a wait for this particular command to complete. event can be NULL in which case
it will not be possible for the application to query the status of this command or queue a wait
for this command to complete. clEnqueueBarrierWithWaitList can be used instead. If the
event_wait_list and the event arguments are not NULL, the event argument should not refer to an
element of the event_wait_list array.

Copying begins at the source offset and destination offset which are computed as described below
in the description for src_origin and dst_origin. Each byte of the region’s width is copied from the
source offset to the destination offset. After copying each width, the source and destination offsets
are incremented by their respective source and destination row pitches. After copying each 2D
rectangle, the source and destination offsets are incremented by their respective source and
destination slice pitches.

0 If src_buffer and dst_buffer are the same buffer object, src_row_pitch must equal
dst_row_pitch and src_slice_pitch must equal dst_slice_pitch.

clEnqueueCopyBufferRect returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:
o CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

o CL_INVALID_CONTEXT if the context associated with command_queue, src_buffer and dst_buffer are
not the same or if the context associated with command_queue and events in event_wait_list are
not the same.

103

CL_INVALID_MEM_OBJECT if src_buffer and dst_buffer are not valid buffer objects.

CL_INVALID_VALUE if (src_origin, region, src_row_pitch, src_slice_pitch) or (dst_origin, region,
dst_row_pitch, dst_slice_pitch) require accessing elements outside the src_buffer and dst_buffer
buffer objects respectively.

CL_INVALID_VALUE if any region array element is 0.
CL_INVALID_VALUE if src_row_pitch is not 0 and is less than region[0].
CL_INVALID_VALUE if dst_row_pitch is not 0 and is less than region[0].

CL_INVALID_VALUE if src_slice pitch is not 0 and is less than region[l] x src_row_pitch or if
src_slice_pitch is not 0 and is not a multiple of src_row_pitch.

CL_INVALID_VALUE if dst_slice_pitch is not 0 and is less than region[1] x dst_row_pitch or if
dst_slice_pitch is not 0 and is not a multiple of dst_row_pitch.

CL_INVALID_VALUE if src_buffer and dst_buffer are the same buffer object and src_slice_pitch is not
equal to dst_slice_pitch and src_row_pitch is not equal to dst_row_pitch.

CL_INVALID EVENT WAIT_LIST if event wait list is NULL and num events_ in wait list > 0, or
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

CL_MEM_COPY_OVERLAP if src_buffer and dst_buffer are the same buffer or sub-buffer object and the
source and destination regions overlap or if src_buffer and dst_buffer are different sub-buffers
of the same associated buffer object and they overlap. Refer to Checking for Memory Copy
Overlap for details on how to determine if source and destination regions overlap.

CL_MISALIGNED_SUB_BUFFER_OFFSET if src_buffer is a sub-buffer object and offset specified when the
sub-buffer object is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device
associated with queue.

CL_MISALIGNED_SUB_BUFFER_OFFSET if dst_buffer is a sub-buffer object and offset specified when the
sub-buffer object is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device
associated with queue.

CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for data store
associated with src_buffer or dst_buffer.

CL_OUT_OF _RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.2.3. Filling Buffer Objects

To enqueue a command to fill a buffer object with a pattern of a given pattern size, call the function

104

cl_int clEnqueueFillBuffer(
cl_command_queue command_queue,
cl_mem buffer,
const void* pattern,
size_t pattern_size,
size_t offset,
size_ t size,
cl_uint num_events_in_wait_list,
const cl_event* event _wait_list,
cl_event* event);

» command_queue refers to the host command-queue in which the fill command will be queued.
The OpenCL context associated with command_queue and buffer must be the same.

* buffer is a valid buffer object.

* pattern is a pointer to the data pattern of size pattern_size in bytes. pattern will be used to fill a
region in buffer starting at offset and is size bytes in size. The data pattern must be a scalar or
vector integer or floating-point data type supported by OpenCL as described in Shared
Application Scalar Data Types and Supported Application Vector Data Types. For example, if
buffer is to be filled with a pattern of float4 values, then pattern will be a pointer to a cl_float4
value and pattern_size will be sizeof(cl_float4). The maximum value of pattern_size is the size
of the largest integer or floating-point vector data type supported by the OpenCL device. The
memory associated with pattern can be reused or freed after the function returns.

* offset is the location in bytes of the region being filled in buffer and must be a multiple of
pattern_size.

* size is the size in bytes of region being filled in bujffer and must be a multiple of pattern_size.

* event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must
be 0. If event_wait_list is not NULL, the list of events pointed to by event wait_list must be valid
and num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act
as synchronization points. The context associated with events in event wait list and
command_queue must be the same. The memory associated with event_wait_list can be reused
or freed after the function returns.

* event returns an event object that identifies this particular command and can be used to query
or queue a wait for this particular command to complete. event can be NULL in which case it will
not be possible for the application to query the status of this command or queue a wait for this
command to complete. clEnqueueBarrierWithWaitList can be wused instead. If the
event_wait_list and the event arguments are not NULL, the event argument should not refer to an
element of the event_wait_list array.

The usage information which indicates whether the memory object can be read or written by a
kernel and/or the host and is given by the cl_mem_flags argument value specified when buffer is
created is ignored by clEnqueueFillBuffer.

clEnqueueFillBuffer returns CL_SUCCESS if the function is executed successfully. Otherwise, it

105

returns one of the following errors:

CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

CL_INVALID_CONTEXT if the context associated with command_queue and buffer are not the same or
if the context associated with command_queue and events in event_wait_list are not the same.

CL_INVALID_MEM_OBJECT if buffer is not a valid buffer object.

CL_INVALID_VALUE if offset or offset + size require accessing elements outside the buffer buffer
object respectively.

CL_INVALID_VALUE if pattern is NULL or if pattern_size is O or if pattern_size is not one of { 1, 2, 4, 8,
16, 32, 64, 128 }.

CL_INVALID_VALUE if offset and size are not a multiple of pattern_size.

CL_INVALID EVENT WAIT LIST if event wait list is NULL and num events in wait list > 0, or
event_wait_list is not NULL and num_events_in_wait _list is 0, or if event objects in event_wait_list
are not valid events.

CL_MISALIGNED_SUB_BUFFER_OFFSET if buffer is a sub-buffer object and offset specified when the
sub-buffer object is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device
associated with queue.

CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for data store
associated with buffer.

CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.2.4. Mapping Buffer Objects

To enqueue a command to map a region of the buffer object given by buffer into the host address
space and returns a pointer to this mapped region, call the function

void* clEnqueueMapBuffer(

106

cl_command_queue command_queue,
c¢l_mem buffer,

cl_bool blocking_map,
cl_map_flags map_flags,

size t offset,

size_t size,

¢l _uint num_events_in wait_list,
const cl_event* event wait_list,
cl_event* event,

cl_int* errcode _ret);

command_queue must be a valid host command-queue.

blocking_map indicates if the map operation is blocking or non-blocking.

If blocking_ map is CL_TRUE, clEnqueueMapBuffer does not return until the specified region in
buffer is mapped into the host address space and the application can access the contents of the
mapped region using the pointer returned by clEnqueueMapBuffer.

If blocking_ map is CL_FALSE i.e. map operation is non-blocking, the pointer to the mapped region
returned by clEnqueueMapBuffer cannot be used until the map command has completed. The
event argument returns an event object which can be used to query the execution status of the map
command. When the map command is completed, the application can access the contents of the
mapped region using the pointer returned by clEnqueueMapBuffer.

* map_flags is a bit-field and is described in the Memory Map Flags table.

* buffer is a valid buffer object. The OpenCL context associated with command_queue and buffer
must be the same.

* offset and size are the offset in bytes and the size of the region in the buffer object that is being
mapped.

* event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must
be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must be valid
and num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act
as synchronization points. The context associated with events in event wait list and
command_queue must be the same. The memory associated with event_wait_list can be reused
or freed after the function returns.

* event returns an event object that identifies this particular command and can be used to query
or queue a wait for this particular command to complete. event can be NULL in which case it will
not be possible for the application to query the status of this command or queue a wait for this
command to complete. If the event_wait_list and the event arguments are not NULL, the event
argument should not refer to an element of the event_wait_list array.

* errcode_ret will return an appropriate error code. If errcode ret is NULL, no error code is

returned.

clEnqueueMapBuffer will return a pointer to the mapped region. The errcode_ret is set to CL_
SUCCESS.

A NULL pointer is returned otherwise with one of the following error values returned in errcode_ret:

o CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

o CL_INVALID_CONTEXT if context associated with command_queue and buffer are not the same or if
the context associated with command_queue and events in event_wait_list are not the same.

o CL_INVALID_MEM_OBIJECT if buffer is not a valid buffer object.

» CL_INVALID_VALUE if region being mapped given by (offset, size) is out of bounds or if size is 0 or if
values specified in map_flags are not valid.

e CL_INVALID EVENT WAIT_LIST if event wait list is NULL and num_events in wait _list > 0, or
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

107

CL_MISALIGNED_SUB_BUFFER_OFFSET if buffer is a sub-buffer object and offset specified when the
sub-buffer object is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for the device
associated with queue.

CL_MAP_FAILURE if there is a failure to map the requested region into the host address space. This
error cannot occur for buffer objects created with CL_MEM_USE_HOST_PTR or CL_MEM_ALLOC_HOST_
PTR.

CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST if the map operation is blocking and the
execution status of any of the events in event_wait_list is a negative integer value.

CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for data store
associated with buffer.

CL_INVALID_OPERATION if buffer has been created with CL_MEM_HOST_WRITE_ONLY or CL_MEM_HOST_NO_
ACCESS and CL_MAP_READ is set in map_flags or if buffer has been created with CL_MEM_HOST_READ_
ONLY or CL_MEM_HOST_NO_ACCESS and CL_MAP_WRITE or CL_MAP_WRITE_INVALIDATE REGION is set in

map_flags.

CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

CL_INVALID_OPERATION if mapping would lead to overlapping regions being mapped for writing.

The pointer returned maps a region starting at offset and is at least size bytes in size. The result of a
memory access outside this region is undefined.

If the buffer object is created with CL_MEM_USE_HOST_PTR set in mem_flags, the following will be true:

The host_ptr specified in clCreateBuffer to contain the latest bits in the region being mapped
when the clEnqueueMapBuffer command has completed.

The pointer value returned by clEnqueueMapBuffer will be derived from the host ptr
specified when the buffer object is created.

Mapped buffer objects are unmapped using clEnqueueUnmapMemObject. This is described in
Unmapping Mapped Memory Objects.

Table 13. List of supported map flag values

cl_map_flags Description

CL_MAP_READ This flag specifies that the region being mapped

108

in the memory object is being mapped for
reading.

The pointer returned by clEnqueueMapBuffer
(clEnqueueMapImage) is guaranteed to contain
the latest bits in the region being mapped when
the clEnqueueMapBuffer
(clIEnqueueMapImage) command has
completed.

cl_map_flags Description

CL_MAP_WRITE This flag specifies that the region being mapped
in the memory object is being mapped for
writing.

The pointer returned by clEnqueueMapBuffer
(clEnqueueMaplmage) is guaranteed to contain
the latest bits in the region being mapped when
the clEnqueueMapBuffer
(clEnqueueMapImage) command has
completed

CL_MAP_WRITE_INVALIDATE_REGION This flag specifies that the region being mapped
in the memory object is being mapped for
writing.

The contents of the region being mapped are to
be discarded. This is typically the case when the
region being mapped is overwritten by the host.
This flag allows the implementation to no longer
guarantee that the pointer returned by
clEnqueueMapBuffer (clEnqueueMapImage)
contains the latest bits in the region being
mapped which can be a significant performance
enhancement.

CL_MAP_READ or CL_MAP_WRITE and CL_MAP_WRITE_
INVALIDATE_REGION are mutually exclusive.

5.3. Image Objects

An image object is used to store a one-, two- or three-dimensional texture, frame-buffer or image.
The elements of an image object are selected from a list of predefined image formats. The minimum
number of elements in a memory object is one.

5.3.1. Creating Image Objects

A 1D image, 1D image buffer, 1D image array, 2D image, 2D image array and 3D image object
can be created using the following function

cl_mem clCreateImage(
cl_context context,
cl_mem_flags flags,
const cl_image_format* image_format,
const cl_image_desc* image_desc,
void* host_ptr,
cl_int* errcode _ret);

* context is a valid OpenCL context on which the image object is to be created.

109

* flags is a bit-field that is used to specify allocation and usage information about the image
memory object being created and is described in the Memory Flags table.

* image_format is a pointer to a structure that describes format properties of the image to be
allocated. A 1D image buffer or 2D image can be created from a buffer by specifying a buffer
object in the image_desc —~ mem_object. A 2D image can be created from another 2D image object
by specifying an image object in the image_desc—_mem_object_. Refer to Image Format
Descriptor for a detailed description of the image format descriptor.

* image_desc is a pointer to a structure that describes type and dimensions of the image to be
allocated. Refer to Image Descriptor for a detailed description of the image descriptor.

* host_ptr is a pointer to the image data that may already be allocated by the application. It is only
used to initialize the image, and can be freed after the call to clCreatelmage. Refer to table
below for a description of how large the buffer that host_ptr points to must be.

For all image types except CL_MEM_OBJECT_IMAGE1D_BUFFER, if value specified for flags is 0, the default
is used which is CL_MEM_READ_WRITE.

For CL_MEM_OBJECT_IMAGE1D_BUFFER image type, or an image created from another memory object
(image or buffer), if the CL_MEM_READ_WRITE, CL_MEM_READ_ONLY or CL_MEM_WRITE_ONLY values are not
specified in flags, they are inherited from the corresponding memory access qualifiers associated
with mem_object. The CL_MEM_USE_HOST_PTR, CL_MEM_ALLOC_HOST_PTR and CL_MEM_COPY_HOST_PTR values
cannot be specified in flags but are inherited from the corresponding memory access qualifiers
associated with mem_object. If CL_MEM_COPY_HOST_PTR is specified in the memory access qualifier
values associated with mem_object it does not imply any additional copies when the image is
created from mem_object. If the CL_MEM_HOST_WRITE_ONLY, CL_MEM_HOST_READ_ONLY or CL_MEM_HOST_NO_
ACCESS values are not specified in flags, they are inherited from the corresponding memory access
qualifiers associated with mem_object.

Image Type Size of buffer that host_ptr points to
CL_MEM_OBJECT_IMAGE1D > image_row_pitch

CL_MEM_OBJECT _IMAGE1D_BUFFER > image_row_pitch
CL_MEM_OBJECT_IMAGE2D > image_row_pitch x image_height
CL_MEM_OBJECT_IMAGE3D > image_slice_pitch x image_depth
CL_MEM_OBJECT _IMAGE1D_ARRAY > image_slice_pitch x image_array_size
CL_MEM_OBJECT_IMAGE2D_ARRAY > image_slice_pitch x image_array_size

For a 3D image or 2D image array, the image data specified by host_ptr is stored as a linear
sequence of adjacent 2D image slices or 2D images respectively. Each 2D image is a linear sequence
of adjacent scanlines. Each scanline is a linear sequence of image elements.

For a 2D image, the image data specified by host ptr is stored as a linear sequence of adjacent
scanlines. Each scanline is a linear sequence of image elements.

For a 1D image array, the image data specified by host_ptr is stored as a linear sequence of adjacent
1D images. Each 1D image is stored as a single scanline which is a linear sequence of adjacent
elements.

110

For 1D image or 1D image buffer, the image data specified by host_ptr is stored as a single scanline
which is a linear sequence of adjacent elements.

Image elements are stored according to their image format as described in Image Format
Descriptor.

errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is returned.

clCreatelmage returns a valid non-zero image object created and the errcode_ret is set to CL_
SUCCESS if the image object is created successfully. Otherwise, it returns a NULL value with one of the
following error values returned in errcode_ret:

e CL_INVALID CONTEXT if context is not a valid context.
o CL_INVALID_VALUE if values specified in flags are not valid.

o CL_INVALID_IMAGE_FORMAT_DESCRIPTOR if values specified in image format are not valid or if
image_format is NULL.

o CL_INVALID_IMAGE_FORMAT_DESCRIPTOR if a 2D image is created from a buffer and the row pitch and
base address alignment does not follow the rules described for creating a 2D image from a
buffer.

o CL_INVALID_IMAGE_FORMAT_DESCRIPTOR if a 2D image is created from a 2D image object and the
rules described above are not followed.

o CL_INVALID_IMAGE_DESCRIPTOR if values specified in image_desc are not valid or if image_desc is
NULL.

o CL_INVALID_IMAGE_SIZE if image dimensions specified in image_desc exceed the maximum image
dimensions described in the Device Queries table for all devices in context.

o CL_INVALID_HOST_PTR if host_ptr is NULL and CL_MEM_USE_HOST_PTR or CL_MEM_COPY_HOST_PTR are set
in flags or if host_ptr is not NULL but CL_MEM_COPY_HOST_PTR or CL_MEM_USE_HOST_PTR are not set in
flags.

o CL_INVALID_VALUE if an image is being created from another memory object (buffer or image)
under one of the following circumstances: 1) mem_object was created with CL_MEM_WRITE_ONLY
and flags specifies CL_MEM_READ_WRITE or CL_MEM_READ_ONLY, 2) mem_object was created with CL_
MEM_READ_ONLY and flags specifies CL_MEM_READ_WRITE or CL_MEM_WRITE_ONLY, 3) flags specifies CL_
MEM_USE_HOST_PTR or CL_MEM_ALLOC_HOST_PTR or CL_MEM_COPY_HOST_PTR.

o CL_INVALID_VALUE if an image is being created from another memory object (buffer or image)
and mem_object object was created with CL_MEM_HOST_WRITE_ONLY and flags specifies CL_MEM_HOST_
READ_ONLY, or if mem_object was created with CL_MEM_HOST_READ_ONLY and flags specifies CL_MEM_
HOST_WRITE_ONLY, or if mem_object was created with CL_MEM_HOST_NO_ACCESS and_flags_ specifies
CL_MEM_HOST_READ_ONLY or CL_MEM_HOST_WRITE_ONLY.

o CL_IMAGE_FORMAT_NOT_SUPPORTED if the image_format is not supported.
o CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for image object.

o CL_INVALID_OPERATION if there are no devices in context that support images (i.e. CL_DEVICE_IMAGE_
SUPPORT specified in the Device Queries table is CL_FALSE).

o CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

111

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

Image Format Descriptor

The cl_image_format image format descriptor structure describes an image format, and is defined
as:

typedef struct cl_image_format {
cl_channel_order image_channel_order;
cl_channel_type image_channel_data_type;
} cl_image_format;

» image_channel_order specifies the number of channels and the channel layout i.e. the memory
layout in which channels are stored in the image. Valid values are described in the Image
Channel Order table.

* image_channel_data_type describes the size of the channel data type. The list of supported values
is described in the Image Channel Data Types table. The number of bits per element determined
by the image_channel_data_type and image_channel_order must be a power of two.

Table 14. List of supported Image Channel Order Values

Image Channel Order Description

CL_R, CL_A, Single channel image formats where the single
channel represents a RED or ALPHA component.

CL_DEPTH A single channel image format where the single
channel represents a DEPTH component.

CL_LUMINANCE A single channel image format where the single
channel represents a LUMINANCE value. The
LUMINANCE value is replicated into the RED, GREEN,
and BLUE components.

CL_INTENSITY, A single channel image format where the single
channel represents an INTENSITY value. The
INTENSITY value is replicated into the RED, GREEN,
BLUE, and ALPHA components.

CL_RG, CL_RA Two channel image formats. The first channel
always represents a RED component. The second
channel represents a GREEN component or an
ALPHA component.

CL_Rx A two channel image format, where the first
channel represents a RED component and the
second channel is ignored.

CL_RGB A three channel image format, where the three
channels represent RED, GREEN, and BLUE
components.

112

Image Channel Order Description

CL_RGx A three channel image format, where the first
two channels represent RED and GREEN
components and the third channel is ignored.

CL_RGBA, CL_ARGB, CL_BGRA, CL_ABGR Four channel image formats, where the four
channels represent RED, GREEN, BLUE, and ALPHA
components.

CL_RGBx A four channel image format, where the first

three channels represent RED, GREEN, and BLUE
components and the fourth channel is ignored.

CL_sRGB A three channel image format, where the three
channels represent RED, GREEN, and BLUE
components in the SRGB color space.

CL_sRGBA, CL_sBGRA Four channel image formats, where the first
three channels represent RED, GREEN, and BLUE
components in the SRGB color space. The fourth
channel represents an ALPHA component.

CL_sRGBx A four channel image format, where the three
channels represent RED, GREEN, and BLUE
components in the SRGB color space. The fourth
channel is ignored.

Table 15. List of supported Image Channel Data Types

Image Channel Data Type Description

CL_SNORM_INTS8 Each channel component is a normalized signed
8-bit integer value

CL_SNORM_INT16 Each channel component is a normalized signed
16-bit integer value

CL_UNORM_INTS8 Each channel component is a normalized
unsigned 8-bit integer value

CL_UNORM_INT16 Each channel component is a normalized
unsigned 16-bit integer value

CL_UNORM_SHORT_565 Represents a normalized 5-6-5 3-channel RGB
image. The channel order must be CL_RGB or CL_
RGBx.

CL_UNORM_SHORT _555 Represents a normalized x-5-5-5 4-channel XRGB
image. The channel order must be CL_RGB or CL_
RGBx.

CL_UNORM_INT_101010 Represents a normalized x-10-10-10 4-channel
XRGB image. The channel order must be CL_RGB
or CL_RGBx.

CL_UNORM_INT_101010 _2 Represents a normalized 10-10-10-2 four-
channel RGBA image. The channel order must be
CL_RGBA.

113

Image Channel Data Type Description

CL_SIGNED_INTS8 Each channel component is an unnormalized
signed 8-bit integer value

CL_SIGNED_INT16 Each channel component is an unnormalized
signed 16-bit integer value

CL_SIGNED_INT32 Each channel component is an unnormalized
signed 32-bit integer value

CL_UNSIGNED_INT8 Each channel component is an unnormalized
unsigned 8-bit integer value

CL_UNSIGNED_INT16 Each channel component is an unnormalized
unsigned 16-bit integer value

CL_UNSIGNED_INT32 Each channel component is an unnormalized
unsigned 32-bit integer value

CL_HALF_FLOAT Each channel component is a 16-bit half-float
value

CL_FLOAT Each channel component is a single precision

floating-point value

For example, to specify a normalized unsigned 8-bit / channel RGBA image, image_channel_order =
CL_RGBA, and image_channel_data_type = CL_UNORM_INT8. The memory layout of this image format is
described below:

R G B A
with the corresponding byte offsets
0 1 2 3

Similar, if image_channel_order = CL_RGBA and image_channel_data_type = CL_SIGNED_INT16, the
memory layout of this image format is described below:

R G B A
with the corresponding byte offsets
0 2 4 6

image_channel_data_type values of CL_UNORM_SHORT_565, CL_UNORM_SHORT_555, CL_UNORM_INT_101010, and
CL_UNORM_INT_101010_2 are special cases of packed image formats where the channels of each
element are packed into a single unsigned short or unsigned int. For these special packed image
formats, the channels are normally packed with the first channel in the most significant bits of the
bitfield, and successive channels occupying progressively less significant locations. For CL_UNORM_
SHORT_565, R is in bits 15:11, G is in bits 10:5 and B is in bits 4:0. For CL_UNORM_SHORT_555, bit 15 is
undefined, R is in bits 14:10, G in bits 9:5 and B in bits 4:0. For CL_UNORM_INT_101010, bits 31:30 are
undefined, R is in bits 29:20, G in bits 19:10 and B in bits 9:0. For CL_UNORM_INT_101010_2, R is in bits
31:22, Gin bits 21:12, B in bits 11:2 and A in bits 1:0.

114

OpenCL implementations must maintain the minimum precision specified by the number of bits in
image_channel_data_type. If the image format specified by image_channel_order, and
image_channel_data_type cannot be supported by the OpenCL implementation, then the call to
clCreatelmage will return a NULL memory object.

Image Descriptor

The cl_image_desc image descriptor structure describes the type and dimensions of an image or
image array, and is defined as:

typedef struct cl_image_desc {
cl_mem_object_type image_type;

size t image_width;

size_t image_height;

size t image_depth;

size_t image_array_size;

size t image_row_pitch;

size t image_slice_pitch;

cl_uint num_mip_levels;

cl _uint num_samples;

#ifdef __GNUC__

__extension__ /* Prevents warnings about anonymous union in -pedantic builds */
flendif

union {

cl_mem buffer;
cl_mem mem_object;
¥

} cl_image_desc;

* image_type describes the image type and must be either CL_MEM_OBJECT_IMAGE1D, CL_MEM_OBJECT_
IMAGE1D_BUFFER, CL_MEM_OBJECT_IMAGE1D_ARRAY, CL_MEM_OBJECT_IMAGE2D, CL_MEM_OBJECT_IMAGE2D_
ARRAY, or CL_MEM _OBJECT_IMAGE3D.

 image_width is the width of the image in pixels. For a 2D image and image array, the image width
must be a value > 1 and < CL_DEVICE_IMAGE2D_MAX_WIDTH. For a 3D image, the image width must be
a value >1 and < CL_DEVICE_IMAGE3D_MAX_WIDTH. For a 1D image buffer, the image width must be a
value >1 and < CL_DEVICE_IMAGE_MAX_BUFFER_SIZE. For a 1D image and 1D image array, the image
width must be a value >1 and < CL_DEVICE_IMAGE2D_MAX_WIDTH.

» image_height is the height of the image in pixels. This is only used if the image is a 2D or 3D
image, or a 2D image array. For a 2D image or image array, the image height must be a value > 1
and < CL_DEVICE_IMAGE2D_MAX_HEIGHT. For a 3D image, the image height must be a value > 1 and <
CL_DEVICE_IMAGE3D_MAX_HEIGHT.

» image_depth is the depth of the image in pixels. This is only used if the image is a 3D image and
must be a value > 1 and < CL_DEVICE_IMAGE3D_MAX DEPTH.

* image_array_size’ is the number of images in the image array. This is only used if the image is a
1D or 2D image array. The values for image_array_size, if specified, must be a value > 1 and < CL_
DEVICE_IMAGE_MAX_ARRAY_SIZE.

115

Note that reading and writing 2D image arrays from a kernel with image_array_size=1 may
be lower performance than 2D images.

» image_row_pitch is the scan-line pitch in bytes. This must be 0 if host_ptr is NULL and can be either
0 or > image_width x size of element in bytes if host_ptr is not NULL. If host_ptr is not NULL and
image_row_pitch = 0, image_row_pitch is calculated as image_width x size of element in bytes. If
image_row_pitch is not 0, it must be a multiple of the image element size in bytes. For a 2D image
created from a buffer, the pitch specified (or computed if pitch specified is 0) must be a multiple
of the maximum of the CL_DEVICE_IMAGE_PITCH_ALIGNMENT value for all devices in the context
associated with the buffer specified by mem_object that support images.

» image_slice_pitch is the size in bytes of each 2D slice in the 3D image or the size in bytes of each
image in a 1D or 2D image array. This must be 0 if host_ptr is NULL. If host_ptr is not NULL,
image_slice_pitch can be either 0 or > image_row_pitch x image_height for a 2D image array or 3D
image and can be either 0 or > image_row_pitch for a 1D image array. If host_ptr is not NULL and
image_slice_pitch =0, image_slice_pitch is calculated as image_row_pitch x image_height for a 2D
image array or 3D image and image_row_pitch for a 1D image array. If image_slice_pitch is not 0,
it must be a multiple of the image_row_pitch.

e num_mip_levels and num_samples must be 0.

* mem_object may refer to a valid buffer or image memory object. mem_object can be a buffer
memory object if image_type is CL_MEM_OBJECT_IMAGE1D_BUFFER or CL_MEM_OBJECT IMAGE2D®.
mem_object can be an image object if image_type is CL_MEM_OBJECT_IMAGE2D’. Otherwise it must be
NULL. The image pixels are taken from the memory objects data store. When the contents of the
specified memory objects data store are modified, those changes are reflected in the contents of
the image object and vice-versa at corresponding synchronization points.

6

To create a 2D image from a buffer object that share the data store between the image and
buffer object.

To create an image object from another image object that share the data store between these
image objects.

For a 1D image buffer created from a buffer object, the image_width x size of element in bytes must
be < size of the buffer object. The image data in the buffer object is stored as a single scanline which
is a linear sequence of adjacent elements.

For a 2D image created from a buffer object, the image_row_pitch x image_height must be < size of
the buffer object specified by mem_object. The image data in the buffer object is stored as a linear
sequence of adjacent scanlines. Each scanline is a linear sequence of image elements padded to
image_row_pitch bytes.

For an image object created from another image object, the values specified in the image descriptor
except for mem_object must match the image descriptor information associated with mem_object.

Image elements are stored according to their image format as described in Image Format

116

Descriptor.

If the buffer object specified by mem_object was created with CL_MEM_USE_HOST_PTR, the host_ptr
specified to clCreateBuffer must be aligned to the maximum of the CL_DEVICE_IMAGE_BASE_ADDRESS_
ALIGNMENT value for all devices in the context associated with the buffer specified by mem_object that
support images.

Creating a 2D image object from another 2D image object allows users to create a new image object
that shares the image data store with mem_object but views the pixels in the image with a different
channel order. The restrictions are:

+ all the values specified in image_desc except for mem_object must match the image descriptor
information associated with mem_object.

* The image_desc used for creation of mem_object may not be equivalent to image descriptor
information associated with mem_object. To ensure the values in ‘image_desc will match one can
query mem_object for associated information using clGetImagelInfo function described in Image
Object Queries.

+ the channel data type specified in image_format must match the channel data type associated
with mem_object. The channel order values® supported are:

image_channel_order specified in image_format image channel order of mem_object

CL_sBGRA CL_BGRA
CL_BGRA CL_sBGRA
CL_sRGBA CL_RGBA
CL_RGBA CL_sRGBA
CL_sRGB CL_RGB
CL_RGB CL_sRGB
CL_sRGBx CL_RGBx
CL_RGBx CL_sRGBx
CL_DEPTH CL_R

* the channel order specified must have the same number of channels as the channel order of
mem_object.

8

This allows developers to create a SRGB view of the image from a linear RGB view or vice-
versa i.e. the pixels stored in the image can be accessed as linear RGB or sRGB values.

117

Concurrent reading from, writing to and copying between both a buffer object and
1D image buffer or 2D image object associated with the buffer object is undefined.
Only reading from both a buffer object and 1D image buffer or 2D image object
associated with the buffer object is defined.

9 Writing to an image created from a buffer and then reading from this buffer in a
kernel even if appropriate synchronization operations (such as a barrier) are
performed between the writes and reads is undefined. Similarly, writing to the
buffer and reading from the image created from this buffer with appropriate
synchronization between the writes and reads is undefined.

5.3.2. Querying List of Supported Image Formats

To get the list of image formats supported by an OpenCL implementation for a specified context,
image type, and allocation information, call the function

cl_int clGetSupportedImageFormats(

cl_context context,
cl_mem_flags flags,
cl_mem_object_type image_type,
cl_uint num_entries,
cl_image_format* image_formats,
cl_uint* num_image_formats);

context is a valid OpenCL context on which the image object(s) will be created.

* flags is a bit-field that is used to specify usage information about the image formats being

queried and is described in the Memory Flags table. flags may be CL_MEM_READ_WRITE to query
image formats that may be read from and written to by different kernel instances when
correctly ordered by event dependencies, or CL_MEM_READ_ONLY to query image formats that may
be read from by a kernel, or CL_MEM_WRITE_ONLY to query image formats that may be written to by
a kernel, or CL_MEM_KERNEL_READ_AND_WRITE to query image formats that may be both read from
and written to by the same kernel instance. Please see Image Format Mapping for clarification.

image_type describes the image type and must be either CL_MEM_OBJECT_IMAGE1D, CL_MEM_OBJECT_
IMAGE1D _BUFFER, CL_MEM OBJECT _IMAGE2D, CL_MEM_OBJECT_IMAGE3D, CL_MEM_OBJECT_IMAGE1D_ARRAY, or
CL_MEM_OBJECT_IMAGE2D ARRAY.

num_entries specifies the number of entries that can be returned in the memory location given
by image_formats.

image_formats is a pointer to a memory location where the list of supported image formats are
returned. Each entry describes a cl image format structure supported by the OpenCL
implementation. If image_formats is NULL, it is ignored.

num_image_formats is the actual number of supported image formats for a specific context and
values specified by flags. If num_image_formats is NULL, it is ignored.

clGetSupportedimageFormats returns a union of image formats supported by all devices in the
context.

118

clGetSupportedImageFormats returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

o CL_INVALID CONTEXT if context is not a valid context.

» CL_INVALID_VALUE if flags or image_type are not valid, or if num_entries is 0 and image_formats is
not NULL.

o CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

If CL_DEVICE_IMAGE_SUPPORT specified in the Device Queries table is CL_TRUE, the values assigned to CL_
DEVICE_MAX_READ_IMAGE_ARGS, CL_DEVICE_MAX_WRITE_IMAGE_ARGS CL_DEVICE_IMAGE2D_MAX_WIDTH, CL_
DEVICE_IMAGE2D_MAX_HEIGHT CL_DEVICE_IMAGE3D_MAX_WIDTH, CL_DEVICE_IMAGE3D_MAX_HEIGHT CL_DEVICE_
IMAGE3D_MAX_DEPTH, and CL_DEVICE_MAX_SAMPLERS by the implementation must be greater than or
equal to the minimum values specified in the Device Queries table.

Minimum List of Supported Image Formats

For 1D, 1D image from buffer, 2D, 3D image objects, 1D and 2D image array objects, the mandated
minimum list of image formats that can be read from and written to by different kernel instances
when correctly ordered by event dependencies and that must be supported by all devices that
support images is described in the Supported Formats - Kernel Read Or Write table.

Table 16. Minimum list of required image formats: kernel read or write

num_channels channel order channel_data_type

1 CL_R CL_UNORM_INT8
CL_UNORM_INT16
CL_SNORM_INT8
CL_SNORM_INT16
CL_SIGNED_INT8
CL_SIGNED INT16
CL_SIGNED_INT32
CL_UNSIGNED INT8
CL_UNSIGNED_INT16
CL_UNSIGNED INT32
CL_HALF_FLOAT
CL_FLOAT

1 CL_DEPTH’ CL_UNORM_INT16
CL_FLOAT

119

num_channels channel order channel_data_type

2 CL_RG CL_UNORM_INT8
CL_UNORM_INT16
CL_SNORM_INT8
CL_SNORM_INT16
CL_SIGNED_INT8
CL_SIGNED_INT16
CL_SIGNED_INT32
CL_UNSIGNED INT8
CL_UNSIGNED_INT16
CL_UNSIGNED INT32
CL_HALF_FLOAT
CL_FLOAT

4 CL_RGBA CL_UNORM_INTS8
CL_UNORM_INT16
CL_SNORM_INTS8
CL_SNORM_INT16
CL_SIGNED_INTS
CL_SIGNED_INT16
CL_SIGNED_INT32
CL_UNSIGNED_INTS8
CL_UNSIGNED_INT16
CL_UNSIGNED_INT32
CL_HALF_FLOAT

CL_FLOAT
4 CL_BGRA CL_UNORM_INT8
4 CL_sRGBA CL_UNORM_INT8"
9
CL_DEPTH channel order is supported only for 2D image and 2D image array objects.
10

SRGB channel order support is not required for 1D image buffers. Writes to images with sRGB
channel orders requires device support of the cl_khr_srgh_image_writes extension.

For 1D, 1D image from buffer, 2D, 3D image objects, 1D and 2D image array objects, the mandated
minimum list of image formats that can be read from and written to by the same kernel instance
and that must be supported by all devices that support images is described in the Supported
Formats - Kernel Read And Write table.

_Minimum list of required image formats: kernel read and write

120

num_channels channel order channel_data_type

1 CL_R CL_UNORM_INT8
CL_SIGNED_INT8
CL_SIGNED_INT16
CL_SIGNED INT32
CL_UNSIGNED_INT8
CL_UNSIGNED INT16
CL_UNSIGNED_INT32
CL_HALF_FLOAT
CL_FLOAT

4 CL_RGBA CL_UNORM_INTS8
CL_SIGNED_INTS
CL_SIGNED_INT16
CL_SIGNED_INT32
CL_UNSIGNED_INTS8
CL_UNSIGNED_INT16
CL_UNSIGNED_INT32
CL_HALF_FLOAT
CL_FLOAT

Image format mapping to OpenCL kernel language image access qualifiers

Image arguments to kernels may have the read_only, write_only or read_write qualifier. Not all
image formats supported by the device and platform are valid to be passed to all of these access
qualifiers. For each access qualifier, only images whose format is in the list of formats returned by
clGetSupportedimageFormats with the given flag arguments in the Image Format Mapping table
are permitted. It is not valid to pass an image supporting writing as both a read_only image and a
write_only image parameter, or to a read_write image parameter and any other image parameter.

Table 17. Mapping from format flags passed to clGetSupportedimageFormats to OpenCL kernel language
image access qualifiers

Access Qualifier cl_mem_flags

read_only CL_MEM_READ_ONLY,
CL_MEM_READ_WRITE,
CL_MEM_KERNEL_READ_AND_WRITE

write_only CL_MEM_WRITE_ONLY,
CL_MEM_READ_WRITE,
CL_MEM_KERNEL_READ_AND_WRITE

read_write CL_MEM_KERNEL_READ_AND_WRITE

5.3.3. Reading, Writing and Copying Image Objects

The following functions enqueue commands to read from an image or image array object to host
memory or write to an image or image array object from host memory.

121

cl_int clEnqueueReadImage(

cl_command_queue command_queue,
cl_mem image,

cl_bool blocking_read,

const size_t* origin,

const size_t* region,

size_t row_pitch,

size_t slice_pitch,

void* ptr,

¢l _uint num_events_in wait_list,
const cl_event* event wait_list,
cl_event* event);

cl_int clEnqueuelriteImage(

122

cl_command_queue command_queue,
cl_mem image,

cl_bool blocking_write,

const size_t* origin,

const size_t* region,

size_t input_row_pitch,

size_t input_slice_pitch,

const void* ptr,

¢l _uint num_events_in wait_list,
const cl_event* event wait_list,
cl_event* event);

command_queue refers to the host command-queue in which the read / write command will be
queued. command_queue and image must be created with the same OpenCL context.

image refers to a valid image or image array object.

blocking read and blocking write indicate if the read and write operations are blocking or non-
blocking.

origin defines the (x, y, z) offset in pixels in the 1D, 2D or 3D image, the (x, y) offset and the
image index in the 2D image array or the (x) offset and the image index in the 1D image array. If
image is a 2D image object, origin[2] must be 0. If image is a 1D image or 1D image buffer object,
origin[1] and origin[2] must be 0. If image is a 1D image array object, origin[2] must be 0. If
image is a 1D image array object, origin[1] describes the image index in the 1D image array. If
image is a 2D image array object, origin[2] describes the image index in the 2D image array.

region defines the (width, height, depth) in pixels of the 1D, 2D or 3D rectangle, the (width,
height) in pixels of the 2D rectangle and the number of images of a 2D image array or the (
width) in pixels of the 1D rectangle and the number of images of a 1D image array. If image is a
2D image object, region[2] must be 1. If image is a 1D image or 1D image buffer object, region[1]
and region[2] must be 1. If image is a 1D image array object, region[2] must be 1. The values in
region cannot be 0.

row_pitch in clEnqueueReadImage and input_row_pitch in clEnqueueWriteImage is the
length of each row in bytes. This value must be greater than or equal to the element size in

bytes x width. If row_pitch (or input row_pitch) is set to 0, the appropriate row pitch is
calculated based on the size of each element in bytes multiplied by width.

* slice_pitch in clEnqueueReadImage and input_slice_pitch in clEnqueueWriteImage is the size
in bytes of the 2D slice of the 3D region of a 3D image or each image of a 1D or 2D image array
being read or written respectively. This must be 0 if image is a 1D or 2D image. Otherwise this
value must be greater than or equal to row_pitch x height. If slice_pitch (or input_slice_pitch) is
set to 0, the appropriate slice pitch is calculated based on the row_pitch x height.

* ptr is the pointer to a buffer in host memory where image data is to be read from or to be
written to. The alignment requirements for ptr are specified in Alignment of Application Data

Types.

* event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must
be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must be valid
and num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act
as synchronization points. The context associated with events in event wait list and
command_queue must be the same. The memory associated with event_wait_list can be reused
or freed after the function returns.

* event returns an event object that identifies this particular read / write command and can be
used to query or queue a wait for this particular command to complete. event can be NULL in
which case it will not be possible for the application to query the status of this command or
queue a wait for this command to complete. If the event_wait_list and the event arguments are
not NULL, the event argument should not refer to an element of the event_wait_list array.

If blocking read is CL_TRUE i.e. the read command is blocking, clEnqueueReadImage does not
return until the buffer data has been read and copied into memory pointed to by ptr.

If blocking read is CL_FALSE i.e. the read command is non-blocking, clEnqueueReadIlmage queues a
non-blocking read command and returns. The contents of the buffer that ptr points to cannot be
used until the read command has completed. The event argument returns an event object which
can be used to query the execution status of the read command. When the read command has
completed, the contents of the buffer that ptr points to can be used by the application.

If blocking_write is CL_TRUE, the write command is blocking and does not return until the command
is complete, including transfer of the data. The memory pointed to by ptr can be reused by the
application after the clEnqueueWritelmage call returns.

If blocking write is CL_FALSE, the OpenCL implementation will use ptr to perform a non-blocking
write. As the write is non-blocking the implementation can return immediately. The memory
pointed to by ptr cannot be reused by the application after the call returns. The event argument
returns an event object which can be used to query the execution status of the write command.
When the write command has completed, the memory pointed to by ptr can then be reused by the
application.

clEnqueueReadImage and clEnqueueWriteImage return CL_SUCCESS if the function is executed
successfully. Otherwise, it returns one of the following errors:

o CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

123

124

CL_INVALID_CONTEXT if the context associated with command_queue and image are not the same
or if the context associated with command_queue and events in event_wait_list are not the same.

CL_INVALID_MEM_OBJECT if i_mage_ is not a valid image object.

CL_INVALID_VALUE if the region being read or written specified by origin and region is out of
bounds or if ptris a NULL value.

CL_INVALID_VALUE if values in origin and region do not follow rules described in the argument
description for origin and region.

CL_INVALID EVENT _WAIT_LIST if event wait list is NULL and num events_ in wait list > 0, or
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

CL_INVALID_IMAGE_SIZE if image dimensions (image width, height, specified or compute row
and/or slice pitch) for image are not supported by device associated with queue.

CL_IMAGE_FORMAT_NOT_SUPPORTED if image format (image channel order and data type) for image
are not supported by device associated with queue.

CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for data store
associated with image.

CL_INVALID_OPERATION if the device associated with command_queue does not support images (i.e.
CL_DEVICE_IMAGE_SUPPORT specified in the Device Queries table is CL_FALSE).

CL_INVALID_OPERATION if clEnqueueReadImage is called on image which has been created with
CL_MEM_HOST_WRITE_ONLY or CL_MEM_HOST_NO_ACCESS.

CL_INVALID_OPERATION if clEnqueueWriteImage is called on image which has been created with
CL_MEM_HOST_READ_ONLY or CL_MEM_HOST _NO_ACCESS.

CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST if the read and write operations are blocking and
the execution status of any of the events in event_wait_list is a negative integer value.

CL_OUT_OF _RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

Calling clEnqueueReadImage to read a region of the image with the ptr argument
value set to host_ptr + (origin[2] x image slice pitch + origin[1] x image row pitch +
origin[0] x bytes per pixel), where host_ptr is a pointer to the memory region
specified when the image being read is created with CL_MEM_USE_HOST_PTR, must
meet the following requirements in order to avoid undefined behavior:

* All commands that use this image object have finished execution before the
read command begins execution.

» The row_pitch and slice_pitch argument values in clEnqueueReadImage must
be set to the image row pitch and slice pitch.

* The image object is not mapped.

* The image object is not used by any command-queue until the read command
has finished execution.

9 Calling clEnqueueWriteImage to update the latest bits in a region of the image
with the ptr argument value set to host_ptr + (origin[2] x image slice pitch +
origin[1] x image row pitch + origin[0] x bytes per pixel), where host_ptr is a pointer
to the memory region specified when the image being written is created with CL_
MEM_USE_HOST_PTR, must meet the following requirements in order to avoid
undefined behavior:

* The host memory region being written contains the latest bits when the
enqueued write command begins execution.

» The input row_pitch and input_slice pitch argument values in
clEnqueueWriteImage must be set to the image row pitch and slice pitch.

* The image object is not mapped.

* The image object is not used by any command-queue until the write command
has finished execution.

To enqueue a command to copy image objects, call the function

cl_int clEnqueueCopyImage(
cl_command_queue command_queue,
cl_mem src_image,
cl_mem dst_image,
const size_t* src_origin,
const size_t* dst_origin,
const size_t* region,
¢l _uint num_events_in wait_list,
const cl_event* event wait_list,
cl_event* event);

» src_image and dst_image can be 1D, 2D, 3D image or a 1D, 2D image array objects. It is possible
to copy subregions between any combinations of source and destination types, provided that
the dimensions of the subregions are the same e.g., one can copy a rectangular region from a 2D

125

image to a slice of a 3D image.

* command_queue refers to the host command-queue in which the copy command will be queued.
The OpenCL context associated with command_queue, src_image and dst_image must be the
same.

» src_origin defines the (x, y, z) offset in pixels in the 1D, 2D or 3D image, the (x, y) offset and the
image index in the 2D image array or the (x) offset and the image index in the 1D image array. If
image is a 2D image object, src_origin[2] must be 0. If src_image is a 1D image object,
src_origin[1] and src_origin[2] must be 0. If src_image is a 1D image array object, src_origin[2]
must be 0. If src_image is a 1D image array object, src_origin[1] describes the image index in the
1D image array. If src_image is a 2D image array object, src_origin[2] describes the image index
in the 2D image array.

* dst_origin defines the (x, y, z) offset in pixels in the 1D, 2D or 3D image, the (x, y) offset and the
image index in the 2D image array or the (x) offset and the image index in the 1D image array. If
dst_image is a 2D image object, dst_origin[2] must be 0. If dst_image is a 1D image or 1D image
buffer object, dst_origin[1] and dst_origin[2] must be 0. If dst_image is a 1D image array object,
dst_origin[2] must be 0. If dst_image is a 1D image array object, dst_origin[1] describes the image
index in the 1D image array. If dst_image is a 2D image array object, dst_origin[2] describes the
image index in the 2D image array.

* region defines the (width, height, depth) in pixels of the 1D, 2D or 3D rectangle, the (width,
height) in pixels of the 2D rectangle and the number of images of a 2D image array or the (
width) in pixels of the 1D rectangle and the number of images of a 1D image array. If src_image
or dst_image is a 2D image object, region[2] must be 1. If src_image or dst_image is a 1D image or
1D image buffer object, region[1] and region[2] must be 1. If src_image or dst_image is a 1D
image array object, region[2] must be 1. The values in region cannot be 0.

* event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must
be 0. If event_wait_list is not NULL, the list of events pointed to by event wait_list must be valid
and num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act
as synchronization points. The context associated with events in event wait list and
command_queue must be the same. The memory associated with event_wait_list can be reused
or freed after the function returns.

* event returns an event object that identifies this particular copy command and can be used to
query or queue a wait for this particular command to complete. event can be NULL in which case
it will not be possible for the application to query the status of this command or queue a wait
for this command to complete. clEnqueueBarrierWithWaitList can be used instead. If the
event_wait_list and the event arguments are not NULL, the event argument should not refer to an
element of the event_wait_list array.

It is currently a requirement that the src_image and dst_image image memory objects for
clEnqueueCopylmage must have the exact same image format (i.e. the cl_image_format descriptor
specified when src_image and dst_image are created must match).

clEnqueueCopylmage returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

126

o CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

o CL_INVALID_CONTEXT if the context associated with command_queue, src_image and dst_image are
not the same or if the context associated with command_queue and events in event_wait_list are
not the same.

o CL_INVALID_MEM_OBIJECT if src_image and dst_image are not valid image objects.
o CL_IMAGE_FORMAT_MISMATCH if src_image and dst_image do not use the same image format.

o CL_INVALID_VALUE if the 2D or 3D rectangular region specified by src_origin and src_origin +
region refers to a region outside src_image, or if the 2D or 3D rectangular region specified by
dst_origin and dst_origin + region refers to a region outside dst_image.

o CL_INVALID_VALUE if values in src_origin, dst_origin and region do not follow rules described in
the argument description for src_origin, dst_origin and region.

o CL_INVALID_EVENT WAIT _LIST if event wait list is NULL and num_events in wait list > 0, or
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

o CL_INVALID_IMAGE_SIZE if image dimensions (image width, height, specified or compute row
and/or slice pitch) for src_image or dst_image are not supported by device associated with
queue.

o CL_IMAGE_FORMAT_NOT_SUPPORTED if image format (image channel order and data type) for
src_image or dst_image are not supported by device associated with queue.

o CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for data store
associated with src_image or dst_image.

o CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

o CL_INVALID_OPERATION if the device associated with command_queue does not support images (i.e.
CL_DEVICE_IMAGE_SUPPORT specified in the Device Queries table is CL_FALSE).

o CL_MEM_COPY_OVERLAP if src_image and dst_image are the same image object and the source and
destination regions overlap.

5.3.4. Filling Image Objects

To enqueue a command to fill an image object with a specified color, call the function

127

cl_int clEnqueueFillImage(

cl_command_queue command_queue,
cl_mem image,

const void* fill_color,

const size_t* origin,

const size_t* region,

¢l _uint num_events_in wait_list,
const cl_event* event_wait_list,
cl_event* event);

command_queue refers to the host command-queue in which the fill command will be queued.
The OpenCL context associated with command_queue and image must be the same.

image is a valid image object.

* fill_color is the color used to fill the image. The fill color is a single floating point value if the

128

channel order is CL_DEPTH. Otherwise, the fill color is a four component RGBA floating-point
color value if the image channel data type is not an unnormalized signed or unsigned integer
type, is a four component signed integer value if the image channel data type is an
unnormalized signed integer type and is a four component unsigned integer value if the image
channel data type is an unnormalized unsigned integer type. The fill color will be converted to
the appropriate image channel format and order associated with image.

origin defines the (x, y, z) offset in pixels in the 1D, 2D or 3D image, the (x, y) offset and the
image index in the 2D image array or the (x) offset and the image index in the 1D image array. If
image is a 2D image object, origin[2] must be 0. If image is a 1D image or 1D image buffer object,
origin[1] and origin[2] must be 0. If image is a 1D image array object, origin[2] must be 0. If
image is a 1D image array object, origin[1] describes the image index in the 1D image array. If
image is a 2D image array object, origin[2] describes the image index in the 2D image array.

region defines the (width, height, depth) in pixels of the 1D, 2D or 3D rectangle, the (width,
height) in pixels of the 2D rectangle and the number of images of a 2D image array or the (
width) in pixels of the 1D rectangle and the number of images of a 1D image array. If image is a
2D image object, region[2] must be 1. If image is a 1D image or 1D image buffer object, region[1]
and region[2] must be 1. If image is a 1D image array object, region[2] must be 1. The values in
region cannot be 0.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must
be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must be valid
and num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act
as synchronization points. The context associated with events in event wait list and
command_queue must be the same. The memory associated with event_wait_list can be reused
or freed after the function returns.

event returns an event object that identifies this particular command and can be used to query
or queue a wait for this particular command to complete. event can be NULL in which case it will
not be possible for the application to query the status of this command or queue a wait for this
command to complete. clEnqueueBarrierWithWaitList can be wused instead. If the
event_wait_list and the event arguments are not NULL, the event argument should not refer to an

element of the event_wait_list array.

The usage information which indicates whether the memory object can be read or written by a
kernel and/or the host and is given by the cl_mem_flags argument value specified when image is
created is ignored by clEnqueueFilllmage.

clEnqueueFilllmage returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:
o CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

o CL_INVALID_CONTEXT if the context associated with command_queue and image are not the same
or if the context associated with command_queue and events in event_wait_list are not the same.

o CL_INVALID_MEM_OBJECT if image is not a valid image object.
o CL_INVALID_VALUE if fill_color is NULL.

o CL_INVALID_VALUE if the region being filled as specified by origin and region is out of bounds or if
ptris a NULL value.

o CL_INVALID_VALUE if values in origin and region do not follow rules described in the argument
description for origin and region.

e CL_INVALID EVENT WAIT_LIST if event wait list is NULL and num_events in wait list > 0, or
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

o CL_INVALID_IMAGE_SIZE if image dimensions (image width, height, specified or compute row
and/or slice pitch) for image are not supported by device associated with queue.

o CL_IMAGE_FORMAT_NOT_SUPPORTED if image format (image channel order and data type) for image
are not supported by device associated with queue.

o CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for data store
associated with image.

o CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

* CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.3.5. Copying between Image and Buffer Objects

To enqueue a command to copy an image object to a buffer object, call the function

129

cl_int clEnqueueCopyImageToBuffer(

130

cl_command_queue command_queue,
cl_mem src_image,

c¢l_mem dst_buffer,

const size_t* src_origin,

const size_t* region,

size t dst_offset,

cl_uint num_events_in_wait_list,
const cl_event* event _wait_list,
cl_event* event);

command_queue must be a valid host command-queue. The OpenCL context associated with
command_queue, src_image and dst_buffer must be the same.

src_image is a valid image object.
dst_buffer is a valid buffer object.

src_origin defines the (x, y, z) offset in pixels in the 1D, 2D or 3D image, the (X, y) offset and the
image index in the 2D image array or the (x) offset and the image index in the 1D image array. If
src_image is a 2D image object, src_origin[2] must be 0. If src_image is a 1D image or 1D image
buffer object, src_origin[1] and src_origin[2] must be 0. If src_image is a 1D image array object,
src_origin[2] must be 0. If src_image is a 1D image array object, src_origin[1] describes the image
index in the 1D image array. If src_image is a 2D image array object, src_origin[2] describes the
image index in the 2D image array.

region defines the (width, height, depth) in pixels of the 1D, 2D or 3D rectangle, the (width,
height) in pixels of the 2D rectangle and the number of images of a 2D image array or the (
width) in pixels of the 1D rectangle and the number of images of a 1D image array. If src_image
is a 2D image object, region[2] must be 1. If src_image is a 1D image or 1D image buffer object,
region[1] and region[2] must be 1. If src_image is a 1D image array object, region[2] must be 1.
The values in region cannot be 0.

dst_offset refers to the offset where to begin copying data into dst_buffer. The size in bytes of the
region to be copied referred to as dst_cb is computed as width x height x depth x bytes/image
element if src_image is a 3D image object, is computed as width x height x bytes/image element if
src_image is a 2D image, is computed as width x height x arraysize x bytes/image element if
src_image is a 2D image array object, is computed as width x bytes/image element if src_image is
a 1D image or 1D image buffer object and is computed as width x arraysize x bytes/image
element if src_image is a 1D image array object.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must
be 0. If event_wait _list is not NULL, the list of events pointed to by event wait_list must be valid
and num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act
as synchronization points. The context associated with events in event wait list and
command_queue must be the same. The memory associated with event_wait_list can be reused
or freed after the function returns.

event returns an event object that identifies this particular copy command and can be used to

query or queue a wait for this particular command to complete. event can be NULL in which case
it will not be possible for the application to query the status of this command or queue a wait
for this command to complete. clEnqueueBarrierWithWaitList can be used instead. If the
event_wait_list and the event arguments are not NULL, the event argument should not refer to an
element of the event_wait_list array.

clEnqueueCopylmageToBuffer returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

o CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

o CL_INVALID_CONTEXT if the context associated with command_queue, src_image and dst_buffer are
not the same or if the context associated with command_queue and events in event_wait_list are
not the same.

o CL_INVALID_MEM_OBIJECT if src_image is not a valid image object or dst_buffer is not a valid buffer
object or if src_image is a 1D image buffer object created from dst_buffer.

o CL_INVALID_VALUE if the 1D, 2D or 3D rectangular region specified by src_origin and src_origin +
region refers to a region outside src_image, or if the region specified by dst_offset and dst_offset
+ dst_cb to a region outside dst_buffer.

o CL_INVALID_VALUE if values in src_origin and region do not follow rules described in the
argument description for src_origin and region.

o CL_INVALID_EVENT WAIT _LIST if event wait list is NULL and num events in wait list > 0, or
event_wait_list is not NULL and num_events_in_wait _list is 0, or if event objects in event_wait_list
are not valid events.

o CL_MISALIGNED_SUB_BUFFER_OFFSET if dst_buffer is a sub-buffer object and offset specified when the
sub-buffer object is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device
associated with queue.

o CL_INVALID_IMAGE_SIZE if image dimensions (image width, height, specified or compute row
and/or slice pitch) for src_image are not supported by device associated with queue.

o CL_IMAGE_FORMAT_NOT_SUPPORTED if image format (image channel order and data type) for
src_image are not supported by device associated with queue.

o CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for data store
associated with src_image or dst_buffer.

o CL_INVALID_OPERATION if the device associated with command_queue does not support images (i.e.
CL_DEVICE_IMAGE_SUPPORT specified in the Device Queries table is CL_FALSE).

o CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

e CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To enqueue a command to copy a buffer object to an image object, call the function

131

cl_int clEnqueueCopyBufferToImage(
cl_command_queue command_queue,
cl_mem src_buffer,
cl_mem dst_image,
size t src_offset,
const size_t* dst_origin,
const size_t* region,
cl_uint num_events_in_wait_list,
const cl_event* event _wait_list,
cl_event* event);

* command_queue must be a valid host command-queue. The OpenCL context associated with
command_queue, src_buffer and dst_image must be the same.

* src_buffer is a valid buffer object.

* dst_image is a valid image object.

src_offset refers to the offset where to begin copying data from src_buffer.

* dst_origin defines the (X, y, z) offset in pixels in the 1D, 2D or 3D image, the (x, y) offset and the
image index in the 2D image array or the (x) offset and the image index in the 1D image array. If
dst_image is a 2D image object, dst_origin[2] must be 0. If dst_image is a 1D image or 1D image
buffer object, dst_origin[1] and dst_origin[2] must be 0. If dst_image is a 1D image array object,
dst_origin[2] must be 0. If dst_image is a 1D image array object, dst_origin[1] describes the image
index in the 1D image array. If dst_image is a 2D image array object, dst_origin[2] describes the
image index in the 2D image array.

* region defines the (width, height, depth) in pixels of the 1D, 2D or 3D rectangle, the (width,
height) in pixels of the 2D rectangle and the number of images of a 2D image array or the (
width) in pixels of the 1D rectangle and the number of images of a 1D image array. If dst_image
is a 2D image object, region[2] must be 1. If dst_image is a 1D image or 1D image buffer object,
region[1] and region[2] must be 1. If dst_image is a 1D image array object, region[2] must be 1.
The values in region cannot be 0.

* event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must
be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must be valid
and num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act
as synchronization points. The context associated with events in event wait list and
command_queue must be the same. The memory associated with event_wait_list can be reused
or freed after the function returns.

* event returns an event object that identifies this particular copy command and can be used to
query or queue a wait for this particular command to complete. event can be NULL in which case
it will not be possible for the application to query the status of this command or queue a wait
for this command to complete. clEnqueueBarrierWithWaitList can be used instead. If the
event_wait_list and the event arguments are not NULL, the event argument should not refer to an
element of the event_wait_list array.

The size in bytes of the region to be copied from src_buffer referred to as src_cb is computed as

132

width x height x depth x bytes/image element if dst_image is a 3D image object, is computed as width
x height x bytes/image element if dst_image is a 2D image, is computed as width x height x arraysize x
bytes/image element if dst_image is a 2D image array object, is computed as width x bytes/image
element if dst_image is a 1D image or 1D image buffer object and is computed as width x arraysize x
bytes/image element if dst_image is a 1D image array object.

clEnqueueCopyBufferToImage returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

o CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

o CL_INVALID_CONTEXT if the context associated with command_queue, src_buffer and dst_image are
not the same or if the context associated with command_queue and events in event_wait_list are
not the same.

o CL_INVALID_MEM_OBIJECT if src_buffer is not a valid buffer object or dst_image is not a valid image
object or if dst_image is a 1D image buffer object created from src_buffer.

o CL_INVALID_VALUE if the 1D, 2D or 3D rectangular region specified by dst_origin and dst_origin +
region refer to a region outside dst_image, or if the region specified by src_offset and src_offset +
src_chb refer to a region outside src_buffer.

o CL_INVALID_VALUE if values in dst_origin and region do not follow rules described in the
argument description for dst_origin and region.

o CL_INVALID_EVENT WAIT _LIST if event wait list is NULL and num events in wait list > 0, or
event_wait_list is not NULL and num_events_in_wait _list is 0, or if event objects in event_wait_list
are not valid events.

o CL_MISALIGNED_SUB_BUFFER_OFFSET if src_buffer is a sub-buffer object and offset specified when the
sub-buffer object is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device
associated with queue.

o CL_INVALID_IMAGE_SIZE if image dimensions (image width, height, specified or compute row
and/or slice pitch) for dst_image are not supported by device associated with queue.

o CL_IMAGE_FORMAT_NOT_SUPPORTED if image format (image channel order and data type) for
dst_image are not supported by device associated with queue.

o CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for data store
associated with src_buffer or dst_image.

o CL_INVALID_OPERATION if the device associated with command_queue does not support images (i.e.
CL_DEVICE_IMAGE_SUPPORT specified in the Device Queries table is CL_FALSE).

o CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

e CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.3.6. Mapping Image Objects

To enqueue a command to map a region in the image object given by image into the host address
space and returns a pointer to this mapped region, call the function

133

void* clEnqueueMapImage(

134

cl_command_queue command_queue,
cl_mem image,

cl_bool blocking_map,
cl_map_flags map_flags,

const size_t* origin,

const size_t* region,

size_t* image_row_pitch,

size_t* image_slice_pitch,

¢l _uint num_events_in wait_list,
const cl_event* event wait_list,
cl_event* event,

cl_int* errcode_ret);

command_queue must be a valid host command-queue.

image is a valid image object. The OpenCL context associated with command_queue and image
must be the same.

blocking_map indicates if the map operation is blocking or non-blocking.
map_flags is a bit-field and is described in the Memory Map Flags table.

origin defines the (x, y, z) offset in pixels in the 1D, 2D or 3D image, the (x, y) offset and the
image index in the 2D image array or the (x) offset and the image index in the 1D image array. If
image is a 2D image object, origin[2] must be 0. If image is a 1D image or 1D image buffer object,
origin[1] and origin[2] must be 0. If image is a 1D image array object, origin[2] must be 0. If
image is a 1D image array object, origin[1] describes the image index in the 1D image array. If
image is a 2D image array object, origin[2] describes the image index in the 2D image array.

region defines the (width, height, depth) in pixels of the 1D, 2D or 3D rectangle, the (width,
height) in pixels of the 2D rectangle and the number of images of a 2D image array or the (
width) in pixels of the 1D rectangle and the number of images of a 1D image array. If image is a
2D image object, region[2] must be 1. If image is a 1D image or 1D image buffer object, region[1]
and region[2] must be 1. If image is a 1D image array object, region[2] must be 1. The values in
region cannot be 0.

image_row_pitch returns the scan-line pitch in bytes for the mapped region. This must be a non-
NULL value.

image_slice_pitch returns the size in bytes of each 2D slice of a 3D image or the size of each 1D
or 2D image in a 1D or 2D image array for the mapped region. For a 1D and 2D image, zero is
returned if this argument is not NULL. For a 3D image, 1D and 2D image array, image_slice_pitch
must be a non-NULL value.

event_wait_list and num_events_in_wait_list specify events that need to complete before
clEnqueueMaplImage can be executed. If event_wait list is NULL, then clEnqueueMaplmage
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must
be 0. If event_wait_list is not NULL, the list of events pointed to by event wait_list must be valid
and num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act
as synchronization points. The context associated with events in event wait list and
command_queue must be the same. The memory associated with event_wait_list can be reused

or freed after the function returns.

* event returns an event object that identifies this particular command and can be used to query
or queue a wait for this particular command to complete. event can be NULL in which case it will
not be possible for the application to query the status of this command or queue a wait for this
command to complete. If the event_wait_list and the event arguments are not NULL, the event
argument should not refer to an element of the event_wait_list array.

* errcode_ret will return an appropriate error code. If errcode ret is NULL, no error code is
returned.

If blocking map is CL_TRUE, clEnqueueMapImage does not return until the specified region in image
is mapped into the host address space and the application can access the contents of the mapped
region using the pointer returned by clEnqueueMapImage.

If blocking_ map is CL_FALSE i.e. map operation is non-blocking, the pointer to the mapped region
returned by clEnqueueMapImage cannot be used until the map command has completed. The
event argument returns an event object which can be used to query the execution status of the map
command. When the map command is completed, the application can access the contents of the
mapped region using the pointer returned by clEnqueueMapImage.

clEnqueueMaplImage will return a pointer to the mapped region. The errcode_ret is set to CL_
SUCCESS.

A NULL pointer is returned otherwise with one of the following error values returned in errcode_ret:

o CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

o CL_INVALID_CONTEXT if context associated with command_queue and image are not the same or if
context associated with command_queue and events in event_wait_list are not the same.

o CL_INVALID_MEM_OBIJECT if image is not a valid image object.

o CL_INVALID_VALUE if region being mapped given by (origin, origin+region) is out of bounds or if
values specified in map_flags are not valid.

o CL_INVALID_VALUE if values in origin and region do not follow rules described in the argument
description for origin and region.

o CL_INVALID_VALUE if image_row_pitch is NULL.

o CL_INVALID_VALUE if image is a 3D image, 1D or 2D image array object and image_slice_pitch is
NULL.

o CL_INVALID_EVENT WAIT _LIST if event wait list is NULL and num events in wait list > 0, or
event_wait_list is not NULL and num_events_in_wait _list is 0, or if event objects in event_wait_list
are not valid events.

o CL_INVALID_IMAGE_SIZE if image dimensions (image width, height, specified or compute row
and/or slice pitch) for image are not supported by device associated with queue.

o CL_IMAGE_FORMAT_NOT_SUPPORTED if image format (image channel order and data type) for image
are not supported by device associated with queue.

o CL_MAP_FAILURE if there is a failure to map the requested region into the host address space. This
error cannot occur for image objects created with CL_MEM_USE_HOST_PTR or CL_MEM_ALLOC_HOST_PTR.

135

o CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST if the map operation is blocking and the
execution status of any of the events in event_wait_list is a negative integer value.

o CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for data store
associated with image.

o CL_INVALID_OPERATION if the device associated with command_queue does not support images (i.e.
CL_DEVICE_IMAGE_SUPPORT specified in the Device Queries table is CL_FALSE).

o CL_INVALID_OPERATION if image has been created with CL_MEM_HOST_WRITE_ONLY or CL_MEM_HOST_NO_
ACCESS and CL_MAP_READ is set in map_flags or if image has been created with CL_MEM_HOST_READ_
ONLY or CL_MEM_HOST_NO_ACCESS and CL_MAP_WRITE or CL_MAP_WRITE_INVALIDATE_REGION is set in
map_flags.

* CL_OUT_OF _RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

o CL_INVALID_OPERATION if mapping would lead to overlapping regions being mapped for writing.
The pointer returned maps a 1D, 2D or 3D region starting at origin and is at least region[0] pixels in
size for a 1D image, 1D image buffer or 1D image array, (image_row_pitch x region[1]) pixels in size

for a 2D image or 2D image array, and (image_slice_pitch x region[2]) pixels in size for a 3D image.
The result of a memory access outside this region is undefined.

If the image object is created with CL_MEM_USE_HOST_PTR set in mem_flags, the following will be true:

» The host_ptr specified in clCreateImage is guaranteed to contain the latest bits in the region
being mapped when the clEnqueueMapImage command has completed.

* The pointer value returned by clEnqueueMapImage will be derived from the host_ptr specified

when the image object is created.

Mapped image objects are unmapped using clEnqueueUnmapMemObject. This is described in
Unmapping Mapped Memory Objects.

5.3.7. Image Object Queries

To get information that is common to all memory objects, use the clGetMemObjectinfo function
described in Memory Object Queries.

To get information specific to an image object created with clCreateImage, call the function

cl_int clGetImageInfo(
cl_mem image,
cl_image_info param_name,
size_t param_value_size,
void* param_value,
Size_t* param_value_size_ret);

» image specifies the image object being queried.

136

» param_name specifies the information to query. The list of supported param_name types and the
information returned in param_value by clGetlmageInfo is described in the Image Object

Queries table.

» param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

» param_value_size is used to specify the size in bytes of memory pointed to by param_value. This
size must be > size of return type as described in the Image Object Queries table.

» param_value_size_ret returns the actual size in bytes of data being queried by param_name. If
param_value_size_ret is NULL, it is ignored.

Table 18. List of supported param_names by clGetImagelnfo

cl_image_info

CL_IMAGE_FORMAT

CL_IMAGE_ELEMENT_SIZE

CL_IMAGE_ROW_PITCH

CL_IMAGE_SLICE_PITCH

CL_IMAGE_WIDTH

CL_IMAGE _HEIGHT

CL_IMAGE_DEPTH

CL_IMAGE_ARRAY_SIZE

Return type

cl_image_format

size t

size t

size t

size t

size t

size t

size t

Info. returned in param_value

Return image format descriptor
specified when image is created
with clCreatelmage.

Return size of each element of
the image memory object given
by image in bytes. An element
is made up of n channels. The
value of n is given in
cl_image_format descriptor.

Return calculated row pitch in
bytes of a row of elements of
the image object given by
image.

Return calculated slice pitch in
bytes of a 2D slice for the 3D
image object or size of each
image in a 1D or 2D image
array given by image. For a 1D
image, 1D image buffer and 2D
image object return 0.

Return width of the image in
pixels.

Return height of the image in
pixels. For a 1D image, 1D
image buffer and 1D image
array object, height = 0.

Return depth of the image in
pixels. For a 1D image, 1D
image buffer, 2D image or 1D
and 2D image array object,
depth = 0.

Return number of images in
the image array. If image is not
an image array, 0 is returned.

137

cl_image_info Return type Info. returned in param_value

CL_IMAGE_NUM_MIP_LEVELS cl_uint Return num_mip_levels
associated with image.

CL_IMAGE_NUM_SAMPLES cl_uint Return num_samples associated
with image.

clGetImagelnfo returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns
one of the following errors:

o CL_INVALID_VALUE if param_name is not valid, or if size in bytes specified by param_value_size is <
size of return type as described in the Image Object Queries table and param_value is not NULL.
o CL_INVALID_MEM_OBJECT if image is a not a valid image object.

o CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.4. Pipes

A pipe is a memory object that stores data organized as a FIFO. Pipe objects can only be accessed
using built-in functions that read from and write to a pipe. Pipe objects are not accessible from the
host. A pipe object encapsulates the following information:

* Packet size in bytes

* Maximum capacity in packets

* Information about the number of packets currently in the pipe

» Data packets

5.4.1. Creating Pipe Objects

To create a pipe object, call the function

cl_mem clCreatePipe(
cl_context context,
cl_mem_flags flags,
cl_uint pipe_packet_size,
cl_uint pipe_max_packets,
const cl_pipe_properties* properties,
cl_int* errcode _ret);

 context is a valid OpenCL context used to create the pipe object.

* flags is a bit-field that is used to specify allocation and usage information such as the memory
arena that should be used to allocate the pipe object and how it will be used. The Memory Flags
table describes the possible values for flags. Only CL_MEM_READ_WRITE and CL_MEM_HOST_NO_ACCESS

138

can be specified when creating a pipe object. If the value specified for flags is 0, the default is
used which is CL_MEM_READ_WRITE | CL_MEM_HOST_NO_ACCESS.

* pipe_packet_size is the size in bytes of a pipe packet.

* pipe_max_packets specifies the pipe capacity by specifying the maximum number of packets the
pipe can hold.

» properties specifies a list of properties for the pipe and their corresponding values. Each
property name is immediately followed by the corresponding desired value. The list is
terminated with 0. In OpenCL 2.2, properties must be NULL.

» errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

clCreatePipe returns a valid non-zero pipe object and errcode_ret is set to CL_SUCCESS if the pipe
object is created successfully. Otherwise, it returns a NULL value with one of the following error
values returned in errcode_ret:

o CL_INVALID_CONTEXT if context is not a valid context.
o CL_INVALID_VALUE if values specified in flags are not as defined above.
o CL_INVALID_VALUE if properties is not NULL.

o CL_INVALID_PIPE_SIZE if pipe_packet_size is 0 or the pipe_packet_size exceeds CL_DEVICE_PIPE_MAX_
PACKET_SIZE value specified in the Device Queries table for all devices in context or if
pipe_max_packets is 0.

o CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for the pipe object.

o CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

e CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

Pipes follow the same memory consistency model as defined for buffer and image objects. The pipe
state i.e. contents of the pipe across kernel-instances (on the same or different devices) is enforced
at a synchronization point.

5.4.2. Pipe Object Queries

To get information that is common to all memory objects, use the clGetMemObjectIinfo function
described in Memory Object Queries.

To get information specific to a pipe object created with clCreatePipe, call the function

cl_int clGetPipeInfo(
cl_mem pipe,
cl_pipe_info param_name,
size_t param_value_size,
void* param_value,
size_t* param_value_size_ret);

139

* pipe specifies the pipe object being queried.

» param_name specifies the information to query. The list of supported param_name types and the
information returned in param_value by clGetPipelnfo is described in the Pipe Object Queries
table.

» param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

* param_value_size is used to specify the size in bytes of memory pointed to by param_value. This
size must be > size of return type as described in the Pipe Object Queries table.

» param_value_size_ret returns the actual size in bytes of data being queried by param_name. If

param_value_size_ret is NULL, it is ignored.

clGetPipelnfo returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns one
of the following errors:

o CL_INVALID_VALUE if param_name is not valid, or if size in bytes specified by param_value_size is <
size of return type as described in the Pipe Object Queries table and param_value is not NULL.
o CL_INVALID_MEM_OBJECT if pipe is a not a valid pipe object.

o CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.
Table 19. List of supported param_names by clGetPipelnfo

cl_pipe_info Return type Info. returned in param_value

CL_PIPE_PACKET_SIZE cl_uint Return pipe packet size
specified when pipe is created
with clCreatePipe.

CL_PIPE_MAX PACKETS cl_uint Return max. number of packets
specified when pipe is created
with clCreatePipe.

5.5. Querying, Unmapping, Migrating, Retaining and
Releasing Memory Objects

5.5.1. Retaining and Releasing Memory Objects

To retain a memory object, call the function

cl_int clRetainMemObject(
cl_mem memobj);

* memobj specifies the memory object to be retained.

140

The memobj reference count is incremented.

clRetainMemObject returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:
o CL_INVALID_MEM_OBIJECT if memobyj is not a valid memory object (buffer or image object).

o CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

e CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

clCreateBuffer, clCreateSubBuffer, clCreateImage and clCreatePipe perform an implicit retain.

To release a memory object, call the function

cl_int clReleaseMemObject(
cl_mem memobj);

* memobj specifies the memory object to be released.
The memobj reference count is decremented.

clReleaseMemObject returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

o CL_INVALID_MEM_OBJECT if memobj is not a valid memory object.

o CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

After the memobj reference count becomes zero and commands queued for execution on a
command-queue(s) that use memobj have finished, the memory object is deleted. If memobj is a
buffer object, memobj cannot be deleted until all sub-buffer objects associated with memobj are
deleted. Using this function to release a reference that was not obtained by creating the object or by
calling clRetainMemObject causes undefined behavior.

To register a user callback function with a memory object, call the function

cl_int clSetMemObjectDestructorCallback(
cl_mem memobj,
void (CL_CALLBACK* pfn_notify)(cl_mem memobj, void* user_data),
void* user_data);

* memobj is a valid memory object.

» pfn_notify is the callback function that can be registered by the application. This callback

141

function may be called asynchronously by the OpenCL implementation. It is the applications
responsibility to ensure that the callback function is thread-safe. The parameters to this callback
function are:

o memobj is the memory object being deleted. When the user callback is called by the
implementation, this memory object is not longer valid. memobj is only provided for
reference purposes.

o user_data is a pointer to user supplied data.

* user_data will be passed as the user_data argument when pfn_notify is called. user_data can be
NULL.

Each call to clSetMemObjectDestructorCallback registers the specified user callback function on
a callback stack associated with memobj. The registered user callback functions are called in the
reverse order in which they were registered. The user callback functions are called and then the
memory objects resources are freed and the memory object is deleted. This provides a mechanism
for the application (and libraries) using memobj to be notified when the memory referenced by
host_ptr, specified when the memory object is created and used as the storage bits for the memory
object, can be reused or freed.

clSetMemObjectDestructorCallback returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

CL_INVALID_MEM_OBJECT if memobj is not a valid memory object.

CL_INVALID_VALUE if pfn_notify is NULL.

CL_OUT_OF _RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

142

When the user callback function is called by the implementation, the contents of
the memory region pointed to by host_ptr (if the memory object is created with CL_
MEM_USE_HOST_PTR) are undefined. The callback function is typically used by the
application to either free or reuse the memory region pointed to by host_ptr.

The behavior of calling expensive system routines, OpenCL API calls to create
contexts or command-queues, or blocking OpenCL operations from the following
list below, in a callback is undefined.

» clFinish,
* clWaitForEvents,

* blocking calls to clEnqueueReadBuffer, clEnqueueReadBufferRect,
clEnqueueWriteBuffer, clEnqueueWriteBufferRect,

* blocking calls to clEnqueueReadImage and clEnqueueWriteImage,
0 * blocking calls to clEnqueueMapBuffer, clEnqueueMapImage,

* blocking calls to clBuildProgram, clCompileProgram or clLinkProgram

If an application needs to wait for completion of a routine from the above list in a
callback, please use the non-blocking form of the function, and assign a
completion callback to it to do the remainder of your work. Note that when a
callback (or other code) enqueues commands to a command-queue, the commands
are not required to begin execution until the queue is flushed. In standard usage,
blocking enqueue calls serve this role by implicitly flushing the queue. Since
blocking calls are not permitted in callbacks, those callbacks that enqueue
commands on a command queue should either call clFlush on the queue before
returning or arrange for clFlush to be called later on another thread.

The user callback function may not call OpenCL APIs with the memory object for
which the callback function is invoked and for such cases the behavior of OpenCL
APIs is considered to be undefined.

5.5.2. Unmapping Mapped Memory Objects

To enqueue a command to unmap a previously mapped region of a memory object, call the
function

cl_int clEnqueueUnmapMemObject (
cl_command_queue command_queue,
cl_mem memobj,
void* mapped_ptr,
¢l _uint num_events_in wait_list,
const cl_event* event wait_list,
cl_event* event);

* command_queue must be a valid host command-queue.

143

* memobj is a valid memory (buffer or image) object. The OpenCL context associated with
command_queue and memobj must be the same.

* mapped_ptr is the host address returned by a previous call to clEnqueueMapBuffer, or
clEnqueueMapImage for memobj.

» event_wait_list and num_events_in_wait_list specify events that need to complete before
clEnqueueUnmapMemObject can be executed. If event wait list is NULL, then
clEnqueueUnmapMemObject does not wait on any event to complete. If event_wait_list is NULL,
num_events_in_wait_list must be 0. If event_wait_list is not NULL, the list of events pointed to by
event_wait_list must be valid and num_events_in_wait_list must be greater than 0. The events
specified in event_wait_list act as synchronization points. The context associated with events in
event_wait_list and command_queue must be the same. The memory associated with
event_wait_list can be reused or freed after the function returns.

* event returns an event object that identifies this particular command and can be used to query
or queue a wait for this particular command to complete. event can be NULL in which case it will
not be possible for the application to query the status of this command or queue a wait for this
command to complete. clEnqueueBarrierWithWaitList can be wused instead. If the
event_wait_list and the event arguments are not NULL, the event argument should not refer to an
element of the event_wait_list array.

Reads or writes from the host using the pointer returned by clEnqueueMapBuffer or
clEnqueueMapImage are considered to be complete.

clEnqueueMapBuffer and clEnqueueMaplmage increment the mapped count of the memory
object. The initial mapped count value of the memory object is zero. Multiple calls to
clEnqueueMapBuffer, or clEnqueueMapImage on the same memory object will increment this
mapped count by appropriate number of calls. clEnqueueUnmapMemObject decrements the
mapped count of the memory object.

clEnqueueMapBuffer, and clEnqueueMaplmage act as synchronization points for a region of the
buffer object being mapped.

clEnqueueUnmapMemObject returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

o CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

o CL_INVALID_MEM_OBJECT if memobj is not a valid memory object or is a pipe object.

o CL_INVALID_VALUE if mapped_ptr is not a valid pointer returned by clEnqueueMapBuffer or
clEnqueueMapImage for memobj.

e CL_INVALID _EVENT WAIT_LIST if event wait list is NULL and num events_in wait list > 0, or if
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

o CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

e CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

144

o CL_INVALID_CONTEXT if context associated with command_queue and memobj are not the same or
if the context associated with command_queue and events in event_wait_list are not the same.

5.5.3. Accessing mapped regions of a memory object

This section describes the behavior of OpenCL commands that access mapped regions of a memory
object.

The contents of the region of a memory object and associated memory objects (sub-buffer objects or
1D image buffer objects that overlap this region) mapped for writing (i.e. CL_MAP_WRITE or CL_MAP_
WRITE_INVALIDATE_REGION is set in map flags argument to clEnqueueMapBuffer, or
clEnqueueMaplImage) are considered to be undefined until this region is unmapped.

Multiple commands in command-queues can map a region or overlapping regions of a memory
object and associated memory objects (sub-buffer objects or 1D image buffer objects that overlap
this region) for reading (i.e. map_flags = CL_MAP_READ). The contents of the regions of a memory
object mapped for reading can also be read by kernels and other OpenCL commands (such as
clEnqueueCopyBuffer) executing on a device(s).

Mapping (and unmapping) overlapped regions in a memory object and/or associated memory
objects (sub-buffer objects or 1D image buffer objects that overlap this region) for writing is an
error and will result in CL_INVALID_OPERATION error returned by clEnqueueMapBuffer, or
clEnqueueMapImage.

If a memory object is currently mapped for writing, the application must ensure that the memory
object is unmapped before any enqueued kernels or commands that read from or write to this
memory object or any of its associated memory objects (sub-buffer or 1D image buffer objects) or
its parent object (if the memory object is a sub-buffer or 1D image buffer object) begin execution;
otherwise the behavior is undefined.

If a memory object is currently mapped for reading, the application must ensure that the memory
object is unmapped before any enqueued kernels or commands that write to this memory object or
any of its associated memory objects (sub-buffer or 1D image buffer objects) or its parent object (if
the memory object is a sub-buffer or 1D image buffer object) begin execution; otherwise the
behavior is undefined.

A memory object is considered as mapped if there are one or more active mappings for the
memory object irrespective of whether the mapped regions span the entire memory object.

Accessing the contents of the memory region referred to by the mapped pointer that has been
unmapped is undefined.

The mapped pointer returned by clEnqueueMapBuffer or clEnqueueMaplmage can be used as
the ptr argument value to clEnqueueReadBuffer, clEnqueueWriteBuffer,
clEnqueueReadBufferRect, clEnqueueWriteBufferRect, clEnqueueReadImage, or
clEnqueueWriteImage provided the rules described above are adhered to.

5.5.4. Migrating Memory Objects

This section describes a mechanism for assigning which device an OpenCL memory object resides.

145

A user may wish to have more explicit control over the location of their memory objects on
creation. This could be used to:

* Ensure that an object is allocated on a specific device prior to usage.

* Preemptively migrate an object from one device to another.

To enqueue a command to indicate which device a set of memory objects should be associated with,
call the function

cl_int clEnqueueMigrateMemObjects(
cl_command_queue command_queue,
cl_uint num_mem_objects,
const cl_mem* mem_objects,
cl_mem_migration_flags flags,
¢l _uint num_events_in wait_list,
const cl_event* event wait_list,
cl_event* event);

* command_queue is a valid host command-queue. The specified set of memory objects in
mem_objects will be migrated to the OpenCL device associated with command_queue or to the
host if the CL_MIGRATE_MEM_0BJECT_HOST has been specified.

* num_mem_objects is the number of memory objects specified in mem_objects.
* mem_objects is a pointer to a list of memory objects.

* flags is a bit-field that is used to specify migration options. The Memory Migration Flags
describes the possible values for flags.

* event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must
be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must be valid
and num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act
as synchronization points. The context associated with events in event wait list and
command_queue must be the same. The memory associated with event_wait_list can be reused
or freed after the function returns.

* event returns an event object that identifies this particular command and can be used to query
or queue a wait for this particular command to complete. event can be NULL in which case it will
not be possible for the application to query the status of this command or queue a wait for this
command to complete. If the event_wait_list and the event arguments are not NULL, the event
argument should not refer to an element of the event_wait_list array.

Table 20. Supported values for cl_mem_migration_flags

cl_mem_migration flags Description

CL_MIGRATE_MEM_OBJECT_HOST This flag indicates that the specified set of
memory objects are to be migrated to the host,
regardless of the target command-queue.

146

cl_mem_migration flags Description

CL_MIGRATE_MEM_OBJECT_CONTENT_UNDEFINED This flag indicates that the contents of the set of
memory objects are undefined after migration.
The specified set of memory objects are
migrated to the device associated with
command_queue without incurring the overhead
of migrating their contents.

Typically, memory objects are implicitly migrated to a device for which enqueued commands, using
the memory object, are targeted. clEnqueueMigrateMemODbjects allows this migration to be
explicitly performed ahead of the dependent commands. This allows a user to preemptively change
the association of a memory object, through regular command queue scheduling, in order to
prepare for another upcoming command. This also permits an application to overlap the placement
of memory objects with other unrelated operations before these memory objects are needed
potentially hiding transfer latencies. Once the event, returned from
clEnqueueMigrateMemObjects, has been marked CL_COMPLETE the memory objects specified in
mem_objects have been successfully migrated to the device associated with command_queue. The
migrated memory object shall remain resident on the device until another command is enqueued
that either implicitly or explicitly migrates it away.

clEnqueueMigrateMemObjects can also be used to direct the initial placement of a memory
object, after creation, possibly avoiding the initial overhead of instantiating the object on the first
enqueued command to use it.

The user is responsible for managing the event dependencies, associated with this command, in
order to avoid overlapping access to memory objects. Improperly specified event dependencies
passed to clEnqueueMigrateMemObjects could result in undefined results.

clEnqueueMigrateMemObjects return CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:
o CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

o CL_INVALID_CONTEXT if the context associated with command_queue and memory objects in
mem_objects are not the same or if the context associated with command_queue and events in
event_wait_list are not the same.

o CL_INVALID_MEM_OBJECT if any of the memory objects in mem_objects is not a valid memory object.
o CL_INVALID_VALUE if num_mem_objects is zero or if mem_objects is NULL.
» CL_INVALID_VALUE if flags is not 0 or is not any of the values described in the table above.

e CL_INVALID _EVENT WAIT_LIST if event wait list is NULL and num_events in wait list > 0, or
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

o CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for the specified set of
memory objects in mem_objects.

o CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL

147

implementation on the host.

5.5.5. Memory Object Queries

To get information that is common to all memory objects (buffer and image objects), call the
function

cl_int clGetMemObjectInfo(
cl_mem memobj,
cl_mem_info param_name,
size_t param_value_size,
void* param_value,
size_t* param_value_size_ret);

* memobj specifies the memory object being queried.

» param_name specifies the information to query. The list of supported param_name types and the
information returned in param_ value by clGetMemObjectInfo is described in the Memory
Object Info table.

» param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

* param_value_size is used to specify the size in bytes of memory pointed to by param_value. This
size must be > size of return type as described in the Memory Object Info table.

» param_value_size_ret returns the actual size in bytes of data being queried by param_name. If
param_value_size_ret is NULL, it is ignored.

Table 21. List of supported param_names by clGetMemObjectInfo

cl._mem_info Return type Info. returned in param_value
CL_MEM_TYPE cl_mem_object_type Returns one of the following
values:

CL_MEM_OBJECT_BUFFER if memobj
is created with clCreateBuffer
or clCreateSubBuffer.

cl_image_desc.image_type
argument value if memobyj is

created with clCreatelmage.

CL_MEM_OBJECT_PIPE if memobyj is
created with clCreatePipe.

148

cl_mem_info

CL_MEM_FLAGS

CL_MEM_SIZE

CL_MEM_HOST_PTR

CL_MEM_MAP_COUNT™
CL_MEM_REFERENCE_COUNT*?

CL_MEM_CONTEXT

Return type

cl_mem_flags

size t

void *

cl uint

cl_uint

cl_context

Info. returned in param_value

Return the flags argument
value specified when memobj is
created with clCreateBuffer,
clCreateSubBuffer,
clCreateImage or
clCreatePipe.

If memobj is a sub-buffer the
memory access qualifiers
inherited from parent buffer is
also returned.

Return actual size of the data
store associated with memobj in
bytes.

If memobj is created with
clCreateBuffer or
clCreatelmage and CL_MEM_USE_
HOST_PTR is specified in
mem_flags, return the host_ptr
argument value specified when
memobj is created. Otherwise a
NULL value is returned.

If memobj is created with
clCreateSubBuffer, return the
host_ptr + origin value
specified when memobyj is
created. host_ptr is the
argument value specified to
clCreateBuffer and CL_MEM_
USE_HOST_PTR is specified in
mem_{flags for memory object
from which memobj is created.
Otherwise a NULL value is
returned.

Map count.

Return memobj reference
count.

Return context specified when
memory object is created. If
memobj is created using
clCreateSubBuffer, the context
associated with the memory
object specified as the buffer
argument to
clCreateSubBuffer is returned.

149

cl_mem_info Return type Info. returned in param_value

CL_MEM_ASSOCIATED_MEMOBJIECT cl_ mem Return memory object from
which memobj is created. This
returns the memory object
specified as buffer argument to
clCreateSubBuffer if memobj
is a subbuffer object created
using clCreateSubBuffer.

This returns the mem_object
specified in cl_image_desc if
memobj is an image object.

Otherwise a NULL value is
returned.

CL_MEM_OFFSET size t Return offset if memobj is a
sub-buffer object created using
clCreateSubBuffer.

This return 0 if memobj is not a
subbuffer object.

CL_MEM_USES_SVM_POINTER cl _bool Return CL_TRUE if memobj is a
buffer object that was created
with CL_MEM_USE_HOST PTRoris a
sub-buffer object of a buffer
object that was created with CL_
MEM_USE_HOST_PTR and the
host_ptr specified when the
buffer object was created is a
SVM pointer; otherwise returns
CL_FALSE.

11

The map count returned should be considered immediately stale. It is unsuitable for general use
in applications. This feature is provided for debugging.

12

The reference count returned should be considered immediately stale. It is unsuitable for
general use in applications. This feature is provided for identifying memory leaks.

clGetMemObjectInfo returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

o CL_INVALID_VALUE if param_name is not valid, or if size in bytes specified by param_value_size is <
size of return type as described in the Memory Object Info table and param_value is not NULL.
o CL_INVALID_MEM_OBJECT if memobj is a not a valid memory object.

o CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

150

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.6. Shared Virtual Memory

OpenCL 2.0 added support for shared virtual memory (a.k.a. SVM). SVM allows the host and kernels
executing on devices to directly share complex, pointer-containing data structures such as trees
and linked lists. It also eliminates the need to marshal data between the host and devices. As a
result, SVM substantially simplifies OpenCL programming and may improve performance.

5.6.1. SVM sharing granularity: coarse- and fine- grained sharing

OpenCL maintains memory consistency in a coarse-grained fashion in regions of buffers. We call
this coarse-grained sharing. Many platforms such as those with integrated CPU-GPU processors and
ones using the SVM-related PCI-SIG IOMMU services can do better, and can support sharing at a
granularity smaller than a buffer. We call this fine-grained sharing. OpenCL 2.2 requires that the
host and all OpenCL 2.0 or newer devices support coarse-grained sharing at a minimum.

» Coarse-grained sharing: Coarse-grain sharing may be used for memory and virtual pointer
sharing between multiple devices as well as between the host and one or more devices. The
shared memory region is a memory buffer allocated using cISVMAlloc. Memory consistency is
guaranteed at synchronization points and the host can use calls to clEnqueueSVMMap and
clEnqueueSVMUnmap or create a cl_mem buffer object using the SVM pointer and use
OpenCLs existing host API functions clEnqueueMapBuffer and clEnqueueUnmapMemObject
to update regions of the buffer. What coarse-grain buffer SVM adds to OpenCLs earlier buffer
support are the ability to share virtual memory pointers and a guarantee that concurrent access
to the same memory allocation from multiple kernels on a single device is valid. The coarse-
grain buffer SVM provides a memory consistency model similar to the global memory
consistency model described in sections 3.3.1 and 3.4.3 of the OpenCL 1.2 specification. This
memory consistency applies to the regions of buffers being shared in a coarse-grained fashion.
It is enforced at the synchronization points between commands enqueued to command queues
in a single context with the additional consideration that multiple kernels concurrently running
on the same device may safely share the data.

* Fine-grained sharing: Shared virtual memory where memory consistency is maintained at a
granularity smaller than a buffer. How fine-grained SVM is used depends on whether the device
supports SVM atomic operations.

o If SVM atomic operations are supported, they provide memory consistency for loads and
stores by the host and kernels executing on devices supporting SVM. This means that the
host and devices can concurrently read and update the same memory. The consistency
provided by SVM atomics is in addition to the consistency provided at synchronization
points. There is no need for explicit calls to clEnqueueSVMMap and clEnqueueSVMUnmap
or clEnqueueMapBuffer and clEnqueueUnmapMemObject on a cl_mem buffer object
created using the SVM pointer.

o If SVM atomic operations are not supported, the host and devices can concurrently read the
same memory locations and can concurrently update non-overlapping memory regions, but
attempts to update the same memory locations are undefined. Memory consistency is

151

guaranteed at synchronization points without the need for explicit calls to to
clEnqueueSVMMap and clEnqueueSVMUnmap or clEnqueueMapBuffer and
clEnqueueUnmapMemObject on a cl_mem buffer object created using the SVM pointer.

» There are two kinds of fine-grain sharing support. Devices may support either fine-grain buffer
sharing or fine-grain system sharing.

o Fine-grain buffer sharing provides fine-grain SVM only within buffers and is an extension of
coarse-grain sharing. To support fine-grain buffer sharing in an OpenCL context, all devices
in the context must support CL_DEVICE_SVM_FINE_GRAIN_BUFFER.

o Fine-grain system sharing enables fine-grain sharing of the hosts entire virtual memory,
including memory regions allocated by the system malloc API. OpenCL buffer objects are
unnecessary and programmers can pass pointers allocated using malloc to OpenCL kernels.

As an illustration of fine-grain SVM using SVM atomic operations to maintain memory consistency,
consider the following example. The host and a set of devices can simultaneously access and update
a shared work-queue data structure holding work-items to be done. The host can use atomic
operations to insert new work-items into the queue at the same time as the devices using similar
atomic operations to remove work-items for processing.

It is the programmers responsibility to ensure that no host code or executing kernels attempt to
access a shared memory region after that memory is freed. We require the SVM implementation to
work with either 32- or 64- bit host applications subject to the following requirement: the address
space size must be the same for the host and all OpenCL devices in the context.

To allocate a shared virtual memory buffer (referred to as a SVM buffer) that can be shared by the
host and all devices in an OpenCL context that support shared virtual memory, call the function

void* c1SVMAlloc(
cl_context context,
cl_svm_mem_flags flags,
size t size,
cl_uint alignment);

* context is a valid OpenCL context used to create the SVM buffer.

* flags is a bit-field that is used to specify allocation and usage information. The SVM Memory
Flags table describes the possible values for flags.

* size is the size in bytes of the SVM buffer to be allocated.

* alignment is the minimum alignment in bytes that is required for the newly created buffers
memory region. It must be a power of two up to the largest data type supported by the OpenCL
device. For the full profile, the largest data type is long16. For the embedded profile, it is long16
if the device supports 64-bit integers; otherwise it is int16. If alignment is 0, a default alignment
will be used that is equal to the size of largest data type supported by the OpenCL
implementation.

Table 22. List of supported SVM memory flag values

152

cl_svm_mem_flags Description

CL_MEM_READ_WRITE This flag specifies that the SVM buffer will be
read and written by a kernel. This is the default.
CL_MEM_WRITE_ONLY This flag specifies that the SVM buffer will be

written but not read by a kernel.

Reading from a SVM buffer created with CL_MEM_
WRITE_ONLY inside a kernel is undefined.

CL_MEM_READ_WRITE and CL_MEM_WRITE_ONLY are
mutually exclusive.

CL_MEM_READ_ONLY This flag specifies that the SVM buffer object is a
read-only memory object when used inside a
kernel.

Writing to a SVM buffer created with CL_MEM_
READ_ONLY inside a kernel is undefined.

CL_MEM_READ _WRITE or CL_MEM_WRITE ONLY and CL_
MEM_READ_ONLY are mutually exclusive.

CL_MEM_SVM_FINE_GRAIN_BUFFER This specifies that the application wants the
OpenCL implementation to do a fine-grained
allocation.

CL_MEM_SVM_ATOMICS This flag is valid only if CL_MEM_SVM_FINE_GRAIN_

BUFFER is specified in flags. It is used to indicate
that SVM atomic operations can control visibility
of memory accesses in this SVM buffer.

If CL_MEM_SVM_FINE_GRAIN_BUFFER is not specified, the buffer can be created as a coarse grained SVM
allocation. Similarly, if CL_MEM_SVM_ATOMICS is not specified, the buffer can be created without
support for SVM atomic operations (refer to an OpenCL kernel language specifications).

Calling clSVMAIlloc does not itself provide consistency for the shared memory region. When the
host cannot use the SVM atomic operations, it must rely on OpenCLs guaranteed memory
consistency at synchronization points.

For SVM to be used efficiently, the host and any devices sharing a buffer containing virtual memory
pointers should have the same endianness. If the context passed to cISVMAIlloc has devices with
mixed endianness and the OpenCL implementation is unable to implement SVM because of that
mixed endianness, cISVMAIlloc will fail and return NULL.

Although SVM is generally not supported for image objects, clCreateImage may create an image
from a buffer (a 1D image from a buffer or a 2D image from buffer) if the buffer specified in its
image description parameter is a SVM buffer. Such images have a linear memory representation so
their memory can be shared using SVM. However, fine grained sharing and atomics are not
supported for image reads and writes in a kernel.

cISVMAlloc returns a valid non-NULL shared virtual memory address if the SVM buffer is
successfully allocated. Otherwise, like malloc, it returns a NULL pointer value. cISVMAIlloc will fail if

153

e context is not a valid context.
* flags does not contain CL_MEM_SVM_FINE_GRAIN_BUFFER but does contain CL_MEM_SVM_ATOMICS.

* Values specified in flags do not follow rules described for supported values in the SVM Memory
Flags table.

o CL_MEM_SVM_FINE_GRAIN_BUFFER or CL_MEM_SVM_ATOMICS is specified in flags and these are not
supported by at least one device in context.

» The values specified in flags are not valid, i.e. don’t match those defined in the SVM Memory
Flags table.

* sizeis 0 or > CL_DEVICE_MAX_MEM_ALLOC_SIZE value for any device in context.

* alignment is not a power of two or the OpenCL implementation cannot support the specified
alignment for at least one device in context.

» There was a failure to allocate resources.

To free a shared virtual memory buffer allocated using cISVMAlloc, call the function

void c1SVMFree(
cl_context context,
void* svm_pointer);

 context is a valid OpenCL context used to create the SVM buffer.

* svm_pointer must be the value returned by a call to cISVMAlloc. If a NULL pointer is passed in
svm_pointer, no action occurs.

Note that clSVMFree does not wait for previously enqueued commands that may be using
svm_pointer to finish before freeing svm_pointer. It is the responsibility of the application to make
sure that enqueued commands that use svm_pointer have finished before freeing svm_pointer. This
can be done by enqueuing a blocking operation such as clFinish, clWaitForEvents,
clEnqueueReadBuffer or by registering a callback with the events associated with enqueued
commands and when the last enqueued command has finished freeing svm_pointer.

The behavior of using svm_pointer after it has been freed is undefined. In addition, if a buffer object
is created using clCreateBuffer with svm_pointer, the buffer object must first be released before
the svm_pointer is freed.

The clEnqueueSVMFree API can also be used to enqueue a callback to free the shared virtual
memory buffer allocated using cISVMAIlloc or a shared system memory pointer.

To enqueue a command to free the shared virtual memory allocated using cISVMAlloc or a shared
system memory pointer, call the function

154

cl_int clEnqueueSVMFree(

cl_command_queue command_queue,

cl_uint num_svm_pointers,

void* svm_pointers[],

void (CL_CALLBACK* pfn_free_func)(cl_command_queue queue, cl_uint
num_svm_pointers, void* svm_pointers[], void* user_data),

void* user_data,

cl_uint num_events_in_wait_list,

const cl_event* event _wait_list,

cl_event* event);

* command_queue is a valid host command-queue.

* svm_pointers and num_svm_pointers specify shared virtual memory pointers to be freed. Each
pointer in svm_pointers that was allocated using clISVMAIlloc must have been allocated from the
same context from which command queue was created. The memory associated with
svm_pointers can be reused or freed after the function returns.

* pfn_free_func specifies the callback function to be called to free the SVM pointers. pfn_free_func
takes four arguments: queue which is the command queue in which clEnqueueSVMFree was
enqueued, the count and list of SVM pointers to free and user_data which is a pointer to user
specified data. If pfn_free_func is NULL, all pointers specified in svm_pointers must be allocated
using clSVMAIlloc and the OpenCL implementation will free these SVM pointers. pfn_free_func
must be a valid callback function if any SVM pointer to be freed is a shared system memory
pointer i.e. not allocated using cISVMAlloc. If pfn free func is a valid callback function, the
OpenCL implementation will call pfn free_func to free all the SVM pointers specified in
svm_pointers.

* user_data will be passed as the user_data argument when pfn_free_func is called. user_data can
be NULL.

» event_wait_list and num_events_in_wait_list specify events that need to complete before
clEnqueueSVMFree can be executed. If event wait_list is NULL, then clEnqueueSVMFree does
not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must be 0. If
event_wait_list is not NULL, the list of events pointed to by event wait _list must be valid and
num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act as
synchronization points. The context associated with events in event wait list and
command_queue must be the same. The memory associated with event_wait_list can be reused
or freed after the function returns.

* event returns an event object that identifies this particular command and can be used to query
or queue a wait for this particular command to complete. event can be NULL in which case it will
not be possible for the application to query the status of this command or queue a wait for this
command to complete. If the event_wait_list and the event arguments are not NULL, the event
argument should not refer to an element of the event_wait_list array.

clEnqueueSVMFree returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

o CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

155

CL_INVALID_VALUE if num_svm_pointers is 0 and svm_pointers is non-NULL, or if svm_pointers is
NULL and num_svm_pointers is not 0.

CL_INVALID EVENT WAIT_LIST if event wait list is NULL and num events in wait list > 0, or
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

CL_OUT_OF _RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To enqueue a command to do a memcpy operation, call the function

cl_int clEnqueueSVMMemcpy (

156

cl_command_queue command_queue,
cl_bool blocking_copy,

void* dst_ptr,

const void* src_ptr,

size_ t size,

cl_uint num_events_in_wait_list,
const cl_event* event wait_list,
cl_event* event);

command_queue refers to the host command-queue in which the read / write command will be
queued. If either dst ptr or src_ptr is allocated using clSVMAlloc then the OpenCL context
allocated against must match that of command_queue.

blocking_copy indicates if the copy operation is blocking or non-blocking.

If blocking_copy is CL_TRUE i.e. the copy command is blocking, clEnqueueSVMMemcpy does not
return until the buffer data has been copied into memory pointed to by dst_ptr.

size is the size in bytes of data being copied.
dst_ptr is the pointer to a host or SVM memory allocation where data is copied to.
src_ptr is the pointer to a host or SVM memory allocation where data is copied from.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must
be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must be valid
and num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act
as synchronization points. The context associated with events in event wait list and
command_queue must be the same. The memory associated with event_wait_list can be reused
or freed after the function returns.

event returns an event object that identifies this particular read / write command and can be
used to query or queue a wait for this particular command to complete. event can be NULL in
which case it will not be possible for the application to query the status of this command or
queue a wait for this command to complete. If the event_wait_list and the event arguments are
not NULL, the event argument should not refer to an element of the event_wait_list array.

If blocking _copy is CL_FALSE i.e. the copy command is non-blocking, clEnqueueSVMMemcpy queues
a non-blocking copy command and returns. The contents of the buffer that dst_ptr points to cannot
be used until the copy command has completed. The event argument returns an event object which
can be used to query the execution status of the read command. When the copy command has
completed, the contents of the buffer that dst_ptr points to can be used by the application.

If the memory allocation(s) containing dst_ptr and/or src_ptr are allocated using clISVMAlloc and
either is not allocated from the same context from which command_queue was created the behavior
is undefined.

clEnqueueSVMMemcpy returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

o CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

o CL_INVALID_CONTEXT if the context associated with command_queue and events in event_wait_list
are not the same.

e CL_INVALID EVENT WAIT_LIST if event wait list is NULL and num_events in wait list > 0, or
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

o CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST if the copy operation is blocking and the
execution status of any of the events in event_wait_list is a negative integer value.

o CL_INVALID_VALUE if dst_ptr or src_ptr are NULL.

» CL_MEM_COPY_OVERLAP if the values specified for dst_ptr, src_ptr and size result in an overlapping
copy.

o CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To enqueue a command to fill a region in memory with a pattern of a given pattern size, call the
function

cl_int clEnqueueSVMMemFil1(
cl_command_queue command_queue,
void* svm_ptr,
const void* pattern,
size_t pattern_size,
size_t size,
¢l _uint num_events_in wait_list,
const cl_event* event wait_list,
cl_event* event);

* command_queue refers to the host command-queue in which the fill command will be queued.
The OpenCL context associated with command_queue and SVM pointer referred to by svm_ptr
must be the same.

157

svm_ptr is a pointer to a memory region that will be filled with pattern. It must be aligned to
pattern_size bytes. If svm_ptr is allocated using clISVMAIlloc then it must be allocated from the
same context from which command_queue was created. Otherwise the behavior is undefined.

pattern is a pointer to the data pattern of size pattern_size in bytes. pattern will be used to fill a
region in buffer starting at svm_ptr and is size bytes in size. The data pattern must be a scalar or
vector integer or floating-point data type supported by OpenCL as described in Shared
Application Scalar Data Types and Supported Application Vector Data Types. For example, if
region pointed to by svm_ptr is to be filled with a pattern of float4 values, then pattern will be a
pointer to a cl_float4 value and pattern_size will be sizeof(cl_float4). The maximum value of
pattern_size is the size of the largest integer or floating-point vector data type supported by the
OpenCL device. The memory associated with pattern can be reused or freed after the function
returns.

size is the size in bytes of region being filled starting with svm_ptr and must be a multiple of
pattern_size.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must
be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must be valid
and num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act
as synchronization points. The context associated with events in event wait list and
command_queue must be the same. The memory associated with event wait_list can be reused
or freed after the function returns.

event returns an event object that identifies this particular command and can be used to query
or queue a wait for this particular command to complete. event can be NULL in which case it will
not be possible for the application to query the status of this command or queue a wait for this
command to complete. clEnqueueBarrierWithWaitList can be used instead. If the
event_wait_list and the event arguments are not NULL, the event argument should not refer to an
element of the event_wait _list array.

clEnqueueSVMMemFill returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

158

CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

CL_INVALID_CONTEXT if the context associated with command_queue and events in event_wait_list
are not the same.

CL_INVALID_VALUE if svm_ptr is NULL.
CL_INVALID_VALUE if svm_ptr is not aligned to pattern_size bytes.

CL_INVALID_VALUE if pattern is NULL or if pattern_size is 0 or if pattern_size is not one of {1, 2, 4, 8,
16, 32, 64, 128}.

CL_INVALID_VALUE if size is not a multiple of pattern_size.

CL_INVALID EVENT WAIT_LIST if event wait list is NULL and num events in wait list > 0, or
event_wait_list is not NULL and num_events_in_wait _list is 0, or if event objects in event_wait_list
are not valid events.

CL_OUT_OF _RESOURCES if there is a failure to allocate resources required by the OpenCL

implementation on the device.

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To enqueue a command that will allow the host to update a region of a SVM buffer, call the function

cl_int clEnqueueSVMMap(
cl_command_queue command_queue,
cl_bool blocking_map,
cl_map_flags flags,
void* svm_ptr,
size_t size,
¢l _uint num_events_in wait_list,
const cl_event* event wait_list,
cl_event* event);

* command_queue must be a valid host command-queue.

blocking_map indicates if the map operation is blocking or non-blocking.
* map_flags is a bit-field and is described in the Memory Map Flags table.

* svm_ptr and size are a pointer to a memory region and size in bytes that will be updated by the
host. If svm_ptr is allocated using cISVMAIlloc then it must be allocated from the same context
from which command_queue was created. Otherwise the behavior is undefined.

» event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must
be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must be valid
and num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act
as synchronization points. The context associated with events in event wait list and
command_queue must be the same. The memory associated with event_wait_list can be reused
or freed after the function returns.

* event returns an event object that identifies this particular command and can be used to query
or queue a wait for this particular command to complete. event can be NULL in which case it will
not be possible for the application to query the status of this command or queue a wait for this
command to complete. clEnqueueBarrierWithWaitList can be used instead. If the
event_wait_list and the event arguments are not NULL, the event argument should not refer to an
element of the event_wait_list array.

If blocking_map is CL_TRUE, clEnqueueSVMMap does not return until the application can access the
contents of the SVM region specified by svym_ptr and size on the host.

If blocking_map is CL_FALSE i.e. map operation is non-blocking, the region specified by svm_ptr and
size cannot be used until the map command has completed. The event argument returns an event
object which can be used to query the execution status of the map command. When the map
command is completed, the application can access the contents of the region specified by svm_ptr
and size.

159

Note that since we are enqueuing a command with a SVM buffer, the region is already mapped in

the

host address space.

clEnqueueSVMMap returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

To

CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

CL_INVALID_CONTEXT if context associated with command_queue and events in event_wait_list are
not the same.

CL_INVALID_VALUE if svm_ptr is NULL.
CL_INVALID_VALUE if size is O or if values specified in map_flags are not valid.

CL_INVALID EVENT WAIT_LIST if event wait list is NULL and num events_ in wait list > 0, or
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST if the map operation is blocking and the
execution status of any of the events in event_wait_list is a negative integer value.

CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

enqueue a command to indicate that the host has completed updating the region given by

svm_ptr and which was specified in a previous call to clEnqueueSVMMap, call the function

cl_int clEnqueueSVMUnmap(

160

cl_command_queue command_queue,
void* svm_ptr,

cl_uint num_events_in_wait_list,
const cl_event* event wait_list,
cl_event* event);

command_queue must be a valid host command-queue.

svm_ptr is a pointer that was specified in a previous call to clEnqueueSVMMap. If svm_ptr is
allocated using clSVMAIlloc then it must be allocated from the same context from which
command_queue was created. Otherwise the behavior is undefined.

event_wait_list and num_events_in_wait_list specify events that need to complete before
clEnqueueSVMUnmap can be executed. If event_wait_list is NULL, then clEnqueueSVMUnmap
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must
be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must be valid
and num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act
as synchronization points. The context associated with events in event wait list and
command_queue must be the same. The memory associated with event_wait_list can be reused
or freed after the function returns.

event returns an event object that identifies this particular command and can be used to query

or queue a wait for this particular command to complete. event can be NULL in which case it will
not be possible for the application to query the status of this command or queue a wait for this
command to complete. clEnqueueBarrierWithWaitList can be wused instead. If the
event_wait_list and the event arguments are not NULL, the event argument should not refer to an
element of the event_wait_list array.

clEnqueueSVMMap and clEnqueueSVMUnmap act as synchronization points for the region of the
SVM buffer specified in these calls.

clEnqueueSVMUnmap returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

o CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

o CL_INVALID_CONTEXT if context associated with command_queue and events in event_wait_list are
not the same.

o CL_INVALID_VALUE if svm_ptris NULL.

e CL_INVALID _EVENT WAIT LIST if event wait list is NULL and num events_in wait list > 0, or if
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

o CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

* CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

If a coarse-grained SVM buffer is currently mapped for writing, the application
must ensure that the SVM buffer is unmapped before any enqueued kernels or
commands that read from or write to this SVM buffer or any of its associated
cl_mem buffer objects begin execution; otherwise the behavior is undefined.

If a coarse-grained SVM buffer is currently mapped for reading, the application
must ensure that the SVM buffer is unmapped before any enqueued kernels or

0 commands that write to this memory object or any of its associated cl_mem buffer
objects begin execution; otherwise the behavior is undefined.

A SVM buffer is considered as mapped if there are one or more active mappings
for the SVM bulffer irrespective of whether the mapped regions span the entire
SVM bulffer.

The above note does not apply to fine-grained SVM buffers (fine-grained buffers
allocated using cISVMAIlloc or fine-grained system allocations).

To enqueue a command to indicate which device a set of ranges of SVM allocations should be
associated with, call the function

161

cl_int clEnqueueSVMMigrateMem(
cl_command_queue command_queue,
cl_uint num_svm_pointers,
const void** svm_pointers,
const size t* sizes,
cl_mem_migration_flags flags,
¢l _uint num_events_in wait_list,
const cl_event* event_wait_list,
cl_event* event);

* command_queue is a valid host command queue. The specified set of allocation ranges will be
migrated to the OpenCL device associated with command_queue.

* num_svm_pointers is the number of pointers in the specified svm_pointers array, and the
number of sizes in the sizes array, if sizes is not NULL.

* svm_pointers is a pointer to an array of pointers. Each pointer in this array must be within an
allocation produced by a call to cISVMAlloc.

* sizes is an array of sizes. The pair svm_pointers[i] and sizes[i] together define the starting
address and number of bytes in a range to be migrated. sizes may be NULL indicating that every
allocation containing any svm_pointerli] is to be migrated. Also, if sizes[i] is zero, then the entire
allocation containing svm_pointerl[i] is migrated.

* flags is a bit-field that is used to specify migration options. The Memory Migration Flags
describes the possible values for flags.

* event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must
be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must be valid
and num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act
as synchronization points. The context associated with events in event wait list and
command_queue must be the same. The memory associated with event_wait_list can be reused
or freed after the function returns.

* event returns an event object that identifies this particular command and can be used to query
or queue a wait for this particular command to complete. event can be NULL in which case it will
not be possible for the application to query the status of this command or queue another
command that waits for this command to complete. If the event_wait_list and event arguments
are not NULL, the event argument should not refer to an element of the event_wait_list array.

Once the event returned by clEnqueueSVMMigrateMem has become CL_COMPLETE, the ranges
specified by svm pointers and sizes have been successfully migrated to the device associated with
command queue.

The user is responsible for managing the event dependencies associated with this command in
order to avoid overlapping access to SVM allocations. Improperly specified event dependencies
passed to clEnqueueSVMMigrateMem could result in undefined results.

clEnqueueSVMMigrateMem returns CL_SUCCESS if the function is executed successfully. Otherwise,

162

it returns one of the following errors:

o CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

o CL_INVALID_CONTEXT if context associated with command_queue and events in event_wait_list are
not the same.

o CL_INVALID_VALUE if num_svm_pointers is zero or svm_pointers is NULL.

o CL_INVALID_VALUE if sizes[i] is non-zero range [svm_pointers[il, svm_pointers[i]+sizes[i]) is not
contained within an existing cISVMAIlloc allocation.

e CL_INVALID _EVENT WAIT_LIST if event wait list is NULL and num events_in wait list > 0, or if
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

» CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.6.2. Memory consistency for SVM allocations

To ensure memory consistency in SVM allocations, the program can rely on the guaranteed
memory consistency at synchronization points. This consistency support already exists in OpenCL
1.x and can be used for coarse-grained SVM allocations or for fine-grained buffer SVM allocations;
what SVM adds is the ability to share pointers between the host and all SVM devices.

In addition, sub-buffers can also be used to ensure that each device gets a consistent view of a SVM
buffers memory when it is shared by multiple devices. For example, assume that two devices share
a SVM pointer. The host can create a cl_mem buffer object using clCreateBuffer with CL_MEM_USE_
HOST_PTR and host_ptr set to the SVM pointer and then create two disjoint sub-buffers with starting
virtual addresses sb1_ptr and sb2_ptr. These pointers (sh1_ptr and sb2_ptr) can be passed to kernels
executing on the two devices. clEnqueueMapBuffer and clEnqueueUnmapMemObject and the
existing access rules for memory objects ensure consistency for buffer regions (sh1_ptr and sb2_ptr)
read and written by these kernels.

When the host and devices are able to use SVM atomic operations (i.e. CL_DEVICE_SVM_ATOMICS is set
in CL_DEVICE_SVM_CAPABILITIES), these atomic operations can be used to provide memory
consistency at a fine grain in a shared memory region. The effect of these operations is visible to
the host and all devices with which that memory is shared.

5.7. Sampler Objects

A sampler object describes how to sample an image when the image is read in the kernel. The built-
in functions to read from an image in a kernel take a sampler as an argument. The sampler
arguments to the image read function can be sampler objects created using OpenCL functions and
passed as argument values to the kernel or can be samplers declared inside a kernel. In this section
we discuss how sampler objects are created using OpenCL functions.

163

5.7.1. Creating Sampler Objects

To create a sampler object, call the function

cl_sampler clCreateSamplerWithProperties(
cl_context context,
const cl_sampler_properties* sampler_properties,
cl_int* errcode _ret);

» context must be a valid OpenCL context.

» sampler_properties specifies a list of sampler property names and their corresponding values.
Each sampler property name is immediately followed by the corresponding desired value. The
list is terminated with 0. The list of supported properties is described in the Sampler Properties
table. If a supported property and its value is not specified in sampler_properties, its default
value will be used. sampler_properties can be NULL in which case the default values for
supported sampler properties will be used.

Table 23. List of supported sampler creation properties by clCreateSamplerWithProperties

cl_sampler_properties enum Property Description
Value
CL_SAMPLER_NORMALIZED_COORDS cl_bool A boolean value that specifies whether the
image coordinates specified are normalized or
not.

The default value (i.e. the value used if this
property is not specified in sampler_properties)
is CL_TRUE.

164

cl_sampler_properties enum Property Description

Value
CL_SAMPLER_ADDRESSING_MODE cl_addressing_ Specifies how out-of-range image coordinates
mode are handled when reading from an image. Valid

values are:

CL_ADDRESS_NONE - Behavior is undefined for out-
of-range image coordinates.

CL_ADDRESS_CLAMP_TO_EDGE - Out-of-range image
coordinates are clamped to the edge of the
image.

CL_ADDRESS_CLAMP - Out-of-range image
coordinates are assigned a border color value.

CL_ADDRESS_REPEAT - Out-of-range image
coordinates read from the image as-if the image
data were replicated in all dimensions.

CL_ADDRESS_MIRRORED_REPEAT - Out-of-range image
coordinates read from the image as-if the image
data were replicated in all dimensions,
mirroring the image contents at the edge of each
replication.

The default is CL_ADDRESS_CLAMP.
CL_SAMPLER_FILTER_MODE cl_filter_mode Specifies the type of filter that is applied when

reading an image. Valid values are:

CL_FILTER_NEAREST - Returns the image element
nearest to the image coordinate.

CL_FILTER_LINEAR - Returns a weighted average of
the four image elements nearest to the image
coordinate.

The default value is CL_FILTER_NEAREST.

» errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

clCreateSamplerWithProperties returns a valid non-zero sampler object and errcode_ret is set to
CL_SUCCESS if the sampler object is created successfully. Otherwise, it returns a NULL value with one
of the following error values returned in errcode_ret:

e CL_INVALID_CONTEXT if context is not a valid context.

o CL_INVALID_VALUE if the property name in sampler_properties is not a supported property name,
if the value specified for a supported property name is not valid, or if the same property name
is specified more than once.

165

o CL_INVALID_OPERATION if images are not supported by any device associated with context (i.e. CL_
DEVICE_IMAGE_SUPPORT specified in the Device Queries table is CL_FALSE).

* CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL

implementation on the host.

To retain a sampler object, call the function

cl_int clRetainSampler(
cl_sampler sampler);

» sampler specifies the sampler to be released.

The sampler reference count is incremented. clCreateSamplerWithProperties performs an
implicit retain.

clRetainSampler returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns
one of the following errors:
o CL_INVALID_SAMPLER if sampler is not a valid sampler object.

o CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL

implementation on the host.

To release a sampler object, call the function

cl_int clReleaseSampler(
cl_sampler sampler);

» sampler specifies the sampler to be released.

The sampler reference count is decremented. The sampler object is deleted after the reference
count becomes zero and commands queued for execution on a command-queue(s) that use sampler
have finished.

clReleaseSampler returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns
one of the following errors:
o CL_INVALID_SAMPLER if sampler is not a valid sampler object.

o CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

166

Using this function to release a reference that was not obtained by creating the object or by calling
clRetainSampler causes undefined behavior.

5.7.2. Sampler Object Queries

To return information about a sampler object, call the function

cl_int clGetSamplerInfo(
cl_sampler sampler,
cl_sampler_info param_name,
size_t param_value_size,
void* param_value,
size_t* param_value_size_ret);

» sampler specifies the sampler being queried.

» param_name specifies the information to query. The list of supported param_name types and the
information returned in param_value by clGetSamplerInfo is described in the Sampler Object
Queries table.

» param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

* param_value_size is used to specify the size in bytes of memory pointed to by param_value. This
size must be > size of return type as described in the Sampler Object Queries table.

» param_value_size_ret returns the actual size in bytes of data being queried by param_name. If
param_value_size_ret is NULL, it is ignored.

Table 24. List of supported param_names by clGetSamplerInfo

cl_sampler_info Return Type Info. returned in param_value

CL_SAMPLER_REFERENCE_COUNT" cl_uint Return the sampler reference
count.

CL_SAMPLER_CONTEXT cl_context Return the context specified
when the sampler is created.

CL_SAMPLER_NORMALIZED_COORDS cl_bool Return the normalized coords
value associated with sampler.

CL_SAMPLER_ADDRESSING_MODE cl_addressing mode Return the addressing mode
value associated with sampler.

CL_SAMPLER_FILTER_MODE cl_filter_mode Return the filter mode value

associated with sampler.

13

The reference count returned should be considered immediately stale. It is unsuitable for
general use in applications. This feature is provided for identifying memory leaks.

clGetSamplerInfo returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns
one of the following errors:

167

CL_INVALID_VALUE if param_name is not valid, or if size in bytes specified by param_value_size is <
size of return type as described in the Sampler Object Queries table and param_value is not NULL.

CL_INVALID_SAMPLER if sampler is a not a valid sampler object.

CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.8. Program Objects

An

OpenCL program consists of a set of kernels that are identified as functions declared with the

kernel qualifier in the program source. OpenCL programs may also contain auxiliary functions

and

constant data that can be used by kernel functions. The program executable can be generated

online or offline by the OpenCL compiler for the appropriate target device(s).

A program object encapsulates the following information:

An associated context.
A program source or binary.

The latest successfully built program executable, library or compiled binary, the list of devices
for which the program executable, library or compiled binary is built, the build options used
and a build log.

The number of kernel objects currently attached.

5.8.1. Creating Program Objects

To creates a program object for a context and load source code into that object, call the function

cl_program clCreateProgramlithSource(

168

cl_context context,
c¢l_uint count,

const char** strings,
const size_t* lengths,
cl_int* errcode_ret);

context must be a valid OpenCL context.

strings is an array of count pointers to optionally null-terminated character strings that make up
the source code.

lengths argument is an array with the number of chars in each string (the string length). If an
element in lengths is zero, its accompanying string is null-terminated. If lengths is NULL, all
strings in the strings argument are considered null-terminated. Any length value passed in that
is greater than zero excludes the null terminator in its count.

errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

The source code specified by strings will be loaded into the program object.

The devices associated with the program object are the devices associated with context. The source
code specified by strings is either an OpenCL C program source, header or implementation-defined
source for custom devices that support an online compiler. OpenCL C++ is not supported as an
online-compiled kernel language through this interface.

clCreateProgramWithSource returns a valid non-zero program object and errcode_ret is set to CL_
SUCCESS if the program object is created successfully. Otherwise, it returns a NULL value with one of
the following error values returned in errcode_ret:

e CL_INVALID_CONTEXT if context is not a valid context.
o CL_INVALID_VALUE if count is zero or if strings or any entry in strings is NULL.

* CL_OUT_OF _RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To creates a program object for a context and load code in an intermediate language into that
object, call the function

cl_program clCreateProgramithIL(
cl_context context,
const void* il,
size_t length,
cl_int* errcode _ret);

* context must be a valid OpenCL context.

* ilis a pointer to a length-byte block of memory containing SPIR-V or an implementation-defined
intermediate language.

» errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

The IL pointed to by il and with length in bytes length will be loaded into the program object. The
devices associated with the program object are the devices associated with context.

clCreateProgramWithIL returns a valid non-zero program object and errcode_ret is set to CL_
SUCCESS if the program object is created successfully. Otherwise, it returns a NULL value with one of
the following error values returned in errcode_ret:

CL_INVALID_CONTEXT if context is not a valid context.

CL_INVALID_VALUE if il is NULL or if length is zero.

CL_INVALID_VALUE if the length-byte memory pointed to by il does not contain well-formed
intermediate language input that can be consumed by the OpenCL runtime.

CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

169

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To create a program object for a context and load binary bits into that object, call the function

cl_program clCreateProgramWithBinary(

cl_context context,

c¢l_uint num_devices,

const cl_device_id* device_list,
const size_t* lengths,

const unsigned char** binaries,
cl_int* binary_status,

cl_int* errcode_ret);

* context must be a valid OpenCL context.

* device_list is a pointer to a list of devices that are in context. device_list must be a non-NULL value.
The binaries are loaded for devices specified in this list.

e num_devices is the number of devices listed in device_list.

* lengths is an array of the size in bytes of the program binaries to be loaded for devices specified
by device_list.

* binaries is an array of pointers to program binaries to be loaded for devices specified by
device_list. For each device given by device_list[i], the pointer to the program binary for that
device is given by binaries[i] and the length of this corresponding binary is given by lengths[i].
lengths[i] cannot be zero and binaries[i] cannot be a NULL pointer.

The devices associated with the program object will be the list of devices specified by device_list.
The list of devices specified by device_list must be devices associated with context.

The program binaries specified by binaries will be loaded into the program object. They contain bits
that describe one of the following:

* a program executable to be run on the device(s) associated with context,

» a compiled program for device(s) associated with context, or

* alibrary of compiled programs for device(s) associated with context.
The program binary can consist of either or both:

* Device-specific code and/or,

* Implementation-specific intermediate representation (IR) which will be converted to the device-
specific code.

* binary_status returns whether the program binary for each device specified in device_list was
loaded successfully or not. It is an array of num_devices entries and returns CL_SUCCESS in
binary_statusl[i] if binary was successfully loaded for device specified by device_list[i]; otherwise
returns CL_INVALID_VALUE if lengthsli] is zero or if binaries[i] is a NULL value or CL_INVALID_BINARY
in binary_status[i] if program binary is not a valid binary for the specified device. If
binary_status is NULL, it is ignored.

170

» errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

OpenCL allows applications to create a program object using the program source or binary and
build appropriate program executables. This can be very useful as it allows applications to load
program source and then compile and link to generate a program executable online on its first
instance for appropriate OpenCL devices in the system. These executables can now be queried and
cached by the application. The cached executables can be read and loaded by the application, which
can help significantly reduce the application initialization time.

clCreateProgramWithBinary returns a valid non-zero program object and errcode_ret is set to CL_
SUCCESS if the program object is created successfully. Otherwise, it returns a NULL value with one of
the following error values returned in errcode_ret:

o CL_INVALID_CONTEXT if context is not a valid context.
e CL_INVALID_VALUE if device list is NULL or num_devices is zero.

o CL_INVALID_DEVICE if OpenCL devices listed in device_list are not in the list of devices associated
with context.

o CL_INVALID_VALUE if lengths or binaries are NULL or if any entry in lengths[i] is zero or binariesli] is
NULL.

o CL_INVALID_BINARY if an invalid program binary was encountered for any device. binary_status
will return specific status for each device.

o CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To create a program object for a context and loads the information related to the built-in kernels
into that object, call the function

cl_program clCreateProgramWithBuiltInKernels(
cl_context context,
¢l _uint num_devices,
const cl_device_id* device_list,
const char* kernel_names,
cl_int* errcode _ret);

» context must be a valid OpenCL context.

* num_devices is the number of devices listed in device_list.

device_list is a pointer to a list of devices that are in context. device_list must be a non-NULL value.
The built-in kernels are loaded for devices specified in this list.

» kernel_names is a semi-colon separated list of built-in kernel names.

The devices associated with the program object will be the list of devices specified by device_list.
The list of devices specified by device_list must be devices associated with context.

171

clCreateProgramWithBuiltInKernels returns a valid non-zero program object and errcode_ret is

set

to CL_SUCCESS if the program object is created successfully. Otherwise, it returns a NULL value

with one of the following error values returned in errcode_ret:

CL_INVALID_CONTEXT if context is not a valid context.
CL_INVALID_VALUE if device list is NULL or num_devices is zero.

CL_INVALID VALUE if kernel names is NULL or kernel names contains a kernel name that is not
supported by any of the devices in device_list.

CL_INVALID DEVICE if devices listed in device list are not in the list of devices associated with
context.

CL_OUT_OF _RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.8.2. Retaining and Releasing Program Objects

To retain a program object, call the function

cl_int clRetainProgram(

cl_program program);

program is the program object to be retained.

The program reference count is incremented. All APIs that create a program do an implicit retain.

clRetainProgram returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns
one of the following errors:

CL_INVALID_PROGRAM if program is not a valid program object.

CL_OUT_OF _RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To release a program object, call the function

cl_int clReleaseProgram(

cl_program program);

program is the program object to be released.

The program reference count is decremented. The program object is deleted after all kernel objects
associated with program have been deleted and the program reference count becomes zero.

172

clReleaseProgram returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns
one of the following errors:

o CL_INVALID_PROGRAM if program is not a valid program object.

* CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

Using this function to release a reference that was not obtained by creating the object or by calling
clRetainProgram causes undefined behavior.

To register a user callback function with a program object, call the function

cl_int c1SetProgramReleaseCallback(
cl_program program,
void (CL_CALLBACK* pfn_notify)(cl_program program, void* user_data),
void* user_data);

» program is a valid program object

* pfn_notify is the callback function that can be registered by the application. This callback
function may be called asynchronously by the OpenCL implementation. It is the applications
responsibility to ensure that the callback function is thread safe. The parameters to this callback
function are:

o prog is the program object whose destructors are being called. When the user callback is
called by the implementation, this program object is not longer valid. prog is only provided
for reference purposes.

o user_data is a pointer to user supplied data. user_data will be passed as the user_data
argument when pfn_notify is called. user data can be NULL.

Each call to clSetProgramReleaseCallback registers the specified user callback function on a
callback stack associated with program. The registered user callback functions are called in the
reverse order in which they were registered. The user callback functions are called after
destructors (if any) for program scope global variables (if any) are called and before the program is
released. This provides a mechanism for the application (and libraries) to be notified when
destructors are complete.

clSetProgramReleaseCallback returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

o CL_INVALID_PROGRAM if program is not a valid program object.

o CL_INVALID_VALUE if pfn_notify is NULL.

o CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

* CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL

173

implementation on the host.

5.8.3. Setting SPIR-V specialization constants

To set the value of a specialization constant, call the function

cl_int clSetProgramSpecializationConstant(

cl_program program,
cl_uint spec_id,

size_t spec_size,

const void* spec_value);

program must be a valid OpenCL program created from an intermediate format module (e.g.
SPIR-V).

spec_id identifies the specialization constant whose value will be set.

spec_size specifies the size in bytes of the data pointed to by spec_value. This should be 1 for
boolean constants. For all other constant types this should match the size of the specialization
constant in the module.

spec_value is a pointer to the memory location that contains the value of the specialization
constant. The data pointed to by spec_value are copied and can be safely reused by the
application after clSetProgramSpecializationConstant returns. This specialization value will
be used by subsequent calls to clBuildProgram until another call to
clSetProgramSpecializationConstant changes it. If a specialization constant is a boolean
constant, spec_value should be a pointer to a cl_uchar value. A value of zero will set the
specialization constant to false; any other value will set it to true.

Calling this function multiple times for the same specialization constant shall cause the last
provided value to override any previously specified value. The values are used by a subsequent
clBuildProgram call for the program.

Application is not required to provide values for every specialization constant contained in the
module. If the value is not set by this API call, default values will be used during the build.

clSetProgramSpecializationConstant returns CL_SUCCESS if the function is executed successfully.

Otherwise, it returns one of the following errors:

174

CL_INVALID_PROGRAM if program is not a valid program object created from a module in an
intermediate format (e.g. SPIR-V).

CL_INVALID_SPEC_ID if spec_id is not a valid specialization constant ID

CL_INVALID_VALUE if spec_size does not match the size of the specialization constant in the
module, or if spec_value is NULL.

CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.8.4. Building Program Executables

To build (compile & link) a program executable, call the function

cl_int c1lBuildProgram(
cl_program program,
cl_uint num_devices,
const cl_device_id* device_list,
const char* options,
void (CL_CALLBACK* pfn_notify)(cl_program program, void* user_data),
void* user_data);

» program is the program object.

* device_list is a pointer to a list of devices associated with program. If device_list is a NULL value,
the program executable is built for all devices associated with program for which a source or
binary has been loaded. If device_list is a non-NULL value, the program executable is built for
devices specified in this list for which a source or binary has been loaded.

* num_devices is the number of devices listed in device_list.

* options is a pointer to a null-terminated string of characters that describes the build options to
be used for building the program executable. The list of supported options is described in
Compiler Options. If the program was created using clCreateProgramWithBinary and options
is a NULL pointer, the program will be built as if options were the same as when the program
binary was originally built. If the program was created using clCreateProgramWithBinary and
options string contains anything other than the same options in the same order (whitespace
ignored) as when the program binary was originally built, then the behavior is implementation
defined.

* pfn_notify is a function pointer to a notification routine. The notification routine is a callback
function that an application can register and which will be called when the program executable
has been built (successfully or unsuccessfully). If pfn_notify is not NULL, clBuildProgram does
not need to wait for the build to complete and can return immediately once the build operation
can begin. The build operation can begin if the context, program whose sources are being
compiled and linked, list of devices and build options specified are all valid and appropriate
host and device resources needed to perform the build are available. If pfn_notify is NULL,
clBuildProgram does not return until the build has completed. This callback function may be
called asynchronously by the OpenCL implementation. It is the applications responsibility to
ensure that the callback function is thread-safe.

o user_data will be passed as an argument when pfn_notify is called. user_data can be NULL.

The program executable is built from the program source or binary for all the devices, or a specific
device(s) in the OpenCL context associated with program. OpenCL allows program executables to be
built using the source or the binary. clBuildProgram must be called for program created using
clCreateProgramWithSource, clCreateProgramWithIL or clCreateProgramWithBinary to build
the program executable for one or more devices associated with program. If program is created
with clCreateProgramWithBinary, then the program binary must be an executable binary (not a
compiled binary or library).

175

The executable binary can be queried using clGetProgramInfo(program, CL_PROGRAM_BINARIES, ...)
and can be specified to clCreateProgramWithBinary to create a new program object.

clBuildProgram returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns
one of the following errors:

o CL_INVALID_PROGRAM if program is not a valid program object.

o CL_INVALID_VALUE if device_list is NULL and num_devices is greater than zero, or if device_list is not
NULL and num_devices is zero.

o CL_INVALID_VALUE if pfn_notify is NULL but user_data is not NULL.

o CL_INVALID_DEVICE if OpenCL devices listed in device_list are not in the list of devices associated
with program

o CL_INVALID_BINARY if program is created with clCreateProgramWithBinary and devices listed in
device_list do not have a valid program binary loaded.

o CL_INVALID_BUILD_OPTIONS if the build options specified by options are invalid.

o CL_COMPILER_NOT_AVAILABLE if program is created with clCreateProgramWithSource and a
compiler is not available i.e. CL_DEVICE_COMPILER_AVAILABLE specified in the Device Queries table
is set to CL_FALSE.

* CL_BUILD_PROGRAM_FAILURE if there is a failure to build the program executable. This error will be
returned if clBuildProgram does not return until the build has completed.

o CL_INVALID_OPERATION if the build of a program executable for any of the devices listed in
device_list by a previous call to clBuildProgram for program has not completed.

o CL_INVALID_OPERATION if there are kernel objects attached to program.

o CL_INVALID_OPERATION if program was not created with clCreateProgramWithSource,
clCreateProgramWithlIL or clCreateProgramWithBinary.

o CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.8.5. Separate Compilation and Linking of Programs
OpenCL programs are compiled and linked to support the following:

» Separate compilation and link stages. Program sources can be compiled to generate a compiled
binary object and linked in a separate stage with other compiled program objects to the
program executable.

* Embedded headers. In OpenCL 1.0 and 1.1, the I build option could be used to specify the list of
directories to be searched for headers files that are included by a program source(s). OpenCL 1.2
extends this by allowing the header sources to come from program objects instead of just
header files.

* Libraries. The linker can be used to link compiled objects and libraries into a program
executable or to create a library of compiled binaries.

176

To compile a program’s source for all the devices or a specific device(s) in the OpenCL context
associated with the program, call the function

cl_int c1CompileProgram(

cl_program program,

c¢l_uint num_devices,

const cl_device_id* device_list,

const char* options,

cl_uint num_input_headers,

const cl_program* input_headers,

const char** header_include_names,

void (CL_CALLBACK* pfn_notify)(cl_program program, void* user_data),
void* user_data);

program is the program object that is the compilation target.

device_list is a pointer to a list of devices associated with program. If device_list is a NULL value,
the compile is performed for all devices associated with program. If device_list is a non-NULL
value, the compile is performed for devices specified in this list.

num_devices is the number of devices listed in device_list.

options is a pointer to a null-terminated string of characters that describes the compilation
options to be used for building the program executable. Certain options are ignored when
program is created with IL. The list of supported options is as described in Compiler Options.

num_input_headers specifies the number of programs that describe headers in the array
referenced by input_headers.

input_headers is an array of program embedded headers created with
clCreateProgramWithSource.

header_include_names is an array that has a one to one correspondence with input_headers.
Each entry in header_include_names specifies the include name used by source in program that
comes from an embedded header. The corresponding entry in input_headers identifies the
program object which contains the header source to be used. The embedded headers are first
searched before the headers in the list of directories specified by the -I compile option (as
described in Preprocessor options). If multiple entries in header_include_names refer to the
same header name, the first one encountered will be used.

pfn_notify is a function pointer to a notification routine. The notification routine is a callback
function that an application can register and which will be called when the program executable
has been built (successfully or unsuccessfully). If pfn_notify is not NULL, clCompileProgram does
not need to wait for the compiler to complete and can return immediately once the compilation
can begin. The compilation can begin if the context, program whose sources are being compiled,
list of devices, input headers, programs that describe input headers and compiler options
specified are all valid and appropriate host and device resources needed to perform the compile
are available. If pfn_notify is NULL, clCompileProgram does not return until the compiler has
completed. This callback function may be called asynchronously by the OpenCL
implementation. It is the applications responsibility to ensure that the callback function is
thread-safe.

177

o user_data will be passed as an argument when pfn_notify is called. user_data can be NULL.

The pre-processor runs before the program sources are compiled. The compiled binary is built for
all devices associated with program or the list of devices specified. The compiled binary can be
queried using clGetProgramInfo(program, CL_PROGRAM_BINARIES, ..) and can be passed to
clCreateProgramWithBinary to create a new program object.

If program was created using clCreateProgramWithIL, then num_input_headers, input_headers,
and header_include_names are ignored.

For example, consider the following program source:

#include <foo.h>

#include <mydir/myinc.h>

__kernel void

image_filter (int n, int m,
__constant float *filter_weights,
__read_only image2d_t src_image,
__write_only image2d_t dst_image)

This kernel includes two headers foo.h and mydir/myinc.h. The following describes how these
headers can be passed as embedded headers in program objects:

cl_program foo_pg = clCreateProgramWithSource(context,
1, &foo_header src, NULL, &err);

cl_program myinc_pg = clCreateProgramWithSource(context,
1, &myinc_header_src, NULL, &err);

// lets assume the program source described above is given
// by program_A and is loaded via clCreateProgramiithSource
cl_program input_headers[2] = { foo_pg, myinc_pg };
char * input_header_names[2] = { foo.h, mydir/myinc.h };
clCompileProgram(program_A,
@, NULL, // num_devices & device list
NULL, // compile_options
2, // num_input_headers
input_headers,
input_header_names,
NULL, NULL); // pfn_notify & user_data

clCompileProgram returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns
one of the following errors:

» CL_INVALID_PROGRAM if program is not a valid program object.

o CL_INVALID_VALUE if device_list is NULL and num_devices is greater than zero, or if device_list is not

178

NULL and num_devices is zero.

o CL_INVALID_VALUE if num_input_headers is zero and header_include_names or input_headers are
not NULL or if num_input_headers is not zero and header._include_names or input_headers are
NULL.

o CL_INVALID_VALUE if pfn_notify is NULL but user_data is not NULL.

o CL_INVALID_DEVICE if OpenCL devices listed in device_list are not in the list of devices associated
with program

o CL_INVALID_COMPILER_OPTIONS if the compiler options specified by options are invalid.

o CL_INVALID_OPERATION if the compilation or build of a program executable for any of the devices
listed in device_list by a previous call to clCompileProgram or clBuildProgram for program
has not completed.

o CL_COMPILER_NOT_AVAILABLE if a compiler is not available i.e. CL_DEVICE_COMPILER_AVAILABLE
specified in the Device Queries table is set to CL_FALSE.

o CL_COMPILE_PROGRAM_FAILURE if there is a failure to compile the program source. This error will be
returned if clCompileProgram does not return until the compile has completed.

» CL_INVALID_OPERATION if there are kernel objects attached to program.

o CL_INVALID_OPERATION if program has no source or IL available, i.e. it has not been created with
clCreateProgramWithSource or clCreateProgramWithIL.

» CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To link a set of compiled program objects and libraries for all the devices or a specific device(s) in
the OpenCL context and create a library or executable, call the function

cl_program clLinkProgram(
cl_context context,
¢l _uint num_devices,
const cl_device_id* device_list,
const char* options,
cl_uint num_input_programs,
const cl_program* input_programs,
void (CL_CALLBACK* pfn_notify)(cl_program program, void* user_data),
void* user_data,
cl_int* errcode ret);

» context must be a valid OpenCL context.

* device_list is a pointer to a list of devices that are in context. If device_list is a NULL value, the link
is performed for all devices associated with context for which a compiled object is available. If
device_list is a non-NULL value, the link is performed for devices specified in this list for which a
compiled object is available.

e num_devices is the number of devices listed in device_list.

179

* options is a pointer to a null-terminated string of characters that describes the link options to be
used for building the program executable. The list of supported options is as described in Linker
Options. If the program was created using clCreateProgramWithBinary and options is a NULL
pointer, the program will be linked as if options were the same as when the program binary was
originally built. If the program was created using clCreateProgramWithBinary and options
string contains anything other than the same options in the same order (whitespace ignored) as
when the program binary was originally built, then the behavior is implementation defined.

* num_input_programs specifies the number of programs in array referenced by input_programs.

* input_programs is an array of program objects that are compiled binaries or libraries that are to
be linked to create the program executable. For each device in device_list or if device_list is NULL
the list of devices associated with context, the following cases occur:

o All programs specified by input programs contain a compiled binary or library for the
device. In this case, a link is performed to generate a program executable for this device.

> None of the programs contain a compiled binary or library for that device. In this case, no
link is performed and there will be no program executable generated for this device.

o All other cases will return a CL_INVALID OPERATION error.

* pfn_notify is a function pointer to a notification routine. The notification routine is a callback
function that an application can register and which will be called when the program executable
has been built (successfully or unsuccessfully).

o user_data will be passed as an argument when pfn_notify is called. user_data can be NULL.

If pfn_notify is not NULL, clLinkProgram does not need to wait for the linker to complete, and can
return immediately once the linking operation can begin. Once the linker has completed, the
pfn_notify callback function is called which returns the program object returned by
clLinkProgram. The application can query the link status and log for this program object. This
callback function may be called asynchronously by the OpenCL implementation. It is the
applications responsibility to ensure that the callback function is thread-safe.

If pfn_notify is NULL, clLinkProgram does not return until the linker has completed.

clLinkProgram creates a new program object which contains the library or executable. The library
or executable binary can be queried using clGetProgramInfo(program, CL_PROGRAM_BINARIES, ...)
and can be specified to clCreateProgramWithBinary to create a new program object.

The devices associated with the returned program object will be the list of devices specified by
device_list or if device_list is NULL it will be the list of devices associated with context.

The linking operation can begin if the context, list of devices, input programs and linker options
specified are all valid and appropriate host and device resources needed to perform the link are
available. If the linking operation can begin, clLinkProgram returns a valid non-zero program
object.

If pfn_notify is NULL, the errcode_ret will be set to CL_SUCCESS if the link operation was successful and
CL_LINK_PROGRAM_FAILURE if there is a failure to link the compiled binaries and/or libraries.

If pfn_notify is not NULL, clLinkProgram does not have to wait until the linker to complete and can
return CL_SUCCESS in errcode_ret if the linking operation can begin. The pfn_notify callback function

180

will return a CL_SUCCESS or CL_LINK_PROGRAM_FAILURE if the linking operation was successful or not.

Otherwise clLinkProgram returns a NULL program object with an appropriate error in errcode_ret.
The application should query the linker status of this program object to check if the link was
successful or not. The list of errors that can be returned are:

e CL_INVALID CONTEXT if context is not a valid context.

o CL_INVALID_VALUE if device_list is NULL and num_devices is greater than zero, or if device_list is not
NULL and num_devices is zero.

o CL_INVALID_VALUE if num_input programs is zero and input programs 1is NULL or if
num_input_programs is zero and input_programs is not NULL or if num_input_programs is not
zero and input_programs is NULL.

o CL_INVALID_PROGRAM if programs specified in input_programs are not valid program objects.
o CL_INVALID_VALUE if pfn_notify is NULL but user_data is not NULL.

o CL_INVALID_DEVICE if OpenCL devices listed in device_list are not in the list of devices associated
with context

o CL_INVALID_LINKER_OPTIONS if the linker options specified by options are invalid.

o CL_INVALID_OPERATION if the compilation or build of a program executable for any of the devices
listed in device_list by a previous call to clCompileProgram or clBuildProgram for program
has not completed.

o CL_INVALID_OPERATION if the rules for devices containing compiled binaries or libraries as
described in input_programs argument above are not followed.

o CL_LINKER_NOT_AVAILABLE if a linker is not available i.e. CL_DEVICE_LINKER_AVAILABLE specified in
the Device Queries table is set to CL_FALSE.

o CL_LINK_PROGRAM_FAILURE if there is a failure to link the compiled binaries and/or libraries.

o CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.8.6. Compiler Options

The compiler options are categorized as pre-processor options, options for math intrinsics, options
that control optimization and miscellaneous options. This specification defines a standard set of
options that must be supported by the compiler when building program executables online or
offline from OpenCL C/C++ or, where relevant, from an IL. These may be extended by a set of
vendor- or platform-specific options.

Preprocessor options

These options control the OpenCL C/C++ preprocessor which is run on each program source before
actual compilation. These options are ignored for programs created with IL.

-D name

181

Predefine name as a macro, with definition 1.

-D name=definition

The contents of definition are tokenized and processed as if they appeared during translation
phase three in a "#define' directive. In particular, the definition will be truncated by embedded
newline characters.

-D options are processed in the order they are given in the options argument to clBuildProgram or
clCompileProgram. Note that a space is required between the -D option and the symbol it defines,
otherwise behavior is implementation defined.

-1 dir
Add the directory dir to the list of directories to be searched for header files. dir can optionally
be enclosed in double quotes.

This option is not portable due to its dependency on host file system and host operating system. It is
supported for backwards compatibility with previous OpenCL versions. Developers are encouraged
to create and use explicit header objects by means of clCompileProgram followed by
clLinkProgram.

Math Intrinsics Options

These options control compiler behavior regarding floating-point arithmetic. These options trade
off between speed and correctness.

-cl-single-precision-constant
Treat double precision floating-point constant as single precision constant. This option is ignored
for programs created with IL.

-cl-denorms-are-zero

This option controls how single precision and double precision denormalized numbers are
handled. If specified as a build option, the single precision denormalized numbers may be
flushed to zero; double precision denormalized numbers may also be flushed to zero if the
optional extension for double precision is supported. This is intended to be a performance hint
and the OpenCL compiler can choose not to flush denorms to zero if the device supports single
precision (or double precision) denormalized numbers.

This option is ignored for single precision numbers if the device does not support single
precision denormalized numbers i.e. CL_FP_DENORM bit is not set in CL_DEVICE_SINGLE_FP_CONFIG.

This option is ignored for double precision numbers if the device does not support double
precision or if it does support double precision but not double precision denormalized numbers
i.e. CL_FP_DENORM bit is not set in CL_DEVICE _DOUBLE_FP_CONFIG.

This flag only applies for scalar and vector single precision floating-point variables and
computations on these floating-point variables inside a program. It does not apply to reading
from or writing to image objects.

-c1-fp32-correctly-rounded-divide-sqrt

182

The -cl-fp32-correctly-rounded-divide-sqrt build option to clBuildProgram or
clCompileProgram allows an application to specify that single precision floating-point divide
(x/y and 1/x) and sqrt used in the program source are correctly rounded. If this build option is
not specified, the minimum numerical accuracy of single precision floating-point divide and sqrt
are as defined in the SPIR-V OpenCL environment specification.

This build option can only be specified if the CL_FP_CORRECTLY_ROUNDED_DIVIDE_SQRT is set in CL_
DEVICE_SINGLE_FP_CONFIG (as defined in the Device Queries table) for devices that the program is
being build. clBuildProgram or clCompileProgram will fail to compile the program for a device
if the -c1-fp32-correctly-rounded-divide-sqrt option is specified and CL_FP_CORRECTLY_ROUNDED_
DIVIDE_SQRT is not set for the device.

Optimization Options

These options control various sorts of optimizations. Turning on optimization flags makes the
compiler attempt to improve the performance and/or code size at the expense of compilation time
and possibly the ability to debug the program.

-cl-opt-disable

This option disables all optimizations. The default is optimizations are enabled.

The following options control compiler behavior regarding floating-point arithmetic. These options
trade off between performance and correctness and must be specifically enabled. These options are
not turned on by default since it can result in incorrect output for programs which depend on an
exact implementation of IEEE 754 rules/specifications for math functions.

-cl-mad-enable

Allow a * b + c to be replaced by a mad instruction. The mad instruction may computea * b +
¢ with reduced accuracy in the embedded profile. See the SPIR-V OpenCL environment
specification for accuracy details. On some hardware the mad instruction may provide better
performance than the expanded computation.

-cl-no-signed-zeros
Allow optimizations for floating-point arithmetic that ignore the signedness of zero. IEEE 754
arithmetic specifies the distinct behavior of +0.0 and -0.0 values, which then prohibits
simplification of expressions such as x + 0.0 or 0.0 * x (even with -cl-finite-math-only). This
option implies that the sign of a zero result isn’t significant.

-cl-unsafe-math-optimizations

Allow optimizations for floating-point arithmetic that (a) assume that arguments and results are
valid, (b) may violate the IEEE 754 standard, (c) assume relaxed OpenCL numerical compliance
requirements as defined in the unsafe math optimization section of the SPIR-V OpenCL
environment specification, and (d) may violate edge case behavior in the SPIR-V OpenCL
environment specification. This option includes the -cl-no-signed-zeros and -cl-mad-enable
options.

-cl-finite-math-only
Allow optimizations for floating-point arithmetic that assume that arguments and results are not
NaNs, +Inf, -Inf. This option may violate the OpenCL numerical compliance requirements for

183

single precision and double precision floating-point, as well as edge case behavior. The original
and modified values are defined in the SPIR-V OpenCL environment specification

-cl-fast-relaxed-math

Sets the optimization options -cl-finite-math-only and -cl-unsafe-math-optimizations. This
option causes the preprocessor macro __FAST_RELAXED_MATH__ to be defined in the OpenCL
program.

-cl-uniform-work-group-size
This requires that the global work-size be a multiple of the work-group size specified to
clEnqueueNDRangeKernel. Allow optimizations that are made possible by this restriction.

-c1-no-subgroup-ifp
This indicates that kernels in this program do not require subgroups to make independent

forward progress. Allows optimizations that are made possible by this restriction. This option
has no effect for devices that do not support independent forward progress for subgroups.

Options to Request or Suppress Warnings

Warnings are diagnostic messages that report constructions which are not inherently erroneous
but which are risky or suggest there may have been an error. The following language-independent
options do not enable specific warnings but control the kinds of diagnostics produced by the
OpenCL compiler. These options are ignored for programs created with IL.

-W

Inhibit all warning messages.

-Werror

Make all warnings into errors.

Options Controlling the OpenCL C version

The following option controls the version of OpenCL C that the compiler accepts. These options are
ignored for programs created with IL.

-cl-std=
Determine the OpenCL C language version to use. A value for this option must be provided. Valid
values are:
* CL1.1 Support all OpenCL C programs that use the OpenCL C language features defined in
section 6 of the OpenCL 1.1 specification.

* CL1.2 Support all OpenCL C programs that use the OpenCL C language features defined in
section 6 of the OpenCL 1.2 specification.

* CL2.0 Support all OpenCL C programs that use the OpenCL C language features defined in
section 6 of the OpenCL C 2.0 specification.

Calls to clBuildProgram or clCompileProgram with the -c1-std=CL1.1 option will fail to compile
the program for any devices with CL_DEVICE_OPENCL_C_VERSION = OpenCL C 1.0.

184

Calls to clBuildProgram or clCompileProgram with the -c1-std=CL1.2 option will fail to compile
the program for any devices with CL_DEVICE_OPENCL_C_VERSION = OpenCL C 1.0.

Calls to clBuildProgram or clCompileProgram with the -cl-std=CL2.0 option will fail to compile
the program for any devices with CL_DEVICE_OPENCL_C_VERSION = OpenCL C 1.0, OpenCL C 1.1 or
OpenCL C 1.2.

If the cl-std build option is not specified, the highest OpenCL C 1.x language version supported by
each device is used when compiling the program for each device. Applications are required to
specify the cl-std=CL2.0 option if they want to compile or build their programs with OpenCL C 2.0.

Options for Querying Kernel Argument Information

-cl-kernel-arg-info
This option allows the compiler to store information about the arguments of a kernel(s) in the
program executable. The argument information stored includes the argument name, its type, the
address space and access qualifiers used. Refer to description of clGetKernelArgInfo on how to
query this information.

Options for debugging your program
The following option is available.
-9

This option can currently be used to generate additional errors for the built-in functions that
allow you to enqueue commands on a device (refer to OpenCL kernel languages specifications).

5.8.7. Linker Options

This specification defines a standard set of linker options that must be supported by the OpenCL C
compiler when linking compiled programs online or offline. These linker options are categorized as
library linking options and program linking options. These may be extended by a set of vendor- or
platform-specific options.

Library Linking Options
The following options can be specified when creating a library of compiled binaries.

-create-library

Create a library of compiled binaries specified in input_programs argument to clLinkProgram.

-enable-Tlink-options

Allows the linker to modify the library behavior based on one or more link options (described in
Program Linking Options) when this library is linked with a program executable. This option
must be specified with the create-library option.

Program Linking Options

The following options can be specified when linking a program executable.

185

-cl-denorms-are-zero
-cl-no-signed-zeroes
-cl-unsafe-math-optimizations
-cl-finite-math-only
-cl-fast-relaxed-math
-c1-no-subgroup-ifp

The options are described in Math Intrinsics Options and Optimization Options. The linker may
apply these options to all compiled program objects specified to clLinkProgram. The linker may
apply these options only to libraries which were created with the option -enable-1link-options.

5.8.8. Unloading the OpenCL Compiler

To unload an OpenCL compiler for a platform, call the function

cl_int clUnloadPlatformCompiler(
cl_platform_id platform);

* platform is the platform to unload.

This function allows the implementation to release the resources allocated by the OpenCL compiler
for platform. This is a hint from the application and does not guarantee that the compiler will not
be used in the future or that the compiler will actually be unloaded by the implementation. Calls to
clBuildProgram, clCompileProgram or clLinkProgram after clUnloadPlatformCompiler will
reload the compiler, if necessary, to build the appropriate program executable.

clUnloadPlatformCompiler returns CL_SUCCESS if the function is executed successfully. Otherwise,
it returns one of the following errors:

o CL_INVALID_PLATFORM if platform is not a valid platform.

5.8.9. Program Object Queries

To return information about a program object, call the function

cl_int clGetProgramInfo(
cl_program program,
cl_program_info param_name,
size_t param_value_size,
void* param_value,
size_t* param_value_size_ret);

» program specifies the program object being queried.

» param_name specifies the information to query. The list of supported param_name types and the
information returned in param_value by clGetProgramlInfo is described in the Program Object
Queries table.

186

» param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

» param_value_size is used to specify the size in bytes of memory pointed to by param_value. This
size must be > size of return type as described in the Program Object Queries table.

» param_value_size_ret returns the actual size in bytes of data being queried by param_name. If
param_value_size_ret is NULL, it is ignored.

Table 25. List of supported param_names by clGetProgramlinfo

cl_program_info Return Type Info. returned in param_value

CL_PROGRAM_REFERENCE_COUNT** cl_uint Return the program reference
count.

CL_PROGRAM_CONTEXT cl_context Return the context specified
when the program object is
created

CL_PROGRAM_NUM_DEVICES cl_uint Return the number of devices
associated with program.

CL_PROGRAM_DEVICES cl_device_id[] Return the list of devices

associated with the program
object. This can be the devices
associated with context on
which the program object has
been created or can be a subset
of devices that are specified
when a program object is
created using
clCreateProgramWithBinary.

187

cl_program_info
CL_PROGRAM_SOURCE

CL_PROGRAM_IL

188

Return Type
char(]

char(]

Info. returned in param_value

Return the program source
code specified by
clCreateProgramWithSource.
The source string returned is a
concatenation of all source
strings specified to
clCreateProgramWithSource
with a null terminator. The
concatenation strips any nulls
in the original source strings.

If program is created using
clCreateProgramWithBinary,
clCreateProgramWithIL or
clCreateProgramWithBuiltIn
Kernels, a null string or the
appropriate program source
code is returned depending on
whether or not the program
source code is stored in the
binary.

The actual number of
characters that represents the
program source code including
the null terminator is returned
in param_value_size_ret.

Returns the program IL for
programs created with
clCreateProgramWithIL.

If program is created with
clCreateProgramWithSource,
clCreateProgramWithBinary
or
clCreateProgramWithBuiltIn
Kernels the memory pointed to
by param_value will be
unchanged and
param_value_size_retwill be set
to 0.

cl_program_info Return Type Info. returned in param_value

CL_PROGRAM_BINARY SIZES size t[] Returns an array that contains
the size in bytes of the program
binary (could be an executable
binary, compiled binary or
library binary) for each device
associated with program. The
size of the array is the number
of devices associated with
program. If a binary is not
available for a device(s), a size
of zero is returned.

If program is created using
clCreateProgramWithBuiltIn
Kernels, the implementation
may return zero in any entries
of the returned array.

189

cl_program_info

CL_PROGRAM_BINARIES

190

Return Type

unsigned char *[]

Info. returned in param_value

Return the program binaries
(could be an executable binary,
compiled binary or library
binary) for all devices
associated with program. For
each device in program, the
binary returned can be the
binary specified for the device
when program is created with
clCreateProgramWithBinary
or it can be the executable
binary generated by
clBuildProgram or
clLinkProgram. If program is
created with
clCreateProgramWithSource
or clCreateProgramWithlIL,
the binary returned is the
binary generated by
clBuildProgram,
clCompileProgram or
clLinkProgram. The bits
returned can be an
implementation-specific
intermediate representation
(a.k.a. IR) or device specific
executable bits or both. The
decision on which information
is returned in the binary is up
to the OpenCL implementation.

param_value points to an array
of n pointers allocated by the
caller, where n is the number of
devices associated with
program. The buffer sizes
needed to allocate the memory
that these n pointers refer to
can be queried using the CL_
PROGRAM_BINARY_SIZES query as
described in this table.

Each entry in this array is used
by the implementation as the
location in memory where to
copy the program binary for a
specific device, if there is a
binary available. To find out
which device the program
binary in the array refers to,
use the CL_PROGRAM_DEVICES

query to get the list of devices.
There is a one-to-one

cl_program_info Return Type Info. returned in param_value

CL_PROGRAM_NUM_KERNELS size t Returns the number of kernels
declared in program that can
be created with
clCreateKernel. This
information is only available
after a successful program
executable has been built for at
least one device in the list of
devices associated with
program.

CL_PROGRAM_KERNEL NAMES char(] Returns a semi-colon separated
list of kernel names in program
that can be created with
clCreateKernel. This
information is only available
after a successful program
executable has been built for at
least one device in the list of
devices associated with

program.
CL_PROGRAM_SCOPE_GLOBAL_CTORS_ cl_bool This indicates that the program
PRESENT object contains non-trivial

constructor(s) that will be
executed by runtime before
any kernel from the program is

executed.
CL_PROGRAM_SCOPE_GLOBAL_DTORS_ cl _bool This indicates that the program
PRESENT object contains non-trivial

destructor(s) that will be
executed by runtime when
program is destroyed.

14

The reference count returned should be considered immediately stale. It is unsuitable for
general use in applications. This feature is provided for identifying memory leaks.

clGetProgramlInfo returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns
one of the following errors:

o CL_INVALID_VALUE if param_name is not valid, or if size in bytes specified by param_value_size is <
size of return type as described in the Program Object Queries table and param_value is not
NULL.

o CL_INVALID_PROGRAM if program is a not a valid program object.

o CL_INVALID_PROGRAM_EXECUTABLE if param_name is CL_PROGRAM_NUM_KERNELS or CL_PROGRAM_KERNEL_
NAMES and a successful program executable has not been built for at least one device in the list of
devices associated with program.

* CL_OUT_OF _RESOURCES if there is a failure to allocate resources required by the OpenCL

191

implementation on the device.

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To return build information for each device in the program object, call the function:

cl_int clGetProgramBuildInfo(
cl_program program,
¢l _device_id device,
cl_program_build_info param_name,
size_t param_value_size,
void* param_value,
Size_t* param_value_size_ret);

» program specifies the program object being queried.

* device specifies the device for which build information is being queried. device must be a valid
device associated with program.

» param_name specifies the information to query. The list of supported param_name types and the
information returned in param_value by clGetProgramBuildInfo is described in the Program
Build Queries table.

» param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

» param_value_size is used to specify the size in bytes of memory pointed to by param_value. This
size must be > size of return type as described in the Program Build Queries table.

» param_value_size_ret returns the actual size in bytes of data being queried by param_name. If
param_value_size_ret is NULL, it is ignored.

Table 26. List of supported param_names by clGetProgramBuildInfo

192

cl_program_build_info
CL_PROGRAM_BUILD_STATUS

Return Type

cl _build_status

Info. returned in param_value

Returns the build, compile or
link status, whichever was
performed last on the specified
program object for device.

This can be one of the
following:

CL_BUILD_NONE - The build status
returned if no clBuildProgram,
clCompileProgram or
clLinkProgram has been
performed on the specified
program object for device).

CL_BUILD_ERROR - The build
status returned if
clBuildProgram,
clCompileProgram or
clLinkProgram - whichever
was performed last on the
specified program object for
device - generated an error.

CL_BUILD_SUCCESS - The build
status returned if
clBuildProgram,
clCompileProgram or
clLinkProgram - whichever
was performed last on the
specified program object for
device - was successful.

CL_BUILD_IN_PROGRESS - The
build status returned if
clBuildProgram,
clCompileProgram or
clLinkProgram - whichever
was performed last on the
specified program object for
device - has not finished.

193

cl_program_build_info
CL_PROGRAM_BUILD_OPTIONS

CL_PROGRAM_BUILD_LOG

194

Return Type
char(]

charf]

Info. returned in param_value

Return the build, compile or
link options specified by the
options argument in
clBuildProgram,
clCompileProgram or
clLinkProgram, whichever
was performed last on the
specified program object for
device.

If build status of the specified
program for device is CL_BUILD_
NONE, an empty string is
returned.

Return the build, compile or
link log for clBuildProgram,
clCompileProgram or
clLinkProgram, whichever
was performed last on program
for device.

If build status of the specified
program for device is CL_BUILD_
NONE, an empty string is
returned.

cl_program_build_info Return Type Info. returned in param_value

CL_PROGRAM_BINARY_TYPE cl_program_binary_type Return the program binary
type for device. This can be one
of the following values:

CL_PROGRAM_BINARY_TYPE_NONE -
There is no binary associated
with the specified program
object for device.

CL_PROGRAM_BINARY_TYPE_
COMPILED_OBJECT - A compiled
binary is associated with
device. This is the case when
the specified program object
was created using
clCreateProgramWithSource
and compiled using
clCompileProgram, or when a
compiled binary was loaded
using
clCreateProgramWithBinary.

CL_PROGRAM_BINARY_TYPE_LIBRARY
- A library binary is associated
with device. This is the case
when the specified program
object was linked by
clLinkProgram using the
-create-library link option, or
when a compiled library binary
was loaded using
clCreateProgramWithBinary.

CL_PROGRAM_BINARY_TYPE_
EXECUTABLE - An executable
binary is associated with
device. This is the case when
the specified program object
was linked by clLinkProgram
without the -create-library
link option, or when an
executable binary was built
using clBuildProgram.

CL_PROGRAM_BUILD GLOBAL_ size t The total amount of storage, in

VARIABLE_TOTAL_SIZE by‘tes’ used by program
variables in the global address
space.

clGetProgramBuildInfo returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

195

o CL_INVALID_DEVICE if device is not in the list of devices associated with program.

o CL_INVALID_VALUE if param_name is not valid, or if size in bytes specified by param_value_size is <
size of return type as described in the Program Build Queries table and param_value is not NULL.

o CL_INVALID_PROGRAM if program is a not a valid program object.

o CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

e CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

A program binary (compiled binary, library binary or executable binary) built for
a parent device can be used by all its sub-devices. If a program binary has not been
built for a sub-device, the program binary associated with the parent device will
be used.

i

A program binary for a device specified with clCreateProgramWithBinary or
queried using clGetProgramlInfo can be used as the binary for the associated root
device, and all sub-devices created from the root-level device or sub-devices
thereof.

5.9. Kernel Objects

A kernel is a function declared in a program. A kernel is identified by the __kernel qualifier applied
to any function in a program. A kernel object encapsulates the specific __kernel function declared
in a program and the argument values to be used when executing this __kernel function.

5.9.1. Creating Kernel Objects

To create a kernel object, use the function

cl_kernel clCreateKernel(
cl_program program,
const char* kernel_name,
cl_int* errcode_ret);

» program is a program object with a successfully built executable.
* kernel_name is a function name in the program declared with the __kernel qualifier.
» errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is

returned.

clCreateKernel returns a valid non-zero kernel object and errcode_ret is set to CL_SUCCESS if the
kernel object is created successfully. Otherwise, it returns a NULL value with one of the following
error values returned in errcode_ret:

* CL_INVALID_PROGRAM if program is not a valid program object.
o CL_INVALID_PROGRAM_EXECUTABLE if there is no successfully built executable for program.

196

o CL_INVALID_KERNEL_NAME if kernel_name is not found in program.

o CL_INVALID_KERNEL_DEFINITION if the function definition for __kernel function given by
kernel_name such as the number of arguments, the argument types are not the same for all
devices for which the program executable has been built.

e CL_INVALID VALUE if kernel name is NULL.

o CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To create kernel objects for all kernel functions in a program, call the function

cl_int clCreateKernelsInProgram(
cl_program program,
c¢l_uint num_kernels,
cl_kernel* kernels,
cl_uint* num_kernels_ret);

» program is a program object with a successfully built executable.

* num_kernels is the size of memory pointed to by kernels specified as the number of cl_kernel
entries.

* kernels is the buffer where the kernel objects for kernels in program will be returned. If kernels
is NULL, it is ignored. If kernels is not NULL, num_kernels must be greater than or equal to the
number of kernels in program.

* num_kernels_ret is the number of kernels in program. If num_kernels_ret is NULL, it is ignored.

Kernel objects are not created for any __kernel functions in program that do not have the same
function definition across all devices for which a program executable has been successfully built.

Kernel objects can only be created once you have a program object with a valid program source or
binary loaded into the program object and the program executable has been successfully built for
one or more devices associated with program. No changes to the program executable are allowed
while there are kernel objects associated with a program object. This means that calls to
clBuildProgram and clCompileProgram return CL_INVALID_OPERATION if there are kernel objects
attached to a program object. The OpenCL context associated with program will be the context
associated with kernel. The list of devices associated with program are the devices associated with
kernel. Devices associated with a program object for which a valid program executable has been
built can be used to execute kernels declared in the program object.

clCreateKernelsInProgram will return CL_SUCCESS if the kernel objects were successfully allocated.
Otherwise, it returns one of the following errors:

o CL_INVALID_PROGRAM if program is not a valid program object.

o CL_INVALID_PROGRAM_EXECUTABLE if there is no successfully built executable for any device in
program.

197

e CL_INVALID VALUE if kernels is not NULL and num_kernels is less than the number of kernels in
program.

* CL_OUT_OF _RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To retain a kernel object, call the function

cl_int clRetainKernel(
cl_kernel kernel);
 kernel is the kernel object to be retained.
The kernel reference count is incremented.

clRetainKernel returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns
one of the following errors:

o CL_INVALID_KERNEL if kernel is not a valid kernel object.

* CL_OUT_OF _RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

clCreateKernel or clCreateKernelsInProgram do an implicit retain.

To release a kernel object, call the function

cl_int clReleaseKernel(
cl_kernel kernel);
* kernel is the kernel object to be released.
The kernel reference count is decremented.

The kernel object is deleted once the number of instances that are retained to kernel become zero
and the kernel object is no longer needed by any enqueued commands that use kernel. Using this
function to release a reference that was not obtained by creating the object or by calling
clRetainKernel causes undefined behavior.

clReleaseKernel returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns
one of the following errors:

o CL_INVALID_KERNEL if kernel is not a valid kernel object.

* CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL

198

implementation on the device.

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.9.2. Setting Kernel Arguments
To execute a kernel, the kernel arguments must be set.

To set the argument value for a specific argument of a kernel, call the function

cl_int clSetKernelArg(
cl_kernel kernel,
cl_uint arg_index,
size_t arg_size,
const void* arg_value);

* kernel is a valid kernel object.

» arg _index is the argument index. Arguments to the kernel are referred by indices that go from 0
for the leftmost argument to n - 1, where n is the total number of arguments declared by a
kernel (see below).

» arg size specifies the size of the argument value. If the argument is a memory object, the size is
the size of the memory object. For arguments declared with the local qualifier, the size
specified will be the size in bytes of the buffer that must be allocated for the local argument. If
the argument is of type sampler._t, the arg_size value must be equal to sizeof(cl_sampler). If the
argument is of type queue_t, the arg size value must be equal to sizeof(cl_command_queue). For
all other arguments, the size will be the size of argument type.

* arg value is a pointer to data that should be used as the argument value for argument specified
by arg_index. The argument data pointed to by arg value is copied and the arg value pointer can
therefore be reused by the application after clSetKernelArg returns. The argument value
specified is the value used by all API calls that enqueue kernel (clEnqueueNDRangeKernel)
until the argument value is changed by a call to clSetKernelArg for kernel.

For example, consider the following kernel:

kernel void image_filter (int n,
int m,
constant float *filter_weights,
read_only image2d_t src_image,
write_only image2d_t dst_image)

Argument index values for image_filter will be 0 for n, 1 for m, 2 for filter_weights, 3 for src_image
and 4 for dst_image.

199

If the argument is a memory object (buffer, pipe, image or image array), the arg_value entry will be
a pointer to the appropriate buffer, pipe, image or image array object. The memory object must be
created with the context associated with the kernel object. If the argument is a buffer object, the
arg value pointer can be NULL or point to a NULL value in which case a NULL value will be used as the
value for the argument declared as a pointer to global or constant memory in the kernel. If the
argument is declared with the local qualifier, the arg value entry must be NULL. If the argument is
of type sampler_t, the arg_value entry must be a pointer to the sampler object. If the argument is of
type queue_t, the arg value entry must be a pointer to the device queue object.

If the argument is declared to be a pointer of a built-in scalar or vector type, or a user defined
structure type in the global or constant address space, the memory object specified as argument
value must be a buffer object (or NULL). If the argument is declared with the constant qualifier, the
size in bytes of the memory object cannot exceed CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE and the
number of arguments declared as pointers to constant memory cannot exceed CL_DEVICE_MAX_
CONSTANT _ARGS.

The memory object specified as argument value must be a pipe object if the argument is declared
with the pipe qualifier.

The memory object specified as argument value must be a 2D image object if the argument is
declared to be of type image2d_t. The memory object specified as argument value must be a 2D
image object with image channel order = CL_DEPTH if the argument is declared to be of type
image2d_depth_t. The memory object specified as argument value must be a 3D image object if
argument is declared to be of type image3d_t. The memory object specified as argument value must
be a 1D image object if the argument is declared to be of type imageld t. The memory object
specified as argument value must be a 1D image buffer object if the argument is declared to be of
type imageld_buffer_t. The memory object specified as argument value must be a 1D image array
object if argument is declared to be of type imageld array_t. The memory object specified as
argument value must be a 2D image array object if argument is declared to be of type
image2d_array_t. The memory object specified as argument value must be a 2D image array object
with image channel order = CL_DEPTH if argument is declared to be of type image2d_array_depth_t.

For all other kernel arguments, the arg value entry must be a pointer to the actual data to be used
as argument value.

A kernel object does not update the reference count for objects such as memory or
sampler objects specified as argument values by clSetKernelArg. Users may not
rely on a kernel object to retain objects specified as argument values to the kernel.

Implementations shall not allow cl kernel objects to hold reference counts to

0 cl_kernel arguments, because no mechanism is provided for the user to tell the
kernel to release that ownership right. If the kernel holds ownership rights on
kernel args, that would make it impossible for the user to tell with certainty when
he may safely release user allocated resources associated with OpenCL objects
such as the cl_mem backing store used with CL_MEM_USE_HOST_PTR.

clSetKernelArg returns CL_SUCCESS if the function was executed successfully. Otherwise, it returns
one of the following errors:

200

o CL_INVALID_KERNEL if kernel is not a valid kernel object.
o CL_INVALID_ARG_INDEX if arg_index is not a valid argument index.
* CL_INVALID_ARG_VALUE if arg value specified is not a valid value.

o CL_INVALID_MEM_OBJECT for an argument declared to be a memory object when the specified
arg_value is not a valid memory object.

o CL_INVALID_SAMPLER for an argument declared to be of type sampler_t when the specified
arg_value is not a valid sampler object.

o CL_INVALID_DEVICE_QUEUE for an argument declared to be of type queue_t when the specified
arg_value is not a valid device queue object.

o CL_INVALID_ARG_SIZE if arg size does not match the size of the data type for an argument that is
not a memory object or if the argument is a memory object and arg_size != sizeof(cl_mem) or if
arg size is zero and the argument is declared with the local qualifier or if the argument is a
sampler and arg _size != sizeof(cl_sampler).

o CL_MAX_SIZE_RESTRICTION_EXCEEDED if the size in bytes of the memory object (if the argument was
declared with constant qualifier) or arg_size (if the argument was declared with local qualifier)
exceed the maximum size restriction that was set with the optional language attribute. The
optional attribute can be c1::max_size defined in OpenCL 2.2 C++ Kernel Language specification
or SpvDecorationMaxByteOffset defined in SPIR-V 1.2 Specification.

o CL_INVALID_ARG_VALUE if the argument is an image declared with the read_only qualifier and
arg value refers to an image object created with cl_mem_flags of CL_MEM_WRITE_ONLY or if the
image argument is declared with the write_only qualifier and arg value refers to an image
object created with ¢l mem_flags of CL_MEM_READ_ONLY.

* CL_OUT_OF _RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

* CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To set a SVM pointer as the argument value for a specific argument of a kernel, call the function

cl_int c1SetKernelArgSVMPointer(
cl_kernel kernel,
cl_uint arg_index,
const void* arg_value);

* kernelis a valid kernel object.

* arg_index is the argument index. Arguments to the kernel are referred by indices that go from 0
for the leftmost argument to n - 1, where n is the total number of arguments declared by a
kernel.

» arg value is the SVM pointer that should be used as the argument value for argument specified
by arg_index. The SVM pointer specified is the value used by all API calls that enqueue kernel
(clEnqueueNDRangeKernel) until the argument value is changed by a call to
clSetKernelArgSVMPointer for kernel. The SVM pointer can only be used for arguments that
are declared to be a pointer to global or constant memory. The SVM pointer value must be

201

aligned according to the arguments type. For example, if the argument is declared to be global
float4 p, the SVM pointer value passed for p must be at a minimum aligned to a float4. The
SVM pointer value specified as the argument value can be the pointer returned by

*c1SVMAT1oc or can be a pointer offset into the SVM region.

clSetKernelArgSVMPointer returns CL_SUCCESS if the function was executed successfully.
Otherwise, it returns one of the following errors:

o CL_INVALID_KERNEL if kernel is not a valid kernel object.

o CL_INVALID_ARG_INDEX if arg index is not a valid argument index.

o CL_INVALID_ARG_VALUE if arg value specified is not a valid value.

o CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

e CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL

implementation on the host.

To pass additional information other than argument values to a kernel, call the function

cl_int clSetKernelExecInfo(
¢l _kernel kernel,
cl_kernel_exec_info param_name,
size_t param_value_size,
const void* param_value);

* kernel specifies the kernel object being queried.

» param_name specifies the information to be passed to kernel. The list of supported param_name
types and the corresponding values passed in param_value is described in the Kernel Execution
Properties table.

» param_value_size specifies the size in bytes of the memory pointed to by param_value.

* param_value is a pointer to memory where the appropriate values determined by param_name
are specified.

Table 27. List of supported param_names by clSetKernelExecInfo

202

cl_kernel _exec_info Type Description
CL_KERNEL_EXEC _INFO_SVM_PTRS void *[] SVM pointers must reference

locations contained entirely
within buffers that are passed
to kernel as arguments, or that
are passed through the
execution information.

Non-argument SVM buffers
must be specified by passing
pointers to those buffers via
clSetKernelExecInfo for
coarse-grain and fine-grain
buffer SVM allocations but not
for finegrain system SVM

allocations.
CL_KERNEL_EXEC_INFO_SVM_FINE_ cl _bool This flag indicates whether the
GRAIN_SYSTEM kernel uses pointers that are

fine grain system SVM
allocations. These fine grain
system SVM pointers may be
passed as arguments or defined
in SVM buffers that are passed
as arguments to kernel.

clSetKernelExecInfo returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

CL_INVALID_KERNEL if kernel is a not a valid kernel object.

CL_INVALID_VALUE if param_name is not valid, if param value is NULL or if the size specified by
param_value_size is not valid.

CL_INVALID_OPERATION if param name = CL_KERNEL_EXEC_INFO_SVM_FINE_GRAIN_SYSTEM and
param_value = CL_TRUE but no devices in context associated with kernel support fine-grain
system SVM allocations.

CL_OUT_OF _RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

203

204

Coarse-grain or fine-grain buffer SVM pointers used by a kernel which are not
passed as a kernel arguments must be specified using clSetKernelExecInfo with
CL_KERNEL_EXEC_INFO_SVM_PTRS. For example, if SVM buffer A contains a pointer to
another SVM buffer B, and the kernel dereferences that pointer, then a pointer to B
must either be passed as an argument in the call to that kernel or it must be made
available to the kernel using clSetKernelExecInfo. For example, we might pass
extra SVM pointers as follows:

clSetKernelExecInfo(kernel,
CL_KERNEL_EXEC_INFO_SVM_PTRS,
num_ptrs * sizeof(void *),
extra_svm_ptr_list);

Here num_ptrs specifies the number of additional SVM pointers while
extra_svm_ptr_list specifies a pointer to memory containing those SVM pointers.

When calling clSetKernelExecInfo with CL_KERNEL_EXEC_INFO_SVM_PTRS to specify
pointers to non-argument SVM buffers as extra arguments to a kernel, each of
these pointers can be the SVM pointer returned by cISVMAIlloc or can be a pointer
+ offset into the SVM region. It is sufficient to provide one pointer for each SVM
buffer used.

CL_KERNEL_EXEC_INFO_SVM_FINE_GRAIN_SYSTEM is used to indicate whether SVM
pointers used by a kernel will refer to system allocations or not.

CL_KERNEL_EXEC_INFO_SVM_FINE_GRAIN_SYSTEM = CL_FALSE indicates that the OpenCL
implementation may assume that system pointers are not passed as kernel
arguments and are not stored inside SVM allocations passed as kernel arguments.

CL_KERNEL_EXEC_INFO_SVM_FINE_GRAIN_SYSTEM = CL_TRUE indicates that the OpenCL
implementation must assume that system pointers might be passed as kernel
arguments and/or stored inside SVM allocations passed as kernel arguments. In
this case, if the device to which the kernel is enqueued does not support system
SVM pointers, clEnqueueNDRangeKernel will return a CL_INVALID_OPERATION
error. If none of the devices in the context associated with kernel support fine-
grain system SVM allocations, clSetKernelExecInfo will return a CL_INVALID_
OPERATION error.

If clSetKernelExecInfo has not been called with a value for CL_KERNEL _EXEC_INFO_
SVM_FINE_GRAIN SYSTEM, the default value is used for this kernel attribute. The
default value depends on whether the device on which the kernel is enqueued
supports fine-grain system SVM allocations. If so, the default value used is CL_TRUE
(system pointers might be passed); otherwise, the default is CL_FALSE.

A call to clSetKernelExecInfo for a given value of param_name replaces any prior
value passed for that value of param_name. Only one param_value will be stored
for each value of param_name.

5.9.3. Copying Kernel Objects

To clone a kernel object, call the function

cl_kernel clCloneKernel(
cl_kernel source_kernel,
cl_int* errcode_ret);

* source_kernel is a valid cl_kernel object that will be copied. source_kernel will not be modified in
any way by this function.

* errcode_ret will be assigned an appropriate error code. If errcode_ret is NULL, no error code is
returned.

Cloning is used to make a shallow copy of the kernel object, its arguments and any information
passed to the kernel object using clSetKernelExecInfo. If the kernel object was ready to be
enqueued before copying it, the clone of the kernel object is ready to enqueue.

The returned kernel object is an exact copy of source_kernel, with one caveat: the reference count
on the returned kernel object is set as if it had been returned by clCreateKernel. The reference
count of source_kernel will not be changed.

The resulting kernel will be in the same state as if clCreateKernel is called to create the resultant
kernel with the same arguments as those used to create source_kernel, the latest call to
clSetKernelArg or clSetKernelArgSVMPointer for each argument index applied to kernel and the
last call to clSetKernelExecInfo for each value of the param name parameter are applied to the
new kernel object.

All arguments of the new kernel object must be intact and it may be correctly used in the same
situations as kernel except those that assume a pre-existing reference count. Setting arguments on
the new kernel object will not affect source_kernel except insofar as the argument points to a
shared underlying entity and in that situation behavior is as if two kernel objects had been created
and the same argument applied to each. Only the data stored in the kernel object is copied; data
referenced by the kernels arguments are not copied. For example, if a buffer or pointer argument is
set on a kernel object, the pointer is copied but the underlying memory allocation is not.

clCloneKernel returns a valid non-zero kernel object and errcode_ret is set to CL_SUCCESS if the
kernel is successfully copied. Otherwise it returns a NULL value with one of the following error
values returned in errcode_ret:

o CL_INVALID_KERNEL if kernel is not a valid kernel object.

o CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

e CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

205

5.9.4. Kernel Object Queries

To return information about a kernel object, call the function

cl_int clGetKernelInfo(
cl_kernel kernel,
cl_kernel_info param_name,
size_t param_value_size,
void* param_value,
Size_t* param_value_size_ret);

* kernel specifies the kernel object being queried.

» param_name specifies the information to query. The list of supported param_name types and the
information returned in param_value by clGetKernellnfo is described in the Kernel Object
Queries table.

* param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

» param_value_size is used to specify the size in bytes of memory pointed to by param_value. This
size must be > size of return type as described in the Kernel Object Queries table.

» param_value_size_ret returns the actual size in bytes of data being queried by param_name. If
param_value_size_ret is NULL, it is ignored.

Table 28. List of supported param_names by clGetKernellnfo

cl_kernel _info Return Type Info. returned in param_value

CL_KERNEL _FUNCTION_NAME char(] Return the kernel function
name.

CL_KERNEL _NUM_ARGS cl uint Return the number of
arguments to kernel.

CL_KERNEL_REFERENCE_COUNT'® cl_uint Return the kernel reference
count.

CL_KERNEL _CONTEXT cl_context Return the context associated

with kernel.

CL_KERNEL _PROGRAM cl_program Return the program object
associated with kernel.

206

cl_kernel info Return Type Info. returned in param_value

CL_KERNEL_ATTRIBUTES char(] Returns any attributes specified
using the __attribute__ OpenCL
C qualifier (or using an OpenCL
C++ qualifier syntax [[]]) with
the kernel function declaration
in the program source. These
attributes include attributes
described in the earlier OpenCL
C kernel language
specifications and other
attributes supported by an
implementation.

Attributes are returned as they
were declared inside
__attribute__((...)), with any
surrounding whitespace and
embedded newlines removed.
When multiple attributes are
present, they are returned as a
single, space delimited string.

For kernels not created from
OpenCL C source and the
clCreateProgramWithSource
API call the string returned
from this query will be empty.

16

The reference count returned should be considered immediately stale. It is unsuitable for
general use in applications. This feature is provided for identifying memory leaks.

clGetKernellnfo returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns
one of the following errors:

o CL_INVALID_VALUE if param_name is not valid, or if size in bytes specified by param_value_size is <
size of return type as described in the Kernel Object Queries table and param_value is not NULL.
o CL_INVALID_KERNEL if kernel is a not a valid kernel object.

* CL_OUT_OF _RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To return information about the kernel object that may be specific to a device, call the function

207

cl_int clGetKernelWorkGroupInfo(
cl_kernel kernel,
¢l _device id device,
cl_kernel_work_group_info param_name,
size_t param_value_size,
void* param_value,
Size_t* param_value_size_ret);

* kernel specifies the kernel object being queried.

* device identifies a specific device in the list of devices associated with kernel. The list of devices
is the list of devices in the OpenCL context that is associated with kernel. If the list of devices
associated with kernel is a single device, device can be a NULL value.

» param_name specifies the information to query. The list of supported param_name types and the
information returned in param_value by clGetKernelWorkGroupInfo is described in the
Kernel Object Device Queries table.

» param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

» param_value_size is used to specify the size in bytes of memory pointed to by param_value. This
size must be > size of return type as described in the Kernel Object Device Queries table.

» param_value_size_ret returns the actual size in bytes of data being queried by param_name. If
param_value_size_ret is NULL, it is ignored.

Table 29. List of supported param_names by clGetKernelWorkGroupInfo

cl_kernel_work_group_info Return Type Info. returned in param_value

CL_KERNEL _GLOBAL _WORK_SIZE size t[3] This provides a mechanism for
the application to query the
maximum global size that can
be used to execute a kernel (i.e.
global _work_size argument to
clEnqueueNDRangeKernel) on
a custom device given by
device or a built-in kernel on
an OpenCL device given by
device.

If device is not a custom device
and kernel is not a built-in
kernel,
clGetKernelWorkGroupInfo
returns the error CL_INVALID
VALUE.

208

cl_kernel work_group_info
CL_KERNEL_WORK_GROUP_SIZE

CL_KERNEL_COMPILE_WORK_GROUP_
SIZE

CL_KERNEL_LOCAL_MEM_SIZE

Return Type

size t

size t[3]

cl_ulong

Info. returned in param_value

This provides a mechanism for
the application to query the
maximum workgroup size that
can be used to execute the
kernel on a specific device
given by device. The OpenCL
implementation uses the
resource requirements of the
kernel (register usage etc.) to
determine what this work-
group size should be.

As a result and unlike CL _
DEVICE_MAX_WORK_GROUP_SIZE this
value may vary from one
kernel to another as well as one
device to another.

CL_KERNEL_WORK_GROUP_SIZE will
be less than or equal to CL_
DEVICE_MAX_WORK_GROUP_SIZE for
a given kernel object.

Returns the work-group size
specified in the kernel source
or IL.

If the work-group size is not
specified in the kernel source
or IL, (0, 0, 0) is returned.

Returns the amount of local
memory in bytes being used by
a kernel. This includes local
memory that may be needed by
an implementation to execute
the kernel, variables declared
inside the kernel with the
__local address qualifier and
local memory to be allocated
for arguments to the kernel
declared as pointers with the
__local address qualifier and
whose size is specified with
clSetKernelArg.

If the local memory size, for
any pointer argument to the
kernel declared with the
__local address qualifier, is not
specified, its size is assumed to
be 0.

209

cl_kernel work_group_info Return Type Info. returned in param_value

CL_KERNEL_PREFERRED_WORK _GROUP_ size_t Returns the preferred multiple
SIZE_MULTIPLE of work-group size for launch.

This is a performance hint.
Specifying a work-group size
that is not a multiple of the
value returned by this query as
the value of the local work size
argument to
clEnqueueNDRangeKernel
will not fail to enqueue the
kernel for execution unless the
work-group size specified is
larger than the device
maximum.

CL_KERNEL _PRIVATE _MEM_SIZE cl_ulong Returns the minimum amount

of private memory, in bytes,
used by each work-item in the
kernel. This value may include
any private memory needed by
an implementation to execute
the kernel, including that used
by the language built-ins and
variable declared inside the
kernel with the __private
qualifier.

clGetKernelWorkGroupInfo returns CL_SUCCESS if the function is executed successfully. Otherwise,
it returns one of the following errors:

CL_INVALID DEVICE if device is not in the list of devices associated with kernel or if device is NULL
but there is more than one device associated with kernel.

CL_INVALID_VALUE if param_name is not valid, or if size in bytes specified by param_value_size is <
size of return type as described in the Kernel Object Device Queries table and param_value is
not NULL.

CL_INVALID_VALUE if param_name is CL_KERNEL_GLOBAL_WORK_SIZE and device is not a custom device
and kernel is not a built-in kernel.

CL_INVALID_KERNEL if kernel is a not a valid kernel object.

CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To return information about a kernel object, call the function

210

cl_int clGetKernelSubGroupInfo(
cl_kernel kernel,
¢l _device id device,
cl_kernel_sub_group_info param_name,
size_t input_value_size,
const void* input_value,
size_t param_value_size,
void* param_value,
Size_t* param_value_size_ret);

* kernel specifies the kernel object being queried.

* device identifies a specific device in the list of devices associated with kernel. The list of devices
is the list of devices in the OpenCL context that is associated with kernel. If the list of devices
associated with kernel is a single device, device can be a NULL value.

* param_name specifies the information to query. The list of supported param_name types and the
information returned in param_value by clGetKernelSubGroupInfo is described in the Kernel
Object Subgroup Queries table.

* input_value_size is used to specify the size in bytes of memory pointed to by input_value. This
size must be == size of input type as described in the table below.

* input_value is a pointer to memory where the appropriate parameterization of the query is
passed from. If input_value is NULL, it is ignored.

» param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

» param_value_size is used to specify the size in bytes of memory pointed to by param_value. This
size must be > size of return type as described in the Kernel Object Subgroup Queries table.

» param_value_size_ret returns the actual size in bytes of data being queried by param_name. If
param_value_size_ret is NULL, it is ignored.

Table 30. List of supported param_names by clGetKernelSubGroupInfo

211

cl_kernel_sub_group_i Input Type

nfo

CL_KERNEL_MAX_SUB_
GROUP_SIZE_FOR_NDRANGE

CL_KERNEL_SUB_GROUP_
COUNT_FOR_NDRANGE

212

size t*

size t*

Return Type

size t

size t

Info. returned in
param_value

Returns the maximum
sub-group size for this
kernel. All sub-groups
must be the same size,
while the last subgroup
in any work-group (i.e.
the subgroup with the
maximum index) could
be the same or smaller
size.

The input_value must
be an array of size_t
values corresponding
to the local work size
parameter of the
intended dispatch. The
number of dimensions
in the ND-range will be
inferred from the value
specified for
input_value_size.

Returns the number of
sub-groups that will be
present in each work-
group for a given local
work size. All
workgroups, apart
from the last work-
group in each
dimension in the
presence of non-
uniform work-group
sizes, will have the
same number of sub-
groups.

The input_value must
be an array of size_t
values corresponding
to the local work size
parameter of the
intended dispatch. The
number of dimensions
in the ND-range will be
inferred from the value
specified for
input_value_size.

cl_kernel_sub_group_i Input Type

nfo

CL_KERNEL_LOCAL_SIZE_
FOR_SUB_GROUP_COUNT

size t

Return Type

size t[]

Info. returned in
param_value

Returns the local size
that will generate the
requested number of
sub-groups for the
kernel. The output
array must be an array
of size_t values
corresponding to the
local size parameter.
Any returned work-
group will have one
dimension. Other
dimensions inferred
from the value
specified for
param_value_size will
be filled with the value
1. The returned value
will produce an exact
number of sub-groups
and result in no partial
groups for an executing
kernel except in the
case where the last
work-group in a
dimension has a size
different from that of
the other groups. If no
work-group size can
accommodate the
requested number of
sub-groups, 0 will be
returned in each
element of the return
array.

213

cl_kernel_sub_group_i Input Type Return Type Info. returned in

nfo param_value
CL_KERNEL_MAX_NUM_SUB_ ignored size t This provides a
GROUPS mechanism for the

application to query
the maximum number
of sub-groups that may
make up each work-
group to execute a
kernel on a specific
device given by device.
The OpenCL
implementation uses
the resource
requirements of the
kernel (register usage
etc.) to determine what
this work-group size
should be. The
returned value may be
used to compute a
work-group size to
enqueue the kernel
with to give a round
number of sub-groups
for an enqueue.

CL_KERNEL_COMPILE_NUM_ ignored size t Returns the number of
SUB_GROUPS sub-groups specified in

the kernel source or IL.
If the sub-group count
is not specified then 0 is
returned.

clGetKernelSubGrouplInfo returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

214

CL_INVALID DEVICE if device is not in the list of devices associated with kernel or if device is NULL
but there is more than one device associated with kernel.

CL_INVALID_VALUE if param_name is not valid, or if size in bytes specified by param_value_size is <
size of return type as described in the Kernel Object Subgroup Queries table and param_value is
not NULL.

CL_INVALID_VALUE if param_name is CL_KERNEL_MAX_SUB_GROUP_SIZE_FOR_NDRANGE and the size in
bytes specified by input_value_size is not valid or if input_value is NULL.

CL_INVALID_KERNEL if kernel is a not a valid kernel object.

CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To return information about the arguments of a kernel, call the function

cl_int clGetKernelArgInfo(
cl_kernel kernel,
cl_uint arg_indx,
cl_kernel_arg_info param_name,
size_t param_value_size,
void* param_value,
Size_t* param_value_size_ret);

* kernel specifies the kernel object being queried.

* arg indx is the argument index. Arguments to the kernel are referred by indices that go from 0
for the leftmost argument to n - 1, where n is the total number of arguments declared by a
kernel.

» param_name specifies the argument information to query. The list of supported param_name
types and the information returned in param_value by clGetKernelArgInfo is described in the
Kernel Argument Queries table.

» param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

» param_value_size is used to specify the size in bytes of memory pointed to by param_value. This
size must be > size of return type as described in the Kernel Argument Queries table.

» param_value_size ret returns the actual size in bytes of data being queried by param_name. If

param_value_size_ret is NULL, it is ignored.

Kernel argument information is only available if the program object associated with kernel is
created with clCreateProgramWithSource and the program executable was built with the -cl
-kernel-arg-info option specified in options argument to clBuildProgram or clCompileProgram.

Table 31. List of supported param_names by clGetKernelArgInfo

cl_kernel_arg_info Return Type Info. returned in param_value

CL_KERNEL_ARG_ADDRESS_ cl_kernel_arg_a Returns the address qualifier specified for the

QUALIFIER ddress_qualifie argument given by arg_indx. This can be one of
r the following values:

CL_KERNEL_ARG_ADDRESS_GLOBAL
CL_KERNEL_ARG_ADDRESS_LOCAL
CL_KERNEL_ARG_ADDRESS_CONSTANT
CL_KERNEL _ARG_ADDRESS_PRIVATE

If no address qualifier is specified, the default

address qualifier which is CL_KERNEL_ARG_
ADDRESS_PRIVATE is returned.

215

cl_kernel_arg _info

CL_KERNEL_ARG_ACCESS_QUALIFIER cl_kernel arg_a
ccess_qualifier

Return Type

CL_KERNEL_ARG_TYPE_NAME char(]

CL_KERNEL_ARG_TYPE_QUALIFIER cl_kernel arg t

ype_qualifier

CL_KERNEL_ARG_NAME char(]

17

Info. returned in param_value

Returns the access qualifier specified for the
argument given by arg_indx. This can be one of
the following values:

CL_KERNEL_ARG_ACCESS_READ_ONLY
CL_KERNEL_ARG_ACCESS_WRITE_ONLY
CL_KERNEL_ARG_ACCESS_READ_WRITE
CL_KERNEL_ARG_ACCESS_NONE

If argument is not an image type and is not
declared with the pipe qualifier, CL_KERNEL_ARG_
ACCESS_NONE is returned. If argument is an image
type, the access qualifier specified or the default
access qualifier is returned.

Returns the type name specified for the
argument given by arg_indx. The type name
returned will be the argument type name as it
was declared with any whitespace removed. If
argument type name is an unsigned scalar type
(i.e. unsigned char, unsigned short, unsigned int,
unsigned long), uchar, ushort, uint and ulong
will be returned. The argument type name
returned does not include any type qualifiers.

Returns a bitfield describing one or more type
qualifiers specified for the argument given by
arg_indx. The returned values can be:

CL_KERNEL_ARG_TYPE_CONST"
CL_KERNEL_ARG_TYPE_RESTRICT
CL_KERNEL_ARG_TYPE_VOLATILE®
CL_KERNEL_ARG_TYPE_PIPE, or
CL_KERNEL_ARG_TYPE_NONE

CL_KERNEL_ARG_TYPE_NONE is returned for all
parameters passed by value.

Returns the name specified for the argument
given by arg_indx.

CL_KERNEL_ARG_TYPE_CONST is returned for CL_KERNEL_ARG_TYPE_QUALIFIER if the argument is
declared with the constant address space qualifier.

18

CL_KERNEL_ARG_TYPE_VOLATILE is returned for CL_KERNEL_ARG_TYPE_QUALIFIER if the argument is a
pointer and the referenced type is declared with the volatile qualifier. For example, a kernel
argument declared as global int volatile *x returns CL_KERNEL_ARG_TYPE_VOLATILE but a kernel
argument declared as global int * volatile x does not. Similarly, CL_KERNEL_ARG_TYPE_CONST is
returned if the argument is a pointer and the referenced type is declared with the restrict or

216

const qualifier. For example, a kernel argument declared as global int const *x returns
CL_KERNEL_ARG_TYPE_CONST but a kernel argument declared as global int * const x does not. CL_
KERNEL_ARG_TYPE_RESTRICT will be returned if the pointer type is marked restrict. For example,
global int * restrict x returns CL_KERNEL_ARG_TYPE_RESTRICT.

clGetKernelArgInfo returns CL SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

CL_INVALID_ARG_INDEX if arg indx is not a valid argument index.

CL_INVALID_VALUE if param_name is not valid, or if size in bytes specified by param_value size is <
size of return type as described in the Kernel Argument Queries table and param_value is not
NULL.

CL_KERNEL_ARG_INFO_NOT_AVAILABLE if the argument information is not available for kernel.

CL_INVALID_KERNEL if kernel is a not a valid kernel object.

5.10. Executing Kernels

To enqueue a command to execute a kernel on a device, call the function

cl_int clEnqueueNDRangeKernel(

cl_command_queue command_queue,
¢l _kernel kernel,

¢l _uint work _dim,

const size_t* global_work_offset,
const size_t* global_work_size,
const size_t* local _work_size,

¢l _uint num_events_in wait_list,
const cl_event* event wait_list,
cl_event* event);

* command_queue is a valid host command-queue. The kernel will be queued for execution on the
device associated with command_queue.

* kernel is a valid kernel object. The OpenCL context associated with kernel and command-queue
must be the same.

* work_dim is the number of dimensions used to specify the global work-items and work-items in
the work-group. work_dim must be greater than zero and less than or equal to CL_DEVICE_MAX_
WORK_ITEM_DIMENSIONS. If global work_size is NULL, or the value in any passed dimension is 0 then
the kernel command will trivially succeed after its event dependencies are satisfied and
subsequently update its completion event. The behavior in this situation is similar to that of an
enqueued marker, except that unlike a marker, an enqueued kernel with no events passed to
event_wait_list may run at any time.

» global_work_offset can be used to specify an array of work_dim unsigned values that describe
the offset used to calculate the global ID of a work-item. If global work_offset is NULL, the global
IDs start at offset (0, 0, 0).

» global_work_size points to an array of work_dim unsigned values that describe the number of

217

global work-items in work _dim dimensions that will execute the kernel function. The total
number of global work-items is computed as global work_size[0] x ... x global work_size
[work _dim - 1].

* local_work_size points to an array of work_dim unsigned values that describe the number of
work-items that make up a work-group (also referred to as the size of the work-group) that will
execute the kernel specified by kernel. The total number of work-items in a work-group is
computed as local work_size[0] x ... x local work_size[work_dim - 1]. The total number of work-
items in the work-group must be less than or equal to the CL_KERNEL_WORK_GROUP_SIZE value
specified in the Kernel Object Device Queries table, and the number of work-items specified in
local_work_size[0], ..., local work_size[work_dim - 1] must be less than or equal to the
corresponding values specified by CL_DEVICE_MAX_WORK_ITEM_SIZES[O], ..., CL_DEVICE_MAX_WORK_
ITEM_SIZES[work_dim - 1]. The explicitly specified local work_size will be used to determine how
to break the global work-items specified by global work_size into appropriate work-group
instances.

* event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must
be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must be valid
and num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act
as synchronization points. The context associated with events in event wait list and
command_queue must be the same. The memory associated with event_wait_list can be reused
or freed after the function returns.

* event returns an event object that identifies this particular kernel-instance. Event objects are
unique and can be used to identify a particular kernel-instance later on. If event is NULL, no
event will be created for this kernel-instance and therefore it will not be possible for the
application to query or queue a wait for this particular kernel-instance. If the event wait_list
and the event arguments are not NULL, the event argument should not refer to an element of the
event_wait_list array.

Enabling non-uniform work-groups requires the kernel's program to be compiled without the -cl
-uniform-work-group-size flag. If the program was created with clCreateProgramWithSource, non-
uniform work-groups are enabled only if the program was compiled with the -cl-std=CL2.0 flag
and without the -cl-uniform-work-group-size flag. If the program was created using clLinkProgram
and any of the linked programs were compiled in a way that only supports uniform work-group
sizes, the linked program only supports uniform work group sizes. If local work_size is specified
and the OpenCL kernel is compiled without non-uniform work-groups enabled, the values specified
in global work_size[0], ..., global work_size[work_dim - 1] must be evenly divisible by the
corresponding values specified in local work_size[0], ..., local work_size[work_dim - 1].

If non-uniform work-groups are enabled for the kernel, any single dimension for which the global
size is not divisible by the local size will be partitioned into two regions. One region will have work-
groups that have the same number of work items as was specified by the local size parameter in
that dimension. The other region will have work-groups with less than the number of work items
specified by the local size parameter in that dimension. The global IDs and group IDs of the work
items in the first region will be numerically lower than those in the second, and the second region
will be at most one work-group wide in that dimension. Work-group sizes could be non-uniform in
multiple dimensions, potentially producing work-groups of up to 4 different sizes in a 2D range and

218

8 different sizes in a 3D range.

If local_work_size is NULL and the kernel is compiled without support for non-uniform work-groups,
the OpenCL runtime will implement the ND-range with uniform work-group sizes. If
local_work_size is NULL and non-uniform-work-groups are enabled, the OpenCL runtime is free to
implement the ND-range using uniform or non-uniform work-group sizes, regardless of the
divisibility of the global work size. If the ND-range is implemented using non-uniform work-group
sizes, the work-group sizes, global IDs and group IDs will follow the same pattern as described in
above paragraph.

The work-group size to be used for kernel can also be specified in the program source or
intermediate language. In this case the size of work group specified by local work_size must match
the value specified in the program source.

These work-group instances are executed in parallel across multiple compute units or concurrently
on the same compute unit.

Each work-item is uniquely identified by a global identifier. The global ID, which can be read inside
the kernel, is computed using the value given by global work_size and global work_offset. In
addition, a work-item is also identified within a work-group by a unique local ID. The local ID,
which can also be read by the kernel, is computed using the value given by local work_size. The
starting local ID is always (0, 0, ..., 0).

clEnqueueNDRangeKernel returns CL_SUCCESS if the kernel-instance was successfully queued.
Otherwise, it returns one of the following errors:

o CL_INVALID_PROGRAM_EXECUTABLE if there is no successfully built program executable available for
device associated with command_queue.

o CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.
o CL_INVALID_KERNEL if kernel is not a valid kernel object.

o CL_INVALID_CONTEXT if context associated with command_queue and kernel are not the same or if
the context associated with command_queue and events in event_wait_list are not the same.

o CL_INVALID_KERNEL_ARGS if the kernel argument values have not been specified or if a kernel
argument declared to be a pointer to a type does not point to a named address space.

e CL_INVALID WORK_DIMENSION if work dim is not a valid value (i.e. a value between 1 and 3).

o CL_INVALID_GLOBAL_WORK_SIZE if any of the wvalues specified in global work_size[0],
global_work_size[work_dim - 1] exceed the maximum value representable by size_t on the
device on which the kernel-instance will be enqueued.

o CL_INVALID_GLOBAL_OFFSET if the value specified in global work_size + the corresponding values
in global work_offset for any dimensions is greater than the maximum value representable by
size t on the device on which the kernel-instance will be enqueued.

o CL_INVALID_WORK_GROUP_SIZE if local work_size is specified and does not match the required
work-group size for kernel in the program source.

o CL_INVALID_WORK_GROUP_SIZE if local work_size is specified and is not consistent with the required
number of sub-groups for kernel in the program source.

219

To

CL_INVALID_WORK_GROUP_SIZE if local work_size is specified and the total number of work-items in
the work-group computed as local work_size[0] x ... local work_size[work_dim - 1] is greater
than the value specified by CL_KERNEL_WORK_GROUP_SIZE in the Kernel Object Device Queries table.

CL_INVALID_WORK_GROUP_SIZE if the program was compiled with cl-uniform-work-group-size and
the number of work-items specified by global work_size is not evenly divisible by size of work-
group given by local work_size or by the required work-group size specified in the kernel
source.

CL_INVALID_WORK_ITEM_SIZE if the number of work-items specified in any of local work_size[0], ...
local_work_size[work_dim - 1] is greater than the corresponding values specified by CL_DEVICE_
MAX_WORK_ITEM_SIZES[O], ..., CL_DEVICE_MAX_WORK_ITEM_SIZES[work dim - 1].

CL_MISALIGNED_SUB_BUFFER_OFFSET if a sub-buffer object is specified as the value for an argument
that is a buffer object and the offset specified when the sub-buffer object is created is not
aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device associated with queue.

CL_INVALID_IMAGE_SIZE if an image object is specified as an argument value and the image
dimensions (image width, height, specified or compute row and/or slice pitch) are not supported
by device associated with queue.

CL_IMAGE_FORMAT_NOT_SUPPORTED if an image object is specified as an argument value and the
image format (image channel order and data type) is not supported by device associated with
queue.

CL_OUT_OF_RESOURCES if there is a failure to queue the execution instance of kernel on the
command-queue because of insufficient resources needed to execute the kernel. For example,
the explicitly specified local work_size causes a failure to execute the kernel because of
insufficient resources such as registers or local memory. Another example would be the number
of read-only image args used in kernel exceed the CL_DEVICE_MAX_READ_IMAGE_ARGS value for
device or the number of write-only and read-write image args used in kernel exceed the CL_
DEVICE_MAX_READ_WRITE_IMAGE_ARGS value for device or the number of samplers used in kernel
exceed CL_DEVICE_MAX_SAMPLERS for device.

CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for data store
associated with image or buffer objects specified as arguments to kernel.

CL_INVALID EVENT WAIT_LIST if event wait list is NULL and num events_ in wait list > 0, or
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

CL_INVALID_OPERATION if SVM pointers are passed as arguments to a kernel and the device does
not support SVM or if system pointers are passed as arguments to a kernel and/or stored inside
SVM allocations passed as kernel arguments and the device does not support fine grain system
SVM allocations.

CL_OUT_OF _RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

enqueue a command to execute a native C/C++ function not compiled using the OpenCL

compiler, call the function

220

cl_int clEnqueueNativeKernel(
cl_command_queue command_queue,
void (CL_CALLBACK* user_func)(void*),
void* args,
size_t cb_args,
cl_uint num_mem_objects,
const c1_mem* mem_list,
const void** args_mem_loc,
¢l _uint num_events_in wait_list,
const cl_event* event wait_list,
cl_event* event);

* command_queue is a valid host command-queue. A native user function can only be executed on
a command-queue created on a device that has CL_EXEC_NATIVE_KERNEL capability set in CL_
DEVICE_EXECUTION_CAPABILITIES as specified in the Device Queries table.

* user_func is a pointer to a host-callable user function.

* argsis a pointer to the args list that user_func should be called with.

* cb_args is the size in bytes of the args list that args points to.

* num_mem_objects is the number of buffer objects that are passed in args.

* mem_list is a list of valid buffer objects, if num_mem_objects > 0. The buffer object values
specified in mem_list are memory object handles (cl_mem values) returned by clCreateBuffer
or NULL.

* args_mem_loc is a pointer to appropriate locations that args points to where memory object
handles (cl_mem values) are stored. Before the user function is executed, the memory object
handles are replaced by pointers to global memory.

e event_wait _list, num_events_in_wait_list and event are as described in
clEnqueueNDRangeKernel.

The data pointed to by args and cb_args bytes in size will be copied and a pointer to this copied
region will be passed to user_func. The copy needs to be done because the memory objects (cl_mem
values) that args may contain need to be modified and replaced by appropriate pointers to global
memory. When clEnqueueNativeKernel returns, the memory region pointed to by args can be
reused by the application.

clEnqueueNativeKernel returns CL_SUCCESS if the user function execution instance was
successfully queued. Otherwise, it returns one of the following errors:
o CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

o CL_INVALID_CONTEXT if context associated with command_queue and events in event_wait_list are
not the same.

o CL_INVALID_VALUE if user_func is NULL.

o CL_INVALID_VALUE if args is a NULL value and cb_args > 0, or if args is a NULL value and
num_mem_objects > 0.

o CL_INVALID_VALUE if args is not NULL and cb_args is 0.

221

CL_INVALID_VALUE if num_mem_objects > 0 and mem_list or args_mem_loc are NULL.
CL_INVALID_VALUE if num_mem_objects = 0 and mem_list or args_mem_loc are not NULL.

CL_INVALID_OPERATION if the device associated with command_queue cannot execute the native
kernel.

CL_INVALID_MEM_OBJECT if one or more memory objects specified in mem_list are not valid or are
not buffer objects.

CL_OUT_OF _RESOURCES if there is a failure to queue the execution instance of kernel on the
command-queue because of insufficient resources needed to execute the kernel.

CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for data store
associated with buffer objects specified as arguments to kernel.

CL_INVALID_EVENT_WAIT_LIST if event wait list is NULL and num_events_in wait list > 0, or
event_wait_list is not NULL and num_events_in_wait _list is 0, or if event objects in event_wait_list
are not valid events.

CL_INVALID_OPERATION if SVM pointers are passed as arguments to a kernel and the device does
not support SVM or if system pointers are passed as arguments to a kernel and/or stored inside
SVM allocations passed as kernel arguments and the device does not support fine grain system
SVM allocations.

CL_OUT_OF _RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

The total number of read-only images specified as arguments to a kernel cannot
exceed CL_DEVICE_MAX_READ_IMAGE_ARGS. Each image array argument to a kernel
declared with the read_only qualifier counts as one image. The total number of
write-only images specified as arguments to a kernel cannot exceed CL_DEVICE_MAX_

0 WRITE_IMAGE_ARGS. Each image array argument to a kernel declared with the
write_only qualifier counts as one image.

The total number of read-write images specified as arguments to a kernel cannot
exceed CL_DEVICE_MAX_READ_WRITE_IMAGE_ARGS. Each image array argument to a
kernel declared with the read_write qualifier counts as one image.

5.11. Event Objects

Event objects can be used to refer to a kernel-instance command (clEnqueueNDRangeKernel,
clEnqueueNativeKernel), read, write, map and copy commands on memory objects (

clEnqueueReadBuffer, clEnqueueWriteBuffer, clEnqueueMapBuffer,
clEnqueueUnmapMemODbject, clEnqueueReadBufferRect, clEnqueueWriteBufferRect,
clEnqueueReadIlmage, clEnqueueWriteImage, clEnqueueMapImage, clEnqueueCopyBuffer,
clEnqueueCopylmage, clEnqueueCopyBufferRect, clEnqueueCopyBufferToImage,
clEnqueueCopylmageToBuffer), clEnqueueSVMMemcpy, clEnqueueSVMMemkFill,
clEnqueueSVMMap, clEnqueueSVMUnmap, clEnqueueSVMFree,

clEnqueueMarkerWithWaitList, clEnqueueBarrierWithWaitList (refer to Markers, Barriers and

222

Waiting for Events) or user events.

An event object can be used to track the execution status of a command. The API calls that enqueue
commands to a command-queue create a new event object that is returned in the event argument.
In case of an error enqueuing the command in the command-queue the event argument does not
return an event object.

The execution status of an enqueued command at any given point in time can be one of the
following:

* CL_QUEUED This indicates that the command has been enqueued in a command-queue. This is the
initial state of all events except user events.

e CL_SUBMITTED This is the initial state for all user events. For all other events, this indicates that
the command has been submitted by the host to the device.

* CL_RUNNING This indicates that the device has started executing this command. In order for the
execution status of an enqueued command to change from CL_SUBMITTED to CL_RUNNING, all events
that this command is waiting on must have completed successfully i.e. their execution status
must be CL_COMPLETE.

o CL_COMPLETE This indicates that the command has successfully completed.

* Error code The error code is a negative integer value and indicates that the command was
abnormally terminated. Abnormal termination may occur for a number of reasons such as a
bad memory access.

A command is considered to be complete if its execution status is CL_COMPLETE or is
a negative integer value.

If the execution of a command is terminated, the command-queue associated with
this terminated command, and the associated context (and all other command-

O queues in this context) may no longer be available. The behavior of OpenCL API
calls that use this context (and command-queues associated with this context) are
now considered to be implementation-defined. The user registered callback
function specified when context is created can be used to report appropriate error
information.

To create a user event object, call the function

cl_event clCreateUserEvent(
cl_context context,
cl_int* errcode _ret);

* context must be a valid OpenCL context.

* errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

User events allow applications to enqueue commands that wait on a user event to finish before the
command is executed by the device.

223

clCreateUserEvent returns a valid non-zero event object and errcode_ret is set to CL_SUCCESS if the
user event object is created successfully. Otherwise, it returns a NULL value with one of the following
error values returned in errcode_ret:

o CL_INVALID_CONTEXT if context is not a valid context.

o CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

e CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

The execution status of the user event object created is set to CL_SUBMITTED.

To set the execution status of a user event object, call the function

cl_int clSetUserEventStatus(
cl _event event,
cl_int execution_status);

* event is a user event object created using clCreateUserEvent.

* execution_status specifies the new execution status to be set and can be CL_COMPLETE or a
negative integer value to indicate an error. A negative integer value causes all enqueued
commands that wait on this user event to be terminated. clSetUserEventStatus can only be
called once to change the execution status of event.

224

If there are enqueued commands with user events in the event_wait_list argument
of clEnqueue* commands, the user must ensure that the status of these user
events being waited on are set using clSetUserEventStatus before any OpenCL
APIs that release OpenCL objects except for event objects are called; otherwise the
behavior is undefined.

For example, the following code sequence will result in undefined behavior of
clReleaseMemODbiject.

evl = clCreateUserEvent(ctx, NULL);

clEnqueueWriteBuffer(cq, bufl, CL_FALSE, ..., 1, &ev1, NULL);
ﬂ clEnqueueWriteBuffer(cq, buf2, CL_FALSE, ...);

clReleaseMemObject(buf2);

clSetUserEventStatus(evl, CL_COMPLETE);

The following code sequence, however, works correctly.

ev]l = clCreateUserEvent(ctx, NULL);

clEnqueueWriteBuffer(cq, buf1, CL_FALSE, ..., 1, &ev1, NULL);
clEnqueueWriteBuffer(cq, buf2, CL_FALSE, ...);
clSetUserEventStatus(evl, CL_COMPLETE);
clReleaseMemObject(buf2);

clSetUserEventStatus returns CL_SUCCESS if the function was executed successfully. Otherwise, it
returns one of the following errors:

o CL_INVALID_EVENT if event is not a valid user event object.

o CL_INVALID_VALUE if the execution_status is not CL_COMPLETE or a negative integer value.

o CL_INVALID_OPERATION if the execution_status for event has already been changed by a previous
call to clSetUserEventStatus.

» CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To wait for events to complete, call the function

cl_int clWaitForEvents(
¢l _uint num_events,
const cl_event* event_list);

* num_events is the number of events in event_list.

* event_list is a pointer to a list of event object handles.

225

This function waits on the host thread for commands identified by event objects in event_list to
complete. A command is considered complete if its execution status is CL_COMPLETE or a negative
value. The events specified in event_list act as synchronization points.

clWaitForEvents returns CL_SUCCESS if the execution status of all events in event_list is CL_COMPLETE.
Otherwise, it returns one of the following errors:

e CL_INVALID_VALUE if num_events is zero or event_list is NULL.
» CL_INVALID_CONTEXT if events specified in event_list do not belong to the same context.
» CL_INVALID_EVENT if event objects specified in event_list are not valid event objects.

o CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST if the execution status of any of the events in
event_list is a negative integer value.

» CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To return information about an event object, call the function

cl_int clGetEventInfo(
cl_event event,
cl_event_info param_name,
size_t param_value_size,
void* param_value,
size_t* param_value_size_ret);

* event specifies the event object being queried.

» param_name specifies the information to query. The list of supported param_name types and the
information returned in param_ value by clGetEventInfo is described in the Event Object
Queries table.

» param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

» param_value_size is used to specify the size in bytes of memory pointed to by param_value. This
size must be > size of return type as described in the Event Object Queries table.

» param_value_size_ret returns the actual size in bytes of data being queried by param_name. If
param_value_size_ret is NULL, it is ignored.
Table 32. List of supported param_names by clGetEventInfo

cl_event_info Return Type Info. returned in param value

CL_EVENT_COMMAND_QUEUE cl_command_queue Return the command-queue
associated with event. For user
event objects, a NULL value is
returned.

226

cl_event_info Return Type Info. returned in param _value

CL_EVENT_CONTEXT cl_context Return the context associated with
event.

CL_EVENT_COMMAND_TYPE cl_command_type Return the command associated
with event. Can be one of the
following values:

CL_COMMAND_NDRANGE_KERNEL
CL_COMMAND_NATIVE_KERNEL
CL_COMMAND_READ_BUFFER
CL_COMMAND_WRITE_BUFFER
CL_COMMAND_COPY_BUFFER
CL_COMMAND_READ_IMAGE
CL_COMMAND_WRITE_IMAGE
CL_COMMAND_COPY_IMAGE
CL_COMMAND_COPY_BUFFER_TO_IMAGE
CL_COMMAND_COPY_IMAGE_TO_BUFFER
CL_COMMAND_MAP_BUFFER
CL_COMMAND_MAP_IMAGE
CL_COMMAND_UNMAP_MEM_OBJECT
CL_COMMAND_MARKER
CL_COMMAND_ACQUIRE_GL_OBJECTS
CL_COMMAND_RELEASE_GL_OBJECTS
CL_COMMAND_READ_BUFFER_RECT
CL_COMMAND_WRITE_BUFFER_RECT
CL_COMMAND_COPY_BUFFER_RECT
CL_COMMAND_USER
CL_COMMAND_BARRIER
CL_COMMAND_MIGRATE_MEM_OBJECTS
CL_COMMAND_FILL_BUFFER
CL_COMMAND_FILL_IMAGE
CL_COMMAND_SVM_FREE
CL_COMMAND_SVM_MEMCPY
CL_COMMAND_SVM_MEMFILL
CL_COMMAND_SVM_MAP
CL_COMMAND_SVM_UNMAP

227

cl_event_info Return Type Info. returned in param_value

CL_EVEygT_COMMAND_EXECUTION_ cl int Return the execution status of the
STATUS command identified by event. Valid
values are:

CL_QUEUED (command has been
enqueued in the command-queue),

CL_SUBMITTED (enqueued command
has been submitted by the host to
the device associated with the
command-queue),

CL_RUNNING (device is currently
executing this command),

CL_COMPLETE (the command has
completed), or

Error code given by a negative
integer value. (command was
abnormally terminated - this may
be caused by a bad memory access
etc.). These error codes come from
the same set of error codes that are
returned from the platform or
runtime API calls as return values
or errcode_ret values.

CL_EVENT_REFERENCE_COUNT*® ¢l uint Return the event reference count.

19
The error code values are negative, and event state values are positive. The event state values
are ordered from the largest value CL_QUEUED for the first or initial state to the smallest value (CL_

COMPLETE or negative integer value) for the last or complete state. The value of CL_COMPLETE and
CL_SUCCESS are the same.

20

The reference count returned should be considered immediately stale. It is unsuitable for
general use in applications. This feature is provided for identifying memory leaks.

Using clGetEventInfo to determine if a command identified by event has finished execution (i.e. CL_
EVENT_COMMAND_EXECUTION_STATUS returns CL_COMPLETE) is not a synchronization point. There are no
guarantees that the memory objects being modified by command associated with event will be
visible to other enqueued commands.

clGetEventInfo returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns
one of the following errors:

o CL_INVALID_VALUE if param_name is not valid, or if size in bytes specified by param_value_size is <
size of return type as described in the Kernel Argument Queries table and param_value is not

228

NULL.
o CL_INVALID_VALUE if information to query given in param_name cannot be queried for event.
o CL_INVALID_EVENT if event is a not a valid event object.

o CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To register a user callback function for a specific command execution status, call the function

cl_int clSetEventCallback(
cl_event event,
cl_int command_exec_callback_type,
void (CL_CALLBACK* pfn_notify)(cl_event event, cl_int type, void *user_data),
void* user_data);

* event is a valid event object.

» command_exec_callback_type specifies the command execution status for which the callback is
registered. The command execution callback values for which a callback can be registered are:
CL_SUBMITTED, CL_RUNNING, or CL_COMPLETE*!. There is no guarantee that the callback functions
registered for various execution status values for an event will be called in the exact order that
the execution status of a command changes. Furthermore, it should be noted that receiving a
call back for an event with a status other than CL_COMPLETE, in no way implies that the memory
model or execution model as defined by the OpenCL specification has changed. For example, it
is not valid to assume that a corresponding memory transfer has completed unless the event is
in a state CL_COMPLETE.

* pfn_event_notify is the event callback function that can be registered by the application. This
callback function may be called asynchronously by the OpenCL implementation. It is the
applications responsibility to ensure that the callback function is thread-safe. The parameters to
this callback function are:

o event is the event object for which the callback function is invoked.

o event_command_exec_status is equal to the command_exec_callback_type used while
registering the callback. Refer to the Kernel Argument Queries table for the command
execution status values. If the callback is called as the result of the command associated with
event being abnormally terminated, an appropriate error code for the error that caused the
termination will be passed to event_command_exec_status instead.

o user_data is a pointer to user supplied data.
* user_data will be passed as the user_data argument when pfn_notify is called. user_data can be

NULL.

21

The callback function registered for a command_exec_callback_type value of CL_COMPLETE will
be called when the command has completed successfully or is abnormally terminated.

229

The registered callback function will be called when the execution status of command associated
with event changes to an execution status equal to or past the status specified by
command_exec_status.

Each call to clSetEventCallback registers the specified user callback function on a callback stack
associated with event. The order in which the registered user callback functions are called is
undefined.

All callbacks registered for an event object must be called. All enqueued callbacks shall be called
before the event object is destroyed. Callbacks must return promptly. The behavior of calling
expensive system routines, OpenCL API calls to create contexts or command-queues, or blocking
OpenCL operations from the following list below, in a callback is undefined.

e clFinish,

e clWaitForEvents,

* blocking calls to clEnqueueReadBuffer, clEnqueueReadBufferRect,

* clEnqueueWriteBuffer, clEnqueueWriteBufferRect,

* blocking calls to clEnqueueReadImage and clEnqueueWriteImage,

* blocking calls to clEnqueueMapBuffer and clEnqueueMapImage,

* blocking calls to clBuildProgram, clCompileProgram or clLinkProgram,

* blocking calls to clEnqueueSVMMemcpy or clEnqueueSVMMap
If an application needs to wait for completion of a routine from the above list in a callback, please
use the non-blocking form of the function, and assign a completion callback to it to do the
remainder of your work. Note that when a callback (or other code) enqueues commands to a
command-queue, the commands are not required to begin execution until the queue is flushed. In
standard usage, blocking enqueue calls serve this role by implicitly flushing the queue. Since
blocking calls are not permitted in callbacks, those callbacks that enqueue commands on a

command queue should either call clFlush on the queue before returning or arrange for clFlush to
be called later on another thread.

clSetEventCallback returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:
o CL_INVALID_EVENT if event is not a valid event object.

o CL_INVALID_VALUE if pfn_event_notify is NULL or if command_exec_callback_type is not CL_
SUBMITTED, CL_RUNNING, or CL_COMPLETE.

e CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To retain an event object, call the function

230

cl_int clRetainEvent(
cl_event event);

 event is the event object to be retained.

The event reference count is incremented. The OpenCL commands that return an event perform an
implicit retain.

clRetainEvent returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns one
of the following errors:

o CL_INVALID_EVENT if event is not a valid event object.

o CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

e CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To release an event object, call the function

cl_int clReleaseEvent(
cl_event event);

 event is the event object to be released.
The event reference count is decremented.

The event object is deleted once the reference count becomes zero, the specific command identified
by this event has completed (or terminated) and there are no commands in the command-queues of
a context that require a wait for this event to complete. Using this function to release a reference
that was not obtained by creating the object or by calling clRetainEvent causes undefined
behavior.

Developers should be careful when releasing their last reference count on events
created by clCreateUserEvent that have not yet been set to status of CL_COMPLETE
or an error. If the user event was used in the event_wait_list argument passed to a
clEnqueue* API or another application host thread is waiting for it in
clWaitForEvents, those commands and host threads will continue to wait for the

O event status to reach CL_COMPLETE or error, even after the application has released
the object. Since in this scenario the application has released its last reference
count to the user event, it would be in principle no longer valid for the application
to change the status of the event to unblock all the other machinery. As a result the
waiting tasks will wait forever, and associated events, cl_mem objects, command
queues and contexts are likely to leak. In-order command queues caught up in this
deadlock may cease to do any work.

clReleaseEvent returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns

231

one of the following errors:

o CL_INVALID_EVENT if event is not a valid event object.

o CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.12. Markers, Barriers and Waiting for Events

To enqueue a marker command which waits for events or commands to complete, call the function

cl_int clEnqueueMarkerWithWaitList(
cl_command_queue command_queue,
cl_uint num_events_in_wait_list,
const cl_event* event wait_list,
cl_event* event);

* command_queue is a valid host command-queue.

* event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed.

* event returns an event object that identifies this particular command. Event objects are unique
and can be used to identify this marker command later on. event can be NULL in which case it
will not be possible for the application to query the status of this command or queue a wait for
this command to complete. If the event_wait_list and the event arguments are not NULL, the event
argument should not refer to an element of the event_wait_list array.

If event wait list is NULL, num_events_in_wait_list must be 0. If event_wait list is not NULL, the list of
events pointed to by event_wait_list must be valid and num_events_in_wait_list must be greater than
0. The events specified in event_wait_list act as synchronization points. The context associated with
events in event_wait_list and command_queue must be the same. The memory associated with
event_wait_list can be reused or freed after the function returns.

If event wait_list is NULL, then this particular command waits until all previous enqueued
commands to command_queue have completed.

The marker command either waits for a list of events to complete, or if the list is empty it waits for
all commands previously enqueued in command_queue to complete before it completes. This
command returns an event which can be waited on, i.e. this event can be waited on to insure that
all events either in the event wait_list or all previously enqueued commands, queued before this
command to command_queue, have completed.

clEnqueueMarkerWithWaitList returns CL_SUCCESS if the function is successfully executed.
Otherwise, it returns one of the following errors:

o CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

232

o CL_INVALID_CONTEXT if context associated with command_queue and events in event_wait_list are
not the same.

e CL_INVALID EVENT WAIT_LIST if event wait list is NULL and num_events in wait_list > 0, or
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

* CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To enqueue a barrier command which waits for events or commands to complete, call the function

cl_int clEnqueueBarrierWithWaitList(
cl_command_queue command_queue,
¢l _uint num_events_in wait_list,
const cl_event* event wait_list,
cl_event* event);

* command_queue is a valid host command-queue.

* event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed.

o If event_wait _list is NULL, num_events_in wait_list must be 0. If event wait_list is not NULL, the list
of events pointed to by event wait_list must be valid and num_events_in_wait_list must be
greater than 0. The events specified in event_wait_list act as synchronization points. The context
associated with events in event_wait_list and command_queue must be the same. The memory
associated with event_wait_list can be reused or freed after the function returns.

* event returns an event object that identifies this particular command. Event objects are unique
and can be used to identify this barrier command later on. event can be NULL in which case it
will not be possible for the application to query the status of this command or queue a wait for
this command to complete. If the event_wait_list and the event arguments are not NULL, the event
argument should not refer to an element of the event_wait _list array.

If event wait_list is NULL, then this particular command waits until all previous enqueued
commands to command_queue have completed.

The barrier command either waits for a list of events to complete, or if the list is empty it waits for
all commands previously enqueued in command_queue to complete before it completes. This
command blocks command execution, that is, any following commands enqueued after it do not
execute until it completes. This command returns an event which can be waited on, i.e. this event
can be waited on to insure that all events either in the event wait_list or all previously enqueued
commands, queued before this command to command_queue, have completed.

clEnqueueBarrierWithWaitList returns CL_SUCCESS if the function is successfully executed.
Otherwise, it returns one of the following errors:

o CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

233

o CL_INVALID_CONTEXT if context associated with command_queue and events in event_wait_list are
not the same.

e CL_INVALID EVENT WAIT_LIST if event wait list is NULL and num_events in wait_list > 0, or
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

o CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.13. Out-of-order Execution of Kernels and Memory
Object Commands

The OpenCL functions that are submitted to a command-queue are enqueued in the order the calls
are made but can be configured to execute in-order or out-of-order. The properties argument in
clCreateCommandQueueWithProperties can be used to specify the execution order.

If the CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE property of a command-queue is not set, the
commands enqueued to a command-queue execute in order. For example, if an application calls
clEnqueueNDRangeKernel to execute kernel A followed by a clEnqueueNDRangeKernel to
execute kernel B, the application can assume that kernel A finishes first and then kernel B is
executed. If the memory objects output by kernel A are inputs to kernel B then kernel B will see the
correct data in memory objects produced by execution of kernel A. If the CL_QUEUE_OUT_OF _ORDER_
EXEC_MODE_ENABLE property of a command-queue is set, then there is no guarantee that kernel A will
finish before kernel B starts execution.

Applications can configure the commands enqueued to a command-queue to execute out-of-order
by setting the CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE property of the command-queue. This can be
specified when the command-queue is created. In out-of-order execution mode there is no
guarantee that the enqueued commands will finish execution in the order they were queued. As
there is no guarantee that kernels will be executed in order, i.e. based on when the
clEnqueueNDRangeKernel calls are made within a command-queue, it is therefore possible that
an earlier clEnqueueNDRangeKernel call to execute kernel A identified by event A may execute
and/or finish later than a clEnqueueNDRangeKernel call to execute kernel B which was called by
the application at a later point in time. To guarantee a specific order of execution of kernels, a wait
on a particular event (in this case event A) can be used. The wait for event A can be specified in the
event_wait_list argument to clEnqueueNDRangeKernel for kernel B.

In addition, a marker (clIEnqueueMarkerWithWaitList) or a barrier
(clEnqueueBarrierWithWaitList) command can be enqueued to the command-queue. The marker
command ensures that previously enqueued commands identified by the list of events to wait for
(or all previous commands) have finished. A barrier command is similar to a marker command, but
additionally guarantees that no later-enqueued commands will execute until the waited-for
commands have executed.

Similarly, commands to read, write, copy or map memory objects that are enqueued after
clEnqueueNDRangeKernel or clEnqueueNativeKernel commands are not guaranteed to wait for

234

kernels scheduled for execution to have completed (if the CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE
property is set). To ensure correct ordering of commands, the event object returned by
clEnqueueNDRangeKernel or clEnqueueNativeKernel can be used to enqueue a wait for event or
a barrier command can be enqueued that must complete before reads or writes to the memory
object(s) occur.

5.14. Profiling Operations on Memory Objects and
Kernels

This section describes the profiling of OpenCL functions that are enqueued as commands to a
command-queue. Profiling of OpenCL commands can be enabled by using a command-queue
created with CL_QUEUE_PROFILING_ENABLE flag set in properties argument to
clCreateCommandQueueWithProperties. When profiling is enabled, the event objects that are
created from enqueuing a command store a timestamp for each of their state transitions.

To return profiling information for a command associated with an event when profiling is enabled,
call the function

cl_int clGetEventProfilingInfo(
cl_event event,
cl_profiling_info param_name,
size_t param_value_size,
void* param_value,
size_t* param_value_size_ret);

* event specifies the event object.

» param_name specifies the profiling data to query. The list of supported param_name types and
the information returned in param_ value by clGetEventProfilingInfo is described in the Event
Profiling Queries table.

» param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

» param_value_size is used to specify the size in bytes of memory pointed to by param_value. This
size must be > size of return type as described in the Event Profiling Queries table.

» param_value_size_ret returns the actual size in bytes of data being queried by param_name. If
param_value_size_ret is NULL, it is ignored.

Table 33. List of supported param_names by clGetEventProfilingInfo

cl_profiling_info Return Type Info. returned in param_value

CL_PROFILING_COMMAND_QUEUED cl_ulong A 64-bit value that describes
the current device time counter
in nanoseconds when the
command identified by event is
enqueued in a command-queue
by the host.

235

cl_profiling info Return Type Info. returned in param_value

CL_PROFILING_COMMAND_SUBMIT cl_ulong A 64-bit value that describes
the current device time counter
in nanoseconds when the
command identified by event
that has been enqueued is
submitted by the host to the
device associated with the
command-queue.

CL_PROFILING_COMMAND_START cl_ulong A 64-bit value that describes
the current device time counter
in nanoseconds when the
command identified by event
starts execution on the device.

CL_PROFILING_COMMAND_END cl_ulong A 64-bit value that describes
the current device time counter
in nanoseconds when the
command identified by event
has finished execution on the
device.

CL_PROFILING_COMMAND_COMPLETE cl_ulong A 64-bit value that describes
the current device time counter
in nanoseconds when the
command identified by event
and any child commands
enqueued by this command on
the device have finished
execution.

The unsigned 64-bit values returned can be used to measure the time in nano-seconds consumed by
OpenCL commands.

OpenCL devices are required to correctly track time across changes in device frequency and power
states. The CL_DEVICE_PROFILING_TIMER_RESOLUTION specifies the resolution of the timer i.e. the
number of nanoseconds elapsed before the timer is incremented.

clGetEventProfilingInfo returns CL_SUCCESS if the function is executed successfully and the
profiling information has been recorded. Otherwise, it returns one of the following errors:

o CL_PROFILING_INFO_NOT_AVAILABLE if the CL_QUEUE_PROFILING_ENABLE flag is not set for the
command-queue, if the execution status of the command identified by event is not CL_COMPLETE
or if event is a user event object.

o CL_INVALID_VALUE if param_name is not valid, or if size in bytes specified by param_value_size is <
size of return type as described in the Event Profiling Queries table and param_value is not NULL.

o CL_INVALID_EVENT if event is a not a valid event object.

o CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL

236

implementation on the host.

5.15. Flush and Finish

To flush commands to a device, call the function

cl_int clFlush(
cl_command_queue command_queue);

* command_queue is the command queue to flush.

All previously queued OpenCL commands in command_queue are issued to the device associated
with command_queue. clFlush only guarantees that all queued commands to command_queue will
eventually be submitted to the appropriate device. There is no guarantee that they will be complete
after clFlush returns.

Any blocking commands queued in a command-queue and clReleaseCommandQueue perform an
implicit flush of the command-queue. These blocking commands are clEnqueueReadBuffer,
clEnqueueReadBufferRect, clEnqueueReadlmage, with blocking read set to CL_TRUE;
clEnqueueWriteBuffer, clEnqueueWriteBufferRect, clEnqueueWriteImage with blocking write
set to CL_TRUE; clEnqueueMapBuffer, clEnqueueMapImage with blocking map set to CL_TRUE;
clEnqueueSVMMemcpy with blocking copy set to CL_TRUE; clEnqueueSVMMap with blocking map
set to CL_TRUE or clWaitForEvents.

To use event objects that refer to commands enqueued in a command-queue as event objects to
wait on by commands enqueued in a different command-queue, the application must call a clFlush
or any blocking commands that perform an implicit flush of the command-queue where the
commands that refer to these event objects are enqueued.

clFlush returns CL_SUCCESS if the function call was executed successfully. Otherwise, it returns one
of the following errors:

o CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

* CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To wait for completion of commands on a device, call the function

cl_int clFinish(
cl_command_queue command_queue);

* command_queue is the command queue to wait for.

All previously queued OpenCL commands in command_queue are issued to the associated device,
and the function blocks until all previously queued commands have completed. clFinish does not

237

return until all previously queued commands in command_queue have been processed and
completed. clFinish is also a synchronization point.

cIFinish returns CL_SUCCESS if the function call was executed successfully. Otherwise, it returns one
of the following errors:
o CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

o CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

o CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

238

Chapter 6. Associated OpenCL specification

6.1. SPIR-V Intermediate language

The OpenCL 2.2 specification requires support for the SPIR-V intermediate language that allows
offline, or linked online, compilation to a binary format that may be consumed by the
clCreateProgramWithlIL interface.

The OpenCL specification includes a specification for the SPIR-V 1.2 intermediate language as a
cross-platform input language. In addition, platform vendors may support their own IL if this is
appropriate. The OpenCL runtime will return a list of supported IL versions using the CL_DEVICE_IL_
VERSION parameter to the clGetDeviceInfo query.

6.2. Extensions to OpenCL

In addition to the specification of core features, OpenCL provides a number of extensions to the
API, kernel language or intermediate representation. These features are defined in the OpenCL 2.2
extensions specification document.

Extensions defined against earlier versions of the OpenCL specifications, whether the API or
language specification, are defined in the matching versions of the extension specification
document.

6.3. Support for earlier OpenCL C kernel languages

The OpenCL C kernel language is not defined in the OpenCL 2.2 specification. New language
features are described in the OpenCL C++ specification as well as the SPIR-V 1.2 specification and in
kernel languages that target it. A kernel language defined by any of the OpenCL 1.0, OpenCL 1.1,
OpenCL 1.2 and OpenCL 2.0 kernel language specifications as well as kernels language extensions
defined by the matching versions of OpenCL extension specifications are valid to pass to
clCreateProgramWithSource executing against an OpenCL 2.2 runtime.

239

Chapter 7. OpenCL Embedded Profile

The OpenCL 2.2 specification describes the feature requirements for desktop platforms. This section
describes the OpenCL 2.2 embedded profile that allows us to target a subset of the OpenCL 2.2
specification for handheld and embedded platforms. The optional extensions defined in the
OpenCL 2.2 Extension Specification apply to both profiles.

The OpenCL 2.2 embedded profile has the following restrictions:

1.

64 bit integers i.e. long, ulong including the appropriate vector data types and operations on 64-
bit integers are optional. The cles_khr_int64' extension string will be reported if the embedded
profile implementation supports 64-bit integers.

1

Note that the performance of 64-bit integer arithmetic can vary significantly between
embedded devices.

2. Suppertfor-3bimagesisoptionak

240

If CL_DEVICE_IMAGE3D_MAX_WIDTH, CL_DEVICE_IMAGE3D_MAX_HEIGHT and CL_DEVICE_IMAGE3D_MAX_DEPTH
are zero, the call to clCreateImage in the embedded profile will fail to create the 3D image. The
errcode_ret argument in clCreateImage returns CL_INVALID_OPERATION. Declaring arguments of
type image3d_t in a kernel will result in a compilation error.

If CL_DEVICE_IMAGE3D_MAX_WIDTH, CL_DEVICE_IMAGE3D_MAX_HEIGHT and CL_DEVICE_IMAGE3D_MAX_DEPTH >
0, 3D images are supported by the OpenCL embedded profile implementation. clCreateImage
will work as defined by the OpenCL specification. The image3d_t data type can be used in a
kernel(s).

If cl_khr_fp16 extension is supported.

The mandated minimum single precision floating-point capability given by CL_DEVICE_SINGLE_
FP_CONFIG is CL_FP_ROUND_TO_ZERO or CL_FP_ROUND_TO_NEAREST. If CL_FP_ROUND_TO_NEAREST is
supported, the default rounding mode will be round to nearest even; otherwise the default
rounding mode will be round to zero.

The single precision floating-point operations (addition, subtraction and multiplication) shall be
correctly rounded. Zero results may always be positive 0.0. The accuracy of division and sqrt are
given in the SPIR-V OpenCL environment specification.

If CL_FP_INF_NAN is not set in CL_DEVICE_SINGLE_FP_CONFIG, and one of the operands or the result of
addition, subtraction, multiplication or division would signal the overflow or invalid exception
(see IEEE 754 specification), the value of the result is implementation-defined. Likewise, single
precision comparison operators (<, >, <=, >=, ==, =) return implementation-defined values when
one or more operands is a NaN.

In all cases, conversions (see the SPIR-V OpenCL environment specification) shall be correctly
rounded as described for the FULL_PROFILE, including those that consume or produce an INF
or NaN. The built-in math functions shall behave as described for the FULL_PROFILE, including
edge case behavior but with slightly different accuracy rules. Edge case behavior and accuracy
rules are described in the SPIR-V OpenCL environment specification.

Note

If addition, subtraction and multiplication have default round to zero rounding
mode, then fract, fma and fdim shall produce the correctly rounded result for
0 round to zero rounding mode.

This relaxation of the requirement to adhere to IEEE 754 requirements for
basic floating-point operations, though extremely undesirable, is to provide
flexibility for embedded devices that have lot stricter requirements on
hardware area budgets.

. Denormalized numbers for the half data type which may be generated when converting a float
to a half using variants of the vstore_half function or when converting from a half to a float
using variants of the vload_half function can be flushed to zero. The SPIR-V environment
specification for details.

. The precision of conversions from CL_UNORM_INT8, CL_SNORM_INT8, CL_UNORM_INT16, CL_SNORM_INT16,
CL_UNORM_INT_101010, and CL_UNORM_INT_101010_2 to float is < 2 ulp for the embedded profile
instead of < 1.5 ulp as defined in the full profile. The exception cases described in the full profile
and given below apply to the embedded profile.

For CL_UNORM_INTS

o 0 must convert to 0.0f and

o 255 must convert to 1.0f
For CL_UNORM_INT16

o 0 must convert to 0.0f and

o 65535 must convert to 1.0f
For CL_SNORM_INT8

o -128 and -127 must convert to -1.0f,
o 0 must convert to 0.0f and

o 127 must convert to 1.0f

For CL_SNORM_INT16

241

o -32768 and -32767 must convert to -1.0f,
o 0 must convert to 0.0f and

o 32767 must convert to 1.0f
For CL_UNORM_INT_ 101010

o 0 must convert to 0.0f and

o 1023 must convert to 1.0f
For CL_UNORM_INT 101010 2

o 0 must convert to 0.0f and
o 1023 must convert to 1.0f (for RGB)

o 3 must convert to 1.0f (for A)

The following optional extensions defined in the OpenCL 2.2 Extension Specification are available
to the embedded profile:

e cl_khr int64 base atomics
e cl_khr_int64 extended_atomics
* cl_khr_fp16

¢ cles_khr_int64. If double precision is supported i.e. CL_DEVICE_DOUBLE_FP_CONFIG is not zero, then
cles_khr_int64 must also be supported.

CL_PLATFORM_PROFILE defined in the OpenCL Platform Queries table will return the string
EMBEDDED_PROFILE if the OpenCL implementation supports the embedded profile only.

The minimum maximum values specified in the OpenCL Device Queries table that have been
modified for the OpenCL embedded profile are listed in the OpenCL Embedded Device Queries
table.

Table 34. List of supported param_names by clGetDevicelnfo for embedded profile

cl_device_info Return Type Description

CL_DEVICE_MAX_READ_IMAGE_ARGS c]_uint Max number of image objects
arguments of a kernel declared
with the read_only qualifier.
The minimum value is 8 if CL _
DEVICE_IMAGE_SUPPORT is CL_TRUE.

CL_DEVICE_MAX_WRITE_IMAGE_ARGS c]_uint Max number of image objects
arguments of a kernel declared
with the write_only qualifier.
The minimum value is 8 if CL_
DEVICE_IMAGE_SUPPORT is CL_TRUE.

242

cl_device_info

CL_DEVICE_MAX_READ_WRITE_
IMAGE_ARGS

CL_DEVICE_IMAGE2D_MAX_WIDTH

CL_DEVICE_IMAGE2D_MAX_HEIGHT

CL_DEVICE_IMAGE3D_MAX_WIDTH

CL_DEVICE_IMAGE3D_MAX_HEIGHT

CL_DEVICE_IMAGE3D_MAX_DEPTH

CL_DEVICE_IMAGE_MAX_BUFFER_
SIZE

CL_DEVICE_IMAGE_MAX_ARRAY_SIZE

CL_DEVICE_MAX_SAMPLERS

CL_DEVICE_MAX_PARAMETER_SIZE

Return Type

cl_uint

size t

size t

size t

size t

size t

size t

size t

cl_uint

size t

Description

Max number of image objects
arguments of a kernel declared
with the write_only or
read_write qualifier. The
minimum value is 8 if CL _
DEVICE_IMAGE_SUPPORT is CL_TRUE.

Max width of 2D image in
pixels. The minimum value is
2048 if CL_DEVICE_IMAGE_SUPPORT
is CL_TRUE.

Max height of 2D image in
pixels. The minimum value is
2048 if CL_DEVICE_IMAGE_SUPPORT
is CL_TRUE.

Max width of 3D image in
pixels. The minimum value is
2048 if CL_DEVICE_IMAGE_SUPPORT
is CL_TRUE.

Max height of 3D image in
pixels. The minimum value is
2048.

Max depth of 3D image in
pixels. The minimum value is
2048.

Max number of pixels for a 1D
image created from a buffer
object.

The minimum value is 2048 if
CL_DEVICE IMAGE SUPPORT is CL_
TRUE.

Max number of images in a 1D
or 2D image array.

The minimum value is 256 if CL_
DEVICE_IMAGE_SUPPORT is CL_TRUE.

Maximum number of samplers
that can be used in a kernel.

The minimum value is 8 if CL _
DEVICE_IMAGE_SUPPORT is CL_TRUE.

Max size in bytes of all
arguments that can be passed to
a kernel. The minimum value is
256 bytes for devices that are
not of type CL_DEVICE_TYPE_
CUSTOM.

243

cl_device_info Return Type
CL_DEVICE_SINGLE_FP_CONFIG C]_device_fp_confj_g

CL_DEVICE_MAX_CONSTANT_BUFFER_ ¢l_ulong
SIZE B

244

Description

Describes single precision
floating-point capability of the
device. This is a bit-field that
describes one or more of the
following values:

CL_FP_DENORM - denorms are
supported

CL_FP_INF_NAN - INF and quiet
NaNs are supported.

CL_FP_ROUND_TO_NEAREST - round
to nearest even rounding mode
supported

CL_FP_ROUND_TO_ZERO - round to
zero rounding mode supported

CL_FP_ROUND_TO_INF - round to
positive and negative infinity
rounding modes supported

CL_FP_FMA - IEEE754-2008 fused
multiply-add is supported.

CL_FP_CORRECTLY_ROUNDED_
DIVIDE_SQRT - divide and sqrt are
correctly rounded as defined by
the IEEE754 specification.

CL_FP_SOFT_FLOAT - Basic
floating-point operations (such
as addition, subtraction,
multiplication) are
implemented in software.

The mandated minimum
floating-point capability is: CL_
FP_ROUND_TO_ZERO or CL_FP_
ROUND_TO_NEAREST for devices
that are not of type CL_DEVICE_
TYPE_CUSTOM.

Max size in bytes of a constant
buffer allocation. The minimum
value is 1 KB for devices that
are not of type CL_DEVICE_TYPE_
CUSTOM.

cl_device_info Return Type
CL_DEVICE_MAX_CONSTANT_ARGS cl_uint

CL_DEVICE_LOCAL_MEM_SIZE cl_ulong

CL_DEVICE_COMPILER_AVAILABLE ¢ hool

CL_DEVICE_LINKER_AVAILABLE cl_bool

CL_DEVICE_QUEUE_ON_DEVICE_MAX_ ¢l uint
SIZE B

CL_DEVICE_PRINTF_BUFFER_SIZE size t

Description

Max number of arguments
declared with the __constant
qualifier in a kernel. The
minimum value is 4 for devices
that are not of type CL_DEVICE_
TYPE_CUSTOM.

Size of local memory arena in
bytes. The minimum value is 1
KB for devices that are not of
type CL_DEVICE_TYPE_CUSTOM.

Is CL_FALSE if the
implementation does not have a
compiler available to compile
the program source.

Is CL_TRUE if the compiler is
available. This can be CL_FALSE
for the embedded platform
profile only.

Is CL_FALSE if the
implementation does not have a
linker available. Is CL_TRUE if the
linker is available.

This can be CL_FALSE for the
embedded platform profile
only.

This must be CL_TRUE if CL _
DEVICE _COMPILER_AVAILABLE is CL_
TRUE.

The max. size of the device
queue in bytes. The minimum
value is 64 KB for the embedded
profile

Maximum size in bytes of the
internal buffer that holds the
output of printf calls from a
kernel. The minimum value for
the EMBEDDED profile is 1 KB.

If CL_DEVICE_IMAGE_SUPPORT specified in the OpenCL Device Queries table is CL_TRUE, the values
assigned to CL_DEVICE_MAX_READ_IMAGE_ARGS, CL_DEVICE_MAX_WRITE_IMAGE_ARGS, CL_DEVICE_IMAGE2D_MAX_
WIDTH, CL_DEVICE_IMAGE2D_MAX_HEIGHT, CL_DEVICE_IMAGE3D_MAX_WIDTH, CL_DEVICE_IMAGE3D_MAX_HEIGHT,
CL_DEVICE_IMAGE3D_MAX_DEPTH, and CL_DEVICE_MAX_SAMPLERS by the implementation must be greater
than or equal to the minimum values specified in the OpenCL Embedded Device Queries table.

245

Appendix A: Shared Objects, Thread Safety

Shared OpenCL Objects

This section describes which objects can be shared across multiple command-queues created
within a host process.

OpenCL memory objects, program objects and kernel objects are created using a context and can be
shared across multiple command-queues created using the same context. Event objects can be
created when a command is queued to a command-queue. These event objects can be shared across
multiple command-queues created using the same context.

The application needs to implement appropriate synchronization across threads on the host
processor to ensure that the changes to the state of a shared object (such as a command-queue
object, memory object, program or kernel object) happen in the correct order (deemed correct by
the application) when multiple command-queues in multiple threads are making changes to the
state of a shared object.

A command-queue can cache changes to the state of a memory object on the device associated with
the command-queue. To synchronize changes to a memory object across command-queues, the
application must do the following:

In the command-queue that includes commands that modify the state of a memory object, the
application must do the following:

* Get appropriate event objects for commands that modify the state of the shared memory object.

 Call the cIFlush (or clFinish) API to issue any outstanding commands from this command-
queue.

In the command-queue that wants to synchronize to the latest state of a memory object, commands
queued by the application must use the appropriate event objects that represent commands that
modify the state of the shared memory object as event objects to wait on. This is to ensure that
commands that use this shared memory object complete in the previous command-queue before
the memory objects are used by commands executing in this command-queue.

The results of modifying a shared resource in one command-queue while it is being used by
another command-queue are undefined.

Multiple Host Threads

All OpenCL API calls are thread-safe’ except those that modify the state of cl kernel objects:
clSetKernelArg, clSetKernelArgSVMPointer, clSetKernelExecInfo and clCloneKernel.
clSetKernelArg , clSetKernelArgSVMPointer, clSetKernelExecInfo and clCloneKernel are safe
to call from any host thread, and safe to call re-entrantly so long as concurrent calls to any
combination of these API calls operate on different cl_kernel objects. The state of the cl_kernel
object is undefined if clSetKernelArg, clSetKernelArgSVMPointer, clSetKernelExecInfo or
clCloneKernel are called from multiple host threads on the same cl_kernel object at the same time®.

246

Please note that there are additional limitations as to which OpenCL APIs may be called from
OpenCL callback functions.

1

Please refer to the OpenCL glossary for the OpenCL definition of thread-safe. This definition may
be different from usage of the term in other contexts.

There is an inherent race condition in the design of OpenCL that occurs between setting a kernel
argument and using the kernel with clEnqueueNDRangeKernel. Another host thread might
change the kernel arguments between when a host thread sets the kernel arguments and then
enqueues the kernel, causing the wrong kernel arguments to be enqueued. Rather than attempt
to share cl_kernel objects among multiple host threads, applications are strongly encouraged to
make additional cl_kernel objects for kernel functions for each host thread.

The behavior of OpenCL APIs called from an interrupt or signal handler is implementation-defined

The OpenCL implementation should be able to create multiple command-queues for a given
OpenCL context and multiple OpenCL contexts in an application running on the host processor.

247

Appendix B: Portability

OpenCL is designed to be portable to other architectures and hardware designs. OpenCL has used at
its core a C99 based programming language and follows rules based on that heritage. Floating-point
arithmetic is based on the IEEE-754 and IEEE-754-2008 standards. The memory objects, pointer
qualifiers and weakly ordered memory are designed to provide maximum compatibility with
discrete memory architectures implemented by OpenCL devices. Command-queues and barriers
allow for synchronization between the host and OpenCL devices. The design, capabilities and
limitations of OpenCL are very much a reflection of the capabilities of underlying hardware.

Unfortunately, there are a number of areas where idiosyncrasies of one hardware platform may
allow it to do some things that do not work on another. By virtue of the rich operating system
resident on the CPU, on some implementations the kernels executing on a CPU may be able to call
out to system services whereas the same calls on the GPU will likely fail for now. Since there is some
advantage to having these services available for debugging purposes, implementations can use the
OpenCL extension mechanism to implement these services.

Likewise, the heterogeneity of computing architectures might mean that a particular loop construct
might execute at an acceptable speed on the CPU but very poorly on a GPU, for example. CPUs are
designed in general to work well on latency sensitive algorithms on single threaded tasks, whereas
common GPUs may encounter extremely long latencies, potentially orders of magnitude worse. A
developer interested in writing portable code may find that it is necessary to test his design on a
diversity of hardware designs to make sure that key algorithms are structured in a way that works
well on a diversity of hardware. We suggest favoring more work-items over fewer. It is anticipated
that over the coming months and years experience will produce a set of best practices that will help
foster a uniformly favorable experience on a diversity of computing devices.

Of somewhat more concern is the topic of endianness. Since a majority of devices supported by the
initial implementation of OpenCL are little-endian, developers need to make sure that their kernels
are tested on both big-endian and little-endian devices to ensure source compatibility with OpenCL
devices now and in the future. The endian attribute qualifier is supported by the SPIR-V IL to allow
developers to specify whether the data uses the endianness of the host or the OpenCL device. This
allows the OpenCL compiler to do appropriate endian-conversion on load and store operations
from or to this data.

We also describe how endianness can leak into an implementation causing kernels to produce
unintended results:

When a big-endian vector machine (e.g. AltiVec, CELL SPE) loads a vector, the order of the data is
retained. That is both the order of the bytes within each element and the order of the elements in
the vector are the same as in memory. When a little-endian vector machine (e.g. SSE) loads a vector,
the order of the data in register (where all the work is done) is reversed. Both the order of the bytes
within each element and the order of the elements with respect to one another in the vector are
reversed.

Memory:

uint4 a =

248

0x00010203 0x04050607 0x08090A0B 0x0CODOEOF
In register (big-endian):

uint4 a =

0x00010203 0x04050607 0x08090A0B 0x0CODOEOF
In register (little-endian):

uint4 a =

0x0FOEODOC 0x0B0OA0908 0x07060504 0x03020100

This allows little-endian machines to use a single vector load to load little-endian data, regardless of
how large each piece of data is in the vector. That is the transformation is equally valid whether
that vector was a uchar16 or a ulong2. Of course, as is well known, little-endian machines actually1
store their data in reverse byte order to compensate for the little-endian storage format of the array
elements:

Note that we are talking about the programming model here. In reality, little endian systems
might choose to simply address their bytes from "the right" or reverse the "order" of the bits in
the byte. Either of these choices would mean that no big swap would need to occur in hardware.

Memory (big-endian):

uint4 a =

0x00010203 0x04050607 0x08090A0B 0x0CODOEOF
Memory (little-endian):

uint4 a =

0x03020100 0x07060504 0x0B0OA0908 0xOFOEODOC
Once that data is loaded into a vector, we end up with this:

In register (big-endian):

uint4 a =

0x00010203 0x04050607 0x08090A0B 0x0CODOEOF
In register (little-endian):

uint4 a =

0x0CODOEOF 0x08090A0B 0x04050607 0x00010203

249

That is, in the process of correcting the endianness of the bytes within each element, the machine
ends up reversing the order that the elements appear in the vector with respect to each other
within the vector. 0x00010203 appears at the left of the big-endian vector and at the right of the
little-endian vector.

When the host and device have different endianness, the developer must ensure that kernel
argument values are processed correctly. The implementation may or may not automatically
convert endianness of kernel arguments. Developers should consult vendor documentation for
guidance on how to handle kernel arguments in these situations.

OpenCL provides a consistent programming model across architectures by numbering elements
according to their order in memory. Concepts such as even/odd and high/low follow accordingly. Once
the data is loaded into registers, we find that element 0 is at the left of the big-endian vector and
element 0 is at the right of the little-endian vector:

float x[4];
float4 v = vload4(0, x);

Big-endian:

v contains { x[@]1, x[11, x[2]1, x[3] }

Little-endian:

v contains { x[31, x[21, x[1]1, x[@] }

The compiler is aware that this swap occurs and references elements accordingly. So long as we
refer to them by a numeric index such as .s0123456789abcdef or by descriptors such as .xyzw, .hi,
.lo, .even and .odd, everything works transparently. Any ordering reversal is undone when the data
is stored back to memory. The developer should be able to work with a big-endian programming
model and ignore the element ordering problem in the vector ... for most problems. This
mechanism relies on the fact that we can rely on a consistent element numbering. Once we change
numbering system, for example by conversion-free casting (using as_type_n) a vector to another
vector of the same size but a different number of elements, then we get different results on
different implementations depending on whether the system is big-endian, or little-endian or
indeed has no vector unit at all. (Thus, the behavior of bitcasts to vectors of different numbers of
elements is implementation-defined, see section 6.2.4 of OpenCL 2.0 C specification.)

An example follows:

float x[4] = { 0.0f, 1.0f, 2.0f, 3.0f };

float4 v = vload4(0, x);

uint4 y = as_uint4(v); // legal, portable

ushort8 z = as_ushort8(v); // legal, not portable
// element size changed

250

Big-endian:

v contains { 0.0f, 1.0f, 2.0f, 3.0f }

y contains { 0x00000000, 0x3f800000,
0x40000000, 0x40400000 }

z contains { 0x0000, 0x0000, 0x3f80, 0x0000,
0x4000, 0x0000, 0x4040, 0x0000 }

z.z is 0x3f80

Little-endian:

v contains { 3.0f, 2.0f, 1.0f, 0.0f }

y contains { 0x40400000, 0x40000000,
0x3f800000, 0x00000000 }

z contains { 0x4040, 0x0000, 0x4000, 0x0000,
0x3f80, 0x0000, 0x0000, 0x0000 }

z.z is 0

Here, the value in z.z is not the same between big- and little-endian vector machines

OpenCL could have made it illegal to do a conversion free cast that changes the number of elements
in the name of portability. However, while OpenCL provides a common set of operators drawing
from the set that are typically found on vector machines, it can not provide access to everything
every ISA may offer in a consistent uniform portable manner. Many vector ISAs provide special
purpose instructions that greatly accelerate specific operations such as DCT, SAD, or 3D geometry. It
is not intended for OpenCL to be so heavy handed that time-critical performance sensitive
algorithms can not be written by knowledgeable developers to perform at near peak performance.
Developers willing to throw away portability should be able to use the platform-specific
instructions in their code. For this reason, OpenCL is designed to allow traditional vector C
language programming extensions, such as the AltiVec C Programming Interface or the Intel C
programming interfaces (such as those found in emmintrin.h) to be used directly in OpenCL with
OpenCL data types as an extension to OpenCL. As these interfaces rely on the ability to do
conversion-free casts that change the number of elements in the vector to function properly,
OpenCL allows them too.

As a general rule, any operation that operates on vector types in segments that are not the same
size as the vector element size may break on other hardware with different endianness or different
vector architecture.

Examples might include:
* Combining two uchar8's containing high and low bytes of a ushort, to make a ushort8 using .even

and .odd operators (please use upsample() for this)

* Any bitcast that changes the number of elements in the vector. (Operations on the new type are
non-portable.)

» Swizzle operations that change the order of data using chunk sizes that are not the same as the
element size

251

Examples of operations that are portable:

Combining two uint8's to make a uchar16 using .even and .odd operators. For example to
interleave left and right audio streams.

Any bitcast that does not change the number of elements (e.g. (float4) uint4) —we define the
storage format for floating-point types)

Swizzle operations that swizzle elements of the same size as the elements of the vector.

OpenCL has made some additions to C to make application behavior more dependable than C. Most
notably in a few cases OpenCL defines the behavior of some operations that are undefined in C99:

252

OpenCL provides convert_ operators for conversion between all types. C99 does not define what
happens when a floating-point type is converted to integer type and the floating-point value lies

outside the representable range of the integer type after rounding. When the sat variant of the
conversion is used, the float shall be converted to the nearest representable integer
value. Similarly, OpenCL also makes recommendations about what should happen with NaN.
Hardware manufacturers that provide the saturated conversion in hardware may use the
saturated conversion hardware for both the saturated and non-saturated versions of the

OpenCL convert operator. OpenCL does not define what happens for the non-saturated
conversions when floating-point operands are outside the range representable integers after
rounding.

The format of half, float, and double types is defined to be the binary16, binary32 and binary64
formats in the draft IEEE-754 standard. (The latter two are identical to the existing IEEE-754
standard.) You may depend on the positioning and meaning of the bits in these types.

OpenCL defines behavior for oversized shift values. Shift operations that shift greater than or
equal to the number of bits in the first operand reduce the shift value modulo the number of
bits in the element. For example, if we shift an int4 left by 33 bits, OpenCL treats this as shift left
by 33%32 = 1 bit.

A number of edge cases for math library functions are more rigorously defined than in C99.
Please see section 7.5 of the OpenCL 2.0 C specification.

Appendix C: Application Data Types

This section documents the provided host application types and constant definitions. The
documented material describes the commonly defined data structures, types and constant values
available to all platforms and architectures. The addition of these details demonstrates our
commitment to maintaining a portable programming environment and potentially deters changes
to the supplied headers.

Supported Application Scalar Data Types

The following application scalar types are provided for application convenience.

cl_char
cl_uchar
cl_short
cl_ushort
cl_int
cl_uint
cl_long
cl_ulong
cl_half
cl_float
cl_double

Supported Application Vector Data Types

Application vector types are unions used to create vectors of the above application scalar types. The
following application vector types are provided for application convenience.

cl_char<n>
¢l _uchar<n>
cl_short<n>
cl_ushort<n>
cl_int<n>
cl_uint<n>
cl_long<n>
cl_ulong<n>
cl_half<n>
¢l _float<n>
cl_double<n>

ncanbe 2, 3,4, 8 or 16.

The application scalar and vector data types are defined in the cl_platform.h header file.

253

Alignment of Application Data Types

The user is responsible for ensuring that pointers passed into and out of OpenCL kernels are
natively aligned relative to the data type of the parameter as defined in the kernel language and
SPIR-V specifications. This implies that OpenCL buffers created with CL_MEM_USE_HOST_PTR need to
provide an appropriately aligned host memory pointer that is aligned to the data types used to
access these buffers in a kernel(s), that SVM allocations must correctly align and that pointers into
SVM allocations must also be correctly aligned. The user is also responsible for ensuring image data
passed is aligned to the granularity of the data representing a single pixel (e.g. image_num_channels *
sizeof(image_channel_data_type)) except for CL_RGB and CL_RGBx images where the data must be
aligned to the granularity of a single channel in a pixel (i.e. sizeof(image_channel_data_type)). This
implies that OpenCL images created with CL_MEM_USE_HOST_PTR must align correctly. The image
alignment value can be queried using the CL_DEVICE_IMAGE_BASE_ADDRESS_ALIGNMENT query. In
addition, source pointers for clEnqueueWriteImage and other operations that copy to the OpenCL
runtime, as well as destination pointers for clEnqueueReadImage and other operations that copy
from the OpenCL runtime must follow the same alignment rules.

OpenCL makes no requirement about the alignment of OpenCL application defined data types
outside of buffers and images, except that the underlying vector primitives (e.g. __c1_float4) where
defined shall be directly accessible as such using appropriate named fields in the cl_type union (see
Vector Components. Nevertheless, it is recommended that the cl_platform.h header should attempt
to naturally align OpenCL defined application data types (e.g. c1_float4) according to their type.

Vector Literals

Application vector literals may be used in assignments of individual vector components. Literal
usage follows the convention of the underlying application compiler.

cl float2 foo = { .s[1] = 2.0f };
cl _int8 bar = {{ 2, 4, 6, 8, 10, 12, 14, 16 }};

Vector Components

The components of application vector types can be addressed using the <vector_name>.s[<index>]
notation.

For example:

f00.s[0]
pos.s[6]

1.0f; // Sets the 1st vector component of foo
2; // Sets the 7th vector component of bar

In some cases vector components may also be accessed using the following notations. These
notations are not guaranteed to be supported on all implementations, so their use should be
accompanied by a check of the corresponding preprocessor symbol.

254

Named vector components notation

Vector data type components may be accessed using the .sN, .sn or .xyzw field naming convention,
similar to how they are used within the OpenCL language. Use of the .xyzw field naming convention
only allows accessing of the first 4 component fields. Support of these notations is identified by the
CL_HAS_NAMED_VECTOR_FIELDS preprocessor symbol. For example:

#ifdef CL_HAS_NAMED_VECTOR_FIELDS
cl_float4 foo;
c¢l_int16 bar;
foo.x = 1.0f; // Set first component
foo.s0 = 1.0f; // Same as above
bar.z = 3; // Set third component
bar.se = 11; // Same as bar.s[0xe]
bar.sD = 12; // Same as bar.s[0xd]
fendif

Unlike the OpenCL language type usage of named vector fields, only one component field may be
accessed at a time. This restriction prevents the ability to swizzle or replicate components as is
possible with the OpenCL language types. Attempting to access beyond the number of components
for a type also results in a failure.

foo.xy // illegal - illegal field name combination
bar.s1234 // illegal - illegal field name combination
foo.s7 // 1llegal - no component s7

High/Low vector component notation

Vector data type components may be accessed using the .hi and .lo notation similar to that
supported within the language types. Support of this notation is identified by the
CL_HAS_HI_LO_VECTOR_FIELDS preprocessor symbol. For example:

#ifdef CL_HAS_HI_LO_VECTOR_FIELDS
cl_float4 foo;
¢l _float2 new_hi = 2.0f, new_lo = 4.0f;
foo.hi = new_hi;
foo.lo = new_lo;

fendif

Native vector type notation

Certain native vector types are defined for providing a mapping of vector types to architecturally
builtin vector types. Unlike the above described application vector types, these native types are
supported on a limited basis depending on the supporting architecture and compiler.

These types are not unions, but rather convenience mappings to the underlying architectures’

255

builtin vector types. The native types share the name of their application counterparts but are

n

preceded by a double underscore "__".

For example, __cl_float4 is the native builtin vector type equivalent of the c1_float4 application
vector type. The __cl_float4 type may provide direct access to the architectural builtin __m128 or
vector float type, whereas the c1_float4 is treated as a union.

In addition, the above described application data types may have native vector data type members
for access convenience. The native components are accessed using the .vN sub-vector notation,
where N is the number of elements in the sub-vector. In cases where the native type is a subset of a
larger type (more components), the notation becomes an index based array of the sub-vector type.

Support of the native vector types is identified by a __CL_TYPEN__ preprocessor symbol matching the
native type name. For example:

#ifdef __CL_FLOAT4__ // Check for native cl_float4 type

cl _float8 foo;

__cl_float4 bar; // Use of native type

bar = foo.v4[1]; // Access the second native float4 vector
fendif

Implicit Conversions

Implicit conversions between application vector types are not supported.

Explicit Casts

Explicit casting of application vector types (cl_typen) is not supported. Explicit casting of native
vector types (__c1_typen) is defined by the external compiler.

Other operators and functions

The behavior of standard operators and function on both application vector types (cl1_typen) and
native vector types (__c1_typen) is defined by the external compiler.

Application constant definitions

In addition to the above application type definitions, the following literal definitions are also
available.

CL_CHAR_BIT Bit width of a character

CL_SCHAR_MAX Maximum value of a type c1_char
CL_SCHAR_MIN Minimum value of a type cl_char
CL_CHAR_MAX Maximum value of a type c1_char
CL_CHAR_MIN Minimum value of a type c1_char

256

CL_UCHAR_MAX
CL_SHRT_MAX
CL_SHRT_MIN
CL_USHRT_MAX
CL_INT_MAX
CL_INT_MIN
CL_UINT_MAX
CL_LONG_MAX
CL_LONG_MIN
CL_ULONG_MAX
CL_FLT_DIG

CL_FLT_MANT_DIG

CL_FLT_MAX_10_EXP

CL_FLT_MAX_EXP
CL_FLT_MIN_10_EXP

CL_FLT_MIN_EXP
CL_FLT_RADIX
CL_FLT_MAX
CL_FLT_MIN
CL_FLT_EPSILON

CL_DBL_DIG

CL_DBL_MANT_DIG

CL_DBL_MAX_10_EXP

CL_DBL_MAX_EXP
CL_DBL_MIN_10_EXP

Maximum value of a type c1_uchar
Maximum value of a type c1_short
Minimum value of a type c1_short
Maximum value of a type c1_ushort
Maximum value of a type c1_int
Minimum value of a type c1_int
Maximum value of a type cl_uvint
Maximum value of a type c1_long
Minimum value of a type c1_long
Maximum value of a type c1_ulong

Number of decimal digits of precision for the
type cl_float

Number of digits in the mantissa of type
cl_float

Maximum positive integer such that 10 raised to
this power minus one can be represented as a
normalized floating-point number of type
cl_float

Maximum exponent value of type c1_float

Minimum negative integer such that 10 raised to
this power minus one can be represented as a
normalized floating-point number of type
cl_float

Minimum exponent value of type cl1_float

Base value of type c1_float

Maximum value of type cl1_float

Minimum value of type cl_float

Minimum positive floating-point number of type
cl_float such that 1.0 + CL_FLT_EPSILON != 1is
true.

Number of decimal digits of precision for the
type cl_double

Number of digits in the mantissa of type
cl_double

Maximum positive integer such that 10 raised to
this power minus one can be represented as a

normalized floating-point number of type
cl_double

Maximum exponent value of type c1_double

Minimum negative integer such that 10 raised to
this power minus one can be represented as a

normalized floating-point number of type
cl_double

257

CL_DBL_MIN_EXP
CL_DBL_RADIX
CL_DBL_MAX
CL_DBL_MIN
CL_DBL_EPSILON

CL_NAN
CL_HUGE_VALF
CL_HUGE_VAL
CL_MAXFLOAT
CL_INFINITY

Minimum exponent value of type cl1_double
Base value of type c1_double

Maximum value of type c1_double
Minimum value of type c1_double

Minimum positive floating-point number of type
cl_double such that 1.0 + CL_DBL_EPSILON != Tis
true.

Macro expanding to a value representing NaN
Largest representative value of type c1_float
Largest representative value of type cl1_double
Maximum value of type c1_float

Macro expanding to a value representing
infinity

These literal definitions are defined in the cl_platform.h header.

258

Appendix D: Checking for Memory Copy
Overlap

The following code describes how to determine if there is overlap between the source and
destination rectangles specified to clEnqueueCopyBufferRect provided the source and destination
buffers refer to the same buffer object.

unsigned int

check_copy_overlap(const size_t src_origin[],
const size_t dst_origin[],
const size_t region[],
const size_t row_pitch,
const size_t slice_pitch)

const size_t slice_size = (region[1] - 1) * row_pitch + region[0];
const size_t block_size = (region[2] - 1) * slice_pitch + slice_size;
const size_t src_start = src_origin[2] * slice_pitch

+ src_origin[1] * row_pitch

+ src_origin[0];
const size_t src_end = src_start + block _size;
const size_t dst_start = dst_origin[2] * slice_pitch

+ dst_origin[1] * row_pitch

+ dst_origin[0];
const size_t dst_end = dst_start + block_size;

/* No overlap if dst ends before src starts or if src ends

* before dst starts.

*/

if((dst_end <= src_start) || (src_end <= dst_start)){
return 0;

}

/* No overlap if region[@] for dst or src fits in the gap
* between region[0] and row_pitch.
*/
{
const size_t src_dx
const size_t dst_dx

src_origin[0
dst_origin[0

% row_pitch;
% row_pitch;

]
]

if(((dst_dx >= src_dx + region[0]) &&
(dst_dx + region[0] <= src_dx + row_pitch)) ||
((src_dx >= dst_dx + region[0]) &&
(src_dx + region[0] <= dst_dx + row_pitch)))
{

return 0;

}

259

260

/* No overlap if region[1] for dst or src fits in the gap
* between region[1] and slice_pitch.

*/
{
const size_t src_dy =
(src_origin[1] * row_pitch + src_origin[0]) % slice_pitch;
const size_t dst_dy =
(dst_origin[1] * row_pitch + dst_origin[0]) % slice_pitch;
if(((dst_dy >= src_dy + slice_size) &&
(dst_dy + slice_size <= src_dy + slice_pitch)) ||
((src_dy >= dst_dy + slice_size) &&
(src_dy + slice_size <= dst_dy + slice_pitch))) {
return 0;
}
}
/* Otherwise src and dst overlap. */
return 1;

Appendix E: Changes to OpenCL

Changes to the OpenCL API and OpenCL C between successive versions are summarized below.

Summary of changes from OpenCL 1.0 to OpenCL 1.1
The following features are added to the OpenCL 1.1 platform layer and runtime (sections 4 and 5):

 Following queries to table 4.3

o CL_DEVICE_NATIVE_VECTOR_WIDTH_CHAR, CL_DEVICE_NATIVE_VECTOR_WIDTH_SHORT, CL_DEVICE_NATIVE_
VECTOR_WIDTH_INT, CL_DEVICE_NATIVE_VECTOR_WIDTH_LONG, CL_DEVICE_NATIVE_VECTOR_WIDTH_FLOAT,
CL_DEVICE_NATIVE_VECTOR_WIDTH_DOUBLE, CL_DEVICE_NATIVE_VECTOR_WIDTH_HALF

o CL_DEVICE_HOST_UNIFIED_MEMORY
o CL_DEVICE_OPENCL_C_VERSION

o CL_CONTEXT_NUM_DEVICES to the list of queries specified to clGetContextInfo.
* Optional image formats: CL_Rx, CL_RGx, and CL_RGBx.

» Support for sub-buffer objects ability to create a buffer object that refers to a specific region in
another buffer object using clCreateSubBuffer.

* clEnqueueReadBufferRect, clIEnqueueWriteBufferRect and clEnqueueCopyBufferRect APIs
to read from, write to and copy a rectangular region of a buffer object respectively.

* clSetMemObjectDestructorCallback API to allow a user to register a callback function that
will be called when the memory object is deleted and its resources freed.

* Options that control the OpenCL C version used when building a program executable.

o CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE to the list of queries specified to
clGetKernelWorkGrouplInfo.

» Support for user events. User events allow applications to enqueue commands that wait on a
user event to finish before the command is executed by the device. Following new APIs are
added - clCreateUserEvent and clSetUserEventStatus.

 clSetEventCallback API to register a callback function for a specific command execution status.

The following modifications are made to the OpenCL 1.1 platform layer and runtime (sections 4 and
5):

» Following queries in table 4.3
o CL_DEVICE_MAX_PARAMETER_SIZE from 256 to 1024 bytes
o CL_DEVICE_LOCAL_MEM_SIZE from 16 KB to 32 KB.
» The global work_offset argument in clEnqueueNDRangeKernel can be a non-NULL value.

» All API calls except clSetKernelArg are thread-safe.
The following features are added to the OpenCL C programming language (section 6) in OpenCL 1.1:

* 3-component vector data types.

261

* New built-in functions
- get_global_offset work-item function defined in section 6.12.1.
- minmag, maxmag math functions defined in section 6.12.2.
- clamp integer function defined in section 6.12.3.
o (vector, scalar) variant of integer functions min and max in section 6.12.3.
- async_work_group_strided_copy defined in section 6.12.10.
o vec_step, shuffle and shuffle2 defined in section 6.12.12.
* cl_khr_byte_addressable_store extension is a core feature.

* cl_khr_global_int32_base_atomics, cl_khr_global_int32_extended_atomics,
cl_khr local int32_base atomics and cl khr local int32_extended_atomics extensions are
core features. The built-in atomic function names are changed to use the atomic_ prefix instead
of atom_.

» Macros CL_VERSION_1_0 and CL_VERSION_1_1.
The following features in OpenCL 1.0 are deprecated (see glossary) in OpenCL 1.1:

* The clSetCommandQueueProperty API is no longer supported in OpenCL 1.1.

* The ROUNDING_MODE macro is no longer supported in OpenCL C 1.1.

» The cl-strict-aliasing option that can be specified in options argument to clBuildProgram is no
longer supported in OpenCL 1.1.

The following new extensions are added to section 9 in OpenCL 1.1:

* cl_khr_gl event for creating a CL event object from a GL sync object.
* cl_khr_d3d10_sharing for sharing memory objects with Direct3D 10.

The following modifications are made to the OpenCL ES Profile described in section 10 in OpenCL
1.1:

* 64-bit integer support is optional.

Summary of changes from OpenCL 1.1 to OpenCL 1.2
The following features are added to the OpenCL 1.2 platform layer and runtime (sections 4 and 5):

* Custom devices and built-in kernels are supported.

* Device partitioning that allows a device to be partitioned based on a number of partitioning
schemes supported by the device.

* Extend cl_mem_flags to describe how the host accesses the data in a cl_mem object.

* clEnqueueFillBuffer and clEnqueueFilllmage to support filling a buffer with a pattern or an
image with a color.

o Add CL_MAP_WRITE_INVALIDATE_REGION to cl map_flags. Appropriate clarification to the behavior of
CL_MAP_WRITE has been added to the spec.

262

* New image types: 1D image, 1D image from a buffer object, 1D image array and 2D image
arrays.

* clCreatelmage to create an image object.

* clEnqueueMigrateMemODbjects API that allows a developer to have explicit control over the
location of memory objects or to migrate a memory object from one device to another.

» Support separate compilation and linking of programs.

* Additional queries to get the number of kernels and kernel names in a program have been
added to clGetProgramiInfo.

* Additional queries to get the compile and link status and options have been added to
clGetProgramBuildInfo.

* clGetKernelArgInfo API that returns information about the arguments of a kernel.

* clEnqueueMarkerWithWaitList and clEnqueueBarrierWithWaitList APIs.
The following features are added to the OpenCL C programming language (section 6) in OpenCL 1.2:

* Double-precision is now an optional core feature instead of an extension.
* New built in image types: imageld_t, imageld_array_t and image2d_array_t.
* New built-in functions

o Functions to read from and write to a 1D image, 1D and 2D image arrays described in
sections 6.12.14.2, 6.12.14.3 and 6.12.14.4.

o Sampler-less image read functions described in section 6.12.14.3.
- popcount integer function described in section 6.12.3.
o printf function described in section 6.12.13.

 Storage class specifiers extern and static as described in section 6.8.

* Macros CL_VERSION_1_2 and OPENCL_C_VERSION.
The following APIs in OpenCL 1.1 are deprecated (see glossary) in OpenCL 1.2:

* clEnqueueMarker, clEnqueueBarrier and clEnqueueWaitForEvents
* clCreateImage2D and clCreateImage3D
* clUnloadCompiler and clGetExtensionFunctionAddress

* clCreateFromGLTexture2D and clCreateFromGLTexture3D
The following queries are deprecated (see glossary) in OpenCL 1.2:

o CL_DEVICE_MIN_DATA_TYPE_ALIGN_SIZE in table 4.3 queried using clGetDevicelnfo.

Summary of changes from OpenCL 1.2 to OpenCL 2.0
The following features are added to the OpenCL 2.0 platform layer and runtime (sections 4 and 5):

 Shared virtual memory.

263

* Device queues used to enqueue kernels on the device.
* Pipes.
* Images support for 2D image from buffer, depth images and sRGB images.

The following modifications are made to the OpenCL 2.0 platform layer and runtime (sections 4 and
5):

» All API calls except clSetKernelArg, clSetKernelArgSVMPointer and clSetKernelExecInfo are
thread-safe.

The following features are added to the OpenCL C programming language (section 6) in OpenCL 2.0:

* Clang Blocks.

* Kernels enqueing kernels to a device queue.

* Program scope variables in global address space.

* Generic address space.

* C1x atomics.

e New built-in functions (sections 6.13.9, 6.13.11, 6.13.15 and 6.14).
» Support images with the read_write qualifier.

» 3D image writes are a core feature.

e The CL_VERSION 2 @ macro.
The following APIs are deprecated (see glossary) in OpenCL 2.0:

* clCreateCommandQueue, clCreateSampler and clEnqueueTask
The following queries are deprecated (see glossary) in OpenCL 2.0:

o CL_DEVICE_HOST_UNIFIED_MEMORY in table 4.3 queried using clGetDevicelnfo.

CL_IMAGE_BUFFER in table 5.10 is deprecated.

CL_DEVICE_QUEUE_PROPERTIES is replaced by CL_DEVICE_QUEUE_ON_HOST_PROPERTIES.

 The explicit memory fence functions defined in section 6.12.9 of the OpenCL 1.2 specification.

The OpenCL 1.2 atomic built-in functions for 32-bit integer and floating-point data types defined
in section 6.12.11 of the OpenCL 1.2 specification.

Summary of changes from OpenCL 2.0 to OpenCL 2.1

The following features are added to the OpenCL 2.1 platform layer and runtime (sections 4 and 5):

* clGetKernelSubGroupInfo API call.

o CL_KERNEL_MAX_NUM_SUB_GROUPS, CL_KERNEL_COMPILE_NUM_SUB_GROUPS additions to table 5.21 of the
API specification.

* clCreateProgramWithIL API call.

264

* clGetHostTimer and clGetDeviceAndHostTimer API calls.

* clEnqueueSVMMigrateMem API call.

* clCloneKernel API call.

¢ clSetDefaultDeviceCommandQueue API call.

o CL_PLATFORM_HOST_TIMER_RESOLUTION added to table 4.1 of the API specification.

e CL_DEVICE_IL_VERSION, CL_DEVICE_MAX_NUM_SUB_GROUPS, CL_DEVICE_SUB_GROUP_INDEPENDENT_FORWARD_
PROGRESS added to table 4.3 of the API specification.

» CL_PROGRAM_IL to table 5.17 of the API specification.
* CL_QUEUE_DEVICE_DEFAULT added to table 5.2 of the API specification.

* Added table 5.22 to the API specification with the enums: CL_KERNEL_MAX_SUB_GROUP_SIZE_FOR_
NDRANGE, CL_KERNEL _SUB_GROUP_COUNT_FOR_NDRANGE and CL_KERNEL LOCAL SIZE FOR_SUB_GROUP_COUNT

The following modifications are made to the OpenCL 2.1 platform layer and runtime (sections 4 and
5):

» All API calls except clSetKernelArg, clSetKernelArgSVMPointer, clSetKernelExecInfo and
clCloneKernel are thread-safe.

The OpenCL C kernel language is no longer chapter 6. The OpenCL C kernel language is not updated
for OpenCL 2.1. The OpenCL 2.0 kernel language will still be consumed by OpenCL 2.1 runtimes.

The SPIR-V IL specification has been added.

Summary of changes from OpenCL 2.1 to OpenCL 2.2
The following changes have been made to the OpenCL 2.2 execution model (section 3)

* Added the third prerequisite (executing non-trivial constructors for program scope global
variables).

The following features are added to the OpenCL 2.2 platform layer and runtime (sections 4 and 5):

* clSetProgramSpecializationConstant API call
* clSetProgramReleaseCallback API call
* Queries for CL_PROGRAM_SCOPE_GLOBAL_CTORS_PRESENT and CL_PROGRAM_SCOPE_GLOBAL_DTORS_PRESENT

The following modifications are made to the OpenCL 2.2 platform layer and runtime (section 4 and
5):

» Modified description of CL_DEVICE_MAX_CLOCK_FREQUENCY query.
* Added a new error code CL_MAX_SIZE_RESTRICTION_EXCEEDED to clSetKernelArg API call

Added definition of Deprecation and Specialization constants to the glossary.

265

Appendix F: Error Codes

This section lists OpenCL error codes and their meanings.

Error Code

CL_SUCCESS

CL_BUILD_PROGRAM_FAILURE

CL_COMPILE_PROGRAM_FAILURE

CL_COMPILER_NOT_AVAILABLE

CL_DEVICE_NOT_FOUND

CL_DEVICE_NOT_AVAILABLE

CL_DEVICE_PARTITION_FAILED

CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_
WAIT_LIST

CL_IMAGE_FORMAT_MISMATCH

CL_IMAGE_FORMAT_NOT_SUPPORTED

CL_INVALID_ARG_INDEX

CL_INVALID_ARG_SIZE

CL_INVALID_ARG_VALUE

CL_INVALID_BINARY
CL_INVALID_BUFFER_SIZE

CL_INVALID_BUILD_OPTIONS

CL_INVALID_COMMAND_QUEUE

CL_INVALID_COMPILER_OPTIONS

266

Brief Description

This is a special error code to indicate that the API
executed successfully, without errors.

Returned when clBuildProgram failed to build the
specified program.

Returned when clCompileProgram failed to compile the
specified program.

Returned when compiling or building a program from
source or IL when CL_DEVICE COMPILER_AVAILABLE is CL_
FALSE.

Returned when no devices were found that match the
specified device type.

Returned when attempting to use a device when CL_
DEVICE_AVAILABLE is CL_FALSE.

Returned when device partitioning is supported but the
device could not be further partitioned.

Returned by blocking APIs when an event in the event
wait list has a negative value, indicating it is in an error
state.

Returned when attempting to copy images that do not use
the same image format.

Returned when attempting to create or use an image
format that is not supported.

Returned when attempting to get or set a kernel argument
using an invalid index for the specified kernel.

Returned when the specified size of a kernel argument
does not match the size of the kernel argument.

Returned when attempting to set a kernel argument that is
not valid.

Returned when a program binary is not valid for a device.

Returned when attempting to create a buffer or a sub-
buffer with an invalid size.

Returned when build options passed to clBuildProgram
are not valid.

Returned when the specified command queue is not a
valid command queue.

Returned when compiler options passed to
clCompileProgram are not valid.

Error Code
CL_INVALID_CONTEXT

CL_INVALID_DEVICE
CL_INVALID_DEVICE_PARTITION_COUNT

CL_INVALID_DEVICE_QUEUE

CL_INVALID_DEVICE_TYPE

CL_INVALID_EVENT

CL_INVALID_EVENT_WAIT_LIST

CL_INVALID_GLOBAL_OFFSET

CL_INVALID_GLOBAL_WORK_SIZE

CL_INVALID_HOST_PTR

CL_INVALID_IMAGE_DESCRIPTOR

CL_INVALID_IMAGE_FORMAT_DESCRIPTOR

CL_INVALID_IMAGE_SIZE

CL_INVALID_KERNEL

CL_INVALID_KERNEL_ARGS

CL_INVALID_KERNEL_DEFINITION

CL_INVALID_KERNEL_NAME

CL_INVALID_LINKER_OPTIONS

CL_INVALID_MEM_OBJECT

CL_INVALID_OPERATION

CL_INVALID_PIPE_SIZE

Brief Description

Returned when a specified context is not a valid context,
or when mixing objects from multiple contexts.

Returned when a specified device is not valid.

Returned when the requested device partitioning using
CL_DEVICE_PARTITION_BY_COUNTS is not valid.

Returned when setting a device queue kernel argument to
a value that is not a valid device command queue.

Returned when the requested device type is not a valid
value.

Returned when a specified event object is not a valid event
object.

Returned when the specified event wait list or number of
events in the wait list is not valid.

Returned when the specified global offset and global work
size exceeds the limits of the device.

Returned when the specified global work size exceeds the
limits of the device.

Returned when the specified host pointer is not valid for
the specified flags.

Returned when the specified image descriptor is NULL or
specifies invalid values.

Returned when the specified image format descriptor is
NULL or specifies invalid value.

Returned when the specified image dimensions exceed the
maximum dimensions for a device or all devices in a
context.

Returned when the specified kernel is not a valid kernel.

Returned when enqueing a kernel when some kernel
arguments have not been set or are invalid.

Returned when creating a kernel for multiple devices
where the number of kernel arguments or kernel
argument types are not the same for all devices.

Returned when creating a kernel when no kernel with the
specified name exists in the program object.

Returned when build options passed to clLinkProgram
are not valid.

Returned when a specified memory object is not a valid
memory object.

This is a generic error code that is returned when the
requested operation is not a valid operation.

Returned when attempting to create a pipe with an invalid
packet size or number of packets.

267

Error Code
CL_INVALID_PLATFORM

CL_INVALID_PROGRAM

CL_INVALID_PROGRAM_EXECUTABLE

CL_INVALID_PROPERTY

CL_INVALID_QUEUE_PROPERTIES

CL_INVALID_SAMPLER

CL_INVALID_SPEC_ID

CL_INVALID_VALUE

CL_INVALID_WORK_DIMENSION

CL_INVALID_WORK_GROUP_SIZE

CL_INVALID_WORK_ITEM_SIZE

CL_KERNEL_ARG_INFO_NOT_AVAILABLE

CL_LINK_PROGRAM_FAILURE

CL_LINKER_NOT_AVAILABLE

CL_MAP_FAILURE

CL_MEM_COPY_OVERLAP

CL_MEM_OBJECT_ALLOCATION_FAILURE

CL_MISALIGNED_SUB_BUFFER_OFFSET

CL_OUT_OF _HOST_MEMORY

268

Brief Description

Returned when the specified platform is not a valid
platform.

Returned when a specified program is not a valid program
object.

Returned when the specified program is valid but has not
been successfully built.

Returned when a specified property name is invalid, when
the value for a property name is invalid, or when the same
property name is specified more than once.

Returned when specified queue properties are valid but
are not supported by the device.

Returned when a specified sampler is not a valid sampler
object.

Returned when the specified specialization constant ID is
not valid for the specified program.

This is a generic error that is returned when a specified
value is not a valid value.

Returned by clEnqueueNDRangeKernel when the
specified work dimension is not valid.

Returned by clEnqueueNDRangeKernel when the
specified total work group size is not valid for the
specified kernel or device.

Returned by clEnqueueNDRangeKernel when the
specified work group size in one dimension is not valid for
the device.

Returned by clGetKernelArgInfo when kernel argument
information is not available for the specified kernel.

Returned by clLinkProgram when there is a failure to
link the specified binaries or libraries.

Returned by clLinkProgram when CL_DEVICE_LINKER_
AVAILABLE is CL_FALSE.

Returned when there is a failure to map the specified
region into the host address space.

Returned when copying from one region of a memory
object to another where the source and destination
regions overlap.

Returned when there is a failure to allocate memory for a
memory object.

Returned when a sub-buffer object is created or used that
is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN for the
device.

This is a generic error that is returned when memory
could not be allocated on the host.

Error Code Brief Description

CL_OUT_OF _RESOURCES This is a generic error that is returned when resources
could not be allocated on the device.

CL_MAX_SIZE RESTRICTION_EXCEEDED Returned when the size of the specified kernel argument
value exceeds the maximum size defined for the kernel
argument.

CL_PROFILING_INFO_NOT_AVAILABLE Returned by clGetEventProfilingInfo when the command

associated with the specified event was not enqueued into
a command queue with CL_QUEUE_PROFILING_ENABLE.

269

Acknowledgements

The OpenCL specification is the result of the contributions of many people, representing a cross
section of the desktop, hand-held, and embedded computer industry. Following is a partial list of
the contributors, including the company that they represented at the time of their contribution:

Chuck Rose, Adobe

Eric Berdahl, Adobe
Shivani Gupta, Adobe

Bill Licea Kane, AMD

Ed Buckingham, AMD

Jan Civlin, AMD

Laurent Morichetti, AMD
Mark Fowler, AMD

Marty Johnson, AMD
Michael Mantor, AMD
Norm Rubin, AMD

Ofer Rosenberg, AMD

Brian Sumner, AMD

Victor Odintsov, AMD
Aaftab Munshi, Apple

Abe Stephens, Apple
Alexandre Namaan, Apple
Anna Tikhonova, Apple
Chendi Zhang, Apple

Eric Bainville, Apple

David Hayward, Apple
Giridhar Murthy, Apple

Ian Ollmann, Apple

Inam Rahman, Apple
James Shearer, Apple
MonPing Wang, Apple
Tanya Lattner, Apple
Mikael Bourges-Sevenier, Aptina
Anton Lokhmotov, ARM
Dave Shreiner, ARM
Hedley Francis, ARM
Robert Elliott, ARM

Scott Moyers, ARM

Tom Olson, ARM

Anastasia Stulova, ARM
Christopher Thompson-Walsh, Broadcom
Holger Waechtler, Broadcom
Norman Rink, Broadcom
Andrew Richards, Codeplay
Maria Rovatsou, Codeplay
Alistair Donaldson, Codeplay

270

Alastair Murray, Codeplay
Stephen Frye, Electronic Arts
Eric Schenk, Electronic Arts
Daniel Laroche, Freescale
David Neto, Google

Robin Grosman, Huawei
Craig Davies, Huawei

Brian Horton, IBM

Brian Watt, IBM

Gordon Fossum, IBM

Greg Bellows, IBM

Joaquin Madruga, IBM

Mark Nutter, IBM

Mike Perks, IBM

Sean Wagner, IBM

Jon Parr, Imagination Technologies
Robert Quill, Imagination Technologies
James McCarthy, Imagination Technologie
Jon Leech, Independent
Aaron Kunze, Intel

Aaron Lefohn, Intel

Adam Lake, Intel

Alexey Bader, Intel

Allen Hux, Intel

Andrew Brownsword, Intel
Andrew Lauritzen, Intel
Bartosz Sochacki, Intel

Ben Ashbaugh, Intel

Brian Lewis, Intel

Geoff Berry, Intel

Hong Jiang, Intel

Jayanth Rao, Intel

Josh Fryman, Intel

Larry Seiler, Intel

Mike MacPherson, Intel
Murali Sundaresan, Intel
Paul Lalonde, Intel

Raun Krisch, Intel

Stephen Junkins, Intel

Tim Foley, Intel

Timothy Mattson, Intel

Yariv Aridor, Intel

Michael Kinsner, Intel

Kevin Stevens, Intel
Benjamin Bergen, Los Alamos National Laboratory
Roy Ju, Mediatek

Bor-Sung Liang, Mediatek
Rahul Agarwal, Mediatek

271

Michal Witaszek, Mobica
JengKuen Lee, NTHU

Amit Rao, NVIDIA

Ashish Srivastava, NVIDIA
Bastiaan Aarts, NVIDIA

Chris Cameron, NVIDIA
Christopher Lamb, NVIDIA
Dibyapran Sanyal, NVIDIA
Guatam Chakrabarti, NVIDIA
Ian Buck, NVIDIA

Jaydeep Marathe, NVIDIA
Jian-Zhong Wang, NVIDIA
Karthik Raghavan Ravi, NVIDIA
Kedar Patil, NVIDIA
Manjunath Kudlur, NVIDIA
Mark Harris, NVIDIA

Michael Gold, NVIDIA

Neil Trevett, NVIDIA

Richard Johnson, NVIDIA

Sean Lee, NVIDIA

Tushar Kashalikar, NVIDIA
Vinod Grover, NVIDIA
Xiangyun Kong, NVIDIA
Yogesh Kini, NVIDIA

Yuan Lin, NVIDIA

Mayuresh Pise, NVIDIA

Allan Tzeng, QUALCOMM

Alex Bourd, QUALCOMM
Anirudh Acharya, QUALCOMM
Andrew Gruber, QUALCOMM
Andrzej Mamona, QUALCOMM
Benedict Gaster, QUALCOMM
Bill Torzewski, QUALCOMM
Bob Rychlik, QUALCOMM
Chihong Zhang, QUALCOMM
Chris Mei, QUALCOMM

Colin Sharp, QUALCOMM
David Garcia, QUALCOMM
David Ligon, QUALCOMM

Jay Yun, QUALCOMM

Lee Howes, QUALCOMM
Richard Ruigrok, QUALCOMM
Robert J. Simpson, QUALCOMM
Sumesh Udayakumaran, QUALCOMM
Vineet Goel, QUALCOMM
Lihan Bin, QUALCOMM

Vlad Shimanskiy, QUALCOMM
Jian Liu, QUALCOMM

272

Tasneem Brutch, Samsung
Yoonseo Choi, Samsung

Dennis Adams, Sony

Pr-Anders Aronsson, Sony

Jim Rasmusson, Sony

Thierry Lepley, STMicroelectronics
Anton Gorenko, StreamHPC

Jakub Szuppe, StreamHPC

Vincent Hindriksen, StreammHPC
Alan Ward, Texas Instruments
Yuan Zhao, Texas Instruments

Pete Curry, Texas Instruments
Simon McIntosh-Smith, University of Bristol
James Price, University of Bristol
Paul Preney, University of Windsor
Shane Peelar, University of Windsor
Brian Hutsell, Vivante

Mike Cai, Vivante

Sumeet Kumar, Vivante

Wei-Lun Kao, Vivante

Xing Wang, Vivante

Jeff Fifield, Xilinx

Hem C. Neema, Xilinx

Henry Styles, Xilinx

Ralph Wittig, Xilinx

Ronan Keryell, Xilinx

AJ Guillon, YetiWare Inc

273

	The OpenCL™ Specification
	Table of Contents
	Chapter 1. Introduction
	1.1. Normative References
	1.2. Version Numbers

	Chapter 2. Glossary
	Chapter 3. The OpenCL Architecture
	3.1. Platform Model
	3.2. Execution Model
	3.3. Memory Model
	3.4. The OpenCL Framework

	Chapter 4. The OpenCL Platform Layer
	4.1. Querying Platform Info
	4.2. Querying Devices
	4.3. Partitioning a Device
	4.4. Contexts

	Chapter 5. The OpenCL Runtime
	5.1. Command Queues
	5.2. Buffer Objects
	5.3. Image Objects
	5.4. Pipes
	5.5. Querying, Unmapping, Migrating, Retaining and Releasing Memory Objects
	5.6. Shared Virtual Memory
	5.7. Sampler Objects
	5.8. Program Objects
	5.9. Kernel Objects
	5.10. Executing Kernels
	5.11. Event Objects
	5.12. Markers, Barriers and Waiting for Events
	5.13. Out-of-order Execution of Kernels and Memory Object Commands
	5.14. Profiling Operations on Memory Objects and Kernels
	5.15. Flush and Finish

	Chapter 6. Associated OpenCL specification
	6.1. SPIR-V Intermediate language
	6.2. Extensions to OpenCL
	6.3. Support for earlier OpenCL C kernel languages

	Chapter 7. OpenCL Embedded Profile
	Appendix A: Shared Objects, Thread Safety
	Shared OpenCL Objects
	Multiple Host Threads

	Appendix B: Portability
	Appendix C: Application Data Types
	Supported Application Scalar Data Types
	Supported Application Vector Data Types
	Alignment of Application Data Types
	Vector Literals
	Vector Components
	Implicit Conversions
	Explicit Casts
	Other operators and functions
	Application constant definitions

	Appendix D: Checking for Memory Copy Overlap
	Appendix E: Changes to OpenCL
	Summary of changes from OpenCL 1.0 to OpenCL 1.1
	Summary of changes from OpenCL 1.1 to OpenCL 1.2
	Summary of changes from OpenCL 1.2 to OpenCL 2.0
	Summary of changes from OpenCL 2.0 to OpenCL 2.1
	Summary of changes from OpenCL 2.1 to OpenCL 2.2

	Appendix F: Error Codes
	Acknowledgements

