

Wreath Products of Distributive Forest Algebras

Michael Hahn¹, Andreas Krebs², Howard Straubing³

¹Stanford University, ²University of Tübingen, ³Boston College

LICS 2018

Introduction

- ▶ A much-studied problem in the theory of automata is:
Can a given regular language L be defined by a formula of some logic?

Introduction

- ▶ A much-studied problem in the theory of automata is:
Can a given regular language L be defined by a formula of some logic?
- ▶ in other words, to
Give an effective characterization of the precise expressive power of the logic.

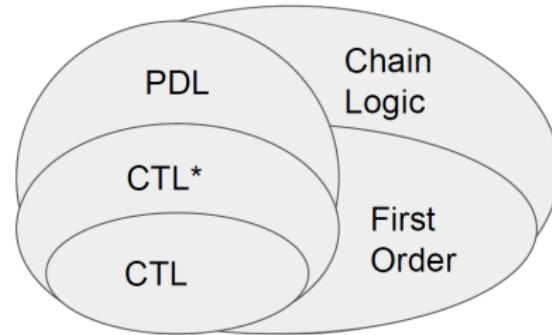
Introduction

- ▶ A much-studied problem in the theory of automata is:
Can a given regular language L be defined by a formula of some logic?
- ▶ in other words, to
Give an effective characterization of the precise expressive power of the logic.
- ▶ For automata over **words**, we have effective tests for definability in many temporal and predicate logics

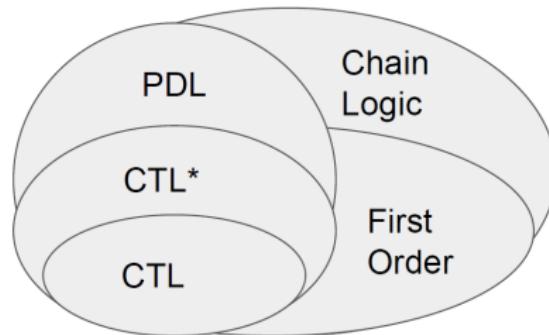
Introduction

- ▶ A much-studied problem in the theory of automata is:
Can a given regular language L be defined by a formula of some logic?
- ▶ in other words, to
Give an effective characterization of the precise expressive power of the logic.
- ▶ For automata over **words**, we have effective tests for definability in many temporal and predicate logics
- ▶ For automata over **trees**, situation is quite different:
Effectively deciding expressibility in CTL, CTL*, $FO[\prec]$, PDL, ... remains open.

Logics on Finite Trees



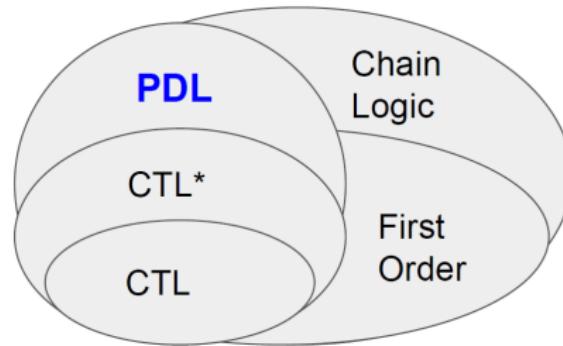
Logics on Finite Trees



For all of these logics,

- ▶ Decidability remains an open problem
- ▶ Bojańczyk, *et. al.*, (2012) proved characterizations in terms of iterated wreath products of certain forest algebras.

Logics on Finite Trees



For all of these logics,

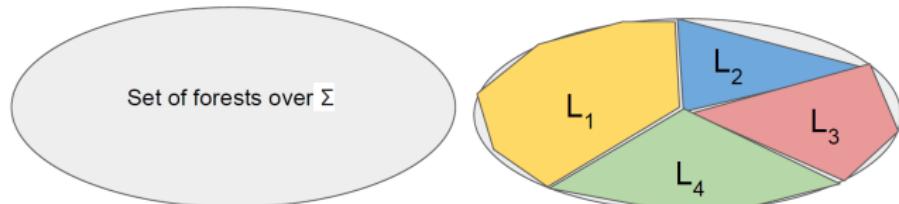
- ▶ Decidability remains an open problem
- ▶ Bojańczyk, et. al., (2012) proved characterizations in terms of iterated wreath products of certain forest algebras.

Propositional Dynamic Logic

1. For any regular word language L , the language of
'Forests where at least one path is in L '
is in PDL.

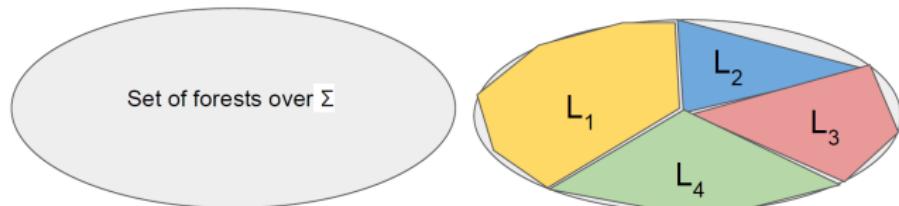
Propositional Dynamic Logic

1. Let L_1, \dots, L_n PDL languages that partition the set of forests.



Propositional Dynamic Logic

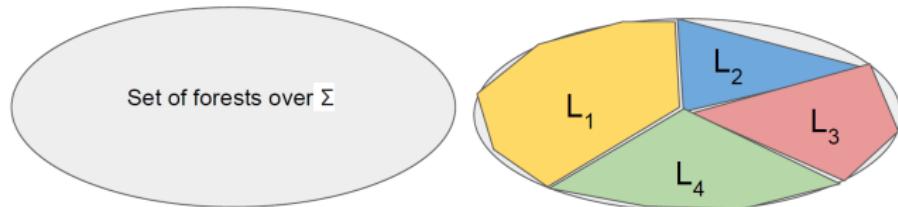
1. Let L_1, \dots, L_n PDL languages that partition the set of forests.



Let L a regular word language over $\Sigma \times \{a_1, \dots, a_n\}$.

Propositional Dynamic Logic

1. Let L_1, \dots, L_n PDL languages that partition the set of forests.

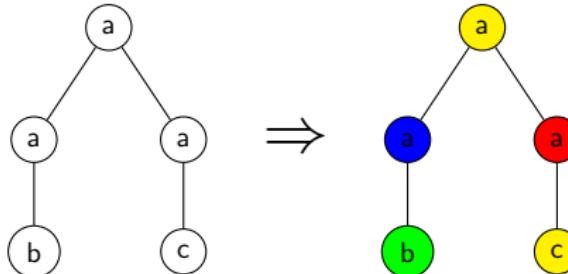


Let L a regular word language over $\Sigma \times \{a_1, \dots, a_n\}$.

Then the following language \mathcal{L} is in PDL:

Given a forest f , add to each node a label L_i if the forest below it is in L_i .

Set $f \in \mathcal{L}$ iff the resulting forest has a path in L .



(follows Bojańczyk, et. al., (2012))

Propositional Dynamic Logic

Open Question

Given a regular forest language, can we decide whether it is definable in PDL?

Propositional Dynamic Logic

Open Question

Given a regular forest language, can we decide whether it is definable in PDL?

Following Bojańczyk, *et. al.*, (2012) and Straubing (2013), we attack this problem using algebraic characterizations in terms of **wreath products** of **forest algebras**.

Background: Forest Algebras

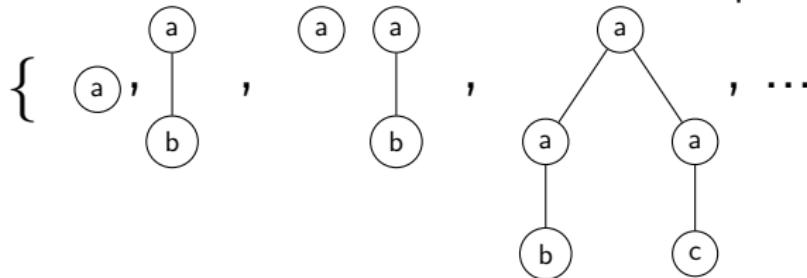
Definition (Bojańczyk and Walukiewicz, 2008)

A tuple (H, V) is called a *forest algebra* if:

1. H and V are monoids
2. There is a faithful action $V \times H \rightarrow H$
3. There is a map $I : H \rightarrow V$ such that $I_h h' = h +_H h'$.
4. For each $h \in H$, there is $v \in V$ such that $h = v \cdot_V 0_H$.

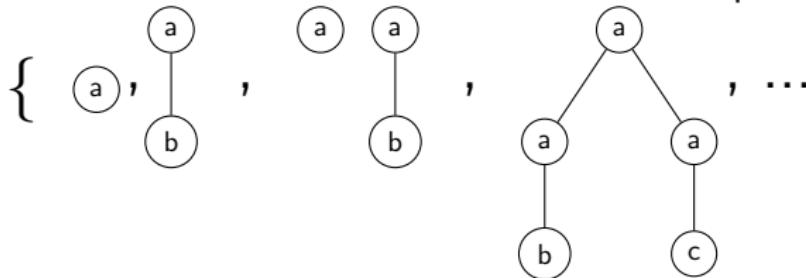
Example (Free Forest Algebra)

- ▶ $H = \text{set of finite forests over some finite alphabet } \Sigma$

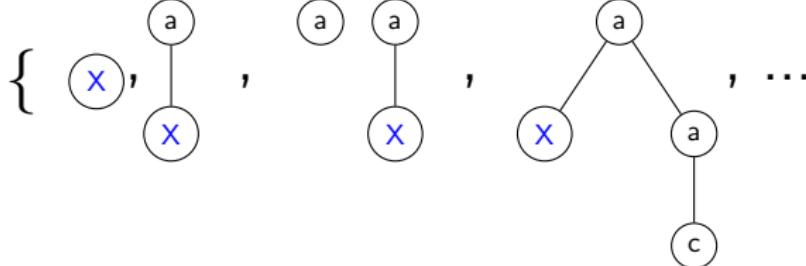


Example (Free Forest Algebra)

- ▶ $H = \text{set of finite forests over some finite alphabet } \Sigma$

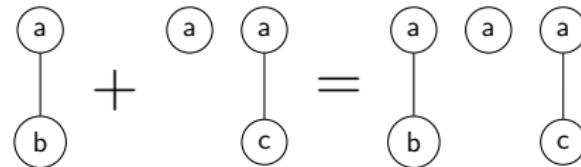


- ▶ $V = \text{set of such forests where one leaf is a variable}$

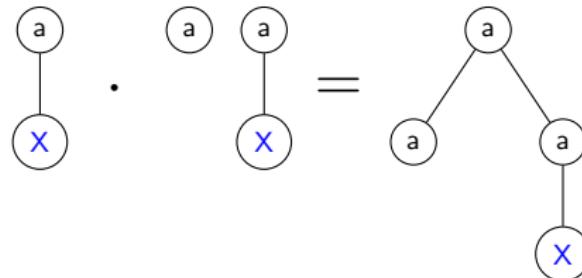


Example (Free Forest Algebra)

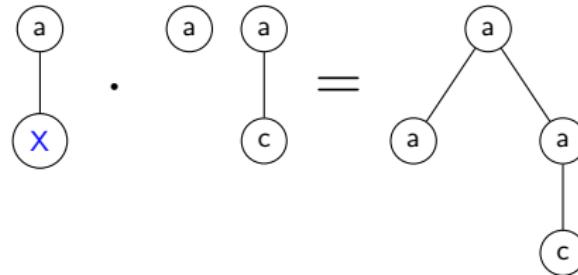
H is a monoid:



V is a monoid:



Action:



Forest Algebras and Languages

- ▶ A *forest language* is a set of forests – that is, a subset of H_Σ .
- ▶ A forest language $L \subset H_\Sigma$ is *recognized* by (H, V) iff there is a morphism

$$\phi : (H_\Sigma, V_\Sigma) \rightarrow (H, V)$$

such that

$$L = \phi^{-1}(\phi(L))$$

Proposition

Regular forest languages are exactly those recognized by finite forest algebras.

Wreath Product

Definition (Bojańczyk, et. al., (2012))

Let (H_1, V_1) , (H_2, V_2) be forest algebras.

$$(H_1, V_1) \wr (H_2, V_2) := (H_1 \times H_2, V_1^{H_2} \times V_2)$$

Wreath Product

Definition (Bojańczyk, et. al., (2012))

Let (H_1, V_1) , (H_2, V_2) be forest algebras.

$$(H_1, V_1) \wr (H_2, V_2) := (H_1 \times H_2, V_1^{H_2} \times V_2)$$

Action:

$$(f, v)(h_1, h_2) := (f(h_2)h_1, vh_2)$$

Wreath Product

Definition (Bojańczyk, et. al., (2012))

Let (H_1, V_1) , (H_2, V_2) be forest algebras.

$$(H_1, V_1) \wr (H_2, V_2) := (H_1 \times H_2, V_1^{H_2} \times V_2)$$

Action:

$$(f, v)(h_1, h_2) := (f(h_2)h_1, vh_2)$$

Multiplication:

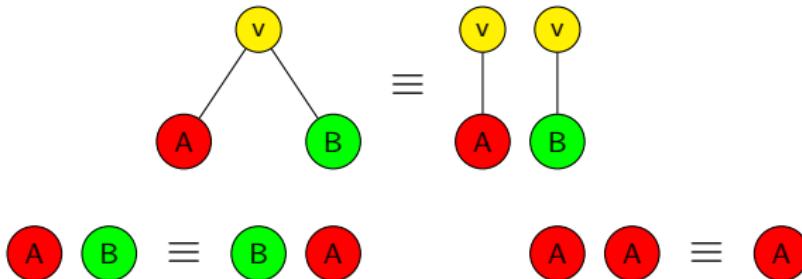
$$(f, v)(f', v') := (f''', vv')$$

with $f'''(h) := (f(v'h)) \cdot (f'(h))$.

Distributive Forest Algebras

Definition (Bojańczyk, et. al., (2012))

A forest algebra (H, V) is called *distributive* if any morphism into it respects the identities



- ▶ Distributive forest algebras can only distinguish forests with different *sets of paths*

Characterisation of PDL

Theorem (Bojańczyk, et. al., (2012))

For a regular forest language $\mathcal{L} \subset H_\Sigma$, the following are equivalent:

1. \mathcal{L} is definable in PDL
2. There are finite distributive forest algebras $(H_1, V_1), \dots, (H_n, V_n)$ such that $(H_1, V_1) \wr \dots \wr (H_n, V_n)$ recognizes \mathcal{L}

Characterisation of PDL

Theorem (Bojańczyk, et. al., (2012))

For a regular forest language $\mathcal{L} \subset H_\Sigma$, the following are equivalent:

1. \mathcal{L} is definable in PDL
2. There are finite distributive forest algebras $(H_1, V_1), \dots, (H_n, V_n)$ such that $(H_1, V_1) \wr \dots \wr (H_n, V_n)$ recognizes \mathcal{L}

- ▶ ‘There is a path in L ’ is recognized by a distributive algebra
- ▶ Wreath product simulates composition operation

Characterisation of PDL

Theorem (Bojańczyk, et. al., (2012))

For a regular forest language $\mathcal{L} \subset H_\Sigma$, the following are equivalent:

1. \mathcal{L} is definable in PDL
2. There are finite distributive forest algebras $(H_1, V_1), \dots, (H_n, V_n)$ such that $(H_1, V_1) \wr \dots \wr (H_n, V_n)$ recognizes \mathcal{L}
 - ▶ ‘There is a path in L ’ is recognized by a distributive algebra
 - ▶ Wreath product simulates composition operation

Similar characterizations for other classes:

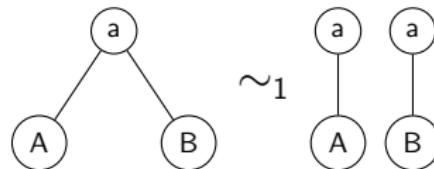
- ▶ CTL: only one specific distributive algebra is allowed
- ▶ CTL*: only aperiodic distributive algebras are allowed
- ▶ ...

Iterated Distributive Laws

Definition (cf. Straubing (2013))

For each $k \geq 1$, define a congruence \sim_k on $\Sigma^\Delta = (H_\Sigma, V_\Sigma)$:

1. Base case: \sim_1 is the congruence generated by:

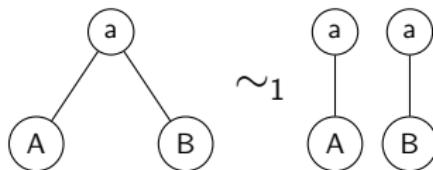


Iterated Distributive Laws

Definition (cf. Straubing (2013))

For each $k \geq 1$, define a congruence \sim_k on $\Sigma^\Delta = (H_\Sigma, V_\Sigma)$:

1. Base case: \sim_1 is the congruence generated by:



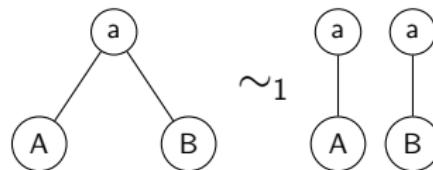
Distributive forest algebras respect \sim_1 .

Iterated Distributive Laws

Definition (cf. Straubing (2013))

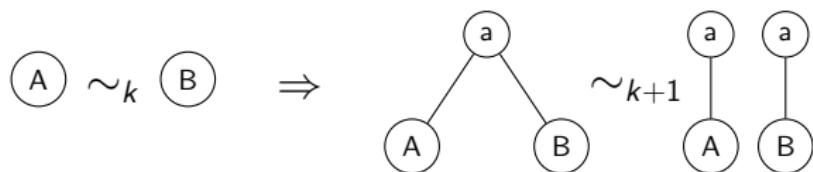
For each $k \geq 1$, define a congruence \sim_k on $\Sigma^\Delta = (H_\Sigma, V_\Sigma)$:

1. Base case: \sim_1 is the congruence generated by:



Distributive forest algebras respect \sim_1 .

2. Inductive case: \sim_{k+1} is the congruence generated by:

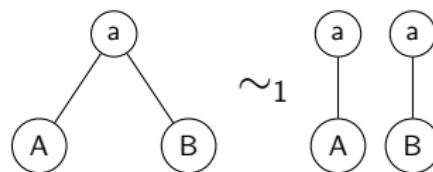


Iterated Distributive Laws

Definition (cf. Straubing (2013))

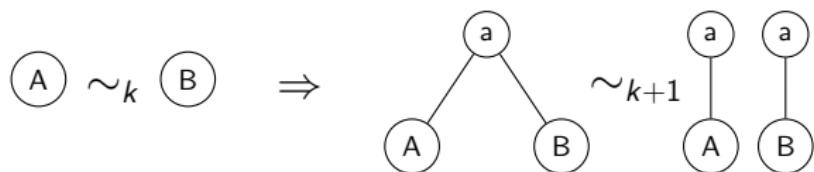
For each $k \geq 1$, define a congruence \sim_k on $\Sigma^\Delta = (H_\Sigma, V_\Sigma)$:

1. Base case: \sim_1 is the congruence generated by:



Distributive forest algebras respect \sim_1 .

2. Inductive case: \sim_{k+1} is the congruence generated by:



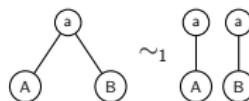
$k+1$ -fold wreath products of distr. algebras respect \sim_{k+1} .

Iterated Distributive Laws

Definition (cf. Straubing (2013))

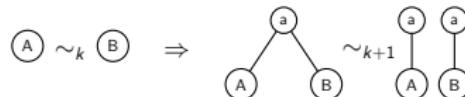
For each $k \geq 1$, define a congruence \sim_k on $\Sigma^\Delta = (H_\Sigma, V_\Sigma)$:

1. Base case: \sim_1 is the congruence generated by:



Distributive forest algebras respect \sim_1 .

2. Inductive case: \sim_{k+1} is the congruence generated by:



$k+1$ -fold wreath products of distr. algebras respect \sim_{k+1} .

A converse to this statement would yield a characterization of PDL!

Iterated Distributive Laws

Definition

(H, V) is k -distributive if any morphism into it respects \sim_k .

Iterated Distributive Laws

Definition

(H, V) is k -distributive if any morphism into it respects \sim_k .

Proposition

- ▶ Given (H, V) , it is decidable whether there is k such that (H, V) is k -distributive.
- ▶ Any PDL language is recognized by a k -distributive forest algebra, for some k .

Iterated Distributive Laws

Definition

(H, V) is k -distributive if any morphism into it respects \sim_k .

Proposition

- ▶ Given (H, V) , it is decidable whether there is k such that (H, V) is k -distributive.
- ▶ Any PDL language is recognized by a k -distributive forest algebra, for some k .

Open Question

Conversely, are all languages recognized by finite k -distributive algebras in PDL?

Iterated Distributive Laws

Definition

(H, V) is k -distributive if any morphism into it respects \sim_k .

Proposition

- ▶ Given (H, V) , it is decidable whether there is k such that (H, V) is k -distributive.
- ▶ Any PDL language is recognized by a k -distributive forest algebra, for some k .

Open Question

Conversely, are all languages recognized by finite k -distributive algebras in PDL?

An affirmative answer would settle decidability of PDL!

Our Main Result

We solve this for $k = 2$:

Theorem

1. *Let (H, V) be finite and 2-distributive. Then every language recognized by (H, V) is definable in PDL.*
Further, a product of 4 distributive algebras is enough.
2. *It is decidable whether a regular language is recognized by some 2-distributive forest algebra.*

Proof of the Main Result

Theorem

Let (H, V) be finite and 2-distributive. Then every language recognized by (H, V) is definable in PDL.

Further, a product of 4 distributive algebras is enough.

Proof of the Main Result

Theorem

Let (H, V) be finite and 2-distributive. Then every language recognized by (H, V) is definable in PDL.

Further, a product of 4 distributive algebras is enough.

- ▶ Given a 2-distributive forest algebra (H, V) ,
- ▶ we seek distributive algebras $(H_1, V_1), \dots, (H_4, V_4)$ such that

$$(H, V) \prec (H_1, V_1) \wr (H_2, V_2) \wr (H_3, V_3) \wr (H_4, V_4)$$

Proof of the Main Result

Theorem

Let (H, V) be finite and 2-distributive. Then every language recognized by (H, V) is definable in PDL.

Further, a product of 4 distributive algebras is enough.

- ▶ Given a 2-distributive forest algebra (H, V) ,
- ▶ we seek distributive algebras $(H_1, V_1), \dots, (H_4, V_4)$ such that

$$(H, V) \prec (H_1, V_1) \wr (H_2, V_2) \wr (H_3, V_3) \wr (H_4, V_4)$$

We solve two sub-problems related to the left and right factors:

1. To obtain a **right** factor, we study the problem of **separating** forest languages by looking at paths only
2. We then compute a 'minimal' **left** factor and show that it is **distributive**.

Proof of the Main Result

Theorem

Let (H, V) be finite and 2-distributive. Then every language recognized by (H, V) is definable in PDL.

Further, a product of 4 distributive algebras is enough.

- ▶ Given a 2-distributive forest algebra (H, V) ,
- ▶ we seek distributive algebras $(H_1, V_1), \dots, (H_4, V_4)$ such that

$$(H, V) \prec (H_1, V_1) \wr (H_2, V_2) \wr (H_3, V_3) \wr (H_4, V_4)$$

We solve two sub-problems related to the left and right factors:

1. To obtain a **right** factor, we study the problem of **separating** forest languages by looking at paths only
2. We then compute a 'minimal' **left** factor and show that it is **distributive**.

- ▶ Approach is parallel to much work on logic over **words**

Separation Lemma

- ▶ For a forest f , let $\pi(f)$ be the set of paths in the forest.

Lemma (Separation Lemma)

Let $\mathcal{L}_1, \mathcal{L}_2 \subseteq H_\Sigma$ be regular forest languages such that

$$\pi(\mathcal{L}_1) \cap \pi(\mathcal{L}_2) = \emptyset$$

Separation Lemma

- ▶ For a forest f , let $\pi(f)$ be the set of paths in the forest.

Lemma (Separation Lemma)

Let $\mathcal{L}_1, \mathcal{L}_2 \subseteq H_\Sigma$ be regular forest languages such that

$$\pi(\mathcal{L}_1) \cap \pi(\mathcal{L}_2) = \emptyset$$

Then there is a PDL language X such that

$$\mathcal{L}_1 \subseteq X \subseteq (H_\Sigma - \mathcal{L}_2)$$

Further, X can be written as the wreath product of *three* distributive algebras.

Separation Lemma

- ▶ For a forest f , let $\pi(f)$ be the set of paths in the forest.

Lemma (Separation Lemma)

Let $\mathcal{L}_1, \mathcal{L}_2 \subseteq H_\Sigma$ be regular forest languages such that

$$\pi(\mathcal{L}_1) \cap \pi(\mathcal{L}_2) = \emptyset$$

Then there is a PDL language X such that

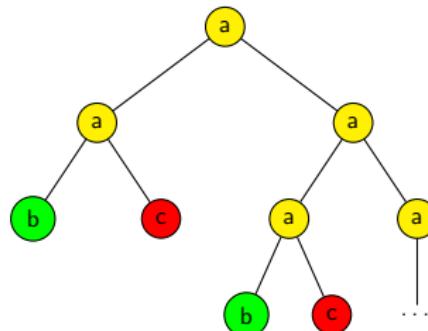
$$\mathcal{L}_1 \subseteq X \subseteq (H_\Sigma - \mathcal{L}_2)$$

Further, X can be written as the wreath product of *three* distributive algebras.

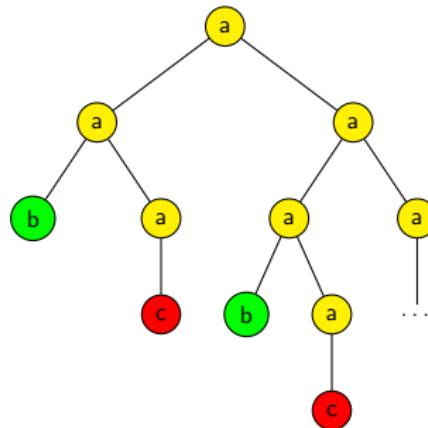
- ▶ Similar results are often used to prove decidability for logics over **words**

Separation Lemma: Example

\mathcal{L}_1 : 'Each path ends in siblings labeled **b** and **c**'

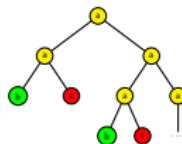
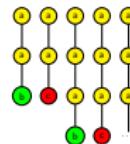


\mathcal{L}_2 : 'Each path ends in siblings labeled **b** and $a[c]$ '

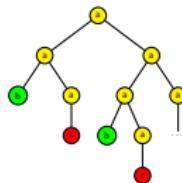
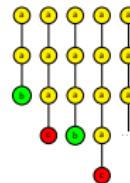


Separation Lemma: Example

\mathcal{L}_1 : 'Each path ends in siblings labeled **b** and **c**'



\mathcal{L}_2 : 'Each path ends in siblings labeled **b** and **a[c]**'



- ▶ Elements of $\mathcal{L}_1, \mathcal{L}_2$ can be told apart just from looking at the sets of paths.
- ▶ No *finite* distributive forest algebra can separate them.
- ▶ Nonetheless, PDL separates them.

Proof of the Main Result

1. Use separation lemma to construct right factor
2. Remaining problem is then to find a distributive left-hand factor (H_1, V_1) such that

$$(H, V) \prec (H_1, V_1) \wr (H_2, V_2) \wr (H_3, V_3) \wr (H_4, V_4) \quad (1)$$

Proof of the Main Result

1. Use separation lemma to construct right factor
2. Remaining problem is then to find a distributive left-hand factor (H_1, V_1) such that

$$(H, V) \prec (H_1, V_1) \wr (H_2, V_2) \wr (H_3, V_3) \wr (H_4, V_4) \quad (1)$$

3. Construct the ‘minimal’ left-hand factor (H_1, V_1)
 - ▶ In the case of groups, the solution is the kernel group
 - ▶ For monoids, the analog is a category (Tilson, 1987)
 - ▶ For forest algebras, result is *forest category* (Straubing, 2018)

Proof of the Main Result

1. Use separation lemma to construct right factor
2. Remaining problem is then to find a distributive left-hand factor (H_1, V_1) such that

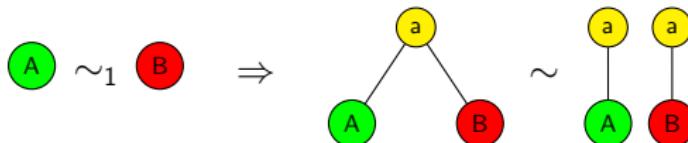
$$(H, V) \prec (H_1, V_1) \wr (H_2, V_2) \wr (H_3, V_3) \wr (H_4, V_4) \quad (1)$$

3. Construct the ‘minimal’ left-hand factor (H_1, V_1)
 - ▶ In the case of groups, the solution is the kernel group
 - ▶ For monoids, the analog is a category (Tilson, 1987)
 - ▶ For forest algebras, result is *forest category* (Straubing, 2018)
4. Can show that this factor can be replaced by a distributive forest algebra

Decidability of 2-Distributivity

Theorem

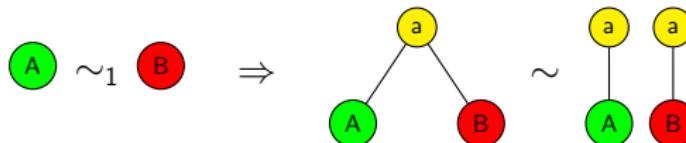
It is decidable whether a regular language is recognized by some 2-distributive forest algebra.



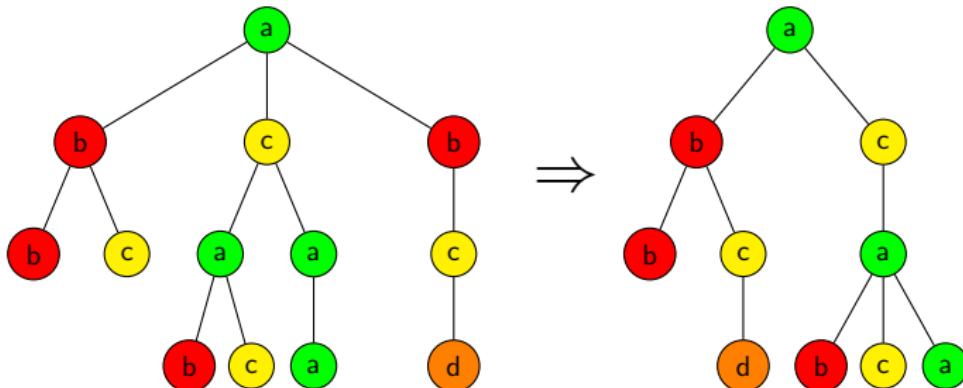
Decidability of 2-Distributivity

Theorem

It is decidable whether a regular language is recognized by some 2-distributive forest algebra.



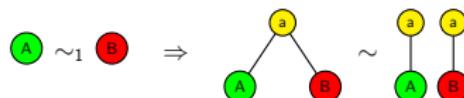
1. Transform regular forest languages into a normal form by mapping forests to representatives that only depends on the set of paths



Decidability of 2-Distributivity

Theorem

It is decidable whether a regular language is recognized by some 2-distributive forest algebra.



1. Transform regular forest languages into a normal form



2. This transformation preserves regularity of languages
3. Find pairs A, B by checking intersection of images under this transformation

Discussion

- ▶ Decidability remains open for prominent tree logics

Discussion

- ▶ Decidability remains open for prominent tree logics
- ▶ 2-distributive finite forest algebras describe a decidable subset of PDL
- ▶ Generalizing this to $k > 2$ would settle decidability of PDL

Discussion

- ▶ Decidability remains open for prominent tree logics
- ▶ 2-distributive finite forest algebras describe a decidable subset of PDL
- ▶ Generalizing this to $k > 2$ would settle decidability of PDL
- ▶ Builds on algebraic characterization that is similar to related logics for which decidability is open
 - ▶ Our results may shed light on this larger family of open problems

Discussion

- ▶ Decidability remains open for prominent tree logics
- ▶ 2-distributive finite forest algebras describe a decidable subset of PDL
- ▶ Generalizing this to $k > 2$ would settle decidability of PDL
- ▶ Builds on algebraic characterization that is similar to related logics for which decidability is open
 - ▶ Our results may shed light on this larger family of open problems
- ▶ Our proof method relates to results from the study of word languages
 - ▶ Shows how classical theory generalizes to trees and forests

