

PCF8563

Real-Time Clock/Calendar

Rev. 11.1 — 19 January 2026

Product data sheet

Document information

Information	Content
Keywords	PCF8563, RTC, I ² C-bus, calendar optimized
Abstract	The PCF8563 is a CMOS Real-Time Clock (RTC) and calendar optimized for low power consumption.

1 General description

The PCF8563 is a CMOS¹ Real-Time Clock (RTC) and calendar optimized for low power consumption. A programmable clock output, interrupt output, and voltage-low detector are also provided. All addresses and data are transferred serially via a two-line bidirectional I²C-bus. Maximum bus speed is 400 kbit/s. The register address is incremented automatically after each written or read data byte.

¹ The definition of the abbreviations and acronyms used in this data sheet can be found in [Section 18](#).

2 Features and benefits

- Provides year, month, day, weekday, hours, minutes, and seconds based on a 32.768 kHz quartz crystal
- Century flag
- Clock operating voltage: 1.0 V to 5.5 V at room temperature
- Low backup current; typical 0.25 μ A at $V_{DD} = 3.0$ V and $T_{amb} = 25$ °C
- 400 kHz two-wire I²C-bus interface (at $V_{DD} = 1.8$ V to 5.5 V)
- Programmable clock output for peripheral devices (32.768 kHz, 1.024 kHz, 32 Hz, and 1 Hz)
- Alarm and timer functions
- Integrated oscillator capacitor
- Internal Power-On Reset (POR)
- I²C-bus target address: read A3h and write A2h
- Open-drain interrupt pin

3 Applications

- Mobile telephones
- Portable instruments
- Electronic metering
- Battery-powered products

4 Ordering information

[Table 1](#) describes the ordering information for PCF8563.

Table 1. Ordering information

Type number	Package		
	Name	Description	Version
PCF8563BS/4	HVSON10	Plastic thermal enhanced very thin small outline package; no leads; 10 terminals; body 3 × 3 × 0.85 mm	SOT650-1
PCF8563T/5	SO8	Plastic small outline package; 8 leads; body width 3.9 mm	SOT96-1
PCF8563T/F4 ^[1]	SO8	Plastic small outline package; 8 leads; body width 3.9 mm	SOT96-1
PCF8563TS/4 ^[1]	TSSOP8	Plastic thin shrink small outline package; 8 leads; body width 3 mm	SOT505-1
PCF8563TS/5	TSSOP8	Plastic thin shrink small outline package; 8 leads; body width 3 mm	SOT505-1

[1] Not recommended for new designs. Replacement part is [PCF85063ATL](#).

5 Marking

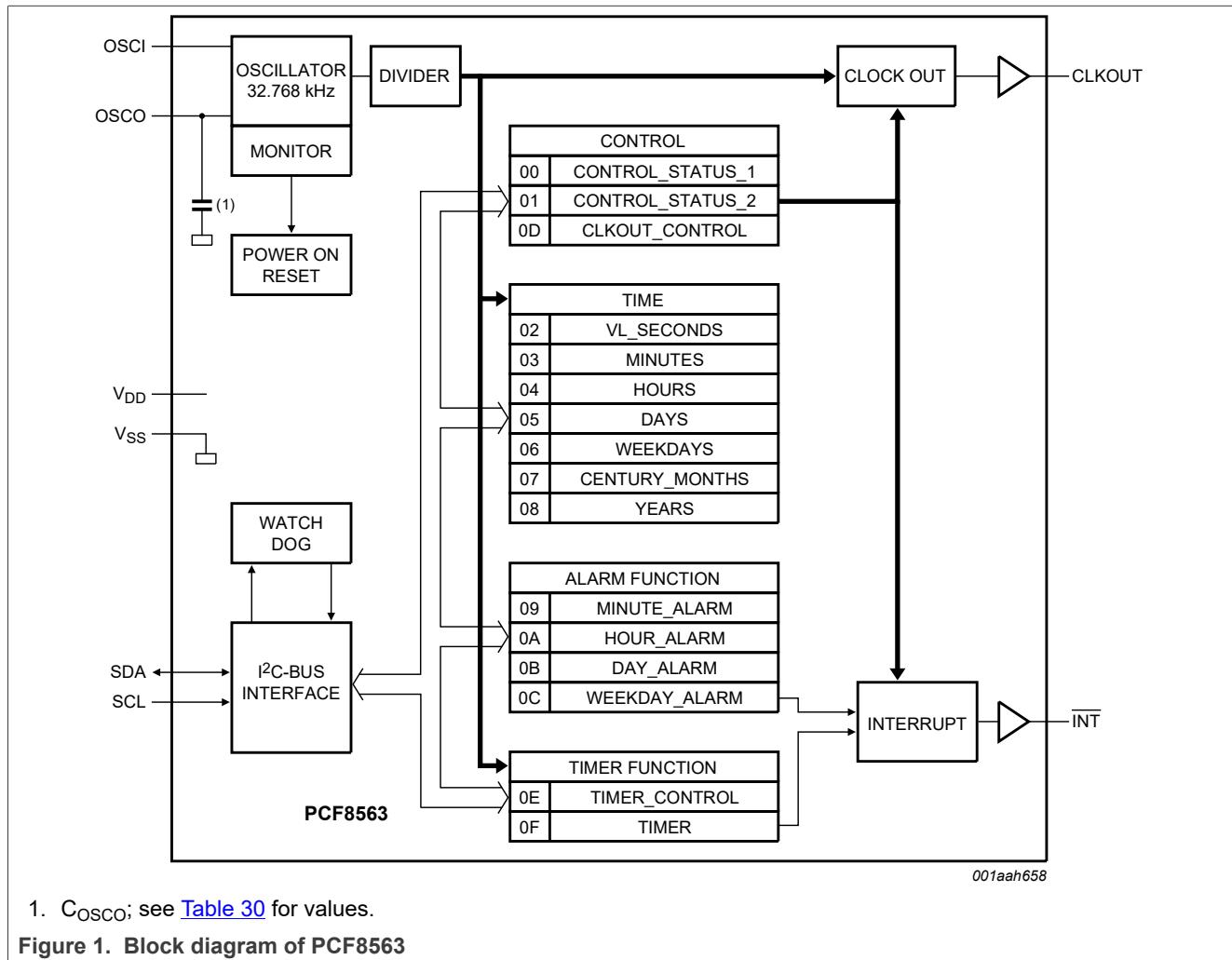
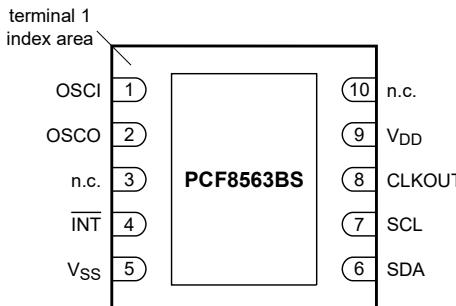

[Table 2](#) provides the marking codes for PCF8563.

Table 2. Marking codes

Type number	Marking code
PCF8563BS/4	8563S
PCF8563T/5	PCF8563
PCF8563T/F4	8563T
PCF8563TS/4	8563
PCF8563TS/5	P8563

6 Block diagram

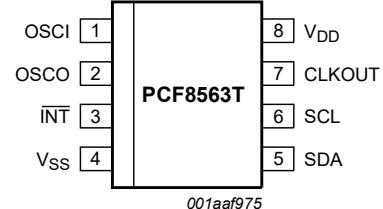
[Figure 1](#) shows the labeled block diagram of PCF8563.



7 Pinning information

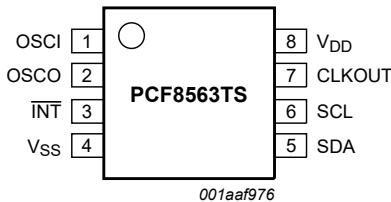
This section provides the pin configuration and description for PCF8563.

7.1 Pinning


The figures given below show pinning for various packages of PCF8563.

Transparent top view

For mechanical details, see [Figure 29](#).


Figure 2. Pin configuration for HVSON10 (PCF8563BS)

001aa9f975

Top view. For mechanical details, see [Figure 30](#).

Figure 3. Pin configuration for SO8 (PCF8563T)

001aa9f976

Top view. For mechanical details, see [Figure 31](#).

Figure 4. Pin configuration for TSSOP8 (PCF8563TS)

7.2 Pin description

[Table 3](#) provides detailed description of various pins on PCF8563.

Table 3. Pin description

Symbol	Pin	Description	
		SO8, TSSOP8	HVSON10
OSCI	1	1	Oscillator input
OSCO	2	2	Oscillator output
INT	3	4	Interrupt output (open-drain; active LOW)
V _{SS}	4	5 ^[1]	Ground
SDA	5	6	Serial data input and output
SCL	6	7	Serial clock input
CLKOUT	7	8	Clock output, open-drain
V _{DD}	8	9	Supply voltage

Table 3. Pin description...continued

Symbol	Pin		Description
	SO8, TSSOP8	HVSON10	
n.c.	-	3, 10	Not connected; don't connect and don't use it as a feed through

[1] The die paddle (exposed pad) is connected to V_{SS} through high ohmic (non-conductive) silicon attach and must be electrically isolated. It is good engineering practice to solder the exposed pad to an electrically isolated PCB copper pad for better heat transfer. But it is not required as the RTC consumes minimal power. Don't run traces under the package-exposed pad.

8 Functional description

The PCF8563 contains sixteen 8-bit registers with an auto-incrementing register address and an on-chip 32.768 kHz oscillator with one integrated capacitor. It also contains a frequency divider, which provides the source clock for the Real-Time Clock (RTC) and calendar. It also contains a programmable clock output, a timer, an alarm, a voltage-low detector, and a 400 kHz I²C-bus interface.

All 16 registers are designed as addressable 8-bit parallel registers although not all bits are implemented. The first two registers (memory address 00h and 01h) are used as control and/or status registers. The memory addresses 02h through 08h are used as counters for the clock function (seconds up to years counters). Address locations 09h through 0Ch contain alarm registers, which define the conditions for an alarm. Address 0Dh controls the CLKOUT output frequency. 0Eh and 0Fh are the Timer_control and Timer registers, respectively.

The Seconds, Minutes, Hours, Days, Months, Years and the Minute_alarm, Hour_alarm, and Day_alarm registers are all coded in Binary Coded Decimal (BCD) format.

When one of the RTC registers is written or read, the contents of all-time counters are frozen. Therefore, it prevents the faulty writing or reading of the clock and calendar during a carry condition.

8.1 CLKOUT output

A programmable square wave is available at the CLKOUT pin. The register CLKOUT_control at address 0Dh controls the operation. Frequencies of 32.768 kHz (default), 1.024 kHz, 32 Hz, and 1 Hz can be generated for use as a system clock, microcontroller clock, input to a charge pump, or for calibration of the oscillator. CLKOUT is an open-drain output and enabled at power on. If disabled, it becomes high-impedance.

8.2 Register organization

Table 4. Formatted registers overview

Bit positions labeled as x are not relevant. Bit positions labeled with N must always be written with logic 0; if read they could be either logic 0 or logic 1. After reset, all registers are set according to [Table 27](#).

Address	Register name	Bit															
		7	6	5	4	3	2	1	0								
Control and status registers																	
00h	Control_status_1	TEST1	N	STOP	N	TESTC	N	N	N								
01h	Control_status_2	N	N	N	TI_TP	AF	TF	AIE	TIE								
Time and date registers																	
02h	VL_seconds	VL	SECONDS (0 to 59)														
03h	Minutes	x	MINUTES (0 to 59)														
04h	Hours	x	x	HOURS (0 to 23)													
05h	Days	x	x	DAYS (1 to 31)													
06h	Weekdays	x	x	x	x	x	WEEKDAYS (0 to 6)										
07h	Century_months	C	x	x	MONTHS (1 to 12)												
08h	Years	YEARS (0 to 99)															
Alarm registers																	
09h	Minute_alarm	AE_M	MINUTE_ALARM (0 to 59)														
0Ah	Hour_alarm	AE_H	x	HOUR_ALARM (0 to 23)													

Table 4. Formatted registers overview...continued

Bit positions labeled as x are not relevant. Bit positions labeled with N must always be written with logic 0; if read they could be either logic 0 or logic 1. After reset, all registers are set according to [Table 27](#).

Address	Register name	Bit	7	6	5	4	3	2	1	0
0Bh	Day_alarm	AE_D	x							
0Ch	Weekday_alarm	AE_W	x	x	x	x	x			
CLKOUT control register										
0Dh	CLKOUT_control	FE	x	x	x	x	x	x		FD[1:0]
Timer registers										
0Eh	Timer_control	TE	x	x	x	x	x	x		TD[1:0]
0Fh	Timer	TIMER[7:0]								

8.3 Control registers

8.3.1 Register Control_status_1

Table 5. Control_status_1 - control and status register 1 (address 00h) bit description

Bit	Symbol	Value	Description	Reference
7	TEST1	0 ^[1]	Normal mode; must be set to logic 0 during normal operations	Section 8.9
		1	EXT_CLK test mode	
6	N	0 ^[2]	Unused	
5	STOP	0 ^[1]	RTC source clock runs	Section 8.10
		1	All RTC divider chain flip-flops are asynchronously set to logic 0; the RTC clock is stopped (CLKOUT at 32.768 kHz is still available)	
4	N	0 ^[2]	Unused	
3	TESTC	0	Power-On Reset (POR) override facility is disabled; set to logic 0 for normal operation	Section 8.11.1
		1 ^[1]	Power-On Reset (POR) override can be enabled	
2 to 0	N	000 ^[2]	Unused	

[1] Default value.

[2] Bits labeled as N must always be written with logic 0.

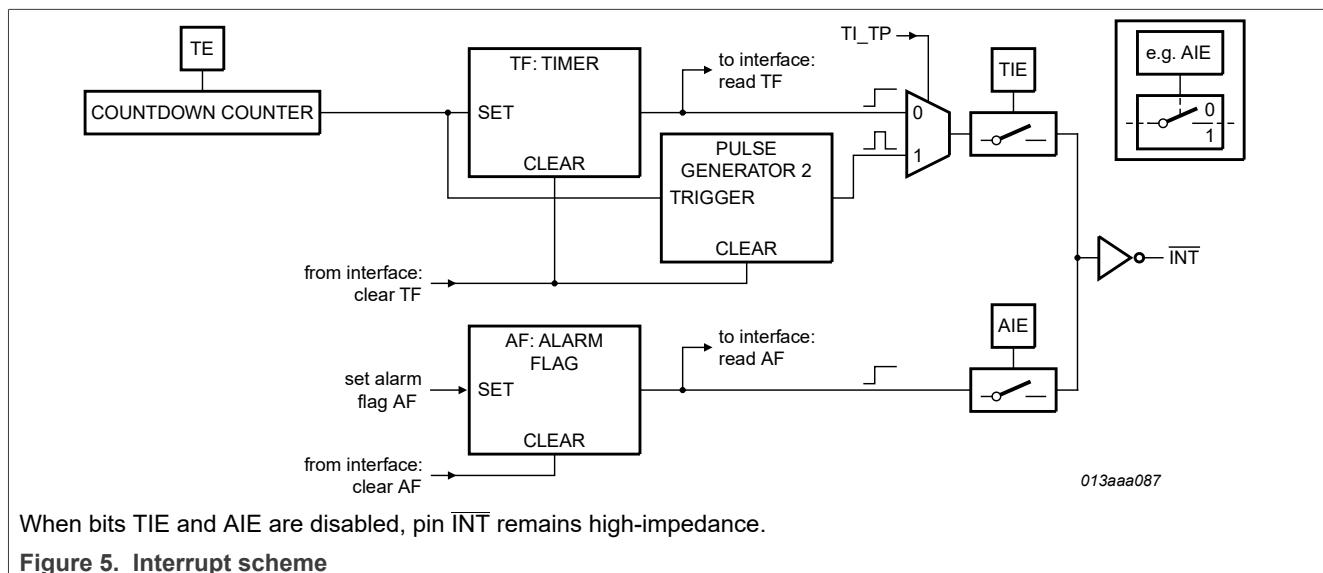
8.3.2 Register Control_status_2

Table 6. Control_status_2 - control and status register 2 (address 01h) bit description

Bit	Symbol	Value	Description	Reference
7 to 5	N	000 ^[1]	Unused	
4	TI_TP	0 ^[2]	INT is active when TF is active (subject to the status of TIE)	Section 8.3.2.1 and Section 8.8
		1	INT pulses active according to Table 7 (subject to the status of TIE) Remark: If AF and AIE are active, then INT is permanently active.	
3	AF	0 ^[2]	Read: alarm flag inactive	Section 8.3.2.1

Table 6. Control_Status_2 - control and status register 2 (address 01h) bit description...continued

Bit	Symbol	Value	Description	Reference
		1	Write: alarm flag is cleared	
			Read: alarm flag active	
			Write: alarm flag remains unchanged	
2	TF	0 ^[2]	Read: timer flag inactive	
			Write: timer flag is cleared	
		1	Read: timer flag active	
			Write: timer flag remains unchanged	
1	AIE	0 ^[2]	Alarm interrupt disabled	
			Alarm interrupt enabled	
0	TIE	0 ^[2]	Timer interrupt disabled	
			Timer interrupt enabled	


[1] Bits labeled as N must always be written with logic 0.

[2] Default value.

8.3.2.1 Interrupt output

Bits TF and AF

When an alarm occurs, AF is set to logic 1. Similarly, at the end of a timer countdown, TF is set to logic 1. These bits maintain their value until overwritten using the interface. If both timer and alarm interrupts are required in the application, the source of the interrupt can be determined by reading these bits. To prevent one flag being overwritten while clearing another, a logic AND is performed during a write access.

Bits TIE and AIE

These bits activate or deactivate the generation of an interrupt when TF or AF is asserted, respectively. The interrupt is the logical OR of these two conditions when both AIE and TIE are set.

Countdown timer interrupts

The pulse generator for the countdown timer interrupt uses an internal clock and depends on the selected source clock for the countdown timer and on the countdown value n . As a consequence, the width of the interrupt pulse varies (see [Table 7](#)).

Table 7. INT operation (bit TI_TP = 1)^[1]

Source clock (Hz)	INT period (s)	
	$n = 1$ ^[2]	$n > 1$ ^[2]
4 096	$\frac{1}{8192}$	$\frac{1}{4096}$
64	$\frac{1}{128}$	$\frac{1}{64}$
1	$\frac{1}{64}$	$\frac{1}{64}$
$\frac{1}{60}$	$\frac{1}{64}$	$\frac{1}{64}$

[1] TF and INT become active simultaneously.

[2] n = loaded countdown value. Timer stops when $n = 0$.

8.4 Time and date registers

Most of the registers are coded in the BCD format to simplify application use.

8.4.1 Register VL_seconds

Table 8. VL_seconds - seconds and clock integrity status register (address 02h) bit description

Bit	Symbol	Value	Place value	Description
7	VL	0	-	Clock integrity is guaranteed.
		1 ^[1]	-	The integrity of the clock information is not guaranteed.
6 to 4	SECONDS	0 to 5	Tens place	Actual seconds coded in BCD format, see Table 9 .
		0 to 9	Unit place	

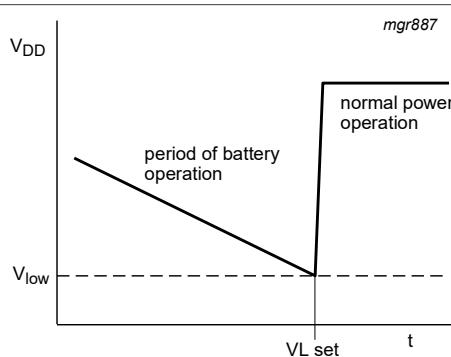

[1] Startup value.

Table 9. Seconds coded in BCD format

Seconds value (decimal)	Upper-digit (tens place)			Digit (unit place)			
	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
00	0	0	0	0	0	0	0
01	0	0	0	0	0	0	1
02	0	0	0	0	0	1	0
:	:	:	:	:	:	:	:
09	0	0	0	1	0	0	1
10	0	0	1	0	0	0	0
:	:	:	:	:	:	:	:
58	1	0	1	1	0	0	0
59	1	0	1	1	0	0	1

8.4.1.1 Voltage-low detector and clock monitor

The PCF8563 has an on-chip voltage-low detector (see [Figure 6](#)). When V_{DD} drops below V_{low} , bit VL in the VL_seconds register is set to indicate that the integrity of the clock information is no longer guaranteed. The VL flag can only be cleared by using the interface.

Figure 6. Voltage-low detection

The VL flag is intended to detect the situation when V_{DD} is decreasing slowly, for example under battery operation. If the oscillator stops or V_{DD} reaches V_{low} before power is re-asserted, then the VL flag is set. It indicates that the time can be corrupted.

8.4.2 Register Minutes

Table 10. Minutes - minutes register (address 03h) bit description

Bit	Symbol	Value	Place value	Description
7	-	-	-	Unused
6 to 4	MINUTES	0 to 5	Tens place	Actual minutes coded in BCD format
3 to 0		0 to 9	Unit place	

8.4.3 Register Hours

Table 11. Hours - hours register (address 04h) bit description

Bit	Symbol	Value	Place value	Description
7 to 6	-	-	-	Unused
5 to 4	HOURS	0 to 2	Tens place	Actual hours coded in BCD format
3 to 0		0 to 9	Unit place	

8.4.4 Register Days

Table 12. Days - days register (address 05h) bit description

Bit	Symbol	Value	Place value	Description
7 to 6	-	-	-	Unused
5 to 4	DAYS ^[1]	0 to 3	Tens place	Actual day coded in BCD format
3 to 0		0 to 9	Unit place	

[1] The PCF8563 compensates for leap years by adding a 29th day to February if the year counter contains a value, which is exactly divisible by 4, including the year 00.

8.4.5 Register Weekdays

Table 13. Weekdays - weekdays register (address 06h) bit description

Bit	Symbol	Value	Description
7 to 3	-	-	Unused
2 to 0	WEEKDAYS	0 to 6	Actual weekday values (see Table 14)

Table 14. Weekday assignments

Day ^[1]	Bit		
	2	1	0
Sunday	0	0	0
Monday	0	0	1
Tuesday	0	1	0
Wednesday	0	1	1
Thursday	1	0	0
Friday	1	0	1
Saturday	1	1	0

[1] The user can re-assign the definition.

8.4.6 Register Century_months

Table 15. Century_months - century flag and months register (address 07h) bit description

Bit	Symbol	Value	Place value	Description
7	C ^[1]	0 ^[2]	-	It indicates that the century is x.
		1	-	It indicates that the century is x + 1.
6 to 5	-	-	-	Unused
4	MONTHS	0 to 1	Tens place	Actual month coded in BCD format, see Table 16 .
		0 to 9	Unit place	

[1] The user can re-assign this bit.

[2] This bit is toggled when the register Years overflows from 99 to 00.

Table 16. Month assignments in BCD format

Month	Upper-digit (tens place)	Digit (unit place)				
		Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
January	0	0	0	0	0	1
February	0	0	0	1	0	0
March	0	0	0	1	1	1
April	0	0	1	0	0	0
May	0	0	1	0	0	1

Table 16. Month assignments in BCD format...continued

Month	Upper-digit (tens place)	Digit (unit place)			
		Bit 4	Bit 3	Bit 2	Bit 1
June	0	0	1	1	0
July	0	0	1	1	1
August	0	1	0	0	0
September	0	1	0	0	1
October	1	0	0	0	0
November	1	0	0	0	1
December	1	0	0	1	0

8.4.7 Register Years

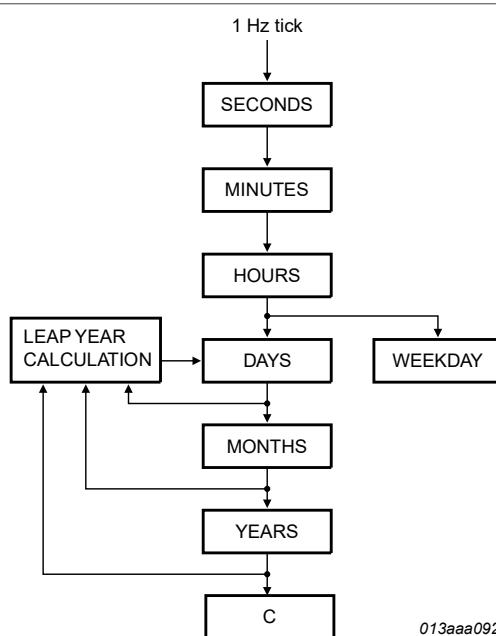
Table 17. Years - years register (08h) bit description

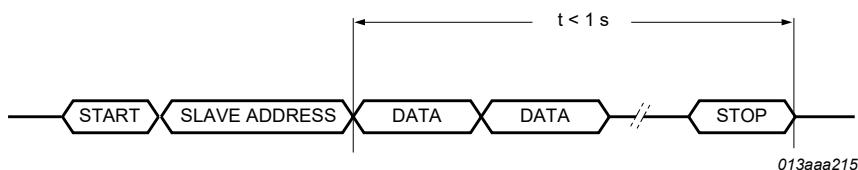
Bit	Symbol	Value	Place value	Description
7 to 4	YEARS	0 to 9	Tens place	Actual year coded in BCD format. ^[1]
3 to 0		0 to 9	Unit place	

[1] When the register Years overflows from 99 to 00, the century bit C in the register Century_months is toggled.

8.5 Setting and reading the time

Figure 7 shows the data flow and data dependencies starting from the 1 Hz clock tick.




Figure 7. Data flow for the time function

During read/write operations, the time counting circuits (memory locations 02h through 08h) are blocked.

It prevents:

- Faulty reading of the clock and calendar during a carry condition.
- Incrementing the time registers during the read cycle.

After this read/write access is completed, the time circuit is released again and any pending request to increment the time counters that occurred during the read access is serviced. A maximum of one request can be stored. Therefore, all accesses must be completed within 1 second (see [Figure 8](#)).

Figure 8. Access time for read/write operations

As a consequence of this method, it is important to make a read or write access in one go. IN other words, setting or reading seconds through to years must be made in one single access. Failing to comply with this method could result in the time becoming corrupted.

As an example, if the time (seconds through to hours) is set in one access and then the date is set in a second access, the time increment between the two accesses becomes a possibility. A similar problem exists when reading. A roll-over can occur between reads and therefore, giving the minutes from one moment and the hours from the next.

Recommended method for reading the time:

1. Send a START condition and the target address for write (A2h).
2. Set the address pointer to 2 (VL_seconds) by sending 02h.
3. Send a RESTART condition or STOP followed by START.
4. Send the target address for read (A3h).
5. Read VL_seconds.
6. Read Minutes.
7. Read Hours.
8. Read Days.
9. Read Weekdays.
10. Read Century_months.
11. Read Years.
12. Send a STOP condition.

8.6 Alarm registers

8.6.1 Register Minute_alarm

Table 18. Minute_alarm - minute alarm register (address 09h) bit description

Bit	Symbol	Value	Place value	Description
7	AE_M	0	-	Minute alarm is enabled
		1 ^[1]	-	Minute alarm is disabled
6 to 4	MINUTE_ALARM	0 to 5	Tens place	Minute alarm information coded in BCD format
		0 to 9	Unit place	

[1] Default value.

8.6.2 Register Hour_alarm

Table 19. Hour_alarm - hour alarm register (address 0Ah) bit description

Bit	Symbol	Value	Place value	Description
7	AE_H	0	-	Hour alarm is enabled
		1 ^[1]	-	Hour alarm is disabled
6	-	-	-	Unused
5 to 4	HOUR_ALARM	0 to 2	Tens place	Hour alarm information coded in BCD format
3 to 0		0 to 9	Unit place	

[1] Default value.

8.6.3 Register Day_alarm

Table 20. Day_alarm - day alarm register (address 0Bh) bit description

Bit	Symbol	Value	Place value	Description
7	AE_D	0	-	Day alarm is enabled
		1 ^[1]	-	Day alarm is disabled
6	-	-	-	Unused
5 to 4	DAY_ALARM	0 to 3	Tens place	Day alarm information coded in BCD format
3 to 0		0 to 9	Unit place	

[1] Default value.

8.6.4 Register Weekday_alarm

Table 21. Weekday_alarm - weekday alarm register (address 0Ch) bit description

Bit	Symbol	Value	Description
7	AE_W	0	Weekday alarm is enabled
		1 ^[1]	Weekday alarm is disabled
6 to 3	-	-	Unused
2 to 0	WEEKDAY_ALARM	0 to 6	Weekday alarm information

[1] Default value.

8.6.5 Alarm flag

By clearing the alarm enable bit (AE_x) of one or more of the alarm registers, the corresponding alarm conditions are active. When an alarm occurs, AF is set to logic 1. The asserted AF can be used to generate an interrupt (INT). The AF is cleared using the interface.

The registers at addresses 09h through 0Ch contain alarm information. When one or more of these registers is loaded with minute, hour, day or weekday, and its corresponding AE_x is logic 0, then that information is compared with the current minute, hour, day, and weekday. When all enabled comparisons match for the first time, the alarm flag (AF in register Control_2) is set to logic 1.

The generation of interrupts from the alarm function is controlled via bit AIE. If bit AIE is enabled, the INT pin follows the condition of bit AF. AF remains set until cleared by the interface. Once AF has been cleared, it only sets again when the time increments to match the alarm condition once more. Alarm registers having their AE_x bit at logic 1 are ignored.

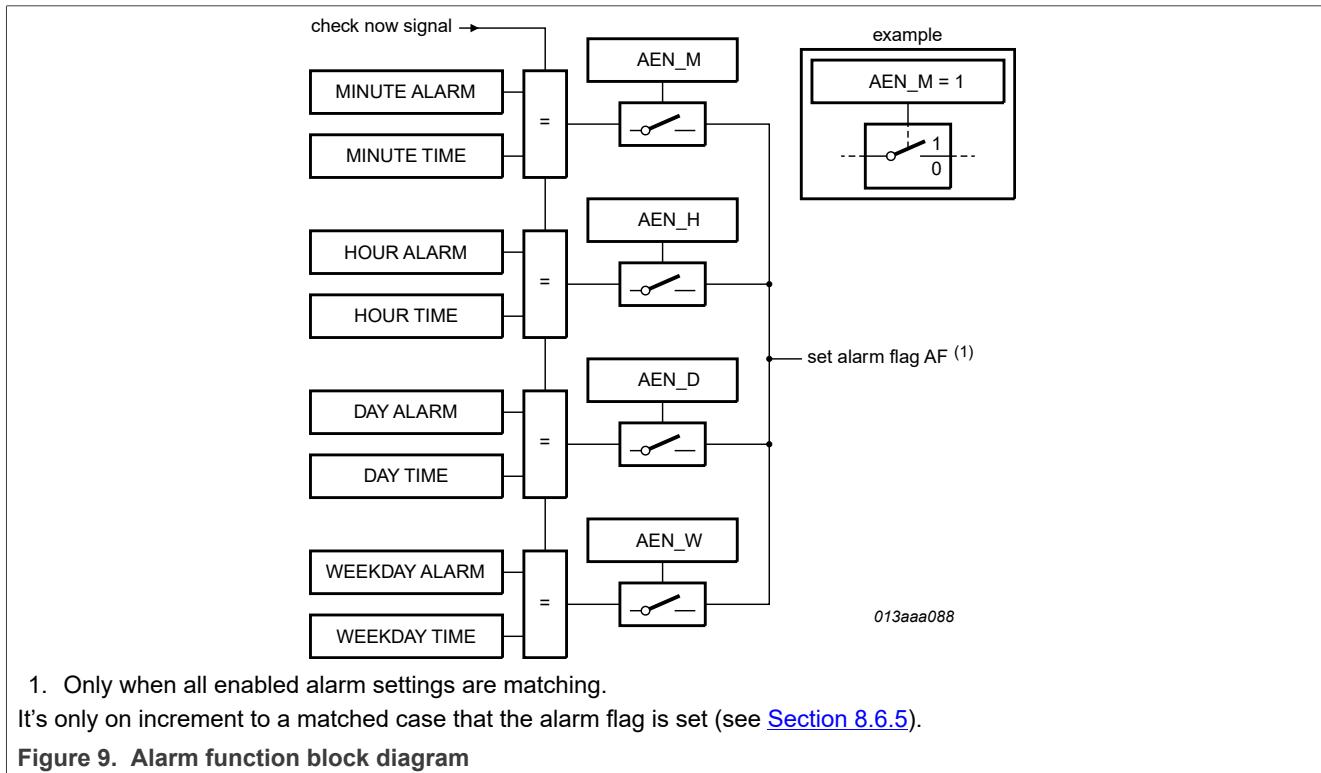


Figure 9. Alarm function block diagram

8.7 Register CLKOUT_control and clock output

Frequencies of 32.768 kHz (default), 1.024 kHz, 32 Hz, and 1 Hz can be generated for use as a system clock, microcontroller clock, input to a charge pump, or for calibration of the oscillator.

Table 22. CLKOUT_control - CLKOUT control register (address 0Dh) bit description

Bit	Symbol	Value	Description
7	FE	0	The CLKOUT output is inhibited and the CLKOUT output is set to high-impedance.
		1 ^[1]	The CLKOUT output is activated.
6 to 2	-	-	Unused
1 to 0	FD[1:0]		Frequency output at pin CLKOUT
		00 ^[1]	32.768 kHz
		01	1.024 kHz
		10	32 Hz
		11	1 Hz

[1] Default value.

8.8 Timer function

The Timer_control register at address 0Eh controls the 8-bit countdown timer at address 0Fh. This register determines one of 4 source clock frequencies for the timer (4096 Hz, 64 Hz, 1 Hz, or $\frac{1}{60}$ Hz), which enables/disables the timer. The timer counts down from a software-loaded 8-bit binary value. At the end of every countdown, the timer sets the timer flag TF. The TF can only be cleared by using the interface. The asserted TF can be used to generate an interrupt on pin INT. The interrupt can be generated as a pulsed signal every countdown period or as a permanently active signal that follows the state of TF. Bit TI_TP is used to control this mode selection. When reading the timer, the current countdown value is returned.

8.8.1 Register Timer_control

Table 23. Timer_control - timer control register (address 0Eh) bit description

Bit	Symbol	Value	Description
7	TE	0 ^[1]	The timer is disabled.
		1	The timer is enabled.
6 to 2	-	-	Unused
1 to 0	TD[1:0]		Timer source clock frequency select ^[2]
		00	4.096 kHz
		01	64 Hz
		10	1 Hz
		11 ^[2]	$\frac{1}{60}$ Hz

[1] Default value.

[2] These bits determine the source clock for the countdown timer. When not in use, TD[1:0] must be set to $\frac{1}{60}$ Hz for power saving.

8.8.2 Register Timer

Table 24. Timer - timer value register (address 0Fh) bit description

Bit	Symbol	Value	Description
7 to 0	TIMER[7:0]	00h to FFh	Countdown period in seconds: $\text{CountdownPeriod} = \frac{n}{\text{SourceClockFrequency}}$ Here, n is the countdown value.

Table 25. Timer register bits value range

Bit	7	6	5	4	3	2	1	0
128	64	32	16	8	4	2	1	1

The register Timer is an 8-bit binary countdown timer. It is enabled and disabled via the Timer_control register bit TE. The Timer_control register also selects the source clock for the timer. Other timer properties such as interrupt generation are controlled via the register Control_status_2.

For an accurate read back of the count down value, it is recommended to read the register twice and check for consistent results. It is not possible to freeze the countdown timer counter during the read back.

8.9 EXT_CLK test mode

A test mode is available that allows for onboard testing. In such a mode, it is possible to set up test conditions and control the operation of the RTC.

The test mode is entered by setting bit TEST1 in register Control_status_1. Then pin CLKOUT becomes an input. The test mode replaces the internal 64 Hz signal with the signal applied to pin CLKOUT. Every 64 positive edges applied to pin CLKOUT then generates an increment of one second.

The signal applied to pin CLKOUT must have a minimum pulse width of 300 ns and a maximum period of 1000 ns. The internal 64 Hz clock, now sourced from CLKOUT, is divided down to 1 Hz by a 2^6 divide chain called a prescaler. The prescaler can be set into a known state by using bit STOP. When bit STOP is set, the prescaler is reset to 0 (STOP must be cleared before the prescaler can operate again).

From a STOP condition, the first 1 second increment will take place after 32 positive edges on CLKOUT. Thereafter, every 64 positive edges cause a one-second increment.

Remark: Entry into EXT_CLK test mode is not synchronized to the internal 64 Hz clock. When entering the test mode, no assumption as to the state of the prescaler can be made.

8.9.1 Example of an operation

1. Set EXT_CLK test mode (Control_status_1, bit TEST1 = 1).
2. Set STOP (Control_status_1, bit STOP = 1).
3. Clear STOP (Control_status_1, bit STOP = 0).
4. Set time registers to the desired value.
5. Apply 32 clock pulses to CLKOUT.
6. Read the time registers to see the first change.
7. Apply 64 clock pulses to CLKOUT.
8. Read the time registers to see the second change.

Repeat steps 7 and 8 for additional increments.

8.10 STOP bit function

The function of the STOP bit is to allow for accurate starting of the time circuits. The STOP bit function causes upper part of the prescaler (F_2 to F_{14}) to be held in reset; therefore no 1 Hz ticks are generated (see [Figure 10](#)). The time circuits can then be set and does not increment until the STOP bit is released (see [Figure 11](#) and [Table 26](#)).

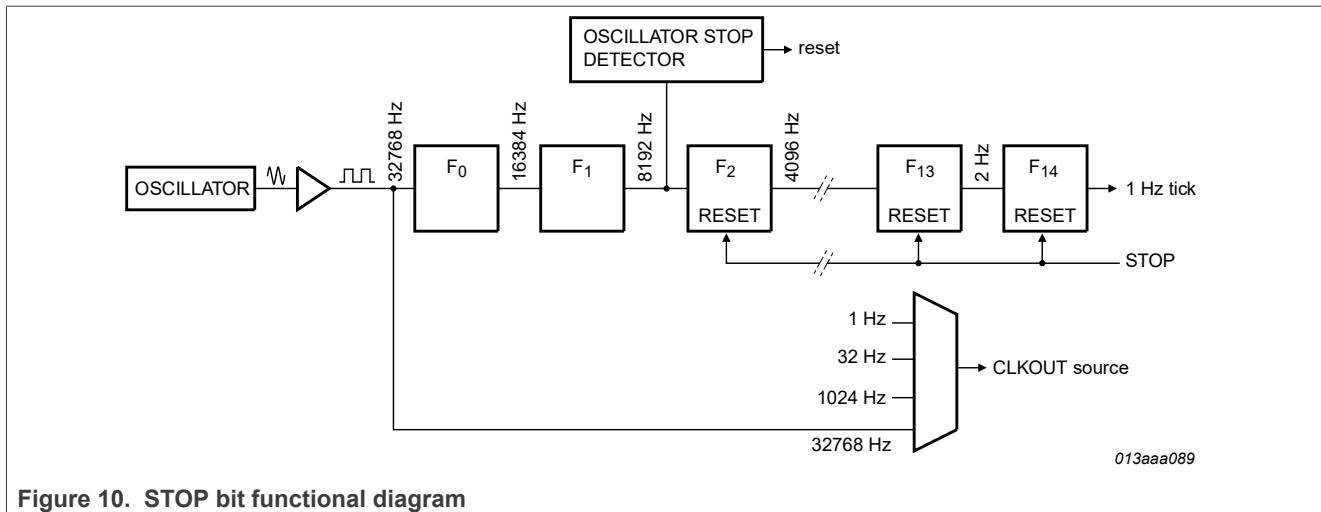


Figure 10. STOP bit functional diagram

The STOP bit function does not affect the output of 32.768 kHz on CLKOUT, but stops the generation of 1.024 kHz, 32 Hz, and 1 Hz.

The lower two stages of the prescaler (F_0 and F_1) are not reset. Since the I^2C -bus is asynchronous to the crystal oscillator, the accuracy of restarting the time circuits is between zero and one 8.192 kHz cycle (see [Figure 11](#)).

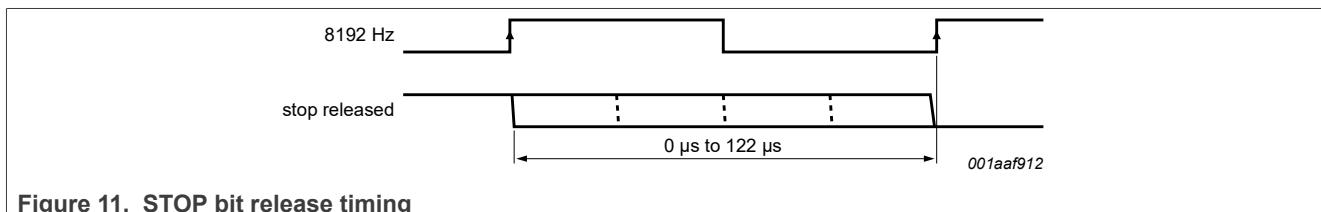


Figure 11. STOP bit release timing

Table 26. First increment of time circuits after STOP bit release

Bit	Prescaler bits	[1]	1 Hz tick	Time	Comment
					hh:mm:ss
The clock running normally					
0	01-0 0001 1101 0100			12:45:12	Prescaler counting normally
STOP bit activated by the user. F_0F_1 are not reset and values cannot be predicted externally					
1	XX-0 0000 0000 0000			12:45:12	Prescaler is reset; time circuits are frozen
A new time set by the user					
1	XX-0 0000 0000 0000			08:00:00	Prescaler is reset; time circuits are frozen
STOP bit released by the user					

Table 26. First increment of time circuits after STOP bit release...continued

Bit	Prescaler bits	[1]	1 Hz tick	Time	Comment
STOP	F ₀ F ₁ -F ₂ to F ₁₄			hh:mm:ss	
0	XX-0 0000 0000 0000	0.507813 to 0.507935 s 1.000000 s 013aaa076		08:00:00	Prescaler is now running
	XX-1 0000 0000 0000			08:00:00	-
	XX-0 1000 0000 0000			08:00:00	-
	XX-1 1000 0000 0000			08:00:00	-
	:			:	:
	11-1 1111 1111 1110			08:00:00	-
	00-0 0000 0000 0001			08:00:01	The 0 to 1 transition of F ₁₄ increments the time circuits
	10-0 0000 0000 0001			08:00:01	-
	:			:	:
	11-1 1111 1111 1111			08:00:01	-
	00-0 0000 0000 0000			08:00:01	-
	10-0 0000 0000 0000			08:00:01	-
	:			:	:
	11-1 1111 1111 1110			08:00:01	-
	00-0 0000 0000 0001			08:00:02	The 0 to 1 transition of F ₁₄ increments the time circuits

[1] F₀ is clocked at 32.768 kHz.

The first increment of the time circuits is between 0.507813 s and 0.507935 s after the STOP bit is released. The prescaler bits F₀ and F₁ not being reset (see [Table 26](#)) and the unknown state of the 32 kHz clock causes the uncertainty.

8.11 Reset

The PCF8563 includes an internal reset circuit, which is active whenever the oscillator is stopped. In the reset state, the I²C-bus logic is initialized including the address pointer and all registers are set according to [Table 27](#). I²C-bus communication is not possible during reset.

Table 27. Register reset value^[1]

Address	Register name	Bit							
		7	6	5	4	3	2	1	0
00h	Control_status_1	0	0	0	0	1	0	0	0

Table 27. Register reset value^[1] ...continued

Address	Register name	Bit								
		7	6	5	4	3	2	1	0	
01h	Control_status_2	0	0	0	0	0	0	0	0	
02h	VL_seconds	1	x	x	x	x	x	x	x	
03h	Minutes	x	x	x	x	x	x	x	x	
04h	Hours	x	x	x	x	x	x	x	x	
05h	Days	x	x	x	x	x	x	x	x	
06h	Weekdays	x	x	x	x	x	x	x	x	
07h	Century_months	x	x	x	x	x	x	x	x	
08h	Years	x	x	x	x	x	x	x	x	
09h	Minute_alarm	1	x	x	x	x	x	x	x	
0Ah	Hour_alarm	1	x	x	x	x	x	x	x	
0Bh	Day_alarm	1	x	x	x	x	x	x	x	
0Ch	Weekday_alarm	1	x	x	x	x	x	x	x	
0Dh	CLKOUT_control	1	x	x	x	x	x	0	0	
0Eh	Timer_control	0	x	x	x	x	x	1	1	
0Fh	Timer	x	x	x	x	x	x	x	x	

[1] Registers marked x are undefined at power up and unchanged by subsequent resets.

8.11.1 Power-On Reset (POR) override

The POR duration is directly related to the crystal oscillator startup time. Due to long startup times experienced by these types of circuits, a mechanism is built in to disable the POR. This override speeds up the on-board test of the device. The setting of this mode requires that the I²C-bus pins, SDA and SCL, are toggled in a specific order as shown in [Figure 12](#). All timings are required minimum.

Once the override mode has been entered, the device immediately stops and resets. Normal operation can now commence, that is entry into the EXT_CLK test mode via I²C-bus access. The override mode can be cleared by writing logic 0 to TESTC. TESTC must be set to logic 1 before re-entry into the override mode is possible. Setting TESTC to logic 0 during normal operation has no effect except to prevent entry into the POR override mode.

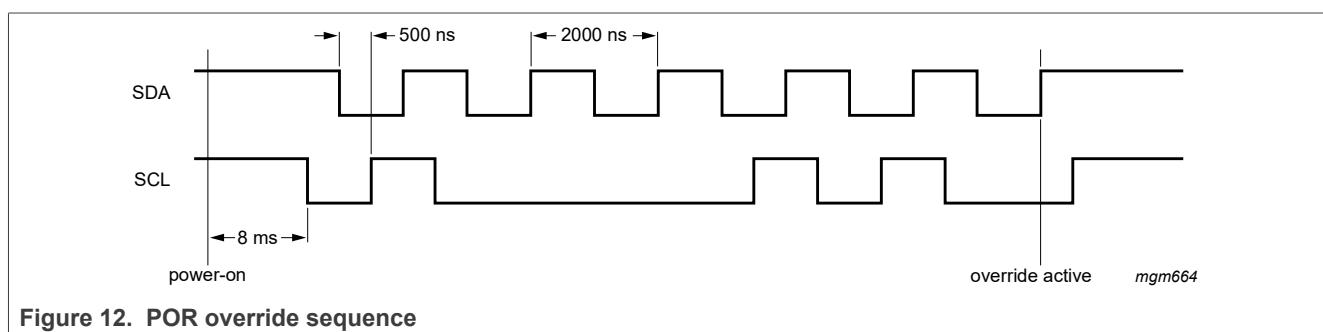


Figure 12. POR override sequence

9 Characteristics of the I²C-bus

The I²C-bus is for bidirectional, two-line communication between different ICs or modules. The two lines are SDA and SCL. Both lines must be connected to a positive supply via a pullup resistor. Data transfer can be initiated only when the bus is not busy.

9.1 Bit transfer

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line now is interpreted as a control signal (see [Figure 13](#)).

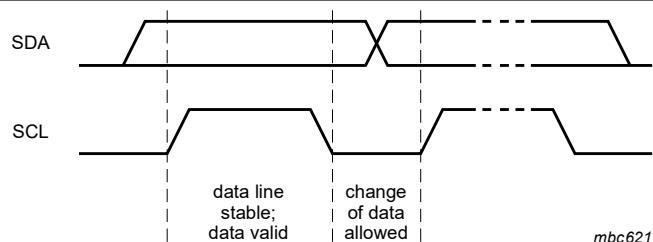


Figure 13. Bit transfer

9.2 START and STOP conditions

Both data and clock lines remain HIGH when the bus is not busy.

A HIGH-to-LOW transition of the data line while the clock is HIGH, is defined as the START condition - S.

A LOW-to-HIGH transition of the data line while the clock is HIGH, is defined as the STOP condition - P (see [Figure 14](#)).

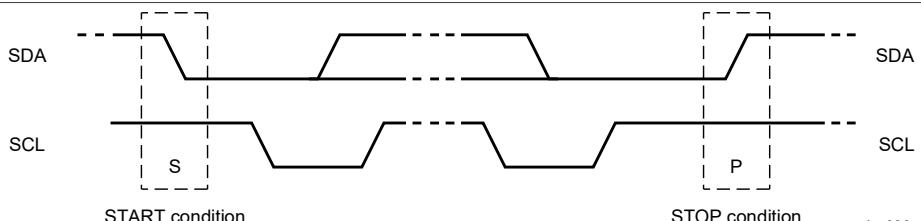
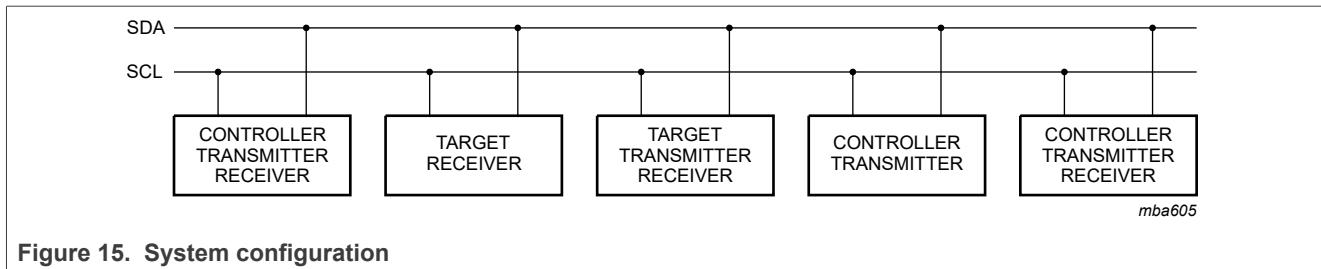
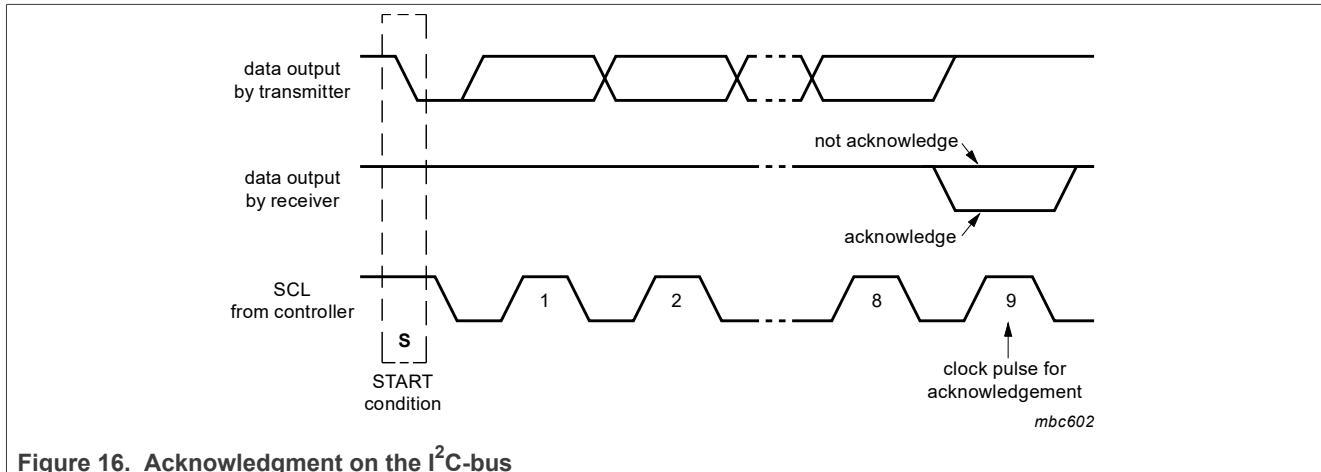


Figure 14. Definition of START and STOP conditions

9.3 System configuration

A device generating a message is a transmitter; a device receiving a message is a receiver. The device that controls the message is the controller; and the devices that the controller controls are the targets (see [Figure 15](#)).




Figure 15. System configuration

9.4 Acknowledge

The number of data bytes transferred between the START and STOP conditions from transmitter to receiver is unlimited. Each byte of eight bits is followed by an acknowledge cycle.

- A target receiver, which is addressed, must generate an acknowledge after the reception of each byte.
- Also, a controller receiver must generate an acknowledge after the reception of each byte that has been clocked out of the target transmitter.
- The device that acknowledges must pull down the SDA line during the acknowledge clock pulse. It ensures that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse (set-up and hold times must be considered).
- A controller receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the target. In this event, the transmitter must leave the data line HIGH to enable the controller to generate a STOP condition.

Acknowledgment on the I²C-bus is illustrated in [Figure 16](#).

Figure 16. Acknowledgment on the I²C-bus

9.5 I²C-bus protocol

9.5.1 Addressing

Before any data is transmitted on the I²C-bus, the device that must respond is addressed first. The addressing is always carried out with the first byte transmitted after the start procedure.

The PCF8563 acts as a target receiver or target transmitter. Therefore, the clock signal SCL is only an input signal, but the data signal SDA is a bidirectional line.

Two target addresses are reserved for the PCF8563:

Read: A3h (1010 0011)

Write: A2h (1010 0010)

The PCF8563 target address is illustrated in [Figure 17](#).

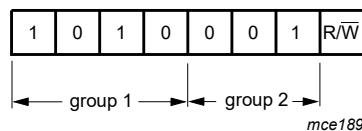


Figure 17. Target address

9.5.2 Clock and calendar READ or WRITE cycles

The I²C-bus configuration for the different PCF8563 READ and WRITE cycles is shown in [Figure 18](#), [Figure 19](#), and [Figure 20](#). The register address is a 4-bit value that defines which register is to be accessed next. The upper four bits of the register address are not used.

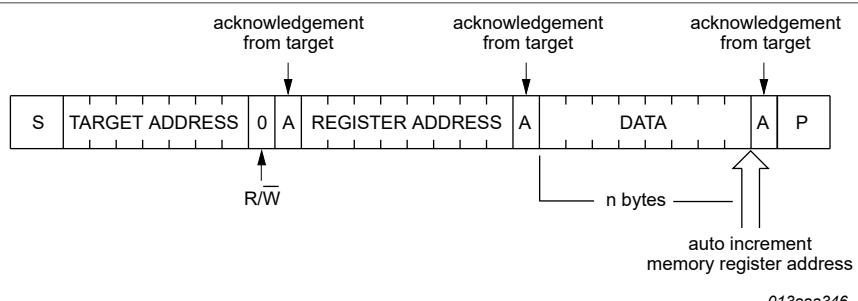
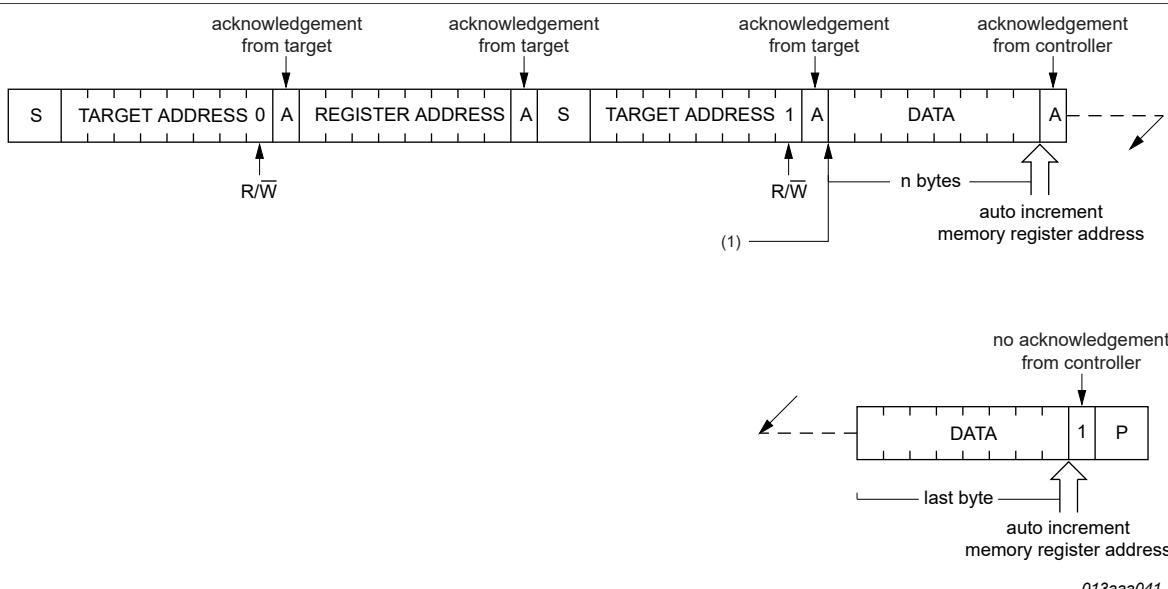



Figure 18. Controller transmits to target receiver (WRITE mode)

1. At this moment, controller transmitter becomes controller receiver and PCF8563 target receiver becomes target transmitter.

Figure 19. Controller reads after setting register address (write register address; READ data)

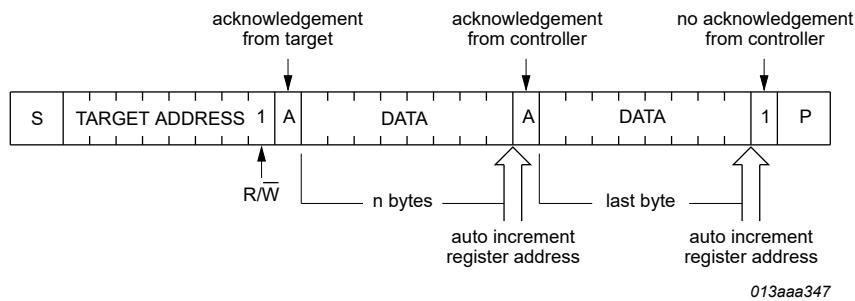
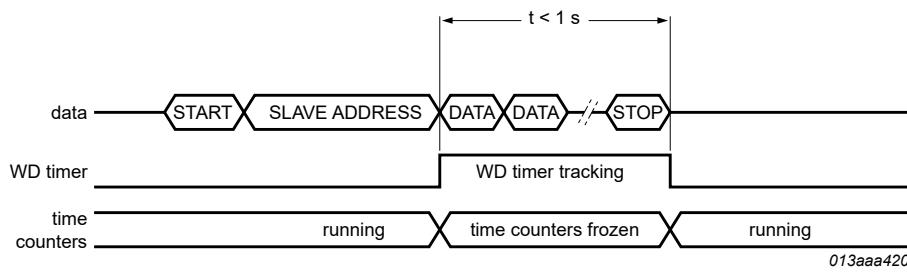
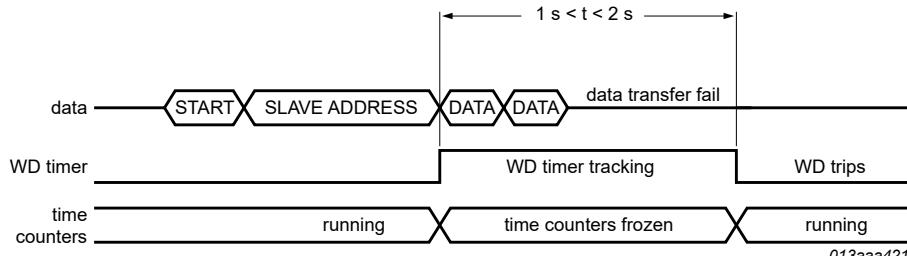




Figure 20. Controller reads target immediately after first byte (READ mode)

9.6 Interface watchdog timer

a. Correct data transfer: read or write

b. Incorrect data transfer; read or write

Figure 21. Interface watchdog timer

During read/write operations, the time counting circuits are frozen. To prevent a situation where the accessing device becomes locked and does not clear the interface, the PCF8563 has a built-in watchdog timer. If the interface is active for more than 1 s from the time a valid target address is transmitted, then the PCF8563 automatically clears the interface and allows the time counting circuits to continue counting. The watchdog triggers between 1 s and 2 s after receiving a valid target address. Each time the watchdog period is exceeded, 1 s is lost from the time counters.

The watchdog is implemented to prevent the excessive loss of time due to interface access failure, for example, if main power is removed from a battery backed-up system during an interface access.

10 Internal circuitry

[Figure 22](#) shows the internal view of device diode protection for PCF8563.

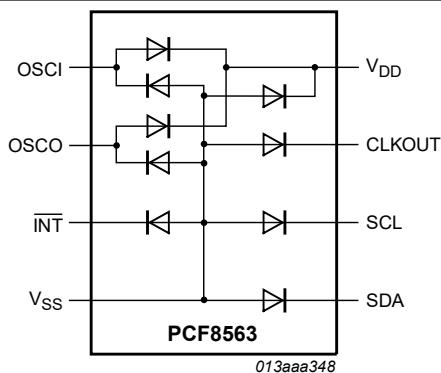


Figure 22. Device diode protection diagram

11 Limiting values

Table 28. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{DD}	Supply voltage		-0.5	+6.5	V
I_{DD}	Supply current		-50	+50	mA
V_I	Input voltage	On pins SCL, SDA, and OSCI	-0.5	+6.5	V
V_O	Output voltage	On pins CLKOUT and INT	-0.5	+6.5	V
I_I	Input current	At any input	-10	+10	mA
I_O	Output current	At any output	-10	+10	mA
P_{tot}	Total power dissipation		-	300	mW
V_{ESD}	Electrostatic discharge voltage	HBM			
		HVSON10 (PCF8563BS/4)	[1]	-	± 3500 V
		SO8 (PCF8563T/F4)	[1]		
		TSSOP8 (PCF8563TS/4)	[1]		
		SO8 (PCF8563T/5)	[1]	-	± 2000 V
		TSSOP8 (PCF8563TS/5)	[1]		
		CDM			
		HVSON10 (PCF8563BS/4)	[2]	-	± 2000 V
		SO8 (PCF8563T/F4)	[2]	-	± 1000 V
		SO8 (PCF8563T/5)	[2]		± 1500 V
		TSSOP8 (PCF8563TS/4)	[2]		± 1500 V
		TSSOP8 (PCF8563TS/5)	[2]		± 1750 V
I_{lu}	Latch-up current		[3]	-	200 mA
T_{stg}	Storage temperature		[4]	-65	+150 °C
T_{amb}	Ambient temperature	Operating device		-40	+85 °C

[1] Pass level; Human Body Model (HBM), according to [List item](#).

[2] Pass level; Charged-Device Model (CDM), according to [List item](#).

[3] Pass level; latch-up testing according to [List item](#) at maximum ambient temperature ($T_{amb(max)}$).

[4] According to the NXP store and transport requirements (see [List item](#)), the devices must be stored at a temperature of +8 °C to +45 °C and a humidity of 25 % to 75 %. For long-term storage, products deviant conditions are described in that document.

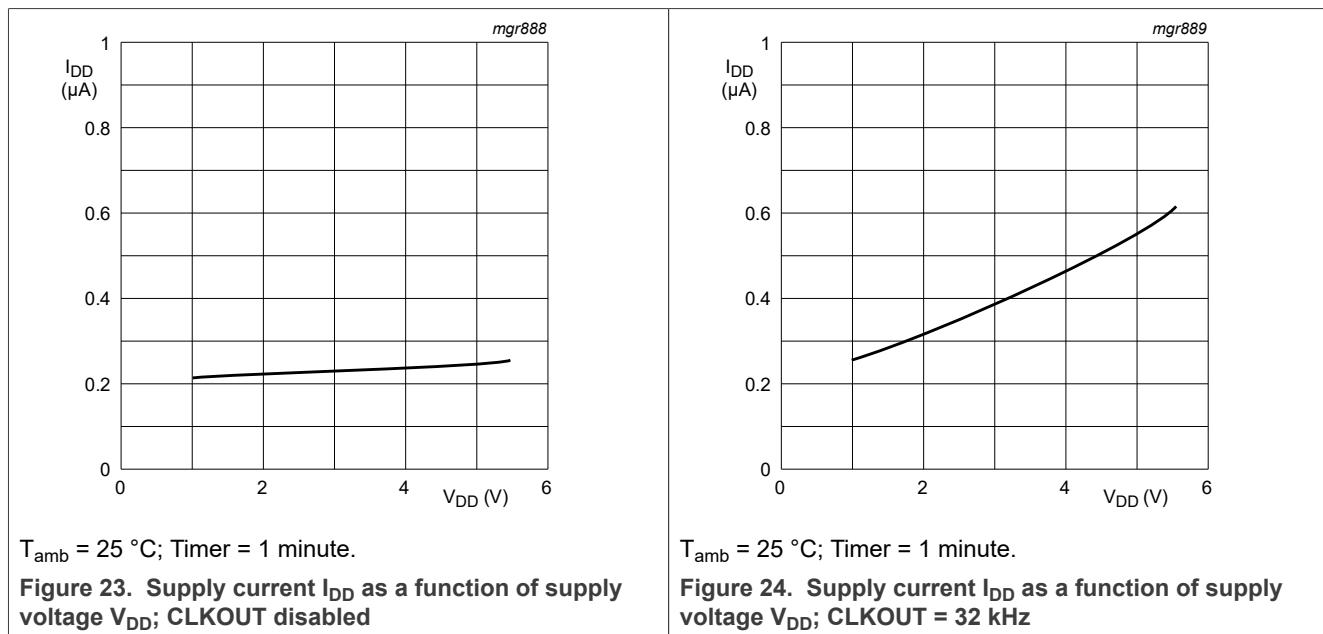
12 Static characteristics

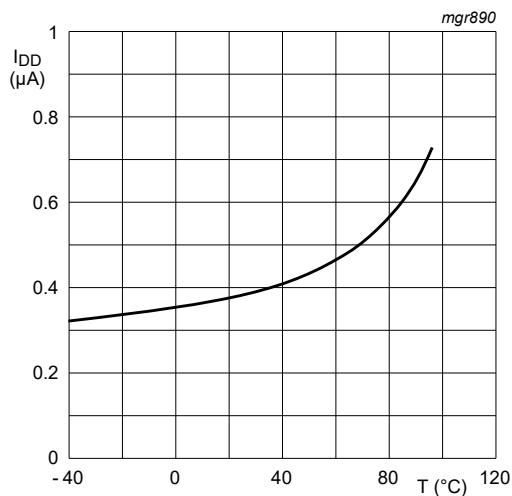
Table 29. Static characteristics

$V_{DD} = 1.8 \text{ V to } 5.5 \text{ V}$; $V_{SS} = 0 \text{ V}$; $T_{amb} = -40 \text{ }^{\circ}\text{C to } +85 \text{ }^{\circ}\text{C}$; $f_{osc} = 32.768 \text{ kHz}$; quartz $R_s = 40 \text{ k}\Omega$; $C_L = 8 \text{ pF}$; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Typ	Max	Unit
Supplies							
V_{DD}	Supply voltage	Interface inactive; $f_{SCL} = 0 \text{ Hz}$; $T_{amb} = 25 \text{ }^{\circ}\text{C}$	[1]	1.0	-	5.5	V
		Interface active; $f_{SCL} = 400 \text{ kHz}$		1.8	-	5.5	V
		Clock data integrity; $T_{amb} = 25 \text{ }^{\circ}\text{C}$		V_{low}	-	5.5	V
I_{DD}	Supply current	Interface active					
		$f_{SCL} = 400 \text{ kHz}$		-	-	800	μA
		$f_{SCL} = 100 \text{ kHz}$		-	-	200	μA
		Interface inactive ($f_{SCL} = 0 \text{ Hz}$); CLKOUT disabled; $T_{amb} = 25 \text{ }^{\circ}\text{C}$	[2]				
		$V_{DD} = 5.0 \text{ V}$		-	275	550	nA
		$V_{DD} = 3.0 \text{ V}$		-	250	500	nA
		$V_{DD} = 2.0 \text{ V}$		-	225	450	nA
		Interface inactive ($f_{SCL} = 0 \text{ Hz}$); CLKOUT disabled; $T_{amb} = -40 \text{ }^{\circ}\text{C to } +85 \text{ }^{\circ}\text{C}$	[2]				
		$V_{DD} = 5.0 \text{ V}$		-	500	750	nA
		$V_{DD} = 3.0 \text{ V}$		-	400	650	nA
		$V_{DD} = 2.0 \text{ V}$		-	400	600	nA
		Interface inactive ($f_{SCL} = 0 \text{ Hz}$); CLKOUT enabled at 32 kHz; $T_{amb} = 25 \text{ }^{\circ}\text{C}$	[2]				
		$V_{DD} = 5.0 \text{ V}$		-	825	1 600	nA
		$V_{DD} = 3.0 \text{ V}$		-	550	1 000	nA
		$V_{DD} = 2.0 \text{ V}$		-	425	800	nA
		Interface inactive ($f_{SCL} = 0 \text{ Hz}$); CLKOUT enabled at 32 kHz; $T_{amb} = -40 \text{ }^{\circ}\text{C to } +85 \text{ }^{\circ}\text{C}$	[2]				
		$V_{DD} = 5.0 \text{ V}$		-	950	1 700	nA
		$V_{DD} = 3.0 \text{ V}$		-	650	1 100	nA
		$V_{DD} = 2.0 \text{ V}$		-	500	900	nA
Inputs							
V_{IL}	LOW-level input voltage			-0.5	-	$+0.3V_{DD}$	V
V_{IH}	HIGH-level input voltage			$0.7V_{DD}$	-	5.5	V

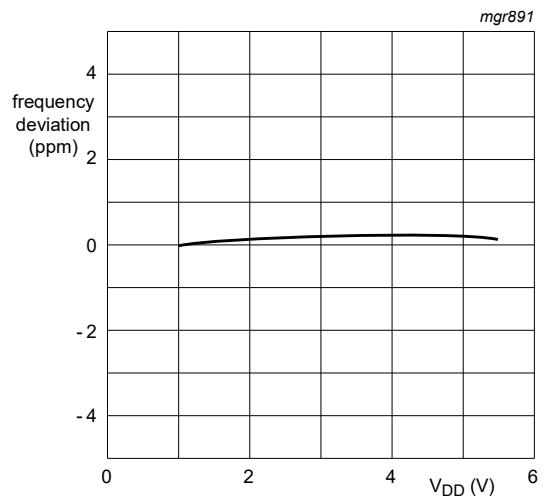
Table 29. Static characteristics...continued


V_{DD} = 1.8 V to 5.5 V; V_{SS} = 0 V; T_{amb} = -40 °C to +85 °C; f_{osc} = 32.768 kHz; quartz R_s = 40 kΩ; C_L = 8 pF; unless otherwise specified.


Symbol	Parameter	Conditions		Min	Typ	Max	Unit
I_{LI}	Input leakage current	$V_I = V_{DD}$ or V_{SS}		-1	0	+1	µA
C_i	Input capacitance		[3]	-	-	7	pF
Outputs							
I_{OL}	LOW-level output current	Output sink current; V_{OL} = 0.4 V; V_{DD} = 5 V					
		On pin SDA		3	-	-	mA
		On pin INT		1	-	-	mA
		On pin CLKOUT		1	-	-	mA
I_{LO}	Output leakage current	$V_O = V_{DD}$ or V_{SS}		-1	0	+1	µA
Voltage detector							
V_{low}	Low voltage	T_{amb} = 25 °C; sets bit VL; see Figure 6		-	0.9	1.0	V

[1] For reliable oscillator startup at power on, use V_{DD} greater than 1.3 V. If powered up at 1.0 V, the oscillator starts but it can be a bit slow, especially if at high temperature. Normally, the power supply is not 1.0 V at startup and only comes at the end of battery discharge. V_{DD} min of 1.0 V is specified so that the customer can calculate how large a battery or capacitor they need for their application. V_{DD} min of 1.3 V or greater is needed to ensure speedy oscillator startup time.

[2] Timer source clock = $\frac{1}{60}$ Hz, level of pins SCL and SDA is V_{DD} or V_{SS} .


[3] Tested on a sample basis.

$V_{DD} = 3 \text{ V}$; Timer = 1 minute.

Figure 25. Supply current I_{DD} as a function of temperature T ; $\text{CLKOUT} = 32 \text{ kHz}$

$T_{\text{amb}} = 25 \text{ }^{\circ}\text{C}$; normalized to $V_{DD} = 3 \text{ V}$.

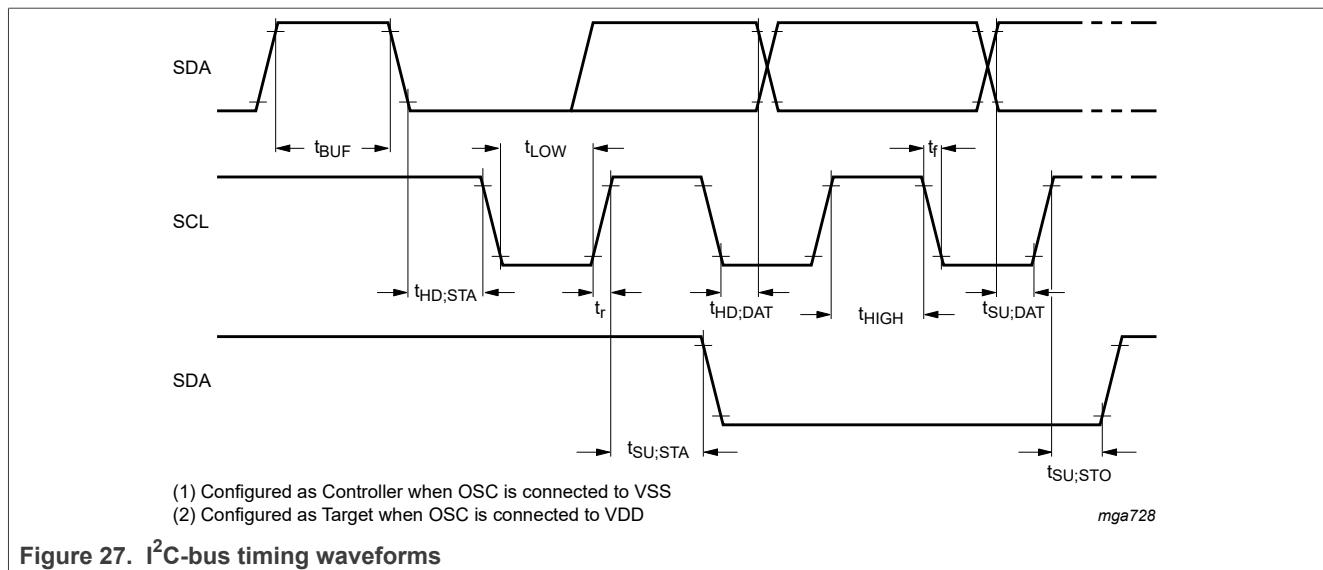
Figure 26. Frequency deviation as a function of supply voltage V_{DD}

13 Dynamic characteristics

Table 30. Dynamic characteristics

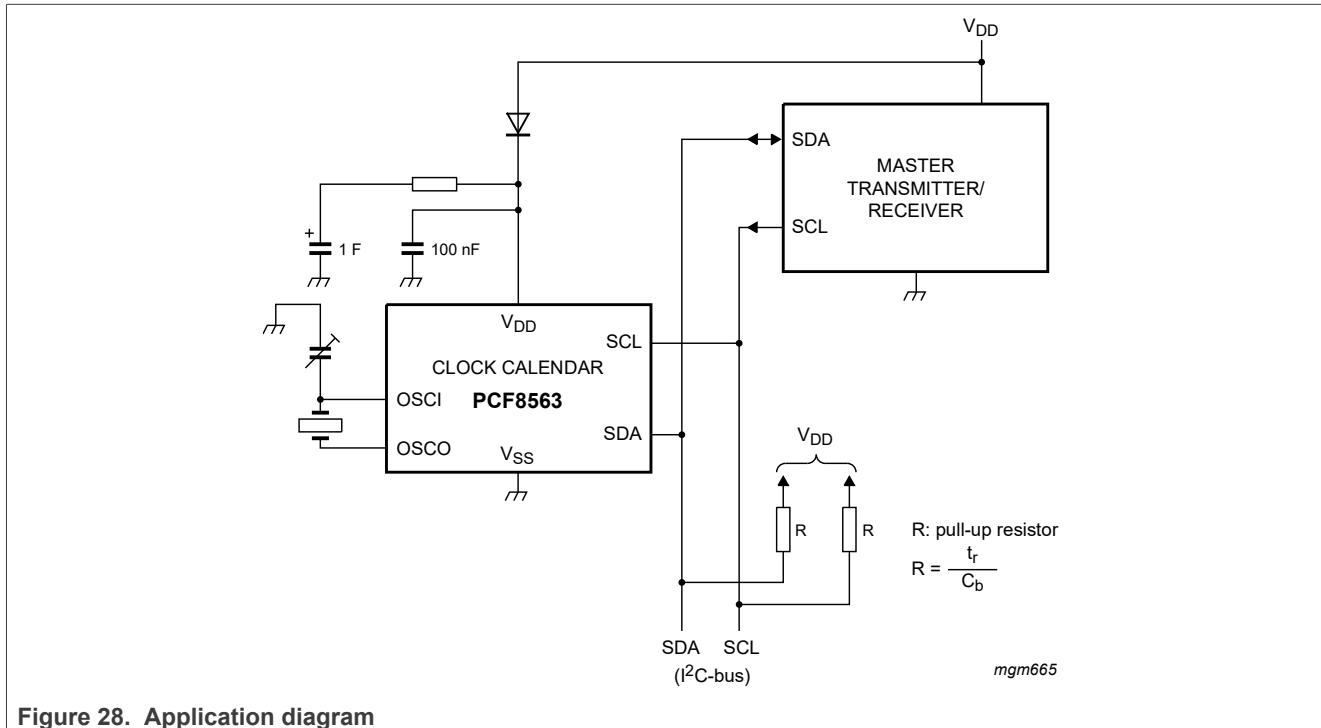
$V_{DD} = 1.8 \text{ V to } 5.5 \text{ V}$; $V_{SS} = 0 \text{ V}$; $T_{amb} = -40 \text{ }^{\circ}\text{C to } +85 \text{ }^{\circ}\text{C}$; $f_{osc} = 32.768 \text{ kHz}$; quartz $R_s = 40 \text{ k}\Omega$; $C_L = 8 \text{ pF}$; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Typ	Max	Unit
Oscillator							
Cosco	Capacitance on pin OSCO			15	25	35	pF
$\Delta f_{osc}/f_{osc}$	Relative oscillator frequency variation	$\Delta V_{DD} = 200 \text{ mV}$; $T_{amb} = 25 \text{ }^{\circ}\text{C}$		-	0.2	-	ppm
Quartz crystal parameters (f = 32.768 kHz)							
R_s	Series resistance			-	-	100	k Ω
C_L	Load capacitance	Parallel	[1]	7	-	12.5	pF
C_{trim}	Trimmer capacitance	External; on pin OSC1		5	-	25	pF
CLKOUT output							
δ_{CLKOUT}	Duty cycle on pin CLKOUT		[2]	-	50	-	%
I²C-bus timing characteristics (see Figure 27) ^{[3][4]}							
f_{SCL}	SCL clock frequency		[5]	-	-	400	kHz
$t_{HD;STA}$	Hold time (repeated) START condition			0.6	-	-	μs
$t_{SU;STA}$	Set-up time for a repeated START condition			0.6	-	-	μs
t_{LOW}	LOW period of the SCL clock			1.3	-	-	μs
t_{HIGH}	HIGH period of the SCL clock			0.6	-	-	μs
t_r	Rise time of both SDA and SCL signals	Standard-mode		-	-	1	μs
		Fast-mode		-	-	0.3	μs
t_f	Fall time of both SDA and SCL signals			-	-	0.3	μs
t_{BUF}	Bus free time between a STOP and START condition			1.3	-	-	μs
C_b	Capacitive load for each bus line			-	-	400	pF
$t_{SU;DAT}$	Data set-up time			100	-	-	ns
$t_{HD;DAT}$	Data hold time			0	-	-	ns
$t_{SU;STO}$	Set-up time for STOP condition			0.6	-	-	μs
$t_{w(spike)}$	Spike pulse width	On bus		-	-	50	ns


[1] C_L is a calculation of C_{trim} and Cosco in the series: $C_L = \frac{(C_{trim} \cdot C_{OSCO})}{(C_{trim} + C_{OSCO})}$.

[2] Unspecified for $f_{CLKOUT} = 32.768 \text{ kHz}$.

[3] All timing values are valid within the operating supply voltage at ambient temperature and referenced to V_{IL} and V_{IH} with an input voltage swing of V_{SS} to V_{DD} .


[4] A detailed description of the I²C-bus specification is given in [List item](#).

[5] I²C-bus access time between two STARTs or between a START and a STOP condition to this device must be less than one second.

Figure 27. I²C-bus timing waveforms

14 Application information

[Figure 28](#) shows the detailed application diagram for PCF8563.

14.1 Quartz frequency adjustment

14.1.1 Method 1: Fixed OSCI capacitor

By evaluating the average capacitance necessary for the application layout, a fixed capacitor can be used. The frequency is best measured via the 32.768 kHz signal available after power on at pin CLKOUT. The frequency tolerance depends on the quartz crystal tolerance, the capacitor tolerance, and the device-to-device tolerance (on average ± 5 ppm). Average deviations of ± 5 minutes per year can be easily achieved.

14.1.2 Method 2: OSCI trimmer

Using the 32.768 kHz signal available after power on at pin CLKOUT, fast setting of a trimmer is possible.

14.1.3 Method 3: OSCO output

Direct measurement of OSCO out (accounting for test probe capacitance).

15 Package outline

**HVSON10: plastic thermal enhanced very thin small outline package; no leads;
10 terminals; body 3 x 3 x 0.85 mm**

SOT650-1

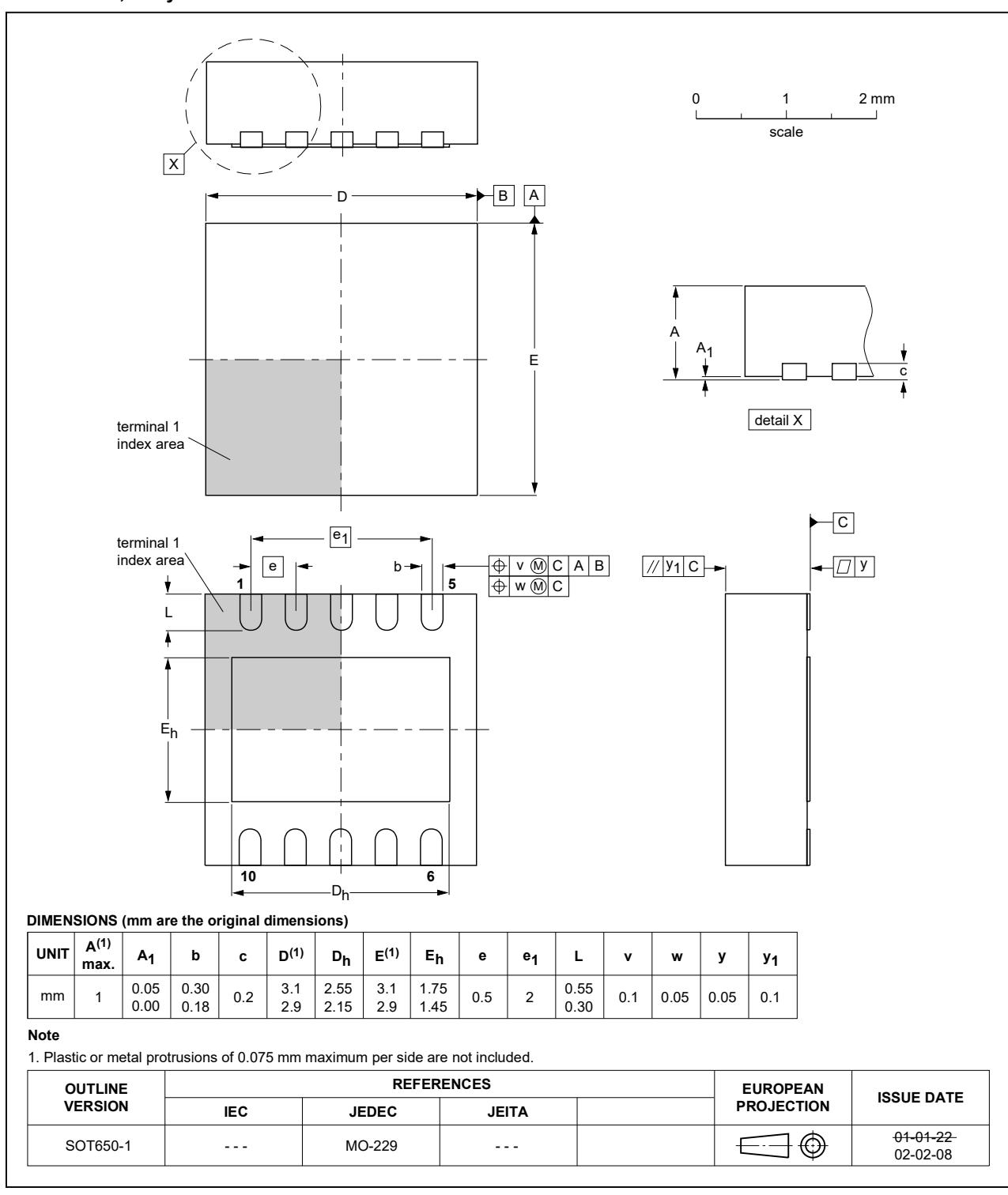
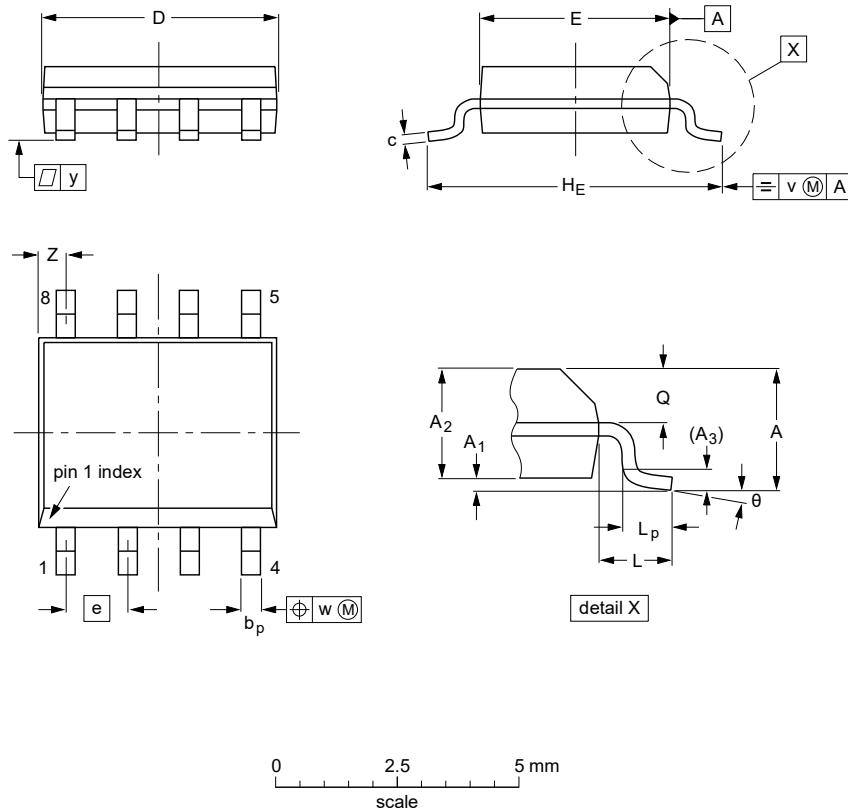



Figure 29. Package outline SOT650-1 (HVSON10) of PCF8563BS

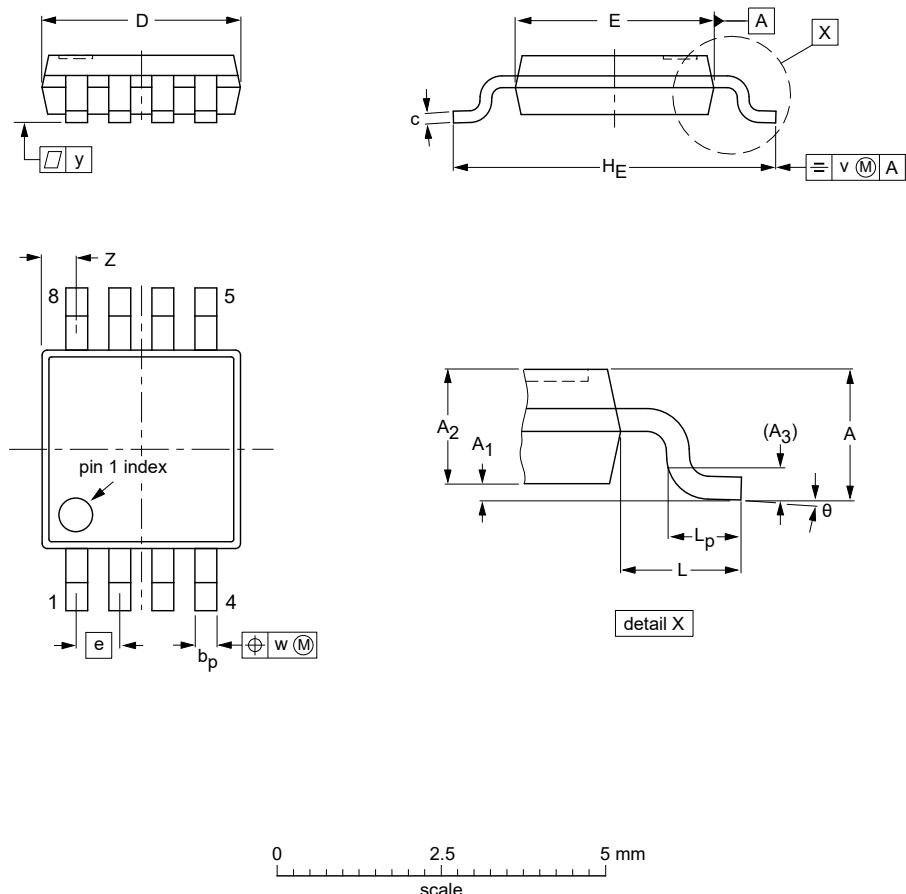
SO8: plastic small outline package; 8 leads; body width 3.9 mm

SOT96-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁	A ₂	A ₃	b _p	c	D ⁽¹⁾	E ⁽²⁾	e	H _E	L	L _p	Q	v	w	y	Z ⁽¹⁾	θ
mm	1.75 0.10	0.25 1.25	1.45 0.25	0.25	0.49 0.36	0.25 0.19	5.0 4.8	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8° 0°
inches	0.069 0.004	0.010 0.049	0.057 0.049	0.01	0.019 0.014	0.0100 0.0075	0.20 0.19	0.16 0.15	0.05	0.244 0.228	0.041	0.039 0.016	0.028 0.024	0.01	0.01	0.004	0.028 0.012	

Notes


1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.
2. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			
SOT96-1	076E03	MS-012				99-12-27 03-02-18

Figure 30. Package outline SOT96-1 (SO8) of PCF8563

TSSOP8: plastic thin shrink small outline package; 8 leads; body width 3 mm

SOT505-1

DIMENSIONS (mm are the original dimensions)

UNIT	A max.	A ₁	A ₂	A ₃	b _p	c	D ⁽¹⁾	E ⁽²⁾	e	H _E	L	L _p	v	w	y	z ⁽¹⁾	θ
mm	1.1 0.05	0.15 0.80	0.95	0.25	0.45 0.25	0.28 0.15	3.1 2.9	3.1 2.9	0.65	5.1 4.7	0.94	0.7 0.4	0.1	0.1	0.1	0.70 0.35	6° 0°

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			
SOT505-1						-99-04-09 03-02-18

Figure 31. Package outline SOT505-1 (TSSOP8) of PCF8563TS

16 Handling information

Handling information

All input and output pins are protected against ElectroStatic Discharge (ESD) under normal handling. When handling Metal-Oxide Semiconductor (MOS) devices ensure that all normal precautions are taken as described in *JESD625-A*, *IEC 61340-5* or equivalent standards.

17 Soldering of SMD packages

This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note *AN10365 "Surface mount reflow soldering description"*.

17.1 Introduction to soldering

Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.

17.2 Wave and reflow soldering

Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following:

- Through-hole components
- Leaded or leadless SMDs, which are glued to the surface of the printed circuit board

Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered, due to an increased probability of bridging.

The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable.

Key characteristics in both wave and reflow soldering are:

- Board specifications, including the board finish, solder masks and vias
- Package footprints, including solder thieves and orientation
- The moisture sensitivity level of the packages
- Package placement
- Inspection and repair
- Lead-free soldering versus SnPb soldering

17.3 Wave soldering

Key characteristics in wave soldering are:

- Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave
- Solder bath specifications, including temperature and impurities

17.4 Reflow soldering

Key characteristics in reflow soldering are:

- Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see [Figure 32](#)) than a SnPb process, thus reducing the process window
- Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board

- Reflow temperature profile; this profile includes preheat, reflow (in which the board is heated to the peak temperature) and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic). In addition, the peak temperature must be low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with [Table 31](#) and [Table 32](#)

Table 31. SnPb eutectic process (from J-STD-020D)

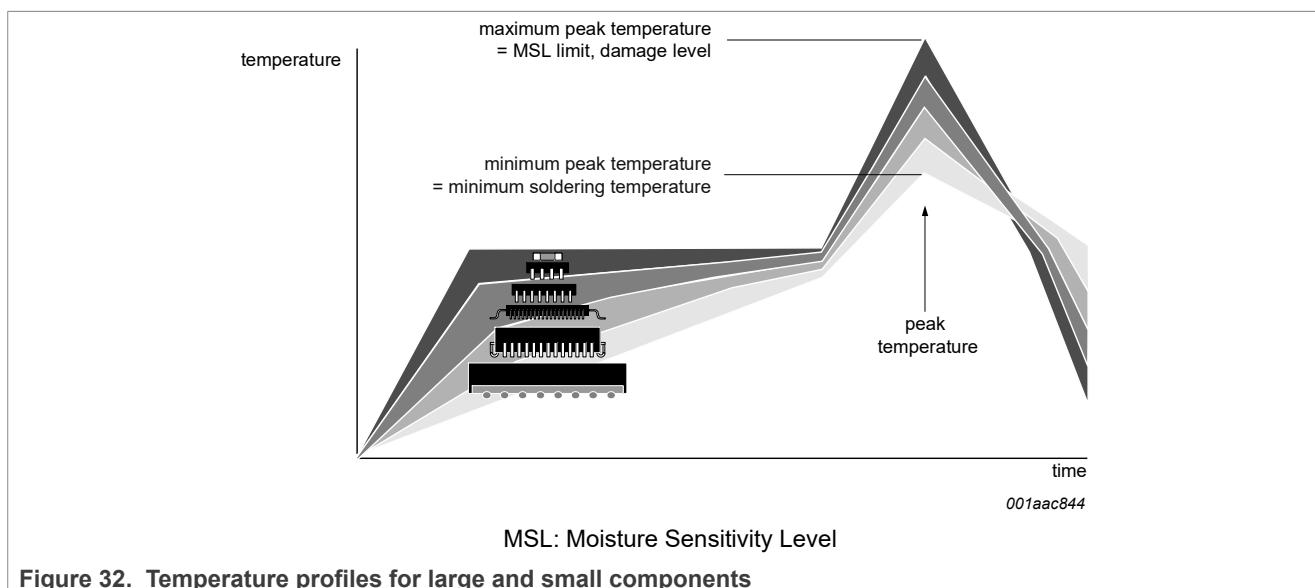

Package thickness (mm)	Package reflow temperature (°C)	
	Volume (mm ³)	
	< 350	≥ 350
< 2.5	235	220
≥ 2.5	220	220

Table 32. Lead-free process (from J-STD-020D)

Package thickness (mm)	Package reflow temperature (°C)		
	Volume (mm ³)		
	< 350	350 to 2000	> 2000
< 1.6	260	260	260
1.6 to 2.5	260	250	245
> 2.5	250	245	245

Moisture sensitivity precautions, as indicated on the packing, must be respected at all times.

Studies have shown that small packages reach higher temperatures during reflow soldering, see [Figure 32](#).

Figure 32. Temperature profiles for large and small components

For further information on temperature profiles, refer to Application Note AN10365 "Surface mount reflow soldering description".

18 Acronyms

[Table 33](#) describes the acronyms used in this data sheet.

Table 33. Acronyms

Acronym	Description
BCD	Binary Coded Decimal
CDM	Charged-Device Model
CMOS	Complementary Metal Oxide Semiconductor
ESD	ElectroStatic Discharge
HBM	Human Body Model
I^2C	Inter-Integrated Circuit
IC	Integrated Circuit
LSB	Least Significant Bit
MSB	Most Significant Bit
MSL	Moisture Sensitivity Level
PCB	Printed-Circuit Board
POR	Power-On Reset
RTC	Real-Time Clock
SCL	Serial CLock line
SDA	Serial DAta line
SMD	Surface Mount Device

19 References

This section lists the references used to supplement this document.

1. **AN10365** Surface mount reflow soldering description
2. **IEC 60134** Rating systems for electronic tubes and valves and analogous semiconductor devices
3. **IEC 61340-5** Protection of electronic devices from electrostatic phenomena
4. **IPC/JEDEC J-STD-020** Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices
5. **JESD22-A114** Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)
6. **JESD22-C101** Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components
7. **JESD78** IC Latch-Up Test
8. **JESD625-A** Requirements for Handling Electrostatic-Discharge-Sensitive (ESDS) Devices
9. **UM10569** NXP store and transport requirements
10. **SNV-FA-01-02** Marking Formats Integrated Circuits
11. **UM10204** I²C-bus specification and user manual

20 Revision history

[Table 34](#) summarizes revisions to this document.

Table 34. Revision history

Document ID	Release date	Description
PCF8563 v.11.1	19 January 2026	<p>Updated per CIN #2026010091:</p> <ul style="list-style-type: none">Modified footnote description for PCF8563T/F4 and PCF8563 TS/4 type numbers in Table 1Editorial changes
PCF8563 v.11	26 October 2015	<ul style="list-style-type: none">Removed DIP8 packageTable 3: Corrected footnote descriptionTable 28: Corrected last footnote descriptionModified Table 29:<ul style="list-style-type: none">V_{IL}: Corrected V_{SS} to -0.5V_{IH}: Corrected V_{DD} to 5.5Corrected first footnote description
PCF8563 v.10	3 April 2012	<ul style="list-style-type: none">Adjusted marking codesAdjusted text for FE = 0 in Table 22
PCF8563 v.9	16 June 2011	<ul style="list-style-type: none">Product data sheet
PCF8563 v.8	18 November 2010	<ul style="list-style-type: none">Product data sheet
PCF8563 v.7	23 July 2010	<ul style="list-style-type: none">Product data sheet
PCF8563_6	21 February 2008	<ul style="list-style-type: none">Product data sheet
PCF8563_5	17 July 2007	<ul style="list-style-type: none">Product data sheet
PCF8563-04 (9397 750 12999)	12 March 2004	<ul style="list-style-type: none">Product data
PCF8563-03 (9397 750 11158)	14 April 2003	<ul style="list-style-type: none">Product data
PCF8563-02 (9397 750 04855)	16 April 1999	<ul style="list-style-type: none">Product data
PCF8563_N_1 (9397 750 03282)	25 March 1998	<ul style="list-style-type: none">Objective specification

Legal information

Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <https://www.nxp.com>.

Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at <https://www.nxp.com/profile/terms>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless this document expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

HTML publications — An HTML version, if available, of this document is provided as a courtesy. Definitive information is contained in the applicable document in PDF format. If there is a discrepancy between the HTML document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute or sell products.

Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

I2C-bus — logo is a trademark of NXP B.V.

Tables

Tab. 1.	Ordering information	5
Tab. 2.	Marking codes	6
Tab. 3.	Pin description	8
Tab. 4.	Formatted registers overview	10
Tab. 5.	Control_status_1 - control and status register 1 (address 00h) bit description	11
Tab. 6.	Control_status_2 - control and status register 2 (address 01h) bit description	11
Tab. 7.	INT operation (bit TI_TP = 1)	13
Tab. 8.	VL_seconds - seconds and clock integrity status register (address 02h) bit description	13
Tab. 9.	Seconds coded in BCD format	13
Tab. 10.	Minutes - minutes register (address 03h) bit description	14
Tab. 11.	Hours - hours register (address 04h) bit description	14
Tab. 12.	Days - days register (address 05h) bit description	14
Tab. 13.	Weekdays - weekdays register (address 06h) bit description	15
Tab. 14.	Weekday assignments	15
Tab. 15.	Century_months - century flag and months register (address 07h) bit description	15
Tab. 16.	Month assignments in BCD format	15
Tab. 17.	Years - years register (08h) bit description	16
Tab. 18.	Minute_alarm - minute alarm register (address 09h) bit description	17
Tab. 19.	Hour_alarm - hour alarm register (address 0Ah) bit description	18
Tab. 20.	Day_alarm - day alarm register (address 0Bh) bit description	18
Tab. 21.	Weekday_alarm - weekday alarm register (address 0Ch) bit description	18
Tab. 22.	CLKOUT_control - CLKOUT control register (address 0Dh) bit description	19
Tab. 23.	Timer_control - timer control register (address 0Eh) bit description	20
Tab. 24.	Timer - timer value register (address 0Fh) bit description	20
Tab. 25.	Timer register bits value range	20
Tab. 26.	First increment of time circuits after STOP bit release	22
Tab. 27.	Register reset value	23
Tab. 28.	Limiting values	30
Tab. 29.	Static characteristics	31
Tab. 30.	Dynamic characteristics	34
Tab. 31.	SnPb eutectic process (from J-STD-020D)	42
Tab. 32.	Lead-free process (from J-STD-020D)	42
Tab. 33.	Acronyms	43
Tab. 34.	Revision history	45

Figures

Fig. 1.	Block diagram of PCF8563	7
Fig. 2.	Pin configuration for HVSON10 (PCF8563BS)	8
Fig. 3.	Pin configuration for SO8 (PCF8563T)	8
Fig. 4.	Pin configuration for TSSOP8 (PCF8563TS)	8
Fig. 5.	Interrupt scheme	12
Fig. 6.	Voltage-low detection	14
Fig. 7.	Data flow for the time function	16
Fig. 8.	Access time for read/write operations	17
Fig. 9.	Alarm function block diagram	19
Fig. 10.	STOP bit functional diagram	22
Fig. 11.	STOP bit release timing	22
Fig. 12.	POR override sequence	24
Fig. 13.	Bit transfer	25
Fig. 14.	Definition of START and STOP conditions	25
Fig. 15.	System configuration	26
Fig. 16.	Acknowledgment on the I2C-bus	26
Fig. 17.	Target address	27
Fig. 18.	Controller transmits to target receiver (WRITE mode)	27
Fig. 19.	Controller reads after setting register address (write register address; READ data)	27
Fig. 20.	Controller reads target immediately after first byte (READ mode)	28
Fig. 21.	Interface watchdog timer	28
Fig. 22.	Device diode protection diagram	29
Fig. 23.	Supply current IDD as a function of supply voltage VDD; CLKOUT disabled	32
Fig. 24.	Supply current IDD as a function of supply voltage VDD; CLKOUT = 32 kHz	32
Fig. 25.	Supply current IDD as a function of temperature T; CLKOUT = 32 kHz	33
Fig. 26.	Frequency deviation as a function of supply voltage VDD	33
Fig. 27.	I2C-bus timing waveforms	35
Fig. 28.	Application diagram	36
Fig. 29.	Package outline SOT650-1 (HVSON10) of PCF8563BS	37
Fig. 30.	Package outline SOT96-1 (SO8) of PCF8563T	38
Fig. 31.	Package outline SOT505-1 (TSSOP8) of PCF8563TS	39
Fig. 32.	Temperature profiles for large and small components	42

Contents

1	General description	2	13	Dynamic characteristics	34
2	Features and benefits	3	14	Application information	36
3	Applications	4	14.1	Quartz frequency adjustment	36
4	Ordering information	5	14.1.1	Method 1: Fixed OSCI capacitor	36
5	Marking	6	14.1.2	Method 2: OSCI trimmer	36
6	Block diagram	7	14.1.3	Method 3: OSCO output	36
7	Pinning information	8	15	Package outline	37
7.1	Pinning	8	16	Handling information	40
7.2	Pin description	8	17	Soldering of SMD packages	41
8	Functional description	10	17.1	Introduction to soldering	41
8.1	CLKOUT output	10	17.2	Wave and reflow soldering	41
8.2	Register organization	10	17.3	Wave soldering	41
8.3	Control registers	11	17.4	Reflow soldering	41
8.3.1	Register Control_status_1	11	18	Acronyms	43
8.3.2	Register Control_status_2	11	19	References	44
8.3.2.1	Interrupt output	12	20	Revision history	45
8.4	Time and date registers	13		Legal information	46
8.4.1	Register VL_seconds	13			
8.4.1.1	Voltage-low detector and clock monitor	14			
8.4.2	Register Minutes	14			
8.4.3	Register Hours	14			
8.4.4	Register Days	14			
8.4.5	Register Weekdays	15			
8.4.6	Register Century_months	15			
8.4.7	Register Years	16			
8.5	Setting and reading the time	16			
8.6	Alarm registers	17			
8.6.1	Register Minute_alarm	17			
8.6.2	Register Hour_alarm	18			
8.6.3	Register Day_alarm	18			
8.6.4	Register Weekday_alarm	18			
8.6.5	Alarm flag	18			
8.7	Register CLKOUT_control and clock output	19			
8.8	Timer function	20			
8.8.1	Register Timer_control	20			
8.8.2	Register Timer	20			
8.9	EXT_CLK test mode	21			
8.9.1	Example of an operation	21			
8.10	STOP bit function	21			
8.11	Reset	23			
8.11.1	Power-On Reset (POR) override	24			
9	Characteristics of the I2C-bus	25			
9.1	Bit transfer	25			
9.2	START and STOP conditions	25			
9.3	System configuration	25			
9.4	Acknowledge	26			
9.5	I2C-bus protocol	26			
9.5.1	Addressing	26			
9.5.2	Clock and calendar READ or WRITE cycles	27			
9.6	Interface watchdog timer	28			
10	Internal circuitry	29			
11	Limiting values	30			
12	Static characteristics	31			

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.