2026-02-14

Getting Started with cXML

Content

11
1.2

21
2.2

2.3
24
2.5
26
27
2.8

3.2

4
41

o =] - T 6
Audience and Prerequisites. 6
TYPOgrapNyY. . o 6
Introductionto CXML. it i i i e e e 8
cXML, an XML Implementation. 8
cXML Capabilities. 8
Catalogs. . . . oo 9
PunchOUL. . . . 10
Purchase Orders. 1
Types of Applicationsthat Use cXML. 12
Content Delivery Strategy. 13
CXML DTS, .o 14
Profile Transaction. 15
Service Status Response 16
XML ULItIES. o 16
L0 = - T T 17
Protocol Specification. 17
Request-Response Model. 17
CXML Conventions. o 18
CXML DOoCUMENT. .« o . 19
Wrapping Layers. 19
Attachments. 20
CXML ENVEIOPE. . . o 24
Header. 27
Request. . . . 32
RESPONSE. . . . o 33
One-Way (Asynchronous) Model. 37
MESSAZE. .« . o 38
Transport Options. . . . o 38
Service Status Response. 41
Basic Elements. 42
Type Entities. . . . oo 42
Base Elements. 43
Alternative AuthenticationMethods. i e 45
Message Authentication Code (MAC). 45

Getting Started with cXML
Content

4.2

52

Overview of MACS. 45

Computation Algorithm. 45
Creationand Expiration Dates. 46
Computation Process.o 46
ProfileRespoONSe. 48
CredentialMac. 48
Auth Transaction. 49
AUthRequesT. 50
AUTNRESPONSE. . . . o 51
cXML Digital Signatures. i e e e e 53
Digital Signature OVerview. 53
Options for Signing. 53
Signing cXML Documents. 54
cXML Digital Signatures. 54
Error Status Codes for Digital Signatures. 57
Digital Signature Example. 57
Revision History. i i i ittt et s e e s asasnanannnnannnns 60

Getting Started with cXML

Content

cXML License Agreement

IMPORTANT: PLEASE CAREFULLY READ THIS cXML LICENSE AGREEMENT (“LICENSE") BEFORE USING THE
cXML SPECIFICATION (“SPECIFICATION"). BY USING THE SPECIFICATION, YOU AGREE TO BE BOUND BY
THE TERMS OF THIS LICENSE. IF YOU DO NOT AGREE TO THE TERMS OF THIS LICENSE, DO NOT USE

OR ACCESS THE SPECIFICATION. Licensor may publish new versions (including revisions) of this Agreement
from time to time on the cXML site (www.cxml.org). The rights granted under this license with respect to the
Specification are subject to the version of the Agreement in effect at the time it was downloaded or accessed
by you.

1

Openness. cXML is designed and intended to be an open standard to facilitate electronic commerce.

You are welcome to use and adopt this standard, and to submit comments, recommendations, and
suggestions to cXML.org. Once submitted, your comments go through an approval process - and your
comments may ultimately be incorporated into cXML.

License. Subject to the terms and conditions herein, Licensor hereby grants to you a perpetual,
nonexclusive, royalty-free, worldwide right and license to use the Specification under the Licensor
intellectual property necessary to implement the Specification to (a) use, copy, publish, and distribute
(including but not limited to distribution as part of a separate computer program) the unmodified
Specification, and (b) to implement and use the Specification, including the cXML tags and schema
guidelines included in the Specification for the purpose of creating, distributing, selling or otherwise
transferring computer programs that adhere to such guidelines. If you use, publish, or distribute the
unmodified Specification, you may call it “cXML".

Restrictions. Your rights under this License will terminate automatically without notice from Licensor if you
fail to comply with any terms of this License.

Licensor expressly reserves all other rights it may have in the material and subject matter of the
Specification, and you acknowledge and agree that Licensor owns all right, title, and interest in and to

the Specification, however, Licensor does not own the computer programs or related documentation you
create, nor does Licensor own the underlying XML or non-Ariba intellectual property from which cXML has
been derived. You agree to not assert any intellectual property rights that would be necessarily infringed by
implementation or other use of the Specification against Licensor or any other entity with respect to such
implementation or other use of the Specification; provided that your agreement to not assert shall cease
to apply to any entity including Licensor (except where Licensor or another entity is asserting intellectual
property rights against you as part of an assertion that you have breached this Agreement) that asserts
against you that its intellectual property rights are infringed by your implementation or other use of the
Specification. If you publish, copy or distribute the Specification, then this License must be attached. If you
submit any comments or suggestions to Licensor, and Licensor modifies the Specification based on your
input, Licensor shall own the modified version of the Specification.

No Warranty. YOU ACKNOWLEDGE AND AGREE THAT ANY USE OF THE SPECIFICATION BY YOU IS AT
YOUR OWN RISK. THE SPECIFICATION IS PROVIDED FOR USE “AS IS" WITHOUT WARRANTY OF ANY
KIND. LICENSOR AND ITS SUPPLIERS DISCLAIM ALL WARRANTIES OF ANY KIND, INCLUDING BUT NOT
LIMITED TO ANY EXPRESS WARRANTIES, STATUTORY WARRANTIES, AND ANY IMPLIED WARRANTIES
OF: MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMNT. YOUR SOLE
AND EXCLUSIVE REMEDY RELATING TO YOUR USE OF THE SPECIFICATION SHALL BE TO DISCONTINUE
USING THE SPECIFICATION.

Limitation of Liability. TO THE MAXIMUM EXTENT PERMITTED BY LAW, UNDER NO CIRCUMSTANCES
SHALL LICENSOR BE LIABLE FOR ANY DAMAGES WHATSOEVER RELATING TO THIS LICENSE OR YOUR

Getting Started with cXML
cXML License Agreement

USE OF THE SPECIFICATION (INCLUDING BUT NOT LIMITED TO INCIDENTAL, SPECIAL, PUNITIVE,
DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES), REGARDLESS OF WHETHER A CLAIM IS BASED

ON TORT, CONTRACT, OR OTHER THEORY OF LIABILITY, AND EVEN IF LICENSOR IS ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE. To the extent your jurisdiction does not allow any of the above exclusions
of damages, in such case you agree that Licensor's total liability to you for all damages under this License
shall not exceed the amount of ten dollars ($10.00). 6. Government End Users. If the Specification is
supplied to the United States Government, the Specification is classified as “restricted computer software”
as defined in clause 52.227-19 of the FAR. The United States Government's rights to the Specification are
as provided in clause 52.227-19 of the FAR.

7. This License shall be deemed to have been made in, and shall be construed pursuant to the laws of the
State of California and the federal U.S. laws applicable therein, excluding its conflict of laws provisions.
Any legal action or proceeding relating to this License shall be instituted in a state or federal courtin
San Francisco, Santa Clara or San Mateo County, California, and each party hereby consents to personal
jurisdiction in such counties. If for any reason a court of competent jurisdiction finds any provision, or
portion thereof, to be unenforceable, the remainder of this License shall continue in full force and effect.

8. You assume the entire risk resulting from your use of the Specification.

9. Complete Agreement. This License is the complete and exclusive statement, and an absolute integration
of the mutual understanding of the parties and supersedes and cancels all previous written and oral
agreements and communications relating to the subject matter of this License. You acknowledge that any
material breach by you of the provisions of the License will cause irreparable damage to Licensor and that
aremedy at law will be inadequate. Therefore, in addition to any and all other legal or equitable remedies,
Licensor will be entitled to seek injunctive relief necessary to remediate the breach of this License. Ariba,
Inc. shall be deemed the Licensor.

10. Notices. Any notice directed to Licensor must be sent in writing to comments@cxml.org.

7-19-04

Getting Started with cXML
cXML License Agreement 5

1 Preface

This document describes how to use cXML (commerce eXtensible Markup Language) for communication of
data related to electronic commerce.

Audience and Prerequisites [page 6]

Typography [page 6]

1.1 Audience and Prerequisites

This document is intended for application developers who design cXML-enabled applications.
cXML is an open versatile language for the transaction requirements of:

* E-commerce network hubs

* Electronic product catalogs

* PunchOut catalogs

* Procurement applications

* Buyers

* Suppliers

* E-commerce service providers

Readers should have a working knowledge of e-commerce concepts, the HTTP Internet communication
standard, and XML format.

This document does not describe how to use specific procurement applications or network hubs.

1.2 Typography

cXML elements and attributes are denoted with a monotype font. cXML element and attribute names are
case-sensitive. Both are a combination of lower and uppercase, with elements beginning with an uppercase
letter, and attributes beginning with a lowercase letter. For example, MyElement is a cXML element, and
myAttribute is a cXML attribute.

The following table describes the typographic conventions used in this book:

Typeface or Symbol Meaning Example
AaBbCc123 Text you need to change is italicized. http://server:port/inspector
AaBbCcl23 The names of user interface controls, me- Choose Edit from the File menu.

nus, and menu items

Getting Started with cXML
6 Preface

Typeface or Symbol Meaning Example

AaBbCc123 Files and directory names, parameters, AProfileRequest documentis
fields in CSV files, command lines, and code sent from a buyer to the network.
examples

AaBbCcl23 Book titles For more information, see Acme Con-

figuration Overview.

Getting Started with cXML
Preface

2 Introduction to cXML

This section introduces cXML (commerce eXtensible Markup Language) for electronic-commerce
transactions.

cXML, an XML Implementation [page 8]

cXML Capabilities [page 8]

Types of Applications that Use cXML [page 12]
Content Delivery Strategy [page 13]

cXML DTDs [page 14]

Profile Transaction [page 15]

Service Status Response [page 16]

XML Utilities [page 16]

2.1 cXML, an XML Implementation

XML (eXtensible Markup Language) is a meta-markup language used to create syntaxes for languages. It
is also a standard for passing data between applications, particularly those that communicate across the
Internet.

XML documents contain data in the form of tag/value pairs, for example:

<DeliverTo>Joe Smith</DeliverTo>

XML has a structure similar to HTML (HyperText Markup Language), which is an implementation of SGML,
XML's parent meta language. Applications can extract and use data from XML documents more easily than
from HTML documents, however, because XML data is tagged according to its purpose. XML contains only
data, while HTML contains both data and presentation information.

Each cXML document is constructed based on XML Document Type Definitions (DTDs). Acting as templates,
DTDs define the content model of a cXML document, for example, the valid order and nesting of elements, and
the data types of attributes.

The DTDs for cXML are files available on the www.cXML.org website.

2.2 cXML Capabilities

cXML allows buying organizations, suppliers, service providers, and intermediaries to communicate using a
single, standard, open language.

Getting Started with cXML
8 Introduction to cXML

http://www.cXML.org

Successful business-to-business electronic commerce (B2B e-commerce) portals depend upon a flexible,
widely adopted protocol. cXML is a well-defined, robust language designed specifically for B2B e-commerce,
and it is the choice of high volume buying organizations and suppliers.

cXML transactions consist of documents, which are simple text files containing values enclosed by predefined
tags. Most types of cXML documents are analogous to hardcopy documents traditionally used in business.

The most commonly used types of cXML documents are:

¢ (Catalogs [page 9]
¢ PunchOut [page 10]
* Purchase Orders [page 11]

The following subsections describe these cXML documents.

2.2.1 Catalogs

Catalogs are files that convey product and service content to buying organizations. They describe the products
and services offered by a supplier and their prices, and they are the main communication channel from
suppliers to their buyers.

Suppliers create catalogs so that organizations that use procurement applications can see their product and
service offerings and buy from them. Procurement applications read catalogs and store them internally in their
databases. After a buying organization approves a catalog, that content is visible to users, who can choose
items and add them to purchase requisitions.

/ Procurement System \

—‘ *\J’ p— |
— \
— ‘\\
I ;r)
Catalog Supplier

Buying Organization
Figure 1: Sending Product and Service Content to a Buying Organization

Suppliers can create catalogs for any product or service, regardless of how it is measured, priced, or delivered.

For each item in a catalog, basic information is required, and optional information enables advanced catalog
features, such as multi-language descriptions.

Getting Started with cXML
Introduction to cXML 9

2.2.2 PunchOut

PunchOut is an easy-to-implement protocol for interactive sessions managed across the Internet. Using
real-time, synchronous cXML messages, PunchOut enables communication between applications, providing
seamless user interaction at remote sites.

There are three types of PunchOut:

* Procurement PunchOut [page 10]
* PunchOut Chaining [page 11]
* Provider PunchOut [page 11]

Procurement PunchOut

Procurement PunchOut gives suppliers an alternative to static catalog files. PunchOut sites are live, interactive
catalogs running on a website.

Suppliers that have e-commerce websites can modify them to support PunchOut. PunchOut sites
communicate with procurement systems over the Internet by using cXML.

For PunchOut sites, procurement applications display a button instead of product or pricing details. When
users click this button, their Web browsers display pages from the supplier’s local website. Depending on how
the supplier implements these pages, users can browse product options, specify configurations, and select
delivery methods. When users are done selecting items, they click a button that returns the order information
to the procurement application. The fully configured products and their prices appear within users’ purchase
requisitions.

The following diagram shows an interactive PunchOut session between a user and a supplier web site.

/ Procurement System \

Punchout Session R
P I I"\I
\
=
Item Description .
Supplier
Buying Organization
Figure 2: Interactive PunchOut Session Between a User and a Supplier Website
Getting Started with cXML

10 Introduction to cXML

Suppliers’ websites can offer previously agreed-upon contract products and prices.

PunchOut Chaining

PunchOut chaining is Procurement PunchOut that involves more than one PunchOut. cXML Path Routing
enables this functionality.

— S————

Marketplace r Supplier

Buyer

i
<

Figure 3: PunchOut Chaining
cXML Path Routing allows the order and other subsequent messages to return to the marketplaces and
suppliers involved in producing the quote. Path Routing notifies all parties about the final order, and
any subsequent PunchOut specifies to the procurement application how to split orders on behalf of the
marketplace.

Provider PunchOut

Provider PunchOut enables applications to punch out to a remote applications that supply services to the
originating application, such as credit card validation, user authentication, or self-registration.

2.2.3 Purchase Orders

Buying organizations send purchase orders to suppliers to request fulfillment of a contract.

Getting Started with cXML
Introduction to cXML

1

The following diagram shows a purchase order communicated to a supplier:

/ Procurement System \

1

1
|
|
|
e

v
\

Purchase Supplier
Order

Buying Organization
Figure 4: Purchase Order Communicated to a Supplier

cXML is better for communicating purchase orders than other formats (such as ANSI X12 EDI 850), because it
is flexible, inexpensive to implement, and it supports the widest array of data and attachments.

2.3 Types of Applications that Use cXML

Any e-commerce application can use cXML. Buying organizations, vertical and horizontal buying communities,
suppliers, and application vendors currently use cXML. The following subsections describe the main types of
applications that currently use cXML.

Procurement Applications

Procurement applications, such as SAP Ariba Buying, SAP Ariba Buying and Invoicing, and Ariba Buyer, use
cXML for external transactions.

These applications allow communities of users to buy contract products and services from vendors approved
by their purchasing managers. Managers in the communities first approve requested purchases, and approved
purchase orders are transmitted to suppliers through several possible channels, including cXML over the
Internet.

Getting Started with cXML
12 Introduction to cXML

Network Hubs

Network hubs, such as SAP Business Network, are Web-based services for connecting buyers and suppliers.
These Web services provide features such as catalog validation and versioning, catalog publishing and
subscription, automated purchase order routing, and purchase order history.

Network hubs can act as intermediaries that authenticate and route requests and responses to and from
diverse organizations. Communication between these organizations can occur entirely through cXML over the
Internet.

PunchOut Catalogs

As described in the previous section, PunchOut catalogs are interactive catalogs, available at supplier websites.
PunchOut catalogs are made possible by Web server applications, written in a programming language such as
ASP (Active Server Pages), JavaScript, or CGl (Common Gateway Interface), that manage buyers’ PunchOut
sessions.

PunchOut catalogs accept PunchOut requests from procurement applications, identify the buying
organization, and display the appropriate products and prices in HTML format. Users then select items,
configure them, and select options if appropriate.

At the end of the PunchOut session, the PunchOut site sends descriptions of the users’ selections, in cXML
format, to the procurement applications.

Order-Receiving Systems

Order-receiving systems are applications at supplier sites that accept and process purchase orders sent by
buying organizations. Order-receiving systems can be any automated system, such as inventory management
systems, order-fulfillment systems, or order-processing systems.

Because it is simple to extract information from cXML purchase orders, it is relatively easy to create the
adapters that enable existing order-receiving systems to accept them.

2.4 Content Delivery Strategy

Procurement applications present product and service content to users. Suppliers want to control the way
their buyers view their products or services, because presentation is critical to their sales process. Buying
organizations want to make content easily accessible and searchable to ensure high contract compliance.

Buying organizations and suppliers can choose from multiple methods for delivering product and service
content. The particular method to use is determined by agreement between a buying organization and a
supplier, and the nature of the products or services traded.

Getting Started with cXML
Introduction to cXML 13

The following table lists example categories of commonly procured products and services, and their preferred
content delivery methods.

Commodities Properties Content Delivery Method

Office Supplies, Static content, stable pricing Static catalogs
Internal Supplies

Lab Supplies, Requires normalization to be useful PunchOut to a vertical commodity portal
MRO (Maintenance,

Repair, and Operations),

Electronic Parts

Books, Large number of line Items PunchOut to a supplier hosted site
Chemicals

Computers, Many possible configurations PunchOut to a supplier hosted configura-
Network Equipment, tion tool

Peripherals

Services, Content has highly variable attributes ~ PunchOut to an electronic form at a sup-
Printed Materials plier site

Buying organizations can either store content locally within the organization, or they can access it remotely on
the Internet through PunchOut. cXML catalogs support both storage strategies.

As this table indicates, PunchOut offers a flexible framework upon which suppliers, depending on their
commodity or buyer, can provide customized content. The objective of this content strategy is to allow buyers
and suppliers to exchange catalog data by the method that makes the most sense.

2.5 cXMLDTDs

Because cXML is an XML language, it is thoroughly defined by a set of Document Type Definitions (DTDs).
These DTDs are text files that describe the precise syntax and order of cXML elements. DTDs enable
applications to validate the cXML they read or write.

The header of each cXML document contains the URL to the DTD that defines the document. cXML
applications can retrieve the DTD and use it to validate the document.

For the most robust transaction handling, validate all cXML documents received. If you detect errors, issue
the appropriate error code so the sender can retransmit. cXML applications are not required to validate cXML
documents received, although it is recommended. However, all c XML documents must be valid and must refer
to the cXML DTDs described in the following section.

Getting c XML DTDs

DTDs for all versions of cXML are available on cXML.org. The various kinds of cXML documents are defined in
multiple DTDs to reduce DTD size, which enables faster validation in some parsers.

Getting Started with cXML
14 Introduction to cXML

Document DTD

Basic cXML documents http://xml.cXML.org/schemas/cXML/version/cXML.dtd

Confirmation and Ship No- http://xml.cXML.org/schemas/cXML/version/Fulfill.dtd

tice

Invoice http:/xml.cXML.org/schemas/cXML/version/InvoiceDetail.dtd

Type Definition http://xml.cXML.org/schemas/cXML/version/Catalog.dtd

Payment Remittance http://xml.cXML.org/schemas/cXML/version/PaymentRemittance.dtd
Request for Quotations http://xml.cXML.org/schemas/cXML/version/Quote.dtd

Contracts http://xml.cXML.org/schemas/cXML/version/Contract.dtd

Logistics http://xml.cXML.org/schemas/cXML/version/Logistics.dtd

where version is the full c XML version number.

cXML applications use these DTDs to validate all incoming and outgoing documents.

Caching DTDs

For best performance, cXML applications should cache DTDs locally. After cXML DTD files are published, they
never change, so you can cache them indefinitely. (Each new version of the DTDs has a new URL.) When cXML
applications parse a cXML document, they should look at the SYSTEM identifier in the document header and
retrieve that DTD if it has not already been stored locally.

Caching DTDs locally offers the advantages of faster document validation and less dependence on the
cXML.org site.

In some environments, cXML applications might not be allowed to automatically retrieve DTDs as they receive
new documents. In these environments, you must manually retrieve the DTDs, store them locally, and instruct
your applications to look for them locally, not at cXML.org. However, generated cXML documents must point to
the DTDs at cXML.org, not the local DTDs.

2.6 Profile Transaction

The Profile transaction communicates basic information about what transactions a particular cXML server
can receive. All cXML servers must support this transaction. It is intended for backend integrations between
applications, making the capabilities of cXML servers available to client systems.

This transaction consists of two documents, Profi leRequest and Profi leResponse. Together, they
retrieve server capabilities, including supported cXML version, supported transactions, and options to those
transactions.

® Note

All cXML 1.1 and higher servers must accept the Profile transaction.

Getting Started with cXML
Introduction to cXML 15

ProfileRequest

The ProfileRequest document has no content. It simply routes to the specified cXML server.

ProfileResponse

The server responds with a Profi leResponse document, which lists the cXML transactions it supports, their
locations, and any named options with a string value.

2.7 Service Status Response

A response with a status code of 200 from an URL that accepts POSTed cXML is up and running. When
an HTTP GET is sent to a service location, the service responds with a valid, dynamically generated cXML
Response document. A service can be any HTTP URL at which cXML Request documents are received.

2.8 XML Utilities

Utilities for editing and validating XML files are available free and for purchase on the Web. The following
describes a few of these utilities:

* Internet Explorer from Microsoft. An XML-aware Web browser that can validate XML files against DTDs.
www.microsoft.com/windows/ie/default.htm

¢ Turbo XML from TIBCO Software. An Integrated Development Environment (IDE) for creating, validating,
converting and managing XML assets.
www.tibco.com/software/metadata/turboxml.jsp

* XML Spy from Altova. A tool for maintaining DTDs and XML files with a grid, source and browser view.
www.altova.com

¢ XMLwriter from Wattle Software. A graphical XML authoring tool designed to manage XML projects.
www.xmlwriter.net

In addition, the following websites list more XML tools:

e www.xml.com

* http:/www.ibm.com/developerworks/xml/

Getting Started with cXML
16 Introduction to cXML

http://www.microsoft.com/windows/ie/default.htm
http://www.tibco.com/software/metadata/turboxml.jsp
http://www.altova.com/
http://www.xmlwriter.net
http://www.xml.com
http://www.ibm.com/developerworks/xml/

3 cXML Basics

This section describes the basic protocol and data formats of cXML. It contains information needed to
implement all transactions.

Protocol Specification [page 17]
Basic Elements [page 42]

3.1 Protocol Specification

There are two communication models for cXML transactions: Request-Response and One-Way. Because these
two models strictly specify the operations, they enable simple implementation. Both models are required,
because there are situations when one model would not be appropriate.

3.1.1 Request-Response Model

Request-Response transactions can be performed only over an HTTP or HTTPS connection. The following
figure illustrates the steps in a Request-Response interaction between parties A and B:

Site A Site B

cXML Request (HTTR/HTTPS Post)

B Performs
Request

cXML Response (HTTP/HTTPS Response)
€

Figure 5: Request-Response Transaction

This transaction contains the following steps:

1. Site Alinitiates an HTTP/1.x connection with Site B on a predetermined URL that represents Site B's
address.

Getting Started with cXML
cXML Basics 17

2. Site A uses a POST operation to send the cXML document through the HTTP connection. Site A then waits
for a response.

3. Site B has an HTTP/1.x-compliant server that dispatches the HTTP Request to the resource specified by
the URL used in step 1. This resource can be any valid location known to Site B's HTTP server, for example,
a CGl program or an ASP page.

4. Site B's resource identified in step 3 reads the cXML document contents and maps the Request to the
appropriate handler for that request.

5. Site B's handler for the cXML Request performs the work that the Request specifies and generates a
cXML Response document.

6. Site B sends the cXML Response to Site A through the HTTP connection established in step 1.

7. Site A reads the cXML Response and returns it to the process that initiated the Request.

8. Site A closes the HTTP connection established in step 1.

This process is then repeated for further Request/Response cycles.
To simplify the work in the above steps, cXML documents are divided into two distinct parts:

¢ Header—Contains authentication information and addressing.

* Request or Response data—Contains a specific request or response and the information to be passed.

Both of these elements are carried in a parent envelope element. The following example shows the structure of
a cXML Request document:

<cXML>
<Header>
Header information
</Header>
<Request>
Request information
</Request>
</cXML>

The following example shows the structure of a cXML Response document:

<cXML>
<Response>
Response information
</Response>
</cXML>

The Response structure does not use a Header element. It is not necessary, because the Response always
travels in the same HTTP connection as the Request.

3.1.2 cXML Conventions

cXML uses elements to describe discrete items, which are properties in traditional business documents.
Elements also describe information with obvious subdivisions and relationships between those subdivisions,
such as an addresses, which are composed of street, city, and country.

cXML also uses attributes, which modify elements or provide context.

Getting Started with cXML
18 cXML Basics

Element and attribute names are case-sensitive and use whole words with capitals (not hyphens) separating
the words. Element names begin with an uppercase letter; attribute names begin with a lowercase letter, for
example:

Elements: Sender, Credential, Payment, ItemDetail
Attributes: payloadID, lineNumber, domain

If optional elements have no content (they are null), leave them out entirely. Avoid empty or whitespace
elements, because missing values can affect some parsers.

In DTD files and in this document, symbols are used to indicate how many times an element can occur in a
transaction. A '+ means the element can occur one or more times, a ‘?’ means the element can occur O or
once, and a "*' means the element can occur O or more times.

3.1.3 cXML Document

The cXML element is the body of a cXML document. A document might begin as follows:

<?xml version="1.0" encoding="UTF-8"7?>
<IDOCTYPE cXML SYSTEM *"http://xml.cxml.org/schemas/cXML/1.2.014/cXML.dtd ">
<cXML xml:lang="en-US"
payload1D="1234567.4567 .5678@buyer .com"
timestamp="2002-01-09T01:36:05-08:00"">

The first characters in cXML documents must be <? or <. Documents must not start with white space or
tabs. For example, the HTML form that contains a PunchOutOrderMessage document must not insert any
character between the opening quote and the left angle bracket.

The second line in cXML documents must contain the DOCTYPE document type declaration. This is the only
external entity that can appear in cXML documents. This line references the cXML DTD.

cXML documents can have any one of the following top-level elements: cXML, Supplier, Contract, and
Index. The cXML element is for “transactional” data. The other elements describe static content.

Related Information

cXML DTDs [page 14]

3.1.4 Wrapping Layers

cXML documents are usually transmitted through HTTP with the HTTP header specifying a MIME
(Multipurpose Internet Mail Extensions) media type of text/xml and a charset parameter matching the
encoding in the cXML document.

Because HTTP is eight-bit clean, any character encoding supported by the receiving parser can be used
without a content-transfer encoding such as base64 or quoted-printable. All XML parsers support the UTF-8

Getting Started with cXML
cXML Basics

(Universal Transformation Format) encoding, which includes all Unicode characters, including all of US-ASCII.
Therefore, applications should use UTF-8 when transmitting cXML documents.

® Note

According to IETF RFC 2376 “XML Media Types,” the MIME charset parameter overrides any encoding
specified in the XML declaration. Further, the default encoding for the text/xml media type is us-asci,
not UTF-8 as mentioned in Section 4.3.3 of the XML Specification. For clarity, cXML documents should
include an explicit encoding in the XML declaration. MIME envelopes should use a matching charset
parameter for the text/xml . You can also use the application/xml media type, which does not override
the XML declaration or affect the recipient's decoding notes, and which does not require the charset
parameter.

An HTTP transmission of a cXML document might include the following MIME and HTTP headers:

POST /cXML HTTP/1.0

Content-type: text/xml; charset="UTF-8"

Content-length: 1862

Accept: text/html, image/gif, image/jpeg, *; g=-2, */*; g=-2
User-Agent: Javal.l

Host: localhost:8080

Connection: Keep-Alive

<?xml version="1.0" encoding="UTF-8"?>

3.1.5 Attachments

The cXML protocol supports the attachment of external files of any type to cXML documents. For example,
buyers sometimes need to clarify purchase orders with supporting memos, drawings, or faxes. Another
example is the CatalogUploadRequest document, which includes catalog files as attachments.

Files referenced by cXML documents can reside either on a server accessible by the receiver or within an
envelope that also includes the cXML documents themselves. To attach external files to a cXML document in

a single envelope, use Multipurpose Internet Mail Extensions (MIME). The cXML document contains references
to external parts sent within a multipart MIME envelope.

Including Attachments

A cXML requirement for this envelope (over the requirements described in IETF RFC 2046 “Multipurpose
Internet Mail Extensions Part Two: Media Types”) is the inclusion of Content- 1D headers with each attached
file.

The contained URL must begin with cid:, which is the identifier for the referenced attachment within the
larger transmission. The cid: identifier must match the Content-ID header of one (and only one) part of the
MIME transmission containing the document being forwarded.

The following example shows the required skeleton of a cXML document with an attached JPEG image (without
the HTTP headers shown above):

POST /cXML HTTP/1.0

Getting Started with cXML
20 cXML Basics

Content-type: multipart/mixed; boundary=something unique
--something unique

Content-type: text/xml; charset="UTF-8"

<?xml version="1.0" encoding=""UTF-8"7?>

<Attachment>
<URL>cid:uniqueClD@sender.com</URL>
</Attachment>

:—something unique
Content-type: image/jpeg
Content-I1D: <uniqueClD@sender.com>

--something unique--

This skeleton is also all that a receiving MIME parser must be able to process. Applications that make use of the
media type described in RFC 2387 “The MIME Multipart/Related Content-type” will get much more information
if the skeleton is enhanced

POST /cXML HTTP/1.0

Content-type: multipart/related; boundary=something unique;
type=""text/xml"; start=<uniqueMainCID@sender.com>

--something unique

Content-type: text/xml; charset="UTF-8"

Content-ID: <uniqueMainClD@sender.com>

<?xml version="1.0" encoding="UTF-8"?>

<Attachment>
<URL>cid:uniqueAttachmentCID@sender .com</URL>
</Attachment>

:—something unique
Content-type: image/jpeg
Content-ID: <uniqueAttachmentCID@sender.com>

--something unique--

Receiving MIME parsers that do not understand the multipart/related media type must treat the two
examples above identically. Each part of the MIME transmission can additionally have a Content-transfer-
encoding and use that encoding. This addition is not necessary for HTTP transmission. Content-description
and Content-disposition headers are optional within the cXML protocol, although they provide useful
documentation.

Attachment Examples

The following example shows a CatalogUploadRequest with an attached catalog.

POST /cXML HTTP/1.0

Content-type: multipart/related; boundary=kdflkajfdksadjfk;
type=""text/xml"; start="<partl.PC028.975@saturn.workchairs.com>"

<--1 begin first MIME body part header -->

--kdflkajfdksadjfk

Content-type: text/xml; charset=UTF-8

Content-ID: <partl.PC028.975@saturn.workchairs.com>

<--1 end first MIME body part header -->

<?xml version="1.0" encoding="UTF-8"?>

<IDOCTYPE cXML SYSTEM **http://xml.cxml.org/schemas/cXML/1.2_.014/cXML.dtd"">

<cXML timestamp="'2000-12-28T16:56:03-08:00" payloadlD=""12345666@10.10.83.39">
<Header>

<From>

Getting Started with cXML
cXML Basics 21

<Credential domain=""DUNS"'>
<ldentity>123456789</ldentity>
</Credential>
</From>
<To>
<Credential domain="NetworklID">
<ldentity>AN01000000001</Identity>
</Credential>
</To>
<Sender>
<Credential domain="DUNS">
<ldentity>123456789</ldentity>
<SharedSecret>abracadabra</SharedSecret>
</Credential>
</Sender>
</Header>
<Request>
<CatalogUploadRequest operation="new">
<CatalogName xml:lang="en">Winter Prices</CatalogName>
<Description xml:lang="en">premiere-level prices</Description>
<Attachment>
<I-- ID of MIME attachment follows -->
<URL>cid:part2_.PC028.975@saturn.workchairs.com</URL>
</Attachment>
</CatalogUploadRequest>
</Request>
</cXML>
<--1 begin second MIME body part header -->
--kdflkajfdksadjfk
Content-type: text/plain; charset=US-ASCII
Content-Disposition: attachment; filename=PremiereCatalog.cif
Content-ID: <part2.PC028.975@saturn.workchairs.com>
Content-length: 364
<--1 end second MIME body part header -->
CIF_1_V3.0
LOADMODE: F
CODEFORMAT: UNSPSC
CURRENCY: USD
SUPPLIERID_DOMAIN: DUNS

ITEMCOUNT: 3
TIMESTAMP: 2001-01-15 15:25:04
DATA

942888710,34A11,C11,""Eames Chair'™,11116767,400.00,EA,3,"Fast MFG", ,,400.00
942888710,56A12,C12," "Eames Ottoman',11116767,100.00,EA,3,"Fast MFG"™,,,100.00
942888710,78A13,C13,"Folding Chair™,11116767,25.95,EA,3,"Fast MFG", ,,25.95
ENDOFDATA

<l-- MIME trailer follows -->

--kdflkajfdksadjfk--

Surround IDs in Content-1D or Content-Type headers with angle brackets (< >), but omit these brackets
when referring to IDs in URL elements. Similarly, prepend message IDs with cid: in URL elements, but not in
MIME headers.

Special characters in cid URLs must be hex encoded (in %hh format).

Use the Attachment element when attaching text files, PDFs, images, or other such documents to a cXML
document. When attaching another cXML document, use cXMLAttachment, regardless of whether that cXML
document contains attachments itself. The cXMLAttachment element serves to alert the receiving system
that additional cXML processing might be required to handle the attachment.

The following example shows a CopyRequest forwarding a cXML document with attachments using
cXMLAttachment

Content-Type: Multipart/Related; boundary=outer-boundary
[Other headers]

Getting Started with cXML
22 cXML Basics

--outer-boundary
Content-Type: text/xml; charset=UTF-8
Content-ID: <11l1@sendercompany.com>
[Other headers]
<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE cXML SYSTEM *http://xml.cxml.org/schemas/cXML/1.2.014/cXML.dtd">
<cXML payloadlD=""123@sendercompany.com"
timestamp="2003-11-20T23:59:45-07:00"">
<Header>
<From>
<I-- Sender -->
<Credential domain=""AribaNetworkUserld">
<ldentity>sender@sendercompany.com</ldentity>
</Credential>
</From>
<To>
<I-- Recipient -->
<Credential domain="AribaNetworkUserld">
<ldentity>recipient@recipientcompany.com</ldentity>
</Credential>
</To>
<Sender>
<I-- Sender -->
<Credential domain=""AribaNetworkUserld">
<ldentity>sender@sendercompany.com</ldentity>
<SharedSecret>abracadabra</SharedSecret>
</Credential>
<UserAgent>Sender Application 1.0</UserAgent>
</Sender>
</Header>
<Request deploymentMode=""production'>
<CopyRequest>
<cXMLAttachment>
<Attachment>
<URL>cid:222@sendercompany .com</URL>
</Attachment>
</cXMLAttachment>
</CopyRequest>
</Request>
</cXML>
--outer-boundary
Content-Type: Multipart/Related; boundary=inner-boundary
Content-ID: <222@sendercompany .com>
[Other headers]
-—inner-boundary
Content-Type: text/xml; charset=UTF-8
Content-ID: <333@sendercompany.com>
[Other headers]
[Forwarded cXML]
-—inner-boundary
[Attachment 1 of the forwarded cXML]
--inner-boundary
[Attachment 2 of the forwarded cXML]
-—inner-boundary--
--outer-boundary--

More Information About MIME

For more information about the MIME standard, see the following websites:

* www.hunnysoft.com/mime

* www.ietf.org/rfc1341.txt

Getting Started with cXML
cXML Basics

23

http://www.hunnysoft.com/mime
http://www.ietf.org/rfc/rfc1341.txt

¢ www.ietf.org/rfc/rfc2046.txt
¢ www.ietf.org/rfc/rfc2387txt

3.1.6 cXML Envelope

The cXML element is the root of cXML documents, and it contains all other elements. The cXML element is
present in every cXML transaction. The following example shows a fully specified cXML element:

<cXML xml:lang="en-US"
payload1D=1234567 .4567 .5678@buyer .com
timestamp="1999-03-31T18:39:09-08:00"">

cXML has the following attributes:

Attribute Description
version This attribute was deprecated in cXML 1.2.007; do not use it in new cXML documents.
d ted

(deprecated) Specifies the version of the cXML protocol. A validating XML parser could also determine
the version attribute from the referenced DTD.
Because this version number also appears in the SYSTEM identifier in the cXML docu-
ment, you should omit this attribute.

xml : lang The locale used for all free text sent within this document. The receiver should reply
or display information in the same or a similar locale. For example, a client specifying
xml : lang=*‘en-UK”” in a request might receive “en’” data in return. Specify the most
descriptive and specific locale possible.

payloadlD A unigue number with respect to space and time, used for logging purposes to identify

(required) documents that might have been lost or had problems. This value should not change for
retry attempts.
The recommended implementation is:
datetime.process id.random number@hostname

timestamp The date and time the message was sent, in ISO 8601 format. This value should not

(required) change for retry attempts.
The format is YYYY-MM-DDThh:mm:ss-hh:mm (for example,
2015-07-14T19:20:30+01:00).

signatureVersion If present, implies that the document is digitally signed, that is, that the document con-

tains one or more valid ds: Signature elements immediately following the Request,
Response, or Message element. The only valid value for the attribute is 1.0; other
values are reserved for future use.

Related Information

cXML Digital Signatures [page 53]

24

Getting Started with cXML
cXML Basics

http://www.ietf.org/rfc/rfc2046.txt
http://www.ietf.org/rfc/rfc2387.txt

316.1 Locale Specified by xml:lang

The xml - lang attribute also appears with most free text elements (such as Description and Comments).
While the XML specification allows the locale for an element to default to that specified for any parent element,
such defaults result in inefficient queries of the document tree. cXML attempts to keep the locale identifiers
together with the affected strings. The most descriptive and specific locale known should be specified in this
attribute.

The xml : lang attributes appearing throughout the cXML protocol have no effect on formatted data such
as numbers, dates, and times. As described for the timestamp attribute in the following section, for the
timestamp attribute, such discrete values are formatted according to their data types. Longer strings (and
referenced Web pages) not intended for machine processing might contain a locale-specific numeric or date
format that matches a nearby xml : lang attribute.

3.1.6.2 Date, Time, and Other Data Types

The timestamp attribute, and all other dates and times in cXML, must be formatted in the restricted subset of
ISO 8601. This is described in the Word Wide Web Consortium (W3C) Note entitled “Date and Time Formats”
available at

www.w3.0org/TR/NOTE-datetime-970915.html.

Timestamps should include a complete date plus hours, minutes, and seconds. Fractions of a second are
optional. This protocol requires times expressed in local time with a time-zone offset from UTC (Coordinated
Universal Time, also known as Greenwich Mean Time). The “Z" time zone designator is not allowed.

For example, 2015-04-14T13:36:00-08:00 corresponds to April 14, 2015, 1:36 p.m., U.S. Pacific Standard
Time.
® Note

Although the timestamp attribute is required by the cXML DTD, validation of the value's format depends
on your application.

Further references for the date, time, and other data type formats used by cXML are:
* Microsoft's XML Data Types Reference, msdn.microsoft.com/library/default.asp?url=/library/en-us/
xmlsdk/html/b24aafc2-bflb-4702-bflc-b7ae3597eb0c.asp

* The original XML Data proposal to the Word Wide Web Consortium (W3C), www.w3c.org/TR/1998/NOTE-
XML-data-0105

3.1.6.3 Special Characters

In cXML, as in XML, not all characters can be typed from the keyboard, such as the registered trademark
symbol (%). Others, such as < and &, have special meaning to XML. These characters must be encoded using
character entities.

Getting Started with cXML
cXML Basics 25

http://www.w3.org/TR/NOTE-datetime-970915.html
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/xmlsdk/html/b24aafc2-bf1b-4702-bf1c-b7ae3597eb0c.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/xmlsdk/html/b24aafc2-bf1b-4702-bf1c-b7ae3597eb0c.asp
http://www.w3c.org/TR/1998/NOTE-XML-data-0105
http://www.w3c.org/TR/1998/NOTE-XML-data-0105

XML defines the following built-in character entities:

Entity Character
< <
> >
& &
" “
' ‘

For characters outside of the encoding you use, use the Unicode number of the character (decimal or
hexadecimal), preceded by pound (#). For example, ® ; and ® ; represent a registered trademark

symbol, ®.

For example,

<Description xml:lang="en-US">The best prices for software®</Description>

could be encoded as

<Description xml:lang="en-US">The best prices for software ®</Description>

Single (") or double (") quotation marks must be escaped only within attribute values that are quoted using that
delimiter. It is recommended that you use only single quotes to delimit attributes, unless the content will never

contain quotes.

316.3.1 Handling Special Characters in Documents

1. Use atemplate that only uses single quotes to delimit attributes.
2. Add values to the template by doing one of the following:

* |Ifthe documentis a PunchOutOrderMessage to be transmitted by the cxml-urlencoded hidden field,
fill the values in the template using US-ASCII encoding. This encoding requires XML character entities
for all characters beyond that encoding. For example, enter the registered trademark symbol (*), which
is not available in US-ASCII, as ®.

* Otherwise, fill the values in the document using UTF-8 encoding. UTF-8 should be used for all
documents sent by HTTP Post directly, or embedded in a cXML-base64 hidden field. UTF-8 includes all
of US-ASCII.

3. XML escape attribute values and element content as you create the cXML document. Characters that

must be escaped are &, ', <and >.
The following steps are required if you are transmitting the document in a PunchOutOrderMessage.

4. Pay attention to all characters that browsers interpret:
* Ifyou are using a cxml-urlencoded hidden field, convert all double quotes to ".

* Further (for the cxml-urlencoded field), escape all ampersands that appear in contexts significant to
HTML with & ;. To be safe, you can escape all ampersands. For example, escape ampersand (&) as
& and apostrophe (') as '. Escape the registered trademark symbol (°) as ®.

* Otherwise, if you are using a cxml-base64 hidden field, base64 encode the entire cXML document.

Getting Started with cXML
26 cXML Basics

5. Embed the document in the HTML form with double quotes around the string value. For example, to send
&<>>and containing the value ®®" *"""""'g&<>>"",

aMoney element with an attribute having the value @®*
the XML document might appear as:

<?xml version="1.0" encoding="UTF-8"7?>

<IDOCTYPE Money SYSTEM "SpecialChars.dtd">

<Money alternateAmount="8®®'"""& It;>> ">
&H#H174; ® ; ' "'" ; " & I't; > ; > ;</Money>

which should be encoded as follows:

<I-- Recommendation for cXML-urlencoding: Uses double quotes to delimit the -->
<I-- field value and single quotes for the contained attributes. -->

<Input type="Hidden" name="cXML-urlencoded" value="<?xml version="1.0"
encoding="UTF-8"?>

<IDOCTYPE Money SYSTEM "SpecialChars.dtd">

<Money
alternateAmount="MoneyalternateAmount="&#174 ;& ;#XAE;&apos;_"&#3
4;
&quot;&amp;& It;>&gt; ">&#174 ;& #XAE; "& apos;

" ; & #34;&quot;&amp;& It;&gt;&gt; "</Money>"">

<I-- Best choice: Base64 encode the value. Don"t have to worry about what -->
<!-- the browser interprets. -->

<Input type="Hidden" name="cXML-
base64"value=""PD94bWwgdmVyc2lvbjOonMS4wJyBIbmNvZGluZzOnVVRGLTgnPz4K
PCFETONUWVBFIE1vbmV5I1FNZU1IRFTSANU3BIY2IhbENoYXJZzLmROZCc+CjxNb
251eSBhbHRIcm5hdGVYBbW91bnQ9JyY jMTcOOyY jeEFFOyZhcG9zOy ImlzMOOyZxd
W900yZhbXA7JImx00z4mZ3Q7Jz4KJ iMxNzQ7JiN4QUU7JIyZhcG9z0y Iml zMOOyZx
dW900yZhbXA7JImx00z4mZ3Q7PCIONb251eT4K" >

The preceding examples illustrate alternatives for encoding the cXML-urlencoded field. They avoid XML
escaping a few characters, such as angle brackets, that are not special to XML in all contexts. A direct
implementation of the previous steps would result in an HTML field such as:

<Input type="Hidden" name="cXML-urlencoded" value="<?xml version="1.0"
encoding="UTF-8"?>

<IDOCTYPE Money SYSTEM "SpecialChars.dtd">

<Money alternateAmount="®8®'" """

&<>> ">&H#174;® ;" """

&<>></Money>"">

or the XML document:

<?xml version="1.0" encoding="UTF-8"7?>

<IDOCTYPE Money SYSTEM "SpecialChars.dtd">

<Money alternateAmount="®8®'" """ &<>> ">
&HLT4;&#LT74 ;" """""& &1 t;>></Money>

3.1.7 Header

The Header element contains addressing and authentication information. The Header element is the same
regardless of the specific Request or Response within the body of the cXML message. Applications need the
requestor's identity, but not validation that the information provided for identity is correct.

The following example shows the Header element:

<Header>

Getting Started with cXML
cXML Basics

<From>
<Credential domain="AribaNetworkUserld">
<ldentity>admin@acme.com</ldentity>
</Credential>
</From>
<To>
<Credential domain=""DUNS''>
<ldentity>012345678</ldentity>
</Credential>
</To>
<Sender>
<Credential domain="AribaNetworkUserld">
<ldentity>sysadmin@buyer.com</ldentity>
<SharedSecret>abracadabra</SharedSecret>
</Credential>
<UserAgent>Network Hub 1.1</UserAgent>
</Sender>
</Header>

The From and To elements are synonymous with From and To in SMTP mail messages; they are the logical
source and destination of the messages. Sender is the party that opens the HTTP connection and sends the
cXML document.

Sender contains the Credential element, which allows the receiving party to authenticate the sending
party. This credential allows strong authentication without requiring a public-key end-to-end digital certificate
infrastructure. Only a user name and password need to be issued by the receiving party to allow the sending
party to perform Requests.

When the document is initially sent, Sender and From are the same, However, if the cXML document travels
through network hubs, the Sender element changes to indicate current sending party.

3171 From

This element identifies the originator of the cXML request.

3172 To

This element identifies the destination of the cXML request.

3173 Sender

This element allows the receiving party to identify and authenticate the party that opened the HTTP
connection. It contains a stronger authentication Credential than the ones in the From or To elements,
because the receiving party must authenticate who is asking it to perform work.

Getting Started with cXML
28 cXML Basics

3.1.74 UserAgent

A textual string representing the UserAgent who is conducting the cXML conversation. This should be a
unique per-product string, and ideally, per-version. Analogous to UserAgent for HTTP conversations.

3.1.75 Credential

This element contains identification and authentication values.

Credential has the following attributes:

Attribute Description
domain Specifies the type of credential. This attribute allows documents to contain multiple types
(required) of credentials for multiple authentication domains.

For messages sent on SAP Business Network, for instance, the domain can be
AribaNetworkUser Id to indicate an email address, DUNS for a D-U-N-S number, or
Networkld for a preassigned ID.

type Requests to or from a marketplace identify both the marketplace and the member com-
pany in Fromor To Credential elements. In this case, the credential for the market-
place uses the type attribute, which is set to the value “marketplace”

Credential contains an Identity element and optionally a SharedSecret or a CredentialMac element.
The Identity element states who the Credential represents, while the optional authentication elements
verify the identity of the party.

SharedSecret

The SharedSecret element is used when the Sender has a password that the requester recognizes.

® Note

Do not use authentication elements in documents sent through one-way communication. One-way
transport routes through users’ browsers, so users would be able to see the document source, including
Credential elements.

CredentialMac

The CredentialMac element is used for the Message Authentication Code (MAC) authentication method.
This authentication method is used in situations where the sender must prove to the receiver that it has been
authenticated by shared secret by a trusted third party. For example, a direct PunchOut request can travel
directly from a buyer to a supplier without going through a network hub, because it contains a MAC (generated
by the network hub) that allows the supplier to authenticate it.

Getting Started with cXML
cXML Basics 29

The trusted third party computes the MAC and transfers it to the sender through the Profile transaction. The
MAC is opaque to the sender (it is secure and non-reversible). The MAC is transmitted from the trusted third
party to the sender with a Profi leResponse object.

The receiver computes the MAC using the same inputs as the trusted third party and compares it with the MAC
received in the cXML document. If the two values match, the document is authentic.

To learn how to compute the MAC value, see Message Authentication Code (MAC) [page 45].

CredentialMac has the following attributes:

Attribute Description

type Identifies the data being authenticated and the method in which it is formatted for authen-

(required) tication. The only supported value is ""FromSenderCredentials".

algorithm Identifies for the MAC algorithm used on the data. The only supported value is “HMAC-

(required) SHA1-96".

creationDate Specifies the date and time the MAC was generated.

(required)

expirationDate Specifies the date and time after which this MAC is no longer valid. Receivers must reject

(required) MACs that are received after the expirationDate. Receivers can optionally reject unexpired
MACs. For example, a receiver might reject MACs that are scheduled to expire in less than
an hour.

The following example shows a Credential element that contains a CredentialMac element:

<Sender>
<Credential domain="Networkld”>
<ldentity>AN9900000100</Identity>
<CredentialMac type="FromSenderCredentials”
algorithm="HMAC-SHA1-96"
creationDate="2003-01-15T08:42:46-0800"
expirationDate=2003-01-15T11:42:46-0800"">
MnXkusp8JjOlIw3mf
</CredentialMac>
<UserAgent>Procurement Application 8.1</UserAgent>
</Credential>
</Sender>

Multiple Credentials

The From, To, and Sender elements can each optionally contain multiple Credential elements. The purpose
of supplying multiple credentials is to identify a single organization using different domains. For example, an
organization might be identified by including both a DUNS number and a Networkld number.

The receiver should validate all credentials with domains it recognizes and it should reject the document if any
credentials with recognized domains do not match an organization it knows. It should also reject the document
if any two credentials in the same From, To, or Sender section appear to refer to different entities.

The receiver should reject the document if there are multiple credentials in a To, From, or Sender section that
use different values but use the same domain.

Getting Started with cXML
30 cXML Basics

3176 Correspondent

The From and To elements can each optionally contain a Correspondent element. Correspondent elements
are used in cases where a party or a connecting hub does not know the originating or receiving organization.
The sender, receiver, or connecting hub can use the information in the Correspondent element to identify the
unknown organization

Correspondent has the following attribute:

Attribute Description

preferredLanguage The preferred language of the organization, if it is known.

Correspondent has the following elements:

Element Description

Contact Contains contact information for following up on an order. See Contact [page 44].
(required)

Routing Defines the corresponding routing destination. See Routing [page 31].
Extrinsic Contains any additional information related to this organization.

3.1.76.1 Routing

Defines the corresponding routing destination of an external business partner. Routing has the following
attribute:

Attribute Description

destination
(required)

The name of the routing destination. Possible values:

* peppol
* Tieldglass

The following example shows a Routing element for an external business partner:

<Header>
<From>
<Credential dommi n="Busi nessPartnerld">
<ldentity>
<ldReference donai n="i s06523" identifier=""9925:BE12345678" />
</ldentity>
</Credential>
</From>
<To>
<Credential domai n="Busi nessPartner|d">
<ldentity>
<ldReference donmai n="i s06523" identifier=""9925:BE3456789" />
</ldentity>
</Credential>
<Correspondent preferredLanguage="de">
<Contact role="correspondent'>
<Name xml:lang=""en-US">SupplierTradingName Ltd.</Name>
<PostalAddress>

Getting Started with cXML
cXML Basics 31

<Street>Street</Street>
<City>City</City>
<State>State</State>
<PostalCode>04726010</PostalCode>
<Country isoCountryCode="BE" />
</PostalAddress>
<Phone name="work"'>
<TelephoneNumber>
<CountryCode isoCountryCode="BE" />
<AreaOrCityCode />
<Number>1151869655</Number>
</TelephoneNumber>
</Phone>
</Contact>
<Routi ng destinati on="peppol " />
</Correspondent>
</To>
<Sender>
<Credential domain=""NetworklID">
<ldentity>AN01000000001</Identity>
</Credential>
<UserAgent>Ariba Network</UserAgent>
</Sender>
</Header>

3.1.8 Request

Clients send requests for operations. Only one Request element is allowed for each cXML envelope element,
which simplifies the server implementations, because no de-multiplexing needs to occur when reading cXML
documents. The Request element can contain virtually any type of XML data.

Typical Request elements are:

* OrderRequest

* ProfileRequest

* PunchOutSetupRequest
* StatusUpdateRequest
* GetPendingRequest

* ConfirmationRequest
* ShipNoticeRequest

* ProviderSetupRequest

* PaymentRemittanceRequest
Request has the following attributes:

Attribute Description

deploymentMode Indicates whether the request is a test request or a production request. Allowed values are
“production” (default) or “test”.

1d This attribute can be used to call out an element and all its children as a target for a digital
signing.

Getting Started with cXML
32 cXML Basics

Related Information

cXML Digital Signatures [page 53]

3.1.9 Response

Servers send responses to inform clients of the results of operations. Because the result of some requests
might not have any data, the Response element can optionally contain nothing but a Status element. A
Response element can also contain any application-level data. During PunchOut for example, the application-
level data is contained in a PunchOutSetupResponse element.

The typical Response elements are:

* ProfileResponse
* PunchOutSetupResponse

* GetPendingResponse

Response has the following attribute:

Attribute Description
Id This attribute can be used to call out an element and all its children as a target for a digital
signing.

Related Information

cXML Digital Signatures [page 53]

3.1.9.1 Status

This element conveys the success, transient failure, or permanent failure of a request operation.

Status has the following attributes:

Attribute Description

code The status code of the request. For example, 200 represents a successful request. See the
(required) table of codes below.

text The text of the status. This text aids user readability in logs, and is a canonical string for
(required) the error in English.

xml : lang The language of the data in the Status element. Optional for compatibility with cXML

1.0. Might be required in future versions of cXML.

Getting Started with cXML
cXML Basics 33

The attributes of the Status element indicate what happened to the request. For example:

<Status xml:lang="en-US" code=""200" text="0K"> </Status>

The content of the Status element can be any data needed by the requestor and should describe the error.
For a cXML 200/0K status code, there might be no data. However, for a cXML 500/ Internal Server Error
status code, or other similar code, it is strongly recommended that the actual XML parse error or application
error be presented. This error allows better one-sided debugging and interoperability testing. For example:

<Status code="406" text="Not Acceptable'">cXML did not validate. Big Problem!</
Status>

The following table describes the cXML status code ranges:

Range Meaning

2XX Success

4xx Permanent error. Client should not retry. The error prevents the request from being accepted.

5xx Transient error. Typically a transport error. Client should retry. The recommended number of retries

is 10, with a frequency of one hour. At a minimum a six hour retry window is recommended. For high
priority requests, such as rush orders, you might want to increase the retry frequency.

Servers should not include additional Response elements (for example, a PunchOutSetupResponse
element) unless the status code is in the cXML 200 range (for example, cXML 200/0K).

Because cXML is layered above HTTP in most cases, many errors (such as HTTP 404/Not Found) are
handled by the transport. All transport errors should be treated as transient and the client should retry, as

if acXML 500 range status code had been received. All HTTP replies that don't include valid cXML content,
including HTTP 404 /Not found and HTTP 500/Internal Server Error status codes, are considered transport
errors. Other common transport problems include timeouts, TCP errors (such as “connection refused”),
and DNS errors (such as “host unknown”). Validation errors in parsing a Request document would normally
result in a cXML permanent error in the 400 range, preferably 406/Not Acceptable.

The following table includes possible cXML status codes:

Status Text Meaning

200 OK The server was able to execute the request or deliver it to the final recipient. The
returned Response might contain application warnings or errors: the cXML
Request itself generated no errors or warnings, however, this status does not
reflect any errors or warnings that might be generated afterward by the appli-
cation itself. You will receive no further status updates, unless an error occurs
during later processing.

201 Accepted The request has been accepted for forwarding by an intermediate hub, or has
been accepted by its ultimate destination and not yet been examined. You will
receive updates on the status of the request, if a mechanism to deliver them is
available.

The client should expect later StatusUpdate transactions.

Getting Started with cXML
34 cXML Basics

Status

Text

Meaning

204

No Content

AllRequest information was valid and recognized. The server has no
Response data of the type requested.

Ina PunchOutOrderMessage, this status indicates that the PunchOut ses-
sion ended without change to the shopping cart (or client requisition).

211

OK

Buyers can use this status code to send a broadcast message to suppliers to
inform them about any events they need to know, such as holiday schedules,
production facility closure, or completion of certain activities such as planning
run completion.

280

The request has been forwarded by an intermediate hub. You will receive at least
one more status update. This status could mean that the request was delivered
to another intermediary or to the final recipient with 201 status, or that it was
forwarded via a reliable non-cXML transport.

281

The request has been forwarded by an intermediate hub using an unreliable
transport (such as email). You might receive status updates; however, if you do
not received status updates, there is not necessarily a problem.

400

Bad Request

Request unacceptable to the server, although it parsed correctly.

401

Unauthorized

Credentials provided in the Request (the Sender element) were not recog-
nized by the server.

402

Payment Required

This Request must include a complete Payment element.

403

Forbidden

The user has insufficient privileges to execute this Request.

406

Not Acceptable

Request unacceptable to the server, likely due to a parsing failure.

409

Conflict

The current state of the server or its internal data prevented the (update) opera-
tion request. Anidentical Request is unlikely to succeed in the future, but only
after another operation has executed, if at all.

412

Precondition Failed

A precondition of the Request (for example, a PunchOut session appro-
priate for a PunchOutSetupRequest edit)was not met. This status
normally implies the client ignored some portion of a previous transmis-
sion from a server (for example, the operationAl lowed attribute of a
PunchOutOrderMessageHeader).

417

Expectation Failed

Request implied a resource condition that was not met. One example might be
a SupplierDataRequest asking for information about a supplier unknown
to the server. This status might imply lost information at the client or server.

450

Not Implemented

The server does not implement the particular Request. For example,
PunchOutSetupRequest or the requested operation might not be sup-
ported. This status normally implies the client has ignored the server's profile.

475

Signature Required

The receiver is unwilling to accept the document because it does not have a
digital signature.

476

Signature Verification
Failed

The receiver is unable to validate the signature, possibly because the document
was altered in transit, or the receiver does not support one or more algorithms
used in the signature.

Getting Started with cXML

cXML Basics

35

Status Text Meaning
477 Signature Unacceptable The signature is technically valid, but is not acceptable to the receiver for some
other reason. The signature policies or certificate policies may be unacceptable,
the type of certificate used may be unacceptable, or there may be some other
problem.
500 Internal Server Error Server was unable to complete the Request.
550 Unable to reach cXML Unable to reach next cXML server to complete a transaction requiring upstream
server connections. An intermediate hub can return this code when a supplier site
is unreachable. If upstream connections complete, intermediate hubs should
return errors directly to the client.
551 Unable to forward re- Unable to forward request because of supplier misconfiguration. For example, an
quest intermediate hub failed to authenticate itself to a supplier. Clients cannot rectify
this error, but this error might be resolved before the client retries.
560 Temporary server error ~ For example, a server might be down for maintenance. The client should retry

later.

The following table lists possible status codes for catalog-upload requests:

Status Text Meaning

200 Success The catalog-upload request succeeded.

201 Accepted The catalog-upload request is processing.

461 Bad Commodity Code The commodity code you assigned to the catalog is invalid.

462 Notification Error No notification method (email or URL) provided.

463 Bad Catalog Format The zip file is invalid.

464 Bad Catalog No catalog is attached, or more than one is attached.

465 Duplicate Catalog Name The name of the catalog exists.

466 No Catalog to Update The catalog to be updated does not exist.

467 Publish Not Allowed You attempted to publish a catalog that was not previously published.

468 Catalog Too Large The size of the uploaded file exceeds the 4 MB limit. Zip the catalog to
compress it before uploading it.

469 Bad Catalog Extension The file name of the catalog must have .cif, .xml, or .zip extensions.

470 Catalog Has Errors The message is the status of the catalog. (HasErrors)

499 Document Size Error The cXML document is too large.

561 Too Many Catalogs You cannot upload more than a specific number of catalogs per hour.

562 Publish Disabled Catalog publishing is temporarily unavailable due to scheduled mainte-
nance. It will be back online by the specified date and time.

563 Catalog Validating You attempted to update a catalog before validation finished on a previ-

ous version of the catalog.

When receiving unrecognized codes, cXML clients must handle them according to their class. Therefore, older
clients should treat all new 2xx codes as 200 (success), 4xx codes as 400 (permanent failure), and 5xx

codes as 500 (transient error). This behavior allows for both further expansions of the cXML protocol and
server-specific codes without loss of interoperability.

36

Getting Started with cXML
cXML Basics

3.1.10 One-Way (Asynchronous) Model

Unlike Request-Response transactions, One-Way messages are not restricted to the HTTP transport. One-way
messages are for situations when an HTTP channel (a synchronous request-response type operation) is not
appropriate. The following figure shows an example of how A and B might communicate with messages instead
of the Request-Response transaction.

Site A Site B

cXML Message

B Processes
Document

Figure 6: One-Way Message (Asynchronous)

In this case, a possible scenario would be:

1. Site A formats and encodes a cXML document in a transport that Site B understands.

2. Site A sends the document using the known transport. Site A does not (and cannot) actively wait for a
response to come back from Site B.

3. Site B receives the cXML document and decodes it out of the transport stream.

4. Site B processes the document.

In the One-Way model, Site A and Site B do not have an explicit Request-Response cycle. For example, between
One-Way messages, messages from other parties might arrive and other conversations could take place.

To fully specify a one-way transaction, the transport used for the message must also be documented. For
the cXML transactions that use the one-way approach, the transport and encoding are specified. A common
example of a transaction that uses one-way is the PunchOutOrderMessage.

One-way messages have a similar structure to the Request-Response model:

<cXML>
<Header>
Header information here..
</Header>
<Message>
Message information here..
</Message>
</cXML>

The Header element is treated exactly as it is in the Request-Response case. The cXML element is also
identical to the one described in cXML Envelope [page 24]. The easiest way to tell the difference between
a one-way message and a Request-Response message is the presence of a Message element (instead of a
Request or Response element). The following section discusses the Message element in more detail.

The Header element in a one-way message should not contain shared secret information in the sender
credential. Authentication is done using the BuyerCookie. This is different from Request-Response Header.

Getting Started with cXML
cXML Basics 37

3.1.11 Message

This element carries all the body level information in a cXML message. It can contain an optional Status
element, identical to that found in a Response element—it would be used in messages that are logical
responses to request messages.

Message has the following attributes:

Attribute Description

deploymentMode Indicates whether the request is a test request or a production request. Allowed values are
“production” (default) or “test”.

inReplyTo Specifies to which Message this Message responds. The contents of the inReplyTo
attribute would be the pay load ID of a Message that was received earlier. This would
be used to construct a two-way conversation with many messages.

Id This attribute can be used to call out an element and all its children as a target for a digital
signing.

The inReplyTo attribute can also reference the payloadID of an earlier Request or Response document.
When a Request-Response transaction initiates a “conversation” through multiple one-way interactions, the
first message can include the payloadID of the most recent relevant Request or Response that went in the
other direction. For example, a Message containing a PunchOutOrderMessage might include an inReplyTo
attribute containing the payload 1D of the PunchOutSetupRequest that started the PunchOut session. The
BuyerCookie included in the PunchOut documents performs a similar function to that of the inReplyTo
attribute.

Related Information

cXML Digital Signatures [page 53]

3.1.12 Transport Options

There are two commonly used transports for one-way messages: HTTP and URL-Form-Encoding. These are
just two of the well-defined transports today; more could become supported in the future.

HTTP

Procurement applications pull information using one-way HTTP communication. The one type of transaction
that uses one-way HTTP communication is GetPendingRequest.

HTTPS is preferred, because it encrypts transmitted data for security.

Getting Started with cXML
38 cXML Basics

URL-Form-Encoding

URL-Form-Encoding enables integration between remote websites and procurement applications. It also
serves as a way to avoid requiring a listening server on the buyer's system that is directly accessible through
the Internet. This transport is best understood by examining how the PunchOutOrderMessage transaction
works.

Remote websites do not directly send cXML PunchOutOrderMessage documents to procurement
applications; instead, they encode them as hidden HTML Form fields and post them to the URL specified

in the BrowserFormPost element of the PunchOutSetupRequest. When the user clicks a Check Out button
on the website after shopping, the website sends the data to the procurement application as an HTML Form
Submit. The following diagram illustrates what happens.

Encode and send
PunchOutOrderMessage
as hidden HTML fields.

(2]

Remote Web

Website Browser User clicks Submit.
Form is sent to URL
specified by

originating system.

Originating
System

o Form is decoded, cXML
message extracted and
passed to originating
system as a new cXML
Request.

The semantics of packing and unpacking are described below.

Form Packing

Remote websites assign each PunchOutOrderMessage document to a hidden field on the Form named
cXML-urlencoded or cXML-base64. They assign the HTML Form element a METHOD of POST and an
ACTION consisting of the URL passed in the BrowserFormPost element of the PunchOutSetupRequest. For
example:

<FORM METHOD=POST
ACTION="http://workchairs.com:1616/punchoutexit'>
<INPUT TYPE=HIDDEN NAME="cXML-urlencoded"

Getting Started with cXML
cXML Basics 39

VALUE="Entire URL-Encoded PunchOutOrderMessage document'>
<INPUT TYPE=SUBMIT VALUE="Proceed'>
</FORM>

Additional HTML tags on the page might contain the above fragment to describe the contents of the shopping
basket in detail.

® Note

When Web servers send the cXML-ur lencoded field, it is not yet URL encoded. This encoding is required
only when the form is submitted by Web browsers (when users click Check Out in the above example).
Web browsers themselves meet this requirement. The Web server must HTML-encode only the field value,
escaping quotation marks and other special characters, so the form displays properly for the user.

The names cXML-urlencoded and cXML-base64 are case insensitive.

cXML-urlencoded

The cXML-urlencoded field is URL encoded (per the HTTP specification) by the Web browser, not by the
Web server or the supplier. This is because the encoding is required only when the form is submitted by a
Web browser, such as when a user clicks Check Out in the previous example. However, the Web server must
HTML-encode the field value, escaping quotation marks and other special characters, so that the form will
display correctly.

® Note

Suppliers should never URL encode the cXML-urlencoded field. This field is automatically URL-encoded by
the web browser.

For cXML-urlencoded data, the receiving parser cannot assume a charset parameter beyond the default
for media type text/xml. No character encoding information for the posted data is carried in an HTTP POST.
The receiving Web server cannot determine the encoding of the HTML page containing the hidden field. The
cXML document forwarded in this fashion must therefore use us-ascii character encoding. Any characters
(including those “URI encoded” as “%XX") found in the XML source document must be in the “us-ascii” set.
Other Unicode symbols can be encoded using character entities in that source document.

cXML-Base64

The cXML-base64 hidden field supports international documents. cXML documents containing symbols
outside of “us-ascii” should use this field instead of the cXML-urlencoded hidden field. This alternative

has almost identical semantics, but the entire document is base64-encoded throughout transport and not
HTML-encoded to the browser or URL-encoded to the receiving Web server. Base64-encoding is described in
RFC 2045 “Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies.”

Base64-encoding from the remote website through the browser and to the receiving Web server at the client
maintains the original character encoding of a cXML document. Though no charset parameter arrives with
the posted information, the decoded document (after the transfer encoding is removed) can be treated

as the media type application/xml. This encoding allows the receiving parser to honor any encoding

Getting Started with cXML
40 cXML Basics

attribute specified in the XML declaration. For this field (as for any application/xml documents), the default
character encoding is UTF-8.

Either of these hidden fields (cXML-urlencoded or cXML-base64) must appear in the data posted to the
procurement application. Though recipients should first look for cXML-base64 in the data, it is wasteful to
send both fields.

Form Unpacking and Processing

The procurement application, which previously provided the appropriate URL, receives an HTML Form POST
containing the Form data as described above. The Form POST processor would first look for the cXML-base64
variable, extract the value and base64-decode its contents. If that field does not exist in the data, the Form
POST processor would look for the cXML-ur lencoded variable, extract the URL-encoded cXML message and
URL-decode it. The decoded content of the field is then processed as if it had been received through a normal
HTTP Request/Response cycle.

The implied media type of the document after decoding varies, with different possible character encodings:

* The cXML-urlencoded variable is of media type text/xml with no charset attribute. It is thus restricted
to the us-ascii character encoding. The receiving parser must ignore any encoding attribute in the XML
declaration of the cXML document because the browser might have changed the encoding.

* The cXML-base64 variable is of media type application/xml and thus might have any character
encoding (indicated by the encoding attribute of the contained XML declaration, if any). The default
character encoding is UTF-8, as for any application/xml documents.

The primary difference between this transaction and a normal Request-Response transaction is that there is no
response that can be generated, because there is no HTTP connection through which to send it.

3.1.13 Service Status Response

This transaction determines whether a particular service is currently available. When an HTTP GET is sent
to a service location, the service responds with a valid, dynamically generated cXML Response document. A
service can be any HTTP URL at which cXML Request documents are received.

For example, an HTTP GET sent to https://service.ariba.com/service/transaction/cxml.asp
yields the following response:

<?xml version="1.0" encoding="UTF-8" ?>
<IDOCTYPE cXML "http://xml.cXML.org/schemas/cXML/1.2.014/cXML.dtd"">
<cXML timestamp="2001-01-08T10:47:01-08:00"
payloadlD="978979621537--4882920031100014936@®206 .251.25.169"">
<Response>
<Status code="200" text=""OK">Ping Response Message</Status>
</Response>
</cXML>

® Note

This combination of transport (HTTP) and protocol (cXML) levels should be used only for the case
described above.

Getting Started with cXML
cXML Basics 41

3.2 Basic Elements

The following entities and elements are used throughout the cXML specification. Most of the definitions listed
here are basic vocabulary with which the higher-order business documents are described. The common type
entities and the common elements representing low-level objects are defined here.

3.2.1 Type Entities

Most of these definitions are from the XML-Data note submission to the World Wide Web Consortium (W3C). A
few higher-level type entities that are also defined here are not from XML-Data.

isoLangCode

An ISO Language Code from the ISO 639 standard.

isoStateCode

An ISO 3166-2:2013 country subdivision code that identifies a state or province. It is used in conjunction with
the country codes listed in ISO 3166-1.

isoCountryCode

An ISO Country Code from the ISO 3166 standard.

xmlLangCode

A language code as defined by the XML 1.0 Specification (at www.w3.0rg/TR/1998/REC-xmlI-19980210.html).
In the most common case, this includes an ISO 639 Language Code and (optionally) an ISO 3166 Country Code
separated by a hyphen. Unlike the full XML recommendation, IANA or private language codes should not be
used in cXML. IANA and private subcodes are allowed, though they should come after a valid ISO 3166 Country
Code.

The recommended cXML language code format is xx[-YY[-zzz]*]? where xx is an ISO 639 Language code, YY is
an ISO 3166 Country Code and zzz is an IANA or private subcode for the language in question. Again, use of the
Country Code is always recommended. By convention, the language code is lowercase and the country code is
uppercase. This is not required for correct matching of the codes.

Getting Started with cXML
42 cXML Basics

http://www.w3.org/TR/1998/REC-xml-19980210.html

UnitOfMeasure

UnitOfMeasure describes how the product is packaged or shipped. It must conform to UN/CEFACT Unit of
Measure Common Codes. See www.unece.org/cefact/codesfortrade/codes_index.html.

URL

A URL (Uniform Resource Locator) as defined by the HTTP/1.1 standard.

Related Information

cXML Envelope [page 24]

3.2.2 Base Elements

These elements, used throughout the specification, range from generic ones such as Name and Extrinsic to
specific ones such as Money.

Money

The Money element has three possible attributes: currency, alternateAmount, alternateCurrency.
The attributes currency and al ternateCurrecy must be a three-letter ISO 4217 currency code. The content
of the Money element and of the alternateAmount attribute should be a numeric value. For example:

<Money currency="USD"'>12_34</Money>

The optional alternateCurrency and alternateAmount attributes are used together to specify an amount
in an alternate currency. These can be used to support dual-currency requirements such as the euro. For
example:

<Money currency="USD" alternateCurrency="EUR"
alternateAmount="14_28">12_34</Money>

® Note

You can optionally use commas as thousands separators. Don't use commas as decimal separators.

Getting Started with cXML
cXML Basics 43

https://www.unece.org/cefact/codesfortrade/codes_index.html

State

Contains the state or country subdivision identifier. Contained by the Postal Address element. It has an
optional isoStateCode [page 42] attribute.

<State isoStateCode=""US-CA">CA</State>

Country

Contains the name of the country in a location. Contained by the PostalAddress element. It has an optional
isoCountryCode [page 42] attribute.

<Country isoCountryCode="US">United States</Country>

CountryCode

Contains the International ITU dial code for the country code. It can be entered onto a telephone keypad after
the escape code to reach the country. Used by the TelephoneNumber element.

<TelephoneNumber>
<CountryCode isoCountryCode="US">1</CountryCode>
<AreaOrCityCode>800</AreaOrCityCode>
<Number>5551212</Number>

</TelephoneNumber>

Contact

The Contact element contains information about any contact important to the current transaction. For
example:

<Contact>
<Name xml:lang="en-US">Mr. Smart E. Pants</Name>
<Emai I>sepants@workchairs.com</Emai l>
<Phone name="0ffice">

</i5h0ne>
</Contact>

Getting Started with cXML
44 cXML Basics

4 Alternative Authentication Methods

cXML supports alternatives to the shared secret authentication method for verifying the sender of cXML
documents.

Message Authentication Code (MAC) [page 45]
Auth Transaction [page 49]

4.1 Message Authentication Code (MAC)

Message Authentication Code (MAC) authentication allows the authentication of documents sent directly from
a client to a server without passing through a trusted third party (such as a network hub) for authentication.
These documents contain a credential with an authentication code that can be interpreted only by the trusted
third party and the receiving server, not by the sender.

The format of the Credential element containing the MAC is described in Credential [page 29].

4.1.1 Overview of MACs

The primary purpose of MACs is to convey receivers’ shared secrets without revealing them to senders. MACs
keep shared secrets secure by encoding them through a hash.

MACs are as secure as shared secrets. Senders must guard MACs as carefully as shared secrets.
Compromising either piece of information could make trading partners vulnerable.

To use MAC authentication, both the trusted third party and the receiver must be able to compute MACs.

4.1.2 Computation Algorithm

MACs are created by an algorithm that combines data known by both the trusted third party and the receiver.

cXML specifies the use of the HMAC-SHA1 algorithm described in IETF RFC 2104, “HMAC: Keyed-Hashing for
Message Authentication”.

The HMAC-SHAL algorithm provide the security required for cXML, and it has been formally proven to be as
secure as the underlying hash algorithm.

For more information about IETF RFC 2104, see www.ietf.org/rfc/rfc2104.txt.

Getting Started with cXML
Alternative Authentication Methods 45

http://www.ietf.org/rfc/rfc2104.txt

4.1.3 Creation and Expiration Dates

Creation and expiration dates add additional security to MACs.

If a MAC is stolen, changing the sender’s shared secret has no effect. It is impractical to expect the

sender to contact the receiver out-of-band to invalidate the MAC, because they might not have an
established relationship. To address this problem, a creation date (creationDate) and an expiration date
(expirationDate) are embedded in MACs. The expiration date limits the damage that can be result from
a stolen MAC, because MACs eventually expire. The shorter the expiration period, the greater the security
afforded. Receivers must reject MACs that are received after their expiration date.

Receivers can also reject unexpired MACs based on the amount of time that has elapsed since the creation
date. For example, if a receiver receives a MAC that was created several years ago, but expires tomorrow, the
receiver might not wish to accept the MAC. This decision is left with the implementors of the receiving systems.

It is mandatory for receivers to check that the creation date is in the past and the expiration date is in the
future, and to reject it if either is not the case. However, it is optional for receivers to check whether the creation
date is too long in the past.

Receivers must not only check that MACs are valid, but also that the data authenticated by MACs is acceptable.
Specifically, receivers must validate that they wish to accept messages from the entities identified by the From
and Sender credentials.

4.1.4 Computation Process

This section describes how to compute a MAC of type=""FromSenderCredentials". The inputs for this MAC
type are known only by the trusted third party and the receiver.

The trusted third party uses this computation to generate ProfileResponse Option elements and the
receiving server uses it to validate the CredentialMac element.

414.1 Assembling the Hash Inputs

The MAC function takes two inputs, the data input and the secret key input:

* Thedatainputis the UTF-8-encoded byte representation of each value listed below, in order, after
normalization, with each value terminated by a single null byte (Ox00):

From/Credential@domain
From/Credential/ldentity
Sender/Credential@domain
Sender/Credential/ldentity
Sender/Credential/CredentialMac@creationDate
Sender/Credential/CredentialMac@expirationDate

* The secret key input is the cXML shared secret used between the receiver and the third party.

Getting Started with cXML
46 Alternative Authentication Methods

4.14.2 Normalizing the Inputs

Normalize the hash input values to remove differences in case and formatting before computation:

Value Normalize by... Normalized Example

domain Use the lowercase version of the string, unless itis knownto networkid
be case sensitive, for example, “AribaNetworkUserld” Note
that “Networkld” and “DUNS" are not case-sensitive.

Identity Discard leading or trailing whitespace and use the lowercase an9900000100
version of the string.

creationDate No normalization needed, because they are in ISO8601 for- 2003-01-15T11:42:46-08:0

expirationDate matdescribedin Date, Time, and Other Data Types [page 0
25].

Do not normalize the shared secret.

414.3 MAC Algorithm

The only supported MAC algorithm value is ""HMAC-SHA1-96"", which corresponds to the HMAC-SHA1
algorithm, which produces a 160 bit (20 byte) output, and retaining only the left-most 96 bits (12 bytes).

The 12 bytes are then base-64 encoded, yielding a 16-byte character string consisting only of characters in the

set[A-Za-z0-9 +/].
To computer the MAC:

1. Concatenate the UTF-8-encoded byte representation of the following strings, each followed by a null byte
(0x00). (The strings have been normalized as described above):
“networkid”, “an9900000100" “networkid”, “an9900000100",
“2003-01-15T08:42:46-08:00", “2003-01-15T11:42:46-08:00"
The concatenation yields the following byte sequence:

6e 65 74 77 6F 72 6b 69 64 00 61 6e 39 39 30 30
30 30 30 31 30 30 00 6e 65 74 77 6f 72 6b 69 64
00 61 6e 39 39 30 30 30 30 30 31 30 30 00 32 30
30 33 2d 30 31 2d 31 35 54 30 38 3a 34 32 3a 34
36 2d 30 38 3a 30 30 00 32 30 30 33 2d 30 31 2d
31 35 54 31 31 3a 34 32 3a 34 36 2d 30 38 3a 30

2. Use HMAC-SHA1 to hash the above sequence with the receiver’s shared secret, for example,
“abracadabra” (6162 72 61 63 61 64 61 62 72 61), which yields:

71 le 89 a7 3e 7c 9e b8 97 11 10 cd 78 57 fd a0 94 da fd

Do not terminate or normalize the shared secret.
3. Truncate the above result to 96 bits (12 bytes):

71 1e 89 a7 3e 7c 9e b8 97 11 10 cd

Truncation helps increase the security of the hash.

Getting Started with cXML
Alternative Authentication Methods

47

4. Base-64 encode the above result to yield the final result:
cR6Jpz58nr i XERDN

The trusted third party inserts the final result in Profi leResponse documents it sends to the entity that
will be the client (document sender), and the client inserts it in a CredentialMac element in all direct
communication to the server (document receiver).

4.1.5 ProfileResponse

The following cXML example shows a Profi leResponse sent from a trusted third party (such as a network
hub) to a client (such as a procurement application) so the client can send direct requests to the receiving
server.

<cXML payloadlD="1234567890@bighub.com"
timestamp="2003-01-15T09:39:09-08:00" xml:lang=""en-US"">
<Response>
<Status code="200" text="0K"/>
<ProfileResponse>
<Opti on nanme="Credenti al Mac. t ype" >Fr onSender Cr edenti al s</ Opti on>
<Option nanme="Credenti al Mac. al gori t hm' >HVAC- SHAL- 96</ Opt i on>
<Opti on nanme="Credenti al Mac. creati onDat e">2003- 01- 15T08: 42: 46
- 0800</ Opt i on>
<Opti on name="Credenti al Mac. expi rati onDat e">2003-01- 15T11: 42: 46
- 0800</ Opti on>
<Opti on name="Credenti al Mac. val ue">cR6Jpz58nri XERDN</ Opt i on>
<Transaction requestName="OrderRequest''>
<URL>https://service.hub.com/ANCXMLDispatcher.aw/ad/cxml</URL>
</Transaction>
<Transaction requestName="PunchOutSetupRequest'>
<URL>https://service.hub.com/AN/cxml</URL>
<Option name="Direct. URL">https://bigsupplier.com punchout </ Opti on>
<Option nanme="Direct.Aut henti cati onMet hod. Cr edenti al Mac" >Yes
</ Opti on>
<Option nanme="Direct.Authenticati onMet hod. Certificate">Yes</ Option>
</Transaction>
</ProfileResponse>
</Response>
</cXML>

4.1.6 CredentialMac

The following cXML document fragment shows an example CredentialMac element as it would be inserted
by the client in documents sent directly to the server.

<cXML>
<Header>
<To>
<Credential domain=""DUNS">
<ldentity>049329048</ldentity>
</Credential>
</To>
<From>
<Credential domain="Networkld">
<ldentity>AN9900000100</Identity>

Getting Started with cXML
48 Alternative Authentication Methods

</Credential>
</From>
<Sender>
<Credential domain="Networkld">
<ldentity>AN9900000100</ldentity>
<Credenti al Mac type="FronSender Credenti al s"
al gori t hm=" HVAC- SHAL- 96"
creationDat e="2016-01- 15T08: 42: 46- 0800" >
expi rati onDat e="2016-01-15T11: 42: 46- 0800" >
cR6Jpz58nri XERDN
</ Credenti al Mac>
<UserAgent>Procure System 3.0</UserAgent>
</Credential>
</Sender>
</Header>

[. ..
</cXML>
Related Information

Credential [page 29]

4.2 Auth Transaction

The Auth transaction allows receivers to validate organizations’ credentials through a mutually trusted third
party. It should be used to authenticate received documents that do not contain either a shared secret or a
MAC.

The receiver encloses the credential of the sender (the principal) in an AuthRequest document and sends it to

the trusted third party for validation.

If the principal attempts to authenticate using a client digital certificate, the receiver includes both the
principal’s credential and information about the principal’s certificate in the AuthRequest document. (The
receiver obtains this certificate information from its Webserver or TLS implementation.)

The trusted third party receives the AuthRequest and looks up the principal’s credential to see if itis a
recognized organization. If the principal’s certificate information was included, the trusted third party makes
sure the certificate is valid and that it matches the organization associated with the credential.

If the credential (and optional certificate) authenticates, the trusted third party responds with a positive
AuthResponse that contains the validated credential. If the credential is invalid, the trusted third party
responds with an empty cXML response of status 403 (Forbidden).

The receiver can cache the results of the Auth transaction until the expiration date indicated in the
AuthResponse. During this period, if the principal presents the same credential and certificate, the receiver
need not send another AuthRequest.

Getting Started with cXML
Alternative Authentication Methods

49

4.2.1 AuthRequest

A request sent to a mutually trusted third party to authenticate an entity.

The following example includes X509 certificate information, which comes from the requesting entity's client

digital certificate.

<IDOCTYPE cXML SYSTEM "http://xml.cXML.org/schemas/cXML/1.2.014/cXML.dtd">
<cXML timestamp="'2000-12-28T16:56:03-08:00" payloadIlD="fool123@bigsupplier.com">

<Header>
<From>
<Credential domain=""Networkld">
<ldentity>AN99000000092</Identity>
</Credential>
</From>
<To>
<Credential domain="Networkld">
<ldentity>AN99000000092</Identity>
</Credential>
</To>
<Sender>
<Credential domain="Networkld">
<ldentity>AN99000000092</I1dentity>
<SharedSecret>abracadabra</SharedSecret>
</Credential>
<UserAgent>cXML application 2.0</UserAgent>
</Sender>
</Header>
<Request>
<AuthRequest>
<Credential domain="DUNS">
<ldentity>12345</Ildentity>
</Credential>
<X509Data>
<X509IssuerSerial>
<X5091ssuerName>Verisign</X509IssuerName>
<X509SerialNumber>12345</X509SerialNumber>
</X509I1ssuerSerial>
</X509Data>
</AuthRequest>
</Request>
</cXML>

4211 Credential

A cXML credential. See Credential [page 29].

4212 X509Data

Describes the X.509 client certificate being used for authentication.

50

Getting Started with cXML
Alternative Authentication Methods

X509IssuerSerial

A container for the serial number and issuer name of the X.509 certificate.
X5091ssuerSerialChild has the following elements:

* X5091ssuerName
The distinguished name of the issuer of the X.509 certificate. The distinguished name should be a string
representation of an LDAP Distinguished Name, as described in RFC 2253. For example,
C=US, 0O="Mega Data Security, Inc.”, OU=Secure Server CA

* X509SerialNumber
The serial number of the X.509 certificate.

X509SKI

The Subject Key Identifier of the X.509 certificate.

X509 SubjectName

The distinguished name of the subject of the X.509 certificate. This should be a string representation of an
LDAP distinguished name, as described in RFC 2253.

X509Certificate

Contains the Base-64-encoded X.509v3 certificate.

X509CRL

Contains a Base-64-encoded X.509v3 Certificate Revocation List.

4.2.2 AuthResponse

Returns a list of valid credentials of the person entity in the AuthRequest document. Note that this response
is for successful authentications only.

Getting Started with cXML
Alternative Authentication Methods

51

AuthResponse has the following attribute:

Attribute Description

expirationDate Specifies the time beyond which the information contained in the AuthResponse must
be discarded. The inclusion of this attribute specifies that the receiver can cache the
AuthResponse information until the expirationDate.

The absence of an expirationDate should be interpreted to forbid caching.

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE cXML SYSTEM *http://xml.cXML.org/schemas/cXML/1.2.014/cXML.dtd">
<cXML payloadlD="234234@hub.com™ timestamp="2001-01-25T15:19:07-08:00"">
<Response>
<Status code="200" text="0K"/>
<AuthResponse expirationDate="2002-12-31T09:00:00-08:00"">
<Credential domain=""DUNS'>
<ldentity>12345</ldentity>
</Credential>
</AuthResponse>
</Response>
</cXML>

Getting Started with cXML
52 Alternative Authentication Methods

5 cXML Digital Signatures

Any cXML request, response, or message can be signed using World Wide Web Consortium (W3C) XML Digital
Signatures. Support for the XML Advanced Electronic Signature (XAdES) standard is also included.

Readers of this section should be familiar with electronic signature terminology and concepts such as
asymmetric key pairs, certificates, and smart cards.

Digital Signature Overview [page 53]
Signing cXML Documents [page 54]

5.1 Digital Signature Overview

Digital signatures confirm the identity of the sender of an electronic document, and ensure that the document
was not modified after it was generated by the signer. They consist of a series of bytes that contain
cryptographic information, including the sender’s public key and detailed information about the contents of
the document being signed.

An XML digital signature—which is a specific arrangement of a digital signature—is an element that contains
other information besides the cryptographic signature itself, including a list of what was signed, the signer’s

public key, and other attributes. A cXML signature is an XML digital signature of a certain form, as described
later in this chapter.

XML Advanced Electronic Signature (XAdES) provides basic authentication and integrity protection.
W3C XML signatures and XAdES have many options designed to allow for flexibility.
For information about W3C XML digital signatures, see the following resources:

* www.w3.0rg

¢ XML Signature Syntax and Processing Version 1.1
For information about XAdES, see the following resources:

¢ XML Advanced Electronic Signatures (XAdES)
* uri.etsi.org/01903/v1.3.2

5.1.1 Options for Signing

You can use a service to sign documents on your behalf, or you can implement the necessary hardware or
software systems to sign the documents yourself. If you implement your own signing system, you must obtain
a certificate signed by a Certificate Authority (CA) trusted by the receiver. Meeting receiver requirements might
mean obtaining hardware that keeps the private key secret, such as a smart card or Hardware Security Module.

Getting Started with cXML
cXML Digital Signatures 53

http://www.w3.org
https://www.w3.org/TR/xmldsig-core/
https://www.w3.org/TR/XAdES/
http://uri.etsi.org/01903/v1.3.2

Note that signature and certificate requirements vary according to local laws and regulations. Prior to
implementing a signing system, be sure you learn the requirements of the relevant locale.

5.2 Signing cXML Documents

A valid cXML digital signature is not just an XML signature, but an XML signature that uses particular options,
has particular elements present, and signs (or does not sign) certain portions of the document.

5.2.1 cXML Digital Signatures

Note that namespace prefix conventions are used here when referring to elements that come from other
specifications. All W3C XML Digital Signature elements use the ds prefix, and all XAdES elements use the
xades prefix.

5.2.11 ds:Signature Element

The cXML element contains a space for the ds:Signature element after the Request, Response, or
Message element. The ds:Signature element holds information about what is being signed, one or more
signatures, and the keys used to create the signature or signatures. It also has a place to store additional
information such as XAdES extensions or attachment manifests.

The cXML element also contains a space for the signatureVersion attribute.

Attribute Description

signatureVersion If present, signatureVersionimplies that the document is digitally
signed, that is, that the document contains a valid ds: Signature element
immediately following the Request, Response, or Message element. If
the document is signed, this attribute must be present. The only valid value
for the attribute is 1. O; other values are reserved for future use.

Id This attribute can be used to call out an element and all its children
as a target for signing. For example, if a document contains <Request
Id=""f00"">, then in the digital signature <Reference URI="#fo0"">
will refer to the Request element and all its children. If the document is
signed, this attribute must be present.

The Message, Request, and Response elements contain an 1d attribute.

Related Information

cXML Envelope [page 24]

Getting Started with cXML
54 cXML Digital Signatures

cXML Basics [page 17]

5.21.2 cXMLSignhedlnfo

The cXMLSignedInfo element includes cXML-specific details about the signature, and has the following
attributes:

Attribute Description
signatureVersion Implies that the document is digitally signed, that is, that the document con-
(required) tains a valid ds: Signature element immediately following the Request,

Response, or Message element. The only valid value for the attribute is
1.0; other values are reserved for future use.

payloadlD Used to establish links between documents. The pay load 1D in the

(required) cXMLSignedInfo element must be the same as the payloadID in the
document’s main cXML element.

Id Identifies this cXMLSigned Info element for purposes of the signature.

(required) This attribute must always be present and should always have the value
"cXMLSignedInfo".

5.2.1.3 Signing Essentials

Because some information from the cXML header is significant, it must be signed. To sign these attributes
from the header, repeat the information in a cXMLSignedInfo element placed within a ds:0Object element.
The ds:Object must be the first ds:Object in the signature. For example:

<ds:Object>

<cXMLSignedInfo Id="cXMLSignedInfo™
signatureVersion="1.0"
payloadID=""xxx""/>

</ds:Object>

The value of the Id attribute must be ""cXMLSignedInfo™. The values of the signatureVersion and
payloadlD attributes must exactly match the values specified in the cXML element, and the receiver of the
document must verify this match. No transforms should be used in this ds:Reference. This element must be
signed via the first ds:Reference object in the ds:SignedInfo, as follows:

<ds:Reference URI="#cXMLSignedInfo'>

<ds:DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal"/>
<ds 1 DigestValue>XXXXXXXXXXXXXXXXXXXXXXXXXXX</ds :DigestValue>
</ds:Reference>

The Request, Response, or Message element should be signed in its entirety. To do this, specify the string
""cXMLData™ as the value of the Id attribute on the Request, Response, or Message element and include a
ds:Reference element with the URI ""#cXMLData"" in the ds:SignedInfo. No transforms should be applied
to this reference. This ds:Reference must be the second ds:Reference in the ds:SignedInfo.

Getting Started with cXML
cXML Digital Signatures 55

The ds:KeyInfo element should be present with a single ds:X509Certificate element. This should
include the Base64 encoding of the DER representation of an X.509 certificate containing the public key
corresponding to the private key used to sign the document.

5.214 Using XAdES

The use of XAdES is required for digital signatures. In the signature, xades:Qual i fyingProperties should
be the second ds:Object. The xades:SignedProperties element and all its children must be signed by
specifying "XAdESSignedProps" as the value for the Id attribute of xades:SignedProperties and including
ads:Reference with the URI "#XAdESSignedProps" and no transforms in the ds:SignedInfo. When using
XAdES, the certificate referred to in the xades : Cert element must be the same as that contained in the
ds:KeylInfo element, the Id attribute of the ds:Signature element must be set to cXMLSignature and the
Target attribute of xades:Qual i fyingProperties must be #cXMLSignature.

5.2.1.5 Signing Attachments

If the document in question includes attachments, digital signatures can be used to sign just the document, or
both the document and its attachments. Signatures are structured in such a way that if the attachments are
discarded, the signature on the document itself can still be validated.

The attachments should be signed using ds:Reference elements in a ds:Manifest element included
under a ds:Object contained in the signature. The Id attribute of the ds:Manifest element must

be "AttachmentManifest". The ds:Object should occur immediately after the ds:Object containing the
xades:QualifyingProperties element, if it is present. Otherwise, it should occur immediately after the
ds:Object containing the cXMLSignedInfo element.

Each ds:Reference in the manifest should use a URI with the ""cid:"" scheme to refer to the attachments
through their MIME Content-Id. The ds:Manifest element itself should be signed using a fragment URI
reference included in the ds:SignedInfo. This requirement exists because a compliant XML signature
implementation must validate all the ds:Reference elements under ds:SignedInfo. Base validation
ensures that the manifest itself has not been corrupted, but will not validate the objects referred to in the
manifest. This approach makes it possible to validate the document on its own if the attachments have been
discarded. For example:

<ds:Object>
<ds:Manifest ld="AttachmentManifest'>
<ds:Reference URI="cid:23482390498.34284203._partl@some.host.com">
<ds:DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal"/>
<ds:DigestValue>P6ua59kKBLLEMBFE+IwPUgp2xqc=</ds:DigestValue>
</ds:Reference>
<ds:Reference URI="cid:23482390498.34284203._part2@some.host.com">
<ds:DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal"/>
<ds:DigestValue>P6ua59kKBLLEMBFE+IwPUgp2xqc=</ds:DigestValue>
</ds:Reference>
</ds:Manifest>
</ds:Object>

Getting Started with cXML
56 cXML Digital Signatures

5.2.2 Error Status Codes for Digital Signatures

The following table lists cXML digital signature status codes:

Status Text Meaning

475 Signature Required The receiver is unwilling to accept the document because it does not have a
digital signature.

476 Signature Verification The receiver is unable to validate the signature, possibly because the document

Failed was altered in transit, or the receiver does not support one or more algorithms

used in the signature.

477 Signature Unacceptable The signature is technically valid, but is not acceptable to the receiver for some

other reason. The signature policies or certificate policies might be unaccepta-
ble, the type of certificate used might be unacceptable, or there might be some
other problem.

5.2.3 Digital Signature Example

The

following example shows a signed invoice. Note that the digest values and signature value are not correct,

because parts of the invoice document have been abbreviated for this example.

<?xml version="1.0" ?>

<!

DOCTYPE cXML SYSTEM "*http://xml_cXML.org/schemas/cXML/1.2.0.11/

InvoiceDetail .dtd">
<cXML payloadlD="20030912. jdoe004@live.company.com" signhatureVersion="1.0"

ti

mestamp="200104-20T23:59:45-07:00"">
<Header>
<From>
<Credential domain="AribaNetworkUserld">
<ldentity>jdoe@company.com</ldentity>
</Credential>
</From>
<To>
<Credential domain="AribaNetworkUserId">
<ldentity>smistry@company.com</ldentity>
</Credential>
</To>
<Sender>
<Credential domain="AribaNetworkUserIld">
<ldentity>jdoe@company.com</ldentity>
<SharedSecret>abracadabra</SharedSecret>
</Credential>
<UserAgent>0ur Invoice Application 4.0</UserAgent>
</Sender>
</Header>
<Request ld=""cXMLData" deploymentMode="production>
<InvoiceDetai lRequest>
<InvoiceDetai lRequestHeader invoiceDate=""2001-04-20T23:59:20-07:00"
invoicelD="123456-004" operation=""new"
purpose="standard">

</iﬁ§oiceDetaiIRequestHeader>
<InvoiceDetailOrder>

</InvoiceDetailOrder>
<InvoiceDetai lSummary>

</InvoiceDetai lSummary>

Getting Started with cXML
cXML Digital Signatures

57

</InvoiceDetai lRequest>
</Request>
<ds:Signature xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#" ld="cXMLSignature>
<ds:SignedInfo>
<ds:CanonicalizationMethod Algorithm="http://www.w3.0rg/TR/2001/
REC-xml-c14n20010315""></ds:Canonical izationMethod>
<ds:SignatureMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#rsa-shal”>
</ds:SignatureMethod>
<ds:Reference URI="#cXMLSignedInfo'>
<ds:DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal"'>
</ds:DigestMethod>
<ds:DigestValue>mxtVp6Rg9K5wo/c5B088g7sZYEg=</ds:DigestValue>
</ds:Reference>
<ds:Reference URI="#cXMLData'>
<ds:DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal’>
</ds:DigestMethod>
<ds:DigestValue>1uBJgSa3BXewh/1wsPDWCzn8Sgk=</ds:DigestValue>
</ds:Reference>
<ds:Reference URI="#XAdESSignedProps'>
<ds:DigestMethod
Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal">
</ds:DigestMethod>
<ds:DigestValue>XlasOHckorH8fz/thdyzZIlzvV2yl=</ds:DigestValue>
</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>
nNFfsBpc22u9aypYLvgEScuiHVO077vnaol S76LoAuks9bAwWLOOkz/nkTQTFb2zKSQTy8j j6Ww/
TJIGCQJ691PIKBNnIqaMPPN3k+hbi 6A5cJHPRA3HNPexU5sSi4StTuxIWAiHe/
XEeBEeclu7K6sR4Rh1gzzELg05v21aRX40VGbjk=</ds:SignatureValue>
<ds:Keylnfo>
<ds:X509Data>
<ds:X509Certificate>
M1 1CgDCCAekCAwW7cUTANBgkghk i GOWOBAQQFADCB j ELMAKGALUEBhMCVV
w7cUTANBgkghk i GOWOBAQQFADCB i j ELMAKGA1UEBhMCVVMXEZARBgNV
M1 1CgDCCAekCAwW7cUTANBgkghk i GOwOBAQQFADCB1 j ELMAKGALUEBhMCVV
w7cUTANBgkghk i GOWOBAQQFADCB i j ELMAKGALUEBhMCVVMXEZARBgNVBA
M1 1CgDCCAekCAwW7cUTANBgkghk i GOWOBAQQFADCBI j ELMAKGALUEBhMCVV
zuRel/79tb8M95FUN5yROGUG I5PgkzwuCQYobJql cAs=</ds: X509Certificate>
</ds:X509Data>
</ds:KeylInfo>
<ds:Object>
<cXMLSignedInfo Id="cXMLSignedInfo"
payloadl1D=""20030912. rsmith004@live.hub.com™ signatureVersion="1.0">
</cXMLSignedInfo>
</ds:Object>
<ds:Object>
<xades:QualifyingProperties xmlns:xades=
"http://uri.etsi.org/01903/v1._1._1#"
Target=""#cXMLSignature'>
<xades:SignedProperties 1d="XAdESSignedProps'>
<xades:SignedSignatureProperties>
<xades:SigningTime>2003-09-30T18:32:27Z</xades:SigningTime>
<xades:SigningCertificate>
<xades:Cert>
<xades:CertDigest>
<ds:DigestMethod
Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal’>
</ds:DigestMethod>
<ds:DigestValue>LETnT8c7gvZqp30oVt8/BL0JpeeA=
</ds:DigestValue>
</xades:CertDigest>
<xades: IssuerSerial>
<ds:X5091ssuerName>EMAILADDRESS=an_ops@company .com,
CN=anrc.hub.com, 0="Hub, Inc.'", L=Mountain View,
ST=California, C=US</ds:X509IssuerName>
<ds:X509SerialNumber>973905</ds:X509SerialNumber>
</xades: IssuerSerial>
</xades:Cert>

Getting Started with cXML
58 cXML Digital Signatures

</xades:SigningCertificate>
<xades:SignaturePolicyldentifier>
<xades:SignaturePolicylmplied>
</xades:SignaturePolicylmplied>
</xades:SignaturePolicyldentifier>
</xades:SignedSignatureProperties>
</xades:SignedProperties>
</xades:QualifyingProperties>
</ds:Object>
</ds:Signature>
</cXML>

Getting Started with cXML
cXML Digital Signatures

59

6 Revision History

The following table provides a brief history of the updates to this guide.

Month/year of
update Updated topics Short description of change
January 2021 cXML Basics Added or updated “Correspondent” and “Routing” topics.
October 2020 c¢XML Basics Updated “Handling Special Characters in Documents” topic.
January 2020 cXML Basics Updated “Base Elements” topic, adding State element.
October 2019 cXML Basics Updated “Type Entities” topic, adding isoStateCode.

Multiple pages Updated references to network hubs for consistency.
July 2018 Title page Removed the subtitle, which incorrectly specified a cXML version.

This book applies to all cXML versions.

April 2018 n/a Initial version

Getting Started with cXML
60 Revision History

Getting Started with cXML
Revision History

61

	Getting Started with cXML
	Content
	cXML License Agreement
	1 Preface
	1.1 Audience and Prerequisites
	1.2 Typography

	2 Introduction to cXML
	2.1 cXML, an XML Implementation
	2.2 cXML Capabilities
	2.2.1 Catalogs
	2.2.2 PunchOut
	2.2.3 Purchase Orders

	2.3 Types of Applications that Use cXML
	2.4 Content Delivery Strategy
	2.5 cXML DTDs
	2.6 Profile Transaction
	2.7 Service Status Response
	2.8 XML Utilities

	3 cXML Basics
	3.1 Protocol Specification
	3.1.1 Request-Response Model
	3.1.2 cXML Conventions
	3.1.3 cXML Document
	3.1.4 Wrapping Layers
	3.1.5 Attachments
	3.1.6 cXML Envelope
	3.1.6.1 Locale Specified by xml:lang
	3.1.6.2 Date, Time, and Other Data Types
	3.1.6.3 Special Characters
	3.1.6.3.1 Handling Special Characters in Documents

	3.1.7 Header
	3.1.7.1 From
	3.1.7.2 To
	3.1.7.3 Sender
	3.1.7.4 UserAgent
	3.1.7.5 Credential
	3.1.7.6 Correspondent
	3.1.7.6.1 Routing

	3.1.8 Request
	3.1.9 Response
	3.1.9.1 Status

	3.1.10 One-Way (Asynchronous) Model
	3.1.11 Message
	3.1.12 Transport Options
	3.1.13 Service Status Response

	3.2 Basic Elements
	3.2.1 Type Entities
	3.2.2 Base Elements

	4 Alternative Authentication Methods
	4.1 Message Authentication Code (MAC)
	4.1.1 Overview of MACs
	4.1.2 Computation Algorithm
	4.1.3 Creation and Expiration Dates
	4.1.4 Computation Process
	4.1.4.1 Assembling the Hash Inputs
	4.1.4.2 Normalizing the Inputs
	4.1.4.3 MAC Algorithm

	4.1.5 ProfileResponse
	4.1.6 CredentialMac

	4.2 Auth Transaction
	4.2.1 AuthRequest
	4.2.1.1 Credential
	4.2.1.2 X509Data

	4.2.2 AuthResponse

	5 cXML Digital Signatures
	5.1 Digital Signature Overview
	5.1.1 Options for Signing

	5.2 Signing cXML Documents
	5.2.1 cXML Digital Signatures
	5.2.1.1 ds:Signature Element
	5.2.1.2 cXMLSignedInfo
	5.2.1.3 Signing Essentials
	5.2.1.4 Using XAdES
	5.2.1.5 Signing Attachments

	5.2.2 Error Status Codes for Digital Signatures
	5.2.3 Digital Signature Example

	6 Revision History

