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A Shifting Framework for Set Queries
Tong Yang, Alex X. Liu, Muhammad Shahzad, Dongsheng Yang, Qiaobin Fu, Gaogang Xie, and Xiaoming Li

Abstract— Set queries are fundamental operations in computer
networks. This paper addresses the fundamental problem of
designing a probabilistic data structure that can quickly process
set queries using a small amount of memory. We propose a shift-
ing bloom filter (ShBF) framework for representing and querying
sets. We demonstrate the effectiveness of ShBF using three types
of popular set queries: membership, association, and multiplicity
queries. The key novelty of ShBF is on encoding the auxiliary
information of a set element in a location offset. In contrast,
prior BF-based set data structures allocate additional memory
to store auxiliary information. We further extend our shifting
framework from BF-based data structures to sketch-based data
structures, which are widely used to store multiplicities of items.
We conducted experiments using real-world network traces, and
results show that ShBF significantly advances the state-of-the-art
on all three types of set queries.

Index Terms— Set queries, Bloom filters, algorithms.

I. INTRODUCTION

A. Motivations

SET queries, such as membership queries, association
queries, and multiplicity queries, are fundamental oper-

ations in computer systems and applications. Membership
queries check whether an element is a member of a given set.
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Network applications, such as IP lookup, packet classification,
and regular expression matching, often involve membership
queries. Association queries identify which set(s) among a
pair of sets contain a given element. Network architectures
such as distributed servers often use association queries. For
example, when data is stored distributively on two servers and
the popular content is replicated over both servers to achieve
load balancing, for any incoming query, the gateway needs
to identify the server(s) that contain the data corresponding
to that query. Multiplicity queries check how many times an
element appears in a multi-set. A multi-set allows elements to
appear more than once. Network measurement applications,
such as measuring flow sizes, often use multiplicity queries.

This paper addresses the fundamental problem of designing
a probabilistic data structure that can quickly process set
queries, such as the above-mentioned membership, associa-
tion, and multiplicity queries, using a small amount of mem-
ory. Set query processing speed is critical for many systems
and applications, especially for networking applications as
packets need to be processed at wire speed. Memory con-
sumption is also critical because small memory consumption
may allow the data structure to be stored in SRAM, which is
an order of magnitude faster than DRAM.

Widely used set data structures are the standard Bloom
Filter (BF) [2] and the counting Bloom Filter (CBF) [3].
Let h1(.), · · · , hk(.) be k independent hash functions with
uniformly distributed outputs. Given a set S, BF con-
structs an array B of m bits, where each bit is initial-
ized to 0, and for each element e∈S, BF sets the k bits
B[h1(e)%m], · · · , B[hk(e)%m] to 1. To process a member-
ship query of whether element e is in S, BF returns true if
all corresponding k bits are 1 (i.e., returns ∧k

i=1B[hi(e)%m]).
BF has no false negatives (FNs), i.e., it never says that e/∈S
when actually e ∈ S. However, BF has false positives (FPs),
i.e., it may say that e ∈ S when actually e /∈ S with a certain
probability. Note that BF does not support element deletion.
CBF overcomes this shortcoming by replacing each bit in BF
by a counter. Given a set of elements, CBF first constructs an
array C of m counters, where each counter is initialized to 0.
For each element e in S, for each 1 � i � k, CBF increments
C[hi(e)%m] by 1. To process a membership query of whether
element e is in set S, CBF returns true if all corresponding k
counters are at least 1 (i.e., returns ∧k

i=1(C[hi(e)%m] � 1)).
To delete an element e from S, for each 1 � i � k, CBF
decrements C[hi(e)%m] by 1.

B. Proposed Approach

In this paper, we propose a Shifting Bloom Fil-
ter (ShBF) framework for representing and querying sets.
Let h1(.), · · · , hk(.) be k independent hash functions with
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Fig. 1. Shifting bloom filter framework.

uniformly distributed outputs. In the construction phase, ShBF
first constructs an array B of m bits, where each bit is
initialized to 0. We observe that in general a set data structure
needs to store two types of information for each element e:
(1) existence information, i.e., whether e is in a set, and
(2) auxiliary information, i.e., some additional information
such as e’s counter (i.e., multiplicity) or which set that e is in.
For each element e, we encode its existence information in k
hash values h1(e)%m, · · · , hk(e)%m, and its auxiliary infor-
mation in an offset o(e). Instead of, or in addition to, setting
the k bits at locations h1(e)%m, · · · , hk(e)%m to 1, we set
the bits at locations (h1(e)+o(e))%m, · · · , (hk(e)+o(e))%m
to 1. For different set queries, the offset has different values. In
the query phase, to query an element e, we first calculate the
following k locations: h1(e)%m, · · · , hk(e)%m. Let c be the
maximum value of all offsets. For each 1 � i � k, we first read
the c bits B[hi(e)%m], B[(hi(e) + 1)%m], · · · , B[(hi(e) +
c − 1)%m] and then calculate the existence and auxiliary
information about e by analyzing where 1s appear in these c
bits. To minimize the number of memory accesses, we extend
the number of bits in ShBF to m + c; thus, we need k� c

w�
number of memory accesses in the worst case, where w is the
word size. Figure 1 illustrates our ShBF framework.

We demonstrate the effectiveness of ShBF using three
types of popular set queries: membership, association, and
multiplicity queries.

1) Membership Queries: Such queries only deal with the
existence information of each element, which is encoded
in k random positions in array B. To leverage our ShBF
framework, we treat k/2 positions as the existence information
and the other k/2 positions as the auxiliary information,
assuming k is an even number for simplicity. Specifically,
the offset function o(.) = h k

2 +1(.)%(w − 1) + 1, where
h k

2 +1(.) is another hash function with uniformly distributed
outputs and w is a function of machine word size w. In the
construction phase, for each element e ∈ S, we set both
the k/2 bits B[h1(e)%m], · · · , B[h k

2
(e)%m] and the k/2 bits

B[h1(e)%m + o(e)], · · · , B[h k
2
(e)%m + o(e)] to 1. In the

query phase, for an element e, if all these k bits are 1, then
we output e ∈ S; otherwise, we output e /∈ S. In terms of
false positive rate (FPR), our analysis shows that ShBF is very
close to BF with k hash functions. In terms of performance,
ShBF is about two times faster than BF because of two main
reasons. First, ShBF reduces the computational cost by almost
half because the number of hash functions that ShBF needs
to compute is almost the half of what BF needs to compute.
Second, ShBF reduces the number of memory accesses by
half because although both ShBF and BF write k bits into the
array B, when querying element e, by one memory access,

ShBF obtains two bits about e whereas BF obtains only one
bit about e.

2) Association Queries: For this type of queries with two
sets S1 and S2, for elements in S1 ∪S2, there are three cases:
(1) e ∈ S1 − S2, (2) e ∈ S1 ∩ S2, and (3) e ∈ S2 − S1.
For the first case, i.e., e ∈ S1 − S2, the offset function
o(e) = 0. For the second case, i.e., e ∈ S1 ∩ S2, the offset
function o(e) = o1(e) = hk+1(e)%((w − 1)/2) + 1, where
hk+1(.) is another hash function with uniformly distributed
outputs and w is a function of machine word size w. For
the third case, i.e., e ∈ S2 − S1, the offset function o(e) =
o2(e) = o1(e) + hk+2(e)%((w − 1)/2) + 1, where hk+2(.) is
yet another hash function with uniformly distributed outputs.
In the construction phase, for each element e ∈ S1 ∪ S2,
we set the k bits B[h1(e)%m+o(e)], · · · , B[hk(e)%m+o(e)]
to 1 using an appropriate value of o(e) as just described
for the three cases. In the query phase, given an ele-
ment e ∈ S1 ∪ S2, for each 1 � i � k, we read the
3 bits B[hi(e)%m], B[hi(e)%m + o1(e)], and B[hi(e)%m +
o2(e)]. If all the k bits B[h1(e)%m], · · · , B[hk(e)%m]
are 1, then e may belong to S1 − S2. If all the k bits
B[h1(e)%m + o1(e)], · · · , B[hk(e)%m + o1(e)] are 1, then
e may belong to S1 ∩ S2. If all the k bits B[h1(e)%m +
o2(e)], · · · , B[hk(e)%m + o2(e)] are 1, then e may belong to
S2−S1. There are a few other possibilities that we will discuss
later in Section IV-B, that ShBF takes into account when
answering the association queries. In comparison, the standard
BF based association query scheme, namely iBF, constructs a
BF for each set. In terms of accuracy, iBF is prone to false
positives whenever it declares an element e ∈ S1 ∪ S2 in a
query to be in S1∩S2, whereas ShBF achieves an FPR of zero.
In terms of performance, ShBF is almost twice as fast as iBF
because iBF needs 2k hash functions and 2k memory accesses
per query, whereas ShBF needs only k+2 hash functions and
k memory accesses per query.

3) Multiplicity Queries: For multiplicity queries, for each
element e in a multi-set S, the offset function o(.) = c(e) − 1
where c(e) is e’s counter (i.e., the number of occurrences
of e in S). In the construction phase, for each element e,
we set the k bits B[h1(e)%m+ c(e)− 1], · · · , B[hk(e)%m+
c(e)− 1] to 1. In the query phase, for an element e, for each
1 � i � k, we read the c bits B[hi(e)%m], B[hi(e)%m +
1], · · · , B[hi(e)%m+c−1], where c is the maximum number
of occurrences that an element can appear in S. For these ck
bits, for each 1 � j � c, if all the k bits B[h1(e)%m +
j − 1], · · · , B[hk(e)%m + j − 1] are 1, then we output j as
one possible value of c(e). Due to false positives, we may
output multiple possible values. Another well known data
structure to record and report multiplicities of elements is
CM sketch [4]. CM sketches are more flexible and have more
functions compared to Bloom filters. We apply our shifting
framework to the CM sketches as well to achieve faster
queries.

4) Analysis of Computational Overhead: Next, we briefly
compare our shifting framework with BF. To insert an element,
for ShBFM and ShBFA, o(e) is computed using only one hash
function, and for ShBF× no computation is required at all.
Therefore, during an insertion, the number of hash functions
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to be computed are less than or equal to k
2 + 1 . Similarly,

during a query of ShBF, the number of hash functions to be
computed are less than or equal to k

2+2. In comparison, Bloom
filter needs k computations of hash functions. Therefore,
our shifting framework has a much smaller computational
overhead. Furthermore, our framework needs fewer memory
accesses because all bits to be read lie within a machine
word length. After reading these bits, when checking them
to restore the information, in the worst case, our framework
goes through k bits for ShBFM, which are equal to BF, and
3k bits for ShBFA, a little larger than 2k when using two
individual BFs. For ShBF×, our framework checks ck bits in
the worst case, while BF does not support multiplicity query
at all. Note that the average number of bits that our framework
checks is significantly smaller than these worst case numbers
of bits.

C. Novelty and Advantages Over Prior Art

The key novelty of ShBF is on encoding the auxiliary
information of a set element in its location by the use of
offsets. In contrast, prior BF based set data structures allocate
additional memory to store such auxiliary information.

To evaluate our ShBF framework in comparison with
prior art, we conducted experiments using real-world network
traces. Our results show that ShBF significantly advances the
state-of-the-art on all three types of set queries: membership,
association, and multiplicity. For membership queries, in com-
parison with the standard BF, ShBF has about the same FPR
but is about 2 times faster; in comparison with 1MemBF [5],
which represents the state-of-the-art in membership query BFs,
ShBF has 10% ∼ 19% lower FPR and 1.27 ∼ 1.44 times
faster query speed. For association queries, in comparison
with iBF, ShBF has 1.47 times higher probability of a clear
answer, and has 1.4 times faster query speed. For multiplicity
queries, in comparison with Spectral BF [6], which repre-
sents the state-of-the-art in multiplicity query BFs, ShBF has
1.45 ∼ 1.62 times higher correctness rate and the query
speeds are comparable. Furthermore, we have released the
source code of our implementations of ShBF schemes and
our implementation of existing state-of-the-art solutions [7].

II. RELATED WORK

We now review related work on the three types of set
queries: membership, association, and multiplicity queries,
which are mostly based on Bloom Filters. Elaborate surveys on
Bloom Filters and applications can be found in [?], [8]–[11].

A. Membership Queries

Prior work on membership queries focuses on optimizing
BF in terms of the number of hash operations and the number
of memory accesses. Fan et al. [12] proposed the Cuckoo
filter and found that it is more efficient in terms of space
and time compared to BF. This improvement comes at the
cost of non-negligible probability of failing when inserting an
element. To reduce the number of hash computation, Kirsch
and Mitzenmacher proposed to use two hash functions h1(.)
and h2(.) to simulate k hash functions (h1(.)+ i ∗ h2(.))%m,

where (1 � i � k); but the cost is increased FPR [13].
To reduce the number of memory accesses, Qiao et al. [5]
proposed to confine the output of the k hash functions within
certain number of machine words, which reduces the number
of memory accesses during membership queries; but the cost
again is increased FPR. In contrast, ShBF reduces the number
of hash operations and memory access by about half while
keeping FPR about the same as BF.

B. Association Queries

Prior work on association queries focuses on identifying
the set, among a group of pair-wise disjoint sets, to which
an element belongs. A straightforward solution is iBF, which
builds one BF for each set. To query an element, iBF generates
a membership query for each set’s BF and finds out which
set(s) the unknown element is in. This solution is used in
the Summary-Cache Enhanced ICP protocol [3]. Other notable
solutions include kBF [14], Bloomtree [15], Difference Bloom
filter [16], Bloomier [17], Coded BF [18], Combinatorial
BF [19]. When some sets have intersections, there will be
consecutive 1s in the filters, and the false positive rate will
increase and formulas will change. In this paper, we focus on
the query of two sets with intersections.

C. Multiplicity Queries

BF cannot process multiplicity queries because it only tells
whether an element is in a set. Spectral BF, which was
proposed by Cohen and Matias, represents the state-of-the-art
scheme for multiplicity queries [6]. There are three versions
of Spectral BF. The first version proposes some modifications
to CBF to record the multiplicities of elements. The second
version increases only the counter with the minimum value
when inserting an element. This version reduces FPR at the
cost of not supporting updates. The third version minimizes
space for counters with a secondary spectral BF and auxiliary
tables, which makes querying and updating procedures time
consuming and more complex. Aguilar-Saborit et al. [20]
proposed Dynamic Count Filters (DCF), which combines the
ideas of spectral BF and CBF, for multiplicity queries. DCF
uses two filters: the first filter uses fixed size counters and
the second filter dynamically adjusts counter sizes. The use of
two filters degrades query performance.

Another class of well-known data structure for multiplicity
queries is the sketch, such as Count sketch [21], CM sketch [4],
Pyramid sketch [22], and Slim-Fat sketch [23]. Note that our
shifting framework can be applied to both Count sketches and
CM sketches. As the CM sketch is much more accurate than
the Count sketch, we focus on the application of our shifting
framework on the CM sketch only in this paper.

III. MEMBERSHIP QUERIES

In this section, we first present the construction and query
phases of ShBF for membership queries. Membership queries
are the “traditional” use of a BF. We use ShBFM to denote the
ShBF scheme for membership queries. Second, we describe
the updating method of ShBFM. Third, we derive the
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TABLE I

SYMBOLS & ABBREVIATIONS USED IN THE PAPER

FPR formula of ShBFM. Fourth, we compare the performance
of ShBFM with that of BF. Last, we present a generalization
of ShBFM. Table I summarizes the symbols and abbreviations
used in this paper.

A. ShBFM – Construction Phase

The construction phase of ShBFM proceeds in three steps.
Let h1(.), h2(.), · · · , h k

2 +1(.) be k
2 + 1 independent hash

functions with uniformly distributed outputs. First, we con-
struct an array B of m bits, where each bit is ini-
tialized to 0. Second, to store the existence information
of an element e of set S, we calculate k

2 hash values
h1(e)%m,h2(e)%m,· · · ,h k

2
(e)%m. To leverage our ShBF

framework, we also calculate the offset values for the element
e of set S as the auxiliary information for each element,
namely o(e) = h k

2 +1(e)%(w − 1) + 1. We will later discuss
how to choose an appropriate value for w. Third, we set the k

2

bits B[h1(e)%m], · · · , B[h k
2
(e)%m] to 1 and the other k

2 bits

B[h1(e)%m+ o(e)], · · · , B[h k
2
(e)%m+ o(e)] to 1. Note that

o(e) 
= 0 because if o(e) = 0, the two bits B[hi(e)%m] and
B[hi(e)%m+o(e)] are the same bits for any value of i in the
range 1 � i � k

2 . For the construction phase, the maximum
number of hash operations is k

2 + 1. Figure 1 illustrates the
construction phase of ShBFM.

We now discuss how to choose a proper value for w so that
for any 1 � i � k

2 , we can access both bits B[hi(e)%m] and
B[hi(e)%m + o(e)] in one memory access. Note that modern
architecture like x86 platform CPU can access data starting
at any byte, i.e., can access data aligned on any boundary,

not just on word boundaries. Let B[hi(e)%m] be the j-th
bits of a byte where 1 � j � 8. To access bit B[hi(e)%m],
we always need to read the j − 1 bits before it. To access
both bits B[hi(e)%m] and B[hi(e)%m+o(e)] in one memory
access, we need to access j − 1 + w bits in one memory
access. Thus, j − 1 + w � w, which means w � w + 1 − j.
When j = 8, w + 1 − j has the minimum value of w − 7.
Thus, we choose w � w− 7 as it guarantees that we can read
both bits B[hi(e)%m] and B[hi(e)%m+o(e)] in one memory
access.

B. ShBFM – Query Phase

Given a query e, we first read the two bits B[h1(e)%m]
and B[h1(e)%m + o(e)] in one memory access. If both bits
are 1, then we continue to read the next two bits B[h2(e)%m]
and B[h2(e)%m+ o(e)] in one memory access; otherwise we
output that e /∈ S and the query process terminates. If for all
1 � i � k

2 , B[hi(e)%m] and B[hi(e)%m + o(e)] are 1, then
we output e ∈ S. For the query phase, the maximum number
of memory accesses is k

2 .

C. ShBFM – Updating

Just like BF handles updates by replacing each bit by a
counter, we can extend ShBFM to handle updates by replac-
ing each bit by a counter. We use CShBFM to denote this
counting version of ShBFM. Let C denote the array of m
counters. To insert an element e, instead of setting k bits to 1,
we increment each of the corresponding k counters by 1; that
is, we increment both C[hi(e)%m] and C[hi(e)%m + o(e)]
by 1 for all 1 � i � k

2 . To delete an element e ∈ S,
we decrement both C[hi(e)%m] and C[hi(e)%m + o(e)] by
1 for all 1 � i � k

2 . In most applications, 4 bits for
a counter are enough. Therefore, we can further reduce the
number of memory accesses for updating CShBFM. Similar to
the analysis above, if we choose w � �w−7

z � where z is the
number of bits for each counter, we can guarantee to access
both C[hi(e)%m] and C[hi(e)%m + o(e)] in one memory
access. Consequently, one update of CShBFM needs only k/2
memory accesses.

Due to the replacement of bits by counters, array C in
CShBFM uses much more memory than array B in ShBFM.
To have the benefits of both fast query processing and small
memory consumption, we can maintain both ShBFM and
CShBFM, but store array B in fast SRAM and array C in
DRAM. Note that SRAM is at least an order of magnitude
faster than DRAM. Array B in fast SRAM is for processing
queries and array C in slow DRAM is only for updating.
After each update, we synchronize array C with array B. The
synchronization is quite straightforward: when we insert an
element, we insert it to both array C and B; when we delete
an element, we first delete it from C, if there is at least one
of the k counters becomes 0, we clear the corresponding bit
in B to 0.

D. ShBFM – Analysis

We now calculate the FPR of ShBFM, denoted as fShBFM .
Then, we calculate the minimum value of w so that ShBFM
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can achieve almost the same FPR as BF. Last, we calculate
the optimum value of k that minimizes fShBFM .

1) False Positive Rate: We calculate the false positive rate
of ShBFM in the following theorem.

Theorem 1: The FPR of ShBFM for a set of n elements is
calculated as follows:

fShBFM ≈ (1 − p)
k
2

(
1 − p +

1
w − 1

p2

) k
2

(1)

where p = e
−nk

m .
Proof: Let p′ represent the probability that one bit

(suppose it is at position i) in the filter B is still 0 after
inserting information of all n elements. For an arbitrary
element e, if hi(e)%m does not point to i or i − o(e), where
o(e) = h k

2
(e)%(w− 1)+1, then the bit at position i will still

be 0, thus p′ is given by the following equation.

p′ =
(

m − 2
m

)kn

2 =
(

1 − 2
m

)kn

2 (2)

When m is large, we can use the identity
∞∑
x

(
1 − 1

x

)−x

= e,

to get the following equation for p′.

p′ =
(

1 − 2
m

)kn

2 =

⎛
⎜⎝
(

1 − 2
m

)m

2

⎞
⎟⎠

kn

m

≈ e
−

nk

m (3)

Let X and Y be the random variables for the event that the
bit at position hi(.) and the bit at position hi(.) + h k

2 +1(.)
is 1, respectively. Thus, P {X} = 1 − p′. Suppose we look
at a hash pair 〈hi, h k

2
+ 1〉, we want to calculate P {XY }.

As P {XY } = P {X} × P {Y |X}, next we calculate
P {Y |X}. There are w−1 bits on the left side of position hi.
The 1s in these w − 1 bits could be due to the first hash
function in a pair and/or due to the second hash function in
the pair. In other words, event X happens because a hash pair
〈hj , h k

2 +1〉 sets the position hi to 1 during the construction
phase. When event X happens, there are two cases:

1) The event X1 happens, i.e., the position hi is set to 1 by
h k

2 +1, i.e., the left w−1 bits cause hi to be 1, making X

and Y independent. Thus, in this case P {Y } = 1 − p′.
2) The event X2 happens, i.e., the position hi is set to

1 by hj . In this case, As P {X1} + P {X2} =1, thus,
P {Y |X} = P {Y |X, X1}×P {X1}+P {Y |X, X2}×
P {X2}.

Next, we compute P {X1} and P {X2}.
As there are w−1 bits on the left side of position hi, there

are w − 1 combinations, i.e.,
(
w−1

1

)
= w − 1. Probability that

any bit of the w − 1 bits is 1 is 1 − p′. When one bit in the
w− 1 bits is 1, probability that this bit sets the bit at location
hi using the hash function h k

2
+ 1 to 1 is 1

w−1 . Therefore,

P {X1} =
(
w−1

1

)× (1 − p′) × 1
w−1 = 1 − p′. Consequently,

P {X2} = 1 − P {X1} = p′. Again there are two cases:
1) If the bit which hi(x) points to is set to 1 by the

left 1s, X and Y are independent, and thus P {Y } =(
w−1

1

)× (1 − p′) × 1
w−1 = 1 − p′.

2) If the bit which hi(x) points to is not set to 1 by the
left 1s, then it must set one bit of the latter w−1 bits to
be 1. This case will cause one bit of the latter w−1 bits
after position hi to be 1. In this case, there are following
two situations for the second hashing hi + h k

2 +1:

a) when the second hash points to this bit, the prob-
ability is 1

w−1 × 1;
b) otherwise, the probability is (1− 1

w−1 )× (1− p′).
When the second case above happens, P {Y |X, X2} is given
by the following equation.

P {Y |X, X2} =
(1 − p′)(w − 2)

w − 1
+

1
w − 1

=
(
1− w − 2

w − 1
p′
)

(4)

Integrating the two cases, we can compute P {Y |X} as
follows.

P {Y |X} = (1 − p′)(1 − p′) + (1 − (1 − p′))
(
1− w − 2

w − 1
p′
)

(5)

The probability that all the first hashes point to bits that
are 1 is (1−p′)

k
2 . The probability that the second hash points

to a bit that is 1 is the k
2 -th power of Equation (5). Thus,

the overall FPR of ShBFM is given by the following equation.

fShBFM = (1 − p′)
k
2

(
(1 − p′)(1 − p′) + p′

(
1 − w − 2

w − 1
p′
))k

2

= (1 − p′)
k
2

(
1 − p′ +

1
w − 1

p′2
) k

2

(6)

Note that when w → ∞, this formula becomes the formula

of the FPR of BF. Let we represent e
−

nk

m by p. Thus,
according to Equ. 3, p′ ≈ p. Consequently, we get:

fShBFM ≈ (1 − p)
k
2

(
1 − p +

1
w − 1

p2

) k
2

(7)

which is the equation in the theorem statement. �
Note that the above calculation of FPRs is based on the

original Bloom’s FPR formula [2]. In 2008, Bose et al. [24]
pointed out that Bloom’s formula [2] is slightly flawed and
gave a new FPR formula. Specifically, Bose et al. explained
that the second independence assumption needed to derive
fBloom is too strong and does not hold in general, resulting in
an underestimation of the FPR. In 2010, Christensen et al. [25]
further pointed out that Bose’s formula is also slightly flawed
and gave another FPR formula. Although Christensen’s for-
mula is final, it cannot be used to compute the optimal value
of k, which makes the FPR formula practically not much
useful. Although Bloom’s formula underestimates the FPR,
both studies pointed out that the error of Bloom’s formula is
negligible. Therefore, our calculation of FPRs is still based on
Bloom’s formula.

2) Optimizing System Parameters: Next, we describe how
to calculate the optimum values for w and k.
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Fig. 2. FPR vs. w. m = 100000, n = 10000. The dashed lines represent
ShBFM, while the solid lines represent BF.

Fig. 3. FPR vs. w. k = 10, n = 10000. The dashed lines represent ShBFM,
while the solid lines represent BF.

Minimum value of w: Recall that we proposed to use
w � w − 7. According to this inequation, w � 25 for
32-bit architectures and w � 57 for 64-bit architectures. Next,
we investigate the minimum value of w for ShBFM to achieve
the same FPR with BF. We plot fShBFM of ShBFM as a function
of w in Figures 2 and 3. The dashed lines in Figure 2 show
fShBFM vs. w for n = 10000, m = 100000, and k =4, 8, and
12 and the dashed lines in Figure 3 show fShBFM vs. w for
n = 10000, k = 10, and m = 100000, 110000, and 120000.
The horizontal solid lines in these two figures plot the FPR
of BF. From these two figures, we observe that when w > 20,
the FPR of ShBFM becomes almost equal to the FPR of BF.
Therefore, to achieve similar FPR as of BF, w needs to be
larger than 20. Thus, by using w = 25 for 32−bit and w = 57
for 64−bit architecture, ShBFM will achieve almost the same
FPR as BF.

Optimum value of k: Now we calculate the value of
k that minimizes the FPR calculated in Equation (1). The
standard method to obtain the optimal value of k is to
differentiate Equation (1) with respect to k, equate it to 0, i.e.,
∂
∂kfShBFM = 0, and solve this equation for k. Unfortunately,
this method does not yield a closed form solution for k. Thus,
we use standard numerical methods to solve the equation
∂
∂kfShBFM = 0 to get the optimal value of k for given values
of m, n, and w. For w = 57, differentiating Equation (1) with
respect to k and solving for k results in the following optimum
value.

kopt = 0.7009
m

n

Substituting the value of kopt from the equation above into
Equation (1), the minimum value of fShBFM is given by the
following equation.

fmin
ShBFM

= 0.6204
m
n (8)

Fig. 4. ShBFM FPR vs. BF FPR.

E. Comparison of ShBFM FPR With BF FPR

Our theoretical comparison of ShBFM and BF shows that
the FPR of ShBFM is almost the same as that of BF. Figure 4
plots FPRs of ShBFM and BF using Equations (1) and (9),
respectively for m = 100000 and n = 4000, 6000, 8000,
10000, 12000. The dashed lines in the figure correspond to
ShBFM whereas the solid lines correspond to BF. We observe
from this figure that the sacrificed FPR of ShBFM in compar-
ison with the FPR of BF is negligible, while the number of
memory accesses and hash computations of ShBFM are half
in comparison with BF.

Next, we formally arrive at this result. We calculate the min-
imum FPR of BF as we calculated for ShBFM in Equation (8)
and show that the two FPRs are practically equal. For a
membership query of an element u that does not belong to
set S, just like ShBFM, BF can also report true with a small
probability, which is the FPR of BF and has been well studied
in literature [2]. It is given by the following equation.

fBF =

(
1 −

(
1 − 1

m

)nk
)k

≈
(
1 − e−

nk
m

)k

(9)

For given values of m and n, the value of k that minimizes
fBF is = m

n ln 2 = 0.6931m
n . Substituting this value of k

into Equation (9), the minimum value of fBF is given by the
following equation.

fmin
BF =

(
1
2

)(m
n ln 2)

≈ 0.6185
m
n (10)

By comparing Equations (8) and (10), we observe that the
FPRs of ShBFM and BF are almost the same. Thus, ShBFM

achieves almost the same FPR as BF while reducing the
number of hash computations and memory accesses by half.

F. Generalization of ShBFM

As mentioned earlier, ShBFM reduces k independent hash
functions to k/2+1 independent hash functions. Consequently,
it calculates k/2 locations independently and remaining k/2
locations are correlated through the equation hi(e) + o1(e)
(1 � i � k/2). Carrying this construction strategy one step
further, one could replace the first k/2 hash functions with k/4
independent hash functions and an offset o2(e), i.e., hj(e) +
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o2(e) (1 � j � k/4). Continuing in this manner, one could
eventually arrive at log(k) + 1 hash functions. Unfortunately,
it is not trivial to calculate the FPR for this case because log(k)
is seldom an integer. In this subsection, we simplify this log
method into a linear method by first using a group of k

t+1

(1 � t � k−1) hash functions to calculate k
t+1 hash locations

and then applying shifting operation t times on these hash
locations.

Consider a group of hash function comprising of t + 1
elements, i.e., 〈h1(x), h2(x), . . . , ht+1(x)〉. After complet-
ing the construction phase using this group of hash func-

tions, the probability that any given bit is 0 is
m − w

m
+

w − 1
m

w − 2
w − 1

. . .
w − t − 1

w − t
= 1− t + 1

m
. To insert n elements,

we need
nk

t + 1
such group insertion operations. After com-

pleting the insertion, the probability p′ that one bit is still 0 is
given by the following equation.

p′ =
(

1 − t + 1
m

) kn

t + 1 ≈ e
−

kn

m (11)

Note that this probability formula is essentially k times product
of e−

n
m . Thus, we can treat our ShBFM as a partitioned Bloom

filter, where the output of each hash function covers a distinct

set of consecutive
w − 1

t
bits. Setting w = m makes this

scheme partitioned Bloom filter. The equations below calculate
the FPR f for this scheme.

f = (1 − p′)

k

t + 1 × (fgroup)

k

t + 1 (12)

where

fgroup =
1
t
× (1 − p′)2 ×

(1− p′)t−
(
1− w − 1 − t

w − 1
× p′

)t

(1− p′)−
(
1− w − 1 − t

w − 1
× p′

)

+ p′ ×
(

1 − w − 1 − t

w − 1
× p′

)t

(13)

False Positive Rate of Generalized ShBFM: The gener-
alization above is more complicated than ShBFM. Its false
positive rate can be derived using Equations (12) and (13) as
described next. When querying a non-existent element, a false
positive occurs when a hash function group returns all 1s,
where the hash function group is 〈hi(x), o1(x), . . . , ot(x)〉
(1 � i � k

t+1 ). There are two cases to consider here.
1) If the corresponding bit of hi(x) is not set by the left

w − 1 bits, then hi(x) must cause t bits, in the following
w − 1 bits, to be set to 1. There are t + 1 situations in
total. Note that the rth (r ∈ [0, t]) situation represents that
the corresponding bits of r hash functions out of t are set
by hi(x), and another t − r bits are not set by hi(x).
Considering the corresponding bits of the hash function subset
〈o1(x), . . . , ot(x)〉, the probability that each of these bits is set
by hi(x) is

λ1 =
t

w − 1
(14)

and the probability that each of these bits is not set by hi(x) is

λ2 =
(

1 − t

w − 1

)
× (1 − p′) (15)

Therefore, the probability that the rth situation occurs is
Cr

t ×λr
1 ×λt−r

2 . The total probability that the t +1 situations
occur is given by the following equation.

fI = Σt
r=0C

r
t × λr

1 × λt−r
2 = (λ1 + λ2)

t (16)

2) If the corresponding bit of hi(x) is set by the left
w − 1 bits, then the problem can be divided into t situations,
where each situation has a probability of 1/t. Note that the
l′−th (l′ ∈ [0, t − 1]) situation represents that the maximum
number of bits in the current subgroup 〈o1(x), . . . , ot(x)〉,
which are set to 1 by the previous hash function group causing
the corresponding bit of hi(x) to be set to 1. Since our
hash function group adopts partitioned Bloom filter, each hash
function in the previous hash function group can cause at most
1 bit to be set to 1 in current hash function group. When the
corresponding bit of hi(x) in the previous hash function group

lies within the first
w − 1

t
bits, then the previous hash function

group will cause 0 bit to be set to 1 in current subgroup
〈o1(x), . . . , ot(x)〉, because there is only one possibility that
the last hash function in the previous group causes the bit
of current hi(x) to be set to 1. This is the 0th situation.
Similarly, for the l′−th situation, if the corresponding bit of
hi(x) in the previous hash function group lies within the range[
w − 1 + l′ × w − 1

t
, w − 1 + (l′ + 1) × w − 1

t

)
, there are

at most l′ bits in the current hash function group set by the
previous group, and at least t − l′ bits in the current hash
function group not set by the previous group. Therefore, for the
l′−th situation, the probability that all the bits in the current
hash function group are 1 is given by the following equation.

fl′ =
1
t
×
(
Σl′

r′=0C
r′
l′ × λr′

1 × λl′−r′
2

)
× (1 − p′)t−l′

=
1
t

(λ1 + λ2)
l′ × (1 − p′)t−l′ (17)

The total probability that all the t situations happen is

fII = Σt−1
l′=0fl′ = Σt−1

l′=0

1
t
×
(
(λ1 + λ2)

l′ × (1 − p′)t−l′
)

=
1
t
× ((λ1 + λ2)

0 × (1 − p′)t−0 + . . .

+
1
t
× (λ1 + λ2)

t−1 × (1 − p′)t−(t−1)) (18)

Assuming x = Σt
l′=0

(
(λ1 + λ2)

l′ × (1 − p′)t−l′
)

, we get the
following equation

x × λ1 + λ2

1 − p′
= x − (1 − p′)t + (λ1 + λ2)

t (19)

By solving Equ. 19, we obtain the solution

x =
(1 − p′)t − (λ1 + λ2)

t

(1 − p′) − (λ1 + λ2)
× (1 − p′) (20)

Probability that case (1) happens is C1
w−1 ×

(
1

w − 1

)
×

(1 − p′) = (1 − p′). Therefore, the probability that case (2)
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happens is (1 − (1 − p′)) = p′. Combining 1) and 2), we know
that when hi(x) is 1, the probability that all the bits of
the current group 〈o1(x), . . . , ot(x)〉 are 1 is fgroup given
by Equation (13). Probability that the corresponding bits of
the first k/(t + 1) hash functions are 1 is (1 − p′)k/(t+1).
Therefore, the false positive of the generalized ShBFM is

f = (1 − p′)

k

t + 1 × (fgroup)

k

t + 1 (21)

When t = 1, the false positive simplifies to f = (1 − p′)k/2 ×(
1 − p′ +

1
w − 1

× p′2
)k/2

. Similarly, when w goes to infin-

ity, the false positive rate becomes f = (1 − p′)k, which is
the formula for standard Bloom filter.

IV. ASSOCIATION QUERIES

In this section, we first describe the construction and query
phases of ShBF for association queries, which are also called
membership test. We use ShBFA to denote the ShBF scheme
for association queries. Second, we describe the updating
methods of ShBFA. Third, we derive the FPR of ShBFA. Last,
we analytically compare the performance of ShBFA with that
of iBF.

A. ShBFA – Construction Phase

The construction phase of ShBFA proceeds in three steps.
Let h1(.), · · · , hk(.) be k independent hash functions with
uniformly distributed outputs. Let S1 and S2 be the two given
sets. First, ShBFA constructs a hash table T1 for set S1 and a
hash table T2 for set S2. Second, it constructs an array B of m
bits, where each bit is initialized to 0. Third, for each element
e ∈ S1, to store its existence information, ShBFA calculates k
hash functions h1(e)%m, · · · , hk(e)%m and searches e in T2.
If it does not find e in T2, to store its auxiliary information,
it sets the offset o(e) = 0. However, if it does find e in T2,
to store its auxiliary information, it calculates the offset o(e)
as o(e) = o1(e) = hk+1(e)%((w − 1)/2) + 1, where hk+1(.)
is a hash function with uniformly distributed output and w is
smaller than the size of a machine word minus 7. Fourth, it sets
the k bits B[h1(e)%m + o(e)], · · · , B[hk(e)%m + o(e)] to 1.
Fifth, for each element e ∈ S2, to store its existence informa-
tion, ShBFA calculates the k hash functions and searches it
in T1. If it finds e in T1, it does not do anything because its
existence as its auxiliary information have already been stored
in the array B. However, if it does not find e in T1, to store its
auxiliary information, it calculates the offset o(e) as o(e) =
o2(e) = o1(e) + hk+2(e)%((w − 1)/2) + 1, where hk+2(.) is
also a hash function with uniformly distributed output. Last,
it sets the k bits B[h1(e)%m + o(e)], · · · , B[hk(e)%m +
o(e)] to 1. To ensure that ShBFA can read B[hi(e)%m],
B[hi(e)%m + o1(e)], and B[hi(e)%m + o2(e)] in a single
memory access when querying, we let w � w−7. We derived
this condition w � w − 7 earlier at the end of Section III-A.
As the maximum value of hi(e)%m + o2(e) can be equal to
m + w − 2, we append the m-bit array B with w − 2 bits.

If due to some reason, we do not know which sets an
element belongs to, S1 − S2, S1 ∪ S2, or S2 − S1, we should

at least know whether the element belongs to S1 or S2. In this
case, we can simply set the offset of elements in S1 to 0, and
set the offset of elements in S2 to o2(e). If both o(e) and o2(e)
are 1, we consider that e is in the intersection of A and B.

If set S1 and S2 are distributed in the network, we build
two Bloom filters. One with o(e) = 0 for S1, and the other
one with o(e) = 1 for S2. Next, we send the former Bloom
filter to the server that holds set S2, and apply the logical OR
operation on these two Bloom filters. When querying an item,
we can just check the k hashed bits with offset 0 as well as
the k hashed bits with offset 1 to tell which sets the incoming
item belongs to.

B. ShBFA – Query Phase

We assume that the incoming elements always belong to
S1 ∪ S2 in the load balance application1 for convenience.
To query an element e ∈ S1 ∪ S2, ShBFA finds out which
sets the element e belongs to in the following three steps.
First, it computes o1(e), o2(e), and the k hash functions
hi(e)%m (1 � i � k). Second, for each 1 � i � k,
it reads the 3 bits B[hi(e)%m], B[hi(e)%m + o1(e)], and
B[hi(e)%m + o2(e)]. Third, for these 3k bits, if all the
k bits B[h1(e)%m], · · · , B[hk(e)%m] are 1, e may belong
to S1 − S2. In this case, ShBFA records (but does not yet
declare) e∈S1−S2. Similarly, if all the k bits B[h1(e)%m+
o1(e)], · · · , B[hk(e)%m + o1(e)] are 1, e may belong to
S1 ∩ S2 and ShBFA records e ∈ S1 ∩ S2. Finally, if all the
k bits B[h1(e)%m + o2(e)], · · · , B[hk(e)%m + o2(e)] are 1,
e may belong to S2 − S1 and ShBFA records e∈ S2 − S1.

Based on what ShBFA recorded after analyzing the 3k bits,
there are following 7 outcomes. If ShBFA records that:

1) only e∈ S1 − S2, it declares that e belongs to S1 − S2.
2) only e ∈ S1 ∩ S2, it declares that e belongs to S1 ∩ S2.
3) only e∈ S2 − S1, it declares that e belongs to S2 − S1.
4) both e ∈ S1 − S2 and e ∈ S1 ∩ S2, it declares that e

belongs to S1 but is unsure whether or not it belongs
to S2.

5) both e ∈ S2 − S1 and e ∈ S1 ∩ S2, it declares that e
belongs to S2 but is unsure whether it belongs to S1.

6) both e ∈ S1 − S2 and e ∈ S2 − S1, it declares that e
belongs to S1 − S2 ∪ S2 − S1.

7) all e∈S1 −S2, e∈S1 ∩S2, and e∈S2 −S1, it declares
that e belongs S1 ∪ S2.

Note that for all these seven outcomes, the decisions of
ShBFA do not suffer from false positives or false negatives.
However, decisions 4 through 6 provide slightly incomplete
information and the decision 7 does not provide any informa-
tion because it is already given that e belongs to S1 ∪ S2.
We will shortly show that the probability that decision of
ShBFA is one of the decisions 4 through 7 is very small, which
means that with very high probability, it gives a decision with
clear meaning, and we call it a clear answer.

C. ShBFA – Updating

Just like BF handles updates by replacing each bit by a
counter, we can also extend ShBFA to handle updates by

1The application is mentioned in the first paragraph of Introduction section.
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TABLE II

COMPARISON BETWEEN SHBFA AND IBF

replacing each bit by a counter. We use CShBFA to denote
this counting version of ShBFA. Let C denote the array
of m counters. To insert an element e, after querying T1

and T2 and determining whether o(e) = 0, o1(e), or o2(e),
instead of setting k bits to 1, we increment each of the
corresponding k counters by 1; that is, we increment the k
counters C[h1(e)%m + o(e)], · · · , C[hk(e)%m + o(e)] by 1.
To delete an element e, after querying T1 and T2 and deter-
mining whether o(e) = 0, o1(e), or o2(e), we decrement
C[hi(e)%m+o(e)] by 1 for all 1 � i � k. To have the benefits
of both fast query processing and small memory consumption,
we maintain both ShBFA and CShBFA, but store array B in
fast SRAM and array C in slow DRAM. After each update,
we synchronize array C with array B.

D. ShBFA – Analysis

Recall from Section IV-B that ShBFA may report seven
different outcomes. Next, we calculate the probability of each
outcome. Let Pi denote the probability of the ith outcome.

Before proceeding, we show that hi(.) + o(.) and hj(.) +
o(.), when i 
= j, are independent of each other. For this we
show that given two random variables X and Y and a number
z ∈ R+, where R+ is the set of positive real numbers, if X
and Y are independent, then X+z and Y+z are independent.
As X and Y are independent, for any x ∈ R and y ∈ R,
we have

P (X � x, Y � y) = P (X � x) ∗ P (Y � y) (22)

Adding z to both sides of all inequality signs in
P (X � x, Y � y), we get

P (X + z � x + z, Y + z � y + z)
= P (X � x, Y � y)
= P (X � x) ∗ P (Y � y)
= P (X + z � x + z) ∗ P (Y = z � y + z) (23)

Therefore, X + z and Y + z are independent.
Let n′ be the number of distinct elements in S1 ∪ S2, and

let k be the number of hash functions. After inserting all n′

elements into ShBFA, the probability p′ that any given bit is
still 0 is given by the following equation.

p′ = (1 − 1/m)kn′
(24)

This is similar to one minus the false positive probability
of a standard BF. When k = ln 2 m

n′ , p′ ≈ 0.5.
Note that the probabilities for outcomes 1, 2, and 3 are the

same. Similarly, the probabilities for outcomes 4, 5, and 6 are
also the same. Following equations state the expressions for

these probabilities.

P1 = P2 = P3 = (1 − 0.5k)2

P4 = P5 = P6 = 0.5k ∗ (1 − 0.5k)
P7 = (0.5k)2 (25)

When the incoming element e actually belongs to one of
the three sets: S1 − S2, S1 ∩ S2, and S2 − S1, there is
one combination each for S1 − S2 and S2 − S1 and two
combinations for S1 ∩ S2. Consequently, the total probability
is P1 +P4 ∗ 2+P7, which equals 1. This validates our deriva-
tion of the expressions in Equation 25. As an example, let
k = m

n′ ln 2 = 10. Thus, P1 = P2 = P3 = (1 − 0.510)2 ≈
0.998, P4 = P5 = P6 = 0.510∗(1−0.510) = 9.756∗10−4, and
P7 = (1−0.510)2 ≈ 9.54∗10−7. This example shows that with
probability of 0.998, ShBFA gives a clear answer, and with
probability of only 9.756∗10−4, ShBFA gives an answer with
incomplete information. The probability with which it gives
an answer with no information is just 9.54 ∗ 10−7, which is
negligibly small.

E. Comparison Between ShBFA With iBF

For association queries, a straightfoward solution is to build
one individual BF (iBF) for each set. Let n1, n2, and n3 be
the number of elements in S1, S2, and S1 ∩ S2, respectively.
For iBF, let m1 and m2 be the size of the Bloom filter for S1

and S2, respectively. Table II presents a comparison between
ShBFA and iBF. We observe from the table that ShBFA

needs less memory, less hash computations, and less memory
accesses, and has no false positives. For the iBF, as we use the
traffic trace that hits the two sets with the same probability,
iBF is optimal when the two BFs use identical values for
the optimal system parameters and have the same number
of hash functions. Specifically, for iBF, when m1 + m2 =
(n1 + n2)k/ ln 2, the probability of answering a clear answer
is 2

3 (1− 0.5k). For ShBFA, when m = (n1 +n2 −n3)k/ ln 2,
the probability of answering a clear answer is(1 − 0.5k)2.

F. Using ShBFA for Membership Queries

We can answer membership queries with the constructed
bitmap for association queries. Specifically, Given two sets A
and B, and a constructed bitmap for association query, now we
are only curious about whether an element e is in A or not.
We just check the 2k bits, B[hi(e)%m] and B[hi(e)%m +
o1(e)] (1 � i � k). If either all the former k bits or all the
latter k bits are 1, e is reported as in A.

V. MULTIPLICITY QUERIES

In this section, we first present the construction and query
phases of ShBF for multiplicity queries. Multiplicity queries
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check how many times an element appears in a multi-set.
We use ShBF× to denote the ShBF scheme for multiplicity
queries. Second, we describe the updating methods of ShBF× .
Last, we show how our shifting model applies to CM sketches.

A. ShBF× – Construction Phase

The construction phase of ShBF× proceeds in three steps.
Let h1(.), · · · , hk(.) be k independent hash functions with
uniformly distributed outputs. First, we construct an array
B of m bits, where each bit is initialized to 0. Second,
to store the existence information of an element e of multi-
set S, we calculate k hash values h1(e)%m, · · · , hk(e)%m.
To calculate the auxiliary information of e, which in this case
is the count c(e) of element e in S, we calculate offset o(e)
as o(e) = c(e) − 1. Third, we set the k bits B[h1(e)%m +
o(e)], · · · , B[hk(e)%m+o(e)] to 1. To determine the value of
c(e) for any element e ∈ S, we store the count of each element
in a hash table and use the simplest collision handling method
called collision chain.

B. ShBF× – Query Phase

Given a query e, for each 1 � i � k, we first read c consec-
utive bits B[hi(e)%m], B[hi(e)%m + 1], · · · , B[hi(e)%m +
c − 1] in � c

w � memory accesses, where c is the maximum
value of c(e) for any e ∈ S. In these k arrays of c
consecutive bits, for each 1 � j � c, if all the k bits
B[h1(e)%m + j − 1], · · · , B[hk(e)%m + j − 1] are 1, we list
j as a possible candidate of c(e). As the largest candidate of
c(e) is always greater than or equal to the actual value of c(e),
we report the largest candidate as the multiplicity of e to avoid
false negatives. For the query phase, the number of memory
accesses is k� c

w �.

C. ShBF× – Updating

1) ShBF× – Updating With False Negatives: To handle
element insertion and deletion, ShBF× maintains its count-
ing version denoted by CShBF×, which is an array C that
consists of m counters, in addition to an array B of m bits.
During the construction phase, ShBF× increments the counter
C[hi(e)%m + o(e)] (1 � i � k) by one every time it
sets B[hi(e)%m + o(e)] to 1. During the update, we need
to guarantee that one element with multiple multiplicities is
always inserted into the filter one time. Specifically, for every
new element e to insert into the multi-set S, ShBF× first
obtains its multiplicity z from B as explained in Section V-B.
Second, it deletes the z−th multiplicity (o(e) = z − 1) and
inserts the (z + 1)−th multiplicity (o(e) = z). For this,
it calculates the k hash functions hi(e)%m and decrements
the k counters C[hi(e)%m + z − 1] by 1 when the counters
are � 1. Third, if any of the decremented counters becomes 0,
it sets the corresponding bit in B to 0. Note that maintaining
the array C of counters allows us to reset the right bits in B
to 0. Fourth, it increments the k counters C[hi(e)%m + z]
by 1 and sets the bits B[hi(e)%m + z] to 1.

For deleting element e, ShBF× first obtains its multiplicity z
from B as explained in Section V-B. Second, it calculates the

Fig. 5. The update process of ShBF×.

k hash functions and decrements the counters C[hi(e)%m +
z−1] by 1. Third, if any of the decremented counters becomes
0, it sets the corresponding bit in B as 0. Fourth, it increments
the counters C[hi(e)%m + z − 2] by 1 and sets the bits
B[hi(e)%m + z − 2] to 1.

Note that ShBF× may introduce false negatives because
before updating the multiplicity of an element, we first query
its current multiplicity from B. If the answer to that query is
a false positive, i.e., the actual multiplicity of the element is
less than the answer, ShBF× will perform the second step
and decrement some counters, which may cause a counter
to decrement to 0. Thus, in the third step, it will set the
corresponding bit in B to 0, which will cause false negatives.

2) ShBF× – Updating Without False Negatives: To elimi-
nate false negatives, in addition to arrays B and C, ShBF×
maintains a hash table to store counts of each element.
In the hash table, each entry has two fields: element and its
counts/multiplicities. When inserting or deleting element e,
ShBF× follows four steps shown in Figure 5. First, we obtain
e’s counts/multiplicities from the hash table instead of ShBF×.
Second, we delete e’s z-th multiplicity from CShBF×. Third,
if a counter in CShBF× decreases to 0, we set the corre-
sponding bit in ShBF× to 0. Fourth, when inserting/deleting e,
we insert the (z−1)−th/(z+1)−th multiplicity into ShBF×.

3) ShBF× – Updating Without Accessory Data Structures:
At times, if we are not allowed to use the DRAM memory, or if
we do not know the frequency in advance, we should get
rid of both CShBF× and the hash table, and our framework
can be adjusted as follows: When querying an element e,
we check the number of continuous 1s starting from the k
hashed bits. If the minimum number of continuous 1s is m,
the estimated frequency of e is reported as m + 1. When
inserting an element e, first we query it in the ShBF× to
get an estimated frequency freq(e). Next, we set the bits of
offsets o(e) = freq(e)+1 from every hashed bits to 1. When
deleting an element e, first we query it in the ShBF× to get
an estimated frequency freq(e). After that, we set the bits of
offsets o(e) = freq(e) − 1 from every hashed bits to 1.

Note that although the counter array C and the hash table
are much larger than the bit array B, we store B in SRAM
for processing multiplicity queries and store C and the hash
table in DRAM for handling updates.

D. ShBF× – Analysis

For multiplicity queries a false positive is defined as report-
ing the multiplicity of an element that is larger than its actual
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multiplicity. For any element e belonging to multi-set Sm,
ShBF× only sets k bits in B to 1 regardless of how many
times it appears in Sm. This is because every time information
about e is updated, ShBF× removes the existing multiplicity
information of the element before adding the new information.
Let the total number of distinct elements in set Sm be n. The
probability that an element is reported to be present j times
is given by the following equation.

f0 ≈
(
1 − e−

kn
m

)k

(26)

We define a metric called correctness rate, which is the
probability that an element that is present j times in a multi-
set is correctly reported to be present j times.

When querying an element not belonging to the set, the cor-
rectness rate CR is given by the following equation.

CR = (1 − f0)c (27)

When querying an element with multiplicity j (1 � j � c)
in the set, the correctness rate CR′ is given by the following
equation.

CR′ = (1 − f0)j−1 (28)

Note the right hand side of the expression for CR′ is not
multiplied with f0 because when e has j multiplicities, all
positions hi(e) + j, where 1 � i � k, must be 1.

E. A Glimpse at a Unified Bloom Filter

Our shifting framework is a general data structure. It can
support not only the prevalent types of queries, but also other
kinds of queries that possibly emerge. First we show two
new kinds of queries that our framework can handle: 1) given
z (z � 2) sets, each pair of which have no intersection, for any
incoming item e, which set does e belong to? In this example,
we can simply set o(e) as the set ID. 2) Given 2z sets and an
incoming item e, does e belong to the first z set or the other
z sets? In this example, we can define o(e) = 0 for the first
z sets and define o(e) = 1 for the remaining z sets.

Furthermore, the shifting framework can even work when all
three kinds of queries co-exist in the system. More specifically,
there are z multi-sets and three kinds of queries in the system:
1) whether an incoming item belongs to the z sets? 2) which
sets does e belong to? and 3) if e is in one of the z sets,
what is the frequency of e? Shifting CBF is a unified data
structure that can answer the above three kinds of queries at the
same time. The values in counters reveal the membership and
the frequency, while the offset o(e) of the non-zero counters
represents the set ID of the element e. More specifically, when
inserting e, we first compute k hash functions to locate k base
counters. Then we do a right shift of o(e) = (set id) to get
another k counters, and we only increase the latter k counters
by 1. When querying an element e, first we compute k hash
functions to locate the base counters. Then we check the zk
counters in the right of the k base counters. If all the k counters
of offset j is non-zero, then we report that e belongs to the
jth set of the z sets, and its frequency is the smallest value
of the k counters of offset j.

Fig. 6. FPR vs. w. (a) CM sketch. (b) ShCM sketch.

F. Shifting Count-Min Sketch

Besides Spectral BF, count-min sketch (CM sketch) can also
be used to record and report multiplicities of elements in a
multiset [4]. As shown in Figure 6(a), a CM sketch consists
of d vectors, and each vector has r counters. Each vector vi

(1 � i � d) has a hash function hi(.) associated with it.
In the construction phase, for each element e, we first calculate
the d hash functions associated with the d vectors, and then
increment the d counters v1[h1(e)], v2[h2(e)], . . . , vd[hd(e)]
by 1. In the query phase, given a query for the multiplicity
of element e, the CM sketch reports the minimum value
among the d values v1[h1(e)], v2[h2(e)], . . . , vd[hd(e)] as the
multiplicity of e.

Although CM sketch is simple and easy to implement, it is
not as fast as BFs. One query on CM sketch needs d hash
computations and d memory accesses if the length of all
counters is smaller than a machine word. In this case, we can
use our shifting framework to halve the number of memory
accesses and hash functions. Figure 6(b) shows our shifting
version of the CM sketch, called shifting count-min (ShCM)
sketch. ShCM sketch consists of d/2 vectors and each vector
has 2r counters. We represent the ith vector of ShCM sketch
with vi, where 1 � i � d/2. Each vector vi has a hash
function hi(.) associated with it. In the construction phase,
for each element e, ShCM sketch first calculates the d/2 hash
functions associated with the d/2 vectors, and then incre-
ment the d/2 counters v1[h1(e)], v2[h2(e)], . . . , vd/2[hd/2(e)]
by 1. After that, it increments the counters v1[h1(e) +
o(e)], v2[h2(e) + o(e)], . . . , vd/2[hd/2(e) + o(e)] by 1. In the
query phase, given a query for the multiplicity of element e,
the ShCM sketch reports the minimum value among the d
values v1[h1(e)], v2[h2(e)], . . . , vd/2[hd/2(e)] and v1[h1(e) +
o(e)], v2[h2(e) + o(e)], . . . , vd/2[hd/2(e) + o(e)] as the mul-
tiplicity of e To access the values of the pair of counters
vi[hi(e)] and vi[hi(e)+o(e)] in a single memory access, we set
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o(e) = hd/2+1%(w− 1)+ 1, where w � (w− 7)/r and w is
the number of bits in a machine word.

ShCM Analysis: In this section, we derive the expression
for the correctness rate CShCM of ShCM sketch. The cor-
rectness rate of a sketch is defined as the expected value of
the percentage of times the value reported by a sketch for
the multiplicity of an element is exactly equal to the true
multiplicity of that item. Before deriving an expression for
CShCM , we first derive an expression for the correctness rate
CCM of the CM sketch. A CM sketch with d vectors and
w counters per vector is a special type of counting Bloom
filter, called partitioned counting Bloom filter. This partitioned
counting Bloom filter has d×w counters and d hash functions,
where the output of the hash function hi(.) lies in the range
[((i − 1) × w) + 1, i × w], where 1 ≤ i ≤ d. Consequently,
the correctness rate of the CM sketch can be computed by
extending our results for the Bloom filters.

Consider a set S that has n distinct elements. When query-
ing an item e /∈ S, the query result of a partitioned counting
Bloom filter is incorrect when the d counters to which the
d hash functions point are all non-zero. Probability of this
happening in the partitioned counting Bloom filters is the same
as the correctness rate of the CM sketch, because as stated
earlier, a CM sketch is essentially the same as partitioned
counting Bloom filter. Formally, when there are d×w counters,
and n distinct items in the CM sketch, the correctness rate of
CM sketch is given by the following equation.

CCM = 1 −
(

1 −
(

1 − d

d × w

)n)d

= 1 −
(

1 − 1
wn

)d

(29)

As the ShCM sketch is similar to ShBFM, we get a similar
expression for the correctness rate CShCM of ShCM sketch
as Equation (1).

CShCM ≈ (1 − p)
d
2

(
1 − p +

1
w − 1

p2

) d
2

(30)

here p = (1 − d
d×w )n = (1 − 1/w)n.

Although Equ. 29 and 30 are quite different, the ultimate
value is almost the same. This shows that the Shifting CM
sketch achieves half the memory accesses while keeping the
accuracy almost unchanged compared to the conventional
CM sketch.

Shifting Count-Min-Min Sketches: To achieve even better
accuracy, we propose an enhancement of ShCM sketch
called Shifting Count-min-min Sketch, represented by
ShCMmin. It differs from the ShCM sketch only in
the construction phase. When inserting an element e,
the ShCMmin sketch first finds the minimum counter(s) among
the d counters v1[h1(e)] . . . vd/2[hd/2(e)] and v1[h1(e) +
o(e)] . . . vd/2[hd/2(e) + o(e)], and then increases only the
minimum counters(s) by 1. In this way, ShCMmin increases
fewer counters during each insertion compared to ShCM.
Consequently, each counter in the ShCMmin sketch is always
less than or equal to the corresponding counter in the ShCM
sketch. This implies that in querying elements, the multiplicity
returned by ShCMmin is no larger than ShCM sketch, thu, s

reducing the error. The only shortcoming of ShCMmin sketch
is that it does not support deletions, and thus fits only the
applications that do not need deletions.

VI. PERFORMANCE EVALUATION

In this section, we conduct experiments to evalu-
ate our ShBF schemes and side-by-side comparison with
state-of-the-art solutions for the three types of set queries.

A. Experimental Setup

Data Set: We evaluate the performance of ShBF and state-
of-the-art solutions using real-world network traces. Specifi-
cally, we deployed our traffic capturing system on a 10Gbps
link of a backbone router. To reduce the processing load, our
traffic capturing system consists of two parallel sub-systems
each of which is equipped with a 10G network card and uses
netmap to capture packets. Due to high link speed, capturing
entire traffic was infeasible because our device could not
access/write to memory at such high speed. Thus, we only
captured 5-tuple flow ID of each packet, which consists of
source IP, source port, destination IP, destination port, and
protocol type. We stored each 5-tuple flow ID as a 13-byte
string, which is used as an element of a set during evaluation.
We collected a total of 10 million 5-tuple flow IDs, out of
which 8 million flow IDs are distinct. To evaluate the accuracy
of our proposed schemes further, we also generated and used
synthetic data sets. To generate the synthetic data sets, we sim-
ply used the rand() function in C and randomly produced
items. We observe during our evaluations that the accuracies
and speeds are similar as on the real-world network traces.
Therefore, we only show the results from our experiments on
real-world network traces.

Hash Functions: We collected several hash functions from
open source web site [26] and tested them for randomness.
Our criteria for testing randomness is that the probability of
seeing 1 at any bit location in the hashed value should be 0.5.

Implementation: We implemented our query process-
ing schemes in C++ using Visual C++ 2012 platform.
To compute average query processing speeds, we repeat our
experiments 1000 times and take the average. Furthermore,
we conducted all our experiments for 20 different sets of
parameters. As the results across different parameter sets
follow same trends, we will report results for one parameter
set only for each of the three types of queries.

Computing Platform: We did all our experiments on a
standard off the shelf desktop computer equipped with an
Intel(R) Core i7-3520 CPU @2.90GHz running Windows 7.
It has a 64KB L1 code cache, a 64KB L1 data cache, a 512KB
L2 cache, and a 4MB L3 cache. The DRAM size of our
computer is 8GB.

B. ShBFM – Evaluation

In this section, we first validate the false positive rate of
ShBFM calculated in Equation (1) using our experimental
results. Then we compare ShBFM with BF and 1MemBF [13],
which represents the prior scheme for answering membership
queries, in terms of FPR, the number of memory accesses, and
query processing speed.
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Fig. 7. Comparison false positive rates of ShBFM and 1MemBF. (a) Changing n. (b) Changing k. (c) Changing m.

Fig. 8. Comparison of number of memory accesses per query of ShBFM and BF. (a) Changing n. (b) Changing k. (c) Changing m.

1) ShBFM – False Positive Rate: Our experimental results
show that the FPR of ShBFM calculated in Equation (1)
matches with the FPR calculated experimentally. For the
experiments reported in this section, we set k = 8, m =
22008, w = 57, and vary n from 1000 to 1500. We first
insert 1000 elements into ShBFM and then repeatedly insert
20 elements until the total number of elements inserted into
ShBFM became 1500. On inserting each set of 20 elements,
we generated membership queries for 7, 000, 000 elements
whose information was not inserted into ShBFM and calcu-
lated the false positive rate. Figure 7(a) shows the false positive
rate of ShBFM calculated through these simulations as well as
through Equation (1). The bars in Figure 7(a) represent the
theoretically calculated FPR, whereas the lines represent the
FPR observed in our experiments.

Our results show that the relative error between the FPRs
of ShBFM calculated using simulation and theory is less than
3%, which is practically acceptable. Relative error is defined
as |FPRs−FPRt|/FPRt, where FPRs is the false positive
rate calculated using simulation and FPRt is the false positive
rates calculated using theory. The relative error of 3% for
ShBFM is the same as relative error for BF calculated using
simulation and the theory developed by Bloom [2]. Using same
parameters, the FPR of 1MemBF is over 5 ∼ 10 times that
of ShBFM. If we increase the space allocated to 1MemBF for
storage to 1.5 times of the space used by ShBFM, the FPR
of 1MemBF is still a little more than that of ShBFM because
hashing k values into one or more words incurs serious
unbalance in distributions of 1s and 0s in the memory, which
in turn results in higher FPR.

Our results also show that the FPR of ShBFM is much
smaller than that of 1MemBF when changing k and m.
Figure 7(b) and Figure 7(c) show the FPRs of ShBFM and
1MemBF for different values of k and m, respectively.

2) ShBFM – Memory Accesses: Our results show that
ShBFM answers a membership query using only about half
the memory accesses and hash computations and twice as fast
compared to BF. Our experiments for evaluating the number of
memory accesses per query are similar to that for false positive
rate, except that, now we query 2 ∗ n elements, in which n
elements belong to the set. Figures 8(a), 8(b), and 8(c) show
the number of memory accesses for ShBFM and standard BF
for different values of n, k, and m, respectively. We also
observed from our experiments that standard deviation in the
results for ShBFM is also about half of that of standard BF.

3) ShBFM – Query Processing Speed: Our results show
that ShBFM has 1.8 and 1.4 times faster query processing
speed compared to BF and 1MemBF, respectively. Although
1MemBF only needs one memory access per query, it needs
k + 1 hash functions. BFs are usually small enough to be
stored in on-chip memory (such as caches, FPGA block
RAM), thus the speed of hash computation will be slower
than memory accesses. In contrast, our ShBFM reduces both
hash computation and memory accesses. In our experiments,
using those hashes which passed our randomness test, ShBFM

exhibits faster query processing speed than that of 1MemBF.
It is possible that 1MemBF is faster than ShBFM when using
simple hash functions, but this probably incurs larger FPR.
Our experiments for evaluating the query processing speed
are similar to that for memory accesses, except that, here
we also compare with 1MemBF. Figures 9(a), 9(b), and 9(c)
show the query processing speed for ShBFM , standard BF, and
1MemBF for different values of n, k, and m, respectively.

C. ShBFA – Evaluation

In this section, we first validate the probability of a
clear answer of ShBFM calculated in Table II using our
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Fig. 9. Comparison of query processing speeds of ShBFM, BF, and 1MemBF. (a) Changing n. (b) Changing k. (c) Changing m.

Fig. 10. Comparison of ShBFA and iBF. (a) Prob. a clear answer. (b) # memory accesses per query. (c) Query processing speed.

experimental results. Then we compare ShBFA with iBF in
terms of FPR, memory accesses, and query processing speed.

1) ShBFA – Probability of Clear Answer: Our results
show that probability of clear answer for ShBFA calculated
in Table II matches with the probability calculated experi-
mentally. We performed experiments for both iBF and ShBFA
using two sets with 1 million elements such that their inter-
section had 0.25 million elements. The querying elements hit
the three parts with the same probability. While varying the
value of k, we also varied the value of m to keep the filter
at its optimal. Note that in this case, iBF uses 1/7 times
more memory than ShBFA. We observe from Figure 10(a)
that the simulation results match the theoretical results, and
the average relative error is 0.7% and 0.004% for iBF and
ShBFA, respectively, which is negligible. When the value of
k reaches 8, the probability of a clear answer reaches 66%
and 99% for iBF and ShBFA, respectively.

2) ShBFA – Memory Accesses: Our results show that the
average number of memory accesses per query of ShBFA is
0.66 times of that of iBF. Figure 10(b) shows the number
of memory accesses for different values of k. We observed
similar trends for different values of m and n, but have not
including the corresponding figures due to space limitation.

3) ShBFA – Query Processing Speed: Our results show
that the average query processing speed of ShBFA is
1.4 times faster than that of iBF. Figure 10(c) plots the
the query processing speed of ShBFA and iBF for different
values of m.

D. ShBF× – Evaluation

In this section, we first validate the correctness rate (CR) of
ShBF× calculated in Equation (27). Then we compare ShBF×
with spectral BF [6] and CM sketches [4] in terms of CR,
number of memory accesses, and query processing speed. The
results for CM sketches and Spectral BF are similar because
their methods of recording the counts is similar.

1) ShBF× – Correctness Rate: Our results show that the
CR of ShBF× calculated in Equation (27) matches with the
CR calculated experimentally. Our results also show that on
average, the CR of ShBF× is 1.6 times and 1.79 times of
that of Spectral BF and CM sketches, respectively. For the
experiments reported in this section, we set c = 57, n =
100, 000, and vary k in the range 8 � k � 16. For spectral
BF and CM sketches, we set use 6 bits for each counter.
For each value of k, as ShBF× is more memory efficient,
we use 1.5 times the optimal memory (i.e., 1.5 ∗ nk/ln2)
for all the three filters. Figure 11(a) shows the results from
our experiments for CR. Experimental results show that the
CR calculated through experiments matches with the CR
calculated theoretically.

2) ShBF× – Memory Accesses: Our results show that the
number of memory accesses of ShBF× is smaller than that of
spectral BF and CM sketches for k � 7, and almost equal for
k < 7. Figure 11(b) plots the number of memory accesses of
ShBF×, CM sketch, and spectral BF, calculated from the same
experiments that we used to plot Figure 11(a) except that k
ranges from 3 to 18.

3) ShBF× – Query Processing Speed: Our results show
that ShBF× is faster than spectral BF and CM sketches when
k � 11. We evaluate the query processing speed of ShBF×,
CM sketch, and spectral BF using the same parameters as for
Figure 11(b). Figure 11(c) plots the query processing speeds
of ShBF× and spectral BF. We observe from this figure that
when k > 11, the average query processing speed of ShBF×
is over 3 Mqps.

E. ShCM – Evaluation

In this section, we compare the correctness rate, the number
of memory accesses, and the query processing speed of ShCM
sketch, ShCMmin sketch, and CM sketch.

1) ShCM Sketch - Correctness Rate: Our results show that
the ShCMmin sketch has higher correctness rate compared to
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Fig. 11. Comparison of ShBF×, Spectral BF, and CM sketches. (a) Correctness rate (CR). (b) Memory accesses. (c) Query processing speed.

Fig. 12. Comparison of CM sketches, ShCM sketches, and ShCMmin sketches. (a) Correctness rate (CR). (b) Memory accesses. (c) Query processing speed.

the CM sketch. For the experiments reported in this section,
we set c = 15, n = 1,000,000, and vary k in the range
2 � k � 30. We use 4 bits for each counter. For each value
of k, we use the same memory for the the three sketches,
which means that the ShCM sketch and the ShCMmin sketch
have twice the number of vectors, and half the number of
counters per vector compared with the CM sketch. The CM
sketch has 1,000,011 vectors, while the ShCM sketch and the
ShCMmin sketch have vectors. The CM sketch has k counters
per vector, while the ShCM sketch and the ShCMmin sketch
have k/2 counters per vector. We perform 200,000 queries
for each sketch. Figure 12(a) shows the results from our
experiments for the correctness rate. Experimental results
show that the correctness rate of the ShCM sketch is almost
the same as that of the CM sketch, and the ShCMmin sketch
outperforms the CM sketch notably, especially when k is
small.

2) ShCM Sketch - Memory Access: Our results show that
the memory accesses of the ShCM sketch and the ShCMmin

sketch are about half of that of the CM sketch. Figure 12(b)
shows the results from our experiments for memory accesses.
As all of the three sketches access the memory once for each
column and the ShCM sketch and the ShCMmin sketch have
only half of the columns, the result is obvious.

3) ShCM Sketch - Query Processing Speed: Our results
show that the ShCM sketch and the ShCMmin sketch are much
faster compared to the CM sketch. We evaluate the query
processing speed of the ShCM sketch and CM sketch using
the same parameters as for Figure 12(a). Figure 12(c) plots
the query processing speeds of the three sketches. We observe
from this figure that the average query processing speed of
the ShCM sketch and the ShCMmin sketch are always higher
than the CM sketch. Although all of the three architectures
need to calculate k hash functions, the ShCM sketch and the
ShCMmin sketch only need to access the memory k/2 times

instead of k times, which saves nearly half the amount
of time.

VII. CONCLUSION

The key contribution of this paper is in proposing Shifting
Filter, a general framework to answer a variety of set queries.
We present how to use ShBF to answer three important set
queries, i.e., membership, association, and multiplicity queries.
The key technical depth of this paper is in the analytical
modeling of ShBF for each of the three types queries, cal-
culating optimal system parameters, and finding the minimum
FPRs. We validated our analytical models through simulations
using real world network traces. Our theoretical analysis and
experimental results show that ShBF significantly advances
state-of-the-art solutions on all three types of set queries.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers
for their thoughtful suggestions.

REFERENCES

[1] T. Yang et al., “A shifting bloom filter framework for set queries,” Proc.
VLDB Endowment, vol. 9, no. 5, pp. 408–419, 2016.

[2] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.

[3] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache:
A scalable wide-area Web cache sharing protocol,” IEEE/ACM Trans.
Netw., vol. 8, no. 3, pp. 281–293, Jun. 2000.

[4] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
The count-min sketch and its applications,” J. Algorithms, vol. 55, no. 1,
pp. 58–75, 2005.

[5] Y. Qiao, T. Li, and S. Chen, “One memory access bloom filters and their
generalization,” in Proc. IEEE INFOCOM, Apr. 2011, pp. 1745–1753.

[6] S. Cohen and Y. Matias, “Spectral bloom filters,” in Proc. ACM
SIGMOD, 2003, pp. 241–252.

[7] A Shifting Bloom Filter Framework for Set Queries.
Accessed on Jul. 2016. [Online]. Available: http://net.pku.edu.
cn/~yangtong/



YANG et al.: SHIFTING FRAMEWORK FOR SET QUERIES 3131

[8] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz, “Theory and practice
of bloom filters for distributed systems,” IEEE Commun. Surveys Tuts.,
vol. 14, no. 1, pp. 131–155, Feb. 2012.

[9] A. Kirsch, M. Mitzenmacher, and G. Varghese, “Hash-based techniques
for high-speed packet processing,” in Algorithms for Next Generation
Networks. London, U.K.: Springer, 2010, pp. 181–218.

[10] A. Broder and M. Mitzenmacher, “Network applications of bloom filters:
A survey,” Internet Math., vol. 1, no. 4, pp. 485–509, 2004.

[11] T. Yang et al., “Guarantee ip lookup performance with fib explosion,”
in Proc. ACM SIGCOMM, 2014, pp. 39–50.

[12] B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher,
“Cuckoo filter: Practically better than bloom,” in Proc. 10th ACM Int.
Conf. Emerg. Netw. Experim. Technol., 2009, pp. 75–88.

[13] A. Kirsch and M. Mitzenmacher, “Less hashing, same performance:
Building a better bloom filter,” in Algorithms–ESA. Berlin, Germany:
Springer, 2006, pp. 456–467.

[14] S. Xiong, Y. Yao, Q. Cao, and T. He, “kBF: A Bloom Filter for key-
value storage with an application on approximate state machines,” in
Proc. IEEE INFOCOM, Apr. 2014, pp. 1150–1158.

[15] M. Kyoon, J. Son, and S.-H. Shin, “Bloom tree: A search tree based
on bloom filters for multiple-set membership testing,” in Proc. IEEE
INFOCOM, Apr. 2014, pp. 1429–1437.

[16] D. Yang, D. Tian, J. Gong, S. Gao, T. Yang, and X. Li, “Difference
Bloom filter: A probabilistic structure for multi-set membership query,”
in Proc. IEEE ICC, 2017, doi: 10.1109/ICC.2017.7996678.

[17] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal, “The bloomier filter:
An efficient data structure for static support lookup tables,” in Proc.
ACM-SIAM, 2004, pp. 30–39.

[18] Y. Lu, B. Prabhakar, and F. Bonomi, “Bloom filters: Design innovations
and novel applications,” in Proc. 43rd Annu. Allerton Conf., 2005,
pp. 1006–1015.

[19] F. Hao, M. Kodialam, T. Lakshman, and H. Song, “Fast multiset
membership testing using combinatorial bloom filters,” in Proc. IEEE
INFOCOM, Apr. 2009, pp. 513–521.

[20] J. Aguilar-Saborit, P. Trancoso, V. Muntes-Mulero, and J.-L. Larriba-
Pey, “Dynamic count filters,” ACM SIGMOD Rec., vol. 35, no. 1,
pp. 26–32, 2006.

[21] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items
in data streams,” in Automata, Languages and Programming. Berlin,
Germany: Springer, 2002.

[22] T. Yang, Y. Zhou, H. Jin, S. Chen, and X. Li, “Pyramid sketch:
A sketch framework for frequency estimation of data streams,” in Proc.
VLDB Endowment, 2017, pp. 1–2.

[23] T. Yang et al., “SF-sketch: A fast, accurate, and memory efficient data
structure to store frequencies of data items,” in Proc. IEEE ICDE,
Apr. 2017, pp. 103–106.

[24] P. Bose et al., “On the false-positive rate of bloom filters,” Inf. Process.
Lett., vol. 108, no. 4, pp. 210–213, 2008.

[25] K. Christensen, A. Roginsky, and M. Jimeno, “A new analysis of the
false positive rate of a bloom filter,” Inf. Process. Lett., vol. 110, no. 21,
pp. 944–949, 2010.

[26] A Shifting Bloom Filter Framework for Set Queries. Accessed
on Jan. 2015. [Online]. Available: http://burtleburtle.net/bob/
hash/evahash.html

Tong Yang received the Ph.D. degree in com-
puter science from Tsinghua University in 2013.
He visited the Institute of Computing Technology,
Chinese Academy of Sciences, China, from 2013 to
2014. He is currently a Research Assistant with the
Computer Science Department, Peking University.
His research interests include IP lookups, bloom
filters, sketches, and KV stores.

Alex X. Liu received the Ph.D. degree from The
University of Texas at Austin in 2006. He is cur-
rently an Associate Professor with the Department of
Computer Science and Engineering, Michigan State
University. His research interests include network-
ing, security, and dependable systems. He received
the IEEE and IFIP William C. Carter Award in 2004
and the U.S. National Science Foundation CAREER
Award in 2009. He also received the Withrow Dis-
tinguished Scholar Award in 2011 at Michigan State
University.

Muhammad Shahzad received the Ph.D. degree in
computer science from Michigan State University in
2015. He is currently an Assistant Professor with the
Department of Computer Science, North Carolina
State University, USA. His research interests include
design, analysis, measurement, and modeling of net-
working and security systems. He received the 2015
Outstanding Graduate Student Award, the 2015 Fitch
Beach Award, and the 2012 Outstanding Student
Leader Award at Michigan State University.

Dongsheng Yang is currently pursuing the bach-
elor’s degree with Peking University, guided by
T. Yang. He has published a few papers about net-
working and big data. His research interests include
social network and data mining.

Qiaobin Fu is currently pursuing the Ph.D. degree
with the Department of Computer Science, Boston
University. He is a member of the Networks
Research Group. His advisor is Prof. J. W. Byers.
He is also involved in designing algorithms and
building systems in networking.

Gaogang Xie received the Ph.D. degree in computer
science from Hunan University, Changsha, China,
in 2002. He is currently a Professor and the Director
of the Network Technology Research Center, Insti-
tute of Computing Technology, Chinese Academy
of Sciences, Beijing, China. His research interests
include programmable virtual routers, future Internet
architecture, and Internet measurement.

Xiaoming Li is currently a Professor in computer
science and technology and the Director of the Insti-
tute of Network Computing and Information Sys-
tems, Peking University, China. He has been leading
the effort of developing a Chinese search engine
(Tianwang) since 1999. He is also the Founder of the
Chinese Web Archive (Web InfoMall). His current
research interest is in search engine and Web mining.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


