

Additive and Subtractive Cuckoo Filters

Kun Huang†*, Tong Yang‡

†Southern University of Science and Technology
Shenzhen, China

huangk@sustech.edu.cn

*Peng Cheng Laboratory
Shenzhen, China

‡Peking University
Beijing, China

yang.tong@pku.edu.cn

Abstract—Bloom filters (BFs) are fast and space-efficient data

structures used for set membership queries in many applications.
BFs are required to satisfy three key requirements: low space cost,
high-speed lookups, and fast updates. Prior works do not satisfy
these requirements at the same time. The standard BF does not
support deletions of items and the variants that support deletions
need additional space or performance overhead. The state-of-the-
art cuckoo filters (CF) has high performance with seemingly low
space cost. However, the CF suffers a critical issue of varying space
cost per item. This is because the exclusive-OR (XOR) operation
used by the CF requires the total number of buckets to be a power
of two, leading to the space inflation. To address the issue, in this
paper we propose a scalable variant of the cuckoo filter called ad-
ditive and subtractive cuckoo filter (ASCF). We aim to improve
the space efficiency while sustaining comparably high perfor-
mance. The ASCF uses the addition and subtraction (ADD/SUB)
operations instead of the XOR operation to compute an item’s two
candidate bucket indexes based on its fingerprint. Experimental
results show that the ASCF achieves both low space cost and high
performance. Compared to the CF, the ASCF reduces up to 1.9x
space cost per item while maintaining the same lookup and update
throughput. In addition, the ASCF outperforms other filters in
both space cost and performance.

Keywords—Bloom filters, cuckoo filters, cuckoo hashing

I. INTRODUCTION
Bloom filters (BFs) [1] are space-efficient probabilistic data

structures for high-speed approximate set membership queries.
This query is to answer whether a given item is in a set or not.
BFs have high space efficiency as they represent a set of items
with a constant number of bits. They have a small probability of
false positives (i.e., an item is reported to be in the set although
it is not), but have no false negatives. BFs have been widely used
in network applications [2] and distributed systems [3], such as
cooperative caching [4, 5], network processing [6, 7, 8, 9], key-
value store [10, 11, 12, 13], and data deduplication [14, 15, 16].

In many applications, BFs are required to satisfy three key
requirements: low space cost, high-speed lookups, and fast
updates. First, BFs are often implemented using fast but small
memory (e.g., SRAM) to avoid unnecessary expensive accesses
to slow memory (e.g., DRAM or SSD). Therefore, it is critical
to minimize the space cost of BFs as far as possible. Second,
BFs must sustain high-speed lookups with the rapid growth of
queries. Meanwhile, BFs must support fast incremental updates,
which means allowing dynamic insertions and deletions of items
without rebuilding the entire filter.

However, prior works do not satisfy these requirements at
the same time. The standard BF [1] has low space cost and high-
speed lookups, but does not support deletions. The counting BF
(CBF) [4] is one well-known variant that supports deletions by
using counters in place of bits of the standard BF. The CBF has
high-speed lookups and fast updates, but requires 4x space cost
over the standard BF. Several variants of CBFs [17, 18, 19, 20,
21, 22] have been proposed to improve the space efficiency but
at the cost of substantial performance degradation. For instance,
the dlCBF [17] reduces a factor of two or more space over the
CBF, but suffers slow lookups and updates. The MLCCBF [18]
and RCBF [19] use a hierarchical structure to compress the CBF,
but require high update overhead for maintaining the hierarchy.
The QF [21] and CQF [22] have low space cost and high lookup
performance, but degrade the update performance significantly
when the filter becomes full.

The cuckoo filter (CF) [23] is a state-of-the-art variant of the
CBF. The CF uses cuckoo hashing and fingerprints to achieve
higher space efficiency and lookup and update performance than
previous variants of CBFs and even the non-deletable standard
BF for low false positive rates (i.e., <3% [23]). However, the CF
suffers a critical issue of varying space cost per item. This is
because the CF uses the exclusive-OR (XOR) operation based
on a fingerprint of an item to compute the two candidate bucket
indexes. The XOR operation performs fast, but requires that the
total number of buckets must be a power of two, which incurs
up to 2x space inflation. Therefore, it is challenging for a filter
to achieve the scalability in both space cost and performance at
the same time.

To address the issue, in this paper we propose a scalable
variant of the CF called additive and subtractive cuckoo filter
(ASCF). We aim to improve the space efficiency over the CF
while sustaining high performance comparable to the CF. The
basic idea behind the ASCF is to use the addition and subtraction
(ADD/SUB) operations, instead of the XOR operation used by
the CF, to compute an item’s two candidate bucket indexes. The
ADD/SUB operations perform as fast as the XOR operation, and
do not require the total number of buckets to be a power of two.
Therefore, the ASCF requires lower space cost per item than the
CF while maintaining the same high performance as the CF.

We conducted simulation experiments to evaluate the ASCF
and compare with previous representative filters, including the
standard BF [1], CBF [4], dlCBF [17], RCBF [19], CQF [22],
and CF [23]. Experimental results show that the ASCF reduces
up to 1.9x space cost per item over the CF while achieving the
same lookup and update throughput as the CF. In addition, we

This work was supported by the National Key Research & Development
Program of China (2019YFB1802800) and the PCL Project (LZC0019).

2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS)

978-1-7281-6887-6/20/$31.00 ©2020 IEEE
Authorized licensed use limited to: Peking University. Downloaded on August 26,2022 at 01:26:08 UTC from IEEE Xplore. Restrictions apply.

show that the ASCF outperforms other filters in both space cost
and performance for same false positive rates.

This paper makes two key contributions as follows:

 We propose ASCF, a novel scalable variant of the CF
that improves the space efficiency while sustaining high
performance. The key to the ASCF is to use the addition
and subtraction (ADD/SUB) operations, instead of the
XOR operation, to compute the indexes of two candidate
buckets for an item’s fingerprint. With the ADD/SUB
operations, the ASCF has both high space efficiency and
lookup and update performance.

 We conducted experiments to compare the ASCF with
previous filters. The results show that the ASCF requires
up to 1.9x lower space cost per item than the CF while
sustaining the same lookup and update throughput as the
CF. In addition, the ASCF achieves both higher space
efficiency and higher performance than other filters.

The rest of this paper is organized as follows. We overview
the background and related work on BFs and their variants in
Section II. Section III describes the detailed design of the ASCF.
We provide experimental results on ASCF evaluation in Section
IV. Finally, Section V concludes this paper.

II. BACKGROUND AND RELATED WORK
In this section, we first present the background on standard

Bloom filters, and then review the related work on counting
Bloom filters and their variants that support both insertions and
deletions of items.

A. Standard Bloom Filters
Standard Bloom filters (BFs) [1] are fast and space-efficient

data structures for approximate set membership queries. A BF
represents a set of n items using an array of m bits, initially all
set to 0. A BF uses k independent hash functions to map an item
to a random index uniformly over the range [0, …, m-1]. When
an item x is inserted, the BF maps x to k bits by k hash functions
h0(x), …, hk-1(x), and sets all these bits in the filter to 1. When an
item y is queried, the BF checks whether y’s all k bits are set to
1 or not. If all k bits are set to 1, y is claimed to be in the set. If
not, y is certainly not in the set. Standard BFs support insertions
and lookups, but not deletions of items.

A BF allows a small false positive rate that an item is claimed
to be in the set even though it is not. For a given false positive
rate ɛ, the space-optimized standard BF has the minimum space
cost of 1.44×log2(1/ε) bits for an item by using k=log2(1/ε) hash
functions. The minimum space cost per item depends on ɛ, rather
than the item size or the number of stored items. The theoretical
lower bound of space cost is log2(1/ε) bits per item achieved by
using a perfect hash function for a static set [2]. Therefore, there
is a gap of 44% in space cost between the space-optimized
standard BF and the theoretical lower bound, which motivates
one to minimize the space cost per item as far as possible.

B. Counting Bloom Filters and Variants
Counting Bloom filters (CBFs) [4] extend standard BFs to

support deletions by using an array of m counters in place of an
array of m bits. When an item x is inserted or deleted, the CBF

increments or decrements x’s all k counters. When an item y is
queried, the CBF checks whether y’s all k counters are non-zero
or not. If all k counters are non-zero, y is claimed to be in the set;
otherwise, y is not in the set. We note that counters must be
sufficiently large to avoid the overflow. In practice, four bits per
counter suffice for most of applications [2]. Therefore, the CBF
requires 4x space over the standard BF. Several variants of CBFs
have been proposed to improve the space efficiency as follows.

The d-left CBF (dlCBF) [17] uses d-left hashing and small
counters to store and search multiple fingerprints of an item. The
dlCBF reduces a factor of two or more space over the CBF.
However, the dlCBF has slow lookups because it needs to search
up to 24 fingerprints for a query.

The multilayer compressed CBF (MLCCBF) [18] uses a
hierarchical structure and Huffman coding to compress the CBF.
The MLCCBF requires up to 50% less space than the CBF while
achieving the same lookup performance as the CBF. However,
the MLCCBF has slow updates because it requires additional
update overhead for maintaining the hierarchical structure.

The rank-indexed CBF (RCBF) [19] leverages rank-indexed
hashing to construct an index hierarchy for compactly packing
an array of fingerprints. The RCBF has high-speed lookups and
requires less space than the CBF by a factor of three or more.
However, the RCBF suffers slow updates because it needs high
update overhead for maintaining the index hierarchy.

The variable-increment CBF (VICBF) [20] exploits variable
increments instead of unit increments used by the CBF to update
counters. For a query on an item, the VICBF checks whether a
variable increment is a part of the sum in one of its counters
hashed by the item. The VICBF requires 33% less space than
the CBF, but suffers slow lookups and updates because it needs
additional overhead to compute a variable increment for each
counter.

The quotient filter (QF) [21] uses linear probing to store and
search a fingerprint of an item in a compact hash table. The QF
leverages additional metadata to accelerate lookups and updates,
requiring up to 25% more space than the standard BF. However,
the QF suffers significant update performance degradation when
the filter becomes full [21].

The counting quotient filter (CQF) [22] improves the QF by
using rank-and-select based metadata and counter embedding.
The CQF uses the rank and select operations to restructure
metadata for improving both the space efficiency and lookup

Fig. 1. Space cost per item of CFs varying with different numbers of stored
items for target false positive rates 10-2, 10-4, and 10-6.

Number of stored items (216)

B
it

s
pe

r
it

em

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

10

20

30

40

50

10-2 10-4 10-6

2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS)

Authorized licensed use limited to: Peking University. Downloaded on August 26,2022 at 01:26:08 UTC from IEEE Xplore. Restrictions apply.

performance. However, the CQF suffers high update overhead
when the table occupancy of the filter becomes large.

The cuckoo filter (CF) [23] uses partial-key cuckoo hashing
to store and search a fingerprint of an item. The CF is a compact
cuckoo hash table [24] with two hash functions per item and four
slots per bucket. For an item, the CF uses a single hash function
to compute its fingerprint and the first candidate bucket index.
Then, it uses the exclusive-OR (XOR) operation based on the
fingerprint to compute the second candidate bucket index. When
an existing fingerprint f is relocated for inserting a new item, the
CF computes the alternate candidate bucket index j for f by using
j=i hash(f), where i is the current bucket index of f and is

the XOR operation. Therefore, the CF not only achieves higher
lookup and update performance, but also requires less space than
previous variants of CBFs and even the non-deletable standard
BF for low false positive rates (i.e., <3% [23]).

However, the CF suffers a critical issue of varying space cost
per item described above. This is because the XOR operation
used by the CF requires that the total number of buckets must be
a power of two. Fig. 1 shows the space cost per item of CFs
varying with different numbers of stored items for target false
positive rates. We see that the ratio between the maximum and
minimum bits per item required by the CF is about two, which
means inflating up to 2x space cost per item. In this paper, we
propose ASCF, a scalable variant of the CF to address the issue.
We aim to achieve constant and lower space cost per item while
sustaining comparably high performance.

In addition, other variants have been proposed to accelerate
the performance by partitioning the filter into an array of small
blocks. The blocked BF [25] and one memory access BF [26]
construct a small BF in a CPU cache line or word to improve the
performance but at the cost of increasing false positive rates. The
shifting BF [27] uses the shifting operation to reduce both the
number of memory accesses and number of hash computations
for a query. The Morton filter (MF) [28] uses three techniques
of compression, sparsity, and biasing to improve the lookup and
update performance over the CF. These works are orthogonal to
our work and can be applied to the ASCF for further improving
the performance, which is left as our future work.

III. ADDITIVE AND SUBTRACTIVE CUCKOO FILTERS
We propose a novel scalable variant of the cuckoo filter (CF)

called additive and subtractive cuckoo filter (ASCF). We aim to
improve the space efficiency while sustaining high lookup and
update performance. The basic idea behind the ASCF is to use
the addition and subtraction (ADD/SUB) operations instead of
the XOR operation to compute the two candidate bucket indexes
based on an item’s fingerprint. In this section, we first elaborate
the insert, lookup, and delete algorithms of the ASCF, and then
analyze the time and space complexities.

A. Insert Algorithm
Unlike the CF [23], the ASCF is a blocked compact cuckoo

hash table that consists of two blocks each with m/2 buckets for
representing a set of n items. Each bucket contains four slots,
each storing an item’s fingerprint instead of its key. The ASCF
maps an item to two candidate buckets in two blocks, and inserts
its fingerprint into one of the two candidate buckets. When both

two candidate buckets are full, the ASCF inserts the fingerprint
by relocating existing fingerprints to their alternate buckets.

The ASCF differs from the CF [23] in the computation of the
indexes of two candidate buckets. The ASCF uses the addition
and subtraction (ADD/SUB) operations, instead of the XOR
operation used by the CF, to compute the two candidate bucket
indexes for an item’s fingerprint. The ADD/SUB operations do
not require the total number of buckets in the filter to be a power
of two. In addition, these operations perform as fast as the XOR
operation. With the ADD/SUB operations, the ASCF therefore
improves the space efficiency over the CF while sustaining high
performance comparable to the CF.

The insertion procedure of the ASCF is as follows. When an
item x is inserted, the ASCF computes x’s fingerprint fx and the
two candidate bucket indexes h0(x) and h1(x) in two blocks. We
first use a single hash function G(x) to compute the fingerprint
fx and the first candidate bucket index h0(x) in the first block (i.e.,
block 0) by

0 () : G()xh x f x (1)

where fx is the right digits of the hash value of G(x), h0(x) is the
left digits in the range [0, …, m/2-1], and ‘:’ is the concatenation
character. Then, we compute the second candidate bucket index
h1(x) in the second block (i.e., block 1) for the fingerprint fx by
using the ADD operation based on h0(x) and fx as follows:

1 0() (() ()) mod / 2 / 2xh x h x H f m m (2)

where H(fx) is the hash value in the range [0, …, m/2-1] and m/2
is the number of buckets in each block. We note that h1(x) is the
bucket index in the range [m/2, …, m-1] of block 1.

When at least one of x’s two candidate buckets h0(x) and h1(x)
has spare capacity, we place the fingerprint fx in a vacant bucket
h0(x) or h1(x). When both two candidate buckets h0(x) and h1(x)

Insert x

fc

fa fw

fb fs

fe fg

ft

0
1
2
3
4

h0(x)

h1(x)

ASCF

fd

fv fu

fh5

block 0

block 1

fx

Fig. 2. Insert an item x into an ASCF by placing its fingerprint in a vacant
bucket.

Insert y

fc

fa fw

fb fs

fe fg

ft

0
1
2
3
4

h0(y)

h1(y)

ASCF

fd fx

fu

fh5

block 0

block 1

fv

fy

Fig. 3. Insert an item y into an ASCF by relocating existing fingerprints to their
alternate buckets.

2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS)

Authorized licensed use limited to: Peking University. Downloaded on August 26,2022 at 01:26:08 UTC from IEEE Xplore. Restrictions apply.

are full, we randomly place the fingerprint fx in a bucket h0(x) or
h1(x), and then kick out an existing fingerprint from the bucket
to its alternate bucket. The process repeats until a vacant bucket
is found or the maximum number of kick-outs (i.e., 500 in our
experiments) is reached. To relocate an evicted fingerprint g to
its alternate bucket, we compute the alternate bucket index j by
using the ADD/SUB operations based on the evicted fingerprint
g and the current bucket index i as follows:

(H()) mod / 2 / 2,
(H()) mod / 2,

j i g m m if i block 0
j i g m if i block 1

 (3)

where H(g) is the hash value in the range [0, …, m/2-1]. Eq. (3)
shows that if the current bucket index i is in block 0, we use the
first formula in (3) to compute the alternate bucket index j in
block 1; if the current bucket index i is in block 1, we use the
second formula in (3) to compute the alternate bucket index j in
block 0.

Algorithm 1: ASCF_Insert (x)

1: h0 : fx = G(x);
2: h1 = (h0 + H(fx)) mod m/2 + m/2;
3: if bucket h0 or h1 has an empty slot then {
4: store fx in this bucket;
5: return true; }
6: h = randomly select a bucket from h0 and h1;
7: f = the fingerprint fx for h;
8: for i = 0; i< MaxKicks; i++ do {
9: s = randomly select a slot from bucket h;
10: g = the fingerprint stored in slot s;
11: store f in slot s and displace g;
12: if h >= m/2 then {
13: h = (h - H(g)) mod m/2; }
14: else {
15: h = (h + H(g)) mod m/2 + m/2; }
16: if bucket h has an empty slot then {
17: relocate g to bucket h;
18: return true; }
19: f = the fingerprint g for h; }
20: return false;

Algorithm 1 shows the insert algorithm of the ASCF. When

inserting an item x into the ASCF, Lines 1 and 2 compute x’s
fingerprint fx and the two candidate bucket indexes h0 and h1 by
(1) and (2). Lines 3 to 5 place the fingerprint fx in a vacant bucket
h0 or h1 if at least one of the two candidate buckets h0 and h1 has
empty slots. Lines 6 to 20 randomly place the fingerprint fx in a
bucket h0 or h1 if both two candidate buckets h0 and h1 are full,
and relocate other existing fingerprints (i.e., g) to their alternate
buckets, whose indexes are computed by (3).

Fig. 2 shows an example of inserting an item x into an ASCF
by placing its fingerprint in a vacant bucket. We assume that the
ASCF consists of two blocks, each containing m/2=3 buckets,
where m=6. For x, we first compute the fingerprint fx and the first
candidate bucket index h0(x)=1 in block 0 by (1). Given H(fx)=0,
then we compute the second candidate bucket index h1(x)=4 in
block 1 by (2). Finally, we check to find that both two buckets 1
and 4 are vacant, and therefore randomly place the fingerprint fx
in bucket 1.

Fig. 3 shows another example of inserting an item y into an
ASCF by relocating other existing fingerprints to their alternate
buckets. For y, we first compute the fingerprint fy and the two
candidate bucket indexes h0(y)=1 and h1(y)=3 by (1) and (2).
Because both two buckets 1 and 3 are full, we randomly place fy
in bucket 3 by displacing an existing fingerprint fv in the bucket.
Given H(fv)=3, then we compute the alternate candidate bucket
index h0(v)=0 based on the evicted fingerprint fv and the current
bucket index h1(v)=3 by (3). Finally, we that bucket 0 is vacant,
and therefore relocate the fingerprint fv to bucket 0.

Algorithm 2: ASCF_Lookup (x)

1: h0 : fx = G(x);
2: h1 = (h0 + H(fx)) mod m/2 + m/2;
3: search fx in bucket h0 or h1;
4: if find fx in bucket h0 or h1 then {
5: return true; }
6: return false;

B. Lookup Algorithm

Algorithm 2 shows the lookup algorithm of the ASCF. The
lookup procedure of the ASCF is simple. When query an item x
against the ASCF, Lines 1 to 2 compute x’s fingerprint fx and the
two candidate bucket indexes h0 and h1 by (1) and (2). Line 3
searches the fingerprint fx in the two candidate buckets h0 and h1
to check whether there is at least one matching fingerprint or not.
If fx is found in at least one of the two buckets h0 or h1, then x is
in the set; otherwise, x is not in the set (see Lines 4 to 6).

Fig. 4 shows an example of looking up an item x against an
ASCF by checking whether at least one matching fingerprint is
found in its two candidate buckets or not. For x, we first compute
the fingerprint fx and the two candidate bucket indexes h0(x)=1
and h1(x)=4 by (1) and (2). Then, we search the two candidate

Lookup x

fc fv

fa fw

fb fs

fe fg

ft

0
1
2
3
4

h0(x)

h1(x)

ASCF

fd

fy fu

fh5

block 0

block 1

fx

Fig. 4. Lookup an item x against an ASCF by checking whether at least one
matching fingerprint is found in its two candidate buckets or not.

Delete y

fc fv

fw

fb fs

fe fg

ft

0
1
2
3
4

h0(y)

h1(y)

ASCF

fd fx

fu

fh5

block 0

block 1

fa

fy

Fig. 5. Delete an item y from an ASCF by removing one copy of matching
fingerprints.

2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS)

Authorized licensed use limited to: Peking University. Downloaded on August 26,2022 at 01:26:08 UTC from IEEE Xplore. Restrictions apply.

buckets 1 and 4 to check whether fx is found in these two buckets
or not. We find that the fingerprint fx is in bucket 1, and therefore
report that x is in the set.

Algorithm 3: ASCF_Delete (x)

1: h0 : fx = G(x);
2: h1 = (h0 + H(fx)) mod m/2 + m/2;
3: search fx in bucket h0 or h1;
4: if find fx in bucket h0 or h1 then {
5: remove a copy of fx from this bucket;
6: return true; }
7: return false;

C. Delete Algorithm

Algorithm 3 shows the delete algorithm of the ASCF. The
deletion procedure of the ASCF is also simple. When deleting
an item x from the ASCF, Lines 1 to 2 compute x’s fingerprint
fx and the two candidate buckets h0 and h1 by (1) and (2). Then,
Line 3 searches the fingerprint fx in both two candidate buckets
h0 and h1 to check whether at least one matching fingerprint is
found in these two buckets or not. Lines 4 to 7 remove one copy
of matching fingerprints when fx is found in bucket h0 or h1.

We note that this deletion is absolutely safe even though two
items have the same fingerprint. This is because there are two
duplicate fingerprints stored in the ASCF when two items have
the same fingerprint. Deleting one of the duplicate fingerprints
does not yield a false negative, as another duplicate fingerprint
is still in the filter. For instance, as shown in Fig. 5, we assume
that two items y and a have the same fingerprint (i.e., fy==fa) and
there are two duplicate fingerprints fy and fa stored in the ASCF.
When y is deleted, we first compute y’s fingerprint fy and the two
candidate bucket indexes h0(y)=1 and h1(y)=3. Then, we search
fy in buckets 1 and 3 and find that fy exists in these two buckets
because of fy==fa. Finally, we remove one duplicate fingerprint
fa from bucket 1, and retain another duplicate fingerprint fy in
bucket 3. When y is queried, we check to find that the fingerprint
fy is in bucket 3, which may yield a false positive but not a false
negative. When a is queried, we check to find that the fingerprint
fa is in bucket 3 because of fy==fa, and therefore report that a is
correctly in the set. In summary, such deletion has no impact on
the false positive rate and performance of the ASCF.

D. Time and Space Complexities Analysis
We now analyze the time and space complexities of the

ASCF. As shown in Table I, we assume that an ASCF consists
of k=2 blocks each with m/k buckets for storing up to n items by
using k=2 hash functions. Each bucket contains b=4 slots, each
storing an f-bit fingerprint. In addition, f denotes the fingerprint
size in bits, ε denotes a target false positive rate, and σ denotes a
load factor in a full filter.

Table II compares the time complexities of the CBF, CF, and
ASCF in terms of the number of memory accesses for a lookup.
We see that the ASCF and CF have two memory accesses per
lookup, and they are faster than the CBF with log2(1/ε) memory
accesses per lookup for a target false positive rate ε. For instance,
the CBF requires 10 memory accesses per lookup for ε=10-3,
which results in lower lookup performance than the ASCF and
CF. In addition, we show that the ASCF and CF have the same

insert and delete performance. This is because they require two
memory accesses on average for an insertion or deletion.

Next, we compare the space complexity of the ASCF with
that of the CF. Since the false positive rate dominates the space
complexity, we first analyze the false positive rates achieved by
the ASCF and CF. For a query on an item, the ASCF needs to
search k×b slots in its k candidate buckets to check whether there
is at least one matching f-bit fingerprint in these buckets or not.
Therefore, the false positive rate ε of the ASCF is computed by

1=1-(1-) / 2
2

k b f
f k b (4)

Eq. (4) shows that the ASCF has the same false positive rate as
the CF [23]. To achieve a target false positive rate ε, we compute
the minimum fingerprint size f in bits required by the ASCF as:

2 2log (/) log (8 /)f k b (5)

Eq. (5) shows that the fingerprint size f is only dominated by the
target false positive rate ε in the ASCF. Therefore, we compute
the space complexity of the ASCF in bits per item named cASCF
as:

ASCF 2log (8 /) /m b f fc
n

 (6)

where σ is a load factor (i.e., 0.95) of the ASCF. Eq. (6) shows
that the ASCF has constant space cost per item.

In contrast, the practical CF requires the number of buckets
to be a power of two (i.e., M in Table I), satisfying m≤M≤2m.
So we compute bits per item required by the CF named cCF by

CF ASCF
2 2M b f m b fc c

n n
 (7)

TABLE I. NOTATIONS USED IN THE PAPER.

ɛ target false positive rate

f fingerprint size in bits

σ load factor in a full filter

k number of hash functions per item
b number of slots per bucket
m number of buckets in a filter

n number of stored items in a filter

c bits per item

Notation Description

M power of two that just contains m buckets

TABLE II. NUMBER OF MEMORY ACCESSES PER LOOKUP AND BITS PER ITEM
REQUIRED BY THE CBF, CF, AND ASCF.

Bits Per ItemFilter Type Number of Memory
Accesses Per Lookup

CF log2(8/ɛ)/σ ~ 2 log2(8/ɛ)/σ2
CBF 4 1.44log2(1/ɛ)log2(1/ɛ)

ASCF log2(8/ɛ)/σ2

2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS)

Authorized licensed use limited to: Peking University. Downloaded on August 26,2022 at 01:26:08 UTC from IEEE Xplore. Restrictions apply.

Eq. (7) shows that the ASCF improves up to 2x space cost
per item over the CF. Table II compares the space complexities
of the CBF, CF and ASCF in terms of bits per item. We see that
the ASCF requires less space than the CF and CBF. For instance,
given ε=10-3 and σ=0.95, the ASCF requires 13.6 bits per item
while the CF requires 26.0 bits per item and the CBF requires
57.4 bits per item.

In summary, the ASCF has the same time complexity as the
CF while requiring up to 2x less space than the CF. In addition,
the ASCF outperforms other filters (e.g., the CBF) in both time
and space complexities, which is validated in the next section.

IV. EVALUATION
We conducted simulation experiments to evaluate the ASCF

and compare with previous six representative filters, including
the standard BF [1], CBF [4], dlCBF [17], RCBF [19], CQF [22],
and CF [23]. In this section, we first describe the experimental
methodology, and then provide the results on synthetic datasets.

A. Experimental Methodology
For a fair evaluation, we select optimal values of parameters

for each filter to achieve the best performance as follows.

For both the standard BF and CBF, we use k=log2(1/ε) hash
functions to achieve a target false positive rate ε. We allocate
n×1.44×log2(1/ε) bits to the standard BF for a set of up to n
items. We allocate 4n×1.44×log2(1/ε) bits to the CBF because it
uses four bits for a counter to support dynamic deletions.

For the dlCBF, we use four hash functions to map an item to
four blocks, each with the same number of buckets. Each bucket
contains eight slots each with a two-bit counter and a fingerprint
of size log2(24/ε) bits. We allocate n×(2+log2(24/ε))/σ buckets
to the dlCBF and set the load factor to be σ=0.75.

For the RCBF, we use one hash function to map an item to
one of blocks, each with 64 buckets. Each bucket contains one

slot that stores a fingerprint of size log2(σ/ε) bits. We allocate
n/σ buckets to the RCBF and set the load factor to be σ=0.9.

For the CQF, we use one hash function to map an item to one
of blocks each with 64 buckets and a 136-bit metadata. Each
bucket contains one slot that stores a fingerprint of size log2(1/ε)
bits. We allocate n×(2.125+log2(1/ε))/σ buckets to the CQF and
set the load factor to be σ=0.75 for avoiding the overflow.

For both the CF and ASCF, we use two hash functions to
map an item to two candidate buckets. Each bucket contains four
slots, each with a fingerprint of size log2(1/ε) bits. We allocate
a power of two (i.e., M) buckets to the CF and n×log2(8/ε)/σ
buckets to the ASCF, and set the same load factor to be σ=0.95.

We conducted two categories of experiments to evaluate the
performance of each filter. In the first experiment, we run each
filter that demands a maximum number of stored items. In the
second experiment, we run each filter that demands a maximum
memory size. We generate synthetic datasets of 64-bit integers
for testing each filter. We use MurmurHash [29], a popular fast
hash function to generate a random 64-bit hash value as an item.
These experiments run on a server with Intel Xeon E5-2640 v3
CPU@2.6GHz (8 cores, 20MB L3 cache) and 96GB DDR3
main memory with one single thread. We measure the accuracy
and performance metrics of each filter: the false positive rate,
space cost, and lookup and update throughput. The results are
averaged over ten trials.

B. Results on Filters with Limited Numbers of Stored Items
In this experiment, we first insert synthetic store sets of 220,

222, and 224 64-bit integers into each filter with different target
false positive rates (i.e., 10-2, 10-3, 10-4, 10-5, and 10-6). Then, we
generate synthetic query sets each of which is 10 times the size
of each store set to test each filter. Each query set has different
positive lookup percentages ranging from 0% to 100%. The
positive lookup percentage is X%, denoting that X% of queried

TABLE III. FINGERPRINT SIZE IN BITS REQUIRED BY THE DLCBF, RCBF, CF, CQF, AND ASCF.

dlCBF
12
15
18
22
25

RCBF
7
10
14
17
20

CF
10
13
17
20
23

ASCF
10
13
17
20
23

False Positive
Rate

10-2

10-3

10-4

10-5

10-6

Fingerprint Size in Bits
CQF

7
10
14
17
20

TABLE IV. SPACE COST PER ITEM REQUIRED BY THE ASCF AND PREVIOUS FILTERS.

CBF
38.3
57.4
76.5
95.7
114.8

dlCBF
18.7
22.7
26.7
32.0
36.0

RCBF
13.3
16.3
20.3
23.3
26.3

CF
20.0
26.0
34.0
40.0
46.0

ASCF
10.5
13.7
17.9
21.1
24.2

False Positive
Rate

10-2

10-3

10-4

10-5

10-6

Bits Per Item
BF
9.6
14.4
19.1
23.9
28.7

CQF
12.2
16.2
21.5
25.5
29.5

2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS)

Authorized licensed use limited to: Peking University. Downloaded on August 26,2022 at 01:26:08 UTC from IEEE Xplore. Restrictions apply.

items is in the set while 1-X% is not in the set. Finally, we delete
all items from each filter to test the delete performance.

We note that the fingerprint-based variants of CBFs (e.g., the
dlCBF, RCBF, CF, CQF, and ASCF) require non-byte-aligned
fingerprints to achieve target false positive rates. Table III shows
the size of non-byte-aligned fingerprints required by the dlCBF,
RCBF, CF, CQF, and ASCF for different false positive rates.
We see that the ASCF and CF have the same fingerprint size for
same target false positive rates. To achieve high performance,
we use an SIMD instruction _bextr_u32 to extract a non-byte-
aligned fingerprint from a 32-bit integer in these filters.

Space Cost: Table IV shows the space cost per item required
by the ASCF and previous filters. We see that the ASCF requires
lower space cost per item than previous filters for low false
positive rates ε 10-3, the usual case for most of applications.
Specifically, the ASCF reduces up to 17.9% space cost per item
over the CQF, up to 47.4% (1.9x) over the CF, up to 20.9% over
the RCBF, up to 43.6% over the dlCBF, up to 78.9% over the
CBF, and even up to 15.6% over the non-deletable standard BF.
This is because the ADD/SUB operations do not require the total
number of buckets in the ASCF to be a power of two, which

results in high space efficiency. We note that the non-deletable
standard BF requires lower space cost per item than the ASCF
when the false positive rate is 10-2.

Lookup Throughput: Fig. 6, Fig. 7, and Fig. 8 show the
lookup throughput in million operations per second (MOPS) for
different positive lookup percentages when the number of items
stored in each filter is 220, 222, and 224, respectively. The lookup
throughput of each filer varies as the positive lookup percentage
varies from 0% to 100%. From these three figures, we see that

Fig. 9. False positive rates achieved for different target false positive rates
when the maximum number of items is stored in each filter.

(a) False positive rate 10-2. (b) False positive rate 10-4. (c) False positive rate 10-6.

Fig. 6. Lookup throughput for different positive lookup percentages when the number of items stored in each filter is 220.

(a) False positive rate 10-2. (b) False positive rate 10-4. (c) False positive rate 10-6.

Fig. 7. Lookup throughput for different positive lookup percentages when the number of items stored in each filter is 222.

(a) False positive rate 10-2. (b) False positive rate 10-4. (c) False positive rate 10-6.

Fig. 8. Lookup throughput for different positive lookup percentages when the number of items stored in each filter is 224.

Target false positive rate

A
ch

ie
ve

d
fa

ls
e

po
sit

iv
e

ra
te

10 10 10 10 10
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

CBF

RCBF

CF
CQF
ASCF

dlCBF

Positive lookup percent

Lo
ok

up
 th

ru
pu

t (
M

O
PS

)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

2

4

6

8

10

0

2

4

6

8

10
CBF
dlCBF
RCBF

CF
CQF
ASCF

Positive lookup percent

Lo
ok

up
 th

ru
pu

t (
M

O
PS

)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

2

4

6

8

10

0

2

4

6

8

10
CBF
dlCBF
RCBF

CF
CQF
ASCF

Positive lookup percent

Lo
ok

up
 th

ru
pu

t (
M

O
PS

)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

2

4

6

8

10

0

2

4

6

8

10
CBF
dlCBF
RCBF

CF
CQF
ASCF

Positive lookup percent

Lo
ok

up
 th

ru
pu

t (
M

O
PS

)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

2

4

6

8

10

0

2

4

6

8

10
CBF
dlCBF
RCBF

CF
CQF
ASCF

Positive lookup percent

Lo
ok

up
 th

ru
pu

t (
M

O
PS

)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

2

4

6

8

10

0

2

4

6

8

10
CBF
dlCBF
RCBF

CF
CQF
ASCF

Positive lookup percent

Lo
ok

up
 th

ru
pu

t (
M

O
PS

)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

2

4

6

8

10

0

2

4

6

8

10
CBF
dlCBF
RCBF

CF
CQF
ASCF

Positive lookup percent

Lo
ok

up
 th

ru
pu

t (
M

O
PS

)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

2

4

6

8

10

0

2

4

6

8

10
CBF
dlCBF
RCBF

CF
CQF
ASCF

Positive lookup percent

Lo
ok

up
 th

ru
pu

t (
M

O
PS

)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

2

4

6

8

10

0

2

4

6

8

10
CBF
dlCBF
RCBF

CF
CQF
ASCF

Positive lookup percent

Lo
ok

up
 th

ru
pu

t (
M

O
PS

)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

2

4

6

8

10

0

2

4

6

8

10
CBF
dlCBF
RCBF

CF
CQF
ASCF

2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS)

Authorized licensed use limited to: Peking University. Downloaded on August 26,2022 at 01:26:08 UTC from IEEE Xplore. Restrictions apply.

the ASCF achieves the same lookup throughput as the CF. This
is because the ADD/SUB operations used by the ASCF almost
perform as fast as the XOR operation used by the CF. In addition,
the ASCF outperforms other filters except for the CBF when the
positive lookup percentage is no larger than 10%. We see that
when the positive lookup percentage increases from 0% to 10%,
the lookup throughput of the ASCF increases while that of the
CBF decreases. This is because the ASCF needs to search fewer
slots for a positive lookup than for a negative lookup while in
contrast the CBF needs to search more slots (i.e., counters) for a
positive lookup. Moreover, we see that the target false positive
rate has little impact on the lookup throughput of the ASCF. This
is because the false positive rate dominates the fingerprint size
but not the lookup performance of the ASCF.

False Positive Rates: Fig. 9 shows the false positive rates
achieved for target false positive rates ranging from 10-2 to 10-6
when the maximum number of items is stored in each filter. We
see that the ASCF almost achieves the same false positive rates
as the CQF, CF, and RCBF, and reduces 12.1% to 72.6% false

positive compared to the CBF. We note that the dlCBF achieves
pretty larger false positive rates than other filters. This is because
it uses short fingerprints for high space efficiency, which incurs
the increase in false positive rates.

Update Throughput: Fig. 10 and Fig. 11 show the insert
and delete throughput in MOPS for different false positive rates
when the maximum number of items is stored in each filter. We
see that the ASCF achieves the same update throughput as the
CF. Specifically, on average, the ASCF and CF have 2.6 MOPS
insert throughput and 4.0 MOPS delete throughput. In addition,
the ASCF achievers higher update throughput than other filters.
Specifically, the ASCF has higher insert (or delete) throughput
than the CBF by up to 7.0x (or 11.1x), dlCBF by up to 3.7x (or
2.7x), RCBF by up to 40.7x (or 67.2x), and CQF by up to
10849x (or 24214x), respectively. Moreover, the target false
positive rate has little impact on the insert and delete throughput
of the ASCF. This is because it requires two memory accesses
to two buckets for an insertion or deletion, which is independent
on a target false positive rate.

(a) 220 items. (b) 222 items. (c) 224 items.

Fig. 10. Insert throughput for different target false positive rates when the maximum number of items stored in each filter is 220, 222, and 224.

(a) 220 items. (b) 222 items. (c) 224 items.

Fig. 11. Delete throughput for different target false positive rates when the maximum number of items stored in each filter is 220, 222, and 224.

TABLE V. MAXIMUM NUMBERS OF ITEMS STORED IN DIFFERENT FIXED-SIZE FILTERS.

dlCBF RCBF CQF ASCF
False Positive

Rate
Maximum Number of Stored Items

CBF CF
Fixed Filter

Size

2,795,724
2,795,713
2,795,722

3,355,443
3,355,443
3,355,443

2,776,917
2,776,917
2,776,917

3,984,588
3,984,588
3,984,588

10-2

10-4

10-6

1,753,626
876,813
584,542

3,984,588
3,984,588
3,984,588

8MB

TABLE VI. MINIMUM BITS PER ITEM REQUIRED BY DIFFERENT FIXED-SIZE FILTERS.

CBF CF ASCF
False Positive

Rate
Minimum Bits Per Item

CQF
38.3~114.8 16.8 16.810-2~10-6 24.2

RCBFdlCBF
22.224.0

Fixed Filter
Size

8MB

False positive rate

In
se

rt
 th

ru
pu

t (
M

O
PS

)

10-6 10-5 10-4 10-3 10-2
0

1

2

3

4

5

0

1

2

3

4

5
CBF
dlCBF
RCBF

CF
CQF
ASCF

False positive rate

In
se

rt
 th

ru
pu

t (
M

O
PS

)

10-6 10-5 10-4 10-3 10-2
0

1

2

3

4

5

0

1

2

3

4

5
CBF
dlCBF
RCBF

CF
CQF
ASCF

False positive rate

In
se

rt
 th

ru
pu

t (
M

O
PS

)

10-6 10-5 10-4 10-3 10-2
0

1

2

3

4

5

0

1

2

3

4

5
CBF
dlCBF
RCBF

CF
CQF
ASCF

False positive rate

D
el

et
e

th
ru

pu
t (

M
O

PS
)

10-6 10-5 10-4 10-3 10-2
0

2

4

6

8

10

0

2

4

6

8

10
CBF
dlCBF
RCBF

CF
CQF
ASCF

False positive rate

D
el

et
e

th
ru

pu
t (

M
O

PS
)

10-6 10-5 10-4 10-3 10-2
0

2

4

6

8

10

0

2

4

6

8

10
CBF
dlCBF
RCBF

CF
CQF
ASCF

False positive rate

D
el

et
e

th
ru

pu
t (

M
O

PS
)

10-6 10-5 10-4 10-3 10-2
0

2

4

6

8

10

0

2

4

6

8

10
CBF
dlCBF
RCBF

CF
CQF
ASCF

2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS)

Authorized licensed use limited to: Peking University. Downloaded on August 26,2022 at 01:26:08 UTC from IEEE Xplore. Restrictions apply.

C. Results on Filters with Limited Memory Size
In this experiment, we select proper values of parameters to

ensure that the CF works with the optimal performance. This is
because the CF requires the number of buckets to be a power of
two. Therefore, we configure each filter to be the same fixed size
(i.e., 8MB) and the fingerprint size to be 16 bits for fitting in an
integer in the CF, CQF, and ASCF. In this experiment, we first
insert a synthetic store set of n 64-bit integers into each filter
with different table occupancies ranging from 10% to 100% for
different target false positive rates 10-2, 10-4, and 10-6. The table
occupancy is Y%, denoting that there is Y% of items stored in a
full filter. Then, we generate a synthetic query set of 10×n 64-
bit integers with different positive lookup percentages (i.e., 0%,
50%, and 100%) to test each filter. Finally, we delete all items
from each filter to test the delete performance.

Space Cost: Table V shows the maximum number of items
stored in each filter with the fixed memory size of 8MB. In this
case, the larger number of items is stored in a filter, the lower
space cost per item is achieved by a filter. From the table, we see

that the ASCF has the same maximum number of stored items
as the CF, but has more items than other filters. In addition,
Table VI shows the minimum bits per item required by different
filters. We see that the ASCF achieves the same minimum space
cost per item as the CF, but requires lower space cost per item
than other filters. This is because the ASCF and CF have the
same number of buckets (i.e., a power of two) and the same load
factor (i.e., 0.95). When the number of buckets is not a power of
two, the ASCF requires lower space cost per item than the CF
(see Table IV).

Lookup Throughput: Fig. 12 shows the lookup throughput
in MOPS for different positive lookup percentages when the
table occupancy is 100%. We see that the ASCF almost achieves
the same lookup throughput as the CF because the ADD/SUB
operations have the same performance as the XOR operation.
The ASCF achieves higher lookup throughput than other filters.
In addition, the ASCF increases the lookup throughput as the
positive lookup percentage increases. This is because the ASCF
searches fewer slots for a positive lookup than for a negative
lookup when the positive lookup percentage becomes larger.

(a) False positive rate 10-2. (b) False positive rate 10-4. (c) False positive rate 10-6.

Fig. 12. Lookup throughput for different positive lookup percentages when the table occupancy is 100% and the memory size of each filter is 8MB.

(a) False positive rate 10-2. (b) False positive rate 10-4. (c) False positive rate 10-6.

Fig. 13. Insert throughput for different table occupancies when the memory size of each filter is 8MB.

(a) False positive rate 10-2. (b) False positive rate 10-4. (c) False positive rate 10-6.

Fig. 14. Delete throughput for different table occupancies when the memory size of each filter is 8MB.

Positive lookup percent

Lo
ok

up
 th

ru
pu

t (
M

O
PS

)

0.0 0.5 1.0
0

2

4

6

8

10

0

2

4

6

8

10
CBF
dlCBF
RCBF

CF
CQF
ASCF

Positive lookup percent

Lo
ok

up
 th

ru
pu

t (
M

O
PS

)

0.0 0.5 1.0
0

2

4

6

8

10

0

2

4

6

8

10
CBF
dlCBF
RCBF

CF
CQF
ASCF

Positive lookup percent

Lo
ok

up
 th

ru
pu

t (
M

O
PS

)

0.0 0.5 1.0
0

2

4

6

8

10

0

2

4

6

8

10
CBF
dlCBF
RCBF

CF
CQF
ASCF

Table occupancy

In
se

rt
 th

ru
pu

t (
M

O
PS

)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

5

10

15

0

5

10

15
CBF
dlCBF
RCBF

CF
CQF
ASCF

Table occupancy

In
se

rt
 th

ru
pu

t (
M

O
PS

)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

5

10

15

0

5

10

15
CBF
dlCBF
RCBF

CF
CQF
ASCF

Table occupancy

In
se

rt
 th

ru
pu

t (
M

O
PS

)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

5

10

15

0

5

10

15
CBF
dlCBF
RCBF

CF
CQF
ASCF

Table occupancy

D
el

et
e

th
ru

pu
t (

M
O

PS
)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

5

10

15

0

5

10

15
CBF
dlCBF
RCBF

CF
CQF
ASCF

Table occupancy

D
el

et
e

th
ru

pu
t (

M
O

PS
)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

5

10

15

0

5

10

15
CBF
dlCBF
RCBF

CF
CQF
ASCF

Table occupancy

D
el

et
e

th
ru

pu
t (

M
O

PS
)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

5

10

15

0

5

10

15
CBF
dlCBF
RCBF

CF
CQF
ASCF

2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS)

Authorized licensed use limited to: Peking University. Downloaded on August 26,2022 at 01:26:08 UTC from IEEE Xplore. Restrictions apply.

Update Throughput: Fig. 13 and Fig. 14 show the insert
and delete throughput in MOPS for different table occupancies.
We see that the ASCF almost achieves the same insert and delete
throughput as the CF, and outperforms other filters. Specifically,
the ASCF achieves up to 12% lower insert and delete throughput
than the CF when the table occupancy varies from 10% to 100%.
Therefore, the ASCF has high update performance comparable
to the CF. In addition, the ASCF achieves higher insert (or delete)
throughput than the CBF by up to 18.7x (or up to 18.8x), dlCBF
by up to 5.5x (or up to 2.8x), RCBF by up to 4.7x (or up to 4.9x),
and CQF by up to 5904x (or up to 5689x), respectively.

V. CONCLUSION
This paper presents ASCF, a scalable variant of the cuckoo

filter for improving the space efficiency while sustaining high
performance. The ASCF is a blocked compact cuckoo hash table
that uses the addition and subtraction (ADD/SUB) operations,
instead of the XOR operation, to compute two candidate bucket
indexes for an item’s fingerprint. The ADD/SUB operations not
only perform fast, but also do not require the total number of
buckets in the filter to be a power of two. Therefore, beyond the
CF, the ASCF achieves lower space cost as well as the same
high performance. Experimental results on simulation show that
the ASCF requires less space than previous filters, and reduces
up to 1.9x space cost per item over the CF. In addition, the ASCF
achieves the same lookup and update throughput as the CF, but
outperforms other filters.

REFERENCES
[1] B. Bloom. Space/time tradeoffs in hash coding with allowable errors.

Communications of the ACM, 13(7): 442-426, 1970.
[2] A. Broder and M. Mitzenmacher. Network applications of bloom filters:

a survey. Internet Mathematics, 1(4): 488-509, 2004.
[3] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz. Theory and practice of

bloom filters for distributed systems. IEEE Communications Survey &
Tutorials, 14(1): 131-155, 2012.

[4] L. Fan, P. Cao, J. Almeida, and A. Broder. Summary cache: a scalable
wide-area web cache sharing protocol. In ACM SIGCOMM, 1998.

[5] D. Eppstein, M. Goodrich, F. Uyeda, and G. Varghese. What's the
difference?: efficient set reconciliation without prior context. In ACM
SIGCOMM, 2011.

[6] S. Dharmapurikar, P. Krishnamurthy, and D. Taylor. Longest prefix
matching using bloom filters. In ACM SIGCOMM, 2003.

[7] H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood. Fast hash table
lookup using extended bloom filter: an aid to network processing. In
ACM SIGCOMM, 2005.

[8] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese.
Beyond bloom filters: from approximate membership checks to
approximate state machines. In ACM SIGCOMM, 2006.

[9] M. Yu, A. Fabrikant, and J. Rexford. BUFFALO: bloom filter forwarding
architecture for large organizations. In ACM CoNEXT, 2009.

[10] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M.
Burrows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: a distributed
storage system for structured data. In USENIX OSDI, 2006.

[11] H. Lim, B. Fan, D. Andersen, and M. Kaminsky. SILT: a memory-
efficient, high-performance key-value store. In ACM SOSP, 2011.

[12] B. Fan, D. Andersen, and M. Kaminsky. MemC3: compact and concurrent
memcache with dumber caching and smarter hashing. In USENIX NSDI,
2013.

[13] S. Alsubaiee, A. Behm, V. Borkar, Z. Heilbron, Y. Kim, M. Carey, M.
Dreseler, and C. Li. Storage management in AsterixDB. In PVLDB, 2014.

[14] B. Zhu, K. Li, and R. Patterson. Avoiding the disk bottleneck in the data
domain deduplication file system. In USENIX FAST, 2008.

[15] B. Debnath, S. Sengupta, and J. Li. Chunkstash: speeding up inline
storage deduplication using flash memory. In USENIX ATC, 2010.

[16] B. Debnath, S. Sengupta, J. Li, D. Lilja, and D. Du. BloomFlash: bloom
filter on flash-based storage. In IEEE ICDCS, 2011.

[17] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese.
An improved construction for counting bloom filters. In ESA, 2006.

[18] D. Ficara, S. Giordano, G. Procissi, and F. Vitucci. Multilayer compressed
counting bloom filters. In IEEE INFOCOM, 2008.

[19] N. Hua, H. Zhao, B. Lin, and J. Xu. Rank-indexed hashing: a compact
construction of bloom filters and variants. In IEEE ICNP, 2008.

[20] O. Rottenstreich, Y. Kanizo, and I. Keslassy. The variable-increment
counting bloom filter. In IEEE INFOCOM, 2012.

[21] M. Bender, M. Farach-Colton, R. Johnson, R. Kraner, B. Kuszmaul, D.
Medjedovic, P. Montes, P. Shetty, R.Spillane,and E. Zadok. Don’t thrash:
how to cache your hash on flash. In PVLDB, 2012.

[22] P. Pandey, M. Bender, R. Johnson, and R. Patro. A general-purpose
counting filter: making every bit count. In ACM SIGMOD, 2017.

[23] B. Fan, D. Andersen, M. Kaminskyy, and M. Mitzenmacherz. Cuckoo
filter: practically better than bloom. In ACM CoNEXT, 2014.

[24] R. Pagh and F. Rodler. Cuckoo hashing. Journal of Algorithms, 51(2):
122–144, 2004.

[25] F. Putze, P. Sanders, and S. Johannes. Cache-, hash- and space-efficient
bloom filters. ACM Journal of Experimental Algorithmics, 14(4): 1-18,
2009.

[26] Y. Qiao, T. Li, and S. Chen. One memory access bloom filters and their
generalization. In IEEE INFOCOM, 2011.

[27] T. Yang, A. Liu, M. Shahzad, Y. Zhong, Q. Fu, Z. Li, G. Xie, and X. Li.
A shifting bloom filter framework for set queries. In PVLDB, 2016.

[28] A. Breslow and N. Jayasena. Morton filters: faster, space-efficient cuckoo
filters via biasing, compression, and decoupled logical sparsity. In
PVLDB, 2018.

[29] MurmurHash. https://sites.google.com/site/murmurhash.

2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS)

Authorized licensed use limited to: Peking University. Downloaded on August 26,2022 at 01:26:08 UTC from IEEE Xplore. Restrictions apply.

