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Abstract—Bloom filters (BFs) are fast and space-efficient data 

structures used for set membership queries in many applications. 
BFs are required to satisfy three key requirements: low space cost, 
high-speed lookups, and fast updates. Prior works do not satisfy 
these requirements at the same time. The standard BF does not 
support deletions of items and the variants that support deletions 
need additional space or performance overhead. The state-of-the-
art cuckoo filters (CF) has high performance with seemingly low 
space cost. However, the CF suffers a critical issue of varying space 
cost per item. This is because the exclusive-OR (XOR) operation 
used by the CF requires the total number of buckets to be a power 
of two, leading to the space inflation. To address the issue, in this 
paper we propose a scalable variant of the cuckoo filter called ad-
ditive and subtractive cuckoo filter (ASCF). We aim to improve 
the space efficiency while sustaining comparably high perfor-
mance. The ASCF uses the addition and subtraction (ADD/SUB) 
operations instead of the XOR operation to compute an item’s two 
candidate bucket indexes based on its fingerprint. Experimental 
results show that the ASCF achieves both low space cost and high 
performance. Compared to the CF, the ASCF reduces up to 1.9x 
space cost per item while maintaining the same lookup and update 
throughput. In addition, the ASCF outperforms other filters in 
both space cost and performance. 
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I. INTRODUCTION 
Bloom filters (BFs) [1] are space-efficient probabilistic data 

structures for high-speed approximate set membership queries. 
This query is to answer whether a given item is in a set or not. 
BFs have high space efficiency as they represent a set of items 
with a constant number of bits. They have a small probability of 
false positives (i.e., an item is reported to be in the set although 
it is not), but have no false negatives. BFs have been widely used 
in network applications [2] and distributed systems [3], such as 
cooperative caching [4, 5], network processing [6, 7, 8, 9], key-
value store [10, 11, 12, 13], and data deduplication [14, 15, 16]. 

In many applications, BFs are required to satisfy three key 
requirements: low space cost, high-speed lookups, and fast 
updates. First, BFs are often implemented using fast but small 
memory (e.g., SRAM) to avoid unnecessary expensive accesses 
to slow memory (e.g., DRAM or SSD). Therefore, it is critical 
to minimize the space cost of BFs as far as possible. Second, 
BFs must sustain high-speed lookups with the rapid growth of 
queries. Meanwhile, BFs must support fast incremental updates, 
which means allowing dynamic insertions and deletions of items 
without rebuilding the entire filter. 

However, prior works do not satisfy these requirements at 
the same time. The standard BF [1] has low space cost and high-
speed lookups, but does not support deletions. The counting BF 
(CBF) [4] is one well-known variant that supports deletions by 
using counters in place of bits of the standard BF. The CBF has 
high-speed lookups and fast updates, but requires 4x space cost 
over the standard BF. Several variants of CBFs [17, 18, 19, 20, 
21, 22] have been proposed to improve the space efficiency but 
at the cost of substantial performance degradation. For instance, 
the dlCBF [17] reduces a factor of two or more space over the 
CBF, but suffers slow lookups and updates. The MLCCBF [18] 
and RCBF [19] use a hierarchical structure to compress the CBF, 
but require high update overhead for maintaining the hierarchy. 
The QF [21] and CQF [22] have low space cost and high lookup 
performance, but degrade the update performance significantly 
when the filter becomes full. 

The cuckoo filter (CF) [23] is a state-of-the-art variant of the 
CBF. The CF uses cuckoo hashing and fingerprints to achieve 
higher space efficiency and lookup and update performance than 
previous variants of CBFs and even the non-deletable standard 
BF for low false positive rates (i.e., <3% [23]). However, the CF 
suffers a critical issue of varying space cost per item. This is 
because the CF uses the exclusive-OR (XOR) operation based 
on a fingerprint of an item to compute the two candidate bucket 
indexes. The XOR operation performs fast, but requires that the 
total number of buckets must be a power of two, which incurs 
up to 2x space inflation. Therefore, it is challenging for a filter 
to achieve the scalability in both space cost and performance at 
the same time. 

To address the issue, in this paper we propose a scalable 
variant of the CF called additive and subtractive cuckoo filter 
(ASCF). We aim to improve the space efficiency over the CF 
while sustaining high performance comparable to the CF. The 
basic idea behind the ASCF is to use the addition and subtraction 
(ADD/SUB) operations, instead of the XOR operation used by 
the CF, to compute an item’s two candidate bucket indexes. The 
ADD/SUB operations perform as fast as the XOR operation, and 
do not require the total number of buckets to be a power of two. 
Therefore, the ASCF requires lower space cost per item than the 
CF while maintaining the same high performance as the CF. 

We conducted simulation experiments to evaluate the ASCF 
and compare with previous representative filters, including the 
standard BF [1], CBF [4], dlCBF [17], RCBF [19], CQF [22], 
and CF [23]. Experimental results show that the ASCF reduces 
up to 1.9x space cost per item over the CF while achieving the 
same lookup and update throughput as the CF. In addition, we 
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show that the ASCF outperforms other filters in both space cost 
and performance for same false positive rates. 

This paper makes two key contributions as follows: 

 We propose ASCF, a novel scalable variant of the CF 
that improves the space efficiency while sustaining high 
performance. The key to the ASCF is to use the addition 
and subtraction (ADD/SUB) operations, instead of the 
XOR operation, to compute the indexes of two candidate 
buckets for an item’s fingerprint. With the ADD/SUB 
operations, the ASCF has both high space efficiency and 
lookup and update performance. 

 We conducted experiments to compare the ASCF with 
previous filters. The results show that the ASCF requires 
up to 1.9x lower space cost per item than the CF while 
sustaining the same lookup and update throughput as the 
CF. In addition, the ASCF achieves both higher space 
efficiency and higher performance than other filters. 

The rest of this paper is organized as follows. We overview 
the background and related work on BFs and their variants in 
Section II. Section III describes the detailed design of the ASCF. 
We provide experimental results on ASCF evaluation in Section 
IV. Finally, Section V concludes this paper. 

II. BACKGROUND AND RELATED WORK 
In this section, we first present the background on standard 

Bloom filters, and then review the related work on counting 
Bloom filters and their variants that support both insertions and 
deletions of items. 

A. Standard Bloom Filters 
Standard Bloom filters (BFs) [1] are fast and space-efficient 

data structures for approximate set membership queries. A BF 
represents a set of n items using an array of m bits, initially all 
set to 0. A BF uses k independent hash functions to map an item 
to a random index uniformly over the range [0, …, m-1]. When 
an item x is inserted, the BF maps x to k bits by k hash functions 
h0(x), …, hk-1(x), and sets all these bits in the filter to 1. When an 
item y is queried, the BF checks whether y’s all k bits are set to 
1 or not. If all k bits are set to 1, y is claimed to be in the set. If 
not, y is certainly not in the set. Standard BFs support insertions 
and lookups, but not deletions of items. 

A BF allows a small false positive rate that an item is claimed 
to be in the set even though it is not. For a given false positive 
rate ɛ, the space-optimized standard BF has the minimum space 
cost of 1.44×log2(1/ε) bits for an item by using k=log2(1/ε) hash 
functions. The minimum space cost per item depends on ɛ, rather 
than the item size or the number of stored items. The theoretical 
lower bound of space cost is log2(1/ε) bits per item achieved by 
using a perfect hash function for a static set [2]. Therefore, there 
is a gap of 44% in space cost between the space-optimized 
standard BF and the theoretical lower bound, which motivates 
one to minimize the space cost per item as far as possible. 

B. Counting Bloom Filters and Variants 
Counting Bloom filters (CBFs) [4] extend standard BFs to 

support deletions by using an array of m counters in place of an 
array of m bits. When an item x is inserted or deleted, the CBF 

increments or decrements x’s all k counters. When an item y is 
queried, the CBF checks whether y’s all k counters are non-zero 
or not. If all k counters are non-zero, y is claimed to be in the set; 
otherwise, y is not in the set. We note that counters must be 
sufficiently large to avoid the overflow. In practice, four bits per 
counter suffice for most of applications [2]. Therefore, the CBF 
requires 4x space over the standard BF. Several variants of CBFs 
have been proposed to improve the space efficiency as follows. 

The d-left CBF (dlCBF) [17] uses d-left hashing and small 
counters to store and search multiple fingerprints of an item. The 
dlCBF reduces a factor of two or more space over the CBF. 
However, the dlCBF has slow lookups because it needs to search 
up to 24 fingerprints for a query. 

The multilayer compressed CBF (MLCCBF) [18] uses a 
hierarchical structure and Huffman coding to compress the CBF. 
The MLCCBF requires up to 50% less space than the CBF while 
achieving the same lookup performance as the CBF. However, 
the MLCCBF has slow updates because it requires additional 
update overhead for maintaining the hierarchical structure. 

The rank-indexed CBF (RCBF) [19] leverages rank-indexed 
hashing to construct an index hierarchy for compactly packing 
an array of fingerprints. The RCBF has high-speed lookups and 
requires less space than the CBF by a factor of three or more. 
However, the RCBF suffers slow updates because it needs high 
update overhead for maintaining the index hierarchy. 

The variable-increment CBF (VICBF) [20] exploits variable 
increments instead of unit increments used by the CBF to update 
counters. For a query on an item, the VICBF checks whether a 
variable increment is a part of the sum in one of its counters 
hashed by the item. The VICBF requires 33% less space than 
the CBF, but suffers slow lookups and updates because it needs 
additional overhead to compute a variable increment for each 
counter. 

The quotient filter (QF) [21] uses linear probing to store and 
search a fingerprint of an item in a compact hash table. The QF 
leverages additional metadata to accelerate lookups and updates, 
requiring up to 25% more space than the standard BF. However, 
the QF suffers significant update performance degradation when 
the filter becomes full [21]. 

The counting quotient filter (CQF) [22] improves the QF by 
using rank-and-select based metadata and counter embedding. 
The CQF uses the rank and select operations to restructure 
metadata for improving both the space efficiency and lookup 

 

Fig. 1. Space cost per item of CFs varying with different numbers of stored 
items for target false positive rates 10-2, 10-4, and 10-6. 
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performance. However, the CQF suffers high update overhead 
when the table occupancy of the filter becomes large. 

The cuckoo filter (CF) [23] uses partial-key cuckoo hashing 
to store and search a fingerprint of an item. The CF is a compact 
cuckoo hash table [24] with two hash functions per item and four 
slots per bucket. For an item, the CF uses a single hash function 
to compute its fingerprint and the first candidate bucket index. 
Then, it uses the exclusive-OR (XOR) operation based on the 
fingerprint to compute the second candidate bucket index. When 
an existing fingerprint f is relocated for inserting a new item, the 
CF computes the alternate candidate bucket index j for f by using 
j=i hash(f), where i is the current bucket index of f and  is 

the XOR operation. Therefore, the CF not only achieves higher 
lookup and update performance, but also requires less space than 
previous variants of CBFs and even the non-deletable standard 
BF for low false positive rates (i.e., <3% [23]). 

However, the CF suffers a critical issue of varying space cost 
per item described above. This is because the XOR operation 
used by the CF requires that the total number of buckets must be 
a power of two. Fig. 1 shows the space cost per item of CFs 
varying with different numbers of stored items for target false 
positive rates. We see that the ratio between the maximum and 
minimum bits per item required by the CF is about two, which 
means inflating up to 2x space cost per item. In this paper, we 
propose ASCF, a scalable variant of the CF to address the issue. 
We aim to achieve constant and lower space cost per item while 
sustaining comparably high performance. 

In addition, other variants have been proposed to accelerate 
the performance by partitioning the filter into an array of small 
blocks. The blocked BF [25] and one memory access BF [26] 
construct a small BF in a CPU cache line or word to improve the 
performance but at the cost of increasing false positive rates. The 
shifting BF [27] uses the shifting operation to reduce both the 
number of memory accesses and number of hash computations 
for a query. The Morton filter (MF) [28] uses three techniques 
of compression, sparsity, and biasing to improve the lookup and 
update performance over the CF. These works are orthogonal to 
our work and can be applied to the ASCF for further improving 
the performance, which is left as our future work. 

III. ADDITIVE AND SUBTRACTIVE CUCKOO FILTERS 
We propose a novel scalable variant of the cuckoo filter (CF) 

called additive and subtractive cuckoo filter (ASCF). We aim to 
improve the space efficiency while sustaining high lookup and 
update performance. The basic idea behind the ASCF is to use 
the addition and subtraction (ADD/SUB) operations instead of 
the XOR operation to compute the two candidate bucket indexes 
based on an item’s fingerprint. In this section, we first elaborate 
the insert, lookup, and delete algorithms of the ASCF, and then 
analyze the time and space complexities. 

A. Insert Algorithm 
Unlike the CF [23], the ASCF is a blocked compact cuckoo 

hash table that consists of two blocks each with m/2 buckets for 
representing a set of n items. Each bucket contains four slots, 
each storing an item’s fingerprint instead of its key. The ASCF 
maps an item to two candidate buckets in two blocks, and inserts 
its fingerprint into one of the two candidate buckets. When both 

two candidate buckets are full, the ASCF inserts the fingerprint 
by relocating existing fingerprints to their alternate buckets. 

The ASCF differs from the CF [23] in the computation of the 
indexes of two candidate buckets. The ASCF uses the addition 
and subtraction (ADD/SUB) operations, instead of the XOR 
operation used by the CF, to compute the two candidate bucket 
indexes for an item’s fingerprint. The ADD/SUB operations do 
not require the total number of buckets in the filter to be a power 
of two. In addition, these operations perform as fast as the XOR 
operation. With the ADD/SUB operations, the ASCF therefore 
improves the space efficiency over the CF while sustaining high 
performance comparable to the CF. 

The insertion procedure of the ASCF is as follows. When an 
item x is inserted, the ASCF computes x’s fingerprint fx and the 
two candidate bucket indexes h0(x) and h1(x) in two blocks. We 
first use a single hash function G(x) to compute the fingerprint 
fx and the first candidate bucket index h0(x) in the first block (i.e., 
block 0) by 

0 ( ) : G( )xh x f x     (1) 

where fx is the right digits of the hash value of G(x), h0(x) is the 
left digits in the range [0, …, m/2-1], and ‘:’ is the concatenation 
character. Then, we compute the second candidate bucket index 
h1(x) in the second block (i.e., block 1) for the fingerprint fx by 
using the ADD operation based on h0(x) and fx as follows: 

1 0( ) ( ( ) ( )) mod / 2 / 2xh x h x H f m m   (2) 

where H(fx) is the hash value in the range [0, …, m/2-1] and m/2 
is the number of buckets in each block. We note that h1(x) is the 
bucket index in the range [m/2, …, m-1] of block 1. 

When at least one of x’s two candidate buckets h0(x) and h1(x) 
has spare capacity, we place the fingerprint fx in a vacant bucket 
h0(x) or h1(x). When both two candidate buckets h0(x) and h1(x) 
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Fig. 2. Insert an item x into an ASCF by placing its fingerprint in a vacant 
bucket. 
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Fig. 3. Insert an item y into an ASCF by relocating existing fingerprints to their 
alternate buckets. 
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are full, we randomly place the fingerprint fx in a bucket h0(x) or 
h1(x), and then kick out an existing fingerprint from the bucket 
to its alternate bucket. The process repeats until a vacant bucket 
is found or the maximum number of kick-outs (i.e., 500 in our 
experiments) is reached. To relocate an evicted fingerprint g to 
its alternate bucket, we compute the alternate bucket index j by 
using the ADD/SUB operations based on the evicted fingerprint 
g and the current bucket index i as follows: 

( H( )) mod / 2 / 2,
( H( )) mod / 2,

j i g m m if i block 0
j i g m if i block 1

 (3) 

where H(g) is the hash value in the range [0, …, m/2-1]. Eq. (3) 
shows that if the current bucket index i is in block 0, we use the 
first formula in (3) to compute the alternate bucket index j in 
block 1; if the current bucket index i is in block 1, we use the 
second formula in (3) to compute the alternate bucket index j in 
block 0. 

Algorithm 1: ASCF_Insert (x)

1: h0 : fx = G(x);
2: h1 = (h0 + H(fx)) mod m/2 + m/2;
3: if bucket h0 or h1 has an empty slot then {
4:     store fx in this bucket;
5:     return true; }
6: h = randomly select a bucket from h0 and h1;
7: f = the fingerprint fx for h;
8: for i = 0; i< MaxKicks; i++ do {
9:     s = randomly select a slot from bucket h;
10:     g = the fingerprint stored in slot s;
11:     store f in slot s and displace g;
12:     if h >= m/2 then {
13:         h = (h - H(g)) mod m/2; }
14:     else {
15:         h = (h + H(g)) mod m/2 + m/2; }
16:     if bucket h has an empty slot then {
17:         relocate g to bucket h;
18:         return true; }
19:     f = the fingerprint g for h; }
20: return false;

 
Algorithm 1 shows the insert algorithm of the ASCF. When 

inserting an item x into the ASCF, Lines 1 and 2 compute x’s 
fingerprint fx and the two candidate bucket indexes h0 and h1 by 
(1) and (2). Lines 3 to 5 place the fingerprint fx in a vacant bucket 
h0 or h1 if at least one of the two candidate buckets h0 and h1 has 
empty slots. Lines 6 to 20 randomly place the fingerprint fx in a 
bucket h0 or h1 if both two candidate buckets h0 and h1 are full, 
and relocate other existing fingerprints (i.e., g) to their alternate 
buckets, whose indexes are computed by (3). 

Fig. 2 shows an example of inserting an item x into an ASCF 
by placing its fingerprint in a vacant bucket. We assume that the 
ASCF consists of two blocks, each containing m/2=3 buckets, 
where m=6. For x, we first compute the fingerprint fx and the first 
candidate bucket index h0(x)=1 in block 0 by (1). Given H(fx)=0, 
then we compute the second candidate bucket index h1(x)=4 in 
block 1 by (2). Finally, we check to find that both two buckets 1 
and 4 are vacant, and therefore randomly place the fingerprint fx 
in bucket 1. 

Fig. 3 shows another example of inserting an item y into an 
ASCF by relocating other existing fingerprints to their alternate 
buckets. For y, we first compute the fingerprint fy and the two 
candidate bucket indexes h0(y)=1 and h1(y)=3 by (1) and (2). 
Because both two buckets 1 and 3 are full, we randomly place fy 
in bucket 3 by displacing an existing fingerprint fv in the bucket. 
Given H(fv)=3, then we compute the alternate candidate bucket 
index h0(v)=0 based on the evicted fingerprint fv and the current 
bucket index h1(v)=3 by (3). Finally, we that bucket 0 is vacant, 
and therefore relocate the fingerprint fv to bucket 0. 

Algorithm 2: ASCF_Lookup (x)

1: h0 : fx = G(x);
2: h1 = (h0 + H(fx)) mod m/2 + m/2;
3: search fx in bucket h0 or h1;
4: if find fx in bucket h0 or h1 then {
5:     return true; }
6: return false;

 
B. Lookup Algorithm 

Algorithm 2 shows the lookup algorithm of the ASCF. The 
lookup procedure of the ASCF is simple. When query an item x 
against the ASCF, Lines 1 to 2 compute x’s fingerprint fx and the 
two candidate bucket indexes h0 and h1 by (1) and (2). Line 3 
searches the fingerprint fx in the two candidate buckets h0 and h1 
to check whether there is at least one matching fingerprint or not. 
If fx is found in at least one of the two buckets h0 or h1, then x is 
in the set; otherwise, x is not in the set (see Lines 4 to 6). 

Fig. 4 shows an example of looking up an item x against an 
ASCF by checking whether at least one matching fingerprint is 
found in its two candidate buckets or not. For x, we first compute 
the fingerprint fx and the two candidate bucket indexes h0(x)=1 
and h1(x)=4 by (1) and (2). Then, we search the two candidate 
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Fig. 4. Lookup an item x against an ASCF by checking whether at least one 
matching fingerprint is found in its two candidate buckets or not. 
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Fig. 5. Delete an item y from an ASCF by removing one copy of matching 
fingerprints. 
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buckets 1 and 4 to check whether fx is found in these two buckets 
or not. We find that the fingerprint fx is in bucket 1, and therefore 
report that x is in the set. 

Algorithm 3: ASCF_Delete (x)

1: h0 : fx = G(x);
2: h1 = (h0 + H(fx)) mod m/2 + m/2;
3: search fx in bucket h0 or h1;
4: if find fx in bucket h0 or h1 then {
5:     remove a copy of fx from this bucket;
6:     return true; }
7: return false;

 
C. Delete Algorithm 

Algorithm 3 shows the delete algorithm of the ASCF. The 
deletion procedure of the ASCF is also simple. When deleting 
an item x from the ASCF, Lines 1 to 2 compute x’s fingerprint 
fx and the two candidate buckets h0 and h1 by (1) and (2). Then, 
Line 3 searches the fingerprint fx in both two candidate buckets 
h0 and h1 to check whether at least one matching fingerprint is 
found in these two buckets or not. Lines 4 to 7 remove one copy 
of matching fingerprints when fx is found in bucket h0 or h1. 

We note that this deletion is absolutely safe even though two 
items have the same fingerprint. This is because there are two 
duplicate fingerprints stored in the ASCF when two items have 
the same fingerprint. Deleting one of the duplicate fingerprints 
does not yield a false negative, as another duplicate fingerprint 
is still in the filter. For instance, as shown in Fig. 5, we assume 
that two items y and a have the same fingerprint (i.e., fy==fa) and 
there are two duplicate fingerprints fy and fa stored in the ASCF. 
When y is deleted, we first compute y’s fingerprint fy and the two 
candidate bucket indexes h0(y)=1 and h1(y)=3. Then, we search 
fy in buckets 1 and 3 and find that fy exists in these two buckets 
because of fy==fa. Finally, we remove one duplicate fingerprint 
fa from bucket 1, and retain another duplicate fingerprint fy in 
bucket 3. When y is queried, we check to find that the fingerprint 
fy is in bucket 3, which may yield a false positive but not a false 
negative. When a is queried, we check to find that the fingerprint 
fa is in bucket 3 because of fy==fa, and therefore report that a is 
correctly in the set. In summary, such deletion has no impact on 
the false positive rate and performance of the ASCF. 

D. Time and Space Complexities Analysis 
We now analyze the time and space complexities of the 

ASCF. As shown in Table I, we assume that an ASCF consists 
of k=2 blocks each with m/k buckets for storing up to n items by 
using k=2 hash functions. Each bucket contains b=4 slots, each 
storing an f-bit fingerprint. In addition, f denotes the fingerprint 
size in bits, ε denotes a target false positive rate, and σ denotes a 
load factor in a full filter. 

Table II compares the time complexities of the CBF, CF, and 
ASCF in terms of the number of memory accesses for a lookup. 
We see that the ASCF and CF have two memory accesses per 
lookup, and they are faster than the CBF with log2(1/ε) memory 
accesses per lookup for a target false positive rate ε. For instance, 
the CBF requires 10 memory accesses per lookup for ε=10-3, 
which results in lower lookup performance than the ASCF and 
CF. In addition, we show that the ASCF and CF have the same 

insert and delete performance. This is because they require two 
memory accesses on average for an insertion or deletion. 

Next, we compare the space complexity of the ASCF with 
that of the CF. Since the false positive rate dominates the space 
complexity, we first analyze the false positive rates achieved by 
the ASCF and CF. For a query on an item, the ASCF needs to 
search k×b slots in its k candidate buckets to check whether there 
is at least one matching f-bit fingerprint in these buckets or not. 
Therefore, the false positive rate ε of the ASCF is computed by 

1=1-(1- ) / 2
2

k b f
f k b    (4) 

Eq. (4) shows that the ASCF has the same false positive rate as 
the CF [23]. To achieve a target false positive rate ε, we compute 
the minimum fingerprint size f in bits required by the ASCF as: 

2 2log ( / ) log (8 / )f k b    (5) 

Eq. (5) shows that the fingerprint size f is only dominated by the 
target false positive rate ε in the ASCF. Therefore, we compute 
the space complexity of the ASCF in bits per item named cASCF 
as: 

ASCF 2log (8 / ) /m b f fc
n

  (6) 

where σ is a load factor (i.e., 0.95) of the ASCF. Eq. (6) shows 
that the ASCF has constant space cost per item. 

In contrast, the practical CF requires the number of buckets 
to be a power of two (i.e., M in Table I), satisfying m≤M≤2m. 
So we compute bits per item required by the CF named cCF by 

CF ASCF
2 2M b f m b fc c

n n
  (7) 

TABLE I. NOTATIONS USED IN THE PAPER. 

ɛ   target false positive rate

f   fingerprint size in bits

σ   load factor in a full filter

k   number of hash functions per item
b   number of slots per bucket
m   number of buckets in a filter

n   number of stored items in a filter

c   bits per item

Notation Description

M   power of two that just contains m buckets

 

TABLE II. NUMBER OF MEMORY ACCESSES PER LOOKUP AND BITS PER ITEM 
REQUIRED BY THE CBF, CF, AND ASCF. 

Bits Per ItemFilter Type Number of Memory 
Accesses Per Lookup

CF log2(8/ɛ)/σ ~ 2 log2(8/ɛ)/σ2
CBF 4 1.44log2(1/ɛ)log2(1/ɛ)

ASCF log2(8/ɛ)/σ2  
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Eq. (7) shows that the ASCF improves up to 2x space cost 
per item over the CF. Table II compares the space complexities 
of the CBF, CF and ASCF in terms of bits per item. We see that 
the ASCF requires less space than the CF and CBF. For instance, 
given ε=10-3 and σ=0.95, the ASCF requires 13.6 bits per item 
while the CF requires 26.0 bits per item and the CBF requires 
57.4 bits per item. 

In summary, the ASCF has the same time complexity as the 
CF while requiring up to 2x less space than the CF. In addition, 
the ASCF outperforms other filters (e.g., the CBF) in both time 
and space complexities, which is validated in the next section. 

IV. EVALUATION 
We conducted simulation experiments to evaluate the ASCF 

and compare with previous six representative filters, including 
the standard BF [1], CBF [4], dlCBF [17], RCBF [19], CQF [22], 
and CF [23]. In this section, we first describe the experimental 
methodology, and then provide the results on synthetic datasets. 

A. Experimental Methodology 
For a fair evaluation, we select optimal values of parameters 

for each filter to achieve the best performance as follows. 

For both the standard BF and CBF, we use k=log2(1/ε) hash 
functions to achieve a target false positive rate ε. We allocate 
n×1.44×log2(1/ε) bits to the standard BF for a set of up to n 
items. We allocate 4n×1.44×log2(1/ε) bits to the CBF because it 
uses four bits for a counter to support dynamic deletions. 

For the dlCBF, we use four hash functions to map an item to 
four blocks, each with the same number of buckets. Each bucket 
contains eight slots each with a two-bit counter and a fingerprint 
of size log2(24/ε) bits. We allocate n×(2+log2(24/ε))/σ buckets 
to the dlCBF and set the load factor to be σ=0.75. 

For the RCBF, we use one hash function to map an item to 
one of blocks, each with 64 buckets. Each bucket contains one 

slot that stores a fingerprint of size log2(σ/ε) bits. We allocate 
n/σ buckets to the RCBF and set the load factor to be σ=0.9. 

For the CQF, we use one hash function to map an item to one 
of blocks each with 64 buckets and a 136-bit metadata. Each 
bucket contains one slot that stores a fingerprint of size log2(1/ε) 
bits. We allocate n×(2.125+log2(1/ε))/σ buckets to the CQF and 
set the load factor to be σ=0.75 for avoiding the overflow. 

For both the CF and ASCF, we use two hash functions to 
map an item to two candidate buckets. Each bucket contains four 
slots, each with a fingerprint of size log2(1/ε) bits. We allocate 
a power of two (i.e., M) buckets to the CF and n×log2(8/ε)/σ 
buckets to the ASCF, and set the same load factor to be σ=0.95. 

We conducted two categories of experiments to evaluate the 
performance of each filter. In the first experiment, we run each 
filter that demands a maximum number of stored items. In the 
second experiment, we run each filter that demands a maximum 
memory size. We generate synthetic datasets of 64-bit integers 
for testing each filter. We use MurmurHash [29], a popular fast 
hash function to generate a random 64-bit hash value as an item. 
These experiments run on a server with Intel Xeon E5-2640 v3 
CPU@2.6GHz (8 cores, 20MB L3 cache) and 96GB DDR3 
main memory with one single thread. We measure the accuracy 
and performance metrics of each filter: the false positive rate, 
space cost, and lookup and update throughput. The results are 
averaged over ten trials. 

B. Results on Filters with Limited Numbers of Stored Items 
In this experiment, we first insert synthetic store sets of 220, 

222, and 224 64-bit integers into each filter with different target 
false positive rates (i.e., 10-2, 10-3, 10-4, 10-5, and 10-6). Then, we 
generate synthetic query sets each of which is 10 times the size 
of each store set to test each filter. Each query set has different 
positive lookup percentages ranging from 0% to 100%. The 
positive lookup percentage is X%, denoting that X% of queried 

TABLE III. FINGERPRINT SIZE IN BITS REQUIRED BY THE DLCBF, RCBF, CF, CQF, AND ASCF. 

dlCBF
12
15
18
22
25

RCBF
7
10
14
17
20

CF
10
13
17
20
23

ASCF
10
13
17
20
23

False Positive 
Rate

10-2

10-3

10-4

10-5

10-6

Fingerprint Size in Bits
CQF

7
10
14
17
20  

TABLE IV. SPACE COST PER ITEM REQUIRED BY THE ASCF AND PREVIOUS FILTERS. 

CBF
38.3
57.4
76.5
95.7
114.8

dlCBF
18.7
22.7
26.7
32.0
36.0

RCBF
13.3
16.3
20.3
23.3
26.3

CF
20.0
26.0
34.0
40.0
46.0

ASCF
10.5
13.7
17.9
21.1
24.2

False Positive 
Rate

10-2

10-3

10-4

10-5

10-6

Bits Per Item
BF
9.6
14.4
19.1
23.9
28.7

CQF
12.2
16.2
21.5
25.5
29.5  
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items is in the set while 1-X% is not in the set. Finally, we delete 
all items from each filter to test the delete performance. 

We note that the fingerprint-based variants of CBFs (e.g., the 
dlCBF, RCBF, CF, CQF, and ASCF) require non-byte-aligned 
fingerprints to achieve target false positive rates. Table III shows 
the size of non-byte-aligned fingerprints required by the dlCBF, 
RCBF, CF, CQF, and ASCF for different false positive rates. 
We see that the ASCF and CF have the same fingerprint size for 
same target false positive rates. To achieve high performance, 
we use an SIMD instruction _bextr_u32 to extract a non-byte-
aligned fingerprint from a 32-bit integer in these filters. 

Space Cost: Table IV shows the space cost per item required 
by the ASCF and previous filters. We see that the ASCF requires 
lower space cost per item than previous filters for low false 
positive rates ε 10-3, the usual case for most of applications. 
Specifically, the ASCF reduces up to 17.9% space cost per item 
over the CQF, up to 47.4% (1.9x) over the CF, up to 20.9% over 
the RCBF, up to 43.6% over the dlCBF, up to 78.9% over the 
CBF, and even up to 15.6% over the non-deletable standard BF. 
This is because the ADD/SUB operations do not require the total 
number of buckets in the ASCF to be a power of two, which 

results in high space efficiency. We note that the non-deletable 
standard BF requires lower space cost per item than the ASCF 
when the false positive rate is 10-2. 

Lookup Throughput: Fig. 6, Fig. 7, and Fig. 8 show the 
lookup throughput in million operations per second (MOPS) for 
different positive lookup percentages when the number of items 
stored in each filter is 220, 222, and 224, respectively. The lookup 
throughput of each filer varies as the positive lookup percentage 
varies from 0% to 100%. From these three figures, we see that 

 

Fig. 9. False positive rates achieved for different target false positive rates 
when the maximum number of items is stored in each filter. 

 

(a) False positive rate 10-2.                                     (b) False positive rate 10-4.                                      (c) False positive rate 10-6. 

Fig. 6. Lookup throughput for different positive lookup percentages when the number of items stored in each filter is 220. 

 

(a) False positive rate 10-2.                                     (b) False positive rate 10-4.                                      (c) False positive rate 10-6. 

Fig. 7. Lookup throughput for different positive lookup percentages when the number of items stored in each filter is 222. 

 

(a) False positive rate 10-2.                                     (b) False positive rate 10-4.                                      (c) False positive rate 10-6. 

Fig. 8. Lookup throughput for different positive lookup percentages when the number of items stored in each filter is 224. 
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the ASCF achieves the same lookup throughput as the CF. This 
is because the ADD/SUB operations used by the ASCF almost 
perform as fast as the XOR operation used by the CF. In addition, 
the ASCF outperforms other filters except for the CBF when the 
positive lookup percentage is no larger than 10%. We see that 
when the positive lookup percentage increases from 0% to 10%, 
the lookup throughput of the ASCF increases while that of the 
CBF decreases. This is because the ASCF needs to search fewer 
slots for a positive lookup than for a negative lookup while in 
contrast the CBF needs to search more slots (i.e., counters) for a 
positive lookup. Moreover, we see that the target false positive 
rate has little impact on the lookup throughput of the ASCF. This 
is because the false positive rate dominates the fingerprint size 
but not the lookup performance of the ASCF. 

False Positive Rates: Fig. 9 shows the false positive rates 
achieved for target false positive rates ranging from 10-2 to 10-6 
when the maximum number of items is stored in each filter. We 
see that the ASCF almost achieves the same false positive rates 
as the CQF, CF, and RCBF, and reduces 12.1% to 72.6% false 

positive compared to the CBF. We note that the dlCBF achieves 
pretty larger false positive rates than other filters. This is because 
it uses short fingerprints for high space efficiency, which incurs 
the increase in false positive rates. 

Update Throughput: Fig. 10 and Fig. 11 show the insert 
and delete throughput in MOPS for different false positive rates 
when the maximum number of items is stored in each filter. We 
see that the ASCF achieves the same update throughput as the 
CF. Specifically, on average, the ASCF and CF have 2.6 MOPS 
insert throughput and 4.0 MOPS delete throughput. In addition, 
the ASCF achievers higher update throughput than other filters. 
Specifically, the ASCF has higher insert (or delete) throughput 
than the CBF by up to 7.0x (or 11.1x), dlCBF by up to 3.7x (or 
2.7x), RCBF by up to 40.7x (or 67.2x), and CQF by up to 
10849x (or 24214x), respectively. Moreover, the target false 
positive rate has little impact on the insert and delete throughput 
of the ASCF. This is because it requires two memory accesses 
to two buckets for an insertion or deletion, which is independent 
on a target false positive rate. 

 

(a) 220 items.                                                            (b) 222 items.                                                           (c) 224 items. 

Fig. 10. Insert throughput for different target false positive rates when the maximum number of items stored in each filter is 220, 222, and 224. 

 

(a) 220 items.                                                           (b) 222 items.                                                          (c) 224 items. 

Fig. 11. Delete throughput for different target false positive rates when the maximum number of items stored in each filter is 220, 222, and 224. 

TABLE V. MAXIMUM NUMBERS OF ITEMS STORED IN DIFFERENT FIXED-SIZE FILTERS. 

dlCBF RCBF CQF ASCF
False Positive 

Rate
Maximum Number of Stored Items

CBF CF
Fixed Filter 

Size

2,795,724
2,795,713
2,795,722

3,355,443
3,355,443
3,355,443

2,776,917
2,776,917
2,776,917

3,984,588
3,984,588
3,984,588

10-2

10-4

10-6

1,753,626
876,813
584,542

3,984,588
3,984,588
3,984,588

8MB

 

TABLE VI. MINIMUM BITS PER ITEM REQUIRED BY DIFFERENT FIXED-SIZE FILTERS. 

CBF CF ASCF
False Positive 

Rate
Minimum Bits Per Item

CQF
38.3~114.8 16.8 16.810-2~10-6 24.2

RCBFdlCBF
22.224.0
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8MB  
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C. Results on Filters with Limited Memory Size 
In this experiment, we select proper values of parameters to 

ensure that the CF works with the optimal performance. This is 
because the CF requires the number of buckets to be a power of 
two. Therefore, we configure each filter to be the same fixed size 
(i.e., 8MB) and the fingerprint size to be 16 bits for fitting in an 
integer in the CF, CQF, and ASCF. In this experiment, we first 
insert a synthetic store set of n 64-bit integers into each filter 
with different table occupancies ranging from 10% to 100% for 
different target false positive rates 10-2, 10-4, and 10-6. The table 
occupancy is Y%, denoting that there is Y% of items stored in a 
full filter. Then, we generate a synthetic query set of 10×n 64-
bit integers with different positive lookup percentages (i.e., 0%, 
50%, and 100%) to test each filter. Finally, we delete all items 
from each filter to test the delete performance. 

Space Cost: Table V shows the maximum number of items 
stored in each filter with the fixed memory size of 8MB. In this 
case, the larger number of items is stored in a filter, the lower 
space cost per item is achieved by a filter. From the table, we see 

that the ASCF has the same maximum number of stored items 
as the CF, but has more items than other filters. In addition, 
Table VI shows the minimum bits per item required by different 
filters. We see that the ASCF achieves the same minimum space 
cost per item as the CF, but requires lower space cost per item 
than other filters. This is because the ASCF and CF have the 
same number of buckets (i.e., a power of two) and the same load 
factor (i.e., 0.95). When the number of buckets is not a power of 
two, the ASCF requires lower space cost per item than the CF 
(see Table IV). 

Lookup Throughput: Fig. 12 shows the lookup throughput 
in MOPS for different positive lookup percentages when the 
table occupancy is 100%. We see that the ASCF almost achieves 
the same lookup throughput as the CF because the ADD/SUB 
operations have the same performance as the XOR operation. 
The ASCF achieves higher lookup throughput than other filters. 
In addition, the ASCF increases the lookup throughput as the 
positive lookup percentage increases. This is because the ASCF 
searches fewer slots for a positive lookup than for a negative 
lookup when the positive lookup percentage becomes larger. 

 

(a) False positive rate 10-2.                                    (b) False positive rate 10-4.                                       (c) False positive rate 10-6. 

Fig. 12. Lookup throughput for different positive lookup percentages when the table occupancy is 100% and the memory size of each filter is 8MB. 

 

(a) False positive rate 10-2.                                    (b) False positive rate 10-4.                                       (c) False positive rate 10-6. 

Fig. 13. Insert throughput for different table occupancies when the memory size of each filter is 8MB. 

 

(a) False positive rate 10-2.                                    (b) False positive rate 10-4.                                       (c) False positive rate 10-6. 

Fig. 14. Delete throughput for different table occupancies when the memory size of each filter is 8MB. 
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Update Throughput: Fig. 13 and Fig. 14 show the insert 
and delete throughput in MOPS for different table occupancies. 
We see that the ASCF almost achieves the same insert and delete 
throughput as the CF, and outperforms other filters. Specifically, 
the ASCF achieves up to 12% lower insert and delete throughput 
than the CF when the table occupancy varies from 10% to 100%. 
Therefore, the ASCF has high update performance comparable 
to the CF. In addition, the ASCF achieves higher insert (or delete) 
throughput than the CBF by up to 18.7x (or up to 18.8x), dlCBF 
by up to 5.5x (or up to 2.8x), RCBF by up to 4.7x (or up to 4.9x), 
and CQF by up to 5904x (or up to 5689x), respectively. 

V. CONCLUSION 
This paper presents ASCF, a scalable variant of the cuckoo 

filter for improving the space efficiency while sustaining high 
performance. The ASCF is a blocked compact cuckoo hash table 
that uses the addition and subtraction (ADD/SUB) operations, 
instead of the XOR operation, to compute two candidate bucket 
indexes for an item’s fingerprint. The ADD/SUB operations not 
only perform fast, but also do not require the total number of 
buckets in the filter to be a power of two. Therefore, beyond the 
CF, the ASCF achieves lower space cost as well as the same 
high performance. Experimental results on simulation show that 
the ASCF requires less space than previous filters, and reduces 
up to 1.9x space cost per item over the CF. In addition, the ASCF 
achieves the same lookup and update throughput as the CF, but 
outperforms other filters. 
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