

Rational isogenies from irrational endomorphisms

Wouter Castryck¹ Lorenz Panny² Frederik Vercauteren¹

¹imec-COSIC, ESAT, KU Leuven ²TU Eindhoven

at everyone's home, 11 May 2020

The upshot for non-isogenists

The upshot for non-isogenists

- ▶ CSIDH ['si: said] is a ^(abelian) γ cryptographic group action

$$*: G \times X \longrightarrow X$$

on a certain set X of supersingular elliptic curves.

The upshot for non-isogenists

- ▶ CSIDH ['si: said] is a ^(abelian) cryptographic γ group action
$$*: G \times X \longrightarrow X$$
on a certain set X of supersingular elliptic curves.
- ▶ Open problem: 'Hash into X ': compute elements of X with no known connection (element of G) between them.

The upshot for non-isogenists

- ▶ CSIDH ['si: said] is a ^(abelian) cryptographic γ group action
$$*: G \times X \longrightarrow X$$
on a certain set X of supersingular elliptic curves.
- ▶ Open problem: 'Hash into X ': compute elements of X with no known connection (element of G) between them.
Situation with DLP: We can easily sample from $(\mathbb{Z}/p)^*$, $E(\mathbb{F}_q)$, ...

The upshot for non-isogenists

- ▶ CSIDH ['si: said] is a ^(abelian) cryptographic γ group action
$$*: G \times X \longrightarrow X$$
on a certain set X of supersingular elliptic curves.
- ▶ Open problem: 'Hash into X ': compute elements of X with no known connection (element of G) between them.
Situation with DLP: We can easily sample from $(\mathbb{Z}/p)^*, E(\mathbb{F}_q), \dots$
- ▶ Known methods to produce elements of X :

The upshot for non-isogenists

- ▶ CSIDH ['si: said] is a ^(abelian) \mathcal{Y} cryptographic group action
 - $*: G \times X \longrightarrow X$
 - on a certain set X of supersingular elliptic curves.
- ▶ Open problem: 'Hash into X ': compute elements of X with no known connection (element of G) between them.
Situation with DLP: We can easily sample from $(\mathbb{Z}/p)^*, E(\mathbb{F}_q), \dots$
- ▶ Known methods to produce elements of X :
 - ▶ Take known $x \in X$; pick random $g \in G$; compute $y := g * x$.
~~ obviously leaks a connection from x to y : it's g .

The upshot for non-isogenists

(abelian)

- ▶ CSIDH ['si: said] is a cryptographic^Y group action

$$*: G \times X \longrightarrow X$$

on a certain set X of supersingular elliptic curves.

- ▶ Open problem: 'Hash into X ': compute elements of X with no known connection (element of G) between them.

Situation with DLP: We can easily sample from $(\mathbb{Z}/p)^*, E(\mathbb{F}_q), \dots$

- ▶ Known methods to produce elements of X :

- ▶ Take known $x \in X$; pick random $g \in G$; compute $y := g * x$.
~~ **obviously leaks** a connection from x to y : it's g .
- ▶ Reduce a suitable CM curve $\mathcal{E}/\bar{\mathbb{Q}}$ modulo q .
~~ **???????**

The upshot for non-isogenists

(abelian)

- ▶ CSIDH ['si: said] is a cryptographic^Y group action

$$*: G \times X \longrightarrow X$$

on a certain set X of supersingular elliptic curves.

- ▶ Open problem: 'Hash into X ': compute elements of X with no known connection (element of G) between them.

Situation with DLP: We can easily sample from $(\mathbb{Z}/p)^*, E(\mathbb{F}_q), \dots$

- ▶ Known methods to produce elements of X :

- ▶ Take known $x \in X$; pick random $g \in G$; compute $y := g * x$.
~~ **obviously leaks** a connection from x to y : it's g .
- ▶ Reduce a suitable CM curve $\mathcal{E}/\bar{\mathbb{Q}}$ modulo q .
~~ **Our work** **can find a connection** to a certain $x \in X$.

The upshot for non-isogenists

(abelian)

- ▶ CSIDH ['si: said] is a cryptographic^Y group action

$$*: G \times X \longrightarrow X$$

on a certain set X of supersingular elliptic curves.

- ▶ Open problem: 'Hash into X ': compute elements of X with no known connection (element of G) between them.

Situation with DLP: We can easily sample from $(\mathbb{Z}/p)^*, E(\mathbb{F}_q), \dots$

- ▶ Known methods to produce elements of X :

- ▶ Take known $x \in X$; pick random $g \in G$; compute $y := g * x$.
~~ **obviously leaks** a connection from x to y : it's g .
- ▶ Reduce a suitable CM curve $\mathcal{E}/\bar{\mathbb{Q}}$ modulo q .
~~ **Our work** **can find a connection** to a certain $x \in X$.

See also very much related parallel work by Boneh and Love [arXiv:1910.03180].

Overview of CSIDH

Overview of CSIDH

- ▶ CSIDH is the CM action of an order $\mathcal{O} \subseteq \mathbb{Q}(\sqrt{-p})$ on the set X of \bigcup elliptic curves E/\mathbb{F}_p with $\text{End}_p(E) = \mathcal{O}$.
(\mathbb{F}_p -isomorphism classes of)

Overview of CSIDH

- ▶ CSIDH is the CM action of an order $\mathcal{O} \subseteq \mathbb{Q}(\sqrt{-p})$ on the set X of \mathbb{F}_p -isomorphism classes of elliptic curves E/\mathbb{F}_p with $\text{End}_p(E) = \mathcal{O}$.
- ▶ This means: An invertible ideal $\mathfrak{a} \subseteq \mathcal{O}$ acts on $E \in X$ by quotienting out the kernel subgroup $E[\mathfrak{a}]$.
~~~  $\rightsquigarrow$  free and transitive action of  $\text{cl}(\mathcal{O})$  on  $X$ .

# Overview of CSIDH

- ▶ CSIDH is the CM action of an order  $\mathcal{O} \subseteq \mathbb{Q}(\sqrt{-p})$  on the set  $X$  of  $\bigcup$  elliptic curves  $E/\mathbb{F}_p$  with  $\text{End}_p(E) = \mathcal{O}$ .  
( $\mathbb{F}_p$ -isomorphism classes of)
- ▶ This means: An invertible ideal  $\mathfrak{a} \subseteq \mathcal{O}$  acts on  $E \in X$  by quotienting out the kernel subgroup  $E[\mathfrak{a}]$ .  
 $\rightsquigarrow$  free and transitive action of  $\text{cl}(\mathcal{O})$  on  $X$ .
- ▶ Computing the action of  $\mathfrak{a} \subseteq \mathcal{O}$  is generally hard.  $\therefore$

# Overview of CSIDH

- ▶ CSIDH is the CM action of an order  $\mathcal{O} \subseteq \mathbb{Q}(\sqrt{-p})$  on the set  $X$  of  $\bigcup$  elliptic curves  $E/\mathbb{F}_p$  with  $\text{End}_p(E) = \mathcal{O}$ .  
( $\mathbb{F}_p$ -isomorphism classes of)
- ▶ This means: An invertible ideal  $\mathfrak{a} \subseteq \mathcal{O}$  acts on  $E \in X$  by quotienting out the kernel subgroup  $E[\mathfrak{a}]$ .  
 $\rightsquigarrow$  free and transitive action of  $\text{cl}(\mathcal{O})$  on  $X$ .
- ▶ Computing the action of  $\mathfrak{a} \subseteq \mathcal{O}$  is generally hard.  $\therefore$   
 $\rightsquigarrow$  Use  $\mathfrak{a} = \mathfrak{l}_1^{e_1} \cdots \mathfrak{l}_n^{e_n}$  with small  $N(\mathfrak{l}_i)$  and  $|e_i| \rightsquigarrow$  efficient!

# Overview of CSIDH

- ▶ CSIDH is the CM action of an order  $\mathcal{O} \subseteq \mathbb{Q}(\sqrt{-p})$  on the set  $X$  of  $\bigcup$  elliptic curves  $E/\mathbb{F}_p$  with  $\text{End}_p(E) = \mathcal{O}$ .  
( $\mathbb{F}_p$ -isomorphism classes of)
- ▶ This means: An invertible ideal  $\mathfrak{a} \subseteq \mathcal{O}$  acts on  $E \in X$  by quotienting out the kernel subgroup  $E[\mathfrak{a}]$ .  
~~~ free and transitive action of  $\text{cl}(\mathcal{O})$  on  $X$ .
- ▶ Computing the action of $\mathfrak{a} \subseteq \mathcal{O}$ is generally hard. \therefore
~~~ Use  $\mathfrak{a} = \mathfrak{l}_1^{e_1} \cdots \mathfrak{l}_n^{e_n}$  with small  $N(\mathfrak{l}_i)$  and  $|e_i| \rightsquigarrow$  efficient!  
(Advantage of CSIDH: applying  $\mathfrak{l}_i$  is particularly cheap.)

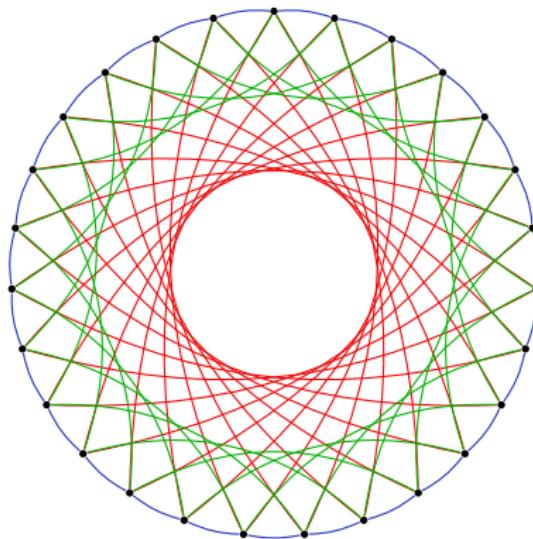
# Overview of CSIDH

- ▶ CSIDH is the CM action of an order  $\mathcal{O} \subseteq \mathbb{Q}(\sqrt{-p})$  on the set  $X$  of  $\bigcup$  elliptic curves  $E/\mathbb{F}_p$  with  $\text{End}_p(E) = \mathcal{O}$ .  
( $\mathbb{F}_p$ -isomorphism classes of)
- ▶ This means: An invertible ideal  $\mathfrak{a} \subseteq \mathcal{O}$  acts on  $E \in X$  by quotienting out the kernel subgroup  $E[\mathfrak{a}]$ .  
~~> free and transitive action of  $\text{cl}(\mathcal{O})$  on  $X$ .
- ▶ Computing the action of  $\mathfrak{a} \subseteq \mathcal{O}$  is generally hard.  $\therefore$   
~~> Use  $\mathfrak{a} = \mathfrak{l}_1^{e_1} \cdots \mathfrak{l}_n^{e_n}$  with small  $N(\mathfrak{l}_i)$  and  $|e_i| \rightsquigarrow$  efficient!  
(Advantage of CSIDH: applying  $\mathfrak{l}_i$  is particularly cheap.)

⇒ Bottom line: Relatively fast non-interactive key exchange.  
Think Diffie–Hellman, but post-quantum! (and slower...)

# Isogeny graphs

Visualizing the action of  $\mathfrak{l}_1, \dots, \mathfrak{l}_n$ :



Each **node** is an elliptic curve over  $\mathbb{F}_p$ , up to  $\cong_{\mathbb{F}_p}$ .

Each **edge** is the action of  $\mathfrak{l}_1$ ,  $\mathfrak{l}_2$ , or  $\mathfrak{l}_3$ , or their inverses.

## Notation for this talk

- ▶ The prime  $p$  is ‘large’, certainly  $> 3$ .
- ▶ Curves are elliptic, supersingular, and defined over  $\mathbb{F}_{p^2}$ .
- ▶  $E^t$ : the *quadratic twist* of  $E$ .
- ▶  $\text{End}(E)$ : *full* endomorphism ring (over  $\bar{\mathbb{F}}_p$ ).
- ▶  $\text{End}_p(E)$ : *rational* endomorphism ring (over  $\mathbb{F}_p$ ).
- ▶  $E_0$ : a starting curve with known endomorphism ring.  
For instance:  $p \equiv 3 \pmod{4}$  and  $E_0: y^2 = x^3 + x$ .
- ▶  $\mathcal{O}$ : the order  $\mathbb{Z}[\sqrt{-p}]$  or  $\mathbb{Z}[(1+\sqrt{-p})/2]$  in  $\mathbb{Q}(\sqrt{-p})$ .
- ▶  $\mathfrak{l}$ : a fixed prime ideal of  $\mathcal{O}$  lying above  $\ell$ .

## A starting point...

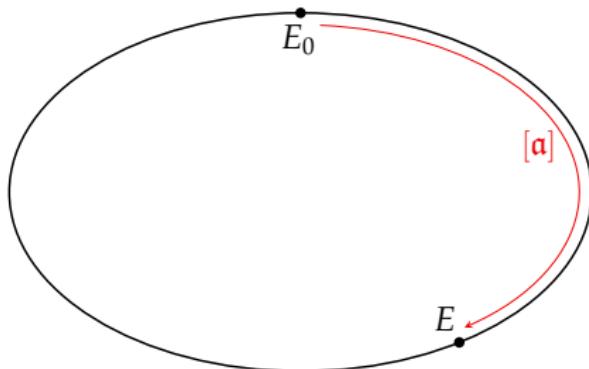
Suppose a curve  $E = [\mathfrak{a}]E_0$  has an irrational endomorphism  $\tau \in \text{End}(E) \setminus \text{End}_p(E)$ , say of prime degree  $\ell$ .

**Q:** Where in the isogeny graph is it?

## A starting point...

Suppose a curve  $E = [\mathfrak{a}]E_0$  has an irrational endomorphism  $\tau \in \text{End}(E) \setminus \text{End}_p(E)$ , say of prime degree  $\ell$ .

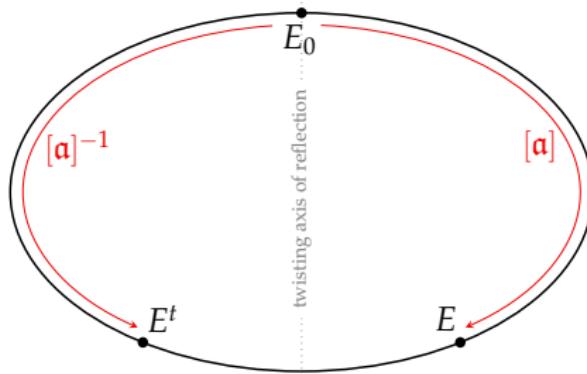
Q: Where in the isogeny graph is it?



## A starting point...

Suppose a curve  $E = [\alpha]E_0$  has an irrational endomorphism  $\tau \in \text{End}(E) \setminus \text{End}_p(E)$ , say of prime degree  $\ell$ .

**Q:** Where in the isogeny graph is it?

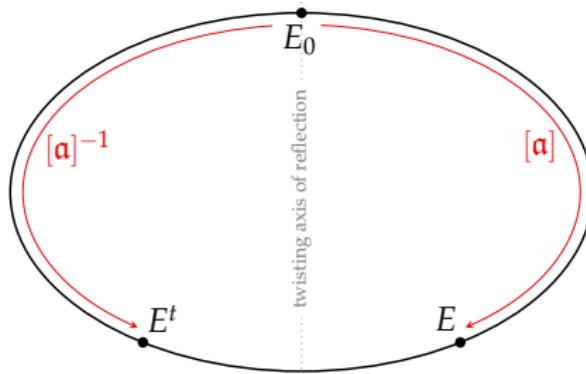


**Fact:** If  $p \equiv 3 \pmod{4}$  and  $E_0: y^2 = x^3 + x$ , then “given  $[\alpha]E_0$  we can compute  $[\alpha]^{-1}E_0$  by mere quadratic twisting”. [CSIDH paper]

## A starting point...

Suppose a curve  $E = [\alpha]E_0$  has an irrational endomorphism  $\tau \in \text{End}(E) \setminus \text{End}_p(E)$ , say of prime degree  $\ell$ .

Q: Where in the isogeny graph is it?



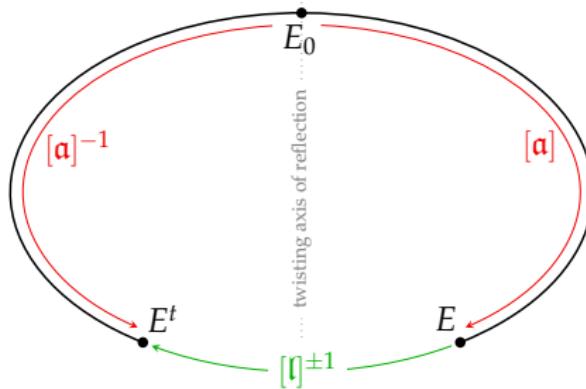
**Fact:** *If*  $p \equiv 3 \pmod{4}$  and  $E_0: y^2 = x^3 + x$ , then “given  $[\alpha]E_0$  we can compute  $[\alpha]^{-1}E_0$  by mere quadratic twisting”. [CSIDH paper]

**Fact:** *If*  $\tau\pi = -\pi\tau$ , then  $(E \xrightarrow{\sim} E^t) \circ \tau$  is an  $\mathbb{F}_p$ -rational isogeny. Therefore  $\tau$  implies an edge  $E \rightarrow E^t$  in the  $\ell$ -isogeny graph.

## A starting point...

Suppose a curve  $E = [\alpha]E_0$  has an irrational endomorphism  $\tau \in \text{End}(E) \setminus \text{End}_p(E)$ , say of prime degree  $\ell$ .

Q: Where in the isogeny graph is it?



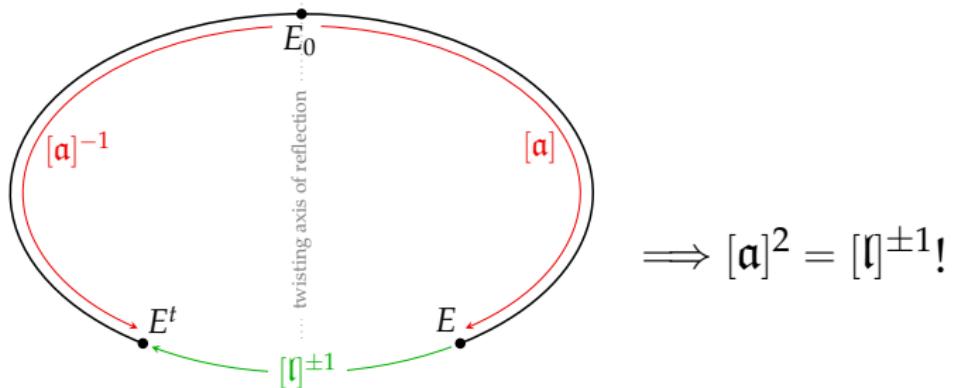
**Fact:** *If*  $p \equiv 3 \pmod{4}$  and  $E_0: y^2 = x^3 + x$ , then “given  $[\alpha]E_0$  we can compute  $[\alpha]^{-1}E_0$  by mere quadratic twisting”. [CSIDH paper]

**Fact:** *If*  $\tau\pi = -\pi\tau$ , then  $(E \xrightarrow{\sim} E^t) \circ \tau$  is an  $\mathbb{F}_p$ -rational isogeny. Therefore  $\tau$  implies an edge  $E \rightarrow E^t$  in the  $\ell$ -isogeny graph.

## A starting point...

Suppose a curve  $E = [\alpha]E_0$  has an irrational endomorphism  $\tau \in \text{End}(E) \setminus \text{End}_p(E)$ , say of prime degree  $\ell$ .

Q: Where in the isogeny graph is it?



**Fact:** *If*  $p \equiv 3 \pmod{4}$  and  $E_0: y^2 = x^3 + x$ , then “given  $[\alpha]E_0$  we can compute  $[\alpha]^{-1}E_0$  by mere quadratic twisting”. [CSIDH paper]

**Fact:** *If*  $\tau\pi = -\pi\tau$ , then  $(E \xrightarrow{\sim} E^t) \circ \tau$  is an  $\mathbb{F}_p$ -rational isogeny. Therefore  $\tau$  implies an edge  $E \rightarrow E^t$  in the  $\ell$ -isogeny graph.

# Coincidence?

Previous slide:

Knowing that  $E = [\mathfrak{a}]E_0$  has a 'special' endomorphism  $\tau$  allows us to recover  $[\mathfrak{a}]$  up to 2-torsion.

**Q:** Is this just a weird special case?

# Coincidence?

Previous slide:

Knowing that  $E = [\mathfrak{a}]E_0$  has a 'special' endomorphism  $\tau$  allows us to recover  $[\mathfrak{a}]$  up to 2-torsion.

**Q:** Is this just a weird special case?    **(A:** No.)

# Coincidence?

Previous slide:

Knowing that  $E = [\alpha]E_0$  has a 'special' endomorphism  $\tau$  allows us to recover  $[\alpha]$  up to 2-torsion.

**Q:** Is this just a weird special case?    **(A:** No.)

**Definition.** Let  $E$  be defined over  $\mathbb{F}_p$ .

Then  $\alpha \in \text{End}(E)$  is a *twisting endomorphism* of  $E$  if  $\alpha\pi = -\pi\alpha$ .

## To-do list

Let  $E = [\mathfrak{a}]E_0$ . We've seen:

**If**  $p \equiv 3 \pmod{4}$  **and**  $E_0: y^2 = x^3 + x$  **and**  $\tau \in \text{End}(E) \setminus \text{End}_p(E)$   
with  $\deg \tau = \ell$  prime **and**  $\tau\pi = -\pi\tau$ , **then**  $[\mathfrak{a}]^2 = [\ell]^{\pm 1}$ .

## To-do list

Let  $E = [\mathfrak{a}]E_0$ . We've seen:

**If  $p \equiv 3 \pmod{4}$  and  $E_0: y^2 = x^3 + x$  and  $\tau \in \text{End}(E) \setminus \text{End}_p(E)$  with  $\deg \tau = \ell$  prime and  $\tau\pi = -\pi\tau$ , then  $[\mathfrak{a}]^2 = [\ell]^{\pm 1}$ .**

- ▶ How to compute square roots in  $\text{cl}(\mathcal{O})$ ?

## To-do list

Let  $E = [\mathfrak{a}]E_0$ . We've seen:

**If  $p \equiv 3 \pmod{4}$  and  $E_0: y^2 = x^3 + x$  and  $\tau \in \text{End}(E) \setminus \text{End}_p(E)$  with  $\deg \tau = \ell$  prime and  $\tau\pi = -\pi\tau$ , then  $[\mathfrak{a}]^2 = [\ell]^{\pm 1}$ .**

- ▶ How to **compute** square roots in  $\text{cl}(\mathcal{O})$ ?
- ▶ How much ambiguity is in the **2-torsion**?

## To-do list

Let  $E = [\mathfrak{a}]E_0$ . We've seen:

**If  $p \equiv 3 \pmod{4}$  and  $E_0: y^2 = x^3 + x$  and  $\tau \in \text{End}(E) \setminus \text{End}_p(E)$  with  $\deg \tau = \ell$  prime and  $\tau\pi = -\pi\tau$ , then  $[\mathfrak{a}]^2 = [\ell]^{\pm 1}$ .**

- ▶ How to **compute** square roots in  $\text{cl}(\mathcal{O})$ ?
- ▶ How much ambiguity is in the **2-torsion**?
- ▶ When are endomorphisms *twisting*?

## To-do list

Let  $E = [\mathfrak{a}]E_0$ . We've seen:

**If  $p \equiv 3 \pmod{4}$  and  $E_0: y^2 = x^3 + x$  and  $\tau \in \text{End}(E) \setminus \text{End}_p(E)$  with  $\deg \tau = \ell$  prime and  $\tau\pi = -\pi\tau$ , then  $[\mathfrak{a}]^2 = [\ell]^{\pm 1}$ .**

- ▶ How to **compute** square roots in  $\text{cl}(\mathcal{O})$ ?
- ▶ How much ambiguity is in the **2-torsion**?
- ▶ When are endomorphisms *twisting*?
- ▶ Can we deal with **starting curves**  $E_0 \neq E_0^t$ ?

## To-do list

Let  $E = [\mathfrak{a}]E_0$ . We've seen:

**If  $p \equiv 3 \pmod{4}$  and  $E_0: y^2 = x^3 + x$  and  $\tau \in \text{End}(E) \setminus \text{End}_p(E)$  with  $\deg \tau = \ell$  prime and  $\tau\pi = -\pi\tau$ , then  $[\mathfrak{a}]^2 = [\ell]^{\pm 1}$ .**

- ▶ How to **compute** square roots in  $\text{cl}(\mathcal{O})$ ?
- ▶ How much ambiguity is in the **2-torsion**?
- ▶ When are endomorphisms **twisting**?
- ▶ Can we deal with **starting curves**  $E_0 \neq E_0^t$ ?
- ▶ Can we generalize to primes  $p \not\equiv 3 \pmod{4}$ ?

## Square roots in $\text{cl}(\mathcal{O})$

From  $\ell$  we learn that  $[\mathfrak{a}]^2 = [\mathfrak{l}]^{\pm 1}$ . But how to **recover** (an)  $[\mathfrak{a}]$ ?

## Square roots in $\text{cl}(\mathcal{O})$

From  $\ell$  we learn that  $[\mathfrak{a}]^2 = [\mathfrak{l}]^{\pm 1}$ . But how to **recover** (an)  $[\mathfrak{a}]$ ?  
Perhaps unsurprisingly, **Gauß** knew how to do this. [DA § 286]  
His method is **polynomial-time**.

## Square roots in $\text{cl}(\mathcal{O})$

From  $\ell$  we learn that  $[\mathfrak{a}]^2 = [\mathfrak{l}]^{\pm 1}$ . But how to **recover** (an)  $[\mathfrak{a}]$ ?

Perhaps unsurprisingly, **Gauß** knew how to do this. [DA § 286]  
His method is **polynomial-time**.

Note: If the class number  $h(\mathcal{O}) = |\text{cl}(\mathcal{O})|$  is known and odd, then

$$\sqrt{[\mathfrak{s}]} = [\mathfrak{s}]^{(h(\mathcal{O})+1)/2}.$$

Gauß' algorithm does not require computing  $h(\mathcal{O})$ .

## Square roots in $\text{cl}(\mathcal{O})$

How many square roots exist?

## Square roots in $\text{cl}(\mathcal{O})$

How many square roots exist?

**Fact:** If  $\mathfrak{r} \subseteq \mathcal{O}$  is a non-principal prime ideal such that  $\mathfrak{r}^2$  is principal, then  $\mathbf{N}(\mathfrak{r})$  divides  $\Delta := \text{disc}(\mathbb{Q}(\sqrt{-p})) \in \{-p, -4p\}$ .

## Square roots in $\text{cl}(\mathcal{O})$

How many square roots exist?

**Fact:** If  $\mathfrak{r} \subseteq \mathcal{O}$  is a non-principal prime ideal such that  $\mathfrak{r}^2$  is principal, then  $\mathbf{N}(\mathfrak{r})$  divides  $\Delta := \text{disc}(\mathbb{Q}(\sqrt{-p})) \in \{-p, -4p\}$ .

For the potential divisors of  $\Delta$ , we get:

- $p \mid \Delta$ : yields  $(\pi) \subseteq \mathcal{O}$  (principal).
- $2 \mid \Delta$ : yields  $(2, \pi+1) \subseteq \mathcal{O}$  (non-principal).

## Square roots in $\text{cl}(\mathcal{O})$

How many square roots exist?

**Fact:** If  $\mathfrak{r} \subseteq \mathcal{O}$  is a non-principal prime ideal such that  $\mathfrak{r}^2$  is principal, then  $\mathbf{N}(\mathfrak{r})$  divides  $\Delta := \text{disc}(\mathbb{Q}(\sqrt{-p})) \in \{-p, -4p\}$ .

For the potential divisors of  $\Delta$ , we get:

- $p \mid \Delta$ : yields  $(\pi) \subseteq \mathcal{O}$  (principal).
- $2 \mid \Delta$ : yields  $(2, \pi+1) \subseteq \mathcal{O}$  (non-principal).

$$\implies \text{cl}(\mathcal{O})[2] \cong \begin{cases} \{\text{id}\} & \text{when } p \equiv 3 \pmod{4}; \\ \mathbb{Z}/2 & \text{when } p \equiv 1 \pmod{4}. \end{cases}$$

Bottom line: Elements  $[\mathfrak{s}] \in \text{cl}(\mathcal{O})^2$  have either **one** or **two** square roots, depending on  $p \bmod 4$ .

## To-do list

- ▶ How to compute square roots in  $\text{cl}(\mathcal{O})$ ? ✓  
Gauß found a polynomial-time algorithm.
- ▶ How much ambiguity is in the 2-torsion? ✓  
At most two square roots;  $\text{cl}(\mathcal{O})[2] \leq \mathbb{Z}/2$ .
- ▶ When are endomorphisms *twisting*?
- ▶ Can we deal with starting curves  $E_0 \neq E_0^t$ ?
- ▶ Can we generalize to primes  $p \not\equiv 3 \pmod{4}$ ?

## Twisting endomorphisms

We wanted to locate [reduced CM curves](#) in the isogeny graph.

**Q:** How common is it for an endomorphism to be [twisting](#)?

# Twisting endomorphisms

We wanted to locate [reduced CM curves](#) in the isogeny graph.

**Q:** How common is it for an endomorphism to be [twisting](#)?

Suppose  $E/\mathbb{F}_p$  is the supersingular reduction of a curve  $\mathcal{E}/\bar{\mathbb{Q}}$  with CM by  $\mathbb{Z}[\Psi]$  where  $\Psi$  has prime degree  $\ell \leq (p+1)/4$ .

Then the reduction  $\psi$  of  $\Psi$  is a twisting endomorphism.

# Twisting endomorphisms

We wanted to locate **reduced CM curves** in the isogeny graph.

**Q:** How common is it for an endomorphism to be **twisting**?

Suppose  $E/\mathbb{F}_p$  is the supersingular reduction of a curve  $\mathcal{E}/\bar{\mathbb{Q}}$  with CM by  $\mathbb{Z}[\Psi]$  where  $\Psi$  has prime degree  $\ell \leq (p+1)/4$ .

Then the reduction  $\psi$  of  $\Psi$  is a twisting endomorphism.

⇒ For large  $p$ , **reduced CM endomorphisms are practically always twisting.**

# Twisting endomorphisms

We wanted to locate **reduced CM curves** in the isogeny graph.

**Q:** How common is it for an endomorphism to be **twisting**?

Suppose  $E/\mathbb{F}_p$  is the supersingular reduction of a curve  $\mathcal{E}/\bar{\mathbb{Q}}$  with CM by  $\mathbb{Z}[\Psi]$  where  $\Psi$  has prime degree  $\ell \leq (p+1)/4$ .

Then the reduction  $\psi$  of  $\Psi$  is a twisting endomorphism.

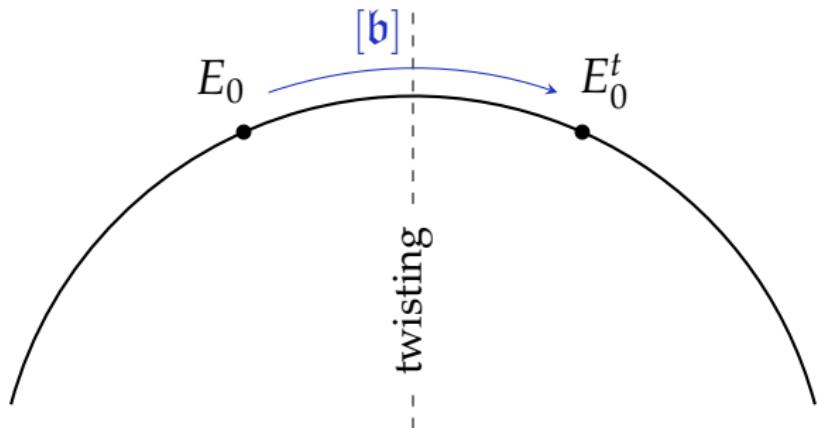
⇒ For large  $p$ , **reduced CM endomorphisms are practically always twisting.**

Moreover, given any irrational endomorphism, it is **typically easy** to find a twisting endomorphism.

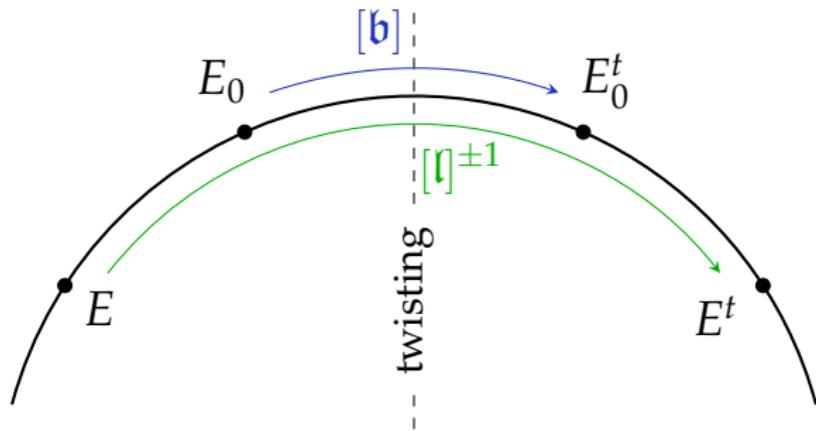
## To-do list

- ▶ How to **compute** square roots in  $\text{cl}(\mathcal{O})$ ? ✓  
Gauß found a polynomial-time algorithm.
- ▶ How much ambiguity is in the **2-torsion**? ✓  
At most two square roots;  $\text{cl}(\mathcal{O})[2] \leq \mathbb{Z}/2$ .
- ▶ When are endomorphisms *twisting*? ✓  
Sufficient: reduced CM endomorphisms with  $\deg \leq (p+1)/4$ .
- ▶ Can we deal with **starting curves**  $E_0 \neq E_0^t$ ?
- ▶ Can we generalize to primes  $p \not\equiv 3 \pmod{4}$ ?

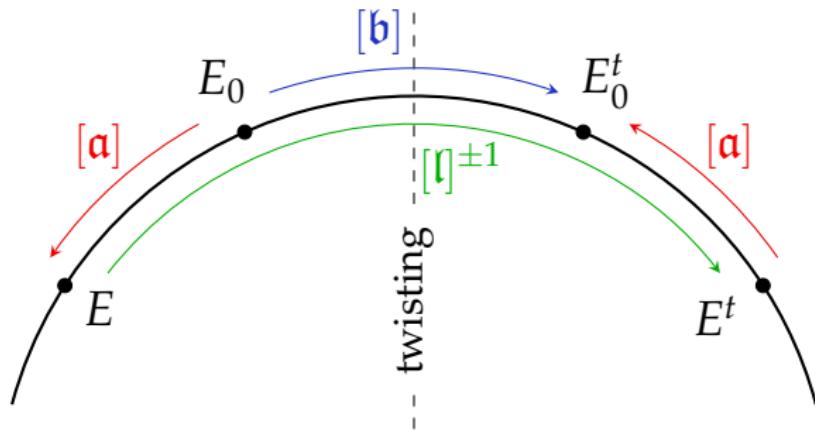
## Starting curves which are not their own twist



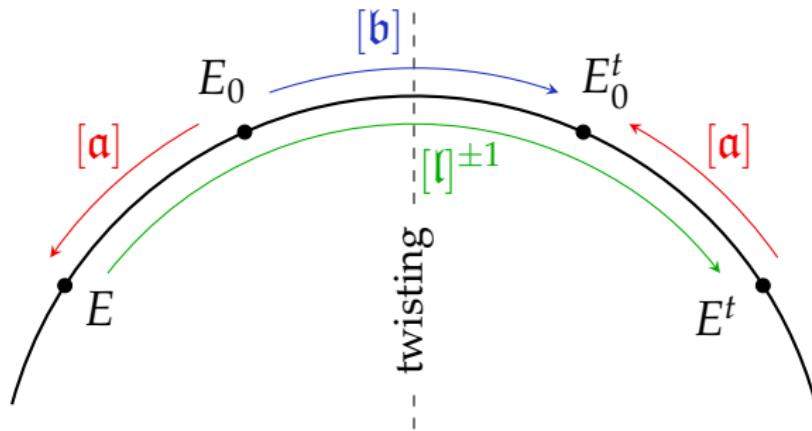
## Starting curves which are not their own twist



## Starting curves which are not their own twist



## Starting curves which are not their own twist

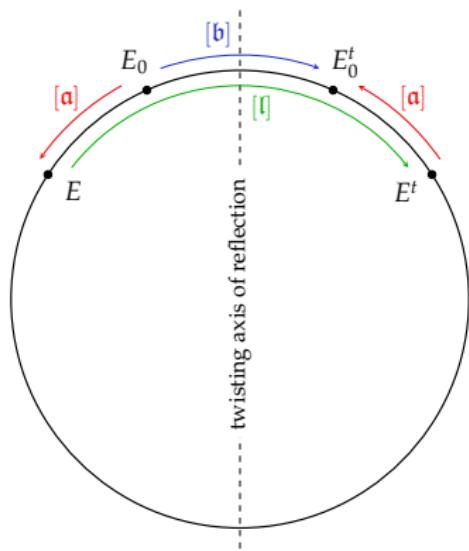


$$[l]^{\pm 1} = [b][a]^{-2} \implies [a]^2 = [b][l]^{\mp 1}$$

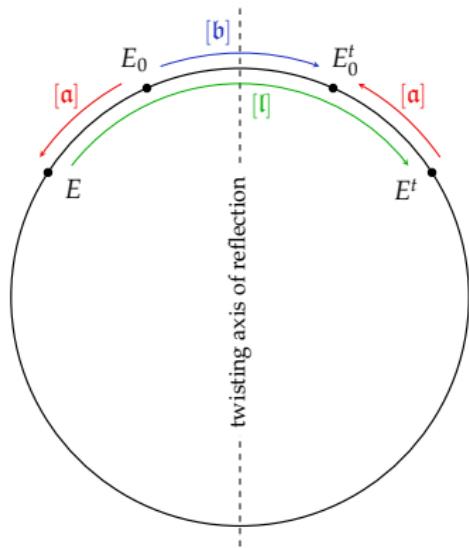
## To-do list

- ▶ How to **compute** square roots in  $\text{cl}(\mathcal{O})$ ? ✓  
Gauß found a polynomial-time algorithm.
- ▶ How much ambiguity is in the **2-torsion**? ✓  
At most two square roots;  $\text{cl}(\mathcal{O})[2] \leq \mathbb{Z}/2$ .
- ▶ When are endomorphisms **twisting**? ✓  
Sufficient: reduced CM endomorphisms with  $\deg \leq (p+1)/4$ .
- ▶ Can we deal with **starting curves**  $E_0 \neq E_0^t$ ? ✓  
Yes; the same idea works modulo technicalities.
- ▶ Can we generalize to primes  $p \not\equiv 3 \pmod{4}$ ?

## The case $p \equiv 1 \pmod 4$

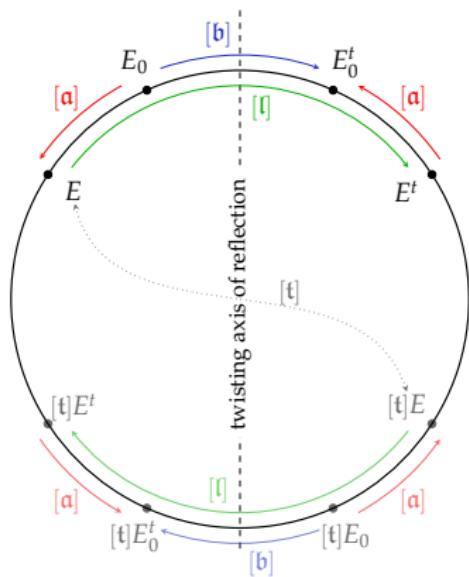


## The case $p \equiv 1 \pmod 4$



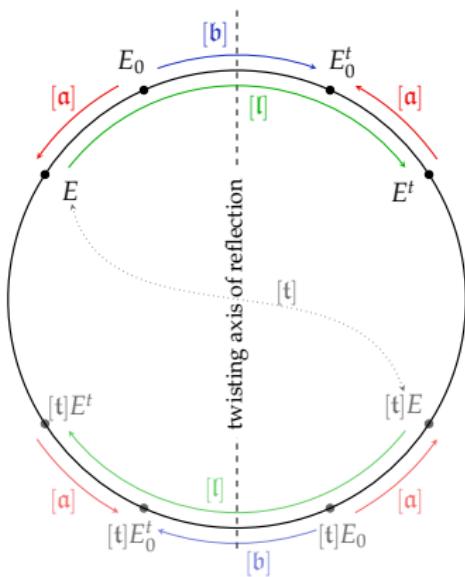
Long story short: Everything works the same, but the element  $t := [(2, \pi+1)]$  of order 2 introduces an additional symmetry.

## The case $p \equiv 1 \pmod 4$



Long story short: Everything works the same, but the element  $t := [(2, \pi+1)]$  of order 2 introduces an additional symmetry.

## The case $p \equiv 1 \pmod 4$



Long story short: Everything works the same, but the element  $t := [(2, \pi+1)]$  of **order 2** introduces an **additional symmetry**.

~~ Two candidates for  $[\alpha]$ . Find  $[\alpha]$  by brute-force testing **or** use ePrint 2020/151, which **breaks DDH** for the case  $p \equiv 1 \pmod 4$ .

## To-do list

- ▶ How to **compute** square roots in  $\text{cl}(\mathcal{O})$ ? ✓  
Gauß found a polynomial-time algorithm.
- ▶ How much ambiguity is in the **2-torsion**? ✓  
At most two square roots;  $\text{cl}(\mathcal{O})[2] \leq \mathbb{Z}/2$ .
- ▶ When are endomorphisms **twisting**? ✓  
Sufficient: reduced CM endomorphisms with  $\deg \leq (p+1)/4$ .
- ▶ Can we deal with **starting curves**  $E_0 \neq E_0^t$ ? ✓  
Yes; the same idea works modulo technicalities.
- ▶ Can we generalize to primes  $p \not\equiv 3 \pmod{4}$ ? ✓  
Yes.

# Our 'locating CM curves' theorem

Let  $p \equiv 3 \pmod{4}$  and  $\ell < (p+1)/4$  be primes with  $(\frac{-p}{\ell}) = 1$ .

We show:

- ▶ How many curves  $/\mathbb{F}_p$  are reductions of curves  $/\bar{\mathbb{Q}}$  with CM by orders  $\mathcal{R} \subseteq \mathbb{Q}(\sqrt{-\ell})$  containing  $\mathbb{Z}[\sqrt{-\ell}]$ .
- ▶ Which combinations of  $(\text{End}_p, \mathcal{R})$  are possible.
- ▶ Where in the isogeny graph all these curves are located:  
We give connecting ideals to the curve  $E_0: y^2 = x^3 \pm x$ .

# Our 'locating CM curves' theorem

Let  $p \equiv 3 \pmod{4}$  and  $\ell < (p+1)/4$  be primes with  $(\frac{-p}{\ell}) = 1$ .

We show:

- ▶ How many curves  $/\mathbb{F}_p$  are reductions of curves  $/\bar{\mathbb{Q}}$  with CM by orders  $\mathcal{R} \subseteq \mathbb{Q}(\sqrt{-\ell})$  containing  $\mathbb{Z}[\sqrt{-\ell}]$ .
- ▶ Which combinations of  $(\text{End}_p, \mathcal{R})$  are possible.
- ▶ Where in the isogeny graph all these curves are located:  
We give connecting ideals to the curve  $E_0: y^2 = x^3 \pm x$ .

Remark: Similar results are possible for  $p \equiv 1 \pmod{4}$ .

## An example

In the CSIDH-512 parameter set,  $p \equiv 11 \pmod{12}$ .

Q: Where is  $E: y^2 = x^3 + 1$ ?

## An example

In the CSIDH-512 parameter set,  $p \equiv 11 \pmod{12}$ .

Q: Where is  $E: y^2 = x^3 + 1$ ?

Our very explicit answer:

$$E = [(3, \pi - 1)^{12732622114742137588515093005319601080810257152743211796285430487798805863095}]E_0$$

This ideal class corresponds to (e.g.) the private key:

$$(5, -7, -1, 1, -4, -5, -8, 4, -1, 5, 1, 0, -2, -4, -2, 2, -9, 4, 2, 5, 1, 1, 1, 5, -4, 2, 6, 5, -1, 0, 0, -4, -1, -3, -1, -4, 1, 7, 1, 4, 1, 4, -7, 0, -3, -1, 0, 1, 2, 3, 1, 2, -4, -5, 9, -1, 4, 0, 5, 1, 0, 1, 3, 0, 2, 2, 2, -1, 2, 1, -1, 11, 3).$$

[relies on data from ePrint 2019/498]

## One last thing: $\mathbb{F}_p$ -ifying the KLPT algorithm

Let  $E$  be a supersingular elliptic curve.

- ▶ Known [KLPT'14]: When  $E/\mathbb{F}_{p^2}$  and given  $\text{End}(E)$ , one can compute an isogeny  $E_0 \rightarrow E$  in polynomial time.

## One last thing: $\mathbb{F}_p$ -ifying the KLPT algorithm

Let  $E$  be a supersingular elliptic curve.

- Known [KLPT'14]: When  $E/\mathbb{F}_{p^2}$  and given  $\text{End}(E)$ , one can compute an isogeny  $E_0 \rightarrow E$  in polynomial time.

This isogeny is **usually not defined over  $\mathbb{F}_p$ !**

~**Q:** Can we safely reveal endomorphisms in CSIDH?

# One last thing: $\mathbb{F}_p$ -ifying the KLPT algorithm

Let  $E$  be a supersingular elliptic curve.

- Known [KLPT'14]: When  $E/\mathbb{F}_{p^2}$  and given  $\text{End}(E)$ , one can compute an isogeny  $E_0 \rightarrow E$  in polynomial time.

This isogeny is **usually not defined over  $\mathbb{F}_p$ !**

↪ **Q:** Can we safely reveal endomorphisms in CSIDH?

- We show: When  $E/\mathbb{F}_p$  and given  $\text{End}(E)$ , one can compute an **ideal**  $\mathfrak{a} \subseteq \text{End}_p(E_0)$  with  $E_0/\mathfrak{a} \cong E$  in polynomial time.

# One last thing: $\mathbb{F}_p$ -ifying the KLPT algorithm

Let  $E$  be a supersingular elliptic curve.

- Known [KLPT'14]: When  $E/\mathbb{F}_{p^2}$  and given  $\text{End}(E)$ , one can compute an isogeny  $E_0 \rightarrow E$  in polynomial time.

This isogeny is **usually not defined over  $\mathbb{F}_p$ !**

↪ **Q:** Can we safely reveal endomorphisms in CSIDH?

- We show: When  $E/\mathbb{F}_p$  and given  $\text{End}(E)$ , one can compute an **ideal**  $\mathfrak{a} \subseteq \text{End}_p(E_0)$  with  $E_0/\mathfrak{a} \cong E$  in polynomial time.
  - **Caveat:** Turning  $\mathfrak{a}$  into an isogeny  $E_0 \rightarrow E$  takes superpolynomial time  $L_p[1/2, \sqrt{2}]$ .

# One last thing: $\mathbb{F}_p$ -ifying the KLPT algorithm

Let  $E$  be a supersingular elliptic curve.

- ▶ Known [KLPT'14]: When  $E/\mathbb{F}_{p^2}$  and given  $\text{End}(E)$ , one can compute an isogeny  $E_0 \rightarrow E$  in polynomial time.

This isogeny is **usually not defined over  $\mathbb{F}_p$ !**

↪ **Q:** Can we safely reveal endomorphisms in CSIDH?

- ▶ We show: When  $E/\mathbb{F}_p$  and given  $\text{End}(E)$ , one can compute an **ideal**  $\mathfrak{a} \subseteq \text{End}_p(E_0)$  with  $E_0/\mathfrak{a} \cong E$  in polynomial time.
  - ▶ **Caveat:** Turning  $\mathfrak{a}$  into an isogeny  $E_0 \rightarrow E$  takes superpolynomial time  $L_p[1/2, \sqrt{2}]$ .
  - ▶ **But** this might be optimal: we show that doing better implies faster discrete logarithms in  $\text{cl}(\mathbb{Q}(\sqrt{-p}))$ .

Thanks!