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The upshot for non-isogenists

(abelian)

» CSIDH ['si:sard] is a cryptographic'group action
x:GxX—X

on a certain set X of supersingular elliptic curves.

» Open problem: ‘Hash into X": compute elements of X with
no known connection (element of G) between them.
Situation with DLP: We can easily sample from (Z/p)*, E(Fy), ...

» Known methods to produce elements of X:

» Take known x € X; pick random g € G; compute y := g * x.
~+ obviously leaks a connection from x to y: it’s g.

» Reduce a suitable CM curve £/Q modulo g.
~» Our work can find a connection to a certain x € X.

See also very much related parallel work by Boneh and Love [arXiv:1910.03180].
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Overview of CSIDH

» CSIDH is the CM action of an order O C Q(/—p)
on the set X of  elliptic curves E/F, with End,(E) = O.

(IFp-isomorphism classes of)
» This means: An invertible ideal a C O actson E € X
by quotienting out the kernel subgroup E|a].

~~ free and transitive action of cl(O) on X.

» Computing the action of a C O is generally hard. ~
~ Use a = [{' - - [} with small N(;) and |e;| ~ efficient!

(Advantage of CSIDH: applying [; is particularly cheap.)

— Bottom line: Relatively fast non-interactive key exchange.
Think Diffie-Hellman, but post-quantum!
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Isogeny graphs

Visualizing the action of [y, ..., [;;:

\/
AR

4
A

Each node is an elliptic curve over F, up to =,
Each edge is the action of [1, [, or [3, or their inverses.
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Notation for this talk

v

v

The prime p is ‘large’, certainly > 3.
Curves are elliptic, supersingular, and defined over F ..

E': the quadratic twist of E.

End(E): full endomorphism ring (over Fp).

End,(E): rational endomorphism ring (over [Fy).

Eg: a starting curve with known endomorphism ring.
For instance: p =3 mod 4 and Ep: 1> = x° + x.

O: the order Z[,/—p] or Z[(14++/=p)/2] in Q(/—p).
I: afixed prime ideal of O lying above /.
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A starting point...
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7 € End(E)\End,(E), say of prime degree /.
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Coincidence?

Previous slide:

Knowing that E = [a]E( has a ‘special’ endomorphism 7 allows
us to recover [a] up to 2-torsion.

Q: Is this just a weird special case?  (A: No.)

Definition. Let E be defined over F.
Then a € End(E) is a twisting endomorphism of E if arm = —7a.
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To-do list

Let E = [a]Ey. We've seen:

If p=3mod4and Eg: y¥* = x> + x and 7 € End(E)\End,(E)
with deg 7 = ¢ prime and 77 = —77, then [a]? = [[]*].
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Can we deal with starting curves Eg # E}?

vV v.vYy

Can we generalize to primes p # 3 mod 4?
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Square roots in cl(O)

From ¢ we learn that [a]?> = [[]*'. But how to recover (an) [a]?

Perhaps unsurprisingly, Gauf; knew how to do this. [DA §286]
His method is polynomial-time.

Note: If the class number #(O) = |cl(O)| is known and odd, then

[s] = [5](h(@)+1)/2.

Gauf$’ algorithm does not require computing 1(O).
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Square roots in cl(O)

How many square roots exist?

Fact: If v C O is a non-principal prime ideal such that 2 is
principal, then N(t) divides A := disc(QG/=p)) € {—p, —4p}.

For the potential divisors of A, we get:
» p | A: yields (7) C O (principal).
» 2| A: yields (2,74+1) C O (non-principal).

{id} whenp=3 (mod 4);

= cl(0))2] = {Z/z whenp =1 (mod 4).

Bottom line: Elements [s] € cl(0)? have either one or two
square roots, depending on p mod 4.
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To-do list

» How to compute square roots in cl(O)? v
Gaufs found a polynomial-time algorithm.

» How much ambiguity is in the 2-torsion? v
At most two square roots; cl(0)[2] < Z/2.

» When are endomorphisms twisting?
» Can we deal with starting curves Ey # EL?

» Can we generalize to primes p # 3 mod 4?
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Twisting endomorphisms

We wanted to locate reduced CM curves in the isogeny graph.
Q: How common is it for an endomorphism to be twisting?

Suppose E/F, is the supersingular reduction of a curve £/Q
with CM by Z[V] where ¥ has prime degree ¢ < (p+1) /4.

Then the reduction v of W is a twisting endomorphism.

— For large p, reduced CM endomorphisms are practically
always twisting.

Moreover, given any irrational endomorphism, it is typically
easy to find a twisting endomorphism.
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To-do list

» How to compute square roots in cl(O)? v
Gaufs found a polynomial-time algorithm.

N

» How much ambiguity is in the 2-torsion?
At most two square roots; cl(0)[2] < Z/2.

» When are endomorphisms twisting? v
Sufficient: reduced CM endomorphisms with deg < (p+1)/4.

» Can we deal with starting curves Ey # E5?

» Can we generalize to primes p # 3 mod 4?

10/15



Starting curves which are not their own twist

=

T4
o
- - twisting >
up!
OW

11/15



Starting curves which are not their own twist

™
o
=
=
gy
o™

ny
- - twisting
Sl

11/15



Starting curves which are not their own twist

\'\E
>

.
/z

Et

ny
- - twisting

11/15



Starting curves which are not their own twist
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To-do list

» How to compute square roots in cl(O)?
Gaufs found a polynomial-time algorithm.

» How much ambiguity is in the 2-torsion?
At most two square roots; cl(0)[2] < Z/2.

» When are endomorphisms twisting?
Sufficient: reduced CM endomorphisms with deg < (p+1)/4.

SSEENEE NN

» Can we deal with starting curves Ey # EL?
Yes; the same idea works modulo technicalities.

» Can we generalize to primes p # 3 mod 4?
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0]
Ey ————. E}

o

-- twisting axis of reflection ------

[tEg~ [t|Eo

(6]

Long story short: Everything works the same, but the element
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The case p =1 mod 4

of
Ey ————. E}

———

-- twisting axis of reflection ------

(]S —— [tiEo
b

Long story short: Everything works the same, but the element
t := [(2,7+1)] of order 2 introduces an additional symmetry.

~~ Two candidates for [a]. Find [a] by brute-force testing or use
ePrint 2020/151, which breaks DDH for the case p = 1 mod 4.
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To-do list

» How to compute square roots in cl(O)?
Gauf$ found a polynomial-time algorithm.

» How much ambiguity is in the 2-torsion?
At most two square roots; cl(0)[2] < Z/2.

» When are endomorphisms twisting?
Sufficient: reduced CM endomorphisms with deg < (p+1)/4.

» Can we deal with starting curves Ey # E§?
Yes; the same idea works modulo technicalities.

NN NN

» Can we generalize to primes p # 3 mod 4?
Yes.
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Our ‘locating CM curves’ theorem

Letp =3 mod 4and ¢ < (p+ 1)/4 be primes with (-£) = 1.

We show:
» How many curves /F, are reductions of curves / Q with
CM by orders R C Q(/—/) containing Z[y/—/].
» Which combinations of (End,, R) are possible.

» Where in the isogeny graph all these curves are located:
We give connecting ideals to the curve Ey: y? = x° + x.
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We show:
» How many curves /F, are reductions of curves / Q with
CM by orders R C Q(/—/) containing Z[y/—/].
» Which combinations of (End,, R) are possible.

» Where in the isogeny graph all these curves are located:
We give connecting ideals to the curve Ey: y? = x° + x.

Remark: Similar results are possible for p = 1 mod 4.
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An example

In the CSIDH-512 parameter set, p = 11 mod 12.
Q: Whereis E: y*> = x® + 1?2

Our very explicit answer:

_ 1273262211147421375885150930053196010808102571527432117962854304 86309:
E= [(37 77_1) ]EO

This ideal class corresponds to (e.g.) the private key:

(57 _77 _11 17 _4’ _5) _87 47 _1’ 57 17 01 _27 _47 _2’ 2) _97 47 2’
57 17 17 17 57 _47 27 67 57 _17 07 07 _47 _17 _37 _17 _47 17 77
17 47 17 47 777 O» 739 717 Oa 17 27 3a 17 27 747 75» 97 717 47
0, 5 1,0, 1, 1, 3, 0, 2, 2, 2,—1, 2, 1,—1, 11, 3)

[relies on data from ePrint 2019/498]
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One last thing: Fp—ifying the KLPT algorithm

Let E be a supersingular elliptic curve.

» Known [KLp114: When E/F,. and given End(E), one can
compute an isogeny Eg — E in polynomial time.
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One last thing: Fp—ifying the KLPT algorithm

Let E be a supersingular elliptic curve.

» Known [KLp114: When E/F,. and given End(E), one can
compute an isogeny Eg — E in polynomial time.

This isogeny is usually not defined over [F)!
~» Q: Can we safely reveal endomorphisms in CSIDH?

» We show: When E/FF, and given End(E), one can compute
an ideal a C End,(Eq) with Eg/a = E in polynomial time.
» Caveat: Turning a into an isogeny Eq — E takes
superpolynomial time L,[1/2, v/2].
» But this might be optimal: we show that doing better
implies faster discrete logarithms in cl(Q(/=p)).
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Thanks!



