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On Spatial-Aware Community Search
Yixiang Fang, Zheng Wang, Reynold Cheng, Xiaodong Li, Siqiang Luo, Jiafeng Hu, Xiaojun Chen

Abstract—Communities are prevalent in social networks, knowledge graphs, and biological networks. Recently, the topic of community
search (CS) has received plenty of attention. The CS problem aims to look for a dense subgraph that contains a query vertex. Existing
CS solutions do not consider the spatial extent of a community. They can yield communities whose locations of vertices span large
areas. In applications that facilitate setting social events (e.g., finding conference attendees to join a dinner), it is important to find
groups of people who are physically close to each other, so it is desirable to have a spatial-aware community (or SAC), whose vertices
are close structurally and spatially. Given a graph G and a query vertex q, we develop an exact solution to find the SAC containing q,
but it cannot scale to large datasets, so we design three approximation algorithms. We further study the problem of continuous SAC
search on a “dynamic spatial graph”, whose vertices’ locations change with time, and propose three fast solutions. We evaluate the
solutions on both real and synthetic datasets, and the results show that SACs are better than communities returned by existing
solutions. Moreover, our approximation solutions perform accurately and efficiently.

Index Terms—Community search, spatial graphs, geo-social networks, online queries.
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1 INTRODUCTION

With the emergence of geo-social networks, such as Twitter
and Foursquare, the topic of geo-social networks has gained a
lot of attention [1], [2], [3], [4]. In these networks, a user is
often associated with location information (e.g., positions of her
hometown and check-ins). These networks are collectively known
as spatial graphs. Figure 1 depicts a spatial graph with nine users
in three cities Berlin, Paris, London, and each user has a
specific location. The solid lines represent their social relationship,
and the dashed lines denote their hometown locations.
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Fig. 1. A geo-social network.

In this paper, we study the problem of performing online
community search (CS) on spatial graphs. Given a spatial graph
G and a vertex q ∈ G, our goal is to find a subgraph of G, called
a spatial-aware community (or SAC). Essentially, a community
is a social unit of any size that shares common values, or that is
situated in a close area [5], [6], [7] An SAC is such a community
with high structure cohesiveness and spatial cohesiveness. The
structure cohesiveness mainly measures the social connections
within the community, while the spatial cohesiveness focuses on
the closeness among their geo-locations. Figure 1 illustrates an
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SAC with three users {Tom, Jeff, Jim}, in which each user is
linked with each other and all of them are in Paris.

TABLE 1
Works on community retrieval (CR).

Graph
Type

Community
Detection (CD)

Community
Search (CS)

Non-spatial [8], [9] [10], [11], [12], [13], [14], [15]
Spatial [16], [17], [18] SAC search

Prior works. The community retrieval (CR) methods can gen-
erally be classified into community detection (CD) and community
search (CS), as shown in Table 1. Earlier CD methods [8], [9]
mainly focus on link analysis without considering spatial features.
Some recent studies [19] have shown that, in networks where
vertices occupy positions in an Euclidian space, spatial constraints
may have a strong effect on their relationship patterns, so some
works [16], [17], [18] have considered the spatial features for CD.
All these CD methods often detect all the communities from an
entire graph using some predefined global criteria (e.g., modu-
larity [20]), so their focus is beyond personalized CS. Also, their
efficiency is inadequate for fast and online CR since they require to
enumerate all the communities. To address these limitations, some
works [10], [11], [12], [14], [15] focus on online CS, a query-
dependent variant of CD, and they are able to find communities for
a specific vertex. However, almost all these CS works focus on link
analysis and do not consider the spatial features. In Figure 1, for
example, previous CS methods [10], [11] tend to put Jason and
Tom, Jeff, Jim into the same community, although Jason is
located in another city London. This community may not be very
useful for some location-based services (e.g., setting up events).
To alleviate this issue, in this paper we study SAC search which
finds communities for a particular query vertex in an “online”
manner. Our later experimental results on real datasets show that,
the communities found by our methods are often in a much smaller
areas than that of previous CS methods, i.e., the radii of the spatial
circles covering communities found by [10] and [11] are 50 and
20 times larger than those of SAC search.

SAC search. We now discuss how to measure the structure
cohesiveness and spatial cohesiveness of an SAC. We adopt
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Fig. 2. SACs in Brightkite dataset.

the commonly used metric minimum degree [10], [11], [13] to
measure the structure cohesiveness. Note that in our method,
the minimum degree metric can be easily replaced by other
metrics like k-truss [14] and k-clique [12]. To measure the spatial
cohesiveness, we consider the spatial circle, which contains all the
community members. In particular, given a query vertex q ∈ G,
our goal is to find an SAC containing q in the smallest minimum
covering circle (or MCC) and all the vertices of the SAC satisfy
the minimum degree metric. The main features of SAC search are
summarized as follows.
• Adaptability to location changes. In geo-social networks
(e.g., Brightkite and Foursquare), a user’s location often changes
frequently, due to its nature of mobility. As a result, users’ spatially
close communities change frequently as well. Let us consider two
real examples in Brightkite, which once was a popular location-
based social networking website. Figure 2(a) shows a user’s two
SACs in two consecutive days, when she moves from place “A” to
place “B” in US, in which each SAC is located in an MCC denoted
by a circle. Note that all the members are different except the user
itself. Figure 2(b) shows another user’s two SACs in three days,
when she moves from place “C” to place “D”. These real examples
clearly show that a user’s communities could evolve over time. In
our later experiments, we find that for two SACs with time gap
of six hours or more, the average Jaccard similarity of these two
community member sets decreases by 25%.

Moreover, the link relationship also evolves over time. So the
existing CD methods may easily lose the freshness and effective-
ness after a short period of time. On the contrary, our SAC search
can adapt to such dynamic easily, as it can answer queries in an
“online” manner. Also, our methods do not rely on any offline
computation, such as graph clustering or index structures.
• Personalization. SAC search allows a query user to find a
community that exhibits both high structure cohesiveness and
spatial cohesiveness. The parameter k, the minimum degree,
allows the user to control the strength of link intensiveness. For
example, SAC search can answer queries such as who are my
nearby friends so that we can form a particular club? In contrast,
existing CD methods [16], [17], [18] often use some global criteria
(e.g., modularity), and consider the static community detection
problem, where the graph is partitioned a-priori with no reference
to the particular query vertices.
• Online search. Similar to other online CS methods, our method
is able to find an SAC from a large spatial graph quickly once a
query request arrives. However, existing CD methods for spatial
graphs, are generally slower, as they are often designed for

generating all the communities for an entire graph.
Applications. We now discuss the applications of SAC search.

• Event recommendation. Emerging geo-social applications such
as Meetup and Meetin1 allow social network users to meet phys-
ically for various interesting purposes (e.g., party, dinner, and
dating). For example, Meetup tracks its users’ mobile phone loca-
tions, and suggests interesting location-based events to them [2].
Suppose that Meetup wishes to recommend an event to a user u.
Then we can first find u’s SAC, whose members are physically
close to u. Events proposed by u’s SAC member v can then be
introduced to u, so that u can meet v if she is interested in v’s
activity. Since u’s location changes constantly, u’s recommenda-
tion needs to be updated accordingly. Also, these applications
often have to handle requests from a large number of online
users efficiently. Our high-performance SAC search algorithms
can therefore benefit these applications.
• Social marketing. As studied in [21], people with close social
relationships tend to purchase in places that are also physically
close. To boost sales figures, advertisement messages can be sent
to the SACs of users who bought similar products before. For
instance, if u has bought an item, the system can advertise this
item to u’s SAC members.
• Geo-social data analysis.A common data analysis task is to
study features about geographical regions. As discussed in [22],
these features are often related to the people located there. For
example, Silicon Valley can be characterized by “information
technology” because many residents there are interested in this
topic. Hence, by analyzing members of an SAC, it is possible to
better understand the characteristics of a geographical area. As
also discussed in [23] and Figure 2, SAC search can be used to
monitor and analyze the movement of communities. We can thus
track the evolution and composition of u’s SAC as she moves.

Challenges and contributions. The SAC search problem is
very challenging, because the center and radius of the smallest
MCC containing q are unknown. A basic exact approach takes
O(m × n3) time to answer a query, where n and m denote the
numbers of vertices and edges in G. This is very costly, and is
impractical for large spatial graphs with millions of vertices. So
we turn to develop efficient approximation algorithms, which are
able to find an SAC in an MCC of similar size with the smallest
MCC. We first develop a basic approximation algorithm AppInc,
which achieves an approximation of 2. Here, the approximation
ratio is defined as the ratio of the radius of MCC returned over
that of the optimal solution. Inspired by AppInc, we develop
another approximation algorithm AppFast, which is faster and
also has a more flexible approximation ratio, i.e., 2+εF , where εF
is an arbitrary small non-negative value. However, AppInc and
AppFast cannot achieve even better accuracy with an approxi-
mation ratio less than 2. To tackle this issue, we further propose
another approximation algorithm AppAcc with an approximation
ratio of 1 + εA, where 0< εA <1. Overall, these approximation
algorithms theoretically guarantee that, the radius of the MCC
containing the SAC found has an arbitrary expected approximation
ratio. Finally, inspired by the design of approximation algorithms,
we develop an advanced exact algorithm Exact+, and our later
experiments show that it is four orders of magnitude faster than
the basic exact algorithm.

CSAC Search. In the geo-social networks above, the locations
of vertices often change over time. For instance, a user may go to

1. Meetup:https://www.meetup.com/ Meetin:https://www.meetin.org/
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different restaurants in a day and perform “check-in” actions. As
shown in Figure 2 and our experiments in Section 6.2.2, a user’s
SACs can change after a short period of time, due to the fact
that every member of the SACs can move frequently. It is thus
desirable to efficiently monitor the change of a user’s SACs. In
this paper, we study the problem of continuous SAC (or CSAC)
search, which aims to find the SACs of a query vertex q that
can move as time goes by. The CSAC search can be applied to
many social applications that need to know the latest communities
of the users in order to provide the best recommendation. For
example, in Meetup, when a user moves to a new place, it would
be interesting to know her current location, and then provides
event recommendation and product promotion services for her and
members in her SAC in an instant manner.

A simple method to address the CSAC search problem is to in-
voke an SAC search algorithm upon every location change, which
however is very inefficient, because users’ locations may change
frequently, calling for more efficient algorithms. We observe that,
although a user’s SACs may change frequently, they often share
some vertices, and are spatially close or overlapped. Based on this
intuition, we design three fast algorithms by extending SAC search
algorithms, which are of theoretical accuracy guarantees.

We have implemented algorithms and performed extensive
experiments on four real datasets and two synthetic datasets. We
develop several metrics to measure the quality of a community
with respect to the users’ social relationship and positions. Exper-
imental results show that our solutions yield better communities
than those produced by existing CS and CD algorithms. We have
also studied the performance of different SAC search solutions.
For moderate-size graphs, Exact+ is the best choice, as it
achieves the highest quality with reasonable efficiency; for large
graphs with millions of vertices or edges, AppFast and AppAcc
are better options as they are much faster than Exact+. As shown
in our experiments, our CSAC search algorithms are adaptive to
frequent location changes, and faster than the baseline algorithms.

We review the related work in Section 2. We formulate the
problem of SAC search in Section 3. Section 4 presents the
algorithms for SAC search. In Section 5, we introduce the problem
of CSAC search and develop three algorithms. We show the
experimental results in Section 6 and conclude in Section 7.

2 RELATED WORK

Community detection (CD). Classical CD solutions [8], [9], [24]
often employ link-based analysis to obtain these communities.
Some recent studies have used other advanced techniques, such
as game-theoretic approach [25] and Laplacian centrality [26],
to identify dense communities in large-scale complex networks.
However, they do not consider the location information. Some
recent works [16], [17], [18], [27] focus on identifying com-
munities from spatially constrained graphs, whose vertices are
associated with spatial coordinates [19]. For example, a geo-
community [27] is like a community which is a graph of intensely
connected vertices being loosely connected with others, but it is
more compact in space. Guo et al. [16] proposed the average
linkage measure for clustering objects in spatially constrained
graphs. Expert et al. [17] uncovered communities from spatial
graphs based on modularity maximization. In [18], Chen et al.
used modularity maximization for CD on spatially constrained
networks. We will compare it with our methods in experiments.

The differences of CD algorithms and our SAC search are three-
fold. First, CD algorithms are generally costly, as they often detect
all the communities from an entire network. Second, it is not clear
how they can be adapted for online CR. Third, as pointed out
by [20], modularity based methods [17], [18] often fail to resolve
small-size communities, even when they are well defined.

Community search (CS). In recent years, there is another
related but different problem of CD, called community search
(CS), which aims to obtain communities in an “online” manner,
based on a query request. For example, given a vertex q, several
existing works [10], [11], [12], [13], [14], [28] have proposed
effective algorithms to obtain the most likely community that
contains q. The minimum degree metric is often used to measure
the structure cohesiveness of a community [10], [11]. In [10],
Sozio et al. proposed the first algorithm Global to find the k-
ĉore containing q. In [11], Cui et al. proposed a more efficient
algorithm Local, which uses local expansion techniques to boost
the query performance. We will compare these two solutions in
our experiments. In addition, some recent works [13], [15] also use
the minimum degree metric to search communities from attributed
graphs. Other well known structure cohesiveness, including k-
clique [12], k-truss [14] and connectivity [29], have also been
considered for online community search. But these works assume
non-spatial graphs, and overlook the locations of vertices. Thus, it
is desirable to investigate CS over spatial graphs.

In addition, graphs are often evolving in practice, which
implies that the communities returned by CS solutions can become
stale after a short period of time. Thus, more effective and efficient
CS solutions on dynamic graphs are needed. However, designing
such solutions is challenging due to the following reasons. First,
network structures change dynamically. For example, users can
join Facebook and make new friends frequently. Second, the
attributes of vertices also update frequently. For instance, the
locations of Facebook users may change quickly due to their
nature of mobility. As a result, to search and track communities in
such dynamic scenarios, we have to consider the dynamics from
both network structures and attributes. Moreover, as reviewed
below, although there are some existing studies on continuous
queries, none of them has studied how to search communities
continuously from dynamic spatial graphs. To fill this gap, in this
paper we study continuous SAC search on spatial graphs.

Continuous query (CQ). In recent years, the topic of CQ has
received plenty of research interest, and many studies [30], [31],
[32] focus on queries of spatial databases. In [30], the continuous
queries over data streams are studied. Iwerks et al. [31] examine
the continuous k-NN query. Wu et al. [32] study the continuous
top-k spatial keyword query for a moving object. However, these
studies focus on the spatial features [33], [34] of objects, and do
not take the social network and communities into consideration.
In recent studies [35], [36], the problem of maintaining k-core
on dynamic graphs, where edges can be inserted and deleted
dynamically, has been extensively studied. However, they do not
consider the spatial features of objects. In summary, none of the
existing works solves the problem of continuous SAC search.

3 PROBLEM DEFINITION

Data model. We consider a geo-social network graph G(V,E),
which is an undirected graph with vertex set V and edge set E,
where vertices represent entities and edges denote their relation-
ships. For each vertex v ∈ V , it has a tuple (id, loc), where id is
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its ID and loc=(x, y) is its spatial positions along x- and y-axis
in a two-dimensional space. Let n and m be the corresponding
sizes of V and E. We illustrate the data model using Example 1.
Table 3 shows the notations used in this paper.
Example 1. Figure 3(a) depicts a spatial graph, where each solid

black line between two vertices represents an edge.
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Fig. 3. An example of geo-social network.

Spatial-aware community (SAC). Conceptually, an SAC is a
subgraph, G′, of the graph G satisfying: (1) Connectivity: G′ is
connected; (2) Structure cohesiveness: all the vertices in G′ are
linked intensively; and (3) Spatial cohesiveness: all the vertices in
G′ are spatially close to each other. Note that all the existing CS
studies assume that a community should satisfy the connectivity
and structure cohesiveness [10], [11], [12], [13], [14], [28].

Structure cohesiveness. A well-accepted notion of structure
cohesiveness is the minimum degree of all the vertices that appear
in the community is at least k [10], [11], [13], [37], [38]. This is
used in k-core and our SAC search. Let us discuss the k-core first.
Definition 1 (k-core [37], [38]). Given an integer k (k ≥ 0), the

k-core of G, denoted by Hk, is the largest subgraph of G, such
that ∀v ∈ Hk, degHk(v) ≥ k.

We say that Hk has an order of k. The core number of a vertex
v ∈ V is then defined as the highest order of the k-core that
contains v. A k-core has some properties [38]: (1) Hk contains
at least k + 1 vertices; (2) Hk may not be a connected graph;
(3) k-cores are nested, i.e., Hk+1 ⊆ Hk; and (4) Computing the
core numbers of all the vertices in a graph, also known as k-core
decomposition, can be completed using a linear algorithm [38].

As a k-core may not be a connected subgraph, we denote
its connected components by k-ĉores, which are usually the
“communities” returned by k-ĉore search algorithms [10], [11].
In Example 1, each k-core is covered by an ellipse as shown in
Figure 3(b). Note that 2-core has two 2-ĉores with vertex sets
{Q,A,B,C,D,E} and {F,G,H} respectively.
Remarks. Although we use the minimum degree in this paper,
our proposed solutions can be easily adapted to other commonly-
used structure cohesiveness metrics (e.g., k-truss [14] and k-
clique [12]). For example, to use k-truss for any of our proposed
algorithm, we can simply replace k-core by k-truss in the steps of
verifying the structure cohesiveness of an SAC.

Spatial cohesiveness. In this paper, to ensure high spatial
cohesiveness, we require all the vertices of an SAC in a minimum
covering circle (MCC) with the smallest radius. In the litera-
ture [39], [40], [41], [42], the notion of MCC has been widely
adopted to achieve high spatial compactness for a set of spatial
objects. The MCC and SAC search are defined as follows.
Definition 2 (MCC). Given a set of vertices S, the MCC of S is

the spatial circle, which contains all the vertices in S with the
smallest radius.

TABLE 2
Notations and meanings

.

Notation Meaning

G(V,E) a graph with vertex set V and edge set E
n, m the sizes of sets V and E respectively
G[S] a subgraph of G induced by vertex set S
nb(v) the neighbor set of vertex v in G
degG(v) the degree of vertex v in G
G′ ⊆ G G′ is a subgraph of G
O(o, r) a spatial circle with center o and radius r
|u, v| the Euclidean distance from vertex u to vertex v

Ψ Results of Exact and Exact+ (optimal solution)
Ψ′ Results of CExact+ (optimal solution)

Φ,Λ,Γ Results of AppInc, AppFast, AppAcc respectively
Λ′,Γ′ Results of CAppFast and CAppAcc
ropt The radius of the MCC covering Ψ

γ The radius of MCC covering Φ

δ The radius of MCC (centered at q) covering Φ

T The quadtree used in AppAcc algorithm

Problem 1 (SAC search). Given a graph G, a positive integer k
and a vertex q ∈ V , return a subgraph Gq ⊆ G, and the
following properties hold:

1. Connectivity. Gq is connected and contains q;
2. Structure cohesiveness. ∀v ∈Gq , degGq (v)≥k;
3. Spatial cohesiveness. The MCC of vertices in Gq satisfying

Properties 1 and 2 has the minimum radius.

We call a subgraph satisfying properties 1 and 2 a feasible
solution, and the subgraph satisfying all the three properties the
optimal solution (denoted by Ψ). We denote the radius of the
MCC containing Ψ by ropt. Essentially, SAC search finds the
SAC in an MCC with the smallest radius among all the feasible
solutions. In Example 1, let C1={Q,C,D} and C2={Q,A,B}.
The two circles in Figure 3(a) denote the MCCs of C1 and C2

respectively. Let q=Q and k=2. The optimal solution of this query
is G[C1], and ropt=1.5. Note that G[C2] and G[C1 ∪ C2] are
feasible solutions. Additionally, although we only consider single
query vertex in this paper, our proposed solutions can be easily
extended to support multiple query vertices.

We also consider the θ-SAC search, which returns a communi-
ty satisfying: properties 1 and 2 of SAC search, and all the vertices
are in a spatial circle O(q, θ), where θ is an input parameter.
This θ-SAC search is essentially a variant of Global [10] by
introducing a parameter θ. Consider the graph in Example 1 with
q=Q, k=2 and θ=3.1. θ-SAC search will return G[C1 ∪C2] as the
community, as all of its vertices are in O(Q, 3.1).

The θ-SAC query can be used when a user has some back-
ground knowledge (e.g., size of the region containing the SAC,
and density of users in the region concerned). However, it can be
difficult for a user of an application, such as Meetup, to specify an
appropriate value of θ. As will be discussed in our experiments, the
effectiveness of θ-SAC search is sensitive to θ. If θ is too small, no
community can be found; if θ is too large, then the community is
not spatially compact. A casual application user may then have to
repeat the query with different θ values, before getting a satisfac-
tory result. For the SAC search, the user does not need to specify
θ; instead, SAC search automatically suggests a community with
tight structural and spatial cohesiveness. Thus, SAC search is more
convenient to use than θ-SAC. In the above example, if θ<2.2, no
community is found; if θ>5.1, G[C3] will be returned, where
C3={Q,A,B,C,D,E}. In fact, there are more spatially compact



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 1, NO. 1, OCTOBER 2017 5

TABLE 3
Overview of algorithms for SAC search.

Algorithm Approximation ratio Time complexity

Exact 1 O(m× n3)

AppInc 2 O(mn)

AppFast
2+εF

(εF≥0)
If εF>0, O(m ·min{n, log 1

εF
})

If εF =0, O(mn)

AppAcc
1+εA

(0<εA<1)
O( m

ε2
A

×min{n, log 1
εA
})

Exact+ 1 O( m
ε2
A

·min{n, log 1
εA
}+m|F1|3)

SACs (e.g.,G[C1],G[C2] andG[C1∪C2]), among which the most
compact one (G[C1]) is returned by the SAC search.

4 SAC SEARCH ALGORITHMS

Most of our proposed algorithms follow a two-step framework:
(1) find a community S of vertices, based on some CS algorithm
e.g., Global [10], and (2) find a subset of S that satisfies both
structure and spatial cohesiveness. Step (2) is computationally
challenging; a simple way is to enumerate all the possible subsets
of S, and then choose the one that satisfies the two criteria of SAC.
In Example 1, when q=Q and k=2, S={Q,A,B,C,D,E}; an
SAC is then chosen from the 26–1=63 subsets of S. This requires
the examination of an exponential number of possible subsets of S
in Step (2). In our experiments, the typical size of S ranges from
1K to 100K. As a result, the performance of SAC search can be
seriously affected. Hence, we study polynomial-time SAC search
algorithms for Step (2). Later we will also present the AppInc
solution, which does not use Step (1).

We first present a basic exact algorithm Exact, which takes
O(m×n3) to answer a single query. This is very time-consuming
for large graphs, so we turn to design more efficient approximation
algorithms. Here, the approximation ratio is defined as the ratio of
the radius of MCC returned over that of the optimal solution.
Inspired by the approximation algorithms, we also design an
advanced exact algorithm Exact+. Their approximation ratios
and time complexities are summarized in Table 3, where εF and
εA are parameters specified by the query user. The value |F1| is
the number of “fixed vertices”, and |F1| is often much smaller
than n. We will explain this parameter in Section 4.1.

AppInc is a 2-approximation algorithm, and it is much faster
than Exact. Inspired by AppInc, we design another (2+εF )-
approximation algorithm AppFast (εF≥0), which is faster than
AppInc. The limitation of AppInc and AppFast is that their
approximation ratios are at least 2. To achieve even lower ap-
proximation ratio, we further design another algorithm AppAcc,
whose approximation ratio is (1+εA), where 0<εA<1 is a value
specified by the query user. It is slightly slower than AppFast, as
it spends more effort on finding more accurate solutions. Overall,
these approximation algorithms guarantee that the radius of the
MCC of the community has an arbitrary approximation ratio.

All algorithms except AppInc follow the two-step frame-
work. Note that Step (1) of the two-step framework is not neces-
sary for AppInc, since it works in an incremental manner. In ad-
dition, we can observe that, there is a trade-off between the quality
of results and efficiency, i.e., algorithms with lower approximation
ratios tend to have higher complexities. Our later experiments
show that, for moderate-size graphs, Exact+ achieves not only
the highest quality results, but also reasonable efficiency. While
for large graphs with millions of vertices, AppFast and AppAcc
should be better choices as they are much faster than Exact+.

4.1 The Basic Exact Algorithm
As mentioned before, a k-core contains at least k + 1 vertices.
When k=1, we can simply return the subgraph, induced by q and
its nearest neighbor, as the result. So we focus on the case k ≥ 2
in this paper. We begin with a useful lemma about MCC, described
in [40], which inspires the design of our algorithms.
Lemma 1. [40] Given a set S (|S| ≥ 2) of vertices, its MCC can

be determined by at most three vertices in S which lie on the
boundary of the circle. If it is determined by only two vertices,
then the line segment connecting those two vertices must be a
diameter of the circle. If it is determined by three vertices, then
the triangle consisting of those three vertices is not obtuse.

By Lemma 1, there are at least two or three vertices lying on
the boundary of the MCC of the target SAC. We call vertices lying
on the boundary of an MCC fixed vertices. So a straightforward
method of SAC search can follow the two-step framework directly.
It first finds the k-ĉore containing q, which is the same as Global
does, and then returns the subgraph achieving both the structure
and spatial cohesiveness by enumerating all the combinations of
three vertices in the k-ĉore. We denote this method by Exact.
The pseudocodes are presented in the full version of this pa-
per [43]. In addition, we show another two useful lemmas. Note all
the proofs of lemmas proposed in this paper are discussed in [43].
Lemma 2. [42] The maximum distance between any pair of

vertices, u and v in Ψ, is in the range [
√

3ropt, 2ropt].

Lemma 3. The overall time complexity of Exact is O(m× n3).

4.2 A 2-Approximation Algorithm
The major limitation of Exact is its high computational cost,
which makes it impractical for large spatial graphs with millions
of vertices. To alleviate this issue, we now develop more efficient
approximation algorithms. We first present AppInc, which has
an approximation ratio of 2. Our key observation is that, the
optimal solution Ψ is usually very close to q. So we consider
the smallest circle, denoted by O(q, δ), which is centered at q and
contains a feasible solution, denoted by Φ. Let the radius of the
MCC covering Φ be γ (γ ≤ δ). Note that, γ can be obtained
by computing the MCC containing Φ by a linear algorithm [41].
Then, we have the following two interesting lemmas:
Lemma 4. 1

2δ ≤ ropt ≤ γ.

Lemma 5. The radius of the MCC covering the feasible solution
Φ has an approximation ratio of 2.

AppInc finds Φ in an incremental manner. Specifically, it
considers vertices close to q one by one incrementally, and checks
whether there exists a feasible solution when a new vertex is
considered. It stops once a feasible solution has been found. The
codes are detailed in [43]. We illustrate it by Example 2.
Example 2. In Example 1, let q=Q and k=2. AppInc first adds A

to S and no SAC can be found. Then, it adds B to S, finds Φ
with members set {Q,A,B}. So γ=1.803 and δ=|Q,B|=2.24.
The actual approximation ratio is 1.803/1.5=1.202.

Corollary 1. If q is the center of the MCC covering Ψ, AppInc
finds the optimal solution, i.e., Φ equals to Ψ.

Corollary 2. The optimal solution Ψ is in O(q, 2γ).

Lemma 6. The total time cost of AppInc is O(mn).
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Fig. 4. Illustrating AppInc.
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Fig. 5. Illustrating AppFast.
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Fig. 6. Splitting O(q, γ)
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Fig. 7. Illustrating rmin.
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Fig. 8. Exact+: r−, r+.

4.3 A (2+εF )-Approximation Algorithm
Although AppInc is much faster than Exact, it is still inefficient
for large graphs, since its time complexity is quadratic. In this
section, we propose another fast approximation algorithm, called
AppFast, which has a more flexible approximation ratio, i.e.,
2 + εF , where εF is an arbitrary non-negative value.

Instead of finding the circle O(q, δ) in an incremental manner,
AppFast approximates the radius δ by performing binary search.
This is based on the observation that, the lower and upper bounds
of δ, denoted by l and u, are stated by Eq (1):

l = max
v∈KNN(q)

|q, v|, u = max
v∈X
|q, v|, (1)

where X is the list of vertices of the k-ĉore containing q, and
KNN(q) contains the k nearest vertices inX∩nb(q) to q. Hence,
we can approximate the radius of the circle O(q, δ) by performing
binary search within [l, u] until the gap |u − l| is less than α,
a predefined threshold. More details of AppFast can be found
in [43]. We illustrate AppFast by Example 3.
Example 3. In Figure 5 (q=Q, k=2, εF=0.1), AppFast first

initializes l=2.24, u=5.10, and tries to find a feasible solution
from O(Q, r1) and O(Q, r2), where r1=3.67 and r2=2.24. It
stops after searching O(Q, r2), as r2 − l=0. Λ equals to Φ.

Lemma 7. In AppFast, the radius of the MCC covering Λ has
an approximation ratio of (2 + εF ), if α is set as r×εF

2+εF
.

Corollary 3. The optimal solution Ψ is in O(q, 2rΛ), where rΛ is
the radius of the MCC containing Λ in AppFast.

Lemma 8. The total time cost of AppFast is O(min{mn,
m log 1

εF
}) if εF>0, or O(mn) if εF=0.

4.4 A (1+εA)-Approximation Algorithm
AppInc and AppFast guarantee that, the radius of the MCC
of the returned SAC has an approximation ratio of 2 or more,
but cannot achieve even better accuracy. To tackle this issue,
we propose another algorithm, called AppAcc, which has an
approximation ratio of (1+εA), where 0<εA<1. The main idea is
based on a key observation from Lemma 4, stated by Corollary 4:
Corollary 4. The center point, o, of the MCC O(o, ropt) covering

Ψ is in the circle O(q, γ).

Although point o is in O(q, γ), it is still not easy to locate it
exactly, since the number of its possible positions to be explored
can be infinite. Instead of locating it exactly, we try to find an
approximated “center”, which is very close to o. In specific, we
split the square containing the circleO(q, γ) into equal-sized cells,
and the size of each cell is β × β (we will explain how to set a
proper value of β later). We call the center point of each cell
an anchor point. By Corollary 4, we can conclude that o must be

in one specific cell. Then we can approximate o using the anchor
point of this cell, denoted by c, which is also its nearest anchor
point, since their distance |o, c| is at most

√
2

2 β.
Example 4. In Figure 6, each small circle point in O(q, γ)

represents an anchor point. In Figure 7, c is the nearest anchor
point of o. It is easy to observe that |o, c| ≤

√
2

2 β.

We consider the circle O(c, rmin), where rmin is the min-
imum radius such that it contains a feasible solution, which is
denoted by Γ. The value of rmin is bounded by Lemma 9.

Lemma 9. rmin ≤ ropt +
√

2
2 β.

By Lemma 9, we have rmin
ropt

≤ 1 +
√

2β
2ropt

≤ 1 +
√

2β
δ . Thus,

we can approximate Ψ using Γ, and the approximation ratio is
(1 + εA), if we let

√
2β
δ ≤ εA (0 < εA < 1).

To find O(c, rmin), the basic method is that, for each anchor
point p, we use AppFast to find the circle, which is centered at
p and contains a feasible solution, and then return the minimum

circle. However, the number of anchor points is
(

2γ
β

)2

, and each
takesO(mn) to find a feasible solution in the worst case. So this is
very time-consuming, if β (εA) is very small. To further improve
the efficiency, we develop some optimization techniques.

Specifically, we assume that all the anchor points are organized
into a region quadtree [44], where the root node2 is a square,
centered at q with width 2γ. By decomposing this square into four
equal-sized quadrants, we obtain its four child nodes. The child
nodes of them are built in the same manner recursively, until the
width of the leaf node is in (β/2, β]. Note that the center of each
leaf node corresponds to an anchor point.

To find O(c, rmin), we traverse the quadtree level by level in
a top-down manner. Let rcur , initialized as γ, record the smallest
radius of an MCC containing a feasible solution. For each node,
we first obtain the center p of its square, and then use the binary
search technique introduced in AppFast to approximate the
smallest radius rp, such that O(p, rp) contains a feasible solution.
During the traversal, for each node, to check whether it can be
pruned, we propose three effective pruning criteria:
• Pruning1: Consider a node (with center p), which intersects

at the boundary ofO(q, rcur). Then we have |p, q| ≤ rcur+
√

2
2 β.

Thus, if the distance from the center of this node to q is larger than
rcur +

√
2

2 β, its sub-trees can be pruned.
• Pruning2: If O(p, r) does not contain a feasible solution and

r > rcur +
√

2
2 β, then its sub-trees can be pruned.

• Pruning3: Let Γi be the SAC found by the binary search on
the i-th anchor point, and Mi be the MCC covering Γi. If there
are more than one anchor points whose corresponding SACs are
the same, say Γa, then we can only keep one anchor point b whose
distance to the center of Ma is the minimum.

2. To avoid ambiguity, we use word “node” for tree nodes.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 1, NO. 1, OCTOBER 2017 7

In addition, we propose a lemma, which may stop the process
of searching the quadtree earlier, as follows.
Lemma 10. In AppAcc, if rcur ≤ 1

2δ(1 + εA), then we can stop
searching the quadtree and return the SAC with radius rcur .

Based on the analysis above, we design AppAcc. It first
performs AppFast, and obtains the k-ĉore in O(q, 2γ). Then,
it explores the quadtree level by level with pruning in a top-down
manner and tries to find feasible solutions using binary search as
that of AppFast, until the cell size is at most β × β. Finally, it
returns the SAC (denoted by Γ) in the smallest MCC centered at
a specific anchor point. More details are described in [45].
Lemma 11. If we set α′≤1

4δεA and β= δεA√
2(2+εA)

in AppAcc,
where α′ is the threshold of the gap between the upper and
lower bounds of the binary search, and 0 <εA< 1, the radius
of the MCC covering Γ has an approximation ratio of (1+εA).

Lemma 12. AppAcc takes O(m( 1
εA

)2 ×min{n, log 1
εA
}) time.

4.5 The Advanced Exact Algorithm
The design of previous algorithms provide us many useful insights
for developing more advanced exact algorithms. For example,
Corollary 2 states that, the optimal solution Ψ is in O(q, 2γ).
This implies that, we can first run AppInc, then only enumerate
the vertex triples for vertices in O(q, 2γ), which is a subset of
V . Similarly, we can find Ψ by Corollary 3 based on AppFast.
Although these methods could be faster than Exact, they are still
far from perfect, because the number of potential fixed vertices
in O(q, 2γ) may still be very large. In this section, we propose a
very efficient exact algorithm based on AppAcc, called Exact+,
which largely reduces the number of potential fixed vertices, and
thus improves the efficiency significantly.

Recall that, AppAcc approximates the center, o, of the MCC
covering Ψ by its nearest anchor point c, and |o, c| ≤

√
2

2 β. Also,
ropt is well approximated, i.e., rΓ

ropt
≤1 + εA, which implies that,

rΓ
1 + εA

≤ ropt ≤ rΓ, (2)

where 0 < εA < 1. So the value of ropt is in a small interval,
especially if εA is small.

Besides, for any fixed vertex, f , of the MCC of Ψ, its distance
to o (i.e., |f, o|) is exactly ropt. By triangle inequality, we have

|f, c| ≤ |f, o|+ |o, c| ≤ rΓ +

√
2

2
β, (3)

|f, c| ≥ |f, o| − |o, c| ≥ rΓ
1 + εA

−
√

2

2
β. (4)

Let us denote the rightmost items of above two inequations by
r+ and r respectively. Then, we conclude that, for any fixed ver-
tex f , its distance to c is in the range [r , r+]. If εA is very small,
the gap between r+ and r , i.e., r+ − r =rΓ(1− 1

1+εA
) +
√

2β,
is also very small, which implies that the locations of the fixed
vertices are in a very narrow annular region. Hence, a large
number of vertices out of this annular region, which are not fixed
vertices, can be pruned safely. We illustrate this in Figure 8,
in which the annular region is the area in O(c, r+), but not
in O(c, r ). Based on the analysis above, we design Exact+,
which first runs AppAcc, then prunes fixed vertices using annular
regions, and finally computes the target SAC by enumerating all
the combinations of three fixed vertices. The detailed pseudocodes
of Exact+ are presented in [43].

Lemma 13. The overall time cost of Exact+ is O(m( 1
εA

)2 ×
min{n, log 1

εA
} + m|F1|3), where εA is the parameter of

AppAcc and |F1| (|F1| � n) is the number of fixed vertices
left after pruning by annular regions.

5 CSAC SEARCH

In this section, we first formally define problem of CSAC search
and then introduce the proposed algorithms for CSAC search.

5.1 Problem Definition
Data model. We consider a dynamic spatial graphG(V,E), which
is an undirected graph with vertex set V and edge set E, where
vertices represent entities and edges denote their relationships.
Besides, each vertex v has a triple (id, loc, t), where id is v’s
ID and loc is v’s location at the timestamp t, and its location loc
changes as the time t goes on.

Given a query vertex, the goal of CSAC search is to dynam-
ically track her SACs in a future time interval. We formulate the
CSAC search problem as follows and illustrate it by Example 5.
Problem 2 (CSAC search). Given a dynamic spatial graph G, a

positive integer k, a future timestamp te, and a vertex q ∈ V ,
find a list Gq(t) of SACs such that

Gq(t) =


Gq,1,

Gq,2,

· · · ,
Gq,l,

t ∈ [ts, t1)

t ∈ [t1, t2)

t ∈ [· · · , · · · )
t ∈ [tl−1, te]

, (5)

where ts is the timestamp of starting the query, ti (1≤i≤l–1)
is a future timestamp, l is the total number of SACs, Gq,i is
the i-th SAC, and Gq,i is different with Gq,i+1.

Example 5. Figure 9 shows a dynamic spatial graph during the
time period [t0, t2], where t0 is the current timestamp. Note
that initially the graph is the same as that in Figure 3(a). Let
q=Q, k=2 and te=t2, we can observe that: when the time t=t0,
the SAC of Q is G[C1]; at a later time t=t1, the SAC of Q
changes to G[C2]; and then t=t2, the SAC of Q changes to
G[C4], C4={Q,C,E}. Thus, the result of this query is

GQ(t) =


G[C1],

G[C2],

G[C4],

t ∈ [t0, t1)

t ∈ [t1, t2)

t ∈ [t2, t2]

. (6)
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Fig. 9. An example of CSAC search.

The dynamics of an SAC are two-fold: (1) its member set
may change since its members may move out of the MCC of the
SAC, and other members which are not from the SAC may be
close to q after their movement; and (2) its location may change,
even when its member set remains unchanged after its members’
movement. A simple method to address the CSAC search problem
is to invoke an SAC search algorithm upon every location change.
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This method, however, is very inefficient due to the users’ nature
of high mobility. Thus, it is desirable to develop fast algorithms.

We observe that, although a user’s SACs change frequent-
ly, they often share some vertices, and are spatially close or
overlapped. Based on this intuition, we design three fast algo-
rithms, i.e., CAppFast, CAppAcc, and CExact+, by extending
AppFast, AppAcc and Exact+ respectively. These algorithms
generally follow the same framework, and guarantee that the
returned SAC achieves an arbitrary small approximation ratio.
Note that, we do not extend AppInc and Exact because they
are slower than AppFast and Exact+ respectively [45].

CAppFast is a (2+εF )-approximation continuous algorithm,
where εF≥0, and its theoretical approximation ratios is at least
2. The CAppAcc algorithm is extended from AppAcc, which
achieves an approximation ratio of 1+εA, where 0<εA<1 is
a value specified by the query user. It is slightly slower than
CAppFast, as it spends more effort on finding more accurate
solutions. Similarly, we design a fast exact continuous algorithm
CExact+ based on Exact+. In the following, we first discuss
the framework and then introduce the algorithms one by one.
Remark. In this paper, we mainly focus on the dynamic updates
from vertices’ locations; for the changes of edges (relationship) of
vertices, there are many existing algorithms [35], [36] for main-
taining the k-core dynamically, which can be easily incorporated
into our framework, and thus we skip them.

5.2 The Framework of CSAC Algorithms

In the framework, we consider the updates one by one and allow
any of the extended algorithms to be incorporated. We denote a
specific algorithm for static scenario by Algo (one of AppFast,
AppAcc, and Exact+), and also denote its extended version
for dynamic graph by CAlgo (one of CAppFast, CAppAcc,
and CExact+ respectively). We let the vertex that generates the
update be p. After p’s movement, we denote it by p′. In other
words, p and p′ are of the same id, but different locations and
timestamps. Similarly, we let the SACs and radiuses of MCCs
covering them before and after p’s movement be ∆ and r, ∆′

and r′ respectively. In addition, for each instance of CAlgo, in
the framework we maintain additional variables, which will be
updated during running CAlgo. We will discuss them later.

In the framework, we sequentially consider the moving records
one by one, and update q’s SACs based on a key observation that,
if a moving vertex is too far from q’s SAC, then we may skip
it directly as its movement may not change the SAC; otherwise,
we need to call CAlgo to update the SAC. The main technical
challenge is how to design a fast algorithm CAlgo, so that we can
avoid invoking Algo and reduce the cost of updating the SAC.
We will detail this in the following sections.

Algorithm 1 presents the framework. The input is a dynamic
spatial graph G, a vertex q, an integer k, a non-negative value
ε, a future timestamp te, and two algorithms. During the dynamic
location change process, a list of different SACs of q are outputted.
We first find the k-ĉore of q, and put its vertices into X and
PriQueue, which gives high priorities for vertices near to q (lines
2-3). Then, we initialize a variable ts as the current timestamp
(line 4). Next, in the while loop (lines 5-15), we monitor all the
updates and handle them one by one. If the update (from p to p′)
is the first one, then we initialize ∆ and r by calling Algo (lines
6-8); otherwise, we decide whether to update ∆ by CAlgo using
Lemma 14. In case that we need to update ∆ and r, we run CAlgo

Algorithm 1 Framework of CSAC algorithms
1: function CSAC(G, q, k, ε, te , Algo, CAlgo)
2: find the vertex list X of the k-ĉore containing q;
3: sort vertices of X and store them in PriQueue;
4: initialize ts as the current timestamp;
5: while current time t ≤te and has an update (p,p′) do
6: if p.t<ts and p′.t≥ts then
7: call Algo(G, q, k, ε) to initialize ∆ and r;
8: output ∆;
9: else

10: if p/∈X or (|p′, q|>2r and |p, q|>2r) then continue;
11: call CAlgo(G, p, p′, q, k, ε) to get ∆′ and r′;
12: if ∆′ 6=∆ then
13: output ∆, and [ts, t) for ∆′;
14: ∆← ∆′, r ←r′, ts ←t;
15: update p by p′; //update the graph
16: output [ts, te] for ∆;

(lines 11-14). Finally, we update the graph G (line 15). Note that
the duration of each returned SAC is also reported (lines 13,16).

Lemma 14. If p ∈ X , |p, q| > 2r, and |p′, q| > 2r, we have ∆′=
∆, which means the movement of p does not change the SAC.

5.3 The CAppFast Algorithm

Similar to the idea of AppFast, we perform binary search to
find the target SAC in CAppFast. The key step of CAppFast
is to compute the tight upper and lower bounds, i.e., l′ and u′,
of the binary search, so that we can update SAC efficiently. In
the framework, we maintain an additional variable p̂, called mark
vertex, which is the farthest vertex to q in the returned SAC.

To compute Λ′, the updated SAC after p’s movement, we
consider three cases. (1) If p.id=q.id, which implies that q moves,
we have to run AppFast again. (2) If p.id 6=q.id and p′=p̂, which
implies the mark vertex p̂ moves, then we have
• If |p′, q|<rΛ, then l′=|p′, q|, u′=|q, PriQueue.tail|.
• If |p′, q|≥rΛ, then l′=|q, PriQueue.peak|, u=|p′, q|.

(3) If p.id6=q.id and p′ 6=p̂, we have
• |p′, q|<rΛ, then l′=|p′, q|, u′=rΛ.
• |p′, q|≥rΛ, then l′=rΛ, u′=|p′, q|.

Algorithm 2 presents CAppFast. If q moves, we compute the
lower and upper bounds (lines 2-3); otherwise, we check whether
p is p̂ or not. If p̂ moves, we get the lower and upper bounds by
the PriQueue (lines 4-8); otherwise, we reset the bounds (lines
9-11). After that, we perform the binary search to find the SAC
(line 12), which is the same as lines 4-14 of AppFast. Finally,
p̂ is updated and Λ′ is returned (lines 13-14). For the update of p̂,
we can simply reset it as the farthest vertex to q in the returned
SAC according to the definition of mark vertex.

Next, we elaborate CAppFast via Example 6.

Example 6. Consider the graph in Figure 10 where t0 is the
current timestamp. Let q=Q, k=2, and te=t1. We first sort
the vertices in X: A,B,C,D,E, and put them in PriQueue.
Then, we follow the framework and run AppFast to initialize
Λ which contains Q, A, and B, rΛ=|B,Q|, and p̂=B. Next,
A moves out of O(q, |Q,B|) at t=t2, the queue changes to
B,C,D,A,E. The upper and lower bounds of the binary
search are l′=rΛ, u′=|A,Q|. After the binary search, we
update p̂=D and rΛ=|D,Q|. Note that the SACs are circled.
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Algorithm 2 Query algorithm: CAppFast
1: function CAPPFAST(G, p, p′ , q, k, εF )
2: if p′.id=q.id then // case (1)
3: l′= max

v∈X∩nb(q)
|q, v|, u′=max

v∈Λ
|q, v|;

4: if p′.id=p̂.id then // case (2)
5: if |p′, q| < rΛ then
6: l′ ← |p′, q|, u′ ← |q, PriQueue.tail|;
7: else
8: l′ ← |q, PriQueue.peak|, u′ ← |p′, q|;
9: else // case (3)

10: if |p′, q| < rΛ then l′ ← |p′, q|, u′ ← rΛ;
11: else l′ ← rΛ, u′ ← |p′, q|;
12: BiSearch(l′, u′);//lines 4-14 in AppFast
13: update the additional variable p̂;
14: return Λ′;
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Fig. 10. Illustrating CAppFast.

5.4 The CAppAcc Algorithm
Recall that in AppAcc, to find a (1+εA)-approximation solution
Γ, we explore a quadtree centered at q. After p’s movement, to find
an updated (1+εA) solution Γ′ efficiently, we reuse the previous
quadtree so that the cost of finding Γ′ is minimized.

In CAppAcc, we need to maintain several additional variables,
which are the quadtree T , γ, rΓ, and δ. These variables are
updated after running CAppAcc. We denote the corresponding
variables of T , γ, rΓ, and δ after p’s movement by T ′, γ′, rΓ′,
and δ′ respectively. To simplify the presentation, we consider two
cases in CAppAcc, where the first case is that q moves while the
second case is that q does not move. We discuss them as follows.

5.4.1 The First Case (q.id=p.id)
Since the query vertex q moves, the center of quadtree changes.
Considering whether the areas covering T and T ′ intersect or
not, we have the following two subcases: (1) If |p′, q|≥γ′+γ, then
the areas of T and T ′ are separated or tangent, and we need to
rerun AppAcc to obtain Γ′. (2) If |p′, q|<γ′+γ, then the areas
of T and T ′ are intersected with each other. We illustrate this in
Figure 11(a), where S1 is the area of T , S2 is the area of T ′,
and S the intersection area. Let rΓ[S] denote the minimum radius
of an MCC, whose corresponding anchor is in S and contains a
feasible solution. Then, we need to find a feasible solution and the
radius of MCC covering it is rΓ′=min{rΓ[S], rΓ′[S2–S]}. For the
area S, we can search the community by directly using T ; while
for S2–S, we need to search the community using T ′.

5.4.2 The Second Case (q.id6=p.id)
In this case, the center of the quadtree does not change after q’s
movement (i.e., it is at q), but its size may change. We proceed to
discuss the algorithm by considering three subcases: (1) If γ=γ′

and δ=δ′, then we have Γ′=Γ. The reason is that, by Lemma 4,
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Fig. 11. Illustrating CAppAcc.

we have 1/2δ′≤ ropt′ ≤ γ′. This implies that if rΓ

ropt′
≤ rΓ

1/2δ′ =
rΓ

1/2δ ≤ 1 + εA, we have rΓ
′

ropt′
≤ 1 + εA. (2) If γ′≤γ and δ 6=δ′,

the movement of p is likely to change the fixed vertexes of the
MCC covering the optimal solution. So we need to search anchor
points in T ′. Since ropt ≤ rΓ ≤ γ′, we can narrow the area
containing T ′ as O(q, rΓ) and find Γ′ from T ′. (3) If γ′ > γ,
then the area of T is fully contained by the area of T ′. We explain
this in Figure 11(b), where S1, S2 are the areas of T and T ′
respectively. It is easy to observe that, r′Γ=min{rΓ[S1], rΓ

′[S2 −
S1]}. In addition, since q does not move, the center of the quadtree
does not change, we only need to update T , if S2 is larger than
S1 after running CAppAcc.

5.4.3 The Overall Algorithm of CAppAcc
We present the overall steps of CAppAcc in Algorithm 3. It first
computes γ′ using AppFast and then considers two cases for
finding Γ′ separatively. The first case is that q moves (lines 3-10),
and the second case is that q does not move (lines 11-21). The
steps for each case exactly follow our previous discussion. After
obtaining Γ′, we update all the additional variables introduced in
the framework (line 22), and return Γ′ (line 23).

Algorithm 3 Query algorithm: CAppAcc
1: function CAPPACC(G, p, p′ , q, k, εA)
2: compute γ′ using AppFast;
3: if p′.id=q.id then //The first case
4: if |p′, q| ≥ γ′ + γ then
5: run APPACC(G, q, k, εA) to get Γ′;
6: else
7: obtain the intersection area S;
8: compute rS using T in area S;
9: compute rS′ in S2–S;

10: find Γ′ such that rΓ′=min(rS , rS′ );
11: else//The second case
12: if γ′=γ and δ′=δ and 2rΓ

δ
≤ 1 + εA then

13: r′Γ ← rΓ, Γ′ ← Γ;
14: else
15: if γ′ ≤ γ then
16: find Γ′ in O(q, rΓ) using T ;
17: else
18: obtain the intersection area S;
19: compute rS using T in area S;
20: compute rS′ in S2–S;
21: find Γ′ such that rΓ′=min(rS , rS′ );
22: update additional variables T , γ, rΓ, and δ;
23: return Γ′;

5.5 The CExact+ Algorithm
Recall that in Exact+, we first get the anchor points using
AppAcc and then use the annular region to prune a large number
of fixed vertices. In CExact+, we let ropt′ be the radius of MCC
covering the optimal solution Ψ′ after p’s movement. We follow
the framework, and maintain two additional variables F1 and R1,
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where F1 is the set of the candidate fixed vertices and R1 is the
set of the fixed vertex for the latest optimal solution Ψ. Moreover,
we propose Lemmas 15 and 16, which greatly reduce the size of
the annular region and improve the query efficiency.

Recall that when computing Ψ in Exact+, we have intro-
duced variables δ, rΓ, γ, r , r+. We denote these corresponding
variables when computing Ψ′ by δ′, rΓ′, γ′, r ′, r+′ respectively.
We now present two interesting lemmas.

Algorithm 4 Query algorithm: CExact+
1: function CEXACT+(G, p, p′ , q, k, εA)
2: run CAPPACC(G, p, p′ , q, k, εA) to get F ′1;
3: obtain r′ and r′+ using Lemmas 15 and 16;
4: if F1 = F1

′ and p′ /∈ F1 then return Ψ; // case (a)
5: if F1 = F1

′ and p′ ∈ F1 and p′ /∈ R1 then //case (b)
6: Ψ′ ← enumFix(p′,F2

′,F3
′);

7: else // case (c)
8: Ψ′ ← enumFix(F1

′,F2
′,F3
′);

9: update additional variables F1 and R1;
10: return Ψ′;

Lemma 15. The range of ropt′ is

max

{
δ′

2γ
ropt,

rΓ
′

1 + εA

}
≤ ropt′ ≤ min

{
2γ′

δ
ropt, rΓ

′
}
.

(7)

Lemma 16. If δ′=δ and 2rΓ

δ − 1 ≤ εA ≤ 2γ′

δ − 1, then the range of
ropt can be further contracted as

max

{
δ′

2γ
ropt,

rΓ
′

1 + εA

}
≤ ropt′ ≤ rΓ′. (8)

Similar to Exact+, we can compute r ′ and r+′. After that,
we use the annular region to find the set F ′1 of candidate fixed
vertices and the set R′1 of fixed vertices. To improve the efficiency
of query, we further consider three cases by proposing Lemma 17.
Lemma 17. Let F1

′, F2
′, and F3

′ be the corresponding variables
of F1, F2 and F3 in Exact+ after p’s movement. We have 3
cases: (a) If F1=F ′1 and p′ /∈ F1, we can conclude that that
the movement of p will not affect F1. In other words, we have
Ψ′=Ψ. (b) If F1=F ′1 and p′ ∈ F1, and p′ /∈ R1, then we only
need to enumerate all the combinations of three vertices, where
one is p′ and the other two are from F2

′ and F3
′ respectively,

to find Ψ′. (c) For other cases that cannot be handled by cases
1 and 2, we need to enumerate all the combinations of three
vertices from F1

′, F2
′, and F ′3 respectively to compute Ψ′.

We present CExact+ in Algorithm 4. It first runs CAppAcc
and gets the set F ′1 of fixed vertices (line 2). Then, it uses the
annular contraction to get the tight upper and lower bounds (line
3). Next, it computes the optimal solution Ψ′ considering three
different cases (line 4 for case (a), lines 5-6 for case (b), and
lines 7-8 for case (c)) in Lemma 17. The additional variables are
updated (line 9). Finally, the SAC Ψ′ is returned (line 10).

6 EXPERIMENTAL RESULTS

6.1 Setup
Datasets. We consider four real datasets: Brightkite3, Gowalla3,
Flickr4 and Foursquare5. For all the datasets, each vertex rep-
resents a user and each link represents the friendship between

3. http://snap.stanford.edu/data/index.html
4. https://www.flickr.com/
5. https://archive.org/details/201309 foursquare dataset umn

TABLE 4
Datasets used in our experiments.

Type Name Vertices Edges d̂ BC CC

Real

Brightkite 51,406 197,167 7.67 7.34E-5 0.1795
Gowalla 107,092 456,830 8.53 3.40E-5 0.2487
Flickr 214,698 2,096,306 19.5 1.65E-5 0.1113

Foursquare 2,127,093 8,640,352 8.12 1.68E-6 0.1044

Synthetic
Syn1 30,000 300,000 20 1.26E-4 0.0077
Syn2 400,000 4,000,000 20 1.10E-5 0.0006

two users. Both Brightkite dataset and Gowalla dataset contain a
collection of check-in data shared by users of Brightkite service
and Gowalla service. In particular, for Brightkite dataset, there
are 4,491,143 checkins collected during the period of Apr. 2008
- Oct. 2010 on 772,783 distinct places; the Gowalla dataset con-
tain 6,442,892 checkins collected on 1,280,969 places. In Flickr
dataset, we mark the user a location if she has taken a photo there.
The Foursquare dataset [3] is extracted from Foursquare website.
Each user has a location of her hometown position. It contains
33,278,683 checkin records collected during a period from April
2012 to September 2013. For Brightkite, Gowalla, and Foursquare
datasets, we consider the users’ locations can be both static (for
SAC search) and dynamic (for CSAC search). The static location
associated with a user is the place she checks in (or takes photos)
most frequently, or hometown location. Note that users without
locations are skipped.

We have also performed experiments on synthetic datasets.
We are not aware of any existing spatial graph data generators.
Thus, we create synthetic data in the following way. First, we
use GTGraph6, a well-known graph generator, to generate a (non-
spatial) graph. We adopt the default parameter values of GTGraph.
The degrees of the graph follow a power-law distribution, which
is often exhibited in social networks. To generate the location of
each graph vertex, we first randomly select a vertex v and give it
a random position in the [0, 1] × [0, 1] space. Then we place v’s
neighbors at random positions, whose distances follow a normal
distribution with mean µ and standard deviation σ. We repeat this
step for other vertices, starting from v’s neighbors, until every
vertex has a location. We set µ=0.09 and σ=0.16; these values are
derived from the Brightkite dataset. Following these settings, we
create two spatial graphs, namely Syn1 and Syn2.

The statistics of each dataset are summarized in Table 4, where
the average degree (d̂), the average betweenness centrality (BC),
and the clustering coefficient (CC) of each vertex in the dataset are
included. Without loss of generality, we normalize all the locations
of each dataset into the unit square [0, 1]2.

Parameters. We consider 5 parameters: k (denoting the
minimum degree), εF (the parameter of AppFast), εA (the
parameter of AppAcc), θ (the parameter of θ-SAC search), and
the percentage of vertices n. In general, the value of k should not
be too small or too large, because a small value of k (e.g., k=1
or 2) may result in a community with many vertices having just
few neighbors; a too large value of k (k=20) may result in many
“false queries (i.e., queries returning empty results). The ranges
of the parameters and their default values are shown in Table 5.
The default values of εF and εA are set as 0.5, since these values
practically result in good approximation ratios with reasonable
efficiency. Note that when varying n for scalability testing, we
randomly extract subgraphs of 20%, 40%, 60%, 80% and 100%

6. http://www.cse.psu.edu/∼madduri/software/GTgraph/

~
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TABLE 5
Parameter settings.

Parameter Range Default

k 4, 7, 10, 13, 16 4
εF (AppFast) 0.0, 0.5, 1.0, 1.5, 2.0 0.5
εA (AppAcc) 0.01, 0.05, 0.1, 0.5, 0.9 0.5

θ 10-6, 10-5, 10-4, 10-3, 10-2 10-4

n 20%, 40%, 60%, 80%, 100% 100%

vertices of the original graph with a default value of 100%. When
varying a certain parameter, the values for all the other parameters
are set to their default values.

Queries of SAC search. For each dataset, we randomly select
200 query vertices with core numbers of 4 or more. Such a core
number constraint ensures a meaningful community containing
the query vertex. In the results reported in the following, each
data point is the average result for these 200 queries. We use the
term “AppFast(ε)” (“AppAcc(ε)”) to denote the algorithm
AppFast (AppAcc) with the parameter εF=ε (εA=ε).

Queries of CSAC search. We use three real datasets, i.e.,
Brightkite, Gowalla, and Foursquare, to evaluate the efficiency
of CSAC search. In each of these datasets, users have contin-
uous check-in records. We first sort all the checkin records in
chronological order, and then we divide them into two groups G1

and G2, where G2 contains the checkin records int the last 30
days while G1 contains the other records. In the experiments,
we first update users’ locations by records in G1, and then
simulate users’ movement by records from G2. For each proposed
algorithm (CAppFast, CAppAcc, and CExact+), we design
its counterpart by simply calling the corresponding SAC search
algorithm repeatedly without any optimization. The parameter
settings are the same as that of SAC search. In the results reported,
each data point is the average result for these queries.

We implement all the algorithms in Java, and run experiments
on a machine having a quad-core Intel i7-3770 3.40GHz processor
and 32GB of memory, with Ubuntu installed.

6.2 Effectiveness Evaluation

6.2.1 Comparison with the State-of-the-Arts

In this subsection, we show that SAC search returns communities
with higher spatial cohesiveness compared with the state-of-the-
art CR methods: Global [10], Local [11] and GeoModu [18].
The first two methods are CS methods designed for non-spatial
graphs, while GeoModu is a CD method for spatial graphs. We
also compare it with θ-SAC search. We briefly introduce these
algorithms as follows (Let q be a query vertex):
• Global: it finds the k-ĉore containing q.
• Local: it expands and explores from q, until it forms a subgraph
whose minimum vertex degree is at least k.
• GeoModu: it first redefines the weight of each edge of graph G
as ei,j = 1

di,j
µ , where di,j=|vi, vj | and µ (1 or 2) is a decay factor,

and then detects the communities using modularity maximization.
Given a query vertex, we return the community which contains it.
• θ-SAC search: it first performs BFS search on G starting at
q to find a set S of vertices, which are connected with q and in the
circle O(q, θ), and then returns the k-ĉore containing q in G[S].

Both Global and Local use the minimum degree met-
ric for structure cohesiveness. GeoModu has two variants, i.e.,
GeoModu(1) and GeoModu(2), as the typical values of µ are

1 and 2. To measure the spatial cohesiveness of a community Gq
with MCC O(c, r), we introduce two metrics as follows:
• radius: the value of radius r.
• distPr: average pairwise distance of vertices of Gq .

Intuitively, lower values of these metrics for a community im-
ply that it achieves higher spatial cohesiveness. To compare these
methods, we consider both exact and approximation algorithms.
We search communities using these algorithms and compute the
average values of above metrics for these communities. We report
the results on Brightkite and Gowalla datasets in Figure 12.

(a) radius (b) distPr

Fig. 12. Comparison with existing CD and CS methods.

1. CS comparison. We see that Local performs better than
Global, as it finds communities through local expansion. The
vertices of communities returned by Global and Local spread
in larger areas than those of SAC search methods. For example, the
average radii of the MCCs covering the communities of Global
and Local are respectively 50 and 20 times larger than that of
our approach. The main reason is that they overlook the spatial
locations. Note that although Gq is in the smallest MCC, Gq
may not be the subgraph with the minimum number of vertices
satisfying the minimum degree metric. In other words, a proper
subset of vertices in Gq may form a qualified community, which
has the same MCC as that of SAC search. Among the SAC search
methods, the exact algorithm Exact+ achieves better spatial
cohesiveness than approximation algorithms consistently.
2. CD comparison. Since GeoModu considers both links and
locations, the returned communities achieve better spatial cohe-
siveness than Global and Local. However, the average radius
and distPr values of GeoModu are larger than SACs because a
non-trivial number of queries in GeoModu return communities
whose MCCs are smaller than those of SAC (e.g., 19% and 18%
of queries whose communities returned by GeoModu(1) are in
MCCs with smaller radii than those of Exact+, in Brightkite
and Gowalla datasets respectively). However, the structure co-
hesiveness of communities detected by GeoModu is weaker.
For example, the corresponding average degrees of vertices in
communities returned by GeoModu(1) and GeoModu(2) on
Brightkite dataset are 2.2 and 1.1. This is because GeoModu
partitions the graph into clusters using a global criterion, i.e., Geo-
Modularity [18], with no reference to the query vertices.
3. Comparison with θ-SAC search. We vary the value of θ in
θ-SAC search, and compute the percentage of queries returning
non-empty subgraphs. Figure 13(a) reports the results. Notice that
the percentage is low when θ is small. This is because many users’
SACs are spread in large areas. Also, the percentage varies greatly
for different datasets. Thus, setting a proper value of θ is not easy.
In contrast, SAC search does require the specification of θ, and it
always returns an SAC, if there is any. For queries returning non-
empty SACs, we compute the average radius of MCCs covering
these SACs. We also compute the average radius for MCCs of
SACs found by Exact+. Figure 13(b) compares their results. We
observe that the average radius of MCCs covering SACs found
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Fig. 13. Results of θ-SAC search.

by θ-SAC search is 5 to10 times larger than that of Exact+.
This means that SAC search achieves better spatial cohesiveness
than this variant. Hence, SAC search is easier to be used, and also
achieves higher spatial cohesiveness than θ-SAC.

6.2.2 Adaptability to Location Changes
To study the adaptability of location changes of CSAC search, we
use a “dynamic” spatial graphs, where vertices’ locations change
frequently. We consider Brightkite dataset and assume the link
relationships do not change. We first sort all the checkin records
in chronological order. Then, we divide them into two groups R1

and R2, where R1 contains records collected before 2010 and
R2 contains the remaining records. Finally, we compute the total
travel distance of each user, by adding up the distances between
each consecutive pair of checkins, and select a set Q of 100 query
users, who travel the longest and have at least 20 friends.

To perform queries, we first go through checkin records in R1

and update users’ locations according to their latest checkin times-
tamps. Then, for each user q ∈ Q, we do the same operation for
records in R2, and if the record was generated by q, we search her
SAC by CExact+. Finally, we get a list of SACs, Lq={C1, C2,
· · · , Cl}, where Ci(1≤i≤l) is an SAC at the timestamp of the
i-th checkin record, and l is the number of q’s check-in records.

To measure the overlap of member sets and spatial areas
between two communities Ci and Cj , we define two metrics: com-
munity jaccard similarity (CJS) and community area overlapping
(CAO), based on the classical Jaccard similarity.

CJS(Ci, Cj) =
V (Ci) ∩ V (Cj)

V (Ci) ∪ V (Cj)
, (9)

CAO(Ci, Cj) =
A(Ci) ∩A(Cj)

A(Ci) ∪A(Cj)
, (10)

where V (Ci) is the member set of Ci and A(Ci) is the area of the
MCC covering Ci. Notice that CJS(Ci, Cj) and CAO(Ci, Cj)
range from 0 to 1. A smaller value of CJS (CAO) implies lower
overlapping of community member sets (spatial areas).
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Fig. 14. Effectiveness on dynamic spatial graph.

To show how the values of CJS and CAO vary with time, we
select communities from Lq , where the time gap between each
pair of communities is at least η, and compute their CJS and CAO
values. We report their average results in Figure 14, where η varies
from 0.25 day to 15 days. From Figure 14(a), we observe that, the
CJS decreases as the time threshold increases. For example, after 6

4 7 10 13 16
10-2

100

102

k

tim
e 

(s
)

 

 

AppInc
AppFast(0.0)
AppFast(0.5)
AppAcc(0.5)

4 7 10 13 16
10-2

100

102

k

tim
e 

(s
)

 

 

AppInc
AppFast(0.0)

 

 

AppFast(0.5)
AppAcc(0.5)

4 7 10 13 16
100

102

104

k

tim
e 

(s
)

 

 

AppInc
AppFast(0.0)
AppFast(0.5)
AppAcc(0.5)

(a) Brightkite (approx.) (b) Flickr (approx.) (c) Foursquare (approx.)

4 7 10 13 16
100

102

104

106

k

tim
e 

(s
)

 

 

Exact
Exact+

4 7 10 13 16
100

102

104

106

k

tim
e 

(s
)

 

 

Exact
Exact+

4 7 10 13 16
100

102

104

106

k

tim
e 

(s
)

 

 

Exact
Exact+

(d) Brightkite (exact) (e) Flickr (exact) (f) Foursquare (exact)

Fig. 15. Efficiency of SAC search on real datasets.

hours, the value of CJS decreases to 75%, which implies the SACs
indeed have changed, but they share a remarkable proportion of
common members. Figure 14(b) shows that the SACs’ locations
change frequently over time as well. In addition, we plot the SACs
of two mobile users in Figure 2. Thus, these results well confirm
that, CSAC search has high adaptability to location changes.

6.3 Efficiency Evaluation of SAC Search
We report the efficiency results of SAC search on three real
datasets in Figure 15. The results on other datasets are in [43].
1. Effect of k for approximation algorithms. We show the re-
sults in Figures 15(a)-(c). AppFast runs consistently faster than
AppInc and AppAcc. For example, for the largest real dataset
Foursquare, AppFast(0.0) is at least two orders of magni-
tude faster than AppInc, although they return the same SACs.
AppFast(0.0) is 2 to 5 times faster than AppAcc(0.5). This
is because AppFast has a lower time complexity. In addition, the
running time of AppFast decreases as the value of k increases.
This is because O(q, δ) becomes larger as k increases, and finding
a larger O(q, δ) tends to need less binary search.

The running time of AppInc increases clearly as the value
of k grows, because for a larger value of k, the corresponding
O(q, δ) is also larger. As it finds O(q, δ) starting from the query
vertex q incrementally, a larger value of k results in a higher cost.

AppAcc(0.5) is slower than AppFast. This is because its
first step is to run AppFast and it needs extra effort to find
smaller MCCs. Also, its time cost tends to be stable. As discussed
before, the number of anchor points is mainly affected by εA.
Since εA is always 0.5 for different k, the numbers of anchor
points are the same, and thus the running time remains stable.
2. Effect of k for exact algorithms. Figure 16(a) shows that the
efficiency of Exact+ is not very sensitive to εA on all real
datasets except Foursquare. Figure 16(b) shows |F1| increases
with εA; that is, fewer vertices are pruned as εA grows. Recall
in Section 5.5 that Exact+ is composed of two phases. When
εA is small, the cost of Phase (1) dominates the overall cost; as
εA increases, the cost of Phase (2) grows. Thus, there is a local
minimum in Figure 16(a). In practice, a sensitivity test can be done
to choose a suitable value of εA.

Figures 15(d)-(f) show the efficiency results of exact algo-
rithms (εA=10-4). We skip the results of Exact, if a single query
takes more than 10 hours. Clearly, Exact performs extremely
slow, even on the smallest dataset, which calls for the design
of more efficient algorithms. Exact+ is at least four orders of
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Fig. 18. Efficiency of CSAC search.

magnitude faster than Exact. This is because, it uses AppAcc to
find narrow annular regions, in which fixed vertices are supposed
to be contained, and thus the number of fixed vertices needed
to be enumerated is reduced significantly. The performance of
Exact+ either slightly increases or decreases as the value of k
increases. This is because, after pruning by the annular regions,
the numbers of fixed vertices left may be different, but generally
larger datasets have more fixed vertices, and thus more time cost
is needed. Additionally, since Exact+ runs AppAcc in the first
step, it is slower than AppAcc, but it takes reasonable time, i.e.,
few seconds, on moderate-size graphs like Brightkite and Syn1.
3. Improvement of AppAcc and Exact+. In this experiment,
we consider the Brightkite and Syn2 datasets. We vary the value
of k, and compare the efficiency of the improved AppAcc and
Exact+ with their old versions published in [45]. The results
are reported in Figures 17(a)-(d). We observe that, AppAcc and
Exact+ are faster than their old versions, i.e., achieving an
acceleration up to 2 to 5 times. In addition, their performance
trends are similar with those discussed before.
4. Results on noisy graphs. We consider two new datasets with
anomalous vertices and also add different kinds of noise vertices
into the datasets of Table 4. The efficiency results on these
datasets show that our algorithms generally are very robust to
noise vertices, and their parameters are not very sensitive to
the noise. In addition, we have evaluated the effect of vertices’
betweenness centrality and clustering coefficient on efficiency.
Due to the space limitation, we present the detailed experimental
results and discussions in the supplemental materials.

6.4 Evaluation of CSAC Search

In this section, we study the efficiency of CSAC search and report
results in Figure 18 (results on Gowalla dataset are in [43]).
1. Effect of query duration |te–ts|. In this experiment, we ran-
domly select 100 query users, and set the query duration as 0.25,
0.5, 1.0, 2.0, and 3 days respectively. Then, we run CAlgo and

Algo to answer the queries of CSAC search. The efficiency results
are reported in Figures 18(a)-(f). The exact algorithm CExact+
is slower than the approximation algorithms, and CAppFast
is faster than CAppAcc. We observe that, when the value of
query duration increases, the average time of both AppFast
and CAppFast becomes smaller, but the decrease of CAppFast
is more pronounced. The reason is that, as the query duration
increases, CAppFast makes full use of the previous results and
does not require repeated computation. Also, with the value of
|te–ts| increased, the gap between CAppFast and CAppFast
grows, and CAppFast is up to 80 times faster than CAppFast.
Thus, CAppFast is more suitable for dynamic spatial graphs.

Besides, CAppAcc is over an order of magnitude faster than
AppAcc, and the gap between them also increases as the length
of query duration grows and their performance trends are similar
with CAppFast, as discussed before. In addition, CExact+ is
faster than Exact on dynamic graphs. The performance trends
are also similar with those of CAppFast and CAppAcc.
2. Effect of update frequency. In this experiment, we first count
the numbers of checkin times for each user. Then, we divide
users into four groups according to their check-in frequency, each
corresponding to 1∼5, 6∼10, 11∼15, and 16∼20 times. Next, for
each group we randomly select 100 users. Finally, we perform
CSAC search for users in each group, and report the results in
Figures 18(g)-(l). We observe that, when the value of frequency
increases, the efficiency of AppFast and CAppFast does not
change much, so both of them are not sensitive to the frequencies
of users’ movement. Again, CAppFast is still much more than
AppFast, which is consistent with the previous results.

Besides, the performance of CAppAcc is not very stable when
varying the value of frequency. This is because, if the query user
q does not move, CAppAcc needs little computational cost to
update the SAC; otherwise, CAppAcc needs to consider more
anchor points, which involves more cost. Again, the gap between
AppAcc and CAppAcc is over an order of magnitude. In addition,
the results of CExact+ are similar with those of CAppAcc.
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7 CONCLUSIONS

In this paper, we examine the online search of communities that
exhibit both structure and spatial cohesiveness on spatial graphs.
Given a vertex q of a graph G, we study the SAC search problem,
which finds the community containing q within the smallest min-
imum covering circle (MCC). We propose two exact algorithms,
and three efficient approximation algorithms. We further study the
problem of continuous SAC (CSAC) search on dynamic spatial
graphs, and propose three efficient algorithms. We evaluate the
algorithms on both real and synthetic datasets, and find that SAC
search achieves better effectiveness than the existing methods.
Also, the approximation algorithms are very fast on large datasets.
In addition, the algorithms of CSAC search are very efficient.

In the future, we will examine other structure cohesiveness
measures (e.g., k-truss and k-clique) and spatial cohesiveness
measures (e.g., pair-wise vertex distances). We will study how to
adapt our SAC search solutions for directed spatial graphs by using
D-core [46], which is extended from k-core for directed graphs. It
is also of interest to find SAC from spatial graphs where edges are
with weights denoting proximity among vertices. We will develop
a web-based prototype system so that users can easily perform
queries and visualize the returned SACs on the spatial map.
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THE SUPPLEMENTAL MATERIALS

8 PROOFS OF LEMMAS

Lemma 1. Given a set S (|S| ≥ 2) of vertices, its MCC can be
determined by at most three vertices in S which lie on the
boundary of the circle. If it is determined by only two vertices,
then the line segment connecting those two vertices must be a
diameter of the circle. If it is determined by three vertices, then
the triangle consisting of those three vertices is not obtuse.

Proof: This lemma can be found from [40].
Lemma 2. The maximum distance between any pair of vertices, u

and v in Ψ, is in the range [
√

3ropt, 2ropt].

Proof: This lemma can be found from [42].
Lemma 3. The overall time complexity of Exact is O(m× n3).

Proof: Since there are three nested for-loops and finding a k-
ĉore from a graph takes linear time cost O(m) (we assume m ≥
n) [38], the overall time complexity of Exact is O(m× n3), 2

Lemma 4. 1
2δ ≤ ropt ≤ γ.

Proof: We have ropt ≤ γ obviously, as Ψ is the optimal. We prove
1
2δ ≤ ropt by contradiction. Suppose ropt < 1

2δ. Since the MCC
of Ψ contains q, for any v ∈ Ψ, we have |v, q| ≤ 2 × ropt. As
ropt <

1
2δ, we have |v, q| ≤ 2 × ropt < δ. This implies that Ψ

must be in a circle, whose center is q and radius is smaller than δ.
This contradicts the fact that, O(q, δ) is the minimum circle with
center q containing a feasible solution. Hence, Lemma 4 holds. 2
Lemma 5. The radius of the MCC covering the feasible solution

Φ has an approximation ratio of 2.

Proof: Let S be the set of vertices in O(q, δ). Since the vertex set
of Φ is a subset of S, the MCC of Φ has a radius no larger than
that of S, i.e., γ ≤ δ. By Lemma 4, we have 1

2γ ≤
1
2δ ≤ ropt.

This implies that γ
ropt
≤ 2.0. Hence, Lemma 5 holds. 2

Corollary 1. If q is the center of the MCC covering Ψ, AppInc
finds the optimal solution, i.e., Φ equals to Ψ.

Proof: This can be proved directly by contradiction. 2

Corollary 2. The optimal solution Ψ is in O(q, 2γ).

Proof: By Lemma 4, we have ropt ≤ γ. This implies that, for any
v ∈ Ψ, we have |q, v| ≤ 2 × γ. Thus, all the vertices of Ψ are in
O(q, 2γ), and Corollary 2 holds. 2

Lemma 6. The total time cost of AppInc is O(mn).

Proof: In AppInc, the while loop is executed at most n times,
and each takes O(m), as computing k-ĉore takes O(m). As a
result, the total time cost of AppInc is O(mn). 2

Lemma 7. In AppFast, the radius of the MCC covering Λ has
an approximation ratio of (2 + εF ), if α is set as r×εF

2+εF
.
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Fig. 19. Illustrating the proof of Lemma 7.

Proof: Consider the last loop in Algorithm 7 when returning Λ.
Let the gap between the radii, which result in a feasible solution
and no solution, be α.

If Λ′ does exist (lines 8-10), the returned Λ is contained in
O(q, r). We have l ≤ δ ≤ r ≤ u and r−l ≤ α (see Figure 19(a)).
So we have r ≤ δ + α.

If Λ′ does not exist (lines 12-13), the returned Λ is contained
in O(q, u). We have l ≤ r ≤ δ ≤ u and u − r ≤ α (see
Figure 19(b)). So we have r ≤ δ + α.

Therefore, we always have r ≤ δ + α. We denote the radius
of the MCC covering Λ by rΛ. Considering Lemma 4, we have

rΛ ≤ r ≤ 2ropt + α. (11)

Eq (11) also implies that, ropt ≥ 1
2 (r − α). Then,

rΛ

ropt
≤ 2ropt+α

ropt
= 2 + α

ropt
≤ 2 + 2α

r−α . (12)

Let 2α
r−α ≤ εF , then we have rΛ

ropt
≤ 2 + εF , if α is set as

r×εF
2+εF

. Hence, Lemma 7 holds. 2

Corollary 3. The optimal solution Ψ is in O(q, 2rΛ), where rΛ is
the radius of the MCC containing Λ in AppFast.

Proof 1. Since we have ropt ≤ rΛ, for any v ∈ Ψ, we have
|q, v| ≤ 2 × rΛ. Thus, all the vertices of Ψ are in O(q, 2rΛ),
and the corollary holds.

Lemma 8. The total time cost of AppFast is
O(min{mn,m log 1

εF
}) if εF>0, or O(mn) if εF=0.

Proof: In AppFast, the while loop needs to be executed
O(min{n, log 1

εF
}) times, since the number of vertices to be

processed in each loop is different with that of its previous loop.
Besides, each loop takes O(m) time cost to find a k-ĉore. There-
fore, the total time cost of AppFast is O(min{mn,m log 1

εF
})

if εF>0, or O(mn) if εF=0. 2

Lemma 9. rmin ≤ ropt +
√

2
2 β.

Proof: We prove by contradiction. Suppose that rmin > ropt
+
√

2
2 β. As mentioned before, we have |o, c| ≤

√
2

2 β. For any
point c′ in O(o, ropt), we have |o, c′| ≤ ropt. By triangle inequal-
ity, we conclude that |c, c′| ≤ |c, o| + |o, c′| ≤ ropt+

√
2

2 β. This
contradicts that rmin is the minimum radius such that O(c, rmin)
contains a feasible solution. Hence, Lemma 9 holds. 2

Lemma 10. In AppAcc, if rcur ≤ 1
2δ(1 + εA), then we can stop

searching the quadtree and return the SAC whose MCC radius
rcur . We can safely stop searching and guarantee the radius of
the MCC covering Γ has an approximation ratio of (1+εA).

Proof: For lemma 10. Recall that in Lemma 4, 1
2δ is a lower

bound of ropt, so we have rcur
ropt

≤ rcur
1
2
δ

. This implies that, if

rcur ≤ 1
2δ(1 + εA), we then have rcur

ropt
≤1 + εA. Hence, we can

safely stop the search on the quadtree and return the SAC whose
MCC radius is rcur as the target SAC. 2

Lemma 11. If we set α′≤1
4δεA and β= δεA√

2(2+εA)
in AppAcc,

where α′ is the threshold of the gap between the upper and
lower bounds of the binary search, and 0 <εA< 1, the radius
of the MCC covering Γ has an approximation ratio of (1+εA).

Proof: Consider the binary search of an anchor point p. Let rp be
the smallest radius such that O(p, rp) contains a feasible solution.
From the proof of Lemma 7, we can conclude that, r ≤ rp + α′

when the binary search stops. Then, we have

r

rp
≤ 1 +

α′

rp
≤ 1 +

α′

ropt
≤ 1 +

2α′

δ
. (13)

Let α′= 1
4δεA. Then we have 2α′

δ = εA
2 , and r ≤

(
1 + εA

2

)
rp.
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Consider the updated rcur after the binary search for all the
anchor points. We have rcur ≤

(
1 + εA

2

)
rmin. Let rΓ be the

radius of the MCC covering Γ. By Lemmas 4 and 9, we have

rΓ
ropt

≤ rcur
ropt

≤ 1 +
εA
2

+
(2 + εA)

√
2β

2δ
. (14)

Let (2+εA)
√

2β
2δ = εA

2 . Then we have rΓ

ropt
≤ 1 + εA,

if β= δεA√
2(2+εA)

. Hence, the approximation ratio of AppAcc is

(1+εA), if we set the parameters α′= 1
4δεA and β= δεA√

2(2+εA)
. 2

Lemma 12. The total time cost of AppAcc is O(m( 1
εA

)2 ×
min{n, log 1

εA
}).

Proof: There are at most O((2γ
β )2)=O(( 1

εA
)2) anchor points.

Similar to that in AppFast, the binary search for each anchor
point needs to be executed O(min{n, log 1

εA
}) times. So the total

time cost of AppAcc is O(m( 1
εA

)2 ×min{n, log 1
εA
}). 2

Lemma 13. The overall time cost of Exact+ is O(m( 1
εA

)2 ×
min{n, log 1

εA
} + m|F1|3), where εA is the parameter of

AppAcc and |F1| (|F1| � n) is the number of fixed vertices
left after pruning by annular regions.

Proof: Exact+ consists of two phases: (1) pruning of the
fixed vertices (lines 2-5) and (2) enumeration of three ver-
tex combinations (lines 6-16). As discussed before, Phase (1)
takes O(m( 1

εA
)2 × min{n, log 1

εA
}), while Phase (2) needs

O(m|F1|3). Thus, the total cost of Exact+ is O(m( 1
εA

)2 ×
min{n, log 1

εA
}+m|F1|3). 2

Lemma 14. If p ∈ X , |p, q| > 2r, and |p′, q| > 2r, then we have
∆′=∆. In other words, the movement of p does not change the
target SAC.

Proof: It is easy to observe that before p’s movement, both the
optimal solution and ∆ are fully contained inO(q, 2r). So |p, q| >
2r and |p′, q| > 2r imply that the movement of p is always out
of O(q, 2r). Consequently, both the optimal solution and ∆ are
unchanged. 2

Lemma 15. The range of ropt′ is

max

{
δ′

2γ
ropt,

rΓ
′

1 + εA

}
≤ ropt′ ≤ min

{
2γ′

δ
ropt, rΓ

′
}
.

(15)

Proof: By Lemma 4, we get 1
2δ
′ ≤ ropt

′ ≤ γ′ and 1
2δ ≤ ropt ≤

γ. Considering them together, we have

δ′

2γ
ropt ≤ ropt′ ≤

2γ′

δ
ropt. (16)

On the other hand, since the approximation ratio of Γ′ is (1+εA),
we get

rΓ
′

1 + εA
≤ ropt′ ≤ r′Γ. (17)

Hence, Lemma 15 holds. 2

Lemma 16. If δ′=δ and 2rΓ

δ − 1 ≤ εA ≤ 2γ′

δ − 1, then the range
of ropt can be further contracted as

max

{
δ′

2γ
ropt,

rΓ
′

1 + εA

}
≤ ropt′ ≤ rΓ′. (18)

Proof: If δ′ = δ and 2rΓ

δ − 1 ≤ εA, according to previous
discussions, we have rΓ′ =rΓ, r′Γ

2γ′
δ
ropt

= δ
2γ′ ·

rΓ
′

ropt
= δ

2γ′ ·
rΓ

ropt
≤

δ
2γ′ (1 + εA) if δ

2γ′ (1 + εA) ≤ 1, then εA ≤ 2γ′

δ − 1, so

rΓ
′ ≤ 2γ′

δ ropt. Additionally, for the lower bound:
rΓ
′

1+εA
δ′
2γ
ropt

=

1
1+εA

· 2γ
δ′ ·

rΓ
′

ropt
≤ 2γ

δ′ = 2γ
δ , we know 1 ≤ 2γ

δ ≤ 2, so we
can not claim which of the lower bounds is bigger. 2

Lemma 17. Let F1
′, F2

′, and F3
′ be the corresponding variables

of F1, F2 and F3 in Exact+ after p’s movement. We have 3
cases: (a) If F1=F ′1 and p′ /∈ F1, we can conclude that that
the movement of p will not affect F1. In other words, we have
Ψ′=Ψ. (b) If F1=F ′1 and p′ ∈ F1, and p′ /∈ R1, then we only
need to enumerate all the combinations of three vertices, where
one is p′ and the other two are from F2

′ and F3
′ respectively,

to find Ψ′. (c) For other cases that cannot be handled by cases
1 and 2, we need to enumerate all the combinations of three
vertices from F1

′, F2
′, and F ′3 respectively to compute Ψ′.

Proof: The lemma directly follows the observation. 2

9 PSEUDOCODES OF SAC SEARCH ALGORITHMS

Algorithm 5 shows Exact. It first finds a list X of vertices of
the k-ĉore, and sorts them according to their distances from q in
ascending order (lines 2-3). Note Xi denotes i-th vertex. For each
three vertex combination, it verifies whether there is a k-ĉore in
the MCC fixed by it, and finally returns Ψ (lines 4-14).

Algorithm 5 Query algorithm: Exact
1: function EXACT(G, q, k)
2: find the vertex list X of the k-ĉore containing q;
3: sort vertices of X;
4: initialize r ← +∞, Ψ← ∅;
5: for i← 3 to |X| do
6: for j ← 1 to i–2 do
7: for h← j + 1 to i–1 do
8: compute the MCC mcc of {Xi, Xj , Xh};
9: if mcc.radius < r then

10: R← a set of vertices in mcc;
11: if exist a k-ĉore with q in G[R] then
12: r ← mcc.radius, Ψ← this k-ĉore;
13: if |q,Xi| > 2r then break;
14: return Ψ;

Algorithm 6 presents AppInc. First, it initializes four vari-
ables Queue, S, T and Φ: Queue is a priority queue of vertices,
in which vertices are sorted in an ascending order according to
their distances to q; S is the set maintaining vertices close to q
incrementally; T is a set for recording vertices added to Queue;
and Φ is the approximated SAC. Then, it adds q to Queue in the
beginning (line 3). In the while loop (lines 4-15), it first gets the
nearest vertex, p, from Queue, and adds it to S (lines 5-6). Next,
it considers q’s neighbors (lines 7-12). For each neighbor v ∈ X ,
if it is in O(q, |p, q|), we add it to S directly; otherwise, we put
it into Queue as it is already in O(q, |p, q|). Note that in any
feasible solution, each vertex has at least k neighbors. So if both p
and q have at least k neighbors in S, it checks whether there exists
an SAC in G[S]. If it exists, then AppInc returns it (lines 13-16).

Algorithm 7 presents AppFast. We denote the SAC returned
by AppFast by Λ. εF is an input parameter. By following the
two-step framework, it first computes the k-ĉore (line 2), and then
finds Λ from the k-ĉore (lines 3-14). Some variables such as Λ,
l and u are initialized (line 3). In while loop (lines 4-14), it first
finds an SAC Λ′ from O(q, r) using breadth first search (BFS). If
Λ′ does exist, it first updates Λ, since this solution has a smaller
radius. It then checks whether the gap, i.e., r− l, is smaller than α
(we will discuss how to set this gap later). If it is not larger than α,
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Algorithm 6 Query algorithm: AppInc
1: function APPINC(G, q, k)
2: initialize Queue, S ← ∅, T ← ∅, Φ← ∅;
3: Queue.add(q);
4: while |Queue| > 0 do
5: p← Queue.poll();
6: S.add(p);
7: for v ∈ nb(p) do
8: if degG(v) ≥ k then
9: if |v, q| ≤ |p, q| then

10: S.add(v);
11: else if v /∈ T then
12: Queue.add(v); T .add(v);
13: if |S ∩ nb(q)| ≥ k ∧ |S ∩ nb(p)| ≥ k then
14: if exist a k-ĉore containing q in G[S] then
15: Φ← this k-ĉore; break; //stop
16: return Φ;

Algorithm 7 Query algorithm: AppFast
1: function APPFAST(G, q, k, εF )
2: find the vertex list X of the k-ĉore, Λ, containing q;
3: initialize l, u using Eq (1);
4: while u > l do
5: r ← l+u

2
;

6: S ← vertices in O(q, r);
7: Λ′ ← the k-ĉore containing q in G[S];
8: if Λ′ 6= ∅ then
9: Λ← Λ′;

10: if r − l ≤ α then return Λ;
11: u← max

v∈Λ
|q, v|;

12: else
13: if u− r ≤ α then return Λ;
14: l← min

v∈Λ∧v/∈S
|q, v|;

then it returns Λ; otherwise, it updates u as the maximum distance
from q to vertices in Λ, which ensures that the feasible solution
found later has at least one less vertex than Λ. If Λ′ does not exist,
it returns Λ if the gap, i.e., u − r, is small enough; otherwise, it
updates l as the minimum distance from q to vertices in Λ, but not
in S, which ensures that the set S in the next iteration has at least
one more vertex than current S.

Algorithm 8 presents the steps of AppAcc. εA is an input
parameter. It first performs AppFast (εF=0), and obtains the k-
ĉore in O(q, 2γ) (lines 2-3), which contains Ψ by Corollary 2.
Then it initializes four variables: Γ is the target SAC, β equals
to γ, rcur is the radius of the smallest MCC covering a feasible
solution, and achList contains the center points of four child
nodes of the root node (line 4). In the while loop (lines 5-27),
we consider nodes in the region quadtree level by level in a
top-down manner. Specifically, for each point p ∈ achList, we
first check whether it can be pruned using Pruning1 (line 8), and
then use binary search introduced in AppFast to find a feasible
solution (lines 12-22), and finally update rcur and Γ, if the radius
of the MCC covering the feasible solution is smaller than rcur .
After considering nodes in this level, we use Pruning2 to prune
some nodes. Additionally, we also prune some anchors whose
corresponding SACs are the same according to the Pruning3 (line
25). Note that map keeps <key, value> pairs, where key is
a center point and value denotes the radius that results in no
feasible solution. Next, we update β and collect all the child nodes
needed to be considered in the next level (lines 26-27). The loop is
executed until β is smaller than the threshold δεA√

2(2+εA)
(we will

show how to set β later). Finally, Γ is returned (line 28).
Algorithm 9 presents the pseudocodes of Exact+. It first

Algorithm 8 Query algorithm: AppAcc
1: function APPACC(G, q, k, εA)
2: obtain Φ, δ and γ using AppFast;
3: S ← vertices of the k-ĉore, containing q, in O(q, 2γ);
4: Γ← Φ, β ← γ, rcur ← γ, achList← center points;
5: while β ≥ δεA√

2(2+εA)
and rcur > 1

2
δ(1 + εA) do

6: map← ∅;
7: for each point p ∈ achList do
8: if |p, q| ≤ rcur +

√
2

2
β then //Pruning1

9: Γp ← find an SAC in O(p, rcur +
√

2
2
β);

10: if Γp 6= ∅ then
11: u← rcur +

√
2

2
β, l← δ

2
, map.put(p, l);

12: while u ≥ l do
13: r ← l+u

2
;

14: Γ′p ← find an SAC in O(p, r);
15: if Γ′p 6= ∅ then
16: Γp ← Γ′p;
17: if r − l ≤ α′ then break;
18: u← max

v∈Γq
|q, v|;

19: else
20: map.put(p, l);
21: if u− r ≤ α′ then break;
22: l← min

v∈S∧v/∈O(p,r)
|q, v|;

23: r ← radius of the MCC covering Γp;
24: if r < rcur then rcur ← r; Γ← Γp;
25: prune anchor points in map using Pruning2,3;
26: β ← β/2;
27: update anchor point list achList using map;
28: return Γ;

Algorithm 9 Query algorithm: Exact+
1: function EXACT+(G, q, k, εA)
2: run APPACC(G, q, k, εA);
3: T ← anchor points in map of AppAcc;
4: initialize F1 ← ∅;
5: for p ∈ T do F1.add{v|r ≤ |p, v| ≤ r+ ∧ v ∈ S};
6: for v1 ∈ F1 do
7: F2 ← {v|

√
3r ≤ |v1, v| ≤ 2rcur ∧ v ∈ F1};

8: for v2 ∈ F2 do
9: F3 ← {v||v1, v| ≤ |v1, v2| ∧ v ∈ F1};

10: for v3 ∈ F3 do
11: compute the MCC mcc of {v1, v2, v3};
12: if mcc.radius < rcur then
13: R← a set of vertices in mcc;
14: if exist a k-ĉore in G[R] then
15: rcur ← mcc.radius;
16: Ψ← this k-ĉore;
17: return Ψ;

runs AppAcc with a small value of εA (line 2). Note that Ψ is
initialized as Γ, and S and rcur are updated by AppAcc. Then,
it collects a set, T , of anchor points that are not pruned in the
last while loop of AppAcc (line 3). Finally, an empty set F1 is
initialized (line 4). For each anchor point p, it finds the potential
fixed vertices by Eqs (3) and (4), and adds them into F1 (line 5).

Next, it considers the three vertex combinations. It considers
each vertex v1 ∈ F1 as a fixed vertex of an MCC, and its farthest
fixed vertex v2 for this MCC. By Lemma 2, we have |v1, v2| ∈
[
√

3ropt, 2ropt]. So a set F2 of potential farthest fixed vertices
is collected (line 7). Next, it collects a set, F3, of the third fixed
vertices (line 9). Finally, it computes the MCC fixed by three
vertices from F1, F2 and F3 respectively, keeps the SAC with the
smallest MCC radius (lines 11-16), and returns it (line 17). Note
that r and r+ are also updated during the enumeration.
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10 APPROXIMATION RATIO OF SAC SEARCH AL-
GORITHMS

In this section, we focus on the approximation algorithms of SAC
search and compare their theoretical approximation ratios and
actual approximation ratios. In Figure 20, we report the theoretical
and actual approximation ratios of AppFast and AppAcc on
Brightkite and Gowalla datasets. Note that if we set εF=0.0,
the results of AppFast are the same with those of AppInc,
so we do not report results of AppInc. We can see that, the
actual approximation ratios of AppFast and AppAcc are much
smaller than the theoretical approximation ratios. For example,
when εF=2, the theoretical approximation ratio of AppFast is
4.0, but its actual approximation ratios are around 2.0 on these
two datasets. Similar results can be observed from AppAcc in
Figure 20(b).
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Fig. 20. Approximation ratio.

11 MORE EXPERIMENTAL RESULTS OF SAC
SEARCH AND CSAC SEARCH

The efficiency results of SAC search on Gowalla, Syn1, and Syn2
datasets are reported in Figure 21. We can easily observe that, the
results on synthetic datasets are generally highly similar to those of
real datasets. From these efficiency results, again we can conclude
that, for moderate-size graphs, Exact+ is the best choice, as it
achieves the highest quality with reasonable efficiency; for large
graphs with millions of vertices or edges, AppFast and AppAcc
are better options as they are much faster than Exact+.

The efficiency results of CSAC search on Gowalla dataset
are reported in Figure 22. Clearly, the experimental results are
generally similar to those on Brightkite and Foursquare datasets.

12 RESULTS ON NOISY GRAPHS

TABLE 6
New datasets used in our experiments.

Name Vertices Edges d̂ BC CC

Oregon 10,670 22,002 4.12 2.44E-5 0.2969
Enron 36,692 367,662 20.04 1.69E-4 0.3076

In this section, we evaluate the performance of our algorithms
on networks with anomalous vertices. However, to our best knowl-
edge, there is no public spatial graph, where anomalous vertices
are explicitly labelled. Fortunately, there are some works [47],
[48] that can identify anomalous vertices though, and they have
performed studies on some public datasets. For example, in [47], a
vertex is considered as an anomalous vertex, if its neighbors are al-
most fully connected (one extreme case called “near-clique” [47],
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Fig. 21. Efficiency of SAC search on Gowalla, Syn1, and Syn2 datasets.
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Fig. 22. Efficiency of CSAC search on Gowalla dataset.

[48]) or rarely connected (the other extreme case called “near-
star” [47], [48]). if it is well connected with its neighbors (near-
cliques) or not connected (stars). This is because, in most social
networks, friends of friends are often friends, which implies that a
vertex v’s neighbors are often linked, but the extreme cases “near-
clique” (any two neighbors of vertex v are linked) and “near-star”
(any two neighbors of vertex v are not linked), are suspicious.

In our experiments, we study two networks (i.e., Oregon and
Enron), which are used in [47] but not in our original submission.
The statistics of these two datasets are reported in Table 6. Note
that these two networks are not spatial graphs, so we need to
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Fig. 23. Efficiency on the Enron dataset.
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Fig. 24. Efficiency on the Oregon dataset.
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Fig. 25. Efficiency on the BrightKite dataset.

associate locations to their vertices. Specifically, we assume that
all the vertices are in the [0, 1]2 space, and let n be the number
of vertices in the graph. We randomly divide all the vertices into
two groups of sizes (n–100) and 100, with the aim of making the
100 vertices in the second group spatially anomalous. For vertices
in the first group, we assume that their locations follow a normal
distribution in each dimension, i.e., N(µ1, σ

2
1) and N(µ2, σ

2
2),

which correspond to locations in the x- and y-axes respectively.
For vertices in the second group, their locations are generated,
such that they are significantly deviated from the distributions of
the locations of vertices in the first group, i.e., they are in the space
[0, 1]2, but not in the “3-standard deviation” [48] area [µ1-3δ1,
µ1+3δ1]×[µ2-3δ2, µ2+3δ2]. In other words, the vertices of the
second group can be considered as spatially anomalous vertices.

To evaluate the performance, for each dataset, we select five
sets of query vertices, each of which has 100 vertices in the 4-core
of the graph, as follows:
Set-1: Vertices in this set are randomly selected;
Set-2: We use the algorithms in [47] to detect the top-100 vertices,
which most-likely tend to form near-cliques with their neighbors;
Set-3: We use the algorithms in [47] to detect the top-100 vertices,
which most-likely tend to form near-stars with their neighbors;
Set-4: Vertices in this set are anomalous vertices, which are
detected by the algorithm in [48] based on the statistics of vertices’
neighbors;
Set-5: This set contains all the vertices from the second group in
location generation as discussed above.

Notice that the algorithms in [47], [48] mainly detect vertices
that are structurally anomalous. Therefore, vertices in Set-2, Set-
3, and Set-4 are structurally anomalous. Vertices in Set-5 are
spatially anomalous, since their locations significantly deviate
from those of others as discussed above. In summary, there are
four sets of anomalous query vertices.

In addition, we consider another real dataset, i.e., Brightkite
(see Section 6.1), and also select five sets of query vertices.
Set-1, Set-2, Set-3, and Set-4 are selected respectively using the
same methods above. For Set-5, to select the spatially anomalous
vertices, we assume that all the vertices follow a normal distri-
bution in each dimension, i.e., N(µx, σ

2
x) and N(µy, σ

2
y), which

correspond to locations in x-axis and y-axis respectively. Then,
we randomly select 100 vertices in the space [0, 1]2, but not in
the “3-standard deviation” [48] area [µx-3δx, µx+3δx]×[µy-3δy ,
µy+3δy].

We run AppFast(0.5), AppAcc(0.5), and Exact+with
the five query vertex sets on each dataset. Note that, we do
not run AppInc and Exact, because they are much slower
than AppFast and Exact+, as shown by our previous exper-
imental studies. The experimental results on the Enron, Oregon,
and Brightkite datasets are reported in Figures 23, 24, and 25
respectively, where “random”, “clique”, “star”, “nbstatistics”, and
“spatial” denote the results of query vertices in Set-1, Set-2, Set-3,
Set-4, and Set-5 respectively.

We can observe that, the efficiency trends on the Brightkite
dataset and two new datasets (i.e., Enron and Oregen), which
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contain anomalous vertices as shown in [47], are very similar, i.e.,
the running time of AppFast, AppAcc, and Exact+ decreases
as the value of k increases (the detailed reasons are discussed
in the earlier version of this paper [45]). However, for different
anomalous query vertices, their running time costs are different.
Specifically, we have some interesting observations as follows:
Set-2: Vertices in Set-2 tend to achieve higher efficiency than
those in Set-1. For example, on Enron and Oregon datasets, all the
algorithms perform the fastest when using vertices of Set-1. The
main reason is that the query vertices are near-clique vertices, i.e.,
they tend to form cliques with their neighbors, so their SACs are
in small subgraphs and the queries can be performed efficiently.
Set-3: Vertices in Set-3 have lower efficiency than those in Set-1.
This is because, the query vertices are near-star vertices, i.e., their
neighbors are rarely connected with each other. This means that,
to find an SAC for a query vertex q, we may have to consider
vertices which are structurally far away from q. As a result, more
time cost is needed.
Set-4: The performance of vertices in Set-4 fluctuates differently
on different datasets. We conjecture that this is because, in [48], a
vertex is identified as an anomalous vertex, if its neighbor statistics
highly deviate from those of other vertices, so many kinds of
anomalous vertices are selected, resulting in different efficiency
results.
Set-5: The performance of vertices in Set-5 is different with those
in Set-1, but it fluctuates differently on different datasets. For
example, on the Oregon dataset, AppFast performs very fast
using vertices of Set-5, but Exact+ runs slowly for vertices
in Set-5. This is because, although these vertices are spatially
anomalous, some of them may still be structurally normal, so they
may achieve normal efficiency.

In summary, for anomalous networks, our algorithms generally
achieve similar efficiency trends with those on the real dataset
(i.e., Brightkite) that we have used before, but for different sets of
anomalous vertices, the efficiency results are different as discussed
above.

13 EFFECT OF NETWORK CHARACTERISTICS

In this section, we consider two typical network characteristics,
namely betweenness centrality (BC) and clustering coefficient
(CC), and study their effects on the efficiency of SAC search.
• The betweenness centrality (BC) is a measure based on shortest
paths. Essentially, it represents the degree of which vertices stand
between each other. For example, in a flow network, a vertex with
higher betweenness centrality would have more control over the
network, because more information will pass through that vertex.
The betweenness centrality value of a vertex v in the graph G is
defined as

g(v) =
∑

v 6=s,v 6=t

σs,t(v)

σs,t
(19)

, where σs,t is the total number of shortest paths between any pair
of vertices s and t, and σs,t(v) is the number of those paths that
pass through v.
• The clustering coefficient (CC) of a vertex in a graph measures
how close its neighbors are to being a clique (complete graph).
In other words, a clustering coefficient is a measure of the degree
to which nodes in a graph tend to cluster together. The clustering
coefficient of a vertex v of the graph G(V,E) is defined as

h(v) =
|{(vi, vj) : vi, vj ∈ nb(v), (vi, vj) ∈ E}|

|nb(v)|(|nb(v)− 1|) (20)

, where nb(v) denotes the set of v’s neighbors in G.
In Table 4, the average values of BC and CC in each dataset

are reported. We can observe that for larger datasets, the values of
BC tend to be smaller, because in a larger graph, a vertex tends
to be passed through by less shortest paths. While for CC, the
values are dataset dependent, since the CC value of a vertex mainly
depends on its neighbors. By observing the efficiency of SAC
search on different datasets, we can conclude that generally the
running time increases with the dataset size. In addition, the SAC
search algorithms tend to be slower for datasets whose average BC
values are lower, while for CC values, we cannot obtain similar
observation.

To further examine the detailed effect of these characteristics
on the efficiency, we perform the following experimental study.
Specifically, for each dataset, we first compute the BC value of
each vertex, and then select three groups of query vertices with
each having 100 vertices. The first group contains 100 svertice
whose BC values are the highest, the second group contains 100
vertice which are randomly selected, and the last group contains
100 vertices whose BC values are the lowest. We denote these
three groups by “high100”, “random”, and “low100” respectively.
Finally, we run our SAC search algorithms, i.e., AppFast(0.5),
AppAccf(0.5), and Exact+, for each group, and record the
running time. Note that, we do not run AppInc and Exact,
because they are much slower than AppFast and Exact+, as
shown by our previous experimental studies. In addition, for each
dataset, we perform similar steps for vertices with different CC
values as above.

The efficiency results are reported in Figures 26 and 27.
Interestingly, we can observe that, for AppFast, the efficiency
gaps among these groups of queries are very small; while for
AppAcc and Exact+, vertices whose BC and CC values are
higher, they tend to perform faster than vertices whose BC and
CC values are lower. This is mainly because AppFast is purely
based on binary search and the number of binary search times is
often limited. While for other algorithms, after running AppFast,
they still need to perform graph search. Since for vertices whose
BC and CC values are higher, they tend to have more connection
with others. As a result, it is easier for them to find communities,
resulting in higher query efficiency.

(a) Brightkite (b) Gowalla

Fig. 26. Effect of betweenness centrality.

14 EFFECT OF NOISE

In this section, we study the behaviors of SAC search algorithms
on graphs, which are associated with noise. To add noise into the
graph G, we create some new vertices with locations, and also link
them to the vertices of G (details to follow). Before generating the
noise, we collect some statistics of the graph G as follows. (1)
We compute the probability distribution of numbers of neighbors
for the vertices. Specifically, we obtain a degree distribution
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(a) Brightkite (b) Gowalla

Fig. 27. Effect of clustering coefficient.

function p(x), which means that the probability that a vertex v
has x neighbors is p(x). (2) We assume that the locations of
these vertices follow a normal distribution along each dimension,
and thus compute two normal distributions, i.e., N(µ1, σ

2
1) and

N(µ2, σ
2
2), which correspond to vertices’ locations in the x-axis

and y-axis respectively. Based on these statistics, we add noise
vertices into G by following the three cases below respectively.
• Case 1: Their numbers of neighbors follow the distribution p(x)
of the graph G, and their locations follow the distribution of the
locations of vertices in the graph G.
• Case 2: Their locations follow the distribution of locations of
vertices in the graph G, but their numbers of neighbors greatly
deviate from the distribution p(x). To be specific, let the range
of x’s values be [a, b]. Then, we only consider the x values close
to a or b, particularly in the ranges [a, a + (b − a) × 10%] and
[b−(b−a)×10%, b], and their numbers of neighbors are randomly
selected from these two sub-ranges.
• Case 3: Their numbers of neighbors follow the distribution
p(x) of the graph G, but their locations greatly deviate from the
original distribution, i.e., they are selected from [0, 1]2 but not in
the “3-standard deviation” [48] area [µ1−3σ1, µ1 +3σ1]× [µ2−
3σ2, µ2 + 3σ2].

We consider two real datasets, i.e., Brightkite and Gowalla,
and add noise vertices into these graphs following three cases
above respectively. Note that in all cases above, if a noise vertex
v has x neighbors, then we randomly select x vertices from G
and link them to v. Moreover, for each case, we vary the numbers
of noise vertices as n×0%, n×3%, n×5%, n×10%, and n×15%
respectively, where n is the number of vertices in G. After that,
we run three algorithms (i.e., AppFast(0.5), AppAcc(0.5),
and Exact+) using the query vertices (which are introduced in
Section 6.1), and then report their values on the following two
measures:
• Efficiency. The average running time of an SAC query.
• Similarity. Let C(q) be the set of vertices in the SAC of q in
the graph G, and C(q)′ be the set of vertices in the SAC of q in
the noisy graph. Then, we compute the Jaccard similarity between
C(q) and C(q)′, and report the average similarity value.

We report the experimental results for the three cases in
Figures 28, 29, and 30 respectively. From these figures, we can
easily observe that, in each case, when the number of noise
vertices varies from n×0% to n×15%, the running time increases
very slightly and the similarity decreases also very slightly. For
example, on the Gowalla dataset, the running time increases by
only 1% in the first case. Moreover, the effect of noise on the
efficiency and similarity is similar in all these three cases. This
is mainly because, in the first step of all the three algorithms,
they use the binary search to quickly reduce the search space
from the whole data space to O(q, δ). Since O(q, δ) is much
smaller than the whole data space, the number of noise vertices

it contains is very limited. Consequently, the noise vertices have
little or no effect on the overall efficiency and members of the
SAC. Therefore, our algorithms are robust to the noise vertices.

15 SENSITIVITY TEST OF PARAMETERS OF SAC
SEARCH ALGORITHMS ON NOISY NETWORK

In this section, we experimentally evaluate the sensitivity of the
choice of parameters on graphs with noise. We perform exper-
iments on the graphs with noise vertices, which are introduced
by the three cases in Section 14. The results show that, our
algorithms generally achieve similar sensitivity as that on the
original datasets.

Specifically, we consider three parameters, which are εF in
AppFast, εA in AppAcc, and εA in Exact+. We use the graphs
with noise vertices, which are introduced by the three cases in
Section 14. For each graph in each case, we add n×10% noise
vertices, where n is the number of vertices in the original graph
(which are not added noisy vertices). After that, we vary the values
of these parameters and run AppFast, AppAcc, and Exact+ on
the noisy datasets. For comparison, we also run these algorithms
on the original graphs.

In Figures 31, 32, and 33, we report the efficiency results on
the Brightkite and Gowalla datasets, and their three noisy versions
of datasets respectively. Note that “Brightkite*” and “Gowalla*”
denote the noisy versions of the Brightkite and Gowalla datasets
respectively. As can be seen, for each dataset in each case, the gap
of efficiency on each original graph and its noisy graph is very
small. For example, in Case 1, AppFast achieves almost the
same efficiency on the graphs Gowalla and Gowalla*. In addition,
for Exact+, it always achieves the highest efficiency when εA is
set to 10−4, and this result is consistent with our previous result
of parameter sensitivity test. Thus, our algorithms are not very
sensitive to the newly added noise, and thus are very robust.
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Fig. 28. Effect of noise in Case 1.
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Fig. 29. Effect of noise in Case 2.
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Fig. 30. Effect of noise in Case 3.
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Fig. 31. Effect of parameters on noise network in Case 1.
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Fig. 32. Effect of parameters on noise network in Case 2.
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Fig. 33. Effect of parameters on noise network in Case 3.
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