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Abstract— Forecasting the motion of surrounding obstacles
(vehicles, bicycles, pedestrians and etc.) benefits the on-road mo-
tion planning for intelligent and autonomous vehicles. Complex
scenes always yield great challenges in modeling the patterns
of surrounding traffic. For example, one main challenge comes
from the intractable interaction effects in a complex traffic
system. In this paper, we propose a multi-layer architecture
Interaction-aware Kalman Neural Networks (1aKNN) which
involves an interaction layer for resolving high-dimensional
traffic environmental observations as interaction-aware accel-
erations, a motion layer for transform the accelerations to
interaction-aware trajectories, and a filter layer for estimating
future trajectories with a Kalman filter network. Attributed
to the multiple traffic data source, our end-to-end trainable
approach technically fuses dynamic and interaction-aware tra-
jectories boosting the prediction performance. Experiments on
the NGSIM dataset demonstrate that IaKNN outperforms the
state-of-the-art methods in terms of effectiveness for traffic
trajectory prediction.

I. INTRODUCTION

An autonomous driving system can be broadly catego-
rized into three hierarchical subsystems, namely percep-
tion/localization, planning and control [1], [2]. The per-
ception subsystem refers to the ability to acquire infor-
mation from the environment via multiple vehicle sensors
like GPS, LiDAR, RADAR, and Camera. It categorizes
sensor data by their semantic meaning; The localization
subsystem determines the global and local position of ego-
vehicle with respect to High Definition Map and the vehicle’s
coordinate system respectively; The planning subsystem typ-
ically includes mission planning, behavioral planning, and
motion planning, generating an efficient and safe trajectory
(specific positions and associated target velocities) for the
autonomous vehicle to follow from a start waypoint to a goal
waypoint [3]; The control subsystem refers to the ability to
execute the planned actions in trajectories from planning by
sending accelerations, brake, and steering messages to the
actuator on intelligent vehicles.
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Fig. 1: Illustration of autonomous driving system overview

Each subsystem in an autonomous driving system has
technical difficulties from both hardware and software. For
example, one hardcore for the planning is of generating
ego-vehicle trajectories based on low-resolution perception
information captured and estimated by the low-cost sensing
subsystem. Moreover, forecasting the motion of surrounding
static and dynamic obstacles is also a big challenge to most
of the on-road autonomous driving systems. Attributed the
tremendous progress in recent years, the planning with static
obstacles has been adequately explored [4]-[7]. However, the
immature technologies in sensing, computing and artificial
intelligence still make planning with dynamic obstacles im-
possible. A practical and efficient solution to this challenge,
which is widely adopted in the autonomous industry, is
technically to make the on-road dynamic obstacles become
almost static, for example, Baidu’s open-source software
platform for autonomous vehicles development (Apollo) [8].

To handle the above challenges, an independent subsystem
prediction is laid after perception and before motion planning
to weaken the risk of the on-road planing with dynamic ob-
stacles by predicting the future motion of obstacles, referring
to Figure 1. Specifically, an effective prediction subsystem
needs to handle the on-road challenges including noisy
sensing information and complex traffic scenes. Existing on-
road prediction subsystem is categorized into three gradually
intelligent models, namely the physics-based motion model,
the maneuver-based motion model, and the interaction-aware
motion model [9]-[11]. The physics-based motion model
is the one based on the kinematics; The maneuver-based
motion model is the one designed for a particular maneuver



in which the future trajectory of a vehicle is predicted by
searching the trajectories which have been clustered as a
priori. The interaction-aware motion model is the one which
captures the interactive effects among vehicles by predicting
the trajectories of multiple vehicles collectively. Especially,
many recent interaction-aware motion models adopt deep
learning approach [12]-[18].

In this paper, we propose a specific model for the pre-
diction subsystem called Interaction-aware Kalman Neural
Networks (IaKNN). [aKNN is a multi-layer architecture
consisting of three layers, namely an interaction layer, a
motion layer, and a filter layer. The interaction layer is a
deep neural network with multiple convolution layers laying
before the LSTM encoder-decoder architecture. Fed with the
past trajectories of vehicles that are close to one another,
this layer extracts the accelerations that capture not only
those raw acceleration readings but also the interactive effects
among vehicles in the form of social force, a latent variable
(which is a measure of internal motivation of an individual in
a social activity in sociology and has been used for studying
the motion trajectories of pedestrians [19]). The extracted
accelerations are called interaction-aware accelerations. The
motion layer is similar to the existing physics-based motion
model which transforms accelerations into trajectories by
using kinematics models. Here, instead of feeding the mo-
tion layer with the accelerations read from sensors directly,
we feed with those interaction-aware accelerations that are
outputted by the interaction layer and call the transformed
trajectories interaction-aware trajectories. The filter layer
consists of mainly a Kalman filter for optimally estimating
the future trajectories based on the interaction-aware trajec-
tories outputted by the motion layer. The novelty in this layer
is that we incorporate two LSTM neural networks [20] for
learning the time-varying process and measurement noises
that would be used in the update step of the Kalman filter,
and this is the first of its kind for trajectory prediction. In
summary, our JaKNN model enjoys the merits of both the
physics-based model (the motion layer) and the interaction-
based model (the interaction layer) and employs neural-
network-based probabilistic filtering for accurate estimation
(the filter layer). In experiments, we evaluate JTaKNN on the
Next Generation Simulation (NGSIM) dataset [21] and the
empirical results demonstrate the effectiveness of [aKNN.

In summary, the major contributions of this paper are listed
as follows: our approach, to the best of our knowledge, is the
first neural network-based filtering algorithm for on-road tra-
jectory prediction, which is end-to-end trainable to learn the
time-varying process and measurement noises with LSTM
neural networks in a Kalman filter. For the normal framework
of an on-road autonomous driving system, the value of our
methodology is the integration of the techniques in sensor
fusion and data-driven approach motion prediction, referring
to Figure 1, more practical to the problem in a dynamic
system. We perform extensive experiments on the NGSIM
dataset, which shows that JaKNN consistently outperforms
the state-of-the-art methods in terms of effectiveness.

II. RELATED WORK

1) State Estimation: State estimation is a mature subfield
in robotics with the aim to estimate the state of a robot from
various noisy measurements. One comprehensive survey of
classic approaches of state estimation refers to [22]. The
limitation in traditional state estimation models is lack of
prior knowledge purified from database to be the preset
parameter adapting time varying influences. Nowadays, neu-
ral network approaches have been explored largely for state
estimation in autonomous industry. Coskun et al. [23] train
the triple-LSTM neural networks architecture to learn the
kinematic motion model, process noise, and measurement
noise for estimating human pose in a camera image. Haarnoja
et al. [24] adopt the discriminative approach in state estima-
tion where neural networks is used to learn features from
highly complex observations, and then filtered the features
to underlying states.

2) Data-driven Approach Trajectory Prediction: Trajec-
tory prediction, which is a traditional topic in the field of
intelligent vehicle society, has been largely studied, referring
to the survey [11], [25]. Among those methods for this
topic, the data-driven ones are promising. For example,
Ma et al. [17] propose an LSTM-based two-layers model
TrafficPredict for heterogeneous traffic-agents in an urban
environment.

To increase robustness and accuracy in multi-agent track-
ing problems, the data-driven fashion can model more com-
plex “interactions” between agents than the hand-crafted
functions. For example, Alahi et al. [12] propose a deep
learning model to predict the motion dynamics of pedestrians
in a crowded scene in which they build a fully connected
layer called social pooling to learn the social tensor based
on pedestrians. Gupta et al. [13] propose a GAN-based
encoder-decoder framework for trajectory prediction with a
pooling mechanism to aggregate information across people.
In the field of intelligent vehicles, Deo and Trivedi [14]
extract a social tensor with a convolutional social pooling
layer and then feed the social tensor to a maneuver-based
motion model for trajectory prediction. Kuefler et al. [15]
and Bhattacharyya et al. [16] use imitation learning approach
to learn human drivers’ behaviors for trajectory prediction.
The learned policies are able to generate the future driving
trajectories that match those of human drivers better and can
also interact with neighboring vehicles in a more stable man-
ner over long horizons. Zhao et al. [26] design an encoder-
decoder architecture called multi-agent tensor fusion network
to extract multi-agent interactions with the spatial structure
of agents and the scene context, and predict recurrently to
agents’ future trajectories.

Our TaKNN model differs from these models in two
aspects. First, [aKNN captures the interactive effects in a
form of accelerations which could then be feed to kinematics
models and thus it enjoys the merits of both the classic
Physics models and the data-driven process (of capturing
the interactive effects). Second, [aKNN employs the Kalman
filter for optimizing the state estimation, where LSTM neural



Past
Trajectory

Interaction Layer

Motion Layer

%ﬂ el
Q:(i,——y. FON |1 VDM

Future
Trajectory

Tos Filter Layer

ﬁ —

% reea o A7

9
55%

Fig. 2: Tllustration of the TaKNN Model: In the diagram, at timestamp ¢, the environmental observation O; flows into the interaction layer
which generates the interaction-aware acceleration AS. Then, we calculate the interaction-aware trajectory of vehicles T; w.r.t Vehicle
Dynamic Model (VDM) in motion layer. In the end, time-varying multi-agent Kalman neural networks run over the predicted time horizon
L to fuse dynamic trajectory S; and interaction-aware trajectory T¢. Particularly, the time-varying process and measurement noises in the
filter layer are set by zero-mean Gaussian noises with covariance formulated in a gated-structure neural network.

networks are used for learning the time-varying process and
measurement noises that are used in the Kalman model, and
this is the first of its kind for trajectory prediction.

III. TRAFFIC DATASETS

To the best of our knowledge, there are four publicly avail-
able traffic datasets, namely Cityscapes [27], KITTI [28],
ApolloScape [29], and NGSIM [21]. Cityscapes, KITTI and
ApolloScape are collected from the first person perspective
which have been widely adopted for single-agent systems in
the field of intelligent vehicle society. NGSIM, is collected
on the southbound US101 road and the eastbound I-80
road with a software application called NG-VIDEO which
transcribes vehicles’ trajectories from an overhead video.
In this work, we only use NGSIM since among the 4
datasets, NGSIM is the only one that is suitable for a study
in the multi-agent system which we target in this paper.
Additionally, as reported in some existing studies [30], [31],
noises vary significantly in NGSIM, and this is one of
the motivations that we proposed to learn the time-varying
covariances in the Kalman filter.

IV. KALMAN FILTER

In this part, we provide some background of the Kalman
filter (KF) which is used as a building block in our model
in this paper. KF is an optimal state estimator in the mean
square error (MSE) sense with a linear (dynamic) model and
Gaussian noise assumptions. Suppose the state, control, and
observation of the linear model are sy, u; and z;, respectively.
The model could be expressed with a process equation and
a measurement equation as follows.

st =F - S¢—1+B-up—1 +w,
2z =H- s+,

where F is a dynamic matrix, B is a control matrix, H
is an observation matrix, which are all known. Moreover,
w ~ N(0,Q) is the process noise and 1 ~ N(0,R) is the
measurement noise based on the noise covariance matrices
Q and R, respectively.

The process of KF is as follows. It iterates between
a prediction phase and an update phase for each of the

observations. In the prediction phase, the current state s,
and the error covariance matrix P; are estimated as follows.

s; =F 81 +B-uq,
Pr=F-P1 - F'+Q

In the update phase, once the current observation z; is
received, the Kalman gain /C;, the prior estimation §; and
the error covariance matrix P; are calculated as follows.

Ki=P7 -H' - (H-P; - H'+R),
§t:S;+’Ct'(Zt_H'St_)7
Po=(I-K - H) P,

For a comprehensive review of KF, the readers could refer
to standard references [32].

KF is effective and commonly used as a basic data
processing skill in autonomous industry where sophisticated
KFs, for instance, Extended KF (EKF) and Particle Filtering
(PF) are also adopted in the literature [33], [34]. In our work,
we take a novel approach only adopting KF as the filtering
part in neural-network based filtering algorithm. It is worth
mention that, the filter we used is in some sense an advanced
version of KF where the noise covariances are being learned
online but not pre-set.

V. PROBLEM STATEMENT

We assume there are N vehicles in the multi-agent sys-
tem (traffic scene). For each vehicle at timestamp ¢, we
collect its position p;, velocity vy, acceleration a;, vehicle
width wy, vehicle length [;, and relative distances {dﬁ ;V:]l
with other agents. We call the observations of all vehicles
environmental observation at timestamp t denoted as o;.
Given the past h-length environmental observations O, :=
{0t—h+1,0t—h+2, - ,01}, we aim to predict the future L-
length trajectories of each vehicle.

Note that the number of vehicles NV is set to be 6 in our
experiments because our setting is the two-lane dynamics
where the ego-vehicle has one in front, one at the rear, and
three vehicles in the neighboring lane. N is an independent
variable in our methodology, and thus it is straightforward to
increase [V to consider more vehicles for trajectory prediction
tasks.



TABLE I: Notations and meanings (at timestamp ¢).

Notation | Meaning

O, Traffic Environment Observation

AZ Interaction-aware Acceleration
T: Interaction-aware Trajectory
F State Transition Matrix
B Control Matrix

St Dynamic Trajectory

S, Priori Estimation of Dynamic Trajectory
St Posteriori Estimation of Dynamic Trajectory
Uy Dynamic Acceleration

[oR Process Noise Covariance

R Measurement Noise Covariance

Gy Ground Truth of Future Trajectory
N Number of Vehicles

L/l Observation/Prediction Time Horizon

VI. METHODOLOGY

In this section, we present our architecture interaction-
aware Kalman neural networks (IaKNN). Figure 2 gives
an overview of the architecture, where the notations are
explained as follows. A is the portfolio of interaction-aware
accelerations outputted by the interaction layer. 7 is the
portfolio of interaction-aware trajectories computed by the
motion layer, and & and V are the state and the control
of the Kalman filter in the filter layer, respectively, where
R and Q are the noise covariance matrices, both learned
by LSTM neural networks. Besides, in this paper, tg, t, L’
and L represent the starting time, current time, observation
time horizon and prediction time horizon, respectively, where
to <t<to+ L.

In the following, we present three layers of IaKNN,
namely the interaction layer, the motion layer and the filter
layer. The notations that are frequently used throughout the
paper are given in Table L.

A. Interaction Layer

In the interaction layer, we aim to extract the interaction-
aware accelerations A° from the past traffic environment
observations O;.

1) Interaction-aware Acceleration: Normally, the motion
of a vehicle would be determined by its own vehicle dynam-
ics. Nevertheless, in a multi-agent system which we target in
this paper, the situation is much more complex since drivers
of vehicles would be affected by those of other vehicles
that are nearby (or they would interact with one another).
For example, a vehicle would be forced to slow down if
another vehicle nearby tries to cut the lane in the front. In
fact, the motion of vehicles is determined by not only their
physical accelerations but also the interactive effects among
vehicles. Inspired by the classical social force model [35],
which models the intention of a driver to avoid colliding
with dynamic or static obstacles, we propose to extract those
accelerations such they capture both the raw accelerations
recorded and the interactions among vehicles nearby. We call
them the interaction-aware accelerations and denote them by

AS.

Fig. 3: Illustration of Interaction Layer

Specifically, at timestamp ¢, traffic environment obser-
vations (O, includes a sequence of recorded accelerations
at,:t, vehicle widths wy,.+, vehicle lengths [, ., and relative
distances d,.; of agents in the system. By following [19], we
compute the so-called repulsive interaction forces ey, .+ :=
exp((v* + v7) - At — dij)tozt’ where superscripts ¢ and j
represent two vehicles that are close to each other and
include them in ;. Thus, the interaction operator formula
at timestamp ¢ is written in details as,

S .
AP = Interactiongyy py (e, Weot, gits degits €40:t).-

The interaction layer is implemented as a neural network
as presented in Figure 3. The architecture of interaction
layer is an LSTM encoder-decoder. In the encoder, we
build convolutional layers (CNN) regarded as a social tensor
extractor, fully-connected layers (FCN) regarded as a mixer
of the social features, and merge the deep features into
the encoder LSTM. In the decoder, the decoder LSTM
outputs the predicted accelerations. Note that we applied the
batch normalization to LSTMs with the vertical connections,
which are transported from one layer to another, and it is
technologically similar to some existing studies [36], [37].
In addition, we introduce the DropOut (with the fraction of
0.5) in case of overfitting.

2) Operator Representation: At timestamp t, the interac-
tion layer in an operator formula is written as,

Interactionyyy 3, : Oy — Af,

where O; is a portfolio of past environmental observations
from to to t and AY is the portfolio of the interation-aware
accelerations from ¢ + 1 to ¢ + L.

B. Motion Layer

In the motion layer, we aim to calculate the interaction-
aware trajectories T based on the interaction-aware accel-
erations AS from the interaction layer.

The main intuition of the motion layer comes from the
primary kinematic equation which establishes a relationship
among position, time and velocity. Our strategy is to use
higher-order derivatives of a position for better forecasting.
Specifically, let p; be the position of a dynamic obstacle
at timestamp t. We write p, with the Taylor expansion as
follows.

1
Dt = Pi—1 + V1 - At + S0t-1° At? + O(At3> (1)

where v;_1 represents the velocity at timestamp ¢t — 1, a;—1
represents the acceleration at timestamp ¢t — 1, and the
Big-O term captures all remaining terms which would be



ignored. Moreover, we replace the acceleration term a; with
an interaction-aware acceleration A° which is derived from
the environment observations.

We specify the velocity term v in Equation 1 as follows.
Suppose the current timestamp is t. For vy, we take the
velocity readings which are currently available and transform
them to v; by using a dynamic model - depending on the
agent type, we adopt different dynamic models for this task,
which shall be introduced shortly. For v;i1,vi49,..., We
estimate their values by applying an integral function based
on the interaction-aware accelerations as follows.

t+i
Vei 1= / ASdt,
t

where 1 = 1,2,..., L.

Next, we introduce the dynamic models, vehicle dynamic
model (VDM), which map motion along the axes of the
global reference frame to motion along the axe fo the robot’s
local reference frame. By following [38], we implement
the vehicle dynamic model as a classical bicycle model
[39]. Specifically, suppose s = (x,y,8,v;,vy,7) is the
current reading involving velocities, where x and y are the
coordinates, 6 is the orientation, v,, and v, are velocities, and
r is the yaw rate. The bicycle model is written as follows.

T = vz -cos — vy -sinb,
Y = Uy -sinf + vy, - cos b,
0=r.

2 and ¢ are the transformed velocities along the x and y
directions, respectively. For more details, the readers are
referred to [38]. Note that the nonlinear VDM model is
not being estimated in the Kalman filter, and it is used
only to transform the velocity readings which are based on
a vehicle-centric coordinating system to those based on a
global coordinating system. That is, VDM model is simply
a plug-in transformation function, and Kalman filter used
in this paper is based on a linear system (on positions and
velocities).

To simplify this layer, we regard all agents as mass
points and their motion behaviors are described in the basic
kinematic motion equations & = v, and § = vy.

1) Operator Representation: At timestamp ¢, the motion
layer in an operator formula is written as,

Motion : AS — T;,
where 7; is an interaction-aware trajectory from ¢+1 to ¢4 L.

C. Filter Layer

In the filter layer, we establish a model based on the
Kalman filter to estimate the dynamic trajectories S; based
on the interaction-aware trajectories T; used as observations.

1) Filter Model: To fit the Kalman filter as described in
Section IV, we let the dynamic trajectories S; be the states,
the interaction-aware trajectories T; be the observations and
the dynamic accelerations U/, be the controls in a linear

model. As a result, the equation of the linear dynamic model
could be written as follows.

Si=F -S—1+B-U_1 + wy, 2
T =St +n: 3)

where F is the state transition matrix, B3 is the control matrix,
wy ~ N (O, Qt) are the time-varying process noises and 7; ~
N (O, Rt) are the measurement noises. The time-varying
covariances Q; and R; will be learned by time-varying noise
models which consist of LSTM neural networks and will be
introduced later. Note that here we assume the observation
matrix H is an identity matrix for simplicity.

2) Specifications of the Layer: We assume N agents
(dynamic obstacles) in the multi-agent system. At timestamp
t, the state S; and the observation 7; of our Equation 2 and
3 could be written as follows.

Si s
: and T;:= | : ,

N N
S (2-N-L)x1 T

St =
(2:N-L)x1

where the state S includes positions p; from GPS and
velocities v}, from the wheel odometer and the observation
7, includes the predicted positions pi, and the predicted
velocities 6,@, where t +1 < k < t 4+ L. Specifically, we
have the following.

Piy1 Dit1
Vi1 Vi1

Sii=| : and 7 :=| : ,
PiyL }?erL

3 X3
Vt+Ld (2.1)x1 Vt+Ld (2.1)x1

where the subscript L is the predicted time horizon.

Next, we define the state transition matrix F and the
control matrix B in our model. Firstly, we define two matrix
blocks M; and M, as follows.

1 At
1
M1 =
1 At
1 (2-L)x (2-L)
and L nus
5AL
At
My =
1A
At (2-L)x L

where At is the time difference between two adjacent traffic
environment observations. Then, F and 3 are block diagonal
matrices that are defined as follows.

F = diag(Ml,...,Ml), and B := diag(Mg,...

N N

3M2)~



3) Prediction and Updated Steps: The prediction step of
the Kalman filter is defined as,

S; = F Stfl + B -Ut,l,
Py =F Py -F' +Q,
and the update step is as,

Ke="P; - (77[ —i—Rt)*l,
S =8 +Ki (T - 8),
P=(T—-Ky)-Pr,

where Q; and R, are the outputs of the time-varying noise
models that we introduce next.

4) Time-varying Noise Model: Since our desired filter
model is time-varying, we assume both the process noises
and the measurement noises to follow a zero-mean Gaussian
noise model with its covariances formulated as Q; :=
LSTMg (S[O:t) and R; := LSTMR(ZM), respectively.
Here, we adopted LSTM because the noises are generated
sequentially with trajectories and LSTM is known for its ca-
pability of capturing sequential dynamics [40]. The concrete
Q, and R, are tractable via backpropagation under the end-
to-end trainable architecture. Besides, Q; and R; are not
PSD in general, but in practice, it is possible to implement a
LQ decomposition to guarantee the PSD property of Q; and
R+ as some existing studies do [24].

5) Operator Representation: At timestamp ¢, the filter
layer in an operator formula is written as,

Filter{W7b} : {S‘t_l,ﬁ,ut_l} — St,

where S, is the Posteriori estimation of dynamic trajectory
fromt+1tot+ L.

D. Loss Function

The loss function of TaKNN (Interaction{wyb}, Motion,
and Filteryy ;) is defined as the sum of displacement error
of Posteriori estimation S of dynamic trajectories and ground
truth G over all time steps and agents, as follows.

1 N t0+L/
— 51 7|2
E{W,b} T (L/+1>NZ Z ||St7Gt|| ’

=1 t=tg

where G means the ground truth of the future trajectory
of i-th agent at the start timestamp ¢. Noth that L’ is the
observation time horizon as defined in the above.

VII. EXPERIMENTS
A. Dataset

We evaluate our approach [TaKNN on two public datasets,
namely US Highway 101 (US-101) and Interstate 80 (I-
80) of the NGSIM program. Each dataset contains (z,y)-
coordinates of vehicle trajectories in a real highway traffic
with 10Hz sampling frequency over a 45-min time span. The
45-min dataset consists of three 15-min segments of mild,
moderate and congested traffic conditions. We follow the
experimental settings that were proposed by existing studies
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Fig. 4: Illustration of RMSE and NLL of model CV, V-LSTM, S-
LSTM, C-VGMM+VIM, CS-LSTM, IaKNN-NoFL, and IaKNN. For
both evaluation metrics, we plot its average for the prediction time
horizon in 5s.

[14], [41] and combine US-101 and I-80 into one dataset.
As a result, the dataset involves 100,000 frames of raw data.

We construct the multi-agent training traffic scene in the
following construction procedure. Firstly, we align the raw
data by its timestamps. Secondly, we form a multi-agent
traffic scene by picking one host vehicle and including five
closest vehicles on its traffic lane or two adjacent traffic
lanes. Finally, we set the window size for extraction as 7
seconds to generate the training scenes. We will explain the
setting of window size in the next section.

B. Baselines

The following baseline models will be compared with our
model TaKNN.

o Constant Velocity (CV): Model of the primary kinematic
equation with constant velocity.

o Vanilla-LSTM (V-LSTM): Model of Seq2Seq. It is from
a sequence of past trajectories to a sequence of future
trajectories [42].

e Social LSTM (S-LSTM): Model of LSTM-based neural
network with a social pooling for pedestrian trajectory
prediction. As demonstrated in [12], the model performs
consistently better than traditional models such as the
linear model, the collision avoidance model and the social
force model. Therefore, we do not compare these tradi-
tional methods in our experiments.

o C-VGMM+VIM: One variational Gaussian mixture models
with Markov random fields, taken into account the inter-
action effects between agents [43].

o Convolutional Social Pooling-LSTM (CS-LSTM): Maneu-
ver based motion model which will generate a multi-modal
predictive distribution [14].

e IaKNN-NoFL: The proposed method [aKNN without the
filter layer.

Note that the model GAIL-GRU is not taken into account in
the comparison, because it has access to the future ground-
truth trajectories of neighboring vehicles to predict the ego-
vehicle’s trajectory, while the others have not [15].

C. Evaluation Metrics

Two metrics, namely the root-mean-square error (RMSE)
and negative log-likelihood (NLL), are used to measure the
effectiveness of IaKNN. In particular, the first 2-seconds
trajectories and the rest 5-seconds trajectories are used as



past trajectories and the ground truth in a 7-seconds ' multi-
agent training traffic scene, respectively.

e« RMSE: the root mean squared sum accumulated by the
displacement errors over the predicted positions and real
positions during the prediction time horizon.

o« NLL: the sum of the negative log probabilities of the
predicated positions against the ground-truth positions dur-
ing the prediction time horizon (we consider a predicted
position to be correct if its distance from the ground-truth
one is bounded by a small threshold and wrong otherwise).

D. Implementation Details

The default length of the past trajectories is two seconds
and the time horizon of the predicted trajectories is one to
five seconds. The default number of hidden units in LSTMs
in the interaction layer and filter layer is set to 32 and
all LSTM weight matrices are initialized using a uniform
distribution over [—0.001,0.001]. The weight matrices for
other layers are set with the Xavier initialization. The biases
are initialized to zeros. Additionally, in the training process,
we adopt the Adam stochastic gradient descent with hyper-
parameters 5, = 0.9, B2 = 0.99 and set the initial learning
rate to be 0.001. In order to avoid the gradient vanishing,
a maximum gradient norm constraint is set to 5. For the
parameters of baselines, we follow the original settings in
the open source code. The experiments are conducted on
a machine with Intel(R) Xeon(R) CPU E5-1620 and one
NVIDIA GeForce GTX 1070 GPU.

E. Result Analysis

The performance results of baselines and our method
on the traffic scene are shown in Figure 4. We compute
the RMSE and NLL for all traffic scenes and plot the
average for the prediction time horizon in 5s. The naive
CV produces the largest prediction errors in all comparison
methods. V-LSTM, S-LSTM and CS-LSTM perform similarly
in terms of both metrics which is mainly because they are
all LSTM-based neural networks. Additionally, S-LSTM, CS-
LSTM, and IaKNN-NoFL perform better than V-LSTM and
C-VGMM+VIM, especially in RMSE, and this is mainly
because the formulation establishes on multi-agent system
setting, which also takes into account the interactive effects
among vehicles in modeling. [TaKNN outperforms slightly all
baselines in terms of both metrics. Specifically, we observe
that it outperforms the best baseline CS-LSTM with about
10% improvement. This may be explained by the fact that
the filter layer in our JlaKINN model estimates the underlying
trajectories from both interaction-aware trajectories 7 and
dynamic trajectories S in a traffic scene and the interaction
layer has done a good job in capturing the interactive effects
among the surrounding vehicles. The combination of the

The window size is equal to the sum of the prediction horizon and the
observation. We set the prediction horizon to be 5 seconds by following
the work of CS-LSTM [14]. Regarding the observation horizon, existing
algorithms used different settings as follows: Social LSTM (3.2 seconds),
CS-LSTM (3 seconds), Trafficpredict (2 seconds). We set the observation
horizon to be 2 seconds, resulting in a window size of 7 seconds.

deep neural network and probabilistic filter makes our model
more applicable for the real-time trajectory prediction in the
traffic scene.

FE Case Studies

We illustrate the results by showing the predicted 2-second
trajectories of vehicles by IaKNN and the real ones in the
two lane-change traffic scenarios in Figure 5. The results
demonstrate the effectiveness of the prediction by TaKNN
intuitively. We observe that the predicted trajectories (color
blue) are close to the real ones (color green) for all vehicles
on the lanes in the Figure 5.

To prevent the traffic accidents, vehicles keep a safe
following distance from others. The predicted trajectories
by IaKNN as shown Figure 5 confirm this statement, which
is one of the clear superiorities that the multi-agent model
outperforms the single-agent model in the traffic trajec-
tory prediction scene. Specifically, we observe predicted
trajectories of the front vehicles by IaKNN in Figure 5
have clear intentions to change their lanes, one way to
increase the safety following distance, in the future seconds.
Changing lane is one of the crucial issues that an autonomous
vehicle need to take actions to manage the traffic risks
before it happens. Hence, IJaKNN is a more sensitive traffic
prediction algorithm than the past algorithms in autonomous
vehicle industry based on the comprehensive modeling in an
interaction-aware multi-agent environment.
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Fig. 5: Case studies of the prediction result by [aKNN: The
predicted trajectories and the real ones are drawn in blue and green
color, respectively. For each vehicle, we plot its future 2s trajectory.

VIII. CONCLUSION AND FUTURE WORK

In this study, we propose an architecture, [aKNN, to
predict the motion of surrounding vehicles in a dynamic
environment, in which we make the first attempt to generate
an intractable quantity from complex traffic scene yielding a
new interaction-aware motion model. Extensive experiments
show that [aKNN outperforms the baseline models in terms
of effectiveness on the NGSIM dataset. Further work will be
carried out to extend IaKNN to a probabilistic formulation
and combine IaKNN with a maneuver-based model in which
road topology and the traffic information are taken into
account.
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