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Abstract
We describe internal test-case reduction, the method of test-case reduction employed by Hypothesis, a
widely-used property-based testing library for Python. The key idea of internal test-case reduction is
that instead of applying test-case reduction externally to generated test cases, we apply it internally,
to the sequence of random choices made during generation, so that a test case is reduced by
continually re-generating smaller and simpler test cases that continue to trigger some property of
interest (e.g. a bug in the system under test). This allows for fully generic test-case reduction without
any user intervention and without the need to write a specific test-case reducer for a particular
application domain. It also significantly mitigates the impact of the test-case validity problem,
by ensuring that any reduced test case is one that could in principle have been generated. We
describe the rationale behind this approach, explain its implementation in Hypothesis, and present
an extensive evaluation comparing its effectiveness with that of several other test-case reducers,
including C-Reduce and delta debugging, on applications including Python auto-formatting, C
compilers, and the SymPy symbolic math library. Our hope is that these insights into the reduction
mechanism employed by Hypothesis will be useful to researchers interested in randomized testing
and test-case reduction, as the crux of the approach is fully generic and should be applicable to any
random generator of test cases.
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1 Introduction

When generating test cases to discover bugs in a system under test (SUT), it is common to
use test-case reduction [13, 24], where large and difficult to read test cases are transformed
into smaller and more readable versions, as an aid to debugging the problems discovered.
Tools for automating this process are called test-case reducers, or reducers for short. Test-
case reducers are especially important when using random test-case generation (henceforth
“random generation”), which often produces large and messy initial test cases [3, 24].

This presents a particular problem for property-based testing libraries [3, 1] which augment
unit tests with randomly generated test cases, as each type of generated test case typically
requires its own test-case reducer. When generating domain-specific types with no predefined
test-case reducer, users who want test-case reduction must either write their own or use
one of various approaches to generic test-case reduction which attempt to derive a suitable
reducer automatically.

We present an alternative approach that we call internal test-case reduction (henceforth
“internal reduction”), which allows one to build reduction into the generation process itself.
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13:2 Test-Case Reduction via Test-Case Generation

Our presentation is based on the implementation of internal reduction in Hypothesis [19], a
widely1 used Python library for property-based testing. Internal reduction has been the only
supported method of test-case reduction in Hypothesis since early 2016, so we consider it to
be a mature and well-established technology, but it has not previously been described in the
literature and does not appear to be widely known. The aim of this paper is to explain the
idea of internal reduction in detail to the research community, provide insights into how it is
used within Hypothesis, and illustrate the practical pros and cons of the approach via an
experimental comparison with various other test-case reducers.

The key idea of internal reduction is to manipulate the underlying source of randomness
consumed by a random generator, in order to cause the generator to produce smaller test
cases automatically. The final reduced test case is constructed as if the generator had been
implausibly lucky and produced a small and readable test case by chance.

The advantages of internal reduction over other approaches are twofold. First, given an
existing internal reducer, every test-case generator comes with test-case reduction for free,
without the need to write an external reducer. Second, because internal reduction works by
re-generating test cases, any reduced test case is one that could have been generated. If the
generator has been carefully engineered to guarantee that all generated tests satisfy certain
properties, these properties will be satisfied automatically by the reduced test case. This
helps users avoid the test-case validity problem [24], where reduced test-cases fail to satisfy
necessary preconditions for the test. As a result, users hardly need to know that test-case
reduction exists, and can just take the fact that test cases are presented in a reduced form as
a given. Users must of course still ensure that their generators only produce valid test cases,
but this is a problem they must solve anyway, and in practice it is often easier to construct a
valid test case than it is to verify whether an arbitrary test case is valid.

Note that reduction quality or performance are not included among the major advantages
of internal reduction. Anecdotally, and as we will provide evidence for in Section 4.3, test-
case reduction in Hypothesis produces moderately better results than that found in other
property-based testing libraries, but can be a fair bit slower. Based on extensive conversations
with users of Hypothesis and other property-based testing libraries, we consider the user
experience benefits to be worth the performance cost (and the slightly better results to be a
nice bonus on top of that), but we cannot present any particularly compelling argument for
this trade off beyond that experience.

Our main contributions are:

The key idea of internal reduction, which we cast as a shortlex optimization problem over
the choices made during generation (Section 2).
A description of its implementation in Hypothesis (Section 3).
A large evaluation demonstrating that Hypothesis’s internal reduction is reasonably
competitive with other test-case reducers, based on bugs found in the clang and gcc
compilers by Csmith [26] (a generator of C programs), differential testing of two Python
autoformatters, a set of experiments testing SymPy2 (a symbolic algebra library) using
TSTL (a domain-specific language for testing [11]), and a reimplementation of a set of
synthetic benchmarks for QuickCheck’s reduction that were proposed in [23] (Section 4).

1 Usage is difficult to measure precisely, but it is used in thousands of open source projects and has over
100,000 downloads per week. See [19] for more details of usage.

2 https://www.sympy.org

https://www.sympy.org
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We also discuss threats to the validity of our results (Section 5), related work (Section 6)
and present our conclusions and future goals (Section 7).

2 Foundations of Internal Reduction

In this section we present the key idea of internal reduction. We start with a brief account of
test-case reduction more broadly (Section 2.1), then discuss how these ideas can be applied to
the decisions made during generation to implicitly reduce a generated test case (Section 2.2),
then finish with a worked example showing how a generated test case is transformed in the
course of reduction (Section 2.3).

2.1 Test-Case Reduction Fundamentals
The starting point of test-case reduction is that we have some user-specified interestingness
test that takes a test case and determines whether it is in some sense “interesting”—generally
whether it triggers a specific bug in some system under test—and some known interesting
test case. The goal is to find an interesting test case which is “more readable” than the
initial one, which is typically quite large and complicated.

Exactly what counts as more readable is fairly under-defined. The ultimate goal is to
improve the user’s debugging experience, but this is hard to quantify. Past work on test-case
reduction has identified three key features that seem generally helpful: 1) Smaller test cases
are better [13, 24], 2) Users should be able to predict what features of a test case the reducer
can remove, as this allows them to infer that any remaining features in the reduced test
case are important [1], and 3) Test-case reducers should ideally normalize their input to a
canonical interesting test case for each interestingness test [10].3

In support of these goals, we find it useful to think of any given test-case reducer as
having a reduction order : a total order over all test cases ordering them from best to worst.
The goal of reduction is then to find the reduction-order-minimal interesting test case.

A normalizing reducer would always find this minimal test case, but this requires brute
force enumeration, which is typically infeasible. Reducers used in practice are instead only
local minimizers, making small transformations to an interesting test case and checking if
the transformed version is still interesting. Typically these transformations are organized
into “reduction passes” and the reducer runs until it finds an interesting test case that no
pass is able to reduce further.

2.2 Internal Reduction as Shortlex Optimization
Internal test-case reduction works by manipulating the underlying “random” behaviour in
random generation, so we first discuss the structure of a random generator.

A random generator can be thought of as a true random variable taking values in
some domain, but in practical implementations they are otherwise-deterministic functions
that take a pseudo-random number generator (PRNG) and return some value. A PRNG
provides an interface that the generator requests bits from, with each bit corresponding
to a nondeterministic binary decision (a “coin flip”). As the PRNG is the only source of
nondeterminism, any generated test case can be deterministically recreated from these binary

3 In practice no test-case reducers satisfy this condition in general, and the goal is only to approximate it
in common cases.
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13:4 Test-Case Reduction via Test-Case Generation

decisions that led to it.4 We call these sequences of binary decisions choice sequences, and
view random generators as parsers of choice sequences, with the PRNG as a stream interface
for reading the next bits from some underlying choice sequence.

A PRNG can produce infinitely many choices, but we can turn a generator into a parser
of finite choice sequences by raising an exception when the generator reads too many bits,
treating a too-short choice sequence as a parse error in the language defined by considering
the generator as a parser. A generator must terminate after having made only finitely many
choices, so any generated test case is the result of parsing some finite choice sequence.

Internal reduction works by performing test-case reduction not on the generated test case,
but on the choice sequence that lead to it, with the hope that the test case corresponding to
the reduced choice sequence is an improvement on the original. Although we cannot expect
this to be true in every case, in this section we argue why, given a suitable reduction order,
it is plausible that it would work for most “natural” random generators.

In our implementation of internal reduction in Hypothesis, the reduction order is the
well-known shortlex order [25]: For choice sequences s and t, s is shortlex-smaller than t if
|s| < |t| or if |s| = |t| and s is lexicographically smaller than t. Thus, internal reduction is
shortlex optimization over the choice sequences leading to interesting generated test cases.

We now outline why this choice of shortlex order is a natural one.
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Figure 1 Input size vs output size for Csmith.

First, we justify that reducing the length of a choice sequence will typically reduce the size
of the corresponding generated test case. This is fairly intuitive: Any part of the generated
test case has to be constructed by the generator, and this will usually involve a series of
nondeterministic choices, so parts of the test case that contribute to its size will correspond
to regions of the choice sequence where they were generated. In the other direction, regions
of the choice sequence correspond to decisions made during generation, so will usually appear
as some part of the generated test case.

4 This is essentially a variant on the widely known observation that you can recreate the generated value
from the seed that produced it.
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To see an example of this in practice, in Figure 1 we show the relationship between choice
sequence length and generated program size in bytes for Csmith [26], a widely used generator
of C programs. Here, the Pearson’s correlation coefficient between choice sequence and test
case size is 0.73, i.e. the length of the choice sequence is a strong but not perfect predictor of
the test case size.

The relationship between choice sequence and test case size can break down for a number
of reasons. For example, it is common to use rejection sampling during generation. In
rejection sampling, one retries generating some value until it satisfies some predicate. For
example to generate a number between 0 and 9 one might generate a 4 bit integer (which
will be between 0 and 15) and discard the generated integer and try again if it is greater
than 9. This rejection process may in principle be repeated many times, which can result in
many choice sequences of different sizes, all producing the same value.

An additional common example where choice sequence size is not reflected by output size
is that integers will typically be generated as a fixed number of bits. We might, reasonably
enough, want reduction to reduce integers towards zero (and doing so will reduce the size of
their text representation), but all possible values have the same size of underlying choice
sequence, so this reduction cannot be made by reducing the number of bits drawn, only by
changing their contents.

This example informs what our reduction order should be between two choice sequences
of the same length. If we want fixed width integers to reduce towards zero then, depending
on whether we draw these integers in big or little endian order, choice sequences that differ
only in regions corresponding to a single integer should be ordered based on either the
lexicographic or co-lexicographic (i.e. lexicographic from right to left) order for that region.

It is natural to extend this to the whole choice sequence, suggesting that among choice se-
quences of the same length we should prefer either the lexicographically or co-lexicographically
smaller of the two. The choice between the two is fairly arbitrary, but we picked the lexico-
graphic ordering in Hypothesis because it corresponds with the “time ordering” of random
generation, by prioritizing decisions made earlier in the generation process, as they potentially
have more impact on the generated test case.

2.3 Shortlex Optimization by Example
We now show a worked example of how the generated test case might change as the underlying
choice sequence is reduced through a series of local shortlex optimization. The transformations
we will show in this section do come from an actual run of Hypothesis, but we defer discussion
of how these specific transformations might have been chosen to Section 3.

Our example is as follows: Suppose we have a system under test (SUT) that takes binary
trees as inputs, and that it crashes when given a height imbalanced tree (i.e. some branch of
the tree has two children whose heights differ by more than one).

We could test this SUT using the Python code of Figure 2 to randomly generate inputs
to it. After running the SUT against several generated inputs, we might discover the tree
shown along with its associated choice sequence at the top-left of Figure 3.

This initial tree is moderately complicated, so we wish to find a smaller, simpler, tree,
that will help us understand this bug. Rather than using external reduction, operating on
the trees themselves, our internal reducer instead transforms the choice sequences producing
them. We show the these choice sequences in Figure 3, along with the corresponding trees
produced when running the generator of Figure 2 on them.

These transformations proceed as follows: Starting from our initial randomly gener-
ated choice sequence, labeled 1, the reducer performs the transformations 1 → 2 → 3

ECOOP 2020



13:6 Test-Case Reduction via Test-Case Generation

1 class Tree(Generator):
2 def do_draw(self, source):
3 if source.getbits(1):
4 return Branch(source.draw(self), source.draw(self))
5 else:
6 return Leaf()

Figure 2 A simple binary tree generator. This code assumes Branch and Leaf classes for internal
and leaf nodes. For ease of presentation, this generator has expected infinite size; a better one would
be slightly leaf-biased.

1101101100001101101001000
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Figure 3 Successive reductions of choice sequences leading to unbalanced trees.

by replacing long sequences of bits with shorter sequences of zero bits, first transforming
“1101101100001. . . ” to “101. . . ”, then “101101101001000” into “10110000”. These transform-
ations correspond to collapsing a subtree into a single leaf node, but we emphasize that
the transformations operate on the underlying choice sequences, without reference to gener-
ated data. Finally, in the transformation 3→ 4, the reducer swaps two bits, transforming
“10110000” into “10101000”. This swaps two subtrees, but once again is performed without
any knowledge of the SUT’s data domain.

In this case, the reducer in fact finds the shortlex minimal choice sequence leading to an
unbalanced tree, which can be seen in quadrant 4 of Figure 3, although in general the result
will only be locally minimal.

In the course of finding these transformations, the reducer will have tried many other
“failed reductions”—choice sequences that did not yield interesting test cases, either due to
generating balanced trees or providing too few bits for generation of a complete test case to
succeed (the left and right examples of Figure 4 respectively).
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110010100 1011100

Figure 4 Some failed choice sequences arising during the reductions in Figure 3. The dashed
lines represent branches that could not be generated due too short choice sequences.

3 The Design of the Hypothesis Reducer

In this section we outline some interesting details of the Hypothesis reducer, and the rationale
behind them. It will likely be of greatest interest to readers who want to learn about the
intricate details of implementing a test-case reducer.5 Readers who care more about our high
level claims may wish, at least initially, to simply regard the Hypothesis reducer as a black
box and to skip to Section 4 for our evaluation of its effectiveness.

3.1 A Summary of Reduction Passes

The Hypothesis reducer follows the common pattern of dividing reduction into different
passes, each of which perform different classes of transformation designed to reduce interesting
test cases in the shortlex order. We now provide a brief summary of these passes.

In Hypothesis 5.15.1 (which was recent at the time of this writing), the reducer contains
15 passes consisting of:

1. Six passes that delete contiguous regions of the choice sequence.
2. A pass that replaces a contiguous region of the choice sequence with a sub-region.
3. A pass for replacing a contiguous region of the choice sequence with a, possibly shorter,

zeroed sequence of choices.
4. Four passes for pure lexicographic reduction.
5. Three passes for common patterns that require simultaneously lexicographically reducing

some parts of the choice sequence while deleting others.

These passes tend to accumulate organically over time, based on examples we encounter
that we feel the reducer should be able to handle and can’t. Several of them are quite specific,
but most are generic, and the combination seems to produce good results on most generators
we encounter. The most specific of these by far is that one of the lexicographic passes is
entirely a special case for Hypothesis’s floating point generator. We discuss this further in
Section 3.3.

5 The very interested reader may also wish to consult the source code, which is self-contained
and reasonably well documented. https://github.com/HypothesisWorks/hypothesis/blob/master/
hypothesis-python/src/hypothesis/internal/conjecture/shrinker.py
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3.2 Generator-directed Reduction
One of the biggest obstacles with test-case reduction on sequences (e.g. choice sequences for
internal reduction, or file-based external test case reducers) is finding transformations that
preserve some sense of syntactic validity, as syntactically invalid test cases will rarely be
interesting. A classic technique here is hierarchical delta debugging (HDD) [20], which uses
a grammar to find regions to delete.

In comparison to formats designed for human consumption, the choice sequence format is
relatively forgiving—the only way a choice sequence can be invalid is for it to be too short.6
This gives the reducer a reasonable amount of leeway in making changes, and often allows it
to find valid reductions by accident when some change at the choice sequence level makes
essentially arbitrary changes to the generated test case.

Set against this, many transformations that make perfect sense at the level of the generated
test case may be highly non-obvious at the level of the choice sequence without additional
information about how it will be used. As we saw in the binary tree example of Section 2.3,
we might be able to collapse a subtree into a single leaf by replacing some sequence of bits
with a single zero bit. However, there are O(n2) possible contiguous subsequences of the
choice sequence, and if we don’t know how long a sequence of 0 bits to use this adds an
additional O(n) possibilities, giving O(n3) transformations to consider for what we would be
O(n) in the size of the tree for an external reducer!

If the reducer had structural information about what regions of the choice sequence
corresponded to a subtree, it could similarly restrict its attention to only O(n) suitable
regions of the choice sequence. The key observation that Hypothesis uses to get access to
this boundary information is that although we do not have a grammar for the language,
we do have a parser—the generator itself—and by instrumenting the API it uses we can
implement something akin to HDD, allowing us to discover transformations of the choice
sequence that would be difficult to discover otherwise.

We outline this instrumented API in Figure 5. Generators are constructed as an instance
of a Generator class, which are passed to a draw method on a Source object. The Generator
object records the results of getbits calls and how these correspond to draw calls, which
can be used to suggest modifications to the choice sequence. In particular, for our recursive
generator of Figure 2, each subtree corresponds to a single draw call whose start and end
points are recorded on the Source.

A useful analogy is to consider the draw calls as defining the grammatical structure of the
choice sequence format, while the getbits calls define the lexical structure. This structure
often allows us to make transformations at the choice sequence level that naturally mirror
the ones that a dedicated external reducer would have made to the generated test cases,
without knowing any further details about what those generated test cases are.

In Figure 6 we present Python pseudo-code that shows how a reduction pass might try
to replace all draw calls with a (possibly shorter) sequence of zero bits, one of the passes we
mention in Section 3.1. Unlike the brute force O(n3) approach, running this pass attempts
only O(n) possible transformations7.

In our worked example in Section 2.3, the pass of Figure 6 is what allows us to re-
place any subtree with a leaf: e.g. First it might try transforming “1101101100001. . . ” to

6 In Hypothesis a generator may also explicitly declare a choice sequence to be invalid. We have omitted
details of this for clarity of presentation.

7 This assumes that every draw call contains at least one getbits call, but where this is not the case the
results can be cached, a detail we omit here.
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1 class Generator(object):
2 def do_draw(self, context):
3 raise NotImplementedError()
4
5
6 class Source(object):
7 def __init__(self, prefix=()):
8 """A Source object such that the i’th
9 call to getbits returns prefix[i] (possibly

10 truncated) and after that is random."""
11 self.prefix = prefix
12
13 # Records the bits drawn
14 self.record = []
15 self.draw_stack = []
16 # Records (start, end) positions for draws
17 self.draws = []
18
19 def getbits(self, n):
20 """Returns an n-bit integer."""
21 i = len(self.record)
22 if i < len(self.prefix):
23 result = self.prefix[i] & ((1 << n) - 1)
24 else:
25 result = random.getrandbits(n)
26 self.record.append(result)
27 return result
28
29 def draw(self, gen):
30 """Returns the result of gen.do_draw(self)"""
31 self.draw_stack.append(len(self.record))
32 result = gen.do_draw(self)
33 self.draws.append((
34 self.draw_stack.pop(), len(self.record)))
35 return result

Figure 5 A simplified implementation of the Hypothesis API

ECOOP 2020
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1 def zero_draw(source):
2 """Attempt to replace regions corresponding to draw calls with
3 sequence of all zero bits, if doing so would not increase the length."""
4
5 i = 0
6 while i < len(source.draws):
7 u, v = source.draws[i]
8 prefix = source.record[:u]
9 suffix = source.record[v:]
10
11 # Attempt to replace the draw with a zero sequence of the same length
12 attempt = Source(prefix + [0] * (v - u) + suffix)
13 if is_interesting(attempt) and len(attempt.record) <= len(source.record):
14 source = attempt
15 else:
16 # If the number of bits was wrong, try again with the right number.
17 u2, v2 = attempt.draws[i]
18 if v2 < v:
19 attempt = test_function(prefix + [0] * (v2 - u2) + suffix)
20 if (
21 is_interesting(attempt) and
22 len(attempt.record) <= len(source.record)
23 ):
24 source = attempt
25 i += 1
26 return source

Figure 6 Replacing a draw with all zero bits

“1000000000001. . . ”, which would produce a valid but uninteresting choice sequence, and
then it would observe that fewer choices were made in the target draw than expected, so
it would try again with the single zero bit that was used, leading to the sequence “101. . . ”
that we saw in Figure 4.

3.3 Generator / Reducer Co-design
There is a certain amount of co-design between Hypothesis’s library of generators and its
reducer. We show in Section 4.1.2 that this co-design isn’t strictly necessary, in that the
Hypothesis reducer produces reasonable results without it, but we have nevertheless found it
useful.

The co-design occurs when we encounter an example that reduces poorly, requiring us
to modify one or both of the generator or the reducer. Typically, when the example is
user provided we will modify the reducer, and when it is part of the Hypothesis library of
generators, we will modify the generator to be more “reduction friendly”, but in some cases
it is still better handled by modifying the reducer.

In particular, as we mention in Section 3.1, there is a special case for our floating point
generator. This generator is designed so that lexicographic reduction will produce “visually
simpler” floating point numbers. This is important because if a float was generated as its
IEEE representation it would instead reduce towards 0.0, which tends to produce reduced
test cases that look pathological. e.g The most reduced non-zero double precision float would
be 5e-324, when ideally we would like to reduce non-zero floats to 1.0.

This results in certain transformations that look very natural to a human reader but are
quite complicated at the choice sequence level. e.g. 9.0 is represented as a 64-bit integer value
of 9 in our internal float encoding, but 9.1 is represented as 9237896145653045656. Although
going from the latter to the former is an obvious reduction to a human reader, and is a
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1 class ListGenerator(Generator):
2 def __init__(self, elements):
3 self.elements = elements
4
5 def do_draw(self, data):
6 results = []
7 while True:
8 more = data.getbits(1)
9 if more:

10 results.append(data.draw(self.elements))
11 if not more:
12 break
13 return results

Figure 7 A simplified list generator.

lexicographic reduction at the choice sequence level, it would be quite hard for the reducer
to discover on its own. As a result, it was worth adding a special case to our implementation
to make it aware of transformations that were obvious at the floating point level but not at
the underlying choice sequence level.

The floating point generator is the only case we’ve encountered that required this level of
special casing, and this was largely only needed due to the relative complexity of the floating
point format. Additionally, it was only worth it because it is such a foundational generator:
If it had not been part of our core library, it would likely not have been worth investing
much time in it, and so it would have been left with the default behaviour which, while
suboptimal, was still relatively adequate.

More commonly, it is worth designing core generators to aid the performance of test-case
reduction, because some designs make it easier to find relevant reductions. Users are not
expected to need to do this, but the cost-benefit trade off is different for the core Hypothesis
library of generators, as they are more widely used and we have greater expertise in the
behaviour of the reducer.

To illustrate this, in Figure 7 we show an example of how one might8 generate lists
using Hypothesis. This generator arranges matters so that an element of the list can be
deleted by deleting a contiguous region of the choice sequence, corresponding to the getbits
call followed by a subsequent draw. Deleting the region corresponding to these two calls
effectively causes the loop to skip over the iteration where the generated element would
previously have been added.

In contrast, if we generated lists by first drawing a length parameter and then drawing
that many elements, deleting an element of the list would require first lowering that length
parameter and then deleting a later part of the choice sequence. Identifying all such pairs
would require O(n2) transformations.

Hypothesis does in fact have a reduction pass that does this, because such patterns are
common in user code, but its performance is comparatively poor due to the large number of
transformations to be tried, and so we have used the implementation that allows for more
efficient reduction.

An additional benefit of this is that, because it is relatively easy to transform the choice
sequence in ways that preserve the structure of the generated list, other reductions become

8 For simplicity, this generator elides details which control the expected size of the list. The real version
also contains a hint to the reducer about what regions are worth deleting.
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13:12 Test-Case Reduction via Test-Case Generation

possible. For example, due to trying to delete short subsequences of the choice sequence,
when generating lists of lists, Hypothesis will try merging adjacent lists (e.g. transforming
[[1, 2], [3, 4]] into [1, 2, 3, 4]), because this corresponds to deleting the choices in two adjacent
calls to getbits.

4 Case Studies and Experiments

In this section we present data on internal reduction in Hypothesis, comparing the cost of
reduction and final size of reduced test cases to those of existing external reducers.

Our goal is not to show that internal reduction is especially impressive on these metrics.
As we discuss in Section 1, the primary benefits of internal reduction are not its performance
or the quality of the end results, but that it provides adequate reduction for any generated
test case, while avoiding the test-case validity problem. As such our evaluation is mostly
intended to be descriptive, and to increase the plausibility of our claim of adequacy.

We structure our evaluation around the following research questions:
1. How does the size of the final test case obtained through internal reduction compare to

that obtained through external reduction? (RQ1)
2. How expensive is internal reduction compared to external? (RQ2)
3. How much overhead does the process of going through the generator introduce? (RQ3)

In addressing these research questions we primarily focus on future-proof metrics that
are independent of our particular experimental setup: the number of SUT and generator
invocations. Unlike the metrics, wall clock time is sensitive to specific implementation choices
in Hypothesis and the tools against which we compare, and other engineering issues such
as the choice of implementation language. Furthermore, to make our large study feasible,
experiments were performed in parallel on a multi-core machine, with associated impact on
wall clock time variance.

Our main three evaluations use Hypothesis to find and reduce real bugs in three classes
of real world software:

We used a modified version of Csmith to allow Hypothesis to generate C programs, which
we used to trigger bugs in old versions of the open source C compilers, gcc and clang
(Section 4.1);
We wrote a custom generator of Python programs and used it to perform differential
testing of yapf [8] and black [18], two open source Python autoformatters (also Section 4.1);
We implemented a Hypothesis-based test harness to trigger bugs in SymPy, an open
source symbolic algebra library (Section 4.2).

For completeness, we also compared Hypothesis on a series of synthetic benchmarks
used in [23] to evaluate SmartCheck, a proposed generic test-case reducer for QuickCheck
(Section 4.3).

We note that while we have been able to apply Hypothesis to this relatively diverse range
of applications, in order to compare with a number of different test-case reduction tools, no
one of the tools that we compare with could be easily applied to all of these case studies.
This is an important selling point for internal reduction: it works at the level of choice
sequences, and any randomized generator can be relatively easily adapted to consume a
choice sequence instead of using a pseudo-random number generator, thus internal reduction
has wide applicability.

We have made the code for reproducing the data for these experimental results available
at https://github.com/mc-imperial/hypothesis-ecoop-2020-artifact.

https://github.com/mc-imperial/hypothesis-ecoop-2020-artifact
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4.1 Evaluation on Generated Programs
We designed a system for running controlled reduction experiments on Hypothesis-generated
examples and used it to run tests on real world bugs found by two different program
generators:

1. A patched version of Csmith,9 which uses Hypothesis as its source of entropy, where any
calls to methods named make_random were wrapped in a macro so as to show up as if
they were a generator passed to draw.

2. A generator of syntactically valid Python programs that we wrote ourselves using Hypo-
thesis’s library of generators.

For each of these generators we wrote interestingness tests that would use the generated
test cases to look for bugs in some real world software. For Csmith-generated programs,
these were crashes or wrong code bugs in old versions of gcc and clang. For Python programs
produced by our generator, we used them to test a Python autoformatter, yapf, and checked
its output for style violations.

For each of these generators and their corresponding interestingness test, we built a corpus
of 200 choice sequences that resulted in interesting test cases. We then ran reduction for
each of these starting points using each of: 1) Internal reduction provided by Hypothesis; 2)
C-Reduce [24], a test-case reducer primarily designed for C programs but suitable for any text
format; 3) Picire [14], a modern implementation of the classic delta-debugging algorithm.

We explain this experimental setup in more detail in Section 4.1.1, and then present the
results in Section 4.1.2

4.1.1 Experiment Design
For each experiment we defined a class of bugs we were looking for, with precise interestingness
tests for identifying each possible bug.

For the generator of Python programs, we used it to perform differential testing of yapf, a
Python source code autoformatter developed at Google, against black, a more recent and more
widely used autoformatter. The test we performed was that we ran black on the generated
source, followed by pycodestyle,10 a style checker for conformance to PEP8, the official
Python style guide. If there were no style errors, we then ran yapf on the black-formatted
source. Any style errors introduced constituted a bug in yapf, as it had taken source code
that it was possible to format correctly and introduced a style violation.

For Csmith, we ran a large number of old versions of gcc and clang,11 at four different
optimization levels (-O0, -O1, -O2, -Os). This could produce three distinct types of bug:
The compiler could crash, the compiled binary could crash when run, or there could be a
miscompilation, determined when the output differed from that on gcc 8.3.0 (the latest of
the compilers tested) compiled at -O0. Whenever an example triggered multiple bugs we
associated it with the bug it triggered in the latest compiler, at the lowest optimization level
for that compiler, as this seemed like a reasonable proxy for how interesting the bug was.

9 https://github.com/HypothesisWorks/csmith
10 https://pycodestyle.pycqa.org/en/latest/
11All of those installed by https://github.com/mattgodbolt/compiler-explorer-image/blob/master/

update_compilers/install_compilers.sh. This included gcc versions ranging from 4.1.2 to 8.3.0 and
clang versions ranging from 3.9.1 to 7.0.0, but not every patch release in that range.
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The need for a validity oracle for C-Reduce and Picire Csmith guarantees generating
C programs that are free from undefined behaviour by construction [26]. When we drive
Csmith via Hypothesis, test-case reduction involves using Csmith to generate successively
simpler programs, each of which is thus free from undefined behaviour by construction. In
contrast, neither C-Reduce nor Picire provides such a guarantee. In order to use these
reducers we had to define a validity oracle that detected if the program was likely to be free
from undefined behavior. The validity oracle that we used compiled the program with clang
and GCC and checked for warnings likely to indicate undefined behavior, as recommended in
the C-Reduce documentation,12 and in addition ran the generated binary under UBSan13 to
look for non-trivial undefined behavior that was only detectable at run time. We did not
apply the validity oracle when reducing compiler crash bugs, as the execution result of the
program is not relevant in such cases.

We generated a corpus for each experiment by sampling choice sequences of length up to
8KB (Hypothesis’s default maximum size) until we had 200 choice sequences that triggered
bugs for each experiment. For the Python generator, this small buffer size was not a problem,
but for Csmith this was a significant restriction—when generating a corpus without this size
restriction we found only about 2% of choice sequences corresponding to programs triggering
bugs were under 8KB. This is corroborates previous observations in [26] that Csmith is most
effective when generating large programs. We attempted to run the Csmith experiment with
a larger buffer size, but unfortunately Hypothesis is not currently well designed for larger
sizes and we hit some memory limitations, so we decided to restrict ourselves to examples
within Hypothesis’s normal operational parameters.

For each corpus member and each reducer, we ran the reduction to completion, instru-
mented so as to record SUT calls and report on successful reductions.

4.1.2 Experimental Analysis

In order to answer RQ1, we have to define a suitable notion of size. The number of bytes
is the obvious choice, but one subtlety to consider is that many size reductions are both
impossible in internal reduction, and also undesirable! For example, removing whitespace
is often a valid reduction in size that reduces readability. In order to offset this, instead of
raw size we consider formatted size. For each experiment we used a standard automatic
formatter, clang-format14 for C programs and black for Python programs, and consider the
size of the formatted result. We also strip comments from the C programs.

We justify this as a reasonable metric by observing that the purpose of test-case reduction
is not actually to reduce size, but rather to ease debugging. A formatter is designed to
improve the readability of the code (and it is often worth formatting reduced test cases to
understand them better), and a human reader is unlikely to pay attention to the comments
unless they are an aid to understanding, so this is a truer representation of the size a human
reader sees.

We calculated the size of the reduced test case for each test case and reducer, and report
the mean size in Figure 8 alongside 95% bootstrap confidence intervals. A permutation test
for difference of means shows that the differences between these means are significant for
all three reducers on the Csmith experiment (p < 10−5 for C-Reduce vs each of the others,

12 https://embed.cs.utah.edu/creduce/using/wrong1/test1.sh
13 https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
14 https://clang.llvm.org/docs/ClangFormat.html

https://embed.cs.utah.edu/creduce/using/wrong1/test1.sh
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/ClangFormat.html
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Csmith Python
No Reduction 1963.9 (1750.3–2230.2) 417.2 (365.8–483.0)
C-Reduce 120.0 (114.2–126.2) 70.9 (64.5–76.8)
Hypothesis 812.3 (786.8–843.1) 71.8 (64.7–78.8)

Picire 345.09 (321.3–375.5) 75.7 (68.8–82.4)

Figure 8 Mean sizes, measured as number of bytes after formatting, of final examples for each
reducer.

p ≈ 0.0003 for Hypothesis vs Picire), and non-significant at a threshold of 0.05 for all pairs
on the formatting example.

We discuss RQ1 separately in the context of the Python formatting experiments and the
Csmith experiments, as the findings are substantially different.
Python formatting results for RQ1 Figure 8 shows that, for the Python formatting
case study, Hypothesis, Picire and C-Reduce perform comparably well (with overlapping
confidence intervals regarding reduced test case size, and nonsignificant differences in means).
As we discuss above, our claim is that internal reduction should work well enough to be
useful, not that it should out-perform other reduction approaches, and these results support
that claim.
Csmith results for RQ1 The results of Figure 8 show that C-Reduce and Picire are able
to achieve substantially smaller reduced programs than Hypothesis on average. Regarding
our aim that internal reduction should be good enough to be useful: the reduction factors
associated with Hypothesis in Figure 8 would certainly be worth having for debugging
purposes if no other reducer were readily available, and the fact that test cases retain the
Csmith guarantee of validity when reduced using Hypothesis is a potentially important bonus
(especially for wrong code bugs) that the size results of Figure 8 do not show.

Nevertheless, Hypothesis does produce substantially larger reduced test cases than the
external reducers, and the reasons for this provide various insights into the limitations of
internal reduction.

The first reason to note is that Csmith-generated C programs have a certain amount of
“necessary size”, due to boiler plate that every Csmith program contains. Because internal
reduction reduces test cases by re-generating them, the minimum size of the reduced test
cannot be lower than the smallest test the generator can produce.

Effectively, Hypothesis is reducing against a harder validity oracle: It has to produce an
interesting test case that Csmith could have generated, while C-Reduce and Picire merely
have to produce an interesting test case that is a valid C program which appears free of
undefined behaviour. For most uses of Hypothesis in property-based testing, this sort of
constraint is mild and perhaps actively desirable, but in this case it results in a significantly
larger final test case. In particular, it is impossible for Hypothesis to prevent Csmith from
generating its standard boiler plate code, so there is a certain baseline difference between
Hypothesis and an external reducer that it can never do better than.

In order to determine this baseline, we ran Hypothesis on each starting example, reducing
the choice sequence subject only to the constraint that it successfully generates a program.
The smallest program found by Hypothesis during these reductions is shown in Figure 9,
which we know (from familiarity with how Csmith works) is essentially the smallest program
Csmith is capable of generating. This gives us a baseline minimum size for Hypothesis
reduced programs of 410 bytes. In contrast, C-Reduce and Picire are perfectly capable of
producing an empty file, or a trivial 14-byte main function definition if we require that the
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1 #include "csmith.h"
2 static long __undefined;
3 static int8_t func_1(void);
4 static int8_t func_1(void) {
5 int8_t l_2 = 0L;
6 return l_2;
7 }
8 int main(int argc, char *argv[]) {
9 int print_hash_value = 0;
10 if (argc == 2 && strcmp(argv[1], "1") == 0)
11 print_hash_value = 1;
12 platform_main_begin();
13 crc32_gentab();
14 func_1();
15 platform_main_end(crc32_context ^ 0xFFFFFFFFUL, print_hash_value);
16 return 0;
17 }

Figure 9 The minimal size Csmith program that Hypothesis could find, which is essentially the
smallest program that Csmith can generate.

file can produce an executable (which we do for wrong code bugs). This already accounts
for a sizable proportion of the difference in size. Adjusting for these baselines, Hypothesis
generates a mean final size of around 402 bytes, and Picire of around 331 bytes. This
difference is still statistically significant, but much more reasonable.

In order to understand the size difference above and beyond this baseline, we ran C-Reduce
on the Hypothesis final example for the smallest examples of a crashing bug and a wrong
code bug respectively. We show examples of these in Figure 10 and 11.

The difference on the crash bug, where C-Reduce is less constrained, largely comes from
the larger baseline we discuss above, while the difference on the wrong code bug demonstrates
a number of other issues: Csmith will always pre-declare union definitions, and uses long
identifiers, both of which C-Reduce is able to fix.

We also see an advantage of Hypothesis in this example: In Figure 11, C-Reduce has
produced a call to printf with too many arguments. This is defined behavior, as the extra
arguments are ignored, but is suspicious and likely to be distracting when debugging. In
contrast, the reduced program produced by Hypothesis is Csmith-generated, and has no such
issues.

To emphasise the above discussion regarding Csmith boiler plate: in both of these
examples we can see that Hypothesis is quite close to being constrained by a fundamental
limitation of this approach. The limitation is not its ability to reduce further (although
in Figure 11 we do see what is likely a missed reduction at the choice sequence level—the
third field of the union is successfully removed by C-Reduce but not by Hypothesis even
though it plausibly could be), but the fact that it guarantees that reduced examples are ones
that could be generated means that the reduced examples must include certain features that
Csmith will always generate: e.g. variables will always be initialized, functions will always be
pre-declared, and union types are always declared separately from their usage.

These larger sizes are certainly a minor downside of internal reduction, in that for ease of
debugging a smaller program is usually more useful. That said, in the case of Csmith, being
limited to reducing to programs that Csmith can generate means that even reduced tests will
be executable programs that follow a well-known structure and are guaranteed to be free
from undefined behaviour, which might make them ideal as end-to-end tests for addition to
a compiler regression test suite (rather than e.g. tests that simply check whether a compiler
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Hypothesis reduced:
1 #include "csmith.h"
2 static long __undefined;
3 static const volatile int32_t g_2 = (-1L);
4 static const int8_t func_1(void);
5 static const int8_t func_1(void) {
6 volatile int8_t l_3 = (-1L);
7 l_3 = g_2;
8 return g_2;
9 }

10 int main(int argc, char *argv[]) {
11 int print_hash_value = 0;
12 if (argc == 2 && strcmp(argv[1], "1") == 0)
13 print_hash_value = 1;
14 platform_main_begin();
15 crc32_gentab();
16 func_1();
17 transparent_crc(g_2, "g_2", print_hash_value);
18 platform_main_end(crc32_context ^ 0xFFFFFFFFUL, print_hash_value);
19 return 0;
20 }

C-Reduce run on the Hypothesis output:
1 #include "csmith.h"
2 const volatile a;
3 b() { volatile int8_t c = a; }

Figure 10 The smallest Hypothesis reduced crash bug.

crashes, but that are otherwise meaningless). It is also arguable that since most of the extra
size is easy-to-understand boiler plate, its presence has little practical significance.

Either way, RQ1 has a clear answer on the Csmith experiments: Hypothesis produces
examples in the same order of magnitude as, but still substantially larger than, those produced
by specialized reducers such as C-Reduce that are well-adapted to the problem domain, but
produces of examples of comparable but slightly larger size to those found by more generic
reducers.

To evaluate RQ2, we recorded the number of SUT evaluations made during the run of
these experiments. We show the results of this in Figure 12

Here all differences are statistically significant at p < 10−5. Hypothesis is thus about
four times faster15 than Picire on the Csmith experiment, and about 50% slower on the
formatting example. We haven’t investigated this in detail but expect that the latter is
because Hypothesis makes a number of lexicographic transformations to the choice sequence
that don’t impact the final size of the generated test case, but result in e.g ensuring generated
string literals contain only zeroes.

To answer RQ3, we also recorded the number of generator evaluations, and for each
experiment calculated the ratio of generator evaluations to SUT calls (every generator
evaluation leads to an SUT call, so the former is always larger than the latter). We calculated
a 95% bootstrap confidence interval for the geometric mean of these ratios (the geometric
mean being chosen as the appropriate mean to use for comparing ratios). For the Csmith
experiment this gave us a confidence interval of 2.78−2.94, and for the formatting experiment

15 In terms of SUT calls that is. In terms of wall clock time it was actually slower due to the high cost of
how we invoked Csmith.

ECOOP 2020



13:18 Test-Case Reduction via Test-Case Generation

Hypothesis reduced:
1 #include "csmith.h"
2 static long __undefined;
3 union U1 {
4 const int32_t f0;
5 const unsigned f1 : 17;
6 const volatile signed : 0;
7 };
8 static const union U1 g_2 = {-1L};
9 static const union U1 func_1(void);
10 static const union U1 func_1(void) { return g_2; }
11 int main(int argc, char *argv[]) {
12 int print_hash_value = 0;
13 if (argc == 2 && strcmp(argv[1], "1") == 0)
14 print_hash_value = 1;
15 platform_main_begin();
16 crc32_gentab();
17 func_1();
18 transparent_crc(g_2.f0, "g_2.f0", print_hash_value);
19 transparent_crc(g_2.f1, "g_2.f1", print_hash_value);
20 platform_main_end(crc32_context ^ 0xFFFFFFFFUL, print_hash_value);
21 return 0;
22 }

C-Reduce run on the Hypothesis output:
1 #include "csmith.h"
2 union {
3 int32_t a;
4 unsigned b : 17;
5 } c = {-1L};
6 int main() {
7 printf("%d\n", c.a, c.b);
8 return 0;
9 }

Figure 11 The smallest Hypothesis reduced wrong code bug, with additional reduction provided
by C-Reduce.

Csmith Python
C-Reduce 3968.0 (3731.8–3216.7) 863.3 (797.5–937.0)
Hypothesis 762.0 (701.8–829.6) 1284.565 (1106.56 1556.175)

Picire 3138.9 (2970.9–3348.9) 529.23 (483.61, 579.205)

Figure 12 Number of SUT invocations for each reducer.
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the interval was 1.21−1.30. i.e. for Csmith we performed nearly three times as many generator
invocations as SUT invocations, while for Python we performed up to about 30% more. The
difference is likely accounted for by the fact that the Python generator was built on top of
Hypothesis’s core library of generators which as we describe in Section 3.3, are designed to
behave well with lexicographic reduction in general and Hypothesis’s reducer in particular.

How much overhead this corresponds to in practice depends significantly on the generators
and SUTs in question. Our interface to Csmith was quite slow, so there generation time
probably dominated even without any overhead, but for most cases we would expect the
generator to be significantly faster than the SUT.

4.2 Case Study: SymPy
TSTL [12] is a domain specific language defined for testing APIs written in Python. Actions
using the API are described using the TSTL language, and it builds tests as sequences of
actions, expressed as fragments of Python code that are evaluated against a model of the
SUT.

Reduction in TSTL consists of attempting to find shorter sequences of actions that can
trigger the same bug. Previously work on TSTL’s reducer [12] tested SymPy, a symbolic
algebra library for Python, and we adapted these tests to use Hypothesis in order to evaluate
internal reduction for this use case.

One downside of comparing with TSTL is that a TSTL test is always valid—any action
which should not be run is simply ignored—so the benefit of guaranteed validity associated
with internal reduction is not relevant, but it is still a reasonable point of comparison for
reducer effectiveness.

4.2.1 Experiment Design
We implemented a backend that takes a TSTL-generated harness and runs it with Hypothesis,
which we used to run the TSTL tests for SymPy from its examples directory. We ran these
tests against version 1.1.1 of SymPy, which is slightly older than the latest version, as we
knew that the test harness was capable of finding many bugs in this older version, providing
us with a variety of example bugs on which to evaluate reduction.

This backend does not implement TSTL’s checks, which run a number of equivalence
checks on the generated SymPy programs to assert that various expressions that are expected
to give the same result do in fact do so. These checks were minimally useful for SymPy [9],
and were prohibitively slow, thus they would have limited the amount of data we could have
collected.

As a point of comparison, we used a custom implementation of delta debugging which we
adapted to take advantage of two structural features of TSTL: It would automatically discard
any actions that were no longer able to run, and prune all steps after the failing one. We did
not compare to the TSTL reducer due to wanting to ensure we matched the slightly different
semantics of our backend implementation, and for convenience when instrumenting it, but
believe this modified delta debugging should work similarly well to its standard reducer. We
did not however implement anything equivalent to its test-case normalization features [10].

To enable us to gather a large corpus of data, we aggressively pruned slow tests by removing
test cases where an individual step took more than two seconds to run. This implicitly
removed a large class of errors, as it appears to be very easy to trigger RecursionError
bugs in SymPy which, for some reason (possibly a high cost associated with each recursive
call), always resulted in the triggering step exceeding this timeout. This potentially impacts
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the generality of our results, but there were sufficiently many other errors in SymPy that it
seemed unproblematic to exclude them.

Additionally, we found a number of the SymPy test cases were flaky—that is, they did
not reliably produce the same exception when run with different random or hash seeds. We
don’t entirely understand why this would be the case (we expect it is something internal to
SymPy’s implementation) but we didn’t spend a great deal of time investigating . We know
from experience that flaky test cases tend to lead to poor performance in most test-case
reducers, and we wished to avoid these dominating the results, so we attempted to remove
any test cases where reduction passed through a flaky test case. We removed test cases
where any of the original generated test case or either of the internally or externally reduced
final test cases were flaky, but flakiness checking was fairly expensive so we did not check all
intermediate results.

Starting from an initial generated corpus of 3000 distinct failing test cases, removing flaky
tests left us with 2930 interesting test cases. These were spread across 33 distinct errors,
which we distinguished based on error type and line number, and had a mean length of 64.5
(which gave a 95% confidence interval for the population mean of 63.6—65.4). Notably, this
is somewhat larger than the mean size of 44.7 reported in [12]. While we did not investigate
the cause of this in detail, there were a number of small differences in our experimental
setup which could account for it, such as the exclusion of the relatively easy to trigger
RecursionError bugs.

For each of these initial test cases, we ran both the Hypothesis reducer and our delta
debugging implementation for TSTL, subject to the interestingness test that an exception
was raised with the original exception type and line number. We recorded the number of
SUT calls made by each, and the final size of the reduced test cases.

4.2.2 Experimental Analysis
On average (geometric mean), Hypothesis made 20.6 (95% confidence 20.3—21) times as many
SUT calls as delta debugging, resulting in tests that were 83% (95% confidence 82%—84%)
of the size produced by delta debugging.

This is relatively expensive for a marginal gain. However, that seems to be less a feature
of internal reduction and more one of the problem domain: As part of the work on test-
case normalization in [10], they implemented normalization passes which performed similar
external transformations to those enabled by Hypothesis’s lexicographic internal reduction,
and when these normalization passes were enabled reduction took about thirty times as
long and obtained test cases that were about 55% of the size of those obtained without
normalization.

We think it likely that the performance of Hypothesis could be substantially improved
on this experiment, but resisted the urge to optimize for this use case for now, letting the
experimental results stand as they are. Brief investigation suggested that Hypothesis’s
heuristics for reduction pass ordering do not work very well on these examples, which lead to
it doing a significant amount of lexicographic reduction when it could still have usefully been
trying to reduce the size of the choice sequence.

4.3 Evaluation against QuickCheck and SmartCheck
The only previous evaluation of test-case reduction in QuickCheck we are aware of comes
from [23], which defined SmartCheck, a generic reducer for algebraic data types, and
introduced a set of five synthetic benchmarks to compare it to QuickCheck. Each of these
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benchmarks consists of some data type to generate to test some code that has a known
(deliberately inserted) bug in it. We have reimplemented these benchmarks in Python
to evaluate Hypothesis on them and compare its behavior to that of QuickCheck and
SmartCheck.

The five benchmarks are “bound5”, “binheap”, “calculator”, “parser”, and “reverse”. We
updated these from the originals to improve QuickCheck’s behavior, mainly by replacing
some ineffective custom reducers with QuickCheck’s genericShrink. We also changed the
“binheap” benchmark to add a precondition that prohibited invalid heaps, as we noticed that
much of SmartCheck’s performance on that benchmark came from very rapidly reducing to
small but invalid heaps (an instance of the test-case validity problem).

Experiment Hypothesis QuickCheck SmartCheck
binheap 9.02 (9.01–9.03) 9.00 (9.00–9.00) 9.42 (9.37–9.48)
bound5 2.08 (2.07–2.10) 11.30 (10.91–11.76) 6.02 (5.79–6.29)
calculator 5.00 (5.00–5.00) 5.11 (5.07–5.15) 5.00 (5.00–5.01)
parser 3.31 (3.28–3.34) 3.99 (3.98–4.01) 4.08 (4.01–4.14)
reverse 2.00 (2.00–2.00) 2.00 (2.00–2.00) 2.00 (2.00–2.00)

Figure 13 Mean size of reduced examples on synthetic benchmarks. Each data type has a
different notion of size associated with it, but it typically means something like number of nodes in
the tree.

Experiment Hypothesis QuickCheck
binheap 170.31 (166.14–174.76) 88.22 (86.90–89.55)
bound5 95.13 (93.57–96.91) 1438.89 (1282.34–1811.64)
calculator 72.41 (70.57–74.32) 30.97 (29.92–32.37)
parser 126.50 (124.11–128.90) 34.23 (33.63–34.81)
reverse 50.84 (50.40–51.29) 17.68 (17.27–18.10)

Figure 14 Mean number of test cases tried while reducing synthetic benchmarks.

We ran each benchmark 1000 times for each library. We present the mean sizes of
the reduced examples in Figure 13, and the mean number of SUT evaluations made in
Figure 14. We ran into some technical difficulties obtaining the number of SUT evaluations
made by SmartCheck and, as it omits many classes of transformation that both Hypothesis
and QuickCheck consider (e.g. reducing the value of generated integers) and did not do
particularly well on the size evaluation besides, didn’t feel it was especially useful to invest
more time on the problem.

By a permutation test, all differences in mean SUT invocations are significant at p < 10−5.
For sizes, differences were significant at p < 10−4, with the following exceptions:

All implementations reliably produced the minimal size example for “reverse” so there
was no difference in means.
Hypothesis and SmartCheck on the “calculator” example (p ≈ 0.5 )
Hypothesis and SmartCheck on the “parser” (p ≈ 0.02).
Hypothesis and QuickCheck on the “binheap” benchmark (p ≈ 0.003).

To account for multiple testing we set a significance threshold at p < 0.05
30 ≈ 0.0017 (by

applying the Bonferonni correction—there are three pairs of comparisons for each benchmark,
for each of size and SUT count, so thirty tests), so these should all be considered nonsignificant.
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The only case where Hypothesis produced worse average results than QuickCheck (signific-
ant or not) was the “binheap” benchmark, where it did very slightly worse than QuickCheck
(9.02 vs 9.0). We haven’t investigated why but suspect it’s due to difference in the distribution
of initial test cases (Hypothesis tends to produce larger examples) rather than the reducer.
Whatever the reason, the difference, though statistically significant, is tiny.

We note that the behaviour of QuickCheck on the “bound5” example is pathologically bad,
both in size and performance, in large part because it was constructed to be so. Hypothesis
fares well on this example without modification, showing one of the advantages of having a
more sophisticated reducer by default.

Thus on RQ1 Hypothesis fares well compared to QuickCheck, generally producing similar
or better results. On RQ2, Hypothesis proves more expensive than QuickCheck by a factor
of 2–3, depending on the benchmark.

5 Threats to Validity

The main empirical claims of our paper are that our model of internal reduction through
shortlex optimization is viable, and in particular that it provides results that are competitive
with alternative reducers that might be used in its place.

As we have been using it in the context of a widely deployed testing library for more
than four years, we are quite confident of its viability, at least within our application domain,
and our empirical results in Section 4 support the claim that it performs reasonably with
respect to alternatives.

The main threat to validity is how well these results generalize. Although we have
presented four reasonably diverse case studies, three of which were on their own larger than
most previous evaluations of test-case reduction, the range of software and generators used
in practice is naturally larger yet. It is plausible that there are reduction problems that we
have simply never run into that present their own challenges.

A common factor in all of our experiments is that the starting points were not especially
large—Hypothesis by default only considers choice sequences of at most 8KB, and we retained
that restriction in our analysis. As we discuss in Section 4.1.1, this was a particularly notable
restriction in the case of Csmith.

Our intuition, which is backed by a certain amount of anecdotal evidence, is that most
test-case reducers experience problems at larger scales that they do not see at smaller ones,
because larger test cases offer more opportunities to get stuck in local minima. Additionally,
often large test cases trigger bugs in SUTs that were difficult to trigger at smaller scales—
either because they are intrinsically connected to test case size (a scenario that tends to
reduce very poorly in general) or because they simply happen with too low probability at
small sizes. Between these two factors, we expect interesting new difficulties to arise at larger
scales, requiring more work on Hypothesis’s reducer.

This also points to the other major limitation of our results: Although our claim is that
internal reduction as a general model is viable, our empirical results are restricted to its
implementation in Hypothesis. This suffices as an existence proof, but the Hypothesis reducer
has been the subject of considerable engineering effort, and our results do not determine how
much of the viability of internal reduction is only because of that engineering effort.

However, part of why the Hypothesis reducer is so sophisticated is because internal
reduction rewards that: Because one reducer can serve many different types of test case, it
was worth investing that effort into it, and the reducer can in principle be used in many
different contexts, so even if it turns out that internal reduction is only viable with this
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engineering work, we don’t consider that to be a major point against it.

6 Related Work

There are several categories of work related to ours, which we now describe: Test-case
reduction in general (Section 6.1), test-case reduction in property-based testing (Section 6.2),
use of the choice sequence model to improve generation (Section 6.3), and finally other users
of internal reduction (Section 6.4).

6.1 Test-Case Reduction
Our work on internal reduction naturally builds on prior work on test-case reduction.

Test-case reduction was first described in the original papers on delta debugging [13, 27].
Most subsequent research has been focused on continuing delta debugging’s goal of reducing
the size of the test case, with other reductions such as our lexicographic passes being treated
as of secondary interest.

This work on reducing size has generally focused on taking advantage of the structure of
particular input formats. The major examples of this in the literature include hierarchical
delta debugging (HDD) [20], which makes use of a grammar for the test-case format, and
C-Reduce [24], which is extensively specialized to features common in C and C-like languages.

As we discuss in Section 3, the Hypothesis reducer is a similarly specialized reducer
designed for the class of languages parsed by generators, and its design has been inspired by
this prior work. In particular, the approach we describe in Section 3.2 of marking out regions
of the choice sequence corresponding to parts of the test case very strongly resembles HDD’s
use of a grammar to do the same, and the pass-based approach we describe in Section 3.1
strongly resembles the architecture of C-Reduce.

One exception to the prior focus on reducing size is [10], which introduced the notion of
test-case normalization as an important property of reducer. Additionally, although this was
not made explicit, the normalization passes suggested in [10] can be regarded as optimizing
for the lexicographic ordering, which makes their approach another example of our suggested
goal of shortlex optimization. However, this was in the context of an external reducer, not
an internal one.

6.2 Test-Case Reduction in Property-Based Testing
Test-case reduction has been an important feature in property-based testing since the early
work on QuickCheck [3]. In property-based testing, test-case reduction is usually called
shrinking, but for consistency we will continue to use the term test-case reduction.

In the original QuickCheck, and other property-based testing libraries closely based on it,
test-case reduction follows the external reduction model, with reducers run on the generated
test cases once an interesting one has been discovered, with an appropriate reducer selected
based on the type of the generated data or provided by a user.

Originally these reducers were hand-written ones. However, most users do not particularly
want to write their own test-case reducers, so this lead to the introduction of generic test-case
reducers. These are particularly popular in Haskell, where most data is represented with
algebraic data types, and good generic programming libraries allow for automatically deriving
reducers for most data types that are “good enough” (any test-case reduction will tend to
improve the utility of property-based testing, and to be worth the effort, hand-writing a
reducer has to be less work than the debugging effort it saves). Indeed, the derivation of such
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reducers has been used to motivate the development of some of these generic programming
libraries [15]. Generic reduction was also explored in [23], but the suggested approach does
not appear to have been widely adopted.

However both manual and generic approaches to test-case reduction suffer a variant of
the test-case validity problem: After reduction has been performed, the final reduced test
case may be one that could not have been generated. This tends to be counterintuitive to
users, who consider it a bug or missing feature.16 There is no straightforward way to derive
an oracle for whether something could be generated, so this problem is essentially insoluble
without a different approach.

In aid of this, several property-based testing libraries have introduced what is called
integrated shrinking,17 where test-case reduction is “bundled” with the generators, so that
every generator contains information about how to reduce its generated test cases. In this
sense, the internal reduction model we describe in this paper can be thought of as a form of
integrated shrinking.

There is however another more widely used implementation of integrated shrinking,
the rose tree18 method [5, 6] This approach works by having generators generate a (lazily
evaluated) tree consisting of an initial value and possible reductions of it, so that generated
values can be reduced by walking the tree. The rose tree method has been implemented in
test.check (Clojure)19 and Hedgehog (Haskell)20 among others.

Such generators can easily be implemented by pairing a normal random generator of
test cases with a test-case reducer, but they save implementation effort by allowing for
composition with user defined functions. In particular by supporting the monadic [21] bind
operator to chain generators together, one can in principle generate anything, as monadic
bind can be used to express arbitrary computation. Unfortunately in practice the rose
tree approach produces poor reductions when bind is used,21 so generally this approach to
integrated shrinking only works well with a relatively restricted set of generators.

Because monadic bind can be used to express arbitrary computation, the question of
whether internal reduction can work well in these scenarios is essentially equivalent to the
question of whether it can work well with arbitrary generators, to which the answer is that
it depends. It is certainly possible to construct generators that Hypothesis finds difficult
to reduce, but as we saw in Section 4.1 it tends to work well with even large and complex
generators written without internal reduction in mind. Also, a key difference is that when
Hypothesis has difficulty reducing a generator, typically this is a limitation of its reducer
rather than the model: Generally there is some shortlex smaller sequence that would reduce
the generated value, but the reducer is unable to find it. Such situations can often be resolved
by improving the reducer with no modifications to user code. In contrast, the rose tree model
offers no alternative but to add a custom external reducer.

Nevertheless, at present the rose tree model is significantly more widely used than internal
reduction. Partly this is just because it predates the internal reduction model, but it is also
significantly simpler to implement and easier to understand. Nevertheless, we believe that
the benefits of internal reduction are worth the increased implementation complexity, and

16 https://github.com/typelevel/scalacheck/issues/129
17 https://hypothesis.works/articles/integrated-shrinking/
18A rose tree is a tree where each branch node can have any number of children.
19 https://github.com/clojure/test.check
20 https://hedgehog.qa/
21 https://github.com/clojure/test.check/blob/master/doc/growth-and-shrinking.md#

unnecessary-bind
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hope this paper will aid readers’ understanding of its model.

6.3 Choice Sequences to Improve Generation
We have introduced the term choice sequence to refer to the binary decisions made during
random generation, which we use to regard random generators as deterministic parsers of
sequences of bits. Similar approaches have been used elsewhere. Most other usage has focused
not on test-case reduction but instead on improving the quality of generated test cases by
using coverage guided fuzzing. For example, crowbar [4] is an OCaml library for providing
property-based testing built on top of the AFL Fuzzer22 using this approach. DeepState [7] is
a unit testing library for C++ which supports either symbolic execution or coverage guided
fuzzing. These effectively use a choice sequence, encoded as a sequence of bytes provided by
the fuzzer, to make nondeterministic decisions.

Recent work in Zest [22] also uses a choice sequence model to improve the quality of
generated test case, but uses the term “parameters” to refer to the individual bits. We prefer
our “choice sequence” terminology, as the interpretation of a given bit can change during
reduction (e.g. a bit that once chose whether to terminate a list might become part of a
generated value) so we find thinking of them as parameters a little misleading.

6.4 Other Uses of Internal Reduction
The idea of internal reduction as shortlex optimization originates with Hypothesis, but the
idea of manipulating a generator to produce smaller results predates it. The main prior
art of which we are aware is Seq-Reduce [24], a Csmith mode that attempts to reduce the
length of the choice sequence by regenerating parts of it. Seq-Reduce was only designed to
work with Csmith, and was abandoned due to disappointing results, while we have shown
that with internal reduction is both broadly applicable and can work well with Csmith in
particular. We have not investigated why we see such a substantial difference between the
two approaches, but think it likely that its approach of randomly regenerating parts of the
test case was unlikely to work without more structural information such as we describe in
Section 3.2.

In addition, there are two significant production implementations of internal reduction
that have appeared subsequent to Hypothesis, in both cases explicitly based on its approach.
These are DeepState, which we also mention in Section 6.3, and theft23, a property-based
testing library for C. Both share our approach of internal reduction as shortlex optimization,
but have their own reducer implementations.

7 Conclusion and Future Work

We have presented internal reduction, an approach that performs test-case reduction on
generated test cases by manipulating the behavior of the generator that produced them.

The key advantages of internal reduction over conventional, external, reduction are that,
by operating solely on the behavior of the generator, it a) provides “free” reduction for
arbitrary generators, saving the need to write a new reducer, and b) ensures that reduced
test cases are ones that could have been generated, avoiding the test-case validity problem.

22 https://github.com/google/AFL
23 https://github.com/silentbicycle/theft
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As demonstrated by our experimental results, the size of the reduced test cases found
by internal reduction is competitive with that found by general purpose reducers such as
delta debugging or the reducers typically found in property-based testing libraries, at a
moderate increase in reduction cost. Unsurprisingly, there is still a large size gap between
its results and those of more specialized reducers such as C-Reduce. We expect that this
will continue to be the case, and do not suggest internal reduction as the best model when
it is worth investing significant engineering effort in a specialized reducer for a particular
test-case format.

Nevertheless, by providing good quality test-case reduction “for free”, internal reduction
has significantly improved the user experience of property-based testing in Hypothesis, and
the other testing tools we mention in Section 6.4, and is likely to be useful to other users of
random generation, especially those not currently using test-case reduction.

Internal test-case reduction has been used in Hypothesis for over four years now, and we
consider it a mature and proven technology. Future work on the Hypothesis reducer will
seek to improve its performance, and likely will see the development of further reduction
passes and heuristics that expand the set of generators it works well for. We’re particularly
interested in exploring whether we can improve its performance on larger initial choice
sequences, and hope to do further work based on attempting to lift the 8KB buffer size
restriction we saw in our experiments with Csmith-generated programs in Section 4.1.

Another exciting line of research is the use of the choice sequence model to implement
other functionality. As we discuss in Section 6.3, there are a number of implementations
that use this idea to provide coverage-guided fuzzing. Hypothesis has some limited support
for this, which we are intending to expand further in future. Additionally, Hypothesis has
an implementation of targeted property-based testing [16], which guides generation towards
test cases maximizing or minimizing some objective function. The advantages of the choice
sequence model for targeted property-based testing are much the same as that for test-case
reduction: It provides a fully generic mechanism that requires no user intervention, and
ensures that all provided test cases are ones that could have been generated, significantly
easing the validity problem. In contrast, prior attempts at fully automating targeted property-
based testing (that is, implementing it without requiring user provided mutation functions)
in [17] required a great deal of care to ensure valid test cases were produced.

In general, the choice sequence model has proven flexible and powerful, allowing us to
implement advanced features with minimal negative impact on users, and without requiring
any user expertise in the subject. This makes Hypothesis a powerful tool for creating
production implementations of software testing research ideas. We intend to continue using
it as such, and encourage other researchers to do the same.
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