How to build React

(only a simplified one)

Disclaimer

The stuff presented in this DevSesh does not come from React core team.
Sam doesn't guarantee that this DevSesh presents how React actually works.
Instead, it presents how Sam’s simplified version of React works.

Hopefully they are similar enough.

The world without React 1

<input id="name” />
<button onclick="syncName()"”>Sync</button>
<div id="display” />
<script>
function syncName() {
document.getElementById(‘display’).innerText =
document.getElementById(‘name’).value;

}

</script>

The world without React 2

function updateDOMWithLatestData(data) {

let html =
for (const card of data) {
html +=
‘<div>name: S${card.name}</div>";
}
document.getElementById(‘main-data-container’).innerHTML = html;

}

The world without React 3

function updateDOMWithLatestDataWithInteractions(data) {
let html =
for (const card of data) {
html += ‘<div id="card-S${card.id}">S${card.name}</div>
<input id="input-$S{card.id}” onchange="update(‘S{card.id}’)" />°
}
document.getElementById(‘main-data-container’).innerHTML = html;

Y
function update(id) {

document.getElementById(‘card-' + id).innerText =
document.getElementById(‘input-' + id).value;

React Example

const HiDiv = ({ nane }:
<div className="hi
Hi . . .
v HiDiv = Presentational Component
pan children="Developer " />
{name }
</div>
</div>
):

{ readonly name: string }) => (

const MyInput = ({ name,

5 onChange }: { readonly name:
const onInputChange

string; readonly onChange: (name: string) => void }) => {
(event: Event): void => onChange((event.currentTarget as HTMLInputElement).value);
return <input value={name} onChange={onInputChange} />

Y

Mylnput = Pattern of Lifting State Up

const timeToString = (date: Date): ${date.getHours()}:${date.getMinutes()}:${date.getSeconds()}:${Math.floor(date.getMilliseconds() / 16@) * 100} ;

: string

const MyTime = () => {
const [time, setTime] =

useState(timeToString(new Date()));
useEffect(() => {
setTimeout(() => setTime(timeToString(new Date()))

, 200);
return (

<div className="center">

MyTime = useEffect Example 3:25:49 PM
);</d)'v>

const App = () => {
const [name, setName] = useState('Sam');

useEffect(() => { document.title = ‘Hello, ${name} ; });

Developer Sam

if (name.startsWith('Developer’)) {
return <span children=""'Developer’

Developer Note
is already in the template! Why Repeat?!” /»;
) This is just a random site. The design is ugly.
return (
<div>
<MyTime />

The nputbo can auto $y1c wilh the text on th et However t appears ik the website I buit withReac, 5o tere s resllynothing to
brag abo
<div className="center">

‘The only nc(ewcnhy thing is: the React is Sam's React (although a simplied one).
. . . Feel free to open developer console to read the code. The source maps will help you.
App = main container, smgle source of
<HiDiv name={name} /> Links
<MyInput name={name} onChange={setName} /> .tru.th
Develoy
;/dlw Sam's GitHub

) </div> This project’s GitHub

Y

Copyright © 2020 Developer Sam

Wait? Wat?

e How does React sync your data with real DOM?
e How does useState know which component it's in?

Also,

e Why props should be immutable?
e Why can't|just push to an array directly?

Hopefully you will know the answer by the end of this DevSesh!

Part 1: The Virtual DOM

What is JSX?

e Isitjust HTML code?
e Isitjust a prettified version of string template?
e Does React simply call the function to dump all HTML and do something
like
o document.getElementById(‘root’).innerHTML = dumpedHTML

What is JSX? Answers

NO!GOD I’lEA_‘SE NO!!

: »
b - o4 i
N0000000000000000
imemecrunch'com;

Why not HTML

Fact:

Manipulating DOM is orders of magnitude more expensive than in-memory
operations.

Setting innerHTML may destroy DOM node that doesn’t change at all.

In addition, what about those event listeners?

This is the real JSX

React.createElement(
“input’
{ value: ‘foo’ },
child1, child2

createElement()

React.createElement (
type,
[props],
[...children]

Create and return a new React element of the given type. The type argument can be either a
tag name string (such as 'div' or 'span'), a React component type (a class or a function),

or a React fragment type.

Code written with JSX will be converted to use React.createElement() . You will not
typically invoke React.createElement() directly if you are using JSX. See React Without
JSX to learn more.

https://reactjs.org/docs/react-api.html#createelement

https://reactjs.org/docs/react-api.html%23createelement

JSX are plain objects

console. logl(

<ReactReduxProvider store={store}>
<MaterialThemedApp
title="Developer Sam"
appBarPosition="fixed"
styles={appStyles}
buttons={buttons}

<FirstPage />
<Suspense fallback={null}>
<ProjectsSection />
</Suspense>
<Suspense fallback={null}>
<TechTalkSection />
</Suspense>
<Suspense fallback={null}>
<TimelineSection />
</Suspense>
<Suspense fallback={null}>
<WebTerminal />
</Suspense>
</MaterialThemedApp>
</ReactReduxProvider>

0l;

v {$$typeof: Symbol(react.element), key: null, ref: null, props: {.}, type: f, .}
$$typeof: Symbol(react.element)
key: null
v props:
v children:
$$typeof: Symbol(react.element)
key: null
» props: {title: "Developer Sam", appBarPosition: "fixed", styles: {.}, buttons: {.}, children: Array(5)}
ref: null
» type: ({ title, styles, appBarPosition = 'static', buttons, children }) => {..}
_owner: null
» _store: {validated: true}
_self: null
» _source: {fileName: "/Users/sam/Desktop/workplace/website/packages/www/src/App.tsx", lineNumber: 34, columnNumber: 5}
» __proto__: Object
» store: {dispatch: f, subscribe: f, getState: f, replaceReducer: f, Symbol(observable): f}
» __proto__: Object
ref: null
» type: f Provider(_ref)
_owner: null
p _store: {validated: false}
_self: null
» source: {fileName: "/llsers/sam/Deskton/worknlace/wehsite/nackanes/www/src/Ann.tsx". lineNumher: 33. columnNumber: 3}

Characteristics of JSX

They are plain objects.
They are never converted to actual HTML (except in server side rendering)
They describe what the Ul should look like.

JSX alone does nothing. It's up to some engine and runtime to turn that into
actual DOM elements.

The picture of virtual DOM diffing

React can then do (assuming we track real DOM somewhere):
rootDiv.className = ‘’; rootDiv.tabIndex = 9;
span.innerText = ‘haha’;
childDiv.className = ‘right’;

Just ensure you are following

s JSX Virtual DOM?

Answer

NO!GOD I’lEA_‘SE NO!!

: »
b - o4 i
N0000000000000000
imemecrunch'com;

JSX is not virtual DOM!

JSX: Virtual DOM:

<MyContainer> <div className="pretty-container”>
Hi Hi

</MyContainer> </div>

Fact: JSX is lazily evaluated to virtual DOM!

Part 2.
The Virtual DOM and Lifecycles

Surprisel!

Think you can get away with reasoning about lifecycle methods with Hooks?

Not possible when you dive into implementation!

What is virtual DOM?

Directly answering this question might be hard, let's start by choosing.

Which one is virtual DOM?

span

MyDiv
)
div
div RandomText
/\ l
div Mylnput span
I

input

What happens during state changes?

Suppose setState is run inside Mylnput, what should happen?

Some obvious steps:

e Rerender
e Update virtual DOM

What happens during state changes?

Rerender is easy:
const newElement = MyInput(oldProps);

What about updating virtual DOM?

Virtual DOM - Alternative 1

div

span

div

input

Which node should | update once | got newElement?

YOU DON'T KNOW

That’s why this is not virtual DOM

Virtual DOM - Alternative 2

div

MyDiv
v
div
’//////\\\\\\\‘
div RandomText
!
span

input

const newElement =

.component (
VTR . o1dProps
);
/] ...

VARSI VRd\[efe [. updateMyVirtualDOM(. . .

JSX = Virtual DOM

We already know

e JSX !=Virtual DOM
e JSXislazy

How do we “unlazify” JSX?

JSX = Virtual DOM (Mounting)

'

MyDiv

We recursively expand unevaluated children.

T~

MyDiv

!

div

v | |t

MyDiv

!

/ div

v
span

JSX = Virtual DOM (Mounting)

Once a child is fully evaluated, it gives back generated DOM node.
In the same recursion, we assemble together a real DOM tree.

HTMLDivElement

MyDiv

AT,

E\
. pTMLSPen
My Y MyDiv
W@ T
s ‘

ement

div

v | |t

MyDiv

!

div

\

RandomText

v
span

Virtual DOM Update & Reconciliation

Goal:

The new virtual DOM and real DOM should be indistinguishable from the virtual
DOM and real DOM generated from a clean mount with previous state.

Naive Update Strategy

1. Unmount
2. Mount

Why is it bad?

e Slow
e Incorrect: all states are lost.

When is it safe to unmount?

i.e. It's OK to lose state

Answer: When the component type changes.

From div to span

From div to MaterialCard

From MaterialCardtodiv

From MaterialCardto BootstrapCard

What about children?

The real React does some clever bookkeeping to avoid unmounting children
even when order changes.

For the purpose of this DevSesh:

e When old and new children have different length, nuke everything.
e Assume children don't reorder themselves.
e No support for key.

User-defined component update

Q: What triggers an update? A: JSX Element.

Signature: update(component: Component, element: JSX): void

Strategy: recurse down!
const newElement = component.renderFunction(oldProps);

update(component.childComponent, newElement) ;

Intrinsic component update

Compare new and old props, only update changed props in real DOM

Recursively call update on children components

Part 3: The Hooks Runtime

usekEffect

Type Signature: useEffect(effect: () => void): void

For simplicity, we don't include cleanup function and dependency array.

How to implement:
When called, put the effect into a global effect queue.

After rendering changes to the DOM, run and clear all effects in the queue.

usesState

Dilemma:;

e React component functions should be stateless P
e useState introduces state
o i3

AN g

The runtime to the rescue!

React can inject runtime before it calls your component function!
React can run some cleanup code after it calls your component function!

That's why JSX is lazily evaluated!

The environment of a render

/] ...

const hooksRuntime = findExistingRuntimeOrCreateNew();
_HOOKS_RUNTIME = hooksRuntime;

const jsx = YourComponent(yourComponentProps);
storeHooksRuntimeSomewhere(hooksRuntime) ;
_HOOKS_RUNTIME = null;

/...

Hooks runtime for useState

e An array of [state, setState]
e Current index

function useState (defaultValue)

if (@ <= _HOOKS_RUNTIME.currentIndex < _HOOKS_RUNTIME.stateArray.length) {
const slot = _HOOKS_RUNTIME.stateArray[_HOOKS_RUNTIME.currentIndex];
_HOOKS_RUNTIME.currentIndex++;
return slot;

}
// You will see implementation of setStateFunction in later parts
const setStateFunction = (newState) => { ... };

const newStateSlot = [defaultValue, setStateFunction];
_HOOKS_RUNTIME.stateArray[_HOOKS_RUNTIME.currentIndex] = newStateSlot;
_HOOKS_RUNTIME.currentIndex++;

return newStateSlot;

What should setState do?

1. Compare the new value against the old one. If it's the same, do nothing.
2. Update the state in the correct slot.
3. Tells React that an rerender is necessary.

Why does useState depend on call order?

Why can't we do:

useState(‘defaultValue’, ‘key for the state’);

Then it's not compositional!

Why does useState depend on call order?

Suppose we have two custom hooks, which contains

useState(‘defaultvValue 1’', ‘key’);

useState(‘defaultvValue 2', ‘key’);

respectively.

They are both fine in isolation, but when you combine them, there is a collision.

Then, reasoning about correctness of combining hooks requires you to read the code for both.

https://overreacted.io/why-do-hooks-rely-on-call-order/

https://overreacted.io/why-do-hooks-rely-on-call-order/

Now you should know all the answers!

How does React sync your data with real DOM?
How does useState know which component it's in?
Why props should be immutable?

Why can't | just push to an array directly?

Part 4: The Implementation

We don't have to write our own JSX parser!

JSX is an open standard.
A lot of tools already implemented JSX transpilation for us.

We can reuse the entire create-react-app toolchain, only replacing the react
core implementation.

We need to understand our tools first to understand the sentences above.

Understand the toolchain - Babel

e When it sees <div foo="bar" />
o Itgenerates React.createElement(‘div’, { foo: ‘bar’ })

e When it sees <MyComponent foo="bar" />
o Itgenerates React.createElement(MyComponent, { foo: ‘bar’ })

e It doesn't even care whether you properly imported React!
o Therefore, you can easily configure Babel to write JSX in Vue

Understand the toolchain - Webpack

It inspects your imports.

If it imports css, it will add <link href="blabla.css” /> to the head.

It it imports JS/TS, it will call babel to transpile the code and add <script
src="blabla.js” /> to the body.

It can perform minimization if you want.

That's why we can still import css!

Understand the toolchain - TypeScript

JSX is part of the TypeScript language.

At the language level, it doesn't contain any React specific stuff.

You can configure it to recognize React specific stuff.

Repo Organization

Repository is setup using Yarn workspace.

If you don't know what is Yarn workspace, check the |last DevSesh.

https://docs.google.com/presentation/d/1veoBCpvRqmQXYJTdRAS2wqj80wdZe_-yWNWR1_ELuw4

Let’s jump into the code!

hitps://github.com/SamChou19815/mini-react

https://github.com/SamChou19815/mini-react

Part 5: Final Thoughts

What's Missing

Key Optimization
Refs DevTools support
Class components Error boundary
More hooks Context

Full DOM support Concurrent Mode

Fast Refresh

Fiber Reconciler
dangerouslySetinnerHTML
Alternative renderers

... (This list is incomplete)

You should always strive to learn more

Build react from scratch: https://www.youtube.com/watch?v=_MAD40ly9vqg

Dan Abramov’s Blog: http://overreacted.io/

React Conf: https://conf.reactjs.orqa/

https://www.youtube.com/watch?v=_MAD4Oly9yg
http://overreacted.io/
https://conf.reactjs.org/

Why this DevSesh

Of course, some fancy React internals. A lot of new frameworks (Flutter,
SwiftUl) are inspired by React, that’s also a plus.

But more importantly, thinking process of developing a framework.

You learn how to develop good abstractions, which is helpful for your subteam
work.

Feedback Link

htips://forms.ale/jtgaLJn16CGegav508

https://forms.gle/jtgLJn16CGegav5o8

