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Abstract

PageRank has been widely used to measure the authority or
the influence of a user in social networks. However, conven-
tional PageRank only makes use of edge-based relations, ig-
noring higher-order structures captured by motifs, subgraphs
consisting of a small number of nodes in complex networks.
In this paper, we propose a novel framework, motif-based
PageRank (MPR), to incorporate higher-order structures into
conventional PageRank computation. We conduct extensive
experiments in three real-world networks, i.e., DBLP, Epin-
ions, and Ciao, to show that MPR can significantly improve
the effectiveness of PageRank for ranking users in social net-
works. In addition to numerical results, we also provide de-
tailed analysis for MPR to show how and why incorporat-
ing higher-order information works better than PageRank in
ranking users in social networks. !

Introduction

Online social networks have become the everyday com-
munication and interaction platform for most people. User
ranking in social networks is a general problem for opinion
leader mining (Song et al. 2007), influence analysis (Tang
et al. 2009; Xiang et al. 2013) and social trustworthi-
ness (Wang et al. 2015). Besides customized features such
as content and topic (Tang et al. 2009), PageRank (Page
et al. 1999) can be considered as a general algorithm for
ranking users in social networks. PageRank measures the
authority of nodes in the network, which can be used as
a measure for opionion leader mining, and influence and
trustworthiness analysis (Song et al. 2007; Tang et al. 2009;
Xiang et al. 2013; Wang et al. 2015). However, PageRank
has several limitations in social network analysis. In a net-
work, there could be some important structures that can af-
fect the influence or trustworthiness of the nodes. For ex-
ample, when mining opinion leaders in a social network, it
is obvious that an authority node, which many other users
connect to, should be given high influence score. However,
there could be a node that connects to multiple such author-
ity nodes but itself is not an authority node. For example, in a
social network a journalist could have connections to many

Copyright © 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

"Equal contribution. This work was done when Xiaogang Xu
was an intern at HKUST.

€14

Figure 1: A graph with four nodes.

VIPs but he/she may not be as famous as the VIPs. Then
when the journalist expresses an opionion, it could be read
by the VIPs, who would propagate the opinion much farther
in the future. Moreover, when analyzing a citation network,
even if a paper P is highly cited by many other papers, we
are not sure how P’s influence might be affected if the citing
papers have mutual citations among themselves.

For trustworthiness, we use a concrete example to show
why higher-order structures matter. As shown in Figure 1, an
edge e;; means user 4 follows user j. In traditional PageR-
ank, the initial weights of e;2 and e;4 will be set to the same
value. However, it can be observed that user 1 trusts user 2
more than user 4 because user 1 also follows user 3, who
is a friend of user 2 (user 3 and user 2 follow each other).
This indicates that user 1 has a closer relation to user 2 than
user 4. Thus, it is unreasonable to set the weights of e15 and
e14 to the same value due to the existence of the triangular
structure where user 1 and user 2 both appear. The premise
of this paper is that it is important in social network mining
to consider higher-order structures involving multiple nodes.

In this paper, we propose a novel framework, called motif-
based PageRank (MPR), to incorporate such higher-order
structures into PageRank computation for user ranking in
networks. The higher-order structures can be represented as
network motifs (or subgraphs or graphlets) (Milo et al. 2002;
Benson, Gleich, and Leskovec 2016a). We show some typ-
ical 3-node motifs in Figure 2, where Mg characterizes the
triangular structure in Figure 1. In this work, we prove that
motif-based and traditional edge-based relations are com-
plementary to each other in computing the authority of a
node in complex networks. We propose to first compute the
motif-based adjacency matrix, which captures the pairwise
relations between two nodes appearing in a specific motif.
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Figure 2: All triangular motifs in a directed unweighted
graph. Note that we use Mqq4. to represent the edge-based
relation.

Then we design a method to combine the motif-based ad-
jacency matrix with the edge-based adjacency matrix. In
this way, we re-weigh the links based on motifs in com-
plex networks. In other words, we incorporate higher-order
relations into conventional authority computation. We con-
duct experiments on an academic citation dataset, DBLP,
and two trustworthiness datasets, Epinions and Ciao, to
extract influential or trustworthy users. The results show
that our proposed method significantly outperforms conven-
tional PageRank and other baselines. Moreover, we give de-
tailed analysis on different motifs, providing insights into
authority computation with higher-order relations. The code
of this work is available at https://github.com/
HKUST-KnowComp/Motif-based-PageRank.

The rest of the paper is organized as follows. We first
review the related work on PageRank and motif analysis
in graphs. Then we introduce in detail MPR. Further we
present our experimental results as well as the analysis. Fi-
nally, we conclude our work and discuss some future direc-
tions.

Background and Related Work

In this section, we introduce related work on authority com-
putation that uses PageRank and motif in complex networks.

PageRank

PageRank was first introduced to rank Web pages on the In-
ternet (Page et al. 1999). Apart from ranking Web pages,
PageRank has been used in many other domains (Gleich
2015), such as citation network analysis (Ding 2011) and
link prediction (Liben-Nowell and Kleinberg 2007). In (Xi-
ang et al. 2013), Xiang et.al. explicitly connected PageR-
ank with social influence model and showed that authority is
equivalent to influence under their framework. Thus, PageR-
ank can also help to select influential nodes in networks.
Moreover, PageRank has been used to identify opinion lead-
ers (Song et al. 2007) and find trustworthy users (Wang et al.
2015) in social networks. Compared to our work, all of the
previous studies only considered direct edges only in PageR-
ank computation and ignored higher-order structures among
multiple nodes.

Motif in Complex Networks

Motif characterizes higher-order network structures and is
also associated with other names such as graphlets or sub-
graphs. Network motif was first introduced in (Milo et al.
2002). It has been shown to be useful in many applica-
tions such as social networks (Ugander, Backstrom, and
Kleinberg 2013; Granovetter 1973; Rotabi et al. 2017),
scholar networks (Wang, Lii, and Yu 2014), biology (Przulj
2007), neuroscience (Sporns and Kotter 2004), and tem-
poral networks (Paranjape, Benson, and Leskovec 2017).
Besides, most of the previous work focused on how to
efficiently count the number of motifs in complex net-
works (Ahmed et al. 2015; Jha, Seshadhri, and Pinar 2015;
Wang et al. 2016; Han and Sethu 2016; Stefani et al. 2017;
Pinar, Seshadhri, and Vishal 2017). Recently, it was proven
that motifs can also be used for graph clustering or com-
munity detection (Benson, Gleich, and Leskovec 2016a;
Yin et al. 2017). In (Wang, Lii, and Yu 2014), Wang et.al.
proposed to measure the importance of a node in a net-
work by its participation in different motifs. In (Zhang et
al. 2017), Zhang et.al. proposed to predict users’ behaviors
based on structural influence, i.e., the influence from a spe-
cific structure he/she appears. Compared to these previous
studies, we incorporate motif to explore the higher-order re-
lations in pairs of nodes and then use the relations to com-
pute the authority of nodes using PageRank. In other words,
we consider motifs from a global perspective while previous
works only consider local motif structures of the nodes.

Motif-based PageRank

In this section, we introduce in detail our framework and
algorithm.

Problem Formulation

Let G = (V,E,W), where V = {u;|i = 1,,...,n} is
the node set, and £ = {e;;|i,j = 1,...,n} is the edge
set, where ¢;; is an edge from v; to v;. W is the adja-
cency matrix, where W;; represents the weight of e;;. For
a directed unweighted graph, W;; = 1 if e;; exists and
W;; = 0 otherwise. Then we normalize the adjacency
matrix to obtain the transition probability matrix P, where
P;; = W;;/ >, W;;. Then, the PageRank over the graph
can be defined as follows.

N ©
where x € RY and x; is the PageRank value of the i-th
node in G, e € R¥ is a vector with every entry equal to
1, and d € (0,1) is a damping factor. In (Bianchini, Gori,
and Scarselli 2005), Bianchini et.al. proved that this iterative
computation always converges.

Given a social network G, we can generalize this defini-
tion as follows. If there is an edge e;; from node v; to vj,
then we use W;; to represent the strength of endorsement
v; gives to v; or the strength of influence of v; exerts on v;.
The weight can be computed based on binary link relation,
the interaction frequency, content similarity of users’ posts,
etc. However, all the above weights are still first-order prox-
imity between two users. As shown in Figure 1, for user 1,

x = dPTx + (1)
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Figure 3: Motif example. This is the example of My. B is the
binary matrix recording the edge pattern for Mg in the left
side. A is the anchor set, including all nodes in Mg. There-
fore, it is a simple motif.

‘W, should be larger than W4 because node 1 and node 2
participate in a triangular relation in trustworthiness evalua-
tion. Therefore, it is desirable if the weight can also incor-
porate information about such higher-order structures.

In the rest of this section, we will first introduce the for-
mal definition of motif to characterize higher-order struc-
tures, and then introduce our algorithm to incorporate such
information into PageRank.

Motif Definitions
We first introduce the definition of motif as follows.

Definition 1. Network Motif. A motif M is defined on k
nodes by a tuple (B, .A4), where B is a k x k binary matrix
and A C {1,2, ..., k} is a set of anchor nodes.

Anchor nodes represent the nodes we are interested in.
Usually, anchor nodes are all of the k& nodes. In this case it
is called simple motif. Otherwise, it is called anchored mo-
tif (Benson, Gleich, and Leskovec 2016b). In this paper, we
focus on simple motifs. An example is given in Figure 3 to
illustrate the definition of motif.

Given a motif definition, we can define the set of motif
instances as follows.

Definition 2. Motif Set. The motif set in an unweighted
directed graph G with an adjacency matrix W, denoted as
M(B, A), is defined by

M(B, A) = {(set(v), set(xa(v)))|v € V*,
V1, ..., Uk, distinct, Wy, = B}.

where x 4 is a selection function that takes the subset of a k-
tuple indexed by A, and set(-) is an operator that transforms
an ordered tuple to an unordered set, set((v1, va, ..., U)) =
{v1,va, ..., v }. v is an ordered vector representing the k
nodes, and W, is the k x k adjacency matrix of the subgraph
induced by v.

The set operator is used to avoid duplicates when
M(B, A) is defined for motifs exhibiting symme-
tries. Therefore, we will just use (v,xa(v)) to de-
note (set(v),set(x4(v)) when we discuss elements of
M(B, A). When B and A are arbitrary or clear from con-
text, we will simply denote the motif set by M. Then any
(v, xa(v)) € Mis called a motif instance.

Motif-based Adjacency Matrix

In this work, we propose to use motif to capture higher-order
relations between nodes in a graph. When given a motif set
M, we use the co-occurrence of two nodes in M to capture
this relation. Given a motif M, the definition of the motif-
based adjacency matrix or co-occurrence matrix is defined

by:
(Wa)ij = >

(vixa(v))em

1({i,j} S xalv)), @

where ¢ # j, and 1(s) is the truth-value indicator function,
i.e., 1(s) = 1 if the statement s is true and 0 otherwise. Note
that the weight is added to (W );; only if ¢ and j appear
in the anchor set. For simple motifs, it requires ¢ and j to be
members of set(v).

The motif-based adjacency matrix represents the fre-
quency of two nodes appearing in a given motif, i.e., one
type of higher-order structure. The larger (Ws);; is, the
more significant the relation between 4 and j is within the
motif. Then given a motif My, if we want to capture the
high-order relations, we need to construct the motif-based
adjacency matrix Wy, . The procedure is related to sub-
graph counting in larger graphs, which has been extensively
explored in the literature (Ahmed et al. 2015; Jha, Seshadhri,
and Pinar 2015; Wang et al. 2016; Han and Sethu 2016;
Stefani et al. 2017; Pinar, Seshadhri, and Vishal 2017). In
this paper, we focus only on triangular motifs because of
triadic closure in social networks (Simmel 1908). We show
that it can be computed based on simple matrix computa-
tion (Benson, Gleich, and Leskovec 2016b).

Let W be the adjacency matrix for G, and let U and
B, respectively, be the adjacency matrix of the unidirec-
tional and bidirectional links of G. Here we focus on un-
weighted graphs where elements in W are either ones or
zeros. For example, in Figure 4, es3 is a bidirectional edge
while eq5 is unidirectional. Then we have B = W @ W71
and U = W — B, where ® denotes the Hadamard (entry-
wise) product. Note that B is a binary matrix representing
the existence of bidirectional edges between two nodes in
a directed graph. The computation of adjacency matrices
based on all seven motifs is summarized in Table 1.

We use an example to illustrate the computing pro-
cess for Mg (shown in Figure 3). Taking two arbitrary
nodes, v; and wv; intermediated with vy, there are
six different cases for them to participate in Mg be-
cause the graph is directed. We use 1,2,3 or 3,2,1
to denote the positions of three users v;,v,v; shown
in Mg. We have six cases for the three nodes, i.e.,
{(3,1,2),(2,1,3)},{(1,2,3), (3,2, 1)}, {(1,3,2), (2,3, 1)},
where we put them in three groups according to the interme-
diate node vi. As shown in Figure 3, eq2 is a bidirectional
edge, while e;3 and es3 are unidirectional edges. To
compute the frequency of v; and v; participating Mg, we
need to add up all their frequencies in the six cases. In
(3,1,2), where v; is in position 3 and v, is in position 2,
the frequency can be obtained by (U - B) ® U, where
U - B is for path 3 — 1 — 2 without edge e3s, and ®U just
complements the motif with edge e3o. In this way, we get



Table 1: Computation of motif-based adjacency matrices for M7 to M.

Motif Matrix Computation Wy, =
M, C=(U.-U)oUT C+C7T
My C=B-U)oU'+(U-B)oUT+(U-U)oB C+CT
M; C=(B- B)®U+( -U)yoB+(U-B)®B c+cCT
My C=(B-B)o C
Ms; C=(U- U)®U+(U UhHeou+@UT - U)yoU cC+CT
Mg C=(U-B)oU+B-UNHoU'+(UT-U)oB C
M; C=(UT-B)oUT+B-U)oU+(U-UT)oB C
1 2 3 4 5 we can compute the transition probability matrix (P, );; =
11ol1]12l0l1 (Har,)ij/ >_;(Haz, )ij and substitute P, for the transition
probability matrix P in Eq. (1).
2]1|0|1|0]|O
3[2]tjojo)1 Experiments
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In this section, we present the experimental results to
S5|1jof1jo]jo demonstrate the effectiveness of MPR.

(a) An example graph with five (b) Corresponding  Ms-
nodes. based adjacency matrix.

Figure 4: An example for computing Mg based adjacency
matrix according to the equation in Table 1. For example,
W3 = 2 because node 1 and 3 appear in two instances of
Mg, ie., {1,2,3} and {1,3,5}.

the frequency of v; and v; appearing together in a specific
pattern (3,1,2). Similarly, we can obtain the other cases.
Note that, due to the symmetric structure of (3,2,1) and
(3,1,2), we only need to add up three equations as shown
in Table 1. Figure 4 shows an example for the motif-based
adjacency matrix based on motif M.

Computation Analysis. In all computation formulas of
‘W, in Table 1, the core computation kernel is (X-Y) ®Z,
which can be efficiently computed with sparse matrices.
The computational cost is proportional to the numbers of
columns and rows, as well as the number of non-zero ele-
ments in the sparse matrices.

Higher-Order PageRank

After computing the motif-based adjacency matrices, we in-
corporate them into the ranking model for ranking users.
Since the non-zero elements in the motif-based adjacency
matrices will be no more than the non-zero elements of
the original edge-based adjacency matrix, we combine the
motif-based relations with the edge-based relations instead
of replacing the edge-based relations. In this way, motif-
based edges can be regarded as supplementary to conven-
tional authority computation with PageRank. We propose to
use a linear combination to fuse tje edge-based and motif-
based adjacency matrices. Specifically, for a given motif
Mj,, we generate a new matrix as follows.

HA{R,’:OWW-I-(I—OZ)'WMW 3)

where o € [0, 1] balances the original edge-based rela-
tions and higher-order relations provided by motifs. Then

Datasets and Settings

Our experiments are conducted on three real-world net-
works. The first is a scholar network, DBLP, which is pro-
vided by ArnetMiner (Tang et al. 2008). The other two
are trust networks, Epinions and Ciao, which are provided
by (Tang, Gao, and Liu 2012; Tang et al. 2012). More infor-
mation about the datasets is given below.

DBLP. We use the DBLP dataset (version V8) in the AMiner
Website.> DBLP is an academic dataset which records the
publications of authors. We can extract the citation networks
from all publications. We focus on a sub-network from six
research domains: “Artificial Intelligence,” “Computer Vi-
sion,” “Database,” “Data Mining,” “Information Retrieval,”
and “Machine Learning.” After extracting authors and pa-
pers from these domains, the citation network is constructed
to evaluate the social influence of authors. When construct-
ing the citation network, we add one edge from ¢ to j if au-
thor ¢ cites at least one paper of author j.

Epinions and Ciao. They are two review websites where
users can write reviews on products as well as rate the re-
views of other users, indicated by the review helpfulness
rating. Moreover, users can add other users as trustworthy
users if they like their reviews. Then it is intuitive that the
higher helpfulness rating obtained by a user’s reviews, the
more likely it is for him to be added as a trustworthy user.
When constructing the trust network, an edge e;; will be
added when user v; trusts user v;.

The statistics of the datasets are listed in Table 2.
Evaluation Metrics. To evaluate the effectiveness of the
proposed framework, we compare the quality of the topK
users ranked by different algorithms. Specifically, we extract
K users with the largest PageRank values and then com-
pute the Normalized Discounted cumulative Gain (NDCG),
which is a popular metric for ranking quality in Information
Retrieval (IR) (Jarvelin and Kekéldinen 2002). For topK re-

*https://cn.aminer.org/billboard/citation



Table 2: Statistics of the three datasets: DBLP, Epinions,
Ciao. The density is computed by - #edges

sX(#nodes—1) "
Nodes  Edges  Density(%)
DBLP | 35,315 941,936 0.076
Epinions | 18,089 355,217 0.109

Ciao 2,342 57,544 1.049

sults, DCG@XK is defined as:

K
rel;
DCGy = ; TYNCEEE )

where rel; represents the relevance score of a document for
a given query. log, (i + 1) is used to penalize the algorithm
if it ranks higher relevant items in lower positions. To nor-
malized the results, normalized DCG g is computed as:
DCGk 5
IDCGg’ )
where I DCG is the ideal ranking for the results, i.e. the
results are sorted according to their relevance scores. In this
way, it measures how good a ranking list is compared to an
ideal one.

In our experiments, for the DBLP dataset, we use the H-
index of authors as the relevance scores. In the research com-
munity, H-index is a metric to measure the influence of an
author by considering both the quality and quantity of the
author’s published papers based on the citation network. The
larger H-index an author has, the more influential s/he is. We
crawled the H-index of all authors in our dataset from the
AMiner website® before July 2017. For Epinions and Ciao,
we use the average helpfulness rating of a user’s reviews as
the relevance score, which means that the larger it is, the
more trustworthy the user is.

Baselines. We compare our proposed framework with the
following methods:

NDCGk =

e IND: It selects influential nodes based on the incoming
degree, i.e., those whose works are cited by most authors
in DBLP, or users who are trusted by most people in Epin-
ions or Ciao.

e BET: It selects influential nodes based on betweenness
score. Betweenness score is a centrality measure of a node
in a graph which quantifies the number of times a node
acts as a bridge along the shortest path between two other
nodes (Freeman 1977).

e CLO: It selects influential nodes based on closeness
score. Closeness score is a centrality measure of a node in
a graph which is the average length of the shortest paths
between the node and all other nodes in a graph (Sabidussi
1966).

e BPR: This method runs PageRank in a binary network,
where the weights of all edges are set to 1.

o WPR: This method runs PageRank in a weighted net-
work, where the weight of an edge from ¢ to j is set to
the frequency of ¢ citing the work of j or ¢ trusting j.

*https://aminer.org/

For MPR, we work on all of the triangular motifs sepa-
rately, and then show the results for each of them separately.
Note that for performance comparison, we show the best re-
sults of each motif we can obtain among different values of
a. Then we show how the parameter « affects the perfor-
mance of MPR.

Performance Comparison

The overall results are shown in Table 3. We show the perfor-
mance of top10, top50, top5S00 ranking results with different
algorithms. From Table 3, we can see that the best perfor-
mance for all three datasets with different /s is achieved
by our proposed framework. This demonstrates the effec-
tiveness of incorporating higher-order relations into PageR-
ank computation.

We emphasize the following three observations in Table 3.
First, we can see that on all three datasets, the larger K is,
the smaller NDCG is. This makes sense because more users
means more difficulty in achieving an ideal ranking list.

Second, when K = 10, we can see that the NDCG of
BPR on DBLP and Epinions are greater than 0.94, which
is actually very strong in practice. However, our proposed
framework can further improve the NDCG from 0.9464 to
0.9920 on DBLP, and from 0.9777 to 0.9957 on Epinions.
On Ciao dataset, the performance is improved from 0.8332
to 0.9905, which is even more significant.

Third, when comparing the performance of the five base-
line methods, we found that the performance of BPR and
WPR are similar, which means that the use of frequencies as
weights cannot bring much additional benefit.

When comparing IND, BET, CLO, and BPR, BPR wins
only on the Epinions dataset, since different centrality mea-
sures can characterize different local or global topological
structures of the network. By introducing higher-order struc-
tures, MPR can still outperform all of these baselines. Ob-
viously not all motifs can outperform all baselines on all
datasets. In the next section, we will present a possible ex-
planation to this phenomenon using Z-score analysis.

Analysis of Z-score

To have more quantitative analysis of MPR, we introduce Z-
score (Milo et al. 2002), which is a qualitative measure of
statistical significance of a motif in a particular network. To
give a formal definition of Z-score, we first introduce ran-
domized networks. Corresponding to a given complex net-
work, a randomized network has the same single-node char-
acteristic as in the real network: each node in the randomized
networks has the same number of incoming and outgoing
edges as that of the corresponding node in the real network.
A random local rewiring algorithm that preserves the de-
grees of the nodes can be used to generate such randomized
network (Milo et al. 2002). For each motif, the number of ap-
pearances in the real network and randomized networks are
denoted as N,¢q and N,q,4, respectively. By constructing
a number of randomized networks, e.g., 1,000, we compute
the standard deviation of V,.,,4, denoted as SD. Therefore,
the Z-score is defined as follows.

Nreal Nrand
Z-score = —real — _Trand 6
score ST ; (6)



Table 3: NDCG for top10, top50, top500 users from DBLP, Epinions, and Ciao datasets. The best performance in each column

is emphasized with boldface.

DBLP

Epinions Ciao

TopK 10 50 500 10

50 500 10 50 500

IND | 0.9879 0.9639 0.9400 | 0.9476
BET | 0.9796 0.9710 0.9559 | 0.9566
CLO | 0.9875 0.9614 0.9285 | 0.9308
BPR | 0.9464 0.9414 0.9527 | 0.9777
WPR | 09154 0.8871 0.9350 | 0.9777
M; | 09753 0.9590 0.9623 | 0.9777
My | 09890 0.9424 0.9585 | 0.9777
Ms | 0.9895 0.9508 0.9586 | 0.9788
My | 09809 0.9477 0.9528 | 0.9827
Ms | 09877 09513 0.9574 | 0.9777
Mg | 0.9634 0.9525 0.9588 | 0.9957
M ] 0.9920 0.9766 0.9640 | 0.9780

0.9563 09343 | 0.9218 0.8651 0.9120
0.9559 0.9403 | 0.9421 0.8961 0.8911
0.9346 0.9382 | 0.9021 0.9225 0.9251
0.9543 0.9365 | 0.8332 0.8599 0.8932
0.9543 0.9365 | 0.8332 0.8599 0.8932
0.9656 0.9406 | 0.9802 0.9347 0.9392
0.9581 0.9417 | 0.9905 0.9453 0.9401
0.9568 0.9378 | 0.9768 0.9576 0.9441
0.9557 0.9395 | 0.9719 0.9357 0.9401
0.9551 0.9454 | 0.9792 0.9792 0.9401
0.9596 0.9382 | 0.9459 0.9459 0.9427
0.9614 0.9442 | 0.9514 0.9500 0.9418

Table 4: Results of Z-scores for M7 to My on DBLP, Epinions and Ciao datasets.

M, M, M

M4 M5 M6 M7

DBLP 8.83  190.78 368.29
Epinions | -6.82 39.09 162.74
Ciao 7.83 105.58 205.93

125.15 300.67 689.21 348.71
30.553 14547 167.94 182.01
25.50 13397 11444 206.71

1 0.98
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Figure 5: Parameter analysis of o on the three datasets. We show Top10, Top50 and Top500 ranking results. & = 0 means we
use motif-based relations alone to perform PageRank while & = 1 means we use the original edge based relations alone to

perform PageRank.

which measures the significance of the frequency that a mo-
tif appears in a given network comparing to the random-
ized networks. The larger Z-score a motif is, the more fre-
quent it occurs. We then compute the Z-scores of motifs M
to M- for all of the three datasets with the software FAN-
MOD (Wernicke and Rasche 2006). The results are shown
in Table 4. From the table, we can see that the Z-scores of
M to M7 on DBLP are all larger than those on Epinions and
Ciao. Therefore, it can help explain the phenomenon that the
performance of M; to M7 are all better than BPR on DBLP.

Analysis of «

In Eq. (3), we have a parameter « to control the balance
between edge-based and motif-based higher-order relations.
When a = 0, it means we only use higher-order relations for

authority computation. When @ = 1, it means we only use
the original edge-based relations for authority computation.
In this section, we show how this parameter affects NDCG
performance. For simplicity, we only show the results of one
motif with better performance on each dataset, which is M7
for DBLP and Epinions, and M, for Ciao. The results are
shown in Figure 5. We can see that the trends are consis-
tent in most cases and the best performance is achieved at
some value in [0,1]. It means that the best performance on
the three datasets is achieved by combining the edge-based
and motif-based relations. The best performance of topS00
ranking results on Epinion and Ciao and top50 ranking re-
sults on Ciao is achieved at « = 0, i.e., using only the
higher-order relations. This again demonstrates that higher-
order relations can provide useful information for ranking



IS

140 2- 85
@ 2 3
[0} Q
120 £19 £
2 225
3 5 a
2100 Lis L
T ® )
2 215
© @ !
80 5 1.7 - 5
> > 9
<< <
60 1.6 -
0.5
40 1.5 0
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Ranking Ranking Ranking

(a) BPR vs. M7 on DBLP.

(b) BPR vs. Mg on Epinions.

(c) BPR vs. M5 on Ciao.

Figure 6: The trend of relevance scores of top ten users on all three datasets.

users in social networks. Top50 and top500 ranking results
are more consistent and the trends of the curves are also
similar, whereas top10 results are more diverse. This may
be because the top ten users in the social networks are very
prominent and may have different behaviors than the other
users.

Case Study

In this section, we analyze some real cases to show the ef-
fectiveness of MPR. Specifically, we extract the top ten users
and compute the average of their relevance scores, namely,
H-index of top ten authors on DBLP and trustworthiness
scores of top ten users on Epinions and Ciao. The results
are shown in Table 5. Due to space limitation, we only show
the results of one motif achieving the best performance for
NDCGyy, i.e., M7 for DBLP, M6 for Epinions, and M for
Ciao.

From Table 5, we can see that, on DBLP and Epinions,
the average relevance scores of MPR are larger than those
of BPR, which means that MPR can select more influential
authors or trustworthy users. This demonstrates the effec-
tiveness of incorporating higher-order relations when rank-
ing authors in the research community or users in social net-
works. On Ciao dataset, the average trustworthiness of My is
smaller than that of BPR. The main reason is that the trust-
worthiness of the user at the 3-rd position of BPR is very
large. This may be an outlier considering other users. We
support this observation with Figure 6. From the figure, we
can see that with increase of K, the trend of relevance of
MPR on all three datasets is decreasing despite some small
fluctuation. However, the trends of BPR on all three datasets
are more unstable. Thus, it demonstrates that MPR can rank
influential users in a more reasonable order. It again shows
the advantage of incorporating higher-order relations when
ranking users in social networks.

Conclusion and Future Work

In this paper, we propose MPR to incorporate higher-
order relations into conventional authority computation with
PageRank. The higher-order relations are captured by small
subgraphs, which are called network motifs. We propose
to use the motif-based adjacency matrix to re-weigh the

Table 5: The average relevance scores of top10 users, i.e., H-
index on DBLP and trustworthiness scores on Epinions and
Ciao.

DBLP Epinions Ciao
BPR M; | BPR Mg | BPR M,
Average | 100.5 107.6 | 1.85 192 | 1.38 1.05

links of the edges in social networks. Then, the higher-order
and edge-based relations are combined together to perform
PageRank. We conduct experiments on an academic net-
work, DBLP, and two trust networks, Epinions and Ciao.
The experimental results demonstrate that MPR can signifi-
cantly improve the performance of ranking users in social
networks, and thus the effectiveness of higher-order rela-
tions. Overall, we believe our work is a fundamental frame-
work that can be applied to many user ranking problems in
social networks.

For future work, we point out here three potential direc-
tions. First, linear combination of higher-order and edge-
based relations may not be the best way. Some non-linear
combination methods are worth exploring. Second, in MPR,
we incorporate only one motif at each time. It would be
very interesting to incorporate multiple motifs simultane-
ously and automatically select the weighting parameters for
different motifs. Third, to perform better social user rank-
ing it may involve other features, such as content posted
by users in the social networks. It will be also interesting
if we can combine higher-order relations with other features
to perform better user ranking. However, second and third
directions would involve supervised information, while our
current work is fully unsupervised and only based on social
connections.
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