
Interfacing C++/CUDA with Python

Casper O. da Costa-Luis github/casperdcl

2025-04-07 video | html | pdf
announcementannouncement websitewebsite chatchat discorddiscord

https://github.com/casperdcl
https://www.youtube.com/watch?v=aDfj-UEpQ68&list=PLTuAla-OP8WXqOfKdhCx8IX2baGYF6qEy&index=5
https://talks.cdcl.ml/cuda-python
https://talks.cdcl.ml/cuda-python.pdf
https://www.ccpsynerbi.ac.uk/events/hackathon-on-pytorch/
https://discord.gg/YVPweTw66x

History

Context

ctypes

https://docs.python.org/3/library/ctypes.html

▶ Foreign Function Interface (FFI)

▶ Hack to call C/C++ functions from Python
▶ e.g. https://github.com/gschramm/square_array

https://docs.python.org/3/library/ctypes.html
https://github.com/gschramm/square_array

ctypes

https://docs.python.org/3/library/ctypes.html

▶ Foreign Function Interface (FFI)
▶ Hack to call C/C++ functions from Python

▶ e.g. https://github.com/gschramm/square_array

https://docs.python.org/3/library/ctypes.html
https://github.com/gschramm/square_array

ctypes

https://docs.python.org/3/library/ctypes.html

▶ Foreign Function Interface (FFI)
▶ Hack to call C/C++ functions from Python
▶ e.g. https://github.com/gschramm/square_array

https://docs.python.org/3/library/ctypes.html
https://github.com/gschramm/square_array

ctypes example

import ctypes
lib = ctypes.CDLL("./libmy_experiment.so")

(re)define function signature for `void myfunc(float*, size_t)`
lib.myfunc.argtypes = [ctypes.c_void_p, ctypes.c_size_t]
lib.myfunc.restype = None

input_array = np.array([1, 2, 3], dtype=np.float32)
call function
lib.myfunc(

input_array.ctypes.data_as(ctypes.POINTER(ctypes.c_float)),
ctypes.c_size_t(len(input_array)))

CPython API

https://docs.python.org/3/c-api/intro.html

▶ “correct” way to call C/C++ functions from Python

https://docs.python.org/3/c-api/intro.html

CPython API example

#include <Python.h>
#include <numpy/arrayobject.h>

static PyObject *myfunc(PyObject *self, PyObject *args) {
PyObject *arr = NULL;
if (!PyArg_ParseTuple(args, "O", &arr)) return NULL;
PyArrayObject *np_arr = PyArray_FROM_OTF(

arr, NPY_FLOAT32, NPY_ARRAY_INOUT_ARRAY);
float *arr_ptr = PyArray_DATA(np_arr);
npy_intp *size = PyArray_SHAPE(np_arr);
for (size_t i = 0; i < size[0]; ++i) arr_ptr[i] *= 2;

}

static struct PyModuleDef my_module = {
PyModuleDef_HEAD_INIT,
.m_name = "my_experiment"

};
static PyMethodDef my_methods[] = {

{"myfunc", myfunc, METH_VARARGS, "In-place modifies ndarray[float]"},
{NULL, NULL, 0, NULL} // Sentinel

};
PyMODINIT_FUNC PyInit_spam(void) {

import_array();
return PyModule_Create(&my_module);

}

with my_experiment.{so,dll} in PYTHONPATH:

>>> import my_experiment
>>> help(my_experiment.myfunc)
Help on built-in function myfunc in my_experiment:

my_experiment.myfunc = myfunc(...)
In-place modifies ndarray[float]

Buffer protocol

https://docs.python.org/3/c-api/buffer.html

▶ Subset of CPython API

▶ Standard struct to expose arrays
float *data
size_t ndim
size_t shape[]

https://docs.python.org/3/c-api/buffer.html

Buffer protocol

https://docs.python.org/3/c-api/buffer.html

▶ Subset of CPython API
▶ Standard struct to expose arrays

float *data
size_t ndim
size_t shape[]

https://docs.python.org/3/c-api/buffer.html

https:
//github.com/AMYPAD/CuVec/blob/main/cuvec/include/cuvec_cpython.cuh#L128

int my_buffer(PyObject *obj, Py_buffer *view, int flags) {
view->buf = (void *)MY_GET_ARR_PTR(obj);
view->obj = obj;
view->len = MY_GET_ARR_SIZE(obj) * sizeof(float);
view->readonly = 0;
view->itemsize = sizeof(float);
view->format = "f";
view->ndim = MY_GET_ARR_NDIM(obj);
view->shape = MY_GET_ARR_SHAPE(obj);
view->strides = MY_GET_ARR_STRIDES(obj);
view->suboffsets = NULL; view->internal = NULL;
Py_INCREF(view->obj);
return 0;

}

https://github.com/AMYPAD/CuVec/blob/main/cuvec/include/cuvec_cpython.cuh#L128
https://github.com/AMYPAD/CuVec/blob/main/cuvec/include/cuvec_cpython.cuh#L128

static PyObject *myfunc(PyObject *self, PyObject *args) {
Py_buffer *view = NULL;
if (!PyArg_ParseTuple(args, "w*", &view)) return NULL;
float *arr_ptr = view->buf;
for (size_t i = 0; i < view->shape[0]; ++i) arr_ptr[i] *= 2;
PyBuffer_Release(view);

}

C++ wrappers (pybind11, etc)

https://pybind11.readthedocs.io/en/stable/

▶ C++ templates reduce boilerplate

https://pybind11.readthedocs.io/en/stable/

#include <pybind11/pybind11.h>

void myfunc(pybind11::buffer view) {
pybind11::buffer_info arr = view.request();
float *ptr = arr.ptr;
if (arr.ndim != 1) throw std::runtime_error("expected 1D array");
for (size_t i = 0; i < arr.size; ++i) ptr[i] *= 2;

}
using namespace pybind11::literals;
PYBIND11_MODULE(my_examples, m){

m.def("myfunc", &myfunc, "input_array"_a,
"In-place modifies ndarray[float]");

}

Python interfaces

__cuda_array_interface__
https://numba.readthedocs.io/en/stable/cuda/cuda_array_interface.html
▶ Python-level equivalent of C buffer protocol

▶ IMO a bad idea

https://numba.readthedocs.io/en/stable/cuda/cuda_array_interface.html

Python interfaces

__cuda_array_interface__
https://numba.readthedocs.io/en/stable/cuda/cuda_array_interface.html
▶ Python-level equivalent of C buffer protocol
▶ IMO a bad idea

https://numba.readthedocs.io/en/stable/cuda/cuda_array_interface.html

@property
def __cuda_array_interface__(self) -> Dict[str, Any]:

return {'shape': self.shape, 'typestr': numpy.dtype(self.typechar).str,
'data': (self.get_memory_address(), self.read_only), 'version': 3}

__dlpack__
https://data-apis.org/array-
api/latest/API_specification/generated/array_api.array.__dlpack__.html
https://dmlc.github.io/dlpack/latest/python_spec.html#reference-implementations
▶ Similar to __cuda_array_interface__ but also handles ownership & multiple

devices/streams

https://data-apis.org/array-api/latest/API_specification/generated/array_api.array.__dlpack__.html
https://data-apis.org/array-api/latest/API_specification/generated/array_api.array.__dlpack__.html
https://dmlc.github.io/dlpack/latest/python_spec.html#reference-implementations

@property
def __dlpack__(self, copy=False, max_version: tuple[int]=None,

stream: int=None, dl_device: tuple[int]=None
):

dl_tensor = DLTensor(data=self.addr, device=dl_device, ndim=self.ndim,
dtype=DLDataType.from_dtype(self.dtype),
shape=ctypes.cast(self.shape, ctypes.POINTER(ctypes.c_int64)),
strides=None, byte_offset=0)

managed_tensor = DLManagedTensor(dl_tensor=dl_tensor, manager_ctx=0,
deleter=DLTensorDeleter(lambda addr: None))

return pythonapi.PyCapsule_New(ctypes.byref(managed_tensor), b'dltensor', None)

CUDA Unified Memory

Host (CPU) vs Device (GPU)

#include <cuda_runtime.h>
int N = ...;
float cpu_data[N];
for (int i = 0; i < N; ++i) data[i] = ...;

float *gpu_data;
cudaMalloc(&gpu_data, sizeof(float) * N);
cudaMemcpy(gpu_data, cpu_data, sizeof(float) * N, cudaMemcpyHostToDevice);
mykernel<<<1, N>>>(gpu_data, N);
cudaDeviceSynchronize();
cudaMemcpy(cpu_data, gpu_data, sizeof(float) * N, cudaMemcpyDeviceToHost);
cudaDeviceSynchronize();
cudaFree(gpu_data);

Unified Memory

#include <cuda_runtime.h>
int N = ...;
float *data;
cudaMallocManaged(&data, sizeof(float) * N);
for (int i = 0; i < N; ++i) data[i] = ...;

mykernel<<<1, N>>>(data, N);
cudaDeviceSynchronize();

CuVec

https://amypad.github.io/CuVec/

▶ std::vector<T, {malloc, free}> → std::vector<T,
{cudaMallocManaged, cudaFree}>

▶ std::vector<T>::data()
▶ std::vector<T>::size()
▶ std::vector<T>::resize()

https://amypad.github.io/CuVec/

CuVec

https://amypad.github.io/CuVec/

▶ std::vector<T, {malloc, free}> → std::vector<T,
{cudaMallocManaged, cudaFree}>
▶ std::vector<T>::data()

▶ std::vector<T>::size()
▶ std::vector<T>::resize()

https://amypad.github.io/CuVec/

CuVec

https://amypad.github.io/CuVec/

▶ std::vector<T, {malloc, free}> → std::vector<T,
{cudaMallocManaged, cudaFree}>
▶ std::vector<T>::data()
▶ std::vector<T>::size()

▶ std::vector<T>::resize()

https://amypad.github.io/CuVec/

CuVec

https://amypad.github.io/CuVec/

▶ std::vector<T, {malloc, free}> → std::vector<T,
{cudaMallocManaged, cudaFree}>
▶ std::vector<T>::data()
▶ std::vector<T>::size()
▶ std::vector<T>::resize()

https://amypad.github.io/CuVec/

CuVec in Python
▶ Buffer protocol to expose to Python

▶ Inherit from numpy.ndarray

CuVec in Python
▶ Buffer protocol to expose to Python
▶ Inherit from numpy.ndarray

NiftyPET

Case Study

▶ NumPy arrays

▶ CPython API

▶ CUDA: cudaMalloc, memcpyH2D, kernel, memcpyD2H, cudaFree

Case Study

▶ NumPy arrays
▶ CPython API

▶ CUDA: cudaMalloc, memcpyH2D, kernel, memcpyD2H, cudaFree

Case Study

▶ NumPy arrays
▶ CPython API

▶ CUDA: cudaMalloc, memcpyH2D, kernel, memcpyD2H, cudaFree

CuVec

▶ CuVec arrays
▶ CPython API

▶ CUDA: kernel, sync

NumCu

https://amypad.github.io/NumCu/

Minimal Python/C++/CUDA library using CuVec’s CPython buffer protocol.

https://amypad.github.io/NumCu/
https://amypad.github.io/CuVec/
https://docs.python.org/3/c-api/buffer.html

Bonus

Packaging

▶ pip install

▶ pyproject.toml::build-system
▶ requires = [cmake, scikit-build-core, pybind11, ...]
▶ cmake
▶ install *.{py,so,dll}

github/casperdcl

https://github.com/casperdcl

Packaging

▶ pip install
▶ pyproject.toml::build-system

▶ requires = [cmake, scikit-build-core, pybind11, ...]
▶ cmake
▶ install *.{py,so,dll}

github/casperdcl

https://github.com/casperdcl

Packaging

▶ pip install
▶ pyproject.toml::build-system
▶ requires = [cmake, scikit-build-core, pybind11, ...]

▶ cmake
▶ install *.{py,so,dll}

github/casperdcl

https://github.com/casperdcl

Packaging

▶ pip install
▶ pyproject.toml::build-system
▶ requires = [cmake, scikit-build-core, pybind11, ...]
▶ cmake

▶ install *.{py,so,dll}

github/casperdcl

https://github.com/casperdcl

Packaging

▶ pip install
▶ pyproject.toml::build-system
▶ requires = [cmake, scikit-build-core, pybind11, ...]
▶ cmake
▶ install *.{py,so,dll}

github/casperdcl

https://github.com/casperdcl

	History
	CUDA Unified Memory
	NiftyPET
	Bonus

