Interfacing C++/CUDA with Python

Casper O. da Costa-Luis github/casperdcl

2025-04-07 video | html | pdf

(@ announcement website || @ chat discord

https://github.com/casperdcl
https://www.youtube.com/watch?v=aDfj-UEpQ68&list=PLTuAla-OP8WXqOfKdhCx8IX2baGYF6qEy&index=5
https://talks.cdcl.ml/cuda-python
https://talks.cdcl.ml/cuda-python.pdf
https://www.ccpsynerbi.ac.uk/events/hackathon-on-pytorch/
https://discord.gg/YVPweTw66x

History

Context

ctypes

https://docs.python.org/3/library /ctypes.html

» Foreign Function Interface (FFI)

https://docs.python.org/3/library/ctypes.html
https://github.com/gschramm/square_array

ctypes

https://docs.python.org/3/library /ctypes.html

» Foreign Function Interface (FFI)
» Hack to call C/C++ functions from Python

https://docs.python.org/3/library/ctypes.html
https://github.com/gschramm/square_array

ctypes

https://docs.python.org/3/library /ctypes.html

» Foreign Function Interface (FFI)
» Hack to call C/C++ functions from Python
> e.g. https://github.com/gschramm /square_array

https://docs.python.org/3/library/ctypes.html
https://github.com/gschramm/square_array

ctypes example

import ctypes
lib = ctypes.CDLL("./libmy_experiment.so")

(re)define function signature for “wvoid myfunc(float*, size_t)
lib.myfunc.argtypes = [ctypes.c_void_p, ctypes.c_size_t]
lib.myfunc.restype = None

input_array = np.array([1, 2, 3], dtype=np.float32)

call function

lib.myfunc(
input_array.ctypes.data_as(ctypes.POINTER(ctypes.c_float)),
ctypes.c_size_t(len(input_array)))

CPython API

https://docs.python.org/3/c-api/intro.html

» “correct” way to call C/C++ functions from Python

https://docs.python.org/3/c-api/intro.html

CPython APl example

#include <Python.h>
#include <numpy/arrayobject.h>

static PyObject *myfunc(PyObject *self, PyObject *args) {
PyObject *arr = NULL;
if (!PyArg_ParseTuple(args, "0", &arr)) return NULL;
PyArrayObject *np_arr = PyArray_FROM_OTF(
arr, NPY FLOAT32, NPY ARRAY INOUT ARRAY);
float *arr_ptr = PyArray_DATA(np_arr);
npy_intp #*size = PyArray_SHAPE(np_arr);
for (size_t 1 = 0; i < size[0]; ++i) arr_ptr[i] *= 2;

static struct PyModuleDef my_module = {
PyModuleDef HEAD_INIT,
.m_name = "my_experiment"

s

static PyMethodDef my_methods[] = {
{"myfunc", myfunc, METH_VARARGS, "In-place modifies ndarray[float]"},
{NULL, NULL, O, NULL} // Sentinel

s

PyMODINIT_FUNC PyInit_spam(void) {
import_array();
return PyModule_Create (&my_module) ;

}

with my_experiment.{so,d11} in PYTHONPATH:

>>> import my_experiment
>>> help(my_experiment.myfunc)
Help on built-in function myfunc in my_experiment:

my_experiment.myfunc = myfunc(...)
In-place modifies ndarray([float]

Buffer protocol

https://docs.python.org/3/c-api/buffer.html
» Subset of CPython API

https://docs.python.org/3/c-api/buffer.html

Buffer protocol

https://docs.python.org/3/c-api/buffer.html

» Subset of CPython API

» Standard struct to expose arrays
float *data
size_t ndim
size_t shapel[]

https://docs.python.org/3/c-api/buffer.html

https:
//github.com/AMYPAD /CuVec/blob/main/cuvec/include/cuvec_cpython.cuh#L128

int my_buffer (PyObject *obj, Py_buffer *view, int flags) {
view->buf = (void *)MY_GET_ARR_PTR(obj);
view->o0bj obj;
MY_GET_ARR_SIZE(obj) * sizeof(float);
view->readonly = O;
view->itemsize = sizeof (float);

view->len

view->format = "f";

view->ndim = MY_GET_ARR_NDIM(obj);

view->shape = MY_GET_ARR_SHAPE(obj);
view->strides = MY_GET_ARR_STRIDES (obj);
view—->suboffsets = NULL; view—>internal = NULL;
Py_INCREF (view->0bj) ;

return O;

https://github.com/AMYPAD/CuVec/blob/main/cuvec/include/cuvec_cpython.cuh#L128
https://github.com/AMYPAD/CuVec/blob/main/cuvec/include/cuvec_cpython.cuh#L128

static PyObject *myfunc(PyObject *self, PyObject *args) {
Py_buffer *view = NULL;
if (!PyArg_ParseTuple(args, "w*", &view)) return NULL;
float *arr_ptr = view->buf;
for (size_t i1 = 0; i < view->shapel0]; ++i) arr_ptr[il
PyBuffer_Release(view);

C++ wrappers (pybind11, etc)

https://pybind11.readthedocs.io/en/stable/

» C++ templates reduce boilerplate

https://pybind11.readthedocs.io/en/stable/

#include <pybind11l/pybindil.h>

void myfunc(pybindil::buffer view) {
pybindl1l::buffer_info arr = view.request();
float *ptr = arr.ptr;
if (arr.ndim != 1) throw std::runtime_error("expected 1D array");
for (size_t i = 0; i < arr.size; ++i) ptr[i] *= 2;
}
using namespace pybindll::literals;
PYBIND11_MODULE (my_examples, m){
m.def ("myfunc", &myfunc, "input_array'_a,
"In-place modifies ndarray[float]");

Python interfaces

__cuda_array_interface_ _

https://numba.readthedocs.io/en/stable/cuda/cuda_array_interface.html
» Python-level equivalent of C buffer protocol

https://numba.readthedocs.io/en/stable/cuda/cuda_array_interface.html

Python interfaces

__cuda_array_interface_ _

https://numba.readthedocs.io/en/stable/cuda/cuda_array_interface.html
» Python-level equivalent of C buffer protocol
» IMO a bad idea

https://numba.readthedocs.io/en/stable/cuda/cuda_array_interface.html

O@property
def __cuda_array_interface__(self) -> Dict[str, Any]:
return {'shape': self.shape, 'typestr': numpy.dtype(self.typechar).str
'data': (self.get_memory_address(), self.read_only), 'version'

__dlpack__
https://data-apis.org/array-
api/latest/API_specification /generated/array_api.array.___dlpack___.html
https://dmlc.github.io/dlpack/latest/python_spec.html#reference-implementations
» Similar to __cuda_array_interface__ but also handles ownership & multiple
devices/streams

https://data-apis.org/array-api/latest/API_specification/generated/array_api.array.__dlpack__.html
https://data-apis.org/array-api/latest/API_specification/generated/array_api.array.__dlpack__.html
https://dmlc.github.io/dlpack/latest/python_spec.html#reference-implementations

O@property
def __dlpack__(self, copy=False, max_version: tuple[int]=None,
stream: int=None, dl_device: tuple[int]=None

dl_tensor = DLTensor(data=self.addr, device=dl_device, ndim=self.ndim,
dtype=DLDataType.from_dtype(self.dtype),

shape=ctypes.cast(self.shape, ctypes.POINTER(ctypes.c_int64)),
strides=None, byte_offset=0)

managed_tensor = DLManagedTensor (dl_tensor=dl_tensor, manager_ctx=0,
deleter=DLTensorDeleter(lambda addr: None))

return pythonapi.PyCapsule_New(ctypes.byref (managed_tensor), b'dltenso

CUDA Unified Memory

Host (CPU) vs Device (GPU)

#include <cuda_runtime.h>

int N = ...;

float cpu_datal[N];

for (int i = 0; i < N; ++i) datali] = ...;

float *gpu_data;

cudaMalloc (&gpu_data, sizeof(float) * N);

cudaMemcpy (gpu_data, cpu_data, sizeof (float) * N, cudaMemcpyHostToDevice);
mykernel<<<i, N>>>(gpu_data, N);

cudaDeviceSynchronize () ;

cudaMemcpy (cpu_data, gpu_data, sizeof(float) * N, cudaMemcpyDeviceToHost) ;
cudaDeviceSynchronize () ;

cudaFree (gpu_data) ;

Unified Memory

#include <cuda_runtime.h>

int N = ...;

float *data;

cudaMallocManaged (&data, sizeof (float) * N);
for (int i = 0; i < N; ++i) datali]l = ...;

mykernel<<<i, N>>>(data, N);
cudaDeviceSynchronize () ;

CuVec

https://amypad.github.io/CuVec/

> std::vector<T, {malloc, free}> — std::vector<T,
{cudaMallocManaged, cudaFree}>

https://amypad.github.io/CuVec/

CuVec

https://amypad.github.io/CuVec/

> std::vector<T, {malloc, free}> — std::vector<T,

{cudaMallocManaged, cudaFree}>
P> std::vector<T>::data()

https://amypad.github.io/CuVec/

CuVec

https://amypad.github.io/CuVec/

» std::vector<T, {malloc, free}> — std::vector<T,
{cudaMallocManaged, cudaFree}>
> std::vector<T>::data()
> std::vector<T>::size()

https://amypad.github.io/CuVec/

CuVec

https://amypad.github.io/CuVec/

» std::vector<T, {malloc, free}> — std::vector<T,
{cudaMallocManaged, cudaFree}>
> std::vector<T>::data()
> std::vector<T>::size()
> std::vector<T>::resize()

https://amypad.github.io/CuVec/

CuVec in Python
» Buffer protocol to expose to Python

CuVec in Python

» Buffer protocol to expose to Python
» Inherit from numpy.ndarray

NiftyPET

Case Study

» NumPy arrays

Case Study

» NumPy arrays
» CPython API

Case Study

» NumPy arrays
» CPython API
» CUDA: cudaMalloc, memcpyH2D, kernel, memcpyD2H, cudaFree

CuVec

» CuVec arrays
» CPython API
» CUDA: kernel, sync

NumCu

https://amypad.github.io/NumCu/
Minimal Python/C++/CUDA library using CuVec's CPython buffer protocol.

https://amypad.github.io/NumCu/
https://amypad.github.io/CuVec/
https://docs.python.org/3/c-api/buffer.html

Bonus

Packaging

> pip install

github/casperdcl

https://github.com/casperdcl

Packaging

> pip install
> pyproject.toml::build-system

github/casperdcl

https://github.com/casperdcl

Packaging

> pip install

> pyproject.toml::build-system

> requires =

github/casperdcl

[cmake, scikit-build-core, pybindll,

..

https://github.com/casperdcl

Packaging

> pip install

> pyproject.toml::build-system

> requires =
> cmake

github/casperdcl

[cmake, scikit-build-core, pybindll,

..

https://github.com/casperdcl

Packaging

vvyyvyy

v

pip install

pyproject.toml: :build-system

requires = [cmake, scikit-build-core, pybindll,
cmake

install *.{py,so,d11}

github/casperdcl

..

https://github.com/casperdcl

	History
	CUDA Unified Memory
	NiftyPET
	Bonus

