Building Trust and Validation in AI Applications

Explore top LinkedIn content from expert professionals.

Summary

Building trust and validation in AI applications ensures that artificial intelligence systems are reliable, transparent, and aligned with user expectations through consistent evaluation and accountability. It encompasses creating frameworks to verify their performance, decision-making processes, fairness, and safety.

  • Establish clear evaluation metrics: Define success indicators, like accuracy, fairness, and user satisfaction, and align them with real-world business goals to track AI performance effectively.
  • Incorporate explainability: Ensure AI systems can clearly communicate how and why they make decisions to foster confidence and accountability with users and stakeholders.
  • Implement continuous monitoring: Regularly audit AI systems to detect performance issues, mitigate bias, and address potential risks, ensuring long-term trust and reliability.
Summarized by AI based on LinkedIn member posts
Image Image Image
  • View profile for Armand Ruiz
    Armand Ruiz Armand Ruiz is an Influencer

    building AI systems

    202,379 followers

    You've built your AI agent... but how do you know it's not failing silently in production? Building AI agents is only the beginning. If you’re thinking of shipping agents into production without a solid evaluation loop, you’re setting yourself up for silent failures, wasted compute, and eventully broken trust. Here’s how to make your AI agents production-ready with a clear, actionable evaluation framework: 𝟭. 𝗜𝗻𝘀𝘁𝗿𝘂𝗺𝗲𝗻𝘁 𝘁𝗵𝗲 𝗥𝗼𝘂𝘁𝗲𝗿 The router is your agent’s control center. Make sure you’re logging: - Function Selection: Which skill or tool did it choose? Was it the right one for the input? - Parameter Extraction: Did it extract the correct arguments? Were they formatted and passed correctly? ✅ Action: Add logs and traces to every routing decision. Measure correctness on real queries, not just happy paths. 𝟮. 𝗠𝗼𝗻𝗶𝘁𝗼𝗿 𝘁𝗵𝗲 𝗦𝗸𝗶𝗹𝗹𝘀 These are your execution blocks; API calls, RAG pipelines, code snippets, etc. You need to track: - Task Execution: Did the function run successfully? - Output Validity: Was the result accurate, complete, and usable? ✅ Action: Wrap skills with validation checks. Add fallback logic if a skill returns an invalid or incomplete response. 𝟯. 𝗘𝘃𝗮𝗹𝘂𝗮𝘁𝗲 𝘁𝗵𝗲 𝗣𝗮𝘁𝗵 This is where most agents break down in production: taking too many steps or producing inconsistent outcomes. Track: - Step Count: How many hops did it take to get to a result? - Behavior Consistency: Does the agent respond the same way to similar inputs? ✅ Action: Set thresholds for max steps per query. Create dashboards to visualize behavior drift over time. 𝟰. 𝗗𝗲𝗳𝗶𝗻𝗲 𝗦𝘂𝗰𝗰𝗲𝘀𝘀 𝗠𝗲𝘁𝗿𝗶𝗰𝘀 𝗧𝗵𝗮𝘁 𝗠𝗮𝘁𝘁𝗲𝗿 Don’t just measure token count or latency. Tie success to outcomes. Examples: - Was the support ticket resolved? - Did the agent generate correct code? - Was the user satisfied? ✅ Action: Align evaluation metrics with real business KPIs. Share them with product and ops teams. Make it measurable. Make it observable. Make it reliable. That’s how enterprises scale AI agents. Easier said than done.

  • View profile for Matt Wood
    Matt Wood Matt Wood is an Influencer

    CTIO, PwC

    75,527 followers

    𝔼𝕍𝔸𝕃 field note (2 of 3): Finding the benchmarks that matter for your own use cases is one of the biggest contributors to AI success. Let's dive in. AI adoption hinges on two foundational pillars: quality and trust. Like the dual nature of a superhero, quality and trust play distinct but interconnected roles in ensuring the success of AI systems. This duality underscores the importance of rigorous evaluation. Benchmarks, whether automated or human-centric, are the tools that allow us to measure and enhance quality while systematically building trust. By identifying the benchmarks that matter for your specific use case, you can ensure your AI system not only performs at its peak but also inspires confidence in its users. 🦸♂️ Quality is the superpower—think Superman—able to deliver remarkable feats like reasoning and understanding across modalities to deliver innovative capabilities. Evaluating quality involves tools like controllability frameworks to ensure predictable behavior, performance metrics to set clear expectations, and methods like automated benchmarks and human evaluations to measure capabilities. Techniques such as red-teaming further stress-test the system to identify blind spots. 👓 But trust is the alter ego—Clark Kent—the steady, dependable force that puts the superpower into the right place at the right time, and ensures these powers are used wisely and responsibly. Building trust requires measures that ensure systems are helpful (meeting user needs), harmless (avoiding unintended harm), and fair (mitigating bias). Transparency through explainability and robust verification processes further solidifies user confidence by revealing where a system excels—and where it isn’t ready yet. For AI systems, one cannot thrive without the other. A system with exceptional quality but no trust risks indifference or rejection - a collective "shrug" from your users. Conversely, all the trust in the world without quality reduces the potential to deliver real value. To ensure success, prioritize benchmarks that align with your use case, continuously measure both quality and trust, and adapt your evaluation as your system evolves. You can get started today: map use case requirements to benchmark types, identify critical metrics (accuracy, latency, bias), set minimum performance thresholds (aka: exit criteria), and choose complementary benchmarks (for better coverage of failure modes, and to avoid over-fitting to a single number). By doing so, you can build AI systems that not only perform but also earn the trust of their users—unlocking long-term value.

  • View profile for Andrea J Miller, PCC, SHRM-SCP
    Andrea J Miller, PCC, SHRM-SCP Andrea J Miller, PCC, SHRM-SCP is an Influencer

    AI Strategy + Human-Centered Change | AI Training, Leadership Coaching, & Consulting for Leaders Navigating Disruption

    14,272 followers

    Prompting isn’t the hard part anymore. Trusting the output is. You finally get a model to reason step-by-step… And then? You're staring at a polished paragraph, wondering:    > “Is this actually right?”    > “Could this go to leadership?”    > “Can I trust this across markets or functions?” It looks confident. It sounds strategic. But you know better than to mistake that for true intelligence. 𝗛𝗲𝗿𝗲’𝘀 𝘁𝗵𝗲 𝗿𝗶𝘀𝗸: Most teams are experimenting with AI. But few are auditing it. They’re pushing outputs into decks, workflows, and decisions— With zero QA and no accountability layer 𝗛𝗲𝗿𝗲’𝘀 𝘄𝗵𝗮𝘁 𝗜 𝘁𝗲𝗹𝗹 𝗽𝗲𝗼𝗽𝗹𝗲: Don’t just validate the answers. Validate the reasoning. And that means building a lightweight, repeatable system that fits real-world workflows. 𝗨𝘀𝗲 𝘁𝗵𝗲 𝗥.𝗜.𝗩. 𝗟𝗼𝗼𝗽: 𝗥𝗲𝘃𝗶𝗲𝘄 – What’s missing, vague, or risky? 𝗜𝘁𝗲𝗿𝗮𝘁𝗲 – Adjust one thing (tone, data, structure). 𝗩𝗮𝗹𝗶𝗱𝗮𝘁𝗲 – Rerun and compare — does this version hit the mark? Run it 2–3 times. The best version usually shows up in round two or three, not round one.  𝗥𝘂𝗻 𝗮 60-𝗦𝗲𝗰𝗼𝗻𝗱 𝗢𝘂𝘁𝗽𝘂𝘁 𝗤𝗔 𝗕𝗲𝗳𝗼𝗿𝗲 𝗬𝗼𝘂 𝗛𝗶𝘁 𝗦𝗲𝗻𝗱: • Is the logic sound? • Are key facts verifiable? • Is the tone aligned with the audience and region? • Could this go public without risk? 𝗜𝗳 𝘆𝗼𝘂 𝗰𝗮𝗻’𝘁 𝘀𝗮𝘆 𝘆𝗲𝘀 𝘁𝗼 𝗮𝗹𝗹 𝗳𝗼𝘂𝗿, 𝗶𝘁’𝘀 𝗻𝗼𝘁 𝗿𝗲𝗮𝗱𝘆. 𝗟𝗲𝗮𝗱𝗲𝗿𝘀𝗵𝗶𝗽 𝗜𝗻𝘀𝗶𝗴𝗵𝘁: Prompts are just the beginning. But 𝗽𝗿𝗼𝗺𝗽𝘁 𝗮𝘂𝗱𝗶𝘁𝗶𝗻𝗴 is what separates smart teams from strategic ones. You don’t need AI that moves fast. You need AI that moves smart. 𝗛𝗼𝘄 𝗮𝗿𝗲 𝘆𝗼𝘂 𝗯𝘂𝗶𝗹𝗱𝗶𝗻𝗴 𝘁𝗿𝘂𝘀𝘁 𝗶𝗻 𝘆𝗼𝘂𝗿 𝗔𝗜 𝗼𝘂𝘁𝗽𝘂𝘁𝘀? 𝗙𝗼𝗹𝗹𝗼𝘄 𝗺𝗲 for weekly playbooks on leading AI-powered teams. 𝗦𝘂𝗯𝘀𝗰𝗿𝗶𝗯𝗲 to my newsletter for systems you can apply Monday morning, not someday.

  • View profile for Oliver King

    Founder & Investor | AI Operations for Financial Services

    5,043 followers

    Why would your users distrust flawless systems? Recent data shows 40% of leaders identify explainability as a major GenAI adoption risk, yet only 17% are actually addressing it. This gap determines whether humans accept or override AI-driven insights. As founders building AI-powered solutions, we face a counterintuitive truth: technically superior models often deliver worse business outcomes because skeptical users simply ignore them. The most successful implementations reveal that interpretability isn't about exposing mathematical gradients—it's about delivering stakeholder-specific narratives that build confidence. Three practical strategies separate winning AI products from those gathering dust: 1️⃣ Progressive disclosure layers Different stakeholders need different explanations. Your dashboard should let users drill from plain-language assessments to increasingly technical evidence. 2️⃣ Simulatability tests Can your users predict what your system will do next in familiar scenarios? When users can anticipate AI behavior with >80% accuracy, trust metrics improve dramatically. Run regular "prediction exercises" with early users to identify where your system's logic feels alien. 3️⃣ Auditable memory systems Every autonomous step should log its chain-of-thought in domain language. These records serve multiple purposes: incident investigation, training data, and regulatory compliance. They become invaluable when problems occur, providing immediate visibility into decision paths. For early-stage companies, these trust-building mechanisms are more than luxuries. They accelerate adoption. When selling to enterprises or regulated industries, they're table stakes. The fastest-growing AI companies don't just build better algorithms - they build better trust interfaces. While resources may be constrained, embedding these principles early costs far less than retrofitting them after hitting an adoption ceiling. Small teams can implement "minimum viable trust" versions of these strategies with focused effort. Building AI products is fundamentally about creating trust interfaces, not just algorithmic performance. #startups #founders #growth #ai

  • View profile for Gaurav Agarwaal

    Board Advisor | Ex-Microsoft | Ex-Accenture | Startup Ecosystem Mentor | Leading Services as Software Vision | Turning AI Hype into Enterprise Value | Architecting Trust, Velocity & Growth | People First Leadership

    31,781 followers

    Generative AI is transforming industries, but as adoption grows, so does the need for trust and reliability. Evaluation frameworks ensure that generative AI models perform as intended—not just in controlled environments, but in the real world. Key Insights from GCP Blog : Scalable Evaluation - new batch evaluation API allows you to assess large datasets efficiently, making it easier to validate model performance at scale. Customizable Autoraters - Benchmark automated raters against human judgments to build confidence in your evaluation process and highlight areas for improvement. Agentic Workflow Assessment - For AI agents, evaluate not just the final output, but also the reasoning process, tool usage, and decision trajectory. Continuous Monitoring - Implement ongoing evaluation to detect performance drift and ensure models remain reliable as data and user needs evolve. - Key Security Considerations: - Data Privacy: Ensure models do not leak sensitive information and comply with data protection regulations - Bias and Fairness: Regularly test for unintended bias and implement mitigation strategies[3]. - Access Controls:Restrict model access and implement audit trails to track usage and changes. - Adversarial Testing:Simulate attacks to identify vulnerabilities and strengthen model robustness **My Perspective: ** I see robust evaluation and security as the twin pillars of trustworthy AI. #Agent Evaluation is Evolving : Modern AI agent evaluation goes beyond simple output checks. It now includes programmatic assertions, embedding-based similarity scoring, and grading the reasoning path—ensuring agents not only answer correctly but also think logically and adapt to edge cases. Automated evaluation frameworks, augmented by human-in-the-loop reviewers, bring both scale and nuance to the process. - Security is a Lifecycle Concern: Leading frameworks like OWASP Top 10 for LLMs, Google’s Secure AI Framework (SAIF), and NIST’s AI Risk Management Framework emphasize security by design—from initial development through deployment and ongoing monitoring. Customizing AI architecture, hardening models against adversarial attacks, and prioritizing input sanitization are now standard best practices. - Continuous Improvement: The best teams integrate evaluation and security into every stage of the AI lifecycle, using continuous monitoring, anomaly detection, and regular threat modeling to stay ahead of risks and maintain high performance. - Benchmarking and Transparency: Standardized benchmarks and clear evaluation criteria not only drive innovation but also foster transparency and reproducibility—key factors for building trust with users and stakeholders. Check GCP blog post here: [How to Evaluate Your Gen AI at Every Stage](https://lnkd.in/gDkfzBs8) How are you ensuring your AI solutions are both reliable and secure?

  • View profile for Brij kishore Pandey
    Brij kishore Pandey Brij kishore Pandey is an Influencer

    AI Architect | Strategist | Generative AI | Agentic AI

    692,443 followers

    𝗔𝗜 𝗶𝘀 𝗘𝗻𝘁𝗲𝗿𝗶𝗻𝗴 𝘁𝗵𝗲 𝗔𝗴𝗲 𝗼𝗳 𝗔𝗴𝗲𝗻𝗰𝘆 – 𝗠𝗼𝘃𝗶𝗻𝗴 𝗕𝗲𝘆𝗼𝗻𝗱 𝗔𝘂𝘁𝗼𝗺𝗮𝘁𝗶𝗼𝗻  AI is no longer just about automating tasks—it’s evolving into Agentic AI, where systems think, decide, adapt, and interact intelligently. These AI agents operate autonomously, learning from feedback and dynamically engaging with users and external environments.  But what does that mean? Let's break it down with the Agentic AI Layers Framework:  1. Governance & Auditability – Building Trust & Compliance   • Transparent Decision Logs – AI maintains an audit trail of its decisions.   • Regulatory Compliance – Aligns with legal and ethical AI standards.   • Explainability – AI justifies its reasoning for user confidence and accountability.      2. Operational Independence – AI That Thinks & Acts   • Self-Learning – Improves continuously through real-world interactions.   • Autonomous Decision-Making – Executes tasks independently within set guidelines.   • Automated Workflows – Enhances efficiency by streamlining processes.   • Scalability & Real-Time Adaptation – Dynamically adjusts to demand and insights.      3. External Interactions & Multi-Modal Interfaces – Seamless AI-Human Collaboration   • API Integrations – AI connects with external data sources and tools.   • Multi-Modal Support – Engages via text, voice, images, and beyond.   • Natural Language Understanding – Processes and responds intelligently to human queries.  4. Ethics & Safety – Ensuring Responsible AI Development   • Privacy Protection – Secure data handling in compliance with regulations.   • Bias Detection & Mitigation – Actively identifies and corrects biases.   • Harm Prevention – Prevents misinformation and harmful outputs.  5. Knowledge Base & RAG (Retrieval-Augmented Generation) – AI with a Stronger Memory   • Contextual Retrieval – Fetches relevant information for precise, context-aware responses.   • Fact-Checking – Cross-verifies data before generating content.   • Domain-Specific Intelligence – AI tailored for finance, healthcare, legal, and other specialized fields.  6. LLM & Generative Capabilities – AI That Thinks Deeper   • Reasoning & Adaptability – Understands complex queries and adapts to intent.   • Real-Time Data Access – Enhances responses with up-to-date information.   • Continuous Fine-Tuning – Learns and improves over time.      Why Does This Matter?   As AI shifts toward autonomy, balancing efficiency, transparency, and ethical responsibility is critical. Industries like finance, healthcare, cybersecurity, and enterprise automation stand to gain immensely—but only if we build AI that operates responsibly. Your Take?  Should AI be fully autonomous, or should human oversight always be required?

  • View profile for Eugina Jordan

    CEO and Founder YOUnifiedAI I 8 granted patents/16 pending I AI Trailblazer Award Winner

    41,223 followers

    How do you know what you know? Now, ask the same question about AI. We assume AI "knows" things because it generates convincing responses. But what if the real issue isn’t just what AI knows, but what we think it knows? A recent study on Large Language Models (LLMs) exposes two major gaps in human-AI interaction: 1. The Calibration Gap – Humans often overestimate how accurate AI is, especially when responses are well-written or detailed. Even when AI is uncertain, people misread fluency as correctness. 2. The Discrimination Gap – AI is surprisingly good at distinguishing between correct and incorrect answers—better than humans in many cases. But here’s the problem: we don’t recognize when AI is unsure, and AI doesn’t always tell us. One of the most fascinating findings? More detailed AI explanations make people more confident in its answers, even when those answers are wrong. The illusion of knowledge is just as dangerous as actual misinformation. So what does this mean for AI adoption in business, research, and decision-making? ➡️ LLMs don’t just need to be accurate—they need to communicate uncertainty effectively. ➡️Users, even experts, need better mental models for AI’s capabilities and limitations. ➡️More isn’t always better—longer explanations can mislead users into a false sense of confidence. ➡️We need to build trust calibration mechanisms so AI isn't just convincing, but transparently reliable. 𝐓𝐡𝐢𝐬 𝐢𝐬 𝐚 𝐡𝐮𝐦𝐚𝐧 𝐩𝐫𝐨𝐛𝐥𝐞𝐦 𝐚𝐬 𝐦𝐮𝐜𝐡 𝐚𝐬 𝐚𝐧 𝐀𝐈 𝐩𝐫𝐨𝐛𝐥𝐞𝐦. We need to design AI systems that don't just provide answers, but also show their level of confidence -- whether that’s through probabilities, disclaimers, or uncertainty indicators. Imagine an AI-powered assistant in finance, law, or medicine. Would you trust its output blindly? Or should AI flag when and why it might be wrong? 𝐓𝐡𝐞 𝐟𝐮𝐭𝐮𝐫𝐞 𝐨𝐟 𝐀𝐈 𝐢𝐬𝐧’𝐭 𝐣𝐮𝐬𝐭 𝐚𝐛𝐨𝐮𝐭 𝐠𝐞𝐭𝐭𝐢𝐧𝐠 𝐭𝐡𝐞 𝐫𝐢𝐠𝐡𝐭 𝐚𝐧𝐬𝐰𝐞𝐫𝐬—𝐢𝐭’𝐬 𝐚𝐛𝐨𝐮𝐭 𝐡𝐞𝐥𝐩𝐢𝐧𝐠 𝐮𝐬 𝐚𝐬𝐤 𝐛𝐞𝐭𝐭𝐞𝐫 𝐪𝐮𝐞𝐬𝐭𝐢𝐨𝐧𝐬. What do you think: should AI always communicate uncertainty? And how do we train users to recognize when AI might be confidently wrong? #AI #LLM #ArtificialIntelligence

  • View profile for Patrick Sullivan

    VP of Strategy and Innovation at A-LIGN | TEDx Speaker | Forbes Technology Council | AI Ethicist | ISO/IEC JTC1/SC42 Member

    10,291 followers

    ✴ AI Governance Blueprint via ISO Standards – The 4-Legged Stool✴ ➡ ISO42001: The Foundation for Responsible AI #ISO42001 is dedicated to AI governance, guiding organizations in managing AI-specific risks like bias, transparency, and accountability. Focus areas include: ✅Risk Management: Defines processes for identifying and mitigating AI risks, ensuring systems are fair, robust, and ethically aligned. ✅Ethics and Transparency: Promotes policies that encourage transparency in AI operations, data usage, and decision-making. ✅Continuous Monitoring: Emphasizes ongoing improvement, adapting AI practices to address new risks and regulatory updates. ➡#ISO27001: Securing the Data Backbone AI relies heavily on data, making ISO27001’s information security framework essential. It protects data integrity through: ✅Data Confidentiality and Integrity: Ensures data protection, crucial for trustworthy AI operations. ✅Security Risk Management: Provides a systematic approach to managing security risks and preparing for potential breaches. ✅Business Continuity: Offers guidelines for incident response, ensuring AI systems remain reliable. ➡ISO27701: Privacy Assurance in AI #ISO27701 builds on ISO27001, adding a layer of privacy controls to protect personally identifiable information (PII) that AI systems may process. Key areas include: ✅Privacy Governance: Ensures AI systems handle PII responsibly, in compliance with privacy laws like GDPR. ✅Data Minimization and Protection: Establishes guidelines for minimizing PII exposure and enhancing privacy through data protection measures. ✅Transparency in Data Processing: Promotes clear communication about data collection, use, and consent, building trust in AI-driven services. ➡ISO37301: Building a Culture of Compliance #ISO37301 cultivates a compliance-focused culture, supporting AI’s ethical and legal responsibilities. Contributions include: ✅Compliance Obligations: Helps organizations meet current and future regulatory standards for AI. ✅Transparency and Accountability: Reinforces transparent reporting and adherence to ethical standards, building stakeholder trust. ✅Compliance Risk Assessment: Identifies legal or reputational risks AI systems might pose, enabling proactive mitigation. ➡Why This Quartet? Combining these standards establishes a comprehensive compliance framework: 🥇1. Unified Risk and Privacy Management: Integrates AI-specific risk (ISO42001), data security (ISO27001), and privacy (ISO27701) with compliance (ISO37301), creating a holistic approach to risk mitigation. 🥈 2. Cross-Functional Alignment: Encourages collaboration across AI, IT, and compliance teams, fostering a unified response to AI risks and privacy concerns. 🥉 3. Continuous Improvement: ISO42001’s ongoing improvement cycle, supported by ISO27001’s security measures, ISO27701’s privacy protocols, and ISO37301’s compliance adaptability, ensures the framework remains resilient and adaptable to emerging challenges.

  • View profile for Timothy Goebel

    Founder & CEO, Ryza Content | AI Solutions Architect | Computer Vision, GenAI & Edge AI Innovator

    18,068 followers

    𝐖𝐨𝐮𝐥𝐝 𝐲𝐨𝐮 𝐭𝐫𝐮𝐬𝐭 𝐚 𝐦𝐚𝐜𝐡𝐢𝐧𝐞 𝐯𝐢𝐬𝐢𝐨𝐧 𝐦𝐨𝐝𝐞𝐥 𝐭𝐡𝐚𝐭 𝐜𝐚𝐧'𝐭 𝐭𝐞𝐥𝐥 𝐲𝐨𝐮 𝐰𝐡𝐲 𝐢𝐭 𝐬𝐞𝐞𝐬 𝐰𝐡𝐚𝐭 𝐢𝐭 𝐬𝐞𝐞𝐬? Accuracy alone isn’t enough. To build trust, your model needs to explain its decisions. Here’s how to make your machine vision models more interpretable: 1. 𝐈𝐧𝐭𝐞𝐠𝐫𝐚𝐭𝐞 𝐄𝐱𝐩𝐥𝐚𝐢𝐧𝐚𝐛𝐢𝐥𝐢𝐭𝐲:   ↳ Use techniques like LIME or SHAP to highlight critical features.   ↳ Visualize the model's decision process with heatmaps or overlays. 2. 𝐒𝐢𝐦𝐩𝐥𝐢𝐟𝐲 𝐂𝐨𝐦𝐩𝐥𝐞𝐱𝐢𝐭𝐲:   ↳ Opt for models like decision trees or simpler CNN architectures.   ↳ Balance between interpretability and performance by pruning unnecessary layers. 3. 𝐄𝐝𝐮𝐜𝐚𝐭𝐞 𝐒𝐭𝐚𝐤𝐞𝐡𝐨𝐥𝐝𝐞𝐫𝐬:   ↳ Provide clear documentation on how the model was trained and validated.   ↳ Offer interactive demos to help users see the model in action. 4. 𝐌𝐨𝐧𝐢𝐭𝐨𝐫 𝐂𝐨𝐧𝐭𝐢𝐧𝐮𝐨𝐮𝐬𝐥𝐲:   ↳ Regularly test the model against new data to catch drifts.   ↳ Set up alerts for when the model’s decisions deviate from expected outcomes. 𝐓𝐫𝐮𝐬𝐭 𝐢𝐬 𝐛𝐮𝐢𝐥𝐭 𝐨𝐧 𝐮𝐧𝐝𝐞𝐫𝐬𝐭𝐚𝐧𝐝𝐢𝐧𝐠. Make sure your models can do more than predict they should also explain. ♻️ Repost it to your network and follow Timothy Goebel for more. #MachineVision #ExplainableAI #AITrust #InterpretableModels #AIEthics

  • View profile for Harvey Castro, MD, MBA.
    Harvey Castro, MD, MBA. Harvey Castro, MD, MBA. is an Influencer

    ER Physician | Chief AI Officer, Phantom Space | AI & Space-Tech Futurist | 5× TEDx | Advisor: Singapore MoH | Author ‘ChatGPT & Healthcare’ | #DrGPT™

    49,728 followers

    #AIAgents in #Healthcare (Part 3 of 5): Regulation and Trust: Why Transparency Matters Artificial intelligence holds enormous promise for transforming healthcare, yet trust and regulatory compliance are significant barriers to widespread adoption. Studies consistently show patients trust human healthcare providers more than AI-driven systems, largely due to the opacity of #AI decision-making processes. Regulatory agencies worldwide, including the #FDA and #WHO, are actively working to establish guidelines ensuring AI's safety, transparency, and reliability. For instance, the FDA’s latest AI/Machine Learning framework emphasizes continuous validation, while WHO guidelines stress the importance of transparency, data privacy, and risk management. To build trust, healthcare AI must prioritize: Explainability: Clear, understandable AI decisions. Bias Mitigation: Eliminating unfair biases through rigorous validation. Data Security: Strict adherence to privacy standards (#HIPAA, #GDPR). Trust isn’t merely regulatory—it's fundamental to patient acceptance and clinical success. AI transparency isn’t optional; it's essential. Have you encountered AI transparency concerns in your practice or with patients? I'd value hearing your perspective on overcoming these challenges. Follow me for the next post: "Hype vs. Reality – Separating AI Promises from Clinical Proof." #HealthcareAI #AIinMedicine #PatientTrust #Regulation #DigitalHealth #HealthTech #AItransparency #DoctorGPT #DrGPT #EthicalAI

Explore categories