Action Planning

(Where logic-based representation of knowledge makes search problems more interesting)

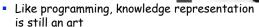
R&N: Chap. 11, Sect. 11.1-4

- The goal of action planning is to choose actions and ordering relations among these actions to achieve specified goals
- Search-based problem solving applied to 8-puzzle was one example of planning, but our description of this problem used specific data structures and functions
- Here, we will develop a non-specific, logic-based language to represent knowledge about actions, states, and goals, and we will study how search algorithms can exploit this representation

2

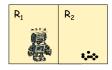
Knowledge Representation Tradeoff

- Expressiveness vs. computational efficiency
- STRIPS: a simple, still reasonably expressive planning language based on propositional logic
 - Examples of planning problems in STRIPS
 - 2) Planning methods
 - 3) Extensions of STRIPS



STRIPS Language through Examples

Vacuum-Robot Example



- Two rooms: R₁ and R₂
- A vacuum robot
- Dust

5

State Representation

R₁

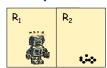
R₂

In(Robot, R₁) \(Clean(R₁)

Propositions that "hold" (i.e. are true) in the state

Logical "and" connective in the state

State Representation



 $In(Robot, R_1) \wedge Clean(R_1)$

- Conjunction of propositions
- No negated proposition, such as ¬Clean(R₂)
- Closed-world assumption: Every proposition that is not listed in a state is false in that state
- No "or" connective, such as In(Robot,R₁)√In(Robot,R₂)
- No variable, e.g., ∃x Clean(x)

Goal Representation

Example: $Clean(R_1) \wedge Clean(R_2)$

- Conjunction of propositions
- No negated proposition
- No "or" connective
- No variable

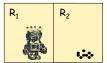
A goal G is achieved in a state S if all the propositions in G (called sub-goals) are also in S

В

Action Representation

Right

- Precondition = In(Robot, R₁)
- Delete-list = In(Robot, R₁)
- Add-list = In(Robot, R₂)



Right

In(Robot, R_1) \wedge Clean(R_1)

In(Robot, R_2) \wedge Clean(R_1)

Action Representation

Right

- Precondition = In(Robot, R₁)
- Delete-list = In(Robot, R₁)
- Add-list = In(Robot, R₂)

Sets of propositions

Same form as a goal: conjunction of propositions

10

Action Representation

Right

- Precondition = In(Robot, R₁)
- Delete-list = In(Robot, R₁)
- Add-list = In(Robot, R₂)
- An action A is applicable to a state S if the propositions in its precondition are all in S
- The application of A to S is a new state obtained by deleting the propositions in the delete list from S and adding those in the add list

Other Actions

Left

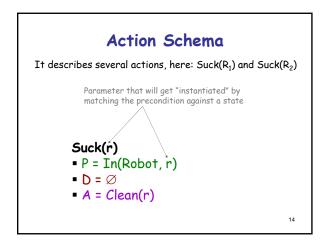
- P = In(Robot, R₂)
- D = In(Robot, R₂)
- $A = In(Robot, R_1)$

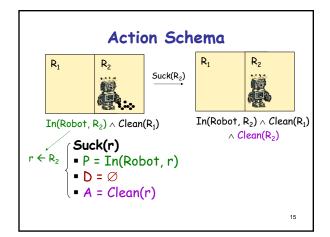
Suck(R₁)

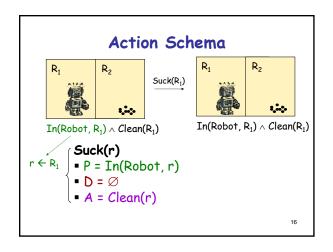
Suck(R₂)

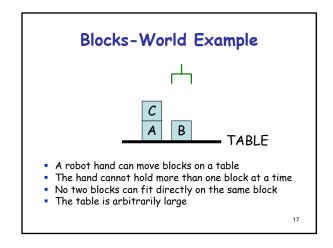
- $P = In(Robot, R_1) P = In(Robot, R_2)$
- D = Ø [empty list]
- $D = \emptyset$ [empty list]
- $A = Clean(R_1)$
- $A = Clean(R_2)$

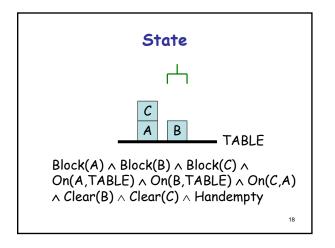
Other Actions Left P = In(Robot, R₂) D = In(Robot, R₂) A = In(Robot, R₁) Suck(r) P = In(Robot, r) D = \emptyset [empty list] A = Clean(r)

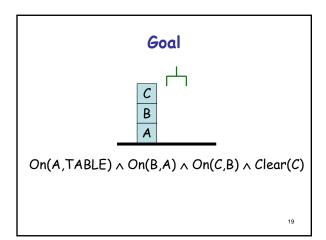


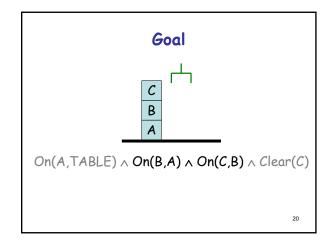


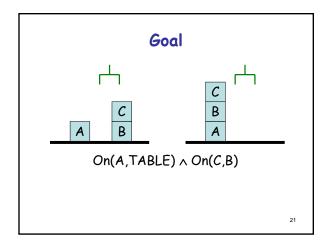


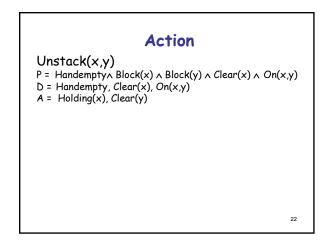


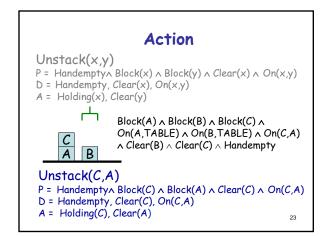


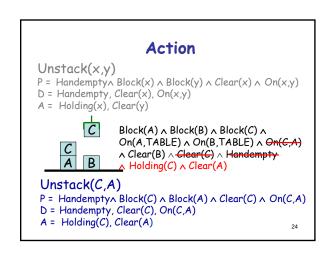


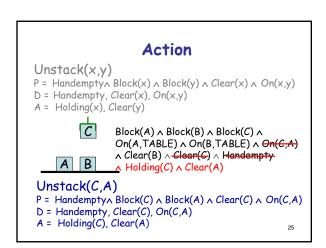


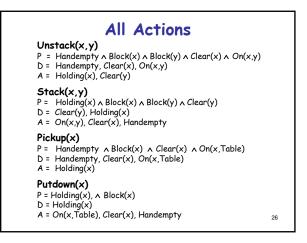


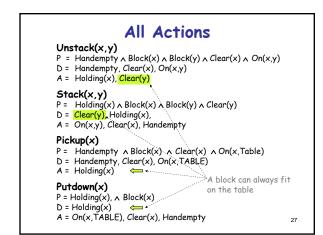


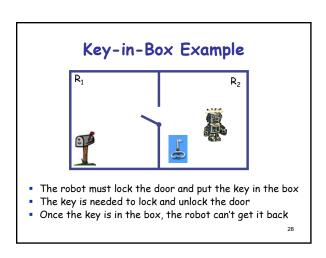


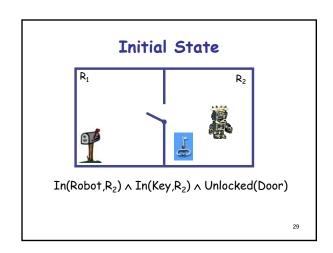


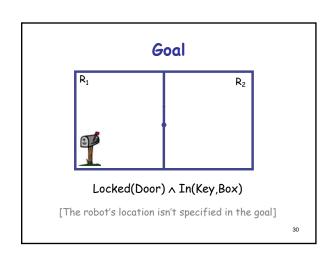


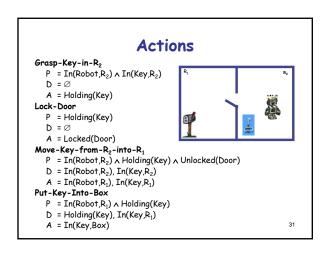


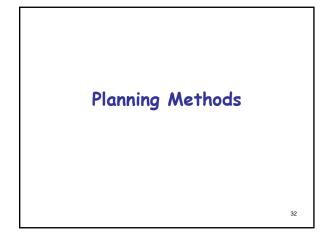


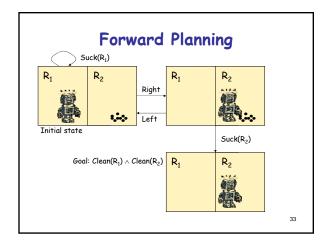


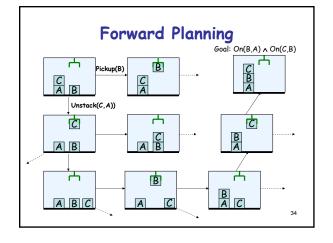












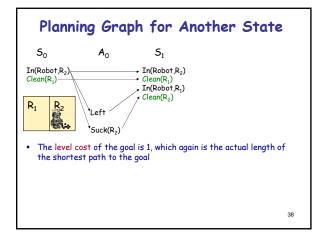
Need for an Accurate Heuristic

- Forward planning simply searches the space of world states from the initial to the goal state
- Imagine an agent with a large library of actions, whose goal is G, e.g., G = Have(Milk)
- In general, many actions are applicable to any given state, so the branching factor is huge
- In any given state, most applicable actions are irrelevant to reaching the goal Have(Milk)
- Fortunately, an accurate consistent heuristic can be computed using planning graphs

35

Planning Graph for a State of the Vacuum Robot S_0 A_0 S_1 A_1 S_2 In(Robot R_1) Clean(R_1) Clean(R_1) In(Robot R_2)

Planning Graph for a State of the Vacuum Robot S_0 S₁ A_1 S2 In(Robot,R₁) In(Robot,R1) In(Robot,R1) →Clean(R₁) →In(Robot,R₂) ean(R₁) Clean(R₁) — In(Robot,R₂)_s Clean(R₂) R_2 Right `Left • The value of i such that Si contains all the goal propositions is called the level cost of the goal (here i=2) By construction of the planning graph, it is a lower bound on the number of actions needed to reach the goal • In this case, 2 is the actual length of the shortest path to the goal



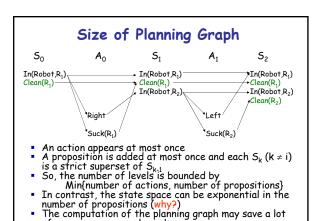
Application of Planning Graphs to Forward Planning

- Whenever a new node is generated, compute the planning graph of its state [update the planning graph at the parent node]
- Stop computing the planning graph when:
 Either the goal propositions are in a set S_i
 [then i is the level cost of the goal]

Or when S_{i-1} = S_i
[then the generated node is not on a solution path]

- Set the heuristic h(N) of a node N to the level cost of the goal for the state of N
- h is a consistent heuristic for unit-cost actions
- Hence, A* using h yields a solution with minimum number of actions

39



of unnecessary search work

Improvement of Planning Graph: Mutual Exclusions

- Goal: Refine the level cost of the goal to be a more accurate estimate of the number of actions needed to reach it
- Method: Detect obvious exclusions among propositions at the same level (see R&N)
- It usually leads to more accurate heuristics, but the planning graphs can be bigger and more expensive to compute

- Forward planning still suffers from an excessive branching factor
- In general, there are much fewer actions that are relevant to achieving a goal than actions that are applicable to a state
- How to determine which actions are relevant? How to use them?
- → Backward planning

Goal-Relevant Action

- An action is relevant to achieving a goal if a proposition in its add list matches a sub-goal proposition
- For example:

Stack(B, A)

 $P = Holding(B) \land Block(B) \land Block(A) \land Clear(A)$

D = Clear(A), Holding(B),

A = On(B,A), Clear(B), Handempty

is relevant to achieving $On(B,A) \land On(C,B)$

43

Regression of a Goal

The regression of a goal G through an action A is the least constraining precondition R[G,A] such that:

If a state S satisfies R[G,A] then:

- 1. The precondition of A is satisfied in S
- 2. Applying A to S yields a state that satisfies G

44

Example

- $G = On(B,A) \wedge On(C,B)$
- Stack(C,B)

 $P = Holding(C) \land Block(C) \land Block(B) \land Clear(B)$

D = Clear(B), Holding(C)

A = On(C,B), Clear(C), Handempty

• R[G,Stack(C,B)] =

 $On(B,A) \land$

 $Holding(C) \land Block(C) \land Block(B) \land Clear(B)$

45

Example

- $G = On(B,A) \land On(C,B)$
- Stack(C,B)

 $P = Holding(C) \land Block(C) \land Block(B) \land Clear(B)$

D = Clear(B), Holding(C)

A = On(C,B), Clear(C), Handempty

• R[G,Stack(C,B)] =

 $On(B,A) \wedge$

 $Holding(C) \land Block(C) \land Block(B) \land Clear(B)$

16

Another Example

- $G = In(key,Box) \land Holding(Key)$
- Put-Key-Into-Box

 $P = In(Robot, R_1) \land Holding(Key)$ D = Holding(Key), In(Key, R_1)

A = In(Key,Box)

R[G,Put-Key-Into-Box] = ??

47

Another Example

G = In(key,Box) ∧ Holding(Key)

Put-Key-Into-Box

 $P = In(Robot, R_1) \land Holding(Key)$

 $D = \frac{\text{Holding}(\text{Key})}{\text{Holding}(\text{Key})}$, $\text{In}(\text{Key}, R_1)$

A = In(Key,Box)

R[G,Put-Key-Into-Box] = False
 where False is the un-achievable goal

 This means that In(key,Box) A Holding(Key) can't be achieved by executing Put-Key-Into-Box

Computation of R[G,A]

- If any sub-goal of G is in A's delete list then return False
- 2. Else
 - a. $G' \leftarrow Precondition of A$
 - b. For every sub-goal SG of G do

 If SG is not in A's add list then add SG to G'
- 3. Return G'

49

Backward Planning

 $On(B,A) \wedge On(C,B)$

50

Backward Planning

 $On(B,A) \wedge On(C,B)$ $A \hookrightarrow Stack(C,B)$ $On(B,A) \wedge Holding(C) \wedge Clear(B)$ $A \hookrightarrow Pickup(C)$

Pickup(C)On(B,A) \land Clear(B) \land Handempty \land Clear(C) \land On(C,Table)

 $Clear(C) \wedge On(C, TABLE) \wedge Holding(B) \wedge Clear(A)$

 $\begin{array}{c} \nearrow \text{Pickup(B)} \\ \text{Clear(C)} \land \text{On(C,Table)} \land \text{Clear(A)} \land \text{Handempty} \land \text{Clear(B)} \land \text{On(B,Table)} \\ \nearrow \text{Putdown(C)} \\ \end{array}$

Clear(A) \wedge Clear(B) \wedge On(B, Table) \wedge Holding(C)

Unstack(C, A)

Clear(B) \wedge On(B, Table) \wedge Clear(C) \wedge Handempty \wedge On(C, A)

Backward Planning

 $On(B,A) \wedge On(C,B)$ $\downarrow \downarrow$ Stack(C,B) $On(B,A) \wedge Holding(C) \wedge Clear(B)$ $\downarrow \downarrow$ Pickup(C)

 $On(B,A) \wedge Clear(B) \wedge Handempty \wedge Clear(C) \wedge On(C/Table)$

Clear(C) \land On(C, TABLE) \land Holding(B) \land Clear(A)

Pickup(B)

Clear(C) \land On(C, Table) \land Clear(A) \land Handempty \land Clear(B) \land On(B, Table)

Putdown(C)

Clear(A) \land Clear(B) \land On(B, Table) \land Holding(C)

Unstack(C, A)

 $Clear(B) \land On(B, Table) \land Clear(C) \land Handempty \land On(C, A)$

52

Search Tree

- Backward planning searches a space of goals from the original goal of the problem to a goal that is satisfied in the initial state
- There are often much fewer actions relevant to a goal than there are actions applicable to a state → smaller branching factor than in forward planning
- The lengths of the solution paths are the same

53

Consistent Heuristic for Backward Planning

A consistent heuristic is obtained as follows:

- Pre-compute the planning graph of the initial state until it levels off
- 2. For each node N added to the search tree, set h(N) to the level cost of the goal associated with N

If the goal associated with N can't be satisfied in any set $S_{\bf k}$ of the planning graph, it can't be achieved, so prune it!

A single planning graph is computed

How Does Backward Planning **Detect Dead-Ends?**

 $On(B,A) \wedge On(C,B)$ Stack(C,B)

55

How Does Backward Planning **Detect Dead-Ends?**

 $On(B,A) \wedge On(C,B)$ Stack(B, A) $Holding(B) \wedge Clear(A) \wedge On(C,B)$ Stack(C,B) $Holding(B) \wedge Clear(A) \wedge Holding(C) \wedge Clear(B)$ Pick(B) [delete list contains Clear(B)]

56

How Does Backward Planning **Detect Dead-Ends?**

 $On(B,A) \wedge On(C,B)$ Stack(B,A) $\frac{1}{1}$ Holding(B) \wedge Clear(A) \wedge On(C,B)

A state constraint such as $Holding(x) \rightarrow \neg(\exists y)On(y,x)$ would have made it possible to prune the path earlier

57

Some Extensions of STRIPS Language

58

Extensions of STRIPS

1. Negated propositions in a state

 $In(Robot, R_1) \land \neg In(Robot, R_2) \land Clean(R_1) \land \neg Clean(R_2)$ Dump-Dirt(r) Suck(r)

 $P = In(Robot, r) \land \neg Clean(r)$ $P = In(Robot, r) \land Clean(r)$ $E = \neg Clean(r)$ E = Clean(r)

 \cdot Q in E means delete $\neg Q$ and add Q to the state \cdot $\neg Q$ in E means delete Q and add $\neg Q$

Open world assumption: A proposition in a state is true if it appears positively and false otherwise. A non-present proposition is unknown

Planning methods can be extended rather easily to handle negated proposition (see R&N), but state descriptions are often much longer (e.g., imagine if there were 10 rooms in the above example)

Extensions of STRIPS

2. Equality/Inequality Predicates

Blocks world:

Move(x,y,z)

P = Block(x) \(\text{Block(y)} \(\text{A Block(z)} \(\text{A On(x,y)} \) \(\text{Clear(x)} \\ \text{Clear(z)} \(\text{A (x \neq z)} \)
D = On(x,y), Clear(z)
A = On(x,z), Clear(y)

Move(x, Table, z)

P = Block(x) \(\) Block(z) \(\) On(x, Table) \(\) Clear(x) \(\) Clear(z) \(\) (x=z) \(\) D = On(x,y), Clear(z)

A = On(x,z)

 $\begin{array}{l} \textbf{Move(x,y,Table)} \\ P = Block(x) \land Block(y) \land On(x,y) \land Clear(x) \end{array}$

D = On(x,y)

A = On(x, Table), Clear(y)

Extensions of STRIPS 2. Equality/Inequality Predicates Blocks world: Move(x,y,z) P = Block(x) \land Block(y) \land Block(z) \land On(x,y) \land Clear(x) \land Clear(z) \land (x=z) D = On(x,y), Clear(z) A = On(x,z), Clear(y) Move(x, Table, z) P = Block(x) \land Block(z) \land Clear(z) \land Clear(z) \land Clear(z) \land Clear(z) \land Clear(z) \land Clear(z) D = On(x,y), Clear(z) A = On(x,z) Move(x,y, Table) P = Block(x) \land Block(y) \land clear(y) This is equivalent to considering that propositions (A \neq B), (A \neq C), ... are implicitly true in every state D = On(x,y) A = On(x,Table), Clear(y)

Extensions of STRIPS 3. Algebraic expressions

Two flasks F_1 and F_2 have volume capacities of 30 and 50, respectively F_1 contains volume 20 of some liquid F_2 contains volume 15 of this liquid

State:

 $Cap(F_1,30) \land Cont(F_1,20) \land Cap(F_2,50) \land Cont(F_2,15)$

Action of pouring a flask into the other:

Extensions of STRIPS 3. Algebraic expressions

Two flasks \mathbf{F}_1 and \mathbf{F}_2 have volume capacities of 30 and 50, respectively

 F_1 contains volume 20 of some liquid

F₁ contains volu

This extension requires planning
State: methods equipped with algebraic
Cap(F manipulation capabilities

(F₂,15)

65

Action of pouring a flask into the other:

Pour(f,f')

 $P = Cont(f,x) \wedge Cap(f',c') \wedge Cont(f',y) \wedge (f \neq f')$

D = Cont(f,x), Cont(f',y),

 $A = Cont(f, \max\{x+y-c', 0\}), Cont(f', \min\{x+y, c'\})$

Extensions of STRIPS 4. State Constraints

State:

 $Adj(1,2) \wedge Adj(2,1) \wedge ... \wedge Adj(8,9) \wedge Adj(9,8) \wedge At(h,1) \wedge At(b,2) \wedge At(c,4) \wedge ... \wedge At(f,9) \wedge Empty(3)$

Move(x,y,z)

 $P = At(x,y) \wedge Empty(z) \wedge Adj(y,z)$

D = At(x,y), Empty(z)

A = At(x,z), Empty(y)

Extensions of STRIPS 4. State Constraints

State:

 $Adj(1,2) \wedge Adj(2,1) \wedge ... \wedge Adj(8,9) \wedge Adj(9,8) \wedge At(h,1) \wedge At(b,2) \wedge At(c,4) \wedge ... \wedge At(f,9) \wedge Empty(3)$

State constraint:

 $Adj(x,y) \rightarrow Adj(y,x)$

Move(x,y,z)

 $P = At(x,y) \wedge Empty(z) \wedge Adj(y,z)$

D = At(x,y), Empty(z)

A = At(x,z), Empty(y)

More Complex State Constraints in 1st-Order Predicate Logic

Blocks world:

 $(\forall x)[\mathsf{Block}(x) \ \land \neg(\exists y)\mathsf{On}(y,\!x) \land \neg \mathsf{Holding}(x)] \ \to \mathcal{C}\mathsf{lear}(x)$

 $(\forall x)[\mathsf{Block}(x) \ \land \ \mathsf{Clear}(x)] \to \neg(\exists y)\mathsf{On}(y,x) \land \neg \mathsf{Holding}(x)$

Handempty $\leftrightarrow \neg(\exists x)$ Holding(x)

would simplify greatly the description of the actions

State constraints require planning methods with logical deduction capabilities, to determine whether goals are achieved or preconditions are satisfied

Some Applications of AI Planning

- Military operations
- Operations in container ports
- Construction tasks
- Machining and manufacturing
- Autonomous control of satellites and other spacecrafts

