Image
Alanyannick
Image 码龄12年
Image
求更新 Image关注
提问 私信
  • 博客:1,966,742
    社区:1
    1,966,743
    总访问量
  • 106
    原创
  • 1,532
    粉丝
  • 33
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:美国
加入CSDN时间: 2013-07-28

个人简介:Computer Vision, Machine learning, Artificial intelligence.

博客简介:

Focusing on your own Mind :) -> 站在巨人的肩膀上

博客描述:
Enjoy :)
查看详细资料
个人成就
  • 获得780次点赞
  • 内容获得98次评论
  • 获得1,835次收藏
  • 博客总排名972,121名
创作历程
  • 91篇
    2017年
  • 251篇
    2016年
  • 5篇
    2015年
成就勋章
  • Image
  • Image
  • Image
TA的专栏
  • Image 深度学习RCNN系列详解
    12篇
  • Image RNN
    3篇
  • Image caffe source code
    1篇
  • Image Digital image processing
    16篇
  • Image Computer vision
    11篇
  • Image Machine learning
    19篇
  • Image CNNs
    54篇
  • Image Note
    17篇
  • Image mac-os-x
    9篇
  • Image matlab
    3篇
  • Image Caffe
    69篇
  • Image Torch
    32篇
  • Image Ubuntu
    81篇
  • Image DL
    51篇
  • Image Anaconda
    1篇
  • Image YOLO
    2篇
  • Image Obeject Tracking
    6篇
  • Image RCNN
    19篇
  • Image Deep Reinforcement Learning
    1篇
  • Image SSD
    3篇
  • Image Tmux and Vim
    14篇
  • Image fcn
    5篇
  • Image Math in Deep Learning
    21篇
  • Image C++ Learning Notes
    9篇
  • Image Deep Learning Notes
    25篇
  • Image Matlab Usage
    2篇
  • Image CUDA
    2篇
  • Image NLP
    1篇
  • Image traditional networks & tricks
    26篇
  • Image vnc
    2篇
  • Image Reference paper
    15篇
  • Image Neural Style
    8篇
  • Image GANs
    13篇
  • Image Semantic Segmentation
    4篇
  • Image FFmpeg
    1篇
  • Image Tensorflow
    8篇
  • Image VAE
    7篇
  • Image LeetCode
    1篇
  • Image theano
  • Image git
    11篇
  • Image lua
    1篇
  • Image Python
    21篇
  • Image Keras
    3篇
  • Image Mysql
    3篇
  • Image Html/JQuery/Js
    2篇
  • Image Deep Learning Model Design
    2篇
  • Image StyleT
  • Image StyleTransfer
    2篇

TA关注的专栏 8

TA关注的收藏夹 0

TA关注的社区 0

TA参与的活动 0

兴趣领域 设置
  • 人工智能
    Imagepytorch
  • 音视频
    Imageopencv
创作活动更多Image
Image

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

7人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
Image
Image
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

Image
Image Image
搜索 取消

linux脚本sed命令详解

sed:Stream Editor文本流编辑,sed是一个“非交互式的”面向字符流的编辑器。能同时处理多个文件多行的内容,可以不对原文件改动,把整个文件输入到屏幕,可以把只匹配到模式的内容输入到屏幕上。还可以对原文件改动,但是不会再屏幕上返回结果。sed命令的语法格式:       sed的命令格式: sed [option]  'sed command'filenames
转载
博文更新于 2021.04.21 ·
1223 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

How to design DL model(2):Inception(v4)-ResNet and the Impact of Residual Connections on Learning

转载自: http://www.jianshu.com/p/329d2c0cfca9Google Research的Inception模型和Microsoft Research的Residual Net模型两大图像识别杀器结合效果如何?在这篇2月23日公布在arxiv上的文章“Inception-v4, Inception-ResNet and the Impact of Resi
转载
博文更新于 2017.08.18 ·
2131 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

PyCharm选择性忽略PEP8代码风格警告信息

用了几天的PyCharm,发现确实在编写Python代码上非常好用,但有一点体验不太好,就是代码编写时要按照PEP8代码风格编写,不然会有波浪线的警告信息。解决方法如下:方法一:将鼠标移到提示的地方,按alt+Enter,选择忽略(Ignore)这个错误即好。方法二打开:File - Settings…… - Editor - Inspections在pyt
转载
博文更新于 2016.11.07 ·
7684 阅读 ·
1 点赞 ·
1 评论 ·
14 收藏

vim提供多窗口编辑的功能

本文出自   http://blog.csdn.net/shuangde800------------------------------------------------------------------------------------------------vim提供多窗口编辑的功能,可以简化复合的编辑任务。vim的多窗口并不
转载
博文更新于 2016.05.24 ·
532 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

BP(Back Propagation)

简单的描述就是,输入层将刺激传递给隐藏层,隐藏层通过神经元之间联系的强度(权重)和传递规则(激活函数)将刺激传到输出层,输出层整理隐藏层处理的后的刺激产生最终结果。若有正确的结果,那么将正确的结果和产生的结果进行比较,得到误差,再逆推对神经网中的链接权重进行反馈修正,从而来完成学习的过程。这就是BP神经网的反馈机制,也正是BP(Back Propagation)名字的来源:运用向后反馈的学习机制,
原创
博文更新于 2016.04.12 ·
808 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

EER(Equal Error Rate) 解释

最近在做视频异常检测的论文,看到人家论文中有一项指标叫EER(Equal Error Rate),于是我也想算一算,结果google、baidu了半天,各种百科里没有一个像样的定义,更别提如何计算了。最后在一个matlab论坛里找到了正解:   “the Equal Error Rate (EER) is the point on the ROC curve that corresponds
转载
博文更新于 2017.06.07 ·
6355 阅读 ·
4 点赞 ·
0 评论 ·
6 收藏

GAN网络生成:感知损失(Perceptual Losses)

本文是参考文献[1]的笔记。该论文是Li Fei-Fei名下的论文。引入最近新出的图像风格转换算法,虽然效果好,但对于每一张要生成的图片,都需要初始化,然后保持CNN的参数不变,反向传播更新图像,得到最后的结果。性能问题堪忧。但是图像风格转换算法的成功,在生成图像领域,产生了一个非常重要的idea,那就是可以将卷积神经网络提取出的feature,作为目标函数的一部分,通过比
转载
博文更新于 2018.01.02 ·
8586 阅读 ·
0 点赞 ·
0 评论 ·
9 收藏

vim 多行注释

1.多行注释:  a. 按下Ctrl + v,进入列模式;  b. 在行首选择需要注释的行;  c. 按下“I”,进入插入模式;  d. 然后输入注释符(“//”、“#”等);  e. 按下“Esc”键。2.删除多行注释:  a. 按下Ctrl + v, 进入列模式;  b. 选定要取消的注释符;  c. 按下“x”或者“d”.
转载
博文更新于 2016.06.02 ·
629 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Vim的操作小技巧

Vim的操作除了基本的hjkl之外,快速鍵組合相當多,不過大概有個規則。以下是我自己個人比較常會用到,而且覺得還滿方便的操作小技巧,寫起來幫自己加深記憶,希望也對有需要的朋友有幫助。說明Enter = 按下enter鍵,Ctrl = 按下ctrl鍵,Alt = 按下alt鍵,如果是大寫字母例如G = shift + g,Ctrlwj = 按著ctrl鍵不放,
转载
博文更新于 2016.05.24 ·
526 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Keras Notes: Keras安装与简介

reference: http://blog.csdn.net/mmc2015/article/details/50976776先安装上再说:sudo pipinstall keras或者手动安装:下载:Git clone git://github.com/fchollet/keras.git传到相应机器上安装:cd to
转载
博文更新于 2017.02.18 ·
678 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

torch入门笔记21:xavier初始化方法

今天的task主要是为了使得分类中要达到更好的优化效果,这里需要对model内部参数的初始化做一下特殊的处理。还记得torch会帮我们随机初始化参数吗?我们现在不使用torch的初始化参数,而使用一种更高级的初始化方法,称之为xavier方法。概括来讲,就是根据每层的输入个数和输出个数来决定参数随机初始化的分布范围。在代码里只需要一句:model = require('weight-ini
原创
博文更新于 2016.12.29 ·
4742 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

vim多窗口使用技巧

vim多窗口使用技巧1、打开多个窗口打开多个窗口的命令以下几个:横向切割窗口:new+窗口名(保存后就是文件名) :split+窗口名,也可以简写为:sp+窗口名纵向切割窗口名:vsplit+窗口名,也可以简写为:vsp+窗口名2、关闭多窗口可以用:q!,也可以使用:close,最后一个窗口不能使用close关闭。使用close只是暂时关闭窗口,其内容还
转载
博文更新于 2016.09.13 ·
635 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Mean Average Precision

reference: https://www.kaggle.com/wiki/MeanAveragePrecisionIntroductionParameters: nSuppose there are m missing outbound edges from a user in a social graph, and you can predict up to n ot
转载
博文更新于 2016.07.04 ·
2170 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏

深度学习tracking学习笔记(1):Visual Tracking with Fully Convolutional Networks

reference:http://blog.csdn.net/carrierlxksuper/article/details/48918297两个属性1)不同层上的CNN特征可以针对不同的tracking问题。越top层的特征越抽象,并且具有语义信息。这些特征的优势在于区分不同类别,同时对于形变和遮挡robust(下图a)。但是他们的缺点是无法区别类内的物体,比如不同人(下
转载
博文更新于 2016.06.23 ·
6346 阅读 ·
0 点赞 ·
2 评论 ·
7 收藏

风格迁移学习笔记(1):Multimodal Transfer: A Hierarchical Deep Convolutional Neural Network for Fast

以下将分为3个部分介绍:效果解決的問題How to solve it?1.效果:先来看一下效果2.解决的问题: 通用框架下进行style transfer时候的笔触差异 原始的方法永远会和style差距较大解决不同size下的笔触问题,如下图如果只用256的size去训练较coarse的笔触 或者 用1024的size去训
原创
博文更新于 2018.01.02 ·
4770 阅读 ·
2 点赞 ·
0 评论 ·
6 收藏

Autoencorder理解(7):Variational Autoencoder

以下将分为6个部分介绍:vae结构框架vae与ae区别提及一下为什么要采样如何优化vae应用vae生成/抽象看待vae学习1.框架:先来看一下VAE的结构框架,并先预告一下结论: VAE 包括 encoder (模块 1)和 decoder(模块 4) 两个神经网络。两者通过模块 2、3 连接成一个大网络。利益于 reparemeterization 技巧,我们可以
原创
博文更新于 2017.12.27 ·
8310 阅读 ·
1 点赞 ·
0 评论 ·
7 收藏

Autoencorder理解(4):生成网络的类比

转完上面三篇来进行总结一下:其实自动编码器相当于构建一个神经网络让其自己学自己。在学习的过程中,其实是相当于无监督的。因为其source和target图其实就是自己。那么过程中,通过多层神经网络,最终就会选择编码到一个维度的张量,那么这个张量其实就是类似与白化,pca出来的一个代表这抽象维度稀疏性的重要组成。其实目前,我们所有用的卷积神经网络在GAN中既是如上结构的en
原创
博文更新于 2017.12.27 ·
704 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

RNN学习笔记:Understanding Deep Architectures using a Recursive Convolutional Network

reference link:http://blog.csdn.net/whiteinblue/article/details/43451383 本文是纽约大学Yann LeCun团队中Pierre Sermanet ,David Eigen和张翔等在13年撰写的一篇论文,本文改进了Alex-net,并用图像缩放和滑窗方法在test数据集上测试网络;提出了一种图像定位的方法;最后通过一
转载
博文更新于 2016.04.24 ·
1905 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏

RCNN学习笔记(2):Rich feature hierarchies for accurate object detection and semantic segmentation

基于R-CNN的物体检测一、相关理论   本篇博文主要讲解2014年CVPR上的经典paper:《Rich feature hierarchies for Accurate Object Detection and Segmenta
原创
博文更新于 2017.05.14 ·
37784 阅读 ·
61 点赞 ·
6 评论 ·
192 收藏

深度学习中的数学与技巧(5):白化whitening

一、相关理论    白化这个词,可能在深度学习领域比较常遇到,挺起来就是高大上的名词,然而其实白化是一个比PCA稍微高级一点的算法而已,所以如果熟悉PCA,那么其实会发现这是一个非常简单的算法。    白化的目的是去除输入数据的冗余信息。假设训练数据是图像,由于图像中相邻像素之间具有很强的相关性,所以用于训练时输入是冗余的;白化的目的就是降低输入的冗余性。    输入数据集
转载
博文更新于 2016.10.20 ·
4960 阅读 ·
6 点赞 ·
0 评论 ·
6 收藏
加载更多
Advertisement