Partner – Orkes – NPI EA (cat=Spring)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

Partner – Orkes – NPI EA (tag=Microservices)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

eBook – Guide Spring Cloud – NPI EA (cat=Spring Cloud)
announcement - icon

Let's get started with a Microservice Architecture with Spring Cloud:

>> Join Pro and download the eBook

eBook – Mockito – NPI EA (tag = Mockito)
announcement - icon

Mocking is an essential part of unit testing, and the Mockito library makes it easy to write clean and intuitive unit tests for your Java code.

Get started with mocking and improve your application tests using our Mockito guide:

Download the eBook

eBook – Java Concurrency – NPI EA (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook – Reactive – NPI EA (cat=Reactive)
announcement - icon

Spring 5 added support for reactive programming with the Spring WebFlux module, which has been improved upon ever since. Get started with the Reactor project basics and reactive programming in Spring Boot:

>> Join Pro and download the eBook

eBook – Java Streams – NPI EA (cat=Java Streams)
announcement - icon

Since its introduction in Java 8, the Stream API has become a staple of Java development. The basic operations like iterating, filtering, mapping sequences of elements are deceptively simple to use.

But these can also be overused and fall into some common pitfalls.

To get a better understanding on how Streams work and how to combine them with other language features, check out our guide to Java Streams:

>> Join Pro and download the eBook

eBook – Jackson – NPI EA (cat=Jackson)
announcement - icon

Do JSON right with Jackson

Download the E-book

eBook – HTTP Client – NPI EA (cat=Http Client-Side)
announcement - icon

Get the most out of the Apache HTTP Client

Download the E-book

eBook – Maven – NPI EA (cat = Maven)
announcement - icon

Get Started with Apache Maven:

Download the E-book

eBook – Persistence – NPI EA (cat=Persistence)
announcement - icon

Working on getting your persistence layer right with Spring?

Explore the eBook

eBook – RwS – NPI EA (cat=Spring MVC)
announcement - icon

Building a REST API with Spring?

Download the E-book

Course – LS – NPI EA (cat=Jackson)
announcement - icon

Get started with Spring and Spring Boot, through the Learn Spring course:

>> LEARN SPRING
Course – RWSB – NPI EA (cat=REST)
announcement - icon

Explore Spring Boot 3 and Spring 6 in-depth through building a full REST API with the framework:

>> The New “REST With Spring Boot”

Course – LSS – NPI EA (cat=Spring Security)
announcement - icon

Yes, Spring Security can be complex, from the more advanced functionality within the Core to the deep OAuth support in the framework.

I built the security material as two full courses - Core and OAuth, to get practical with these more complex scenarios. We explore when and how to use each feature and code through it on the backing project.

You can explore the course here:

>> Learn Spring Security

Course – All Access – NPI EA (cat= Spring)
announcement - icon

All Access is finally out, with all of my Spring courses. Learn JUnit is out as well, and Learn Maven is coming fast. And, of course, quite a bit more affordable. Finally.

>> GET THE COURSE
Partner – Orkes – NPI EA (cat=Java)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

Course – LSD – NPI EA (tag=Spring Data JPA)
announcement - icon

Spring Data JPA is a great way to handle the complexity of JPA with the powerful simplicity of Spring Boot.

Get started with Spring Data JPA through the guided reference course:

>> CHECK OUT THE COURSE

Partner – Moderne – NPI EA (cat=Spring Boot)
announcement - icon

Refactor Java code safely — and automatically — with OpenRewrite.

Refactoring big codebases by hand is slow, risky, and easy to put off. That’s where OpenRewrite comes in. The open-source framework for large-scale, automated code transformations helps teams modernize safely and consistently.

Each month, the creators and maintainers of OpenRewrite at Moderne run live, hands-on training sessions — one for newcomers and one for experienced users. You’ll see how recipes work, how to apply them across projects, and how to modernize code with confidence.

Join the next session, bring your questions, and learn how to automate the kind of work that usually eats your sprint time.

Partner – LambdaTest – NPI EA (cat=Testing)
announcement - icon

Regression testing is an important step in the release process, to ensure that new code doesn't break the existing functionality. As the codebase evolves, we want to run these tests frequently to help catch any issues early on.

The best way to ensure these tests run frequently on an automated basis is, of course, to include them in the CI/CD pipeline. This way, the regression tests will execute automatically whenever we commit code to the repository.

In this tutorial, we'll see how to create regression tests using Selenium, and then include them in our pipeline using GitHub Actions:, to be run on the LambdaTest cloud grid:

>> How to Run Selenium Regression Tests With GitHub Actions

eBook – Reactive – NPI(cat= Reactive)
announcement - icon

Spring 5 added support for reactive programming with the Spring WebFlux module, which has been improved upon ever since. Get started with the Reactor project basics and reactive programming in Spring Boot:

>> Join Pro and download the eBook

1. Overview

In this article, we’ll be looking at the Java 9 Reactive Streams. Simply put, we’ll be able to use the Flow class, which encloses the primary building blocks for building reactive stream processing logic.

Reactive Streams is a standard for asynchronous stream processing with non-blocking back pressure. This specification is defined in the Reactive Manifesto, and there are various implementations of it, for example, RxJava or Akka-Streams.

2. Reactive API Overview

To build a Flow, we can use three main abstractions and compose them into asynchronous processing logic.

Every Flow needs to process events that are published to it by a Publisher instance; the Publisher has one method – subscribe().

If any of the subscribers want to receive events published by it, they need to subscribe to the given Publisher.

The receiver of messages needs to implement the Subscriber interface. Typically this is the end for every Flow processing because the instance of it does not send messages further.

We can think about Subscriber as a Sink. This has four methods that need to be overridden – onSubscribe(), onNext(), onError(), and onComplete(). We’ll be looking at those in the next section.

If we want to transform incoming message and pass it further to the next Subscriber, we need to implement the Processor interface. This acts both as a Subscriber because it receives messages, and as the Publisher because it processes those messages and sends them for further processing.

3. Publishing and Consuming Messages

Let’s say we want to create a simple Flow, in which we have a Publisher publishing messages, and a simple Subscriber consuming messages as they arrive – one at the time.

Let’s create an EndSubscriber class. We need to implement the Subscriber interface. Next, we’ll override the required methods.

The onSubscribe() method is called before processing starts. The instance of the Subscription is passed as the argument. It is a class that is used to control the flow of messages between Subscriber and the Publisher:

public class EndSubscriber<T> implements Subscriber<T> {
    private Subscription subscription;
    public List<T> consumedElements = new LinkedList<>();

    @Override
    public void onSubscribe(Subscription subscription) {
        this.subscription = subscription;
        subscription.request(1);
    }
}

We also initialized an empty List of consumedElements that’ll be utilized in the tests.

Now, we need to implement the remaining methods from the Subscriber interface. The main method here is onNext() – this is called whenever the Publisher publishes a new message:

@Override
public void onNext(T item) {
    System.out.println("Got : " + item);
    consumedElements.add(item);
    subscription.request(1);
}

Note that when we started the subscription in the onSubscribe() method and when we processed a message we need to call the request() method on the Subscription to signal that the current Subscriber is ready to consume more messages.

Lastly, we need to implement onError() – which is called whenever some exception will be thrown in the processing, as well as onComplete() – called when the Publisher is closed:

@Override
public void onError(Throwable t) {
    t.printStackTrace();
}

@Override
public void onComplete() {
    System.out.println("Done");
}

Let’s write a test for the Processing Flow. We’ll be using the SubmissionPublisher class – a construct from the java.util.concurrent – which implements the Publisher interface.

We’re going to be submitting N elements to the Publisher – which our EndSubscriber will be receiving:

@Test
public void whenSubscribeToIt_thenShouldConsumeAll() 
  throws InterruptedException {
 
    // given
    SubmissionPublisher<String> publisher = new SubmissionPublisher<>();
    EndSubscriber<String> subscriber = new EndSubscriber<>();
    publisher.subscribe(subscriber);
    List<String> items = List.of("1", "x", "2", "x", "3", "x");

    // when
    assertThat(publisher.getNumberOfSubscribers()).isEqualTo(1);
    items.forEach(publisher::submit);
    publisher.close();

    // then
     await().atMost(1000, TimeUnit.MILLISECONDS)
       .until(
         () -> assertThat(subscriber.consumedElements)
         .containsExactlyElementsOf(items)
     );
}

Note, that we’re calling the close() method on the instance of the EndSubscriber. It will invoke onComplete() callback underneath on every Subscriber of the given Publisher.

Running that program will produce the following output:

Got : 1
Got : x
Got : 2
Got : x
Got : 3
Got : x
Done

4. Transformation of Messages

Let’s say that we want to build similar logic between a Publisher and a Subscriber, but also apply some transformation.

We’ll create the TransformProcessor class that implements Processor and extends SubmissionPublisher – as this will be both Publisher and Subscriber.

We’ll pass in a Function that will transform inputs into outputs:

public class TransformProcessor<T, R> 
  extends SubmissionPublisher<R> 
  implements Flow.Processor<T, R> {

    private Function<T, R> function;
    private Flow.Subscription subscription;

    public TransformProcessor(Function<T, R> function) {
        super();
        this.function = function;
    }

    @Override
    public void onSubscribe(Flow.Subscription subscription) {
        this.subscription = subscription;
        subscription.request(1);
    }

    @Override
    public void onNext(T item) {
        submit(function.apply(item));
        subscription.request(1);
    }

    @Override
    public void onError(Throwable t) {
        t.printStackTrace();
    }

    @Override
    public void onComplete() {
        close();
    }
}

Let’s now write a quick test with a processing flow in which the Publisher is publishing String elements.

Our TransformProcessor will be parsing the String as Integer – which means a conversion needs to happen here:

@Test
public void whenSubscribeAndTransformElements_thenShouldConsumeAll()
  throws InterruptedException {
 
    // given
    SubmissionPublisher<String> publisher = new SubmissionPublisher<>();
    TransformProcessor<String, Integer> transformProcessor 
      = new TransformProcessor<>(Integer::parseInt);
    EndSubscriber<Integer> subscriber = new EndSubscriber<>();
    List<String> items = List.of("1", "2", "3");
    List<Integer> expectedResult = List.of(1, 2, 3);

    // when
    publisher.subscribe(transformProcessor);
    transformProcessor.subscribe(subscriber);
    items.forEach(publisher::submit);
    publisher.close();

    // then
     await().atMost(1000, TimeUnit.MILLISECONDS)
       .until(() -> 
         assertThat(subscriber.consumedElements)
         .containsExactlyElementsOf(expectedResult)
     );
}

Note, that calling the close() method on the base Publisher will cause the onComplete() method on the TransformProcessor to be invoked.

Keep in mind that all publishers in the processing chain need to be closed this way.

5. Controlling Demand for Messages Using the Subscription

Let’s say that we want to consume only the first element from the Subscription, apply some logic and finish processing. We can use the request() method to achieve this.

Let’s modify our EndSubscriber to consume only N number of messages. We’ll be passing that number as the howMuchMessagesConsume constructor argument:

public class EndSubscriber<T> implements Subscriber<T> {
 
    private AtomicInteger howMuchMessagesConsume;
    private Subscription subscription;
    public List<T> consumedElements = new LinkedList<>();

    public EndSubscriber(Integer howMuchMessagesConsume) {
        this.howMuchMessagesConsume 
          = new AtomicInteger(howMuchMessagesConsume);
    }

    @Override
    public void onSubscribe(Subscription subscription) {
        this.subscription = subscription;
        subscription.request(1);
    }

    @Override
    public void onNext(T item) {
        howMuchMessagesConsume.decrementAndGet();
        System.out.println("Got : " + item);
        consumedElements.add(item);
        if (howMuchMessagesConsume.get() > 0) {
            subscription.request(1);
        }
    }
    //...
    
}

We can request elements as long we want to.

Let’s write a test in which we only want to consume one element from the given Subscription:

@Test
public void whenRequestForOnlyOneElement_thenShouldConsumeOne()
  throws InterruptedException {
 
    // given
    SubmissionPublisher<String> publisher = new SubmissionPublisher<>();
    EndSubscriber<String> subscriber = new EndSubscriber<>(1);
    publisher.subscribe(subscriber);
    List<String> items = List.of("1", "x", "2", "x", "3", "x");
    List<String> expected = List.of("1");

    // when
    assertThat(publisher.getNumberOfSubscribers()).isEqualTo(1);
    items.forEach(publisher::submit);
    publisher.close();

    // then
    await().atMost(1000, TimeUnit.MILLISECONDS)
      .until(() -> 
        assertThat(subscriber.consumedElements)
       .containsExactlyElementsOf(expected)
    );
}

Although the publisher is publishing six elements, our EndSubscriber will consume only one element because it signals demand for processing only that single one.

By using the request() method on the Subscription, we can implement a more sophisticated back-pressure mechanism to control the speed of the message consumption.

6. Conclusion

In this article, we had a look at the Java 9 Reactive Streams.

We saw how to create a processing Flow consisting of a Publisher and a Subscriber. We created a more complex processing flow with the transformation of elements using Processors.

Finally, we used the Subscription to control the demand for elements by the Subscriber.

The code backing this article is available on GitHub. Once you're logged in as a Baeldung Pro Member, start learning and coding on the project.
Baeldung Pro – NPI EA (cat = Baeldung)
announcement - icon

Baeldung Pro comes with both absolutely No-Ads as well as finally with Dark Mode, for a clean learning experience:

>> Explore a clean Baeldung

Once the early-adopter seats are all used, the price will go up and stay at $33/year.

Partner – Orkes – NPI EA (cat = Spring)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

Partner – Orkes – NPI EA (tag = Microservices)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

eBook – HTTP Client – NPI EA (cat=HTTP Client-Side)
announcement - icon

The Apache HTTP Client is a very robust library, suitable for both simple and advanced use cases when testing HTTP endpoints. Check out our guide covering basic request and response handling, as well as security, cookies, timeouts, and more:

>> Download the eBook

eBook – Java Concurrency – NPI EA (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook – Java Streams – NPI EA (cat=Java Streams)
announcement - icon

Since its introduction in Java 8, the Stream API has become a staple of Java development. The basic operations like iterating, filtering, mapping sequences of elements are deceptively simple to use.

But these can also be overused and fall into some common pitfalls.

To get a better understanding on how Streams work and how to combine them with other language features, check out our guide to Java Streams:

>> Join Pro and download the eBook

eBook – Persistence – NPI EA (cat=Persistence)
announcement - icon

Working on getting your persistence layer right with Spring?

Explore the eBook

Course – LS – NPI EA (cat=REST)

announcement - icon

Get started with Spring Boot and with core Spring, through the Learn Spring course:

>> CHECK OUT THE COURSE

Partner – Moderne – NPI EA (tag=Refactoring)
announcement - icon

Modern Java teams move fast — but codebases don’t always keep up. Frameworks change, dependencies drift, and tech debt builds until it starts to drag on delivery. OpenRewrite was built to fix that: an open-source refactoring engine that automates repetitive code changes while keeping developer intent intact.

The monthly training series, led by the creators and maintainers of OpenRewrite at Moderne, walks through real-world migrations and modernization patterns. Whether you’re new to recipes or ready to write your own, you’ll learn practical ways to refactor safely and at scale.

If you’ve ever wished refactoring felt as natural — and as fast — as writing code, this is a good place to start.

Course – LS – NPI (cat=Java)
announcement - icon

Get started with Spring Boot and with core Spring, through the Learn Spring course:

>> CHECK OUT THE COURSE

eBook Jackson – NPI EA – 3 (cat = Jackson)