Package: GNET2 1.27.0
GNET2: Constructing gene regulatory networks from expression data through functional module inference
Cluster genes to functional groups with E-M process. Iteratively perform TF assigning and Gene assigning, until the assignment of genes did not change, or max number of iterations is reached.
Authors:
GNET2_1.27.0.tar.gz
GNET2_1.27.0.zip(r-4.6)GNET2_1.27.0.zip(r-4.5)GNET2_1.27.0.zip(r-4.4)
GNET2_1.27.0.tgz(r-4.5-x86_64)GNET2_1.27.0.tgz(r-4.5-arm64)
GNET2_1.27.0.tar.gz(r-4.6-arm64)GNET2_1.27.0.tar.gz(r-4.6-x86_64)GNET2_1.27.0.tar.gz(r-4.5-arm64)GNET2_1.27.0.tar.gz(r-4.5-x86_64)
GNET2_1.27.0.tgz(r-4.5-emscripten)
GNET2.pdf |GNET2.html✨
GNET2/json (API)
NEWS
| # Install 'GNET2' in R: |
| install.packages('GNET2', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/chrischen1/gnet2/issues
On BioConductor:GNET2-1.27.0(bioc 3.23)GNET2-1.26.0(bioc 3.22)
geneexpressionregressionnetworknetworkinferencesoftwarecpp
Last updated from:2926e7b61d. Checks:1 ERROR, 13 OK. Indexed: yes.
| Target | Result | Total time | Artifact |
|---|---|---|---|
| bioc-checks | ERROR | 182 | |
| linux-devel-arm64 | OK | 219 | |
| linux-devel-x86_64 | OK | 295 | |
| source / vignettes | OK | 259 | |
| linux-release-arm64 | OK | 236 | |
| linux-release-x86_64 | OK | 271 | |
| macos-release-arm64 | OK | 148 | |
| macos-release-x86_64 | OK | 449 | |
| macos-oldrel-arm64 | OK | 200 | |
| macos-oldrel-x86_64 | OK | 372 | |
| windows-devel | OK | 228 | |
| windows-release | OK | 218 | |
| windows-oldrel | OK | 260 | |
| wasm-release | OK | 143 |
Exports:build_modulebuild_moduleRbuild_moduleR_heuristicbuild_split_tablecalc_likelihood_scoreextract_edgesget_correlation_listgnetkneepointDetectionplot_gene_groupplot_group_correlationplot_treesave_gnetsimilarity_score
Dependencies:abindbase64encBiobaseBiocGenericsbitbit64bslibcachemclicliprcpp11crayondata.tableDelayedArrayDiagrammeRdigestdplyrevaluatefarverfastmapfontawesomefsgenericsGenomicRangesggplot2gluegtablehighrhmshtmltoolshtmlwidgetsigraphIRangesisobandjquerylibjsonliteknitrlabelinglatticelifecyclemagrittrMatrixMatrixGenericsmatrixStatsmemoisemimepillarpkgconfigplyrprettyunitsprogresspurrrR6rappdirsRColorBrewerRcppreadrreshape2rlangrmarkdownrstudioapiS4ArraysS4VectorsS7sassscalesSeqinfoSparseArraystringistringrSummarizedExperimenttibbletidyrtidyselecttinytextzdbutf8vctrsviridisLitevisNetworkvroomwithrxfunxgboostXVectoryaml
Readme and manuals
Help Manual
| Help page | Topics |
|---|---|
| Fit a regression tree. | build_module |
| Build regression tree. | build_moduleR |
| Build regression tree with splits are detemined by K-means heuristicly. | build_moduleR_heuristic |
| Build split table by K-means heuristicly. | build_split_table |
| Calculate Gaussian Likelihood score. | calc_likelihood_score |
| Extract the network from the gnet result | extract_edges |
| Calculate correlation within each group. | get_correlation_list |
| Run GNET2 | gnet |
| Knee point detection. | kneepointDetection |
| Plot a module | plot_gene_group |
| Plot the correlation of each group | plot_group_correlation |
| Plot the regression tree. | plot_tree |
| Save the GNET2 results | save_gnet |
| Compute the similarity from a predefined condition group | similarity_score |
